WorldWideScience

Sample records for c-src tyrosine kinase

  1. Identification of c-Src tyrosine kinase substrates using mass spectrometry and peptide microarrays

    DEFF Research Database (Denmark)

    Amanchy, Ramars; Zhong, Jun; Molina, Henrik

    2008-01-01

    c-Src tyrosine kinase plays a critical role in signal transduction downstream of growth factor receptors, integrins and G protein-coupled receptors. We used stable isotope labeling with amino acids in cell culture (SILAC) approach to identify additional substrates of c-Src tyrosine kinase in human...

  2. Activation of c-Src and Fyn kinases by protein tyrosine phosphatase RPTPalpha is substrate-specific and compatible with lipid raft localization

    DEFF Research Database (Denmark)

    Vacaresse, Nathalie; Møller, Bente; Danielsen, Erik Michael

    2008-01-01

    Tyrosine kinases of the Src family (SFKs) function in multiple signaling pathways, raising the question of how appropriate regulation and substrate choice are achieved. SFK activity is modulated by several protein tyrosine phosphatases (PTPs), among which RPTPa and SHP2 are the best established. We...... studied how RPTPa affects substrate specificity and regulation of c-Src and Fyn in response to EGF and PDGF. We find that RPTPa, in a growth factor-specific manner, directs the specificity of these kinases towards a specific subset of SFK substrates, particularly the focal adhesion protein Paxillin...... and the lipid raft scaffolding protein Cbp/PAG. A significant fraction of RPTPa is present in lipid rafts, where its targets Fyn and Cbp/PAG reside, and growth factor-mediated SFK activation within this compartment is strictly dependent on RPTPa. Forced concentration of RPTPa into lipid rafts is compatible...

  3. Activation of endogenous c-Src or a related tyrosine kinase by intracellular (pY)EEI peptide increases voltage-operated calcium channel currents in rabbit ear artery cells.

    Science.gov (United States)

    Wijetunge, S; Hughes, A D

    1996-12-09

    The effect of activation of endogenous c-Src tyrosine kinase by (pY)EEI peptide was examined on voltage-operated calcium channel (VOC) currents in arterial smooth muscle cells. In single rabbit ear artery cells intracellular application of (pY)EEI peptide increased calcium channel currents. Inactive, non-phosphorylated YEEI peptide had no effect on currents. Peptide-A, a 21 amino acid inhibitor of c-Src inhibited currents and prevented the effect of (pY)EEI peptide on calcium channel currents. These results indicate that activation of intrinsic c-Src increases VOC and support a role for c-Src in the regulation of VOC in vascular smooth muscle cells.

  4. Synthesis and anti-tyrosine kinase activity of 3-(substituted-benzylidene)-1, 3-dihydro-indolin derivatives: investigation of their role against p60c-Src receptor tyrosine kinase with the application of receptor docking studies.

    Science.gov (United States)

    Olgen, Sureyya; Akaho, Eiichi; Nebioglu, Dogu

    2005-01-01

    A series of 3-(substituted-benzylidene)-1, 3-dihydro-indolin-2-thione derivatives were synthesized as modified congeners of 3-(substituted-benzylidene)-1, 3-dihydro-indolin-2-one series. All the synthesized compounds were examined for their in vitro anti-tyrosine kinase activity against p60c-Src. The activity results revealed that compounds (Z)-3-(4'-Dimethylamino-benzylidene)-1, 3-dihydro-indolin-2-thione (12) (E)-3-(2', 6'-Dichloro-benzylidene)-1, 3-dihydro-indolin-2-thione (13) and (E)-3-(3'-Hydroxy-4'-methoxy-benzylidene)-1, 3-dihydro-indolin-2-thione (19) exhibited anti-tyrosine kinase activity with IC50 value of 21.91, 21.20 and 30.92 microM, respectively. These results are comparable to PP1 [1-tert-Butyl-3-p-tolyl-1H-pyrazolo[3, 4-d]pyrimidine-4-yl-amine] (IC50=0.17 microM), which is reported as a potent and selective p60c-Src tyrosine kinase inhibitor. Some thio congeners are found to be more potent than oxo derivatives; however, no significant correlation was observed between the activity profiles of these two series. Docking program was used to investigate the docking mode of each compound at the active site. Among all of the compounds, only (Z)-3-(2'-Chloro-benzylidene)-1, 3-dihydro-indolin-2-one (8) and (E)-3-(3'-Nitro-benzylidene)-1, 3-dihydro-indolin-2-thione (16) were docked at the active site where the PP1 was embedded.

  5. ErbB2 Regulation of c-src Activity in Breast Cancer

    National Research Council Canada - National Science Library

    Sheffield, Lewis

    1999-01-01

    ErbB2 transformation of mammary epithelial cells activated c-src. C-src activation was associated with decreased phosphorylation of tyrosine 527, but not by a decrease in C-terminal-src-kinase (CSK) activity...

  6. A Kinase-Independent Function of c-Src Mediates p130Cas Phosphorylation at the Serine-639 Site in Pressure Overloaded Myocardium.

    Science.gov (United States)

    Palanisamy, Arun P; Suryakumar, Geetha; Panneerselvam, Kavin; Willey, Christopher D; Kuppuswamy, Dhandapani

    2015-12-01

    Early work in pressure overloaded (PO) myocardium shows that integrins mediate focal adhesion complex formation by recruiting the adaptor protein p130Cas (Cas) and nonreceptor tyrosine kinase c-Src. To explore c-Src role in Cas-associated changes during PO, we used a feline right ventricular in vivo PO model and a three-dimensional (3D) collagen-embedded adult cardiomyocyte in vitro model that utilizes a Gly-Arg-Gly-Asp-Ser (RGD) peptide for integrin stimulation. Cas showed slow electrophoretic mobility (band-shifting), recruitment to the cytoskeleton, and tyrosine phosphorylation at 165, 249, and 410 sites in both 48 h PO myocardium and 1 h RGD-stimulated cardiomyocytes. Adenoviral mediated expression of kinase inactive (negative) c-Src mutant with intact scaffold domains (KN-Src) in cardiomyocytes did not block the RGD stimulated changes in Cas. Furthermore, expression of KN-Src or kinase active c-Src mutant with intact scaffold function (A-Src) in two-dimensionally (2D) cultured cardiomyocytes was sufficient to cause Cas band-shifting, although tyrosine phosphorylation required A-Src. These data indicate that c-Src's adaptor function, but not its kinase function, is required for a serine/threonine specific phosphorylation(s) responsible for Cas band-shifting. To explore this possibility, Chinese hamster ovary cells that stably express Cas were infected with either β-gal or KN-Src adenoviruses and used for Cas immunoprecipitation combined with mass spectrometry analysis. In the KN-Src expressing cells, Cas showed phosphorylation at the serine-639 (human numbering) site. A polyclonal antibody raised against phospho-serine-639 detected Cas phosphorylation in 24-48 h PO myocardium. Our studies indicate that c-Src's adaptor function mediates serine-639 phosphorylation of Cas during integrin activation in PO myocardium. © 2015 Wiley Periodicals, Inc.

  7. Molecular characterization of c-Abl/c-Src kinase inhibitors targeted against murine tumour progenitor cells that express stem cell markers.

    Directory of Open Access Journals (Sweden)

    Thomas Kruewel

    Full Text Available BACKGROUND: The non-receptor tyrosine kinases c-Abl and c-Src are overexpressed in various solid human tumours. Inhibition of their hyperactivity represents a molecular rationale in the combat of cancerous diseases. Here we examined the effects of a new family of pyrazolo [3,4-d] pyrimidines on a panel of 11 different murine lung tumour progenitor cell lines, that express stem cell markers, as well as on the human lung adenocarcinoma cell line A549, the human hepatoma cell line HepG2 and the human colon cancer cell line CaCo2 to obtain insight into the mode of action of these experimental drugs. METHODOLOGY/PRINCIPAL FINDINGS: Treatment with the dual kinase inhibitors blocked c-Abl and c-Src kinase activity efficiently in the nanomolar range, induced apoptosis, reduced cell viability and caused cell cycle arrest predominantly at G0/G1 phase while western blot analysis confirmed repressed protein expression of c-Abl and c-Src as well as the interacting partners p38 mitogen activated protein kinase, heterogenous ribonucleoprotein K, cyclin dependent kinase 1 and further proteins that are crucial for tumour progression. Importantly, a significant repression of the epidermal growth factor receptor was observed while whole genome gene expression analysis evidenced regulation of many cell cycle regulated genes as well integrin and focal adhesion kinase (FAK signalling to impact cytoskeleton dynamics, migration, invasion and metastasis. CONCLUSIONS/SIGNIFICANCE: Our experiments and recently published in vivo engraftment studies with various tumour cell lines revealed the dual kinase inhibitors to be efficient in their antitumour activity.

  8. Conformational Selection and Induced Fit Mechanisms in the Binding of an Anticancer Drug to the c-Src Kinase

    Science.gov (United States)

    Morando, Maria Agnese; Saladino, Giorgio; D'Amelio, Nicola; Pucheta-Martinez, Encarna; Lovera, Silvia; Lelli, Moreno; López-Méndez, Blanca; Marenchino, Marco; Campos-Olivas, Ramón; Gervasio, Francesco Luigi

    2016-04-01

    Understanding the conformational changes associated with the binding of small ligands to their biological targets is a fascinating and meaningful question in chemistry, biology and drug discovery. One of the most studied and important is the so-called “DFG-flip” of tyrosine kinases. The conserved three amino-acid DFG motif undergoes an “in to out” movement resulting in a particular inactive conformation to which “type II” kinase inhibitors, such as the anti-cancer drug Imatinib, bind. Despite many studies, the details of this prototypical conformational change are still debated. Here we combine various NMR experiments and surface plasmon resonance with enhanced sampling molecular dynamics simulations to shed light into the conformational dynamics associated with the binding of Imatinib to the proto-oncogene c-Src. We find that both conformational selection and induced fit play a role in the binding mechanism, reconciling opposing views held in the literature. Moreover, an external binding pose and local unfolding (cracking) of the aG helix are observed.

  9. Role of nonreceptor protein tyrosine kinases during phospholipase C-gamma 1-related uterine contractions in the rat.

    Science.gov (United States)

    Phillippe, Mark; Sweet, Leigh M; Bradley, Diana F; Engle, Daniel

    2009-03-01

    Activated phospholipase C1, produced in response to tyrosine phosphorylation, appears to play an important role during uterine contractions. These studies sought to determine which non-receptor protein tyrosine kinases are involved in the activation of phospholipase C1 in rat uterine tissue. In vitro contraction studies were performed utilizing isoform specific protein tyrosine kinase inhibitors. Western blots were performed utilizing antibodies to phosphotyrosine-phospholipase C1, total phospholipase C1, c-Src kinase and Lck kinase. Spontaneous, stretch-stimulated, and bpV(phen) (tyrosine phosphatase inhibitor) enhanced uterine contractions were significantly suppressed in response to Damnacanthal (Lck kinase inhibitor) and PP1 (c-Src kinase inhibitor). Damnacanthal and PP1 also significantly suppressed bpV(phen)-enhanced tyrosine phosphorylation of phospholipase C1. Western blots confirmed expression of Lck kinase and c-Src kinase in uterine tissue. In conclusion, the Lck and c-Src kinases appear to play an important role in regulating tyrosine phosphorylation of phospholipase C1 and contractile activity in the rat uterus.

  10. Dysregulated activation of c-Src in gestational trophoblastic disease contributes to its aggressive progression.

    Science.gov (United States)

    Wu, W; Wang, Y; Xu, Y; Liu, Y; Wang, Y; Zhang, H

    2014-10-01

    Gestational trophoblastic disease (GTD) is a heterogeneous group of pregnancy-related disorders. Hydatidiform mole (HM) is the most common type of GTD, whereas gestational choriocarcinoma is the most aggressive. Non-receptor tyrosine kinase c-Src contributes to the transformation to a malignant phenotype in various cancers. However, the role of c-Src in the pathogenesis of GTD remains largely unknown. The expression level of phosphorylated c-Src was determined by immunohistochemistry and Western blotting assay. JAR and JEG-3 cells were treated with hCG, specific c-Src inhibitor saracatinib and PP2, and PKA specific inhibitor, PKI. Cell growth rate and cell migration/invasion ability was determined by cell proliferation and transwell assays respectively. c-Src was highly activated in HM tissues and choriocarcinoma cells (JAR and JEG-3). c-Src was activated by hCG in a time and concentration-dependent manner, which was abrogated by specific c-Src and PKA inhibitors. Inhibition of c-Src activity in JAR and JEG-3 cells by saracatinib leaded to a decrease in the rate of cell growth and cell migration/invasion ability. Furthermore, inhibition of c-Src phosphorylation induced cell cycle arrest and reduced expressions of cyclin A2, cyclin B1, cyclin E1, FOXD3 and NANOG. Moreover, inhibition of c-Src activity resulted in decreased p-FAK(Tyr397) phosphorylation. Our findings indicate an important role of c-Src in the pathogenesis of GTD, and we propose that c-Src inhibitors are potential adjuvant chemotherapeutic drugs for the treatment of GTD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Role of Non-receptor Protein Tyrosine Kinases During Phospholipase C-γ1 Related Uterine Contractions in the Rat

    Science.gov (United States)

    Phillippe, Mark; Sweet, Leigh M.; Bradley, Diana F.; Engle, Daniel

    2011-01-01

    Activated phospholipase Cγ1 (PLC-γ1), produced in response to tyrosine phosphorylation, appears to play an important role during uterine contractions. These studies sought to determine which non-receptor protein tyrosine kinases (PTKs) are involved in the tyrosine phosphorylation and activation of PLC-γ1 in uterine tissue from the rat. In vitro uterine contraction studies were performed utilizing isoform specific PTK inhibitors. Western blots were performed utilizing antibodies to phosphotyrosine-PLC-γ1, total PLC-γ1, c-Src kinase and Lck kinase. Spontaneous, stretch-stimulated, and bpV(phen) (a tyrosine phosphatase inhibitor) enhanced uterine contractions were significantly suppressed in response to Damnacanthal (a Lck kinase inhibitor) and PP1 (a c-Src kinase inhibitor); whereas, several other PTK isoform inhibitors had no significant effect. Damnacanthal and PP1 also significantly suppressed bpV(phen)-enhanced tyrosine phosphorylation of PLC-γ1 compared to other PTK isoform inhibitors. Western blots confirmed expression of the Lck and c-Src kinases in uterine tissue. In conclusion, the Lck and c-Src kinases appear to play an important role in regulating tyrosine phosphorylation of PLC-γ1 and contractile activity in the rat uterus. PMID:19208792

  12. The adaptive intestinal response to massive enterectomy is preserved in c-SRC-deficient mice.

    Science.gov (United States)

    Falcone, R A; Shin, C E; Erwin, C R; Warner, B W

    1999-05-01

    The Src family of protein tyrosine kinases has been implicated in the downstream mitogenic signaling of several ligands including epidermal growth factor (EGF). Because EGF likely plays a role in adaptation after massive small bowel resection (SBR), we tested the hypothesis that c-src is required for this important response. A 50% proximal SBR or sham operation (bowel transection or reanastomosis alone) was performed on c-src-deficient (n = 14) or wild-type (C57bl/6) mice (n = 20). The ileum was harvested on postoperative day 3 and adaptive parameters determined as changes in ileal wet weight, protein and DNA content, proliferation index, villus height, and crypt depth. Comparisons were done using analysis of variance (ANOVA), and a Pvalue less than .05 was considered significant. Values are presented as mean +/- SEM. The activity of c-src was increased in the ileum of wild-type mice after SBR but remained unchanged in c-src-deficient mice. Despite this lack of increase, adaptation occurred after SBR in the c-src-deficient mice as demonstrated by increased ileal wet weight, protein and DNA content, proliferation index, villus height, and crypt depth similar to wild-type mice. The adaptive response of the intestine to massive SBR is preserved despite reduced activity of the c-src protein. The mitogenic signaling that characterizes intestinal adaptation and is associated with receptor activation by EGF or other growth factors probably occurs by mechanisms independent of c-src protein tyrosine kinase.

  13. Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts

    DEFF Research Database (Denmark)

    Su, J; Muranjan, M; Sap, J

    1999-01-01

    BACKGROUND: Fyn and c-Src are two of the most widely expressed Src-family kinases. Both are strongly implicated in the control of cytoskeletal organization and in the generation of integrin-dependent signalling responses in fibroblasts. These proteins are representative of a large family of tyros......BACKGROUND: Fyn and c-Src are two of the most widely expressed Src-family kinases. Both are strongly implicated in the control of cytoskeletal organization and in the generation of integrin-dependent signalling responses in fibroblasts. These proteins are representative of a large family...... of tyrosine kinases, the activity of which is tightly controlled by inhibitory phosphorylation of a carboxyterminal tyrosine residue (Tyr527 in chicken c-Src); this phosphorylation induces the kinases to form an inactive conformation. Whereas the identity of such inhibitory Tyr527 kinases has been well...... these RPTPalpha-/- mice had impaired tyrosine kinase activity of both c-Src and Fyn, and this was accompanied by a concomitant increase in c-Src Tyr527 phosphorylation. RPTPalpha-/- fibroblasts also showed a reduction in the rate of spreading on fibronectin substrates, a trait that is a phenocopy of the effect...

  14. Barium Promotes Anchorage-Independent Growth and Invasion of Human HaCaT Keratinocytes via Activation of c-SRC Kinase

    Science.gov (United States)

    Thang, Nguyen Dinh; Yajima, Ichiro; Kumasaka, Mayuko Y.; Ohnuma, Shoko; Yanagishita, Takeshi; Hayashi, Rumiko; Shekhar, Hossain U.; Watanabe, Daisuke; Kato, Masashi

    2011-01-01

    Explosive increases in skin cancers have been reported in more than 36 million patients with arsenicosis caused by drinking arsenic-polluted well water. This study and previous studies showed high levels of barium as well as arsenic in the well water. However, there have been no reports showing a correlation between barium and cancer. In this study, we examined whether barium (BaCl2) may independently have cancer-related effects on human precancerous keratinocytes (HaCaT). Barium (5–50 µM) biologically promoted anchorage-independent growth and invasion of HaCaT cells in vitro. Barium (5 µM) biochemically enhanced activities of c-SRC, FAK, ERK and MT1-MMP molecules, which regulate anchorage-independent growth and/or invasion. A SRC kinase specific inhibitor, protein phosphatase 2 (PP2), blocked barium-mediated promotion of anchorage-independent growth and invasion with decreased c-SRC kinase activity. Barium (2.5–5 µM) also promoted anchorage-independent growth and invasion of fibroblasts (NIH3T3) and immortalized nontumorigenic melanocytes (melan-a), but not transformed cutaneous squamous cell carcinoma (HSC5 and A431) and malignant melanoma (Mel-ret) cells, with activation of c-SRC kinase. Taken together, our biological and biochemical findings newly suggest that the levels of barium shown in drinking well water independently has the cancer-promoting effects on precancerous keratinocytes, fibroblast and melanocytes in vitro. PMID:22022425

  15. Tyrosine kinases in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Kobayashi Akiko

    2011-08-01

    Full Text Available Abstract Rheumatoid arthritis (RA is an inflammatory, polyarticular joint disease. A number of cellular responses are involved in the pathogenesis of rheumatoid arthritis, including activation of inflammatory cells and cytokine expression. The cellular responses involved in each of these processes depends on the specific signaling pathways that are activated; many of which include protein tyrosine kinases. These pathways include the mitogen-activated protein kinase pathway, Janus kinases/signal transducers and activators transcription pathway, spleen tyrosine kinase signaling, and the nuclear factor κ-light-chain-enhancer of activated B cells pathway. Many drugs are in development to target tyrosine kinases for the treatment of RA. Based on the number of recently published studies, this manuscript reviews the role of tyrosine kinases in the pathogenesis of RA and the potential role of kinase inhibitors as new therapeutic strategies of RA.

  16. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    enzymes that are unique in exploiting the ATP/GTP-binding Walker motif to catalyze phosphorylation of protein tyrosine residues. Characterized for the first time only a decade ago, BY-kinases have now come to the fore. Important regulatory roles have been linked with these enzymes, via their involvement......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine...

  17. The differentiation of skeletal muscle cells involves a protein-tyrosine phosphatase-alpha-mediated C-Src signaling pathway

    DEFF Research Database (Denmark)

    Lu, Huogen; Shah, Poonam; Ennis, David

    2002-01-01

    Protein-tyrosine phosphatase-alpha (PTPalpha) plays an important role in various cellular signaling events, including proliferation and differentiation. In this study, we established L6 cell lines either underexpressing or overexpressing PTPalpha by stable transfection of cells with antisense PTP....... Moreover, enhanced expression of PTPalpha and activation of Src was detected during myogenesis. Together, these data indicate that PTPalpha is involved in the regulation of L6 myoblast growth and skeletal muscle cell differentiation via an Src-mediated signaling pathway.......Protein-tyrosine phosphatase-alpha (PTPalpha) plays an important role in various cellular signaling events, including proliferation and differentiation. In this study, we established L6 cell lines either underexpressing or overexpressing PTPalpha by stable transfection of cells with antisense...... PTPalpha or with full-length wild-type human or mouse or double catalytic site Cys --> Ala mutant (DM8) PTPalpha cDNA. Expression of PTPalpha in these cell lines was determined by immunoblotting and immunofluorescence. Cells harboring antisense PTPalpha exhibited a significantly reduced growth rate...

  18. cSrc is necessary for epididymal development and is incorporated into sperm during epididymal transit.

    Science.gov (United States)

    Krapf, Dario; Ruan, Ye Chun; Wertheimer, Eva V; Battistone, Maria A; Pawlak, John B; Sanjay, Archana; Pilder, Stephen H; Cuasnicu, Patricia; Breton, Sylvie; Visconti, Pablo E

    2012-09-01

    Changes that occur to mammalian sperm upon epididymal transit and maturation render these cells capable of moving progressively and capacitating. Signaling events leading to mammalian sperm capacitation depend on the modulation of proteins by phosphorylation and dephosphorylation cascades. Recent experiments have demonstrated that the Src family of kinases plays an important role in the regulation of these events. However, sperm from cSrc null mice display normal tyrosine phosphorylation associated with capacitation. We report here that, despite normal phosphorylation, sperm from cSrc null mice display a severe reduction in forward motility, and are unable to fertilize in vitro. Histological analysis of seminiferous tubules in the testes, caput and corpus epididymis do not reveal obvious defects. However, the cauda epididymis is significantly smaller, and expression of key transport proteins in the epithelial cells lining this region is reduced in cSrc null mice compared to wild type littermates. Although previously, we and others have shown the presence of cSrc in mature sperm from cauda epididymis, a closer evaluation indicates that this tyrosine kinase is not present in sperm from the caput epididymis, suggesting that this protein is acquired by sperm later during epididymal maturation. Consistent with this observation, cSrc is enriched in vesicles released by the epididymal epithelium known as epididymosomes. Altogether, these observations indicate that cSrc is essential for cauda epididymal development and suggest an essential role of this kinase in epididymal sperm maturation involving cSrc extracellular trafficking. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. c-Src Links a RANK/αvβ3 Integrin Complex to the Osteoclast Cytoskeleton

    Science.gov (United States)

    Izawa, Takashi; Zou, Wei; Chappel, Jean C.; Ashley, Jason W.; Feng, Xu

    2012-01-01

    RANK ligand (RANKL), by mechanisms unknown, directly activates osteoclasts to resorb bone. Because c-Src is key to organizing the cell's cytoskeleton, we asked if the tyrosine kinase also mediates RANKL-stimulated osteoclast activity. RANKL induces c-Src to associate with RANK369–373 in an αvβ3-dependent manner. Furthermore, RANK369–373 is the only one of six putative TRAF binding motifs sufficient to generate actin rings and activate the same cytoskeleton-organizing proteins as the integrin. While c-Src organizes the cell's cytoskeleton in response to the cytokine, it does not participate in RANKL-stimulated osteoclast formation. Attesting to their collaboration, αvβ3 and activated RANK coprecipitate, but only in the presence of c-Src. c-Src binds activated RANK via its Src homology 2 (SH2) domain and αvβ3 via its SH3 domain, suggesting the kinase links the two receptors. Supporting this hypothesis, deletion or inactivating point mutation of either the c-Src SH2 or SH3 domain obviates the RANK/αvβ3 association. Thus, activated RANK prompts two distinct signaling pathways; one promotes osteoclast formation, and the other, in collaboration with c-Src-mediated linkage to αvβ3, organizes the cell's cytoskeleton. PMID:22615494

  20. Cigarette Smoke Activates the Proto-Oncogene c-Src to Promote Airway Inflammation and Lung Tissue Destruction

    Science.gov (United States)

    Geraghty, Patrick; Hardigan, Andrew

    2014-01-01

    The diagnosis of chronic obstructive pulmonary disease (COPD) confers a 2-fold increased lung cancer risk even after adjusting for cigarette smoking, suggesting that common pathways are operative in both diseases. Although the role of the tyrosine kinase c-Src is established in lung cancer, less is known about its impact in other lung diseases, such as COPD. This study examined whether c-Src activation by cigarette smoke contributes to the pathogenesis of COPD. Cigarette smoke increased c-Src activity in human small airway epithelial (SAE) cells from healthy donors and in the lungs of exposed mice. Similarly, higher c-Src activation was measured in SAE cells from patients with COPD compared with healthy control subjects. In SAE cells, c-Src silencing or chemical inhibition prevented epidermal growth factor (EGF) receptor signaling in response to cigarette smoke but not EGF stimulation. Further studies showed that cigarette smoke acted through protein kinase C α to trigger c-Src to phosphorylate EGF receptor and thereby to induce mitogen-activated protein kinase responses in these cells. To further investigate the role of c-Src, A/J mice were orally administered the specific Src inhibitor AZD-0530 while they were exposed to cigarette smoke for 2 months. AZD-0530 treatment blocked c-Src activation, decreased macrophage influx, and prevented airspace enlargement in the lungs of cigarette smoke–exposed mice. Moreover, inhibiting Src deterred the cigarette smoke–mediated induction of matrix metalloproteinase-9 and -12 in alveolar macrophages and lung expression of cathepsin K, IL-17, TNF-α, MCP-1, and KC, all key factors in the pathogenesis of COPD. These results indicate that activation of the proto-oncogene c-Src by cigarette smoke promotes processes linked to the development of COPD. PMID:24111605

  1. Alamandine reduces leptin expression through the c-Src/p38 MAP kinase pathway in adipose tissue.

    Science.gov (United States)

    Uchiyama, Tsuyoshi; Okajima, Fumikazu; Mogi, Chihiro; Tobo, Ayaka; Tomono, Shoichi; Sato, Koichi

    2017-01-01

    Obesity is associated with an increased risk of diabetes mellitus, hypertension, and renal dysfunction. Angiotensin 1-7 and alamandine are heptameric renin angiotensin system peptide hormones. Further, alamandine levels increase with renal dysfunction. In the cardiovascular system, angiotensin 1-7 and alamandine produce similar improvements and counterbalance angiotensin II in regulating vascular function. We aimed to determine whether the effect of alamandine on leptin expression and secretion in adipocytes was similar to that of angiotensin 1-7. We studied isolated peri-renal visceral adipose tissue and peri-renal isolated visceral adipocytes from male Wistar rats. Angiotensin II from 0.01 to 10nM had no effect on leptin expression. Angiotensin 1-7 (1 nM) increased leptin secretion and expression, whereas alamandine (1 nM) decreased leptin secretion and expression in adipose tissue and isolated adipocytes and reduced blood leptin levels in vivo. These effects were mediated by Gq, c-Src, p38 mitogen-activated protein, and IκB activation. Additionally, alamandine induced nitric oxide expression via inducible nitric oxidase synthase and plasminogen activator inhibitor 1 expression in adipose tissue and isolated adipocytes. Angiotensin 1-7 and alamandine produced opposing effects on leptin expression and secretion in adipose tissue. This result suggests that the action of Mas (angiotensin 1-7 receptor) and Mas-related G-protein coupled receptor D in adipocytes exhibited opposing actions similar to angiotensin II type 1 and type 2 receptors.

  2. DMPD: Bruton's tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signalling? [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15081522 Bruton's tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signall...ruton's tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signalling? PubmedID 15081522 Title Bruton...'s tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signalling? Authors

  3. Receptor Tyrosine Kinases in Drosophila Development

    Science.gov (United States)

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  4. ADAM12 localizes with c-Src to actin-rich structures at the cell periphery and regulates Src kinase activity

    DEFF Research Database (Denmark)

    Stautz, Dorte; Sanjay, Archana; Hansen, Matilde Thye

    2010-01-01

    partners and signalling proteins. We demonstrate here a c-Src-dependent redistribution of ADAM12-L from perinuclear areas to actin-rich Src-positive structures at the cell periphery, and identified two separate c-Src binding sites in the cytoplasmic tail of ADAM12-L that interact with the SH3 domain of c...

  5. cSrc is necessary for epididymal development and is incorporated into sperm during epididymal transit

    OpenAIRE

    Krapf, Dario; Ruan, Ye Chun; Wertheimer, Eva V.; Battistone, Maria A.; Pawlak, John B.; Sanjay, Archana; Pilder, Stephen H.; Cuasnicu, Patricia; Breton, Sylvie; Visconti, Pablo E.

    2012-01-01

    Changes that occur to mammalian sperm upon epididymal transit and maturation render these cells capable of moving progressively and capacitating. Signaling events leading to mammalian sperm capacitation depend on the modulation of proteins by phosphorylation and dephosphorylation cascades. Recent experiments have demonstrated that the Src family of kinases plays an important role in the regulation of these events. However, sperm from cSrc null mice display normal tyrosine phosphorylation asso...

  6. Tyrosine kinase inhibitors in hematological malignancies

    Directory of Open Access Journals (Sweden)

    Kamila Kosior

    2011-12-01

    Full Text Available Recently novel treatment modalities has focused on targeted therapies. Tyrosine kinases represent a good target for cancer treatment since they are involved in transferring phosphate groups from ATP to tyrosine residues in specific substrate proteins transducing intracellular signals engaged in the many mechanisms, playing an important role in the modulation of growth factors signaling that are strongly related to carcinogenesis. Deregulation of tyrosine kinases activity was also found in hematological malignancies, particularly overexpression of tyrosine kinases was observed in chronic myeloid leukemia or acute lymphoblastic leukemia. Herein we show that tyrosine kinase inhibitors have revolutionized hematology malignancies therapy in a very short period of time and they still remain one of the most interesting anticancer compounds that could give a hope for cure and not only long-lasting complete remission. This manuscript summarizes current view on the first generation tyrosine kinase inhibititor – imatinib, second generation – dasatinib, nilotinib and bosutnib as well as new generation tyrosine kinase inhibititors – ponatinib and danusertib in hematooncology.

  7. Src-family tyrosine kinase activities are essential for differentiation of human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Xiong Zhang

    2014-11-01

    Full Text Available Embryonic stem (ES cells are characterized by pluripotency, defined as the developmental potential to generate cell lineages derived from all three primary germ layers. In the past decade, great progress has been made on the cell culture conditions, transcription factor programs and intracellular signaling pathways that control both murine and human ES cell fates. ES cells of mouse vs. human origin have distinct culture conditions, responding to some tyrosine kinase signaling pathways in opposite ways. Previous work has implicated the Src family of non-receptor protein–tyrosine kinases in mouse ES cell self-renewal and differentiation. Seven members of the Src kinase family are expressed in mouse ES cells, and individual family members appear to play distinct roles in regulating their developmental fate. Both Hck and c-Yes are important in self-renewal, while c-Src activity alone is sufficient to induce differentiation. While these findings implicate Src-family kinase signaling in mouse ES cell renewal and differentiation, the role of this kinase family in human ES cells is largely unknown. Here, we explored Src-family kinase expression patterns and signaling in human ES cells during self-renewal and differentiation. Of the eleven Src-related kinases in the human genome, Fyn, c-Yes, c-Src, Lyn, Lck and Hck were expressed in H1, H7 and H9 hES cells, while Fgr, Blk, Srm, Brk, and Frk transcripts were not detected. Of these, c-Yes, Lyn, and Hck transcript levels remained constant in self-renewing human ES cells vs. differentiated EBs, while c-Src and Fyn showed a modest increase in expression as a function of differentiation. In contrast, Lck expression levels dropped dramatically as a function of EB differentiation. To assess the role of overall Src-family kinase activity in human ES cell differentiation, cultures were treated with inhibitors specific for the Src kinase family. Remarkably, human ES cells maintained in the presence of the potent

  8. Intracellular signaling of the Ufo/Axl receptor tyrosine kinase is mediated mainly by a multi-substrate docking-site.

    Science.gov (United States)

    Braunger, J; Schleithoff, L; Schulz, A S; Kessler, H; Lammers, R; Ullrich, A; Bartram, C R; Janssen, J W

    1997-06-05

    Ufo/Axl belongs to a new family of receptor tyrosine kinases with an extracellular structure similar to that of neural cell adhesion molecules. In order to elucidate intracellular signaling, the cytoplasmic moiety of Ufo/Axl was used to screen an expression library according to the CORT (cloning of receptor targets) method. Three putative Ufo substrates were identified: phospholipase Cgamma1 (PLCgamma), as well as p85alpha and p85beta subunits of phosphatidylinositol 3'-kinase (PI3-kinase). Subsequently, chimeric EGFR/Ufo receptors consisting of the extracellular domains of the epidermal growth factor receptor (EGFR) and the transmembrane and intracellular moiety of Ufo were engineered. Using different far-Western blot analyses and coimmunoprecipitation assays, receptor binding of PLCgamma and p85 proteins as well as GRB2, c-src and lck was examined in vitro and in vivo. Competitive inhibition of substrate binding and mutagenesis experiments with EGFR/Ufo constructs revealed C-terminal tyrosine 821 (EILpYVNMDEG) as a docking site for multiple effectors, namely PLCgamma, p85 proteins, GRB2, c-src and lck. Tyrosine 779 (DGLpYALMSRC) demonstrated an additional, but lower binding affinity for the p85 proteins in vitro. In addition, binding of PLCgamma occurred through tyrosine 866 (AGRpYVLCPST). Moreover, our in vivo data indicate that further direct or indirect binding sites for PLCgamma, GRB2, c-src and lck on the human Ufo receptor may exist.

  9. Superoxide anions are involved in mediating the effect of low K intake on c-Src expression and renal K secretion in the cortical collecting duct.

    Science.gov (United States)

    Babilonia, Elisa; Wei, Yuan; Sterling, Hyacinth; Kaminski, Pawel; Wolin, Michael; Wang, Wen-Hui

    2005-03-18

    We previously demonstrated that low K intake stimulated the expression of c-Src and that stimulation of protein tyrosine kinase inhibited ROMK channel activity (Wei, Y., Bloom, P., Lin, D. H., Gu, R. M., and Wang, W. H. (2001) Am. J. Physiol. 281, F206-F212). Decreases in dietary K content significantly increased O(2)(-) levels and the phosphorylation of c-Jun, a transcription factor, in renal cortex and outer medulla. The role of O(2)(-) and related products such as H(2)O(2) in stimulating the expression of protein tyrosine kinase is suggested by the observation that addition of 50-200 microm H(2)O(2) increased the phosphorylation of c-Jun and the expression of c-Src in M1 cells, a mouse collecting duct principal cell line. The effect of H(2)O(2) on c-Src expression was completely abolished with cyclohexamide or actinomycin D. The treatment of animals on a K-deficient (KD) diet with tempol for 7 days significantly decreased the production of O(2)(-), c-Jun phosphorylation, and c-Src expression. Moreover, low K intake decreased the activity of ROMK-like small conductance channels from 1.37 (control K diet) to 0.5 in the cortical collecting duct and increased the tyrosine phosphorylation of ROMK in the renal cortex and outer medulla. In contrast, the tempol treatment not only increased channel activity to 1.1 in the cortical collecting duct but also decreased the tyrosine phosphorylation of ROMK from rats on a KD diet. Finally, suppressing O(2)(-) production with tempol significantly increased renal K excretion measured with metabolic cage and lowered the plasma K concentration in comparison with those on a KD diet alone without tempol. We conclude that O(2)(-) and related products play a role in mediating the effect of low K intake on c-Src expression and in suppressing ROMK channel activity and renal K secretion.

  10. Ror receptor tyrosine kinases: orphans no more.

    Science.gov (United States)

    Green, Jennifer L; Kuntz, Steven G; Sternberg, Paul W

    2008-11-01

    Receptor tyrosine kinase-like orphan receptor (Ror) proteins are a conserved family of tyrosine kinase receptors that function in developmental processes including skeletal and neuronal development, cell movement and cell polarity. Although Ror proteins were originally named because the associated ligand and signaling pathway were unknown, recent studies in multiple species have now established that Ror proteins are Wnt receptors. Depending on the cellular context, Ror proteins can either activate or repress transcription of Wnt target genes and can modulate Wnt signaling by sequestering Wnt ligands. New evidence implicates Ror proteins in planar cell polarity, an alternative Wnt pathway. Here, we review the progress made in understanding these mysterious proteins and, in particular, we focus on their function as Wnt receptors.

  11. Therapeutic Innovations: Tyrosine Kinase Inhibitors in Cancer

    Directory of Open Access Journals (Sweden)

    Nikolaos Dervisis

    2016-01-01

    Full Text Available Conventional cytotoxic chemotherapy involving DNA-interacting agents and indiscriminate cell death is no longer the future of cancer management. While chemotherapy is not likely to completely disappear from the armamentarium; the use of targeted therapies in combination with conventional treatment is becoming the standard of care in human medicine. Tyrosine kinases are pivotal points of functional cellular pathways and have been implicated in malignancy, inflammatory, and immune-mediated diseases. Pharmaceutical interventions targeting aberrant tyrosine kinase signaling has exploded and is the second most important area of drug development. The “Valley of Death” between drug discovery and approval threatens to blunt the enormous strides in cancer management seen thus far. Kinase inhibitors, as targeted small molecules, hold promise in the treatment and diagnosis of cancer. However, there are still many unanswered questions regarding the use of kinase inhibitors in the interpretation and management of cancer. Comparative oncology has the potential to address restrictions and limitations in the advancement in kinase inhibitor therapy.

  12. JAK and Src tyrosine kinase signaling in asthma.

    Science.gov (United States)

    Tundwal, Kavita; Alam, Rafeul

    2012-06-01

    Tyrosine kinases play a critical role in transducing intracellular signals from the receptors. Many receptors do not have intrinsic tyrosine kinase activity, so they rely on cytosolic and/or membrane-associated tyrosine kinases for initial signal generation. The Src and JAK family kinases are frequently associated with receptors and generate the initial cytosolic signals. These signals are then transduced to other compartments of the cytosol and to the nucleus to elicit a specific cellular response. In this review we focus on these two families of tyrosine kinases and review their involvement in activation of cells that are involved in the pathogenesis of asthma. A Th2-type immune response dominates the processes that lead to the phenotype of asthma. For this reason we give special attention to the tyrosine kinases that are involved in a Th2 response. Further we examine the involvement of tyrosine kinases in activation of mast cells, eosinophils and other cells.

  13. Tyrosine kinases in inflammatory dermatologic disease.

    Science.gov (United States)

    Paniagua, Ricardo T; Fiorentino, David F; Chung, Lorinda; Robinson, William H

    2011-08-01

    Tyrosine kinases (TKs) are enzymes that catalyze the phosphorylation of tyrosine residues on protein substrates. They are key components of signaling pathways that drive an array of cellular responses including proliferation, differentiation, migration, and survival. Specific TKs have recently been identified as critical to the pathogenesis of several autoimmune and inflammatory diseases. Small-molecule inhibitors of TKs are emerging as a novel class of therapy that may provide benefit in certain patient subsets. In this review, we highlight TK signaling implicated in inflammatory dermatologic diseases, evaluate strategies aimed at inhibiting these aberrant signaling pathways, and discuss prospects for future drug development. Copyright © 2010 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  14. Dual Inhibition of Topoisomerase II and Tyrosine Kinases by the Novel Bis-Fluoroquinolone Chalcone-Like Derivative HMNE3 in Human Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Yong-Chao Ma

    Full Text Available Both tyrosine kinase and topoisomerase II (TopII are important anticancer targets, and their respective inhibitors are widely used in cancer therapy. However, some combinations of anticancer drugs could exhibit mutually antagonistic actions and drug resistance, which further limit their therapeutic efficacy. Here, we report that HMNE3, a novel bis-fluoroquinolone chalcone-like derivative that targets both tyrosine kinase and TopII, induces tumor cell proliferation and growth inhibition. The viabilities of 6 different cancer cell lines treated with a range of HMNE3 doses were detected using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Cellular apoptosis was determined using Hoechst 33258 fluorescence staining and the terminal deoxynucleotidyl transferase (TdT dUTP nick-end labeling (TUNEL assay. The expression of activated Caspase-3 was examined by immunocytochemistry. The tyrosine kinase activity was measured with a human receptor tyrosine kinase (RTK detection kit using a horseradish peroxidase (HRP-conjugated phosphotyrosine (pY20 antibody as the substrate. The topoisomerase II activity was measured using agarose gel electrophoresis with the DNA plasmid pBR322 as the substrate. The expression levels of the P53, Bax, Bcl-2, Caspase-3, -8, -9, p-cSrc, c-Src and topoisomerase II proteins were detected by western blot analysis. The proliferation of five of the six cancer cell lines was significantly inhibited by HMNE3 at 0.312 to 10 μmol/L in a time- and dose-dependent manner. Treatment of the Capan-1 and Panc-1 cells with 1.6 to 3.2 μM HMNE3 for 48 h significantly increased the percentage of apoptotic cells (P<0.05, and this effect was accompanied by a decrease in tyrosine kinase activity. HMNE3 potentially inhibited tyrosine kinase activity in vitro with an IC50 value of 0.64±0.34 μmol/L in Capan-1 cells and 3.1±0.86 μmol/L in Panc-1 cells. The activity of c-Src was significantly inhibited by HMNE3 in a dose

  15. ROR-Family Receptor Tyrosine Kinases.

    Science.gov (United States)

    Stricker, Sigmar; Rauschenberger, Verena; Schambony, Alexandra

    2017-01-01

    ROR-family receptor tyrosine kinases form a small subfamily of receptor tyrosine kinases (RTKs), characterized by a conserved, unique domain architecture. ROR RTKs are evolutionary conserved throughout the animal kingdom and act as alternative receptors and coreceptors of WNT ligands. The intracellular signaling cascades activated downstream of ROR receptors are diverse, including but not limited to ROR-Frizzled-mediated activation of planar cell polarity signaling, RTK-like signaling, and antagonistic regulation of WNT/β-Catenin signaling. In line with their diverse repertoire of signaling functions, ROR receptors are involved in the regulation of multiple processes in embryonic development such as development of the axial and paraxial mesoderm, the nervous system and the neural crest, the axial and appendicular skeleton, and the kidney. In humans, mutations in the ROR2 gene cause two distinct developmental syndromes, recessive Robinow syndrome (RRS; MIM 268310) and dominant brachydactyly type B1 (BDB1; MIM 113000). In Robinow syndrome patients and animal models, the development of multiple organs is affected, whereas BDB1 results only in shortening of the distal phalanges of fingers and toes, reflecting the diversity of functions and signaling activities of ROR-family RTKs. In this chapter, we give an overview on ROR receptor structure and function. We discuss their signaling functions and role in vertebrate embryonic development with a focus on those developmental processes that are affected by mutations in the ROR2 gene in human patients. © 2017 Elsevier Inc. All rights reserved.

  16. Fully automated synthesis of (phosphopeptide arrays in microtiter plate wells provides efficient access to protein tyrosine kinase characterization

    Directory of Open Access Journals (Sweden)

    Goldstein David J

    2005-01-01

    Full Text Available Abstract Background Synthetic peptides have played a useful role in studies of protein kinase substrates and interaction domains. Synthetic peptide arrays and libraries, in particular, have accelerated the process. Several factors have hindered or limited the applicability of various techniques, such as the need for deconvolution of combinatorial libraries, the inability or impracticality of achieving full automation using two-dimensional or pin solid phases, the lack of convenient interfacing with standard analytical platforms, or the difficulty of compartmentalization of a planar surface when contact between assay components needs to be avoided. This paper describes a process for synthesis of peptides and phosphopeptides on microtiter plate wells that overcomes previous limitations and demonstrates utility in determination of the epitope of an autophosphorylation site phospho-motif antibody and utility in substrate utilization assays of the protein tyrosine kinase, p60c-src. Results The overall reproducibility of phospho-peptide synthesis and multiplexed EGF receptor (EGFR autophosphorylation site (pY1173 antibody ELISA (9H2 was within 5.5 to 8.0%. Mass spectrometric analyses of the released (phosphopeptides showed homogeneous peaks of the expected molecular weights. An overlapping peptide array of the complete EGFR cytoplasmic sequence revealed a high redundancy of 9H2 reactive sites. The eight reactive phospopeptides were structurally related and interestingly, the most conserved antibody reactive peptide motif coincided with a subset of other known EGFR autophosphorylation and SH2 binding motifs and an EGFR optimal substrate motif. Finally, peptides based on known substrate specificities of c-src and related enzymes were synthesized in microtiter plate array format and were phosphorylated by c-Src with the predicted specificities. The level of phosphorylation was proportional to c-Src concentration with sensitivities below 0.1 Units of

  17. Elevated c-Src and c-Yes expression in malignant skin cancers

    Directory of Open Access Journals (Sweden)

    Lee Jang

    2010-08-01

    Full Text Available Abstracts Background Src family kinases (SFKs play an important role in cancer proliferation, survival, motility, invasiveness, metastasis, and angiogenesis. Among the SFKs, c-Src and c-Yes are particularly over-expressed or hyper-activated in many human epithelial cancers. However, only a few studies have attempted to define the expression and role of c-Src and c-Yes in cutaneous carcinomas. Objectives To investigate the expression of c-Src and c-Yes in cutaneous carcinomas to include malignant melanoma (MM, squamous cell carcinoma (SCC and basal cell carcinoma (BCC. Methods We examined 6 normal skin tissues and 18 malignant skin tumor tissues using western blotting for the expression of c-Src and c-Yes. In another set, 16 specimens of MM, 16 SCCs and 16 BCCs were analyzed for the expression of c-Src and c-Yes using immunohistochemical staining. Results Western blotting showed that c-Src was expressed in all malignant skin tumors, but not in normal skin, while c-Yes was expressed in MM and SCC, but not in BCC and normal skin. Immunohistochemical staining results of c-Src and c-Yes in MM, SCC, and BCC mirrored those of the western blot analysis. Conclusions c-Src, rather than c-Yes, plays a key role in the proliferation and progression of malignant skin cancers.

  18. Superoxide Anions Are Involved in Mediating the Effect of Low K Intake on c-Src Expression and Renal K Secretion in the Cortical Collecting Duct*

    Science.gov (United States)

    Babilonia, Elisa; Wei, Yuan; Sterling, Hyacinth; Kaminski, Pawel; Wolin, Michael; Wang, Wen-Hui

    2010-01-01

    We previously demonstrated that low K intake stimulated the expression of c-Src and that stimulation of protein tyrosine kinase inhibited ROMK channel activity (Wei, Y., Bloom, P., Lin, D. H., Gu, R. M., and Wang, W. H. (2001) Am. J. Physiol. 281, F206–F212). Decreases in dietary K content significantly increased O2·¯ levels and the phosphorylation of c-Jun, a transcription factor, in renal cortex and outer medulla. The role of O2·¯ and related products such as H2O2 in stimulating the expression of protein tyrosine kinase is suggested by the observation that addition of 50–200 µM H2O2 increased the phosphorylation of c-Jun and the expression of c-Src in M1 cells, a mouse collecting duct principal cell line. The effect of H2O2 on c-Src expression was completely abolished with cyclohexamide or actinomycin D. The treatment of animals on a K-deficient (KD) diet with tempol for 7 days significantly decreased the production of O2·¯, c-Jun phosphorylation, and c-Src expression. Moreover, low K intake decreased the activity of ROMK-like small conductance channels from 1.37 (control K diet) to 0.5 in the cortical collecting duct and increased the tyrosine phosphorylation of ROMK in the renal cortex and outer medulla. In contrast, the tempol treatment not only increased channel activity to 1.1 in the cortical collecting duct but also decreased the tyrosine phosphorylation of ROMK from rats on a KD diet. Finally, suppressing O2·¯ production with tempol significantly increased renal K excretion measured with metabolic cage and lowered the plasma K concentration in comparison with those on a KD diet alone without tempol. We conclude that O2·¯ and related products play a role in mediating the effect of low K intake on c-Src expression and in suppressing ROMK channel activity and renal K secretion. PMID:15644319

  19. c-Src Inhibition Improves Cardiovascular Function but not Remodeling or Fibrosis in Angiotensin II-Induced Hypertension.

    Science.gov (United States)

    Callera, Glaucia E; Antunes, Tayze T; He, Ying; Montezano, Augusto C; Yogi, Alvaro; Savoia, Carmine; Touyz, Rhian M

    2016-11-01

    c-Src plays an important role in angiotensin II (Ang II) signaling. Whether this member of the Src family kinases is involved in the development of Ang II-induced hypertension and associated cardiovascular damage in vivo remains unknown. Here, we studied Ang II-infused (400 ng/kg/min) mice in which c-Src was partially deleted (c-Src(+/-)) and in wild-type (WT, c-Src(+/+)) mice treated with a c-Src inhibitor (CGP077675; 25 mg/kg/d). Ang II increased blood pressure and induced endothelial dysfunction in WT mice, responses that were ameliorated in c-Src(+/-) and CGP077675-treated mice. Vascular wall thickness and cross-sectional area were similarly increased by Ang II in WT and c-Src(+/-) mice. CGP077675 further increased cross-sectional area in hypertensive mice. Cardiac dysfunction (ejection fraction and fractional shortening) in Ang II-infused WT mice was normalized in c-Src(+/-) mice. Increased oxidative stress (plasma thiobarbituric acid-reactive substances, hydrogen peroxide, and vascular superoxide generation) in Ang II-infused WT mice was attenuated in c-Src-deficient and CGP077675-treated mice. Hyperactivation of vascular c-Src, ERK1/2 (extracellular signal-regulated kinase 1/2), and JNK (c-Jun N-terminal kinase) in hypertensive mice was normalized in CGP077675-treated and c-Src(+/-) mice. Vascular fibronectin was increased by Ang II in all groups and further augmented by CGP077675. Cardiac fibrosis and inflammation induced by Ang II were amplified in c-Src(+/-) and CGP-treated mice. Our data indicate that although c-Src downregulation attenuates development of hypertension, improves endothelial and cardiac function, reduces oxidative stress, and normalizes vascular signaling, it has little beneficial effect on fibrosis. These findings suggest a divergent role for c-Src in Ang II-dependent hypertension, where c-Src may be more important in regulating redox-sensitive cardiac and vascular function than fibrosis and remodeling. © 2016 American Heart Association

  20. Effects of genistein, a tyrosine kinase inhibitor, on light adaptive ...

    African Journals Online (AJOL)

    The data suggested that genistein significantly blocked both light adaptive processes. It is concluded, therefore, that light adaptation of the teleost retina could involve activation of tyrosine kinases(s). This conclusion agrees with previous findings that multiple neuromodulators and protein kinases control retinal light ...

  1. Mechanism of c-Src Synergy with the EGFR in Breast Cancer

    National Research Council Canada - National Science Library

    1998-01-01

    .... Specifically, we have shown that kinase-inactive c-Src is able to inhibit tumorigenicity of the IOT 1/2 mouse fibroblast model cells by not phosphorylating the receptor on Tyr 845 in the activation loop of the kinase...

  2. Phosphotyrosine enrichment identifies focal adhesion kinase and other tyrosine kinases for targeting in canine hemangiosarcoma.

    Science.gov (United States)

    Marley, K; Maier, C S; Helfand, S C

    2012-09-01

    Canine hemangiosarcoma (HSA) is an endothelial cell malignancy driven, in part, by activating mutations in receptor and non-receptor tyrosine kinases. Proteomics, Western blots and a tyrosine kinase inhibitor were used to elucidate activating mechanisms in HSA cell lines. Phosphotyrosine peptides from focal adhesion kinase (FAK) STAT3, Lyn, Fyn and other signal transduction kinases were identified by mass spectrometry. FAK was constitutively activated at tyrosine 397, the autophosphorylation site, and this was reversible with high concentrations of a FAK inhibitor. FAK inhibitor-14 suppressed migration and phosphorylation of FAK tyrosine 397 and tyrosines 576/577 and was cytotoxic to HSA cells suggesting FAK signalling may be an important contributor to canine HSA survival. © 2012 Blackwell Publishing Ltd.

  3. Moving towards dose individualization of tyrosine kinase inhibitors

    NARCIS (Netherlands)

    Klümpen, Heinz-Josef; Samer, Caroline F.; Mathijssen, Ron H. J.; Schellens, Jan H. M.; Gurney, Howard

    2011-01-01

    Molecular targeted therapies with tyrosine kinase inhibitors (TKIs) have been a recent breakthrough in cancer treatment. These small molecules are mainly used at a fixed dose ignoring the possible need for dose individualization. Fixed dosing may indeed result in suboptimal treatment or excessive

  4. Expression of tyrosine kinase gene in mouse thymic stromal cells

    NARCIS (Netherlands)

    Rinke de Wit, T. F.; Izon, D. J.; Revilla, C.; Oosterwegel, M.; Bakker, A. Q.; van Ewijk, W.; Kruisbeek, A. M.

    1996-01-01

    Amongst the most important signal transduction molecules involved in regulating growth and differentiation are the protein tyrosine kinases (PTK). Since T cell development is a consequence of interactions between thymic stromal cells (TSC) and thymocytes, identification of the PTK in both

  5. Retinitis pigmentosa: mutations in a receptor tyrosine kinase gene ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 26; Issue 1. Clipboard: Retinitis pigmentosa: mutations in a receptor tyrosine kinase gene, MERTK. Arun Kumar. Volume 26 Issue 1 March 2001 pp 3-5. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/jbsc/026/01/0003-0005 ...

  6. Jak2 tyrosine kinase: a true jak of all trades?

    Science.gov (United States)

    Sandberg, Eric M; Wallace, Tiffany A; Godeny, Michael D; VonDerLinden, Danielle; Sayeski, Peter P

    2004-01-01

    Discovered roughly 10 yr ago, Jak2 tyrosine kinase has emerged as a critical molecule in mammalian development, physiology, and disease. Here, we review the early history of Jak2 and its role in health and disease. We will also review its critical role in mediating cytokine-dependent signal transduction. Additionally, more recent work demonstrating the importance of Jak2 in G protein-coupled receptor and tyrosine kinase growth factor receptor signal transduction will be discussed. The cellular and biochemical mechanisms by which Jak2 tyrosine kinase is activated and regulated within the cell also will be reviewed. Finally, structure-function and pharmacological-based studies that identified structural motifs and amino acids within Jak2 that are critical for its function will be examined. By reviewing the biology of Jak2 tyrosine kinase at the molecular, cellular, and physiological levels, we hope to advance the understanding of how a single gene can have such a profound impact on development, physiology, and disease.

  7. DMPD: Receptor tyrosine kinases and the regulation of macrophage activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14726496 Receptor tyrosine kinases and the regulation of macrophage activation. Cor...(.csml) Show Receptor tyrosine kinases and the regulation of macrophage activation. PubmedID 14726496 Title ...Receptor tyrosine kinases and the regulation of macrophage activation. Authors Co

  8. Marine sponge polyketide inhibitors of protein tyrosine kinase.

    Science.gov (United States)

    Lee, R H; Slate, D L; Moretti, R; Alvi, K A; Crews, P

    1992-04-30

    The marine polyketide natural product, halenaquinone, was shown to be an irreversible inhibitor of pp60v-src, the oncogenic protein tyrosine kinase encoded by the Rous sarcoma virus. This compound had an IC50 of approximately 1.5 microM against pp60v-src and also inhibited the ligand-stimulated kinase activity of the human epidermal growth factor receptor with an IC50 of approximately 19 microM. Halenaquinone blocked the proliferation of a number of cultured cell lines, including several transformed by oncogenic protein tyrosine kinases. Halenaquinol, xestoquinone, halenaquinol sulfate, and several simple synthetic quinone analogs were also shown to inhibit pp60v-src.

  9. Novel Bruton's tyrosine kinase inhibitors currently in development

    Directory of Open Access Journals (Sweden)

    D'Cruz OJ

    2013-03-01

    Full Text Available Osmond J D'Cruz,1 Fatih M Uckun1,21Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA; 2Department of Pediatrics, University of Southern California, Los Angeles, CA, USAAbstract: Bruton's tyrosine kinase (Btk is intimately involved in multiple signal-transduction pathways regulating survival, activation, proliferation, and differentiation of B-lineage lymphoid cells. Btk is overexpressed and constitutively active in several B-lineage lymphoid malignancies. Btk has emerged as a new antiapoptotic molecular target for treatment of B-lineage leukemias and lymphomas. Preclinical and early clinical results indicate that Btk inhibitors may be useful in the treatment of leukemias and lymphomas.Keywords: tyrosine kinase, personalized therapy, kinase inhibitors, Btk, leukemia, lymphoma

  10. Tyrosine Kinase Inhibitors in Pulmonary Vascular Disease

    Directory of Open Access Journals (Sweden)

    John J. Ryan, MD

    2016-12-01

    Full Text Available Chronic myeloid leukemia (CML is a clonal myeloproliferative disorder, characterized by proliferation of granulocytes, caused by a translocation that produces the Philadelphia chromosome resulting in constitutively active BCR-ABL tyrosine kinase. Imatinib and dasatinib are 2 BCR-ABL tyrosine kinase inhibitors (TKI used in the treatment of CML. Since the introduction of dasatinib earlier this decade, more than 100 cases of dasatinib-induced pulmonary arterial hypertension PAH have been reported in Europe. When imatinib was introduced, no such increase in pulmonary vasculopathy was identified. In this perspective piece, the author discusses the work of Guignabert et al., recently published in the Journal of Clinical Investigation, which examined the mechanism through which dasatinib mediates its toxic pulmonary vascular effects.

  11. Identification of a Fungi-Specific Lineage of Protein Kinases Closely Related to Tyrosine Kinases.

    OpenAIRE

    Zhongtao Zhao; Qiaojun Jin; Jin-Rong Xu; Huiquan Liu

    2014-01-01

    Tyrosine kinases (TKs) specifically catalyze the phosphorylation of tyrosine residues in proteins and play essential roles in many cellular processes. Although TKs mainly exist in animals, recent studies revealed that some organisms outside the Opisthokont clade also contain TKs. The fungi, as the sister group to animals, are thought to lack TKs. To better understand the origin and evolution of TKs, it is important to investigate if fungi have TK or TK-related genes. We therefore systematical...

  12. Microtubule and Actin Interplay Drive Intracellular c-Src Trafficking.

    Directory of Open Access Journals (Sweden)

    Christopher Arnette

    Full Text Available The proto-oncogene c-Src is involved in a variety of signaling processes. Therefore, c-Src spatiotemporal localization is critical for interaction with downstream targets. However, the mechanisms regulating this localization have remained elusive. Previous studies have shown that c-Src trafficking is a microtubule-dependent process that facilitates c-Src turnover in neuronal growth cones. As such, microtubule depolymerization lead to the inhibition of c-Src recycling. Alternatively, c-Src trafficking was also shown to be regulated by RhoB-dependent actin polymerization. Our results show that c-Src vesicles primarily exhibit microtubule-dependent trafficking; however, microtubule depolymerization does not inhibit vesicle movement. Instead, vesicular movement becomes both faster and less directional. This movement was associated with actin polymerization directly at c-Src vesicle membranes. Interestingly, it has been shown previously that c-Src delivery is an actin polymerization-dependent process that relies on small GTPase RhoB at c-Src vesicles. In agreement with this finding, microtubule depolymerization induced significant activation of RhoB, together with actin comet tail formation. These effects occurred downstream of GTP-exchange factor, GEF-H1, which was released from depolymerizing MTs. Accordingly, GEF-H1 activity was necessary for actin comet tail formation at the Src vesicles. Our results indicate that regulation of c-Src trafficking requires both microtubules and actin polymerization, and that GEF-H1 coordinates c-Src trafficking, acting as a molecular switch between these two mechanisms.

  13. Bosutinib: a novel second-generation tyrosine kinase inhibitor.

    Science.gov (United States)

    Isfort, Susanne; Keller-v Amsberg, Gunhild; Schafhausen, Philippe; Koschmieder, Steffen; Brümmendorf, Tim H

    2014-01-01

    Bosutinib (SKI-606) is a 4-anilino-3-quinoline carbonitrile, which acts as a dual inhibitor of Src and ABL kinases. In addition, the BCR-ABL fusion gene product, a constitutively activated tyrosine kinase which is crucial for the development of chronic myeloid leukemia (CML), is highly sensitive to bosutinib. Interestingly, distinctly lower concentrations of bosutinib are required to ablate BCR-ABL phosphorylation when compared to the first-generation tyrosine kinase inhibitor imatinib (IM). Bosutinib is a potent inhibitor of CML cell proliferation in vitro and has demonstrated promising activity in CML patients resistant or intolerant to IM as well as in newly diagnosed patients with chronic phase CML (CML-CP). Remarkably, bosutinib has been found to be capable of overcoming the majority of IM-resistant BCR-ABL mutations. Bosutinib has the potency to induce deep and fast responses in second- and third-/fourth-line treatment, and as a consequence, the drug has recently been licensed for patients previously treated with one or more tyrosine kinase inhibitor(s) and for whom imatinib, nilotinib, and dasatinib are not considered appropriate treatment options. Due to its potency and differing toxicity profile, it promises to be a good therapeutic option for a defined cohort of patients. The most common side effects are gastrointestinal with most of the patients suffering from nausea, vomiting, or diarrhea. For the most part, these gastrointestinal symptoms occur early after treatment initiation, are manageable, and often self-limiting. Continuous monitoring of liver enzymes upon treatment initiation is necessary during bosutinib treatment. In addition to CML treatment, bosutinib has shown some efficacy in selected patients suffering from advanced-stage solid tumors. In conclusion, bosutinib is a promising novel small molecule inhibitor approved now for targeted therapy of CML and in clinical development for other malignancies.

  14. BRET biosensor analysis of receptor tyrosine kinase functionality

    Directory of Open Access Journals (Sweden)

    Sana eSiddiqui

    2013-04-01

    Full Text Available Bioluminescence resonance energy transfer (BRET is an improved version of earlier resonance energy transfer technologies used for the analysis of biomolecular protein interaction. BRET analysis can be applied to many transmembrane receptor classes, however the majority of the early published literature on BRET has focused on G protein-coupled receptor (GPCR research. In contrast, there is limited scientific literature using BRET to investigate receptor tyrosine kinase (RTK activity. This limited investigation is surprising as RTKs often employ dimerization as a key factor in their activation, as well as being important therapeutic targets in medicine, especially in the cases of cancer, diabetes, neurodegenerative and respiratory conditions. In this review, we consider an array of studies pertinent to RTKs and other non-GPCR receptor protein-protein signaling interactions; more specifically we discuss receptor-protein interactions involved in the transmission of signaling communication. We have provided an overview of functional BRET studies associated with the receptor tyrosine kinase (RTK super family involving: neurotrophic receptors (e.g. tropomyosin-related kinase (Trk and p75 neurotrophin receptor (p75NTR; insulinotropic receptors (e.g. insulin receptor (IR and insulin-like growth factor receptor (IGFR and growth factor receptors (e.g. ErbB receptors including the EGFR, the fibroblast growth factor receptor (FGFR, the vascular endothelial growth factor receptor (VEGFR and the c-kit and platelet-derived growth factor receptor (PDGFR. In addition, we review BRET-mediated studies of other tyrosine kinase-associated receptors including cytokine receptors, i.e. leptin receptor (OB-R and the growth hormone receptor (GHR. It is clear even from the relatively sparse experimental RTK BRET evidence that there is tremendous potential for this technological application for the functional investigation of RTK biology.

  15. G-protein-coupled receptors and tyrosine kinases: crossroads in cell signaling and regulation.

    Science.gov (United States)

    Gavi, Shai; Shumay, Elena; Wang, Hsien-yu; Malbon, Craig C

    2006-03-01

    G-protein-coupled receptors and protein tyrosine kinases represent two prominent pathways for cellular signaling. As our knowledge of cell signaling pathways mediated by the superfamily of G-protein-coupled receptors and the smaller family of receptor tyrosine kinases expands, so does our appreciation of how these two major signaling platforms share information and modulate each other, otherwise termed "cross-talk". Cross-talk between G-protein-coupled receptors and tyrosine kinases can occur at several levels, including the receptor-to-receptor level, and at crucial downstream points (e.g. phosphatidylinositol-3-kinase, Akt/protein kinase B and the mitogen-activated protein kinase cascade). Regulation of G-protein-coupled receptors by non-receptor tyrosine kinases, such as Src family members, also operates in signaling. A broader understanding of how G-protein-coupled receptors and tyrosine kinases cross-talk reveals new insights into signaling modalities in both health and disease.

  16. Functional Diversity of the Schistosoma mansoni Tyrosine Kinases

    Directory of Open Access Journals (Sweden)

    Lívia G. A. Avelar

    2011-01-01

    Full Text Available Schistosoma mansoni, one of the causative agents of schistosomiasis, has a complex life cycle infecting over 200 million people worldwide. Such a successful and prolific parasite life cycle has been shown to be dependent on the adaptive interaction between the parasite and hosts. Tyrosine kinases (TKs play a key role in signaling pathways as demonstrated by a large body of experimental work in eukaryotes. Furthermore, comparative genomics have allowed the identification of TK homologs and provided insights into the functional role of TKs in several biological systems. Finally, TK structural biology has provided a rational basis for obtaining selective inhibitors directed to the treatment of human diseases. This paper covers the important aspects of the phospho-tyrosine signaling network in S. mansoni, Caenorhabditis elegans, and humans, the main process of functional diversification of TKs, that is, protein-domain shuffling, and also discusses TKs as targets for the development of new anti-schistosome drugs.

  17. Receptor tyrosine kinases and schistosome reproduction: new targets for chemotherapy

    Directory of Open Access Journals (Sweden)

    Marion eMorel

    2014-07-01

    Full Text Available Schistosome parasites still represent a serious public health concern and a major economic problem in developing countries. Pathology of schistosomiasis is mainly due to massive egg production by these parasites and to inflammatory responses raised against the eggs which are trapped in host tissues. Tyrosine kinases (TKs are key molecules that control cell differentiation and proliferation and they already represent important targets in cancer therapy. During the recent years, it has been shown that receptor tyrosine kinases (RTK signaling was active in reproductive organs and that it could regulate sexual maturation of schistosomes and egg production. This opens interesting perspectives for the control of transmission and pathogenesis of schistosomiasis based on new therapies targeting schistosome RTKs. This review relates the numerous data showing the major roles of kinase signaling in schistosome reproduction. It describes the conserved and particular features of schistosome RTKs, their implication in gametogenesis and reproduction processes and summarizes recent works indicating that RTKs and their signaling partners are interesting chemotherapeutical targets in new programs of control.

  18. Protein Tyrosine Kinase Signaling During Oocyte Maturation and Fertilization

    Science.gov (United States)

    McGinnis, Lynda K.; Carroll, David J.; Kinsey, William H.

    2011-01-01

    The oocyte is a highly specialized cell capable of accumulating and storing energy supplies as well as maternal transcripts and pre-positioned signal transduction components needed for zygotic development, undergoing meiosis under control of paracrine signals from the follicle, fusing with a single sperm during fertilization, and zygotic development. The oocyte accomplishes this diverse series of events by establishing an array of signal transduction pathway components that include a select collection of protein tyrosine kinases (PTKs) that are expressed at levels significantly higher than most other cell types. This array of PTKs includes cytosolic kinases such as SRC-family PTKs (FYN and YES), and FAK kinases, as well as FER. These kinases typically exhibit distinct patterns of localization and in some cases are translocated from one subcellular compartment to another during meiosis. Significant differences exist in the extent to which PTK-mediated pathways are used by oocytes from species that fertilize externally versus internally. The PTK activation profiles as well as calcium signaling pattern seems to correlate with the extent to which a rapid block to polyspermy is required by the biology of each species. Suppression of each of the SRC-family PTKs as well as FER kinase results in failure of meiotic maturation or zygote development, indicating that these PTKs are important for oocyte quality and developmental potential. Future studies will hopefully reveal the extent to which these factors impact clinical assisted reproductive techniques in domestic animals and humans. PMID:21681843

  19. Receptor tyrosine kinase structure and function in health and disease

    Directory of Open Access Journals (Sweden)

    Oleg A. Karpov

    2015-09-01

    Full Text Available Receptor tyrosine kinases (RTKs are membrane proteins that control the flow of information through signal transduction pathways, impacting on different aspects of cell function. RTKs are characterized by a ligand-binding ectodomain, a single transmembrane α-helix, a cytosolic region comprising juxtamembrane and kinase domains followed by a flexible C-terminal tail. Somatic and germline RTK mutations can induce aberrant signal transduction to give rise to cardiovascular, developmental and oncogenic abnormalities. RTK overexpression occurs in certain cancers, correlating signal strength and disease incidence. Diverse RTK activation and signal transduction mechanisms are employed by cells during commitment to health or disease. Small molecule inhibitors are one means to target RTK function in disease initiation and progression. This review considers RTK structure, activation, and signal transduction and evaluates biological relevance to therapeutics and clinical outcomes.

  20. Kinase-Independent Mechanisms of Resistance of Leukemia Stem Cells to Tyrosine Kinase Inhibitors

    Science.gov (United States)

    2014-01-01

    Summary Tyrosine kinase inhibitors such as imatinib mesylate have changed the clinical course of chronic myeloid leukemia; however, the observation that these inhibitors do not target the leukemia stem cell implies that patients need to maintain lifelong therapy. The mechanism of this phenomenon is unclear: the question of whether tyrosine kinase inhibitors are inactive inside leukemia stem cells or whether leukemia stem cells do not require breakpoint cluster region (Bcr)-Abl signaling is currently under debate. Herein, I propose an alternative model: perhaps the leukemia stem cell requires Bcr-Abl, but is dependent on its kinase-independent functions. Kinases such as epidermal growth factor receptor and Janus kinase 2 possess kinase-independent roles in regulation of gene expression; it is worth investigating whether Bcr-Abl has similar functions. Mechanistically, Bcr-Abl is able to activate the Ras, phosphatidylinositol 3-kinase/Akt, and/or the Src-kinase Hck/Stat5 pathways in a scaffolding-dependent manner. Whereas the scaffolding activity of Bcr-Abl with Grb2 is dependent on autophosphorylation, kinases such as Hck can use Bcr-Abl as substrate, inducing phosphorylation of Y177 to enable scaffolding ability in the absence of Bcr-Abl catalytic activity. It is worth investigating whether leukemia stem cells exclusively express kinases that are able to use Bcr-Abl as substrate. A kinase-independent role for Bcr-Abl in leukemia stem cells would imply that drugs that target Bcr-Abl’s scaffolding ability or its DNA-binding ability should be used in conjunction with current therapeutic regimens to increase their efficacy and eradicate the stem cells of chronic myeloid leukemia PMID:24598782

  1. Metazoan-like signaling in a unicellular receptor tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Schultheiss Kira P

    2013-02-01

    Full Text Available Abstract Background Receptor tyrosine kinases (RTKs are crucial components of signal transduction systems in multicellular animals. Surprisingly, numerous RTKs have been identified in the genomes of unicellular choanoflagellates and other protists. Here, we report the first biochemical study of a unicellular RTK, namely RTKB2 from Monosiga brevicollis. Results We cloned, expressed, and purified the RTKB2 kinase, and showed that it is enzymatically active. The activity of RTKB2 is controlled by autophosphorylation, as in metazoan RTKs. RTKB2 possesses six copies of a unique domain (designated RM2 in its C-terminal tail. An isolated RM2 domain (or a synthetic peptide derived from the RM2 sequence served as a substrate for RTKB2 kinase. When phosphorylated, the RM2 domain bound to the Src homology 2 domain of MbSrc1 from M. brevicollis. NMR structural studies of the RM2 domain indicated that it is disordered in solution. Conclusions Our results are consistent with a model in which RTKB2 activation stimulates receptor autophosphorylation within the RM2 domains. This leads to recruitment of Src-like kinases (and potentially other M. brevicollis proteins and further phosphorylation, which may serve to increase or dampen downstream signals. Thus, crucial features of signal transduction circuitry were established prior to the evolution of metazoans from their unicellular ancestors.

  2. Bosutinib induced pleural effusions: Case report and review of tyrosine kinase inhibitors induced pulmonary toxicity

    OpenAIRE

    Moguillansky, Natalia I.; Fakih, Hafiz Abdul Moiz; Wingard, John R.

    2017-01-01

    Tyrosine kinase inhibitors are known to cause pulmonary complications. We report a case of bosutinib related bilateral pleural effusions in a patient with chronic myeloid leukemia. Characteristics of the pleural fluid are presented. We also discuss other tyrosine kinase inhibitors induced pulmonary toxicities, including pulmonary hypertension and interstitial lung disease.

  3. Bosutinib induced pleural effusions: Case report and review of tyrosine kinase inhibitors induced pulmonary toxicity

    Directory of Open Access Journals (Sweden)

    Natalia I. Moguillansky, MD

    2017-01-01

    Full Text Available Tyrosine kinase inhibitors are known to cause pulmonary complications. We report a case of bosutinib related bilateral pleural effusions in a patient with chronic myeloid leukemia. Characteristics of the pleural fluid are presented. We also discuss other tyrosine kinase inhibitors induced pulmonary toxicities, including pulmonary hypertension and interstitial lung disease.

  4. Bosutinib induced pleural effusions: Case report and review of tyrosine kinase inhibitors induced pulmonary toxicity.

    Science.gov (United States)

    Moguillansky, Natalia I; Fakih, Hafiz Abdul Moiz; Wingard, John R

    2017-01-01

    Tyrosine kinase inhibitors are known to cause pulmonary complications. We report a case of bosutinib related bilateral pleural effusions in a patient with chronic myeloid leukemia. Characteristics of the pleural fluid are presented. We also discuss other tyrosine kinase inhibitors induced pulmonary toxicities, including pulmonary hypertension and interstitial lung disease.

  5. [Dasatinib. A novel tyrosine kinase inhibitor for the treatment of chronic myeloid leukaemia

    DEFF Research Database (Denmark)

    Dufva, I.H.; Stentoft, J.; Hasselbalch, H.C.

    2008-01-01

    Chronic myeloid leukaemia is characterized by an abnormal tyrosin kinase in the cytoplasm of the clonal cells. The enzyme is derived from a fusion gene on the Philadelphia-chromosome, evolved by a translocation between chromosomes 9 and 22. Understanding the biology of the tyrosin kinase led...

  6. Protein-tyrosine phosphorylation interaction network in Bacillus subtilis reveals new substrates, kinase activators and kinase cross-talk.

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-10-01

    Full Text Available Signal transduction in eukaryotes is generally transmitted through phosphorylation cascades that involve a complex interplay of transmembrane receptors, protein kinases, phosphatases and their targets. Our previous work indicated that bacterial protein-tyrosine kinases and phosphatases may exhibit similar properties, since they act on many different substrates. To capture the complexity of this phosphorylation-based network, we performed a comprehensive interactome study focused on the protein-tyrosine kinases and phosphatases in the model bacterium Bacillus subtilis. The resulting network identified many potential new substrates of kinases and phosphatases, some of which were experimentally validated. Our study highlighted the role of tyrosine and serine/threonine kinases and phosphatases in DNA metabolism, transcriptional control and cell division. This interaction network reveals significant crosstalk among different classes of kinases. We found that tyrosine kinases can bind to several modulators, transmembrane or cytosolic, consistent with a branching of signaling pathways. Most particularly, we found that the division site regulator MinD can form a complex with the tyrosine kinase PtkA and modulate its activity in vitro. In vivo, it acts as a scaffold protein which anchors the kinase at the cell pole. This network highlighted a role of tyrosine phosphorylation in the spatial regulation of the Z-ring during cytokinesis.

  7. Regulation of Ack-Family Nonreceptor Tyrosine Kinases

    Directory of Open Access Journals (Sweden)

    Victoria Prieto-Echagüe

    2011-01-01

    Full Text Available Ack family non-receptor tyrosine kinases are unique with regard to their domain composition and regulatory properties. Human Ack1 (activated Cdc42-associated kinase is ubiquitously expressed and is activated by signals that include growth factors and integrin-mediated cell adhesion. Stimulation leads to Ack1 autophosphorylation and to phosphorylation of additional residues in the C-terminus. The N-terminal SAM domain is required for full activation. Ack1 exerts some of its effects via protein-protein interactions that are independent of its kinase activity. In the basal state, Ack1 activity is suppressed by an intramolecular interaction between the catalytic domain and the C-terminal region. Inappropriate Ack1 activation and signaling has been implicated in the development, progression, and metastasis of several forms of cancer. Thus, there is increasing interest in Ack1 as a drug target, and studies of the regulatory properties of the enzyme may reveal features that can be exploited in inhibitor design.

  8. [Dasatinib. A novel tyrosine kinase inhibitor for the treatment of chronic myeloid leukaemia

    DEFF Research Database (Denmark)

    Dufva, I.H.; Stentoft, J.; Hasselbalch, H.C.

    2008-01-01

    Chronic myeloid leukaemia is characterized by an abnormal tyrosin kinase in the cytoplasm of the clonal cells. The enzyme is derived from a fusion gene on the Philadelphia-chromosome, evolved by a translocation between chromosomes 9 and 22. Understanding the biology of the tyrosin kinase led to t...... to targeted therapy, inhibiting the ATP-binding site by a small molecule--imatinib (Glivec). A novel 2nd generation tyrosin kinase inhibitor--dasatinib (Sprycel)--is now available in cases of insufficient response or intolerance to imatinib Udgivelsesdato: 2008/1/28......Chronic myeloid leukaemia is characterized by an abnormal tyrosin kinase in the cytoplasm of the clonal cells. The enzyme is derived from a fusion gene on the Philadelphia-chromosome, evolved by a translocation between chromosomes 9 and 22. Understanding the biology of the tyrosin kinase led...

  9. Protein tyrosine kinase and mitogen-activated protein kinase signalling pathways contribute to differences in heterophil-mediated innate immune responsiveness between two lines of broilers

    Science.gov (United States)

    Protein tyrosine phosphorylation mediates signal transduction of cellular processes, with protein tyrosine kinases (PTKs) regulating virtually all signaling events. The mitogen-activated protein kinase (MAPK) super-family consists of three conserved pathways that convert receptor activation into ce...

  10. Current Management of Chronic Myeloid Leukemia with Tyrosine Kinase Inhibitors

    Directory of Open Access Journals (Sweden)

    İbrahim C. Haznedaroğlu

    2013-09-01

    Full Text Available The clinical outcomes and survival of tyrosine kinase inhibitor (TKI-treated patients with chronic myeloid leukemia (CML have been significantly improved. The aim of this editorial is to outline critical steps of TKI administration practices during the long-term clinical course of CML based on data obtained from randomized clinical trials and international recommendations. The efficacy of TKI treatment, TKI side effects, off-target complications, and long-term morbidities due to both the disease and the drug are common arguments in the management of CML. Complete hematological response, early complete cytogenetic response, faster major molecular response, and deeper, more durable molecular responses (MR4, MR4.5, MR5 are the ultimate goals for TKI-receiving patients with CML.

  11. Current management of chronic myeloid leukemia with tyrosine kinase inhibitors.

    Science.gov (United States)

    Haznedaroğlu, Ibrahim C

    2013-09-01

    The clinical outcomes and survival of tyrosine kinase inhibitor (TKI)-treated patients with chronic myeloid leukemia (CML) have been significantly improved. The aim of this editorial is to outline critical steps of TKI administration practices during the long-term clinical course of CML based on data obtained from randomized clinical trials and international recommendations. The efficacy of TKI treatment, TKI side effects, off-target complications, and long-term morbidities due to both the disease and the drug are common arguments in the management of CML. Complete hematological response, early complete cytogenetic response, faster major molecular response, and deeper, more durable molecular responses (MR4, MR4.5, MR5) are the ultimate goals for TKI-receiving patients with CML. None declared.

  12. Design and Synthesis of Novel Macrocyclic Mer Tyrosine Kinase Inhibitors.

    Science.gov (United States)

    Wang, Xiaodong; Liu, Jing; Zhang, Weihe; Stashko, Michael A; Nichols, James; Miley, Michael J; Norris-Drouin, Jacqueline; Chen, Zhilong; Machius, Mischa; DeRyckere, Deborah; Wood, Edgar; Graham, Douglas K; Earp, H Shelton; Kireev, Dmitri; Frye, Stephen V

    2016-12-08

    Mer tyrosine kinase (MerTK) is aberrantly elevated in various tumor cells and has a normal anti-inflammatory role in the innate immune system. Inhibition of MerTK may provide dual effects against these MerTK-expressing tumors through reducing cancer cell survival and redirecting the innate immune response. Recently, we have designed novel and potent macrocyclic pyrrolopyrimidines as MerTK inhibitors using a structure-based approach. The most active macrocycles had an EC 50 below 40 nM in a cell-based MerTK phosphor-protein ELISA assay. The X-ray structure of macrocyclic analogue 3 complexed with MerTK was also resolved and demonstrated macrocycles binding in the ATP binding pocket of the MerTK protein as anticipated. In addition, the lead compound 16 (UNC3133) had a 1.6 h half-life and 16% oral bioavailability in a mouse PK study.

  13. The Receptor Tyrosine Kinase AXL in Cancer Progression

    Directory of Open Access Journals (Sweden)

    Erinn B. Rankin

    2016-11-01

    Full Text Available The AXL receptor tyrosine kinase (AXL has emerged as a promising therapeutic target for cancer therapy. Recent studies have revealed a central role of AXL signaling in tumor proliferation, survival, stem cell phenotype, metastasis, and resistance to cancer therapy. Moreover, AXL is expressed within cellular components of the tumor microenvironment where AXL signaling contributes to the immunosuppressive and protumorigenic phenotypes. A variety of AXL inhibitors have been developed and are efficacious in preclinical studies. These agents offer new opportunities for therapeutic intervention in the prevention and treatment of advanced disease. Here we review the literature that has illuminated the cellular and molecular mechanisms by which AXL signaling promotes tumor progression and we will discuss the therapeutic potential of AXL inhibition for cancer therapy.

  14. Tyrosine Kinase Receptor Landscape in Lung Cancer: Therapeutical Implications

    Directory of Open Access Journals (Sweden)

    A. Quintanal-Villalonga

    2016-01-01

    Full Text Available Lung cancer is a heterogeneous disease responsible for the most cases of cancer-related deaths. The majority of patients are clinically diagnosed at advanced stages, with a poor survival rate. For this reason, the identification of oncodrivers and novel biomarkers is decisive for the future clinical management of this pathology. The rise of high throughput technologies popularly referred to as “omics” has accelerated the discovery of new biomarkers and drivers for this pathology. Within them, tyrosine kinase receptors (TKRs have proven to be of importance as diagnostic, prognostic, and predictive tools and, due to their molecular nature, as therapeutic targets. Along this review, the role of TKRs in the different lung cancer histologies, research on improvement of anti-TKR therapy, and the current approaches to manage anti-TKR resistance will be discussed.

  15. Tyrosine kinase inhibitors induced immune thrombocytopenia in chronic myeloid leukemia?

    Directory of Open Access Journals (Sweden)

    Avital F. Barak

    2011-12-01

    Full Text Available The outcome and quality of life of chronic myeloid leukemia (CML patients has remarkably changed with the treatment of tyrosine kinase inhibitors (TKIs. Currently, hematopoietic stem cell transplantation (HSCT is considered mainly as a third line salvage therapy in cases of TKIs resistance or intolerance. Here we describe a patient with chronic phase CML who developed both resistance and late occurrence of s severe thrombocytopenia on first and second generation TKIs and eventually underwent HSCT. Although the mechanism of the myelosuppression is not fully understood, we showed for the first time the development of dose dependent platelet antibodies in the presence of TKIs, suggesting the possibility of TKIs induced thrombocytopenia. Our case emphasizes that late development of severe myelosuppression during imatinib treatment is probably an important indication for consideration of early HSCT.

  16. Phosphoproteomic mass spectrometry profiling links Src family kinases to escape from HER2 tyrosine kinase inhibition

    Science.gov (United States)

    Rexer, Brent N.; Ham, Amy-Joan L.; Rinehart, Cammie; Hill, Salisha; Granja-Ingram, Nara de Matos; González, Ana María; Mills, Gordon B.; Dave, Bhuvanesh; Chang, Jenny C.; Liebler, Daniel C.; Arteaga, Carlos L.

    2011-01-01

    Despite the initial effectiveness of the tyrosine kinase inhibitor lapatinib against HER2 gene-amplified breast cancers, most patients eventually relapse after treatment, implying that tumors acquire mechanisms of drug resistance. To discover these mechanisms, we generated six lapatinib-resistant HER2-overexpressing human breast cancer cell lines. In cells that grew in the presence of lapatinib, HER2 autophosphorylation was undetectable whereas active PI3K-Akt and MAPK were maintained. To identify networks maintaining these signaling pathways, we profiled the tyrosine phosphoproteome of sensitive and resistant cells using an immunoaffinity-enriched mass spectrometry method. We found increased phosphorylation of Src family kinases (SFK) and putative Src substrates in several resistant cell lines. Treatment of these resistant cells with Src kinase inhibitors partially blocked PI3K-Akt signaling and restored lapatinib sensitivity. Further, SFK mRNA expression was upregulated in primary HER2+ tumors treated with lapatinib. Finally, the combination of lapatinib and the Src inhibitor AZD0530 was more effective than lapatinib alone at inhibiting pAkt and growth of established HER2-positive BT-474 xenografts in athymic mice. These data suggest that increased Src kinase activity is a mechanism of lapatinib resistance and support the combination of HER2 antagonists with Src inhibitors early in the treatment of HER2+ breast cancers in order to prevent or overcome resistance to HER2 inhibitors. PMID:21499296

  17. The 2010 patent landscape for spleen tyrosine kinase inhibitors.

    Science.gov (United States)

    Moretto, Alessandro F; Dehnhardt, Christoph; Kaila, Neelu; Papaioannou, Nikolaos; Thorarensen, Atli

    2012-05-01

    Discovery of small molecular inhibitors for treatment of rheumatoid arthritis is a major ongoing effort within the pharmaceutical industry. Spleen tyrosine kinase (SYK) is one of leading small molecular targets with regard to clinical development primarlly due to efforts by Rigel and Portola. In this review, we provide a comprehensive overview of the SYK patent landscape. The patent literature we evaluated relates to any organization that has filed applications that imply that SYK is the intended target. The interest in SYK was initiated in the early 2000's with many organizations, including several large pharmaceutical companies, and has been active for years. In general, the structural theme of most of the compounds in these applications is a traditional ATP competitive inhibitor with each organization having a different hinge binding element. In general, the attachment to the hinge is an aryl amine that is decorated with a solubilizing group. The other substituents are broadly variable across the numerous companies indicating that SYK has significant flexibility in its interactions in that portion of the kinase. This overview of the SYK patent literature and the learnings of the inhibitors' substitution patterns would be an important reference for anyone working in this area.

  18. Environmental toxicants inhibit neuronal Jak tyrosine kinase by mitochondrial disruption.

    Science.gov (United States)

    Monroe, Richard K; Halvorsen, Stanley W

    2009-07-01

    Cadmium, mercury and rotenone are environmental pollutants whose neurotoxic mechanisms are not fully understood. We have shown previously that exposure of nerve cells to these agents produces oxidative stress which reversibly blocks growth factor and cytokine-mediated Janus kinase (Jak)/signal transducer and activator of transcription (STAT) signaling. Here we determined a critical role for mitochondrial dysfunction in inhibiting Jak/STAT activity in human BE(2)-C neuroblastoma cells. Exposure of BE(2)-C cells to the heavy metals CdCl(2) and HgCl(2) and to the mitochondrial complex I inhibitor rotenone inhibited interleukin-6, interferon-gamma and ciliary neurotrophic factor-mediated Jak/STAT signaling, reduced Jak1 and Jak2 auto-phosphorylation and induced Jak tyrosine nitration. However, identical exposure of HepG2 hepatoma cells produced no inhibition of these cytokine responses. In contrast, mitochondria in both BE(2)-C and HepG2 cells showed reduced mitochondrial membrane potential and increased superoxide production after exposure to CdCl(2), HgCl(2) and rotenone. Further, in an in vitro Jak auto-phosphorylation assay Jak2 isolated from either BE(2)-C or HepG2 cells was equally inhibited by mitochondria made dysfunctional by treatment with CdCl(2), HgCl(2) and rotenone. Each of these pro-oxidant effects was reversed by the mitochondrial antioxidant alpha-lipoic acid. The actions of cadmium were also blocked by the mitochondrial complex III bypass agent, 2,6-dichloroindophenol. Therefore, in BE(2)-C cells CdCl(2), HgCl(2) and rotenone disrupt mitochondria to increase intracellular ROS, which directly inhibits neuronal Jak tyrosine kinase activity. Non-neuronal cells such as HepG2 cells that are resistant to oxidative stress-mediated inhibition of cytokine signaling possess some as yet unknown mechanism that protects Jak kinases from oxidative insults. Pro-oxidant-induced mitochondrial dysfunction resulting in selective neuronal Jak inhibition provides a

  19. Shear stress induces cell apoptosis via a c-Src-phospholipase D-mTOR signaling pathway in cultured podocytes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chunfa, E-mail: chunfa.huang@case.edu [Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University (United States); Department of Medicine, Case Western Reserve University (United States); Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106 (United States); Bruggeman, Leslie A. [Department of Medicine, Case Western Reserve University (United States); Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106 (United States); Hydo, Lindsey M. [Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University (United States); Miller, R. Tyler [Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University (United States); Department of Medicine, Case Western Reserve University (United States); Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106 (United States)

    2012-06-10

    The glomerular capillary wall, composed of endothelial cells, the glomerular basement membrane and the podocytes, is continually subjected to hemodynamic force arising from tractional stress due to blood pressure and shear stress due to blood flow. Exposure of glomeruli to abnormal hemodynamic force such as hyperfiltration is associated with glomerular injury and progressive renal disease, and the conversion of mechanical stimuli to chemical signals in the regulation of the process is poorly understood in podocytes. By examining DNA fragmentation, apoptotic nuclear changes and cytochrome c release, we found that shear stress induced cell apoptosis in cultured podocytes. Meanwhile, podocytes exposed to shear stress also stimulated c-Src phosphorylation, phospholipase D (PLD) activation and mammalian target of rapamycin (mTOR) signaling. Using the antibodies against c-Src, PLD{sub 1}, and PLD{sub 2} to perform reciprocal co-immunoprecipitations and in vitro PLD activity assay, our data indicated that c-Src interacted with and activated PLD{sub 1} but not PLD{sub 2}. The inhibition of shear stress-induced c-Src phosphorylation by PP{sub 2} (a specific inhibitor of c-Src kinase) resulted in reduced PLD activity. Phosphatidic acid, produced by shear stress-induced PLD activation, stimulated mTOR signaling, and caused podocyte hypertrophy and apoptosis.

  20. c-Src activation through a TrkA and c-Src interaction is essential for cell proliferation and hematological malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Soo; Kim, Gyoung Mi; Choi, Yun-Jeong [Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840 (Korea, Republic of); Kim, Hye Joung [Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Kim, Yoo-Jin, E-mail: yoojink@catholic.ac.kr [Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Jin, Wook, E-mail: jinwo@gachon.ac.kr [Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840 (Korea, Republic of); Gachon Medical Research Institute, Gil Medical Center, Incheon 405-760 (Korea, Republic of)

    2013-11-15

    Highlights: •TrkA was mainly present in other types of leukemia including AML. •TrkA enhances the survival of leukemia by activation of PI3K/Akt pathway. •TrkA induced significant hematological malignancies by inducing PLK-1 and Twist-1. •TrkA acted as a key regulator of leukemogenesis and survival through c-Src activation. -- Abstract: Although the kinase receptor TrkA may play an important role in acute myeloid leukemia (AML), its involvement in other types of leukemia has not been reported. Furthermore, how it contributes to leukemogenesis is unknown. Here, we describe a molecular network that is important for TrkA function in leukemogenesis. We found that TrkA is frequently overexpressed in other types of leukemia such as acute lymphoblastic leukemia (ALL), chronic myelogenous leukemia (CML), and myelodysplastic syndrome (MDS) including AML. In addition, TrkA was overexpressed in patients with MDS or secondary AML evolving from MDS. TrkA induced significant hematological malignancies by inducing PLK-1 and Twist-1, and enhanced survival and proliferation of leukemia, which was correlated with activation of the phosphatidylinositol 3-kinase/Akt/mTOR pathway. Moreover, endogenous TrkA associated with c-Src complexes was detected in leukemia. Suppression of c-Src activation by TrkA resulted in markedly decreased expression of PLK-1 and Twist-1 via suppressed activation of Akt/mTOR cascades. These data suggest that TrkA plays a key role in leukemogenesis and reveal an unexpected physiological role for TrkA in the pathogenesis of leukemia. These data have important implications for understanding various hematological malignancies.

  1. Identification of a fungi-specific lineage of protein kinases closely related to tyrosine kinases.

    Directory of Open Access Journals (Sweden)

    Zhongtao Zhao

    Full Text Available Tyrosine kinases (TKs specifically catalyze the phosphorylation of tyrosine residues in proteins and play essential roles in many cellular processes. Although TKs mainly exist in animals, recent studies revealed that some organisms outside the Opisthokont clade also contain TKs. The fungi, as the sister group to animals, are thought to lack TKs. To better understand the origin and evolution of TKs, it is important to investigate if fungi have TK or TK-related genes. We therefore systematically identified possible TKs across the fungal kingdom by using the profile hidden Markov Models searches and phylogenetic analyses. Our results confirmed that fungi lack the orthologs of animal TKs. We identified a fungi-specific lineage of protein kinases (FslK that appears to be a sister group closely related to TKs. Sequence analysis revealed that members of the FslK clade contain all the conserved protein kinase sub-domains and thus are likely enzymatically active. However, they lack key amino acid residues that determine TK-specific activities, indicating that they are not true TKs. Phylogenetic analysis indicated that the last common ancestor of fungi may have possessed numerous members of FslK. The ancestral FslK genes were lost in Ascomycota and Ustilaginomycotina and Pucciniomycotina of Basidiomycota during evolution. Most of these ancestral genes, however, were retained and expanded in Agaricomycetes. The discovery of the fungi-specific lineage of protein kinases closely related to TKs helps shed light on the origin and evolution of TKs and also has potential implications for the importance of these kinases in mushroom fungi.

  2. Involvement of Rho-kinase and tyrosine kinase in hypotonic stress-induced ATP release in bovine aortic endothelial cells

    Science.gov (United States)

    Koyama, Tetsuya; Oike, Masahiro; Ito, Yushi

    2001-01-01

    Hypotonic stress induces ATP release followed by Ca2+ oscillations in bovine aortic endothelial cells (BAECs). We have investigated the cellular mechanism of the hypotonic stress-induced ATP release. Hypotonic stress induced tyrosine phosphorylation of at least two proteins, of 110 and 150 kDa. Inhibition of tyrosine kinase by the tyrosine kinase inhibitors herbimycin A and tyrphostin 46 prevented ATP release and ATP-mediated Ca2+ oscillations induced by hypotonic stress. ATP release was also inhibited by the pretreatment of the cells with botulinum toxin C3, and augmented by lysophosphatidic acid. Furthermore, pre-treating the cells with Y-27632, a selective inhibitor of Rho-kinase, also suppressed the hypotonic stress-induced ATP release and Ca2+ oscillations, indicating that Rho-mediated activation of Rho-kinase may be involved in the hypotonic ATP release. Hypotonic stress also induced a transient rearrangement of the actin cytoskeleton, which was suppressed by the tyrosine kinase inhibitors Y-27632 and cytochalasin B. However, pretreatment of the cell with cytochalasin B inhibited neither the hypotonic stress-induced ATP release nor the Ca2+ oscillations. These results indicate that tyrosine kinase and the Rho-Rho-kinase pathways are involved in hypotonic stress-induced ATP release and actin rearrangement, but actin polymerization is not required for ATP release in BAECs. PMID:11313444

  3. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  4. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib.

    Science.gov (United States)

    Woyach, Jennifer A; Furman, Richard R; Liu, Ta-Ming; Ozer, Hatice Gulcin; Zapatka, Marc; Ruppert, Amy S; Xue, Ling; Li, Daniel Hsieh-Hsin; Steggerda, Susanne M; Versele, Matthias; Dave, Sandeep S; Zhang, Jenny; Yilmaz, Ayse Selen; Jaglowski, Samantha M; Blum, Kristie A; Lozanski, Arletta; Lozanski, Gerard; James, Danelle F; Barrientos, Jacqueline C; Lichter, Peter; Stilgenbauer, Stephan; Buggy, Joseph J; Chang, Betty Y; Johnson, Amy J; Byrd, John C

    2014-06-12

    Ibrutinib is an irreversible inhibitor of Bruton's tyrosine kinase (BTK) and is effective in chronic lymphocytic leukemia (CLL). Resistance to irreversible kinase inhibitors and resistance associated with BTK inhibition have not been characterized. Although only a small proportion of patients have had a relapse during ibrutinib therapy, an understanding of resistance mechanisms is important. We evaluated patients with relapsed disease to identify mutations that may mediate ibrutinib resistance. We performed whole-exome sequencing at baseline and the time of relapse on samples from six patients with acquired resistance to ibrutinib therapy. We then performed functional analysis of identified mutations. In addition, we performed Ion Torrent sequencing for identified resistance mutations on samples from nine patients with prolonged lymphocytosis. We identified a cysteine-to-serine mutation in BTK at the binding site of ibrutinib in five patients and identified three distinct mutations in PLCγ2 in two patients. Functional analysis showed that the C481S mutation of BTK results in a protein that is only reversibly inhibited by ibrutinib. The R665W and L845F mutations in PLCγ2 are both potentially gain-of-function mutations that lead to autonomous B-cell-receptor activity. These mutations were not found in any of the patients with prolonged lymphocytosis who were taking ibrutinib. Resistance to the irreversible BTK inhibitor ibrutinib often involves mutation of a cysteine residue where ibrutinib binding occurs. This finding, combined with two additional mutations in PLCγ2 that are immediately downstream of BTK, underscores the importance of the B-cell-receptor pathway in the mechanism of action of ibrutinib in CLL. (Funded by the National Cancer Institute and others.).

  5. c-Src modulates estrogen-induced stress and apoptosis in estrogen-deprived breast cancer cells

    Science.gov (United States)

    Fan, Ping; Griffith, Obi L; Agboke, Fadeke; Anur, Pavana; Zou, Xiaojun; McDaniel, Russell E; Creswell, Karen; Kim, Sung Hoon; Katzenellenbogen, John A; Gray, Joe W; Jordan, V Craig

    2013-01-01

    The emergence of antiestrogen resistance in breast cancer is an important clinical phenomenon affecting long-term survival in this disease. Identifying factors that convey cell survival in this setting may guide improvements in treatment. Estrogen (E2) can induce apoptosis in breast cancer cells that have been selected for survival after E2 deprivation for long periods (MCF-7:5C cells), but the mechanisms underlying E2-induced stress in this setting have not been elucidated. Here, we report that the c-Src kinase functions as a key adapter protein for the estrogen receptor (ER, ESR1) in its activation of stress responses induced by E2 in MCF-7:5C cells. E2 elevated phosphorylation of c-Src which was blocked by 4-hydroxytamoxifen (4-OHT), suggesting that E2 activated c-Src through the ER. We found that E2 activated the sensors of the unfolded protein response (UPR), IRE1α (ERN1) and PERK kinase (EIF2AK3), the latter of which phosphorylates eukaryotic translation initiation factor-2α (eIF2α). E2 also dramatically increased reactive oxygen species (ROS) production and up-regulated expression of heme oxygenase HO-1 (HMOX1), an indicator of oxidative stress, along with the central energy sensor kinase AMPK (PRKAA2). Pharmacological or RNAi-mediated inhibition of c-Src abolished the phosphorylation of eIF2α and AMPK, blocked E2-induced ROS production, and inhibited E2-induced apoptosis. Together, our results establish that c-Src kinase mediates stresses generated by E2 in long-term E2-deprived cells that trigger apoptosis. This work offers a mechanistic rationale for a new approach in the treatment of endocrine-resistant breast cancer. PMID:23704208

  6. Imatinib-Sensitive Tyrosine Kinases Regulate Mycobacterial Pathogenesis and Represent Therapeutic Targets against Tuberculosis

    OpenAIRE

    Napier, Ruth J.; Rafi, Wasiulla; Cheruvu, Mani; Powell, Kimberly R.; Zaunbrecher, M. Analise; Bornmann, William; Salgame, Padmini; Shinnick, Thomas M.; Kalman, Daniel

    2011-01-01

    The lengthy course of treatment with currently used anti-mycobacterial drugs and the resulting emergence of drug-resistant strains have intensified the need for alternative therapies against Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis. We show that Mtb and Mycobacterium marinum use Abl and related tyrosine kinases for entry and intracellular survival in macrophages. In mice, the Abl-family tyrosine kinase inhibitor, imatinib (Gleevec®), when administered prophylactic...

  7. Leukocyte tyrosine kinase functions in pigment cell development.

    Directory of Open Access Journals (Sweden)

    Susana S Lopes

    2008-03-01

    Full Text Available A fundamental problem in developmental biology concerns how multipotent precursors choose specific fates. Neural crest cells (NCCs are multipotent, yet the mechanisms driving specific fate choices remain incompletely understood. Sox10 is required for specification of neural cells and melanocytes from NCCs. Like sox10 mutants, zebrafish shady mutants lack iridophores; we have proposed that sox10 and shady are required for iridophore specification from NCCs. We show using diverse approaches that shady encodes zebrafish leukocyte tyrosine kinase (Ltk. Cell transplantation studies show that Ltk acts cell-autonomously within the iridophore lineage. Consistent with this, ltk is expressed in a subset of NCCs, before becoming restricted to the iridophore lineage. Marker analysis reveals a primary defect in iridophore specification in ltk mutants. We saw no evidence for a fate-shift of neural crest cells into other pigment cell fates and some NCCs were subsequently lost by apoptosis. These features are also characteristic of the neural crest cell phenotype in sox10 mutants, leading us to examine iridophores in sox10 mutants. As expected, sox10 mutants largely lacked iridophore markers at late stages. In addition, sox10 mutants unexpectedly showed more ltk-expressing cells than wild-type siblings. These cells remained in a premigratory position and expressed sox10 but not the earliest neural crest markers and may represent multipotent, but partially-restricted, progenitors. In summary, we have discovered a novel signalling pathway in NCC development and demonstrate fate specification of iridophores as the first identified role for Ltk.

  8. Overexpressed pp60c-src can induce focus formation without complete transformation of NIH 3T3 cells.

    Science.gov (United States)

    Johnson, P J; Coussens, P M; Danko, A V; Shalloway, D

    1985-05-01

    NIH 3T3 cells were transfected with plasmids containing Moloney murine leukemia virus long terminal repeats and either chicken c-src or v-src genes. In contrast with the effects observed after transfection with plasmids containing c-src and avian retrovirus or simian virus 40 promoter-enhancers (H. Hanafusa, H. Iba, T. Takeya, and F. R. Cross, p. 1-8, in G. F. Vande Woude, A. J. Levine, W. C. Topp, and J. D. Watson, ed., Cancer Cells, vol. 2, 1984; H. Iba, T. Takeya, F. R. Cross, T. Hanafusa, and H. Hanafusa, Proc. Natl. Acad. Sci. U.S.A. 81:4424-4428, 1984; R. C. Parker, R. Swanstrom, H. E. Varmus, and J. M. Bishop, p. 19-26, in G. F. Vande Woude et al., ed., Cancer Cells, vol. 2, 1984; R. C. Parker, H. E. Varmus, and J. M. Bishop, Cell 37:131-139, 1984; D. Shalloway, P. M. Coussens, and P. Yaciuk, p. 9-17, in G. F. Vande Woude et al., ed., Cancer Cells, vol. 2, 1984; D. Shalloway, P. M. Coussens, and P. Yaciuk, Proc. Natl. Acad. Sci. U.S.A. 81:7071-7075; and K. C. Wilhelmsen, W. G. Tarpley, and H. M. Temin, p. 303-308, in G. F. Vande Woude et al., ed., Cancer Cells, vol. 2, 1984), we found that both types of Moloney murine leukemia virus long terminal repeat-src expression plasmids induced focus formation, although c-src induced only 1% as many foci as v-src. The focus-selected c-src overexpressed cells had altered morphology and limited growth in soft agarose but were not tumorigenic in vivo. Cleveland digests, comparative in vitro kinase assays, secondary transfections, and immunoprecipitations indicated that focus formation was caused by rare transfection events that resulted in very high-level pp60c-src expression rather than by mutations of the transfected c-src genes. These results suggest that pp60v-src induced transformation is not a completely spurious activity which is unrelated to the function of pp60c-src but that it represents a perturbation of already existent molecular control processes involving pp60c-src.

  9. Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia.

    Science.gov (United States)

    Boer, Judith M; Steeghs, Elisabeth M P; Marchante, João R M; Boeree, Aurélie; Beaudoin, James J; Beverloo, H Berna; Kuiper, Roland P; Escherich, Gabriele; van der Velden, Vincent H J; van der Schoot, C Ellen; de Groot-Kruseman, Hester A; Pieters, Rob; den Boer, Monique L

    2017-01-17

    Approximately 15% of pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL) is characterized by gene expression similar to that of BCR-ABL1-positive disease and unfavorable prognosis. This BCR-ABL1-like subtype shows a high frequency of B-cell development gene aberrations and tyrosine kinase-activating lesions. To evaluate the clinical significance of tyrosine kinase gene fusions in children with BCP-ALL, we studied the frequency of recently identified tyrosine kinase fusions, associated genetic features, and prognosis in a representative Dutch/German cohort. We identified 14 tyrosine kinase fusions among 77 BCR-ABL1-like cases (18%) and none among 76 non-BCR-ABL1-like B-other cases. Novel exon fusions were identified for RCSD1-ABL2 and TERF2-JAK2. JAK2 mutation was mutually exclusive with tyrosine kinase fusions and only occurred in cases with high CRLF2 expression. The non/late response rate and levels of minimal residual disease in the fusion-positive BCR-ABL1-like group were higher than in the non-BCR-ABL1-like B-others (pfusion-negative BCR-ABL1-like group. The 8-year cumulative incidence of relapse in the fusion-positive BCR-ABL1-like group (35%) was comparable with that in the fusion-negative BCR-ABL1-like group (35%), and worse than in the non-BCR-ABL1-like B-other group (17%, p=0.07). IKZF1 deletions, predominantly other than the dominant-negative isoform and full deletion, co-occurred with tyrosine kinase fusions. This study shows that tyrosine kinase fusion-positive cases are a high-risk subtype of BCP-ALL, which warrants further studies with specific kinase inhibitors to improve outcome.

  10. Structural basis for the regulation mechanism of the tyrosine kinase CapB from Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Vanesa Olivares-Illana

    2008-06-01

    Full Text Available Bacteria were thought to be devoid of tyrosine-phosphorylating enzymes. However, several tyrosine kinases without similarity to their eukaryotic counterparts have recently been identified in bacteria. They are involved in many physiological processes, but their accurate functions remain poorly understood due to slow progress in their structural characterization. They have been best characterized as copolymerases involved in the synthesis and export of extracellular polysaccharides. These compounds play critical roles in the virulence of pathogenic bacteria, and bacterial tyrosine kinases can thus be considered as potential therapeutic targets. Here, we present the crystal structures of the phosphorylated and unphosphorylated states of the tyrosine kinase CapB from the human pathogen Staphylococcus aureus together with the activator domain of its cognate transmembrane modulator CapA. This first high-resolution structure of a bacterial tyrosine kinase reveals a 230-kDa ring-shaped octamer that dissociates upon intermolecular autophosphorylation. These observations provide a molecular basis for the regulation mechanism of the bacterial tyrosine kinases and give insights into their copolymerase function.

  11. Cloning of a novel phosphotyrosine binding domain containing molecule, Odin, involved in signaling by receptor tyrosine kinases

    DEFF Research Database (Denmark)

    Pandey, A.; Blagoev, B.; Kratchmarova, I.

    2002-01-01

    We have used a proteomic approach using mass spectrometry to identify signaling molecules involved in receptor tyrosine kinase signaling pathways. Using affinity purification by anti-phosphotyrosine antibodies to enrich for tyrosine phosphorylated proteins, we have identified a novel signaling...

  12. JAK tyrosine kinases promote hierarchical activation of Rho and Rap modules of integrin activation

    NARCIS (Netherlands)

    Montresor, A.; Bolomini-Vittori, M.; Toffali, L.; Rossi, B.; Constantin, G.; Laudanna, C.

    2013-01-01

    Lymphocyte recruitment is regulated by signaling modules based on the activity of Rho and Rap small guanosine triphosphatases that control integrin activation by chemokines. We show that Janus kinase (JAK) protein tyrosine kinases control chemokine-induced LFA-1- and VLA-4-mediated adhesion as well

  13. A RNA interference screen identifies the protein phosphatase 2A subunit PR55gamma as a stress-sensitive inhibitor of c-SRC.

    Directory of Open Access Journals (Sweden)

    Pieter J A Eichhorn

    2007-12-01

    Full Text Available Protein Phosphatase type 2A (PP2A represents a family of holoenzyme complexes with diverse biological activities. Specific holoenzyme complexes are thought to be deregulated during oncogenic transformation and oncogene-induced signaling. Since most studies on the role of this phosphatase family have relied on the use of generic PP2A inhibitors, the contribution of individual PP2A holoenzyme complexes in PP2A-controlled signaling pathways is largely unclear. To gain insight into this, we have constructed a set of shRNA vectors targeting the individual PP2A regulatory subunits for suppression by RNA interference. Here, we identify PR55gamma and PR55delta as inhibitors of c-Jun NH(2-terminal kinase (JNK activation by UV irradiation. We show that PR55gamma binds c-SRC and modulates the phosphorylation of serine 12 of c-SRC, a residue we demonstrate to be required for JNK activation by c-SRC. We also find that the physical interaction between PR55gamma and c-SRC is sensitive to UV irradiation. Our data reveal a novel mechanism of c-SRC regulation whereby in response to stress c-SRC activity is regulated, at least in part, through loss of the interaction with its inhibitor, PR55gamma.

  14. The rationale for druggability of CCDC6-tyrosine kinase fusions in lung cancer.

    Science.gov (United States)

    Cerrato, Aniello; Visconti, Roberta; Celetti, Angela

    2018-02-19

    Gene fusions occur in up to 17% of solid tumours. Oncogenic kinases are often involved in such fusions. In lung cancer, almost 30% of patients carrying an activated oncogene show the fusion of a tyrosine kinase to an heterologous gene. Several genes are partner in the fusion with the three kinases ALK, ROS1 and RET in lung. The impaired function of the partner gene, in combination with the activation of the kinase, may alter the cell signaling and promote the cancer cell addiction to the oncogene. Moreover, the gene that is partner in the fusion to the kinase may affect the response to therapeutics and/or promote resistance in the cancer cells. Few genes are recurrent partners in tyrosine kinase fusions in lung cancer, including CCDC6, a recurrent partner in ROS1 and RET fusions, that can be selected as possible target for new strategies of combined therapy including TKi.

  15. Protein tyrosine kinase but not protein kinase C inhibition blocks receptor induced alveolar macrophage activation

    Directory of Open Access Journals (Sweden)

    K. Pollock

    1993-01-01

    Full Text Available The selective enzyme inhibitors genistein and Ro 31-8220 were used to assess the importance of protein tyrosine kinase (PTK and protein kinase C (PKC, respectively, in N-formyl-methionyl-leucyl-phenylalanine (FMLP induced generation of superoxide anion and thromboxane B2 (TXB2 in guinea-pig alveolar macrophages (AM. Genistein (3–100 μM dose dependently inhibited FMLP (3 nM induced superoxide generation in non-primed AM and TXB2 release in non-primed or in lipopolysaccharide (LPS (10 ng/ml primed AM to a level > 80% but had litle effect up to 100 μM on phorbol myristate acetate (PMA (10 nM induced superoxide release. Ro 31-8220 inhibited PMA induced superoxide generation (IC50 0.21 ± 0.10 μM but had no effect on or potentiated (at 3 and 10 μM FMLP responses in non-primed AM. In contrast, when present during LPS priming as well as during FMLP challenge Ro 31-8220 (10 μM inhibited primed TXB2 release by > 80%. The results indicate that PTK activation is required for the generation of these inflammatory mediators by FMLP in AM. PKC activation appears to be required for LPS priming but not for transducing the FMLP signal; rather, PKC activation may modulate the signal by a negative feedback mechanism.

  16. Stretch-Induced Mitogen-Activated Protein Kinase Activation in Lung Fibroblasts Is Independent of Receptor Tyrosine Kinases

    OpenAIRE

    Boudreault, Francis; Tschumperlin, Daniel J.

    2009-01-01

    Lung growth and remodeling are modulated by mechanical stress, with fibroblasts thought to play a leading role. Little mechanistic information is available about how lung fibroblasts respond to mechanical stress. We exposed cultured lung fibroblasts to tonic stretch and measured changes in phosphorylation status of mitogen-activated protein kinases (MAPKs), selected receptor tyrosine kinases (RTKs), and phospholipase Cγ1 (PLCγ1) and activation of the small G-protein Ras. Human lung fibroblast...

  17. Tyrosine kinase inhibitor therapy in chronic myeloid leukemia: update on key adverse events.

    Science.gov (United States)

    Carneiro, Benedito A; Kaplan, Jason B; Giles, Francis J

    2015-08-01

    Current treatment recommendations for chronic myeloid leukemia (CML) are guided by results from multiple clinical trials involving tyrosine kinase inhibitors that target BCR-ABL1. Consideration of the unique clinical benefits and potential risks associated with each tyrosine kinase inhibitor approved for the treatment of CML is crucial for physicians when recommending the most appropriate therapy for each patient. Monitoring for and prompt management of adverse events may increase adherence to therapy and optimize patient outcomes. Here we provide an overview of the efficacy and safety of tyrosine kinase inhibitors approved for the treatment of CML, as well as recommendations for the management of key adverse events reported with these agents in clinical trials involving patients with CML.

  18. A misdiagnosed myasthenia gravis with anti-muscle-specific tyrosine kinase antibodies with possible childhood onset

    Directory of Open Access Journals (Sweden)

    Nikolić Ana V.

    2015-01-01

    Full Text Available Introduction. Childhood onset myasthenia gravis associated with anti-muscle-specific tyrosine kinase antibodies is very rare and atypical in presentation. Case report. As a baby, the pre-sented patient was choking and sleeping with open eyes. She had weak cry and breathing difficulties. In childhood, there were frequent falls and fluctuating swallowing difficulties. At the age of 19 she was misdiagnosed with Miller Fisher syndrome due to the presence of diplopia, ataxia and hyporeflexia with spontaneous recovery. Repetitive nerve stimulation test was normal. Four years later, after several relapses, there was significant decrement on facial muscles. Neostigmine test was negative, provoking muscle fasciculations. Serum anti-muscle-specific tyrosine kinase antibodies were positive. With cyclosporine therapy she achieved the minimal manifestations status. Conclusion. The presented case confirms that childhood onset myasthenia gravis associated with anti-muscle-specific tyrosine kinase antibodies is often with atypical presentation and spontaneous remissions, so it could be easily misdiagnosed.

  19. Evidence for association of the cloned liver growth hormone receptor with a tyrosine kinase

    DEFF Research Database (Denmark)

    Wang, X; Uhler, M D; Billestrup, N

    1992-01-01

    in a variety of cell types. The finding that the level of phosphorylation of GH receptor appears to vary with cell type is consistent with the cloned liver GH receptor being a substrate for an associated tyrosine kinase and with the amount of such a GH receptor-associated tyrosine kinase being cell type-specific.......The ability of the cloned liver growth hormone (GH) receptor, when expressed in mammalian cell lines, to copurify with tyrosine kinase activity and be tyrosyl phosphorylated was examined. 125I-human growth hormone-GH receptor complexes isolated from COS-7 cells transiently expressing high levels...... of the cloned liver GH receptor bound to anti-phosphotyrosine antibody, suggesting that the cloned GH receptor is tyrosyl phosphorylated in vivo. GH-GH receptor complexes purified from transfected COS-7 cells using anti-GH antibody incorporated 32P when incubated with [gamma-32P]ATP, indicating association...

  20. Giant hub Src and Syk tyrosine kinase thermodynamic profiles recapitulate evolution

    Science.gov (United States)

    Phillips, J. C.

    2017-10-01

    Thermodynamic scaling theory, previously applied mainly to small proteins, here analyzes quantitative evolution of the titled functional network giant hub enzymes. The broad domain structure identified homologically is confirmed hydropathically using amino acid sequences only. The most surprising results concern the evolution of the tyrosine kinase globular surface roughness from avians to mammals, which is first order, compared to the evolution within mammals from rodents to humans, which is second order. The mystery of the unique amide terminal region of proto oncogene tyrosine protein kinase is resolved by the discovery there of a rare hydroneutral septad targeting cluster, which is paralleled by an equally rare octad catalytic cluster in tyrosine kinase in humans and a few other species (cat and dog). These results, which go far towards explaining why these proteins are among the largest giant hubs in protein interaction networks, use no adjustable parameters.

  1. EGFR tyrosine kinases inhibitors in cancer treatment: in vitro and in vivo evidence.

    Science.gov (United States)

    Quatrale, Anna Elisa; Porcelli, Letizia; Silvestris, Nicola; Colucci, Giuseppe; Angelo, Angelo; Azzariti, Amalia

    2011-01-01

    The increasing understanding of the molecular mechanisms of neoplastic transformation and progression has prompted the search for novel drugs that could interfere with the intracellular targets involved in this process. EGFR is implicated in the development and progression of the majority of the common human epithelial cancer; therefore different agents have been developed to block EGFR activation in cancer cells. This review focuses on EGFR-tyrosine kinase inhibitors in clinical practice that interfere with ATP binding, inhibiting tyrosine kinase activity and subsequently blocking signal transduction from EGFR. We report current knowledge on molecular mechanisms underlying the anticancer activity of EGFR-tyrosine kinase inhibitors in preclinical models, with particular attention to EGFR downstream effectors responsible for treatment efficacy or resistance.

  2. Bosutinib: a SRC-ABL tyrosine kinase inhibitor for treatment of chronic myeloid leukemia.

    Science.gov (United States)

    Rassi, Fuad El; Khoury, Hanna Jean

    2013-08-05

    Bosutinib is one of five tyrosine kinase inhibitors commercially available in the United States for the treatment of chronic myeloid leukemia. This review of bosutinib summarizes the mode of action, pharmacokinetics, efficacy and safety data, as well as the patient-focused perspective through quality-of-life data. Bosutinib has shown considerable and sustained efficacy in chronic myeloid leukemia, especially in the chronic phase, with resistance or intolerance to prior tyrosine kinase inhibitors. Bosutinib has distinct but manageable adverse events. In the absence of T315I and V299L mutations, there are no absolute contraindications for the use of bosutinib in this patient population.

  3. The molecular basis for RET tyrosine-kinase inhibitors in thyroid cancer.

    Science.gov (United States)

    De Falco, Valentina; Carlomagno, Francesca; Li, Hong-Yu; Santoro, Massimo

    2017-06-01

    RET receptor tyrosine kinase acts as a mutated oncogenic driver in several human malignancies and it is over-expressed in other cancers. Small molecule compounds with RET tyrosine kinase inhibitory activity are being investigated for the targeted treatment of these malignancies. Multi-targeted compounds with RET inhibitory concentration in the nanomolar range have entered clinical practice. This review summarizes mechanisms of RET oncogenic activity and properties of new compounds that, at the preclinical stage, have demonstrated promising anti-RET activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Alterations in lens protein tyrosine phosphorylation and phosphatidylinositol 3-kinase signaling during selenite cataract formation.

    Science.gov (United States)

    Chandrasekher, Gudiseva; Sailaja, Dasetty

    2004-02-01

    Protein tyrosine phosphorylation is an important event in the cell signal transduction process. Phosphatidylinositol-3 kinase (PI-3K) is an intracellular signal mediator and plays a key role in many cellular functions. In this study we have examined the changes in lens protein tyrosine phosphorylation and its impact on phosphatidylinositol 3-kinase (PI-3K) signaling during selenite cataract development. Cataract was induced in 10 days old rat pups by a single sub-cutaneous injection of sodium selenite (30 microM/Kg body weight) and lenses were collected at different stages of cataract development. Immunoprecipitation and Western immunoblotting were employed to determine protein tyrosine phosphorylation, PI-3K activity and protein in lens cell extracts. Tyrosine kinase activity in lens membrane preparations was assayed in the presence of a synthetic substrate peptide and [32P]ATP. Protein tyrosine phosphorylation in the lens was disrupted before the onset of cataract. A decrease in tyrosine phosphorylation of lens proteins was observed within 2-3 days of selenite injection (pre-cataract stage). The effect was much more prominent with the progression of cataract. The decrease in protein tyrosine phosphorylation correlated with the decrease in tyrosine kinase activity associated with the lens membrane fraction. Stimulation of normal rat lenses in organ culture with insulin and IGF-1 caused an increase in the phosphorylation of proteins, whose tyrosine phosphorylation status appeared to be diminished during cataract development. Insulin and IGF-1 also stimulated rat lens PI-3K activity. While there was no change in total PI-3K activity during the onset of cataract, the activity of PI-3K associated with tyrosine phosphorylated proteins decreased markedly in pre-cataract lenses. Further, the ability of IGF-1 to stimulate PI-3K activity was significantly reduced in lens epithelial cells treated with selenium. These studies show that signaling events involving the protein

  5. Evaluating the promiscuous nature of tyrosine kinase inhibitors assessed in A431 epidermoid carcinoma cells by both chemical- and phosphoproteomics

    NARCIS (Netherlands)

    Giansanti, Piero|info:eu-repo/dai/nl/330827464; Preisinger, Christian|info:eu-repo/dai/nl/325801703; Huber, Kilian V M; Gridling, Manuela; Superti-Furga, Giulio; Bennett, Keiryn L; Heck, Albert J R|info:eu-repo/dai/nl/105189332

    2014-01-01

    Deregulation of protein tyrosine kinase signaling has been linked to many diseases, most notably cancer. As a consequence, small molecule inhibitors of protein tyrosine kinases may provide powerful strategies for treatment. Following the successful introduction of imatinib in the treatment of

  6. Activation pathway of Src kinase reveals intermediate states as targets for drug design

    Science.gov (United States)

    Shukla, Diwakar; Meng, Yilin; Roux, Benoît; Pande, Vijay S.

    2014-03-01

    Unregulated activation of Src kinases leads to aberrant signalling, uncontrolled growth and differentiation of cancerous cells. Reaching a complete mechanistic understanding of large-scale conformational transformations underlying the activation of kinases could greatly help in the development of therapeutic drugs for the treatment of these pathologies. In principle, the nature of conformational transition could be modelled in silico via atomistic molecular dynamics simulations, although this is very challenging because of the long activation timescales. Here we employ a computational paradigm that couples transition pathway techniques and Markov state model-based massively distributed simulations for mapping the conformational landscape of c-src tyrosine kinase. The computations provide the thermodynamics and kinetics of kinase activation for the first time, and help identify key structural intermediates. Furthermore, the presence of a novel allosteric site in an intermediate state of c-src that could be potentially used for drug design is predicted.

  7. Identification of a Novel Series of Potent TrkA Receptor Tyrosine Kinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Stéphane L. Raeppel

    2012-01-01

    Full Text Available A novel series of N-(3-(6-substituted-aminopyridin-3-yloxyphenyl-2-oxo-3-phenylimidazolidine-1-carboxamides targeting TrkA receptor tyrosine kinase was identified. SAR study of the series allowed us to design and synthesize compounds possessing inhibitory activity of TrkA kinase enzyme in the low nanomolar range with low residual activity against c-Met and with no significant activity against VEGFR2.

  8. Co-conserved features associated with cis regulation of ErbB tyrosine kinases.

    Directory of Open Access Journals (Sweden)

    Amar Mirza

    Full Text Available BACKGROUND: The epidermal growth factor receptor kinases, or ErbB kinases, belong to a large sub-group of receptor tyrosine kinases (RTKs, which share a conserved catalytic core. The catalytic core of ErbB kinases have functionally diverged from other RTKs in that they are activated by a unique allosteric mechanism that involves specific interactions between the kinase core and the flanking Juxtamembrane (JM and COOH-terminal tail (C-terminal tail. Although extensive studies on ErbB and related tyrosine kinases have provided important insights into the structural basis for ErbB kinase functional divergence, the sequence features that contribute to the unique regulation of ErbB kinases have not been systematically explored. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we use a Bayesian approach to identify the selective sequence constraints that most distinguish ErbB kinases from other receptor tyrosine kinases. We find that strong ErbB kinase-specific constraints are imposed on residues that tether the JM and C-terminal tail to key functional regions of the kinase core. A conserved RIxKExE motif in the JM-kinase linker region and a glutamine in the inter-lobe linker are identified as two of the most distinguishing features of the ErbB family. While the RIxKExE motif tethers the C-terminal tail to the N-lobe of the kinase domain, the glutamine tethers the C-terminal tail to hinge regions critical for inter-lobe movement. Comparison of the active and inactive crystal structures of ErbB kinases indicates that the identified residues are conformationally malleable and can potentially contribute to the cis regulation of the kinase core by the JM and C-terminal tail. ErbB3, and EGFR orthologs in sponges and parasitic worms, diverge from some of the canonical ErbB features, providing insights into sub-family and lineage-specific functional specialization. CONCLUSION/SIGNIFICANCE: Our analysis pinpoints key residues for mutational analysis, and

  9. Serotonin stimulates protein tyrosyl phosphorylation and vascular contraction via tyrosine kinase.

    Science.gov (United States)

    Watts, S W; Yeum, C H; Campbell, G; Webb, R C

    1996-01-01

    Serotonin (5-HT, 5-hydroxytryptamine) is a mitogen in vascular smooth muscle and vascular reactivity to 5-HT is significantly enhanced in hypertension and atherosclerosis. We have tested the hypothesis that tyrosine kinases, enzymes important for mitogenesis, may play a role in 5-HT-induced vascular smooth muscle contractility. Helical strips of rat carotid artery and aorta denuded of endothelium were mounted in tissue baths for measurement of contractile force. The tyrosine kinase inhibitor genistein (5 x 10(-6) M) decreased the potency of 5-HT approximately 4-fold and reduced maximal contraction to 5-HT in carotid arterial strips denuded of endothelium (58% control). Genistein's inactive congener daidzein (5 x 10(-6) M) did not reduce maximal contraction to 5-HT in carotid arteries but did shift the 5-HT concentration response curve 3-fold to the right. Tyrphostin 23 (5 x 10(-5) M), another tyrosine kinase inhibitor, decreased the potency of 5-HT 4-fold and reduced the maximal contraction to 5-HT in the carotid artery (10% control). Contractions induced by phorbol-12,13-dibutyrate (10(-9) to 10(-5) M) were not reduced or shifted by either tyrosine kinase inhibitor, indicating that phorbolester-sensitive protein kinase C isoforms were not affected. KCl-induced contraction was shifted 2-fold and the maximum significantly inhibited by tyrphostin 23 (38.6% control) but not genistein or daidzein, indicating that tyrphostin 23 but not genistein may inhibit voltage-gated calcium channels to reduce contractility. Western blot analysis using antiphosphotyrosine antibody confirmed that 5-HT produced a time- and concentration-dependent increase in the phosphotyrosine immunoreactivity of a 42-kD protein in cultured aortic smooth muscle cells. Lysate immunoprecipitation with an antimitogen-activated-protein (MAP)-kinase antibody indicated that the 42-kD protein was most likely a MAP kinase. 5-HT (10(-5) M) stimulated contraction and increased antiphosphotyrosine

  10. Protein-Tyrosine Kinase Signaling in the Biological Functions Associated with Sperm

    Directory of Open Access Journals (Sweden)

    Takashi W. Ijiri

    2012-01-01

    Full Text Available In sexual reproduction, two gamete cells (i.e., egg and sperm fuse (fertilization to create a newborn with a genetic identity distinct from those of the parents. In the course of these developmental processes, a variety of signal transduction events occur simultaneously in each of the two gametes, as well as in the fertilized egg/zygote/early embryo. In particular, a growing body of knowledge suggests that the tyrosine kinase Src and/or other protein-tyrosine kinases are important elements that facilitate successful implementation of the aforementioned processes in many animal species. In this paper, we summarize recent findings on the roles of protein-tyrosine phosphorylation in many sperm-related processes (from spermatogenesis to epididymal maturation, capacitation, acrosomal exocytosis, and fertilization.

  11. The Effects of Four Different Tyrosine Kinase Inhibitors on Medullary and Papillary Thyroid Cancer Cells

    NARCIS (Netherlands)

    Verbeek, Hans H. G.; Alves, Maria M.; de Groot, Jan-Willem B.; Osinga, Jan; Plukker, John T. M.; Links, Thera P.; Hofstra, Robert M. W.

    Context: Medullary and papillary thyroid carcinoma (MTC and PTC) are two types of thyroid cancer that can originate from activating mutations or rearrangements in the RET gene. Therapeutic options are limited in recurrent disease, but because RET is a tyrosine kinase (TK) receptor involved in

  12. Tyrosine Kinase Ligand-Receptor Pair Prediction by Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Masayuki Yarimizu

    2015-01-01

    Full Text Available Receptor tyrosine kinases are essential proteins involved in cellular differentiation and proliferation in vivo and are heavily involved in allergic diseases, diabetes, and onset/proliferation of cancerous cells. Identifying the interacting partner of this protein, a growth factor ligand, will provide a deeper understanding of cellular proliferation/differentiation and other cell processes. In this study, we developed a method for predicting tyrosine kinase ligand-receptor pairs from their amino acid sequences. We collected tyrosine kinase ligand-receptor pairs from the Database of Interacting Proteins (DIP and UniProtKB, filtered them by removing sequence redundancy, and used them as a dataset for machine learning and assessment of predictive performance. Our prediction method is based on support vector machines (SVMs, and we evaluated several input features suitable for tyrosine kinase for machine learning and compared and analyzed the results. Using sequence pattern information and domain information extracted from sequences as input features, we obtained 0.996 of the area under the receiver operating characteristic curve. This accuracy is higher than that obtained from general protein-protein interaction pair predictions.

  13. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction

    NARCIS (Netherlands)

    Green, J.; Nusse, R.; van Amerongen, R.

    2014-01-01

    Receptor tyrosine kinases of the Ryk and Ror families were initially classified as orphan receptors because their ligands were unknown. They are now known to contain functional extracellular Wnt-binding domains and are implicated in Wnt-signal transduction in multiple species. Although their

  14. Tyrosine Kinase Inhibitors and Proton Pump Inhibitors : An Evaluation of Treatment Options

    NARCIS (Netherlands)

    van Leeuwen, Roelof W. F.; Jansman, Frank G. A.; Hunfeld, Nicole G.; Peric, Robert; Reyners, Anna K. L.; Imholz, Alex L. T.; Brouwers, Jacobus R. B. J.; Aerts, Joachim G.; van Gelder, Teun; Mathijssen, Ron H. J.

    Tyrosine kinase inhibitors (TKIs) have rapidly become an established factor in oncology, and have been shown to be effective in a wide variety of solid and hematologic malignancies. Use of the oral administration route of TKIs offers flexibility and is convenient for the patient; however, despite

  15. The tyrosine kinase inhibitor sunitinib affects ovulation but not ovarian reserve in mouse: A preclinical study

    NARCIS (Netherlands)

    V. Bernard (Valérie); J. Bouilly (Justine); P. Kramer (Piet); N. Carré (Nadège); M. Schlumberger (Martin); J.A. Visser (Jenny A.); J. Young (Jacques); N.B. Binart (Nadine Binart)

    2016-01-01

    textabstractThe aim of the study was to evaluate ovarian toxicity of tyrosine kinase inhibitor (TKI) sunitinib, since only scarce data are available on gonadal function after this treatment. Six-weekold female mice received orally, once daily, vehicle or sunitinib (50 mg/kg/d) during 5 weeks.

  16. Plasma concentrations of tyrosine kinase inhibitors imatinib, erlotinib, and sunitinib in routine clinical outpatient cancer care

    NARCIS (Netherlands)

    Lankheet, Nienke A G; Knapen, Lotte M; Schellens, Jan H M; Beijnen, Jos H; Steeghs, Neeltje; Huitema, Alwin D R

    BACKGROUND: The objectives of this study were to evaluate the plasma concentrations of the tyrosine kinase inhibitors (TKIs), imatinib, erlotinib, and sunitinib, in a cohort of patients with cancer in routine clinical practice and to find the possible factors related to plasma concentrations below

  17. Plasma concentrations of tyrosine kinase inhibitors imatinib, erlotinib, and sunitinib in routine clinical outpatient cancer care

    NARCIS (Netherlands)

    Lankheet, N.; Knapen, L.M.; Schellens, J.H.; Beijnen, J.H.; Steeghs, N.; Huitema, A.D.

    2014-01-01

    BACKGROUND: The objectives of this study were to evaluate the plasma concentrations of the tyrosine kinase inhibitors (TKIs), imatinib, erlotinib, and sunitinib, in a cohort of patients with cancer in routine clinical practice and to find the possible factors related to plasma concentrations below

  18. Domains of the growth hormone receptor required for association and activation of JAK2 tyrosine kinase

    DEFF Research Database (Denmark)

    VanderKuur, J A; Wang, X; Zhang, L

    1994-01-01

    Growth hormone (GH) has recently been shown to activate the GH receptor (GHR)-associated tyrosine kinase JAK2. In the present study, regions of the GHR required for JAK2 association with GHR were identified. GH-dependent JAK2 association with GHR was detected in Chinese hamster ovary (CHO) cells...

  19. Anchor-based classification and type-C inhibitors for tyrosine kinases

    Science.gov (United States)

    Hsu, Kai-Cheng; Sung, Tzu-Ying; Lin, Chih-Ta; Chiu, Yi-Yuan; Hsu, John T.-A.; Hung, Hui-Chen; Sun, Chung-Ming; Barve, Indrajeet; Chen, Wen-Liang; Huang, Wen-Chien; Huang, Chin-Ting; Chen, Chun-Hwa; Yang, Jinn-Moon

    2015-01-01

    Tyrosine kinases regulate various biological processes and are drug targets for cancers. At present, the design of selective and anti-resistant inhibitors of kinases is an emergent task. Here, we inferred specific site-moiety maps containing two specific anchors to uncover a new binding pocket in the C-terminal hinge region by docking 4,680 kinase inhibitors into 51 protein kinases, and this finding provides an opportunity for the development of kinase inhibitors with high selectivity and anti-drug resistance. We present an anchor-based classification for tyrosine kinases and discover two type-C inhibitors, namely rosmarinic acid (RA) and EGCG, which occupy two and one specific anchors, respectively, by screening 118,759 natural compounds. Our profiling reveals that RA and EGCG selectively inhibit 3% (EGFR and SYK) and 14% of 64 kinases, respectively. According to the guide of our anchor model, we synthesized three RA derivatives with better potency. These type-C inhibitors are able to maintain activities for drug-resistant EGFR and decrease the invasion ability of breast cancer cells. Our results show that the type-C inhibitors occupying a new pocket are promising for cancer treatments due to their kinase selectivity and anti-drug resistance. PMID:26077136

  20. Ethyl p-methoxycinnamate from Kaempferia galanga inhibits angiogenesis through tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Juni Ekowati

    2015-04-01

    Full Text Available Background Many tumors express on their receptor tyrosine kinases vascular endothelial growth factor activity associated with angiogenesis. Inhibition of angiogenesis through reduction of tyrosine kinase activity is a promising strategy for cancer therapy. The present study aimed to determine the mechanism and potency of ethyl p-methoxycinnamate (EPMC isolated from Kaempferia galanga as angiogenesis inhibitor. Methods A laboratory experimental study was conducted using chorio-allantoic membranes (CAMs of nine-day old chicken eggs induced by 60ng basic fibroblast growth factor (bFGF. Ethyl p-methoxycinnamate (EPMC potency was determined at dosages of 30, 60, 90 and 120 mg and compared with celecoxib 60 mg as reference drug and one negative bFGF-induced control group. Neovascularization and endothelial cell count in CAM blood vessels were evaluated. To predict the antiangiogenic mechanism of EPMC, a docking study was performed with the Molegro Virtual Docker program on tyrosine kinase as receptor (PDB 1XKK. Results Angiogenesis stimulation by bFGF was prevented significantly (p<0.05 by EPMC at dosages of 30, 60, 90 and 120 mg and this activity was dose dependent. Molecular docking showed interaction between EPMC functional groups and tyrosine kinase amino acids at Met766, Met793, Thr854, Thr790, Gln791 and Ala743. There was an association between EPMC antiangiogenic activity and docking study results. Conclusions Ethyl p-methoxycinnamate is a potential new angiogenesis inhibitor through interaction with tyrosine kinase. EPMC could be a promising therapeutic agent for treatment of angiogenesis-related diseases.

  1. Bosutinib: a SRC–ABL tyrosine kinase inhibitor for treatment of chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    El Rassi F

    2013-08-01

    Full Text Available Fuad El Rassi, Hanna Jean KhouryDivision of Hematology, Department of Hematology and Medical Oncology, the Winship Cancer Institute at Emory University, Atlanta, Georgia, USAAbstract: Bosutinib is one of five tyrosine kinase inhibitors commercially available in the United States for the treatment of chronic myeloid leukemia. This review of bosutinib summarizes the mode of action, pharmacokinetics, efficacy and safety data, as well as the patient-focused perspective through quality-of-life data. Bosutinib has shown considerable and sustained efficacy in chronic myeloid leukemia, especially in the chronic phase, with resistance or intolerance to prior tyrosine kinase inhibitors. Bosutinib has distinct but manageable adverse events. In the absence of T315I and V299L mutations, there are no absolute contraindications for the use of bosutinib in this patient population.Keywords: bosutinib, chronic myeloid leukemia, treatment, review, SRC-ABL kinase inhibitor, clinical activity

  2. Eph receptor tyrosine kinase-mediated formation of a topographic map in the Drosophila visual system.

    Science.gov (United States)

    Dearborn, Richard; He, Qi; Kunes, Sam; Dai, Yong

    2002-02-15

    Roles for Eph receptor tyrosine kinase signaling in the formation of topographic patterns of axonal connectivity have been well established in vertebrate visual systems. Here we describe a role for a Drosophila Eph receptor tyrosine kinase (EPH) in the control of photoreceptor axon and cortical axon topography in the developing visual system. Although uniform across the developing eye, EPH is expressed in a concentration gradient appropriate for conveying positional information during cortical axon guidance in the second-order optic ganglion, the medulla. Disruption of this graded pattern of EPH activity by double-stranded RNA interference or by ectopic expression of wild-type or dominant-negative transgenes perturbed the establishment of medulla cortical axon topography. In addition, abnormal midline fasciculation of photoreceptor axons resulted from the eye-specific expression of the dominant-negative EPH transgene. These observations reveal a conserved role for Eph kinases as determinants of topographic map formation in vertebrates and invertebrates.

  3. Striatal-enriched protein-tyrosine phosphatase (STEP) regulates Pyk2 kinase activity.

    Science.gov (United States)

    Xu, Jian; Kurup, Pradeep; Bartos, Jason A; Patriarchi, Tommaso; Hell, Johannes W; Lombroso, Paul J

    2012-06-15

    Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family and is highly expressed in brain and hematopoietic cells. Pyk2 plays diverse functions in cells, including the regulation of cell adhesion, migration, and cytoskeletal reorganization. In the brain, it is involved in the induction of long term potentiation through regulation of N-methyl-d-aspartate receptor trafficking. This occurs through the phosphorylation and activation of Src family tyrosine kinase members, such as Fyn, that phosphorylate GluN2B at Tyr(1472). Phosphorylation at this site leads to exocytosis of GluN1-GluN2B receptors to synaptic membranes. Pyk2 activity is modulated by phosphorylation at several critical tyrosine sites, including Tyr(402). In this study, we report that Pyk2 is a substrate of striatal-enriched protein-tyrosine phosphatase (STEP). STEP binds to and dephosphorylates Pyk2 at Tyr(402). STEP KO mice showed enhanced phosphorylation of Pyk2 at Tyr(402) and of the Pyk2 substrates paxillin and ASAP1. Functional studies indicated that STEP opposes Pyk2 activation after KCl depolarization of cortical slices and blocks Pyk2 translocation to postsynaptic densities, a key step required for Pyk2 activation and function. This is the first study to identify Pyk2 as a substrate for STEP.

  4. Downregulation of tyrosine threonine kinase inhibits tumor growth via G2/M arrest in human endometrioid endometrial adenocarcinoma.

    Science.gov (United States)

    Zhang, Jiamiao; Jiang, Yan; Zhao, Yu; Wang, Wanxue; Xie, Yiran; Wang, Huating; Yang, Yihua

    2017-07-01

    Endometrial cancer is the most common gynecologic malignancy, about 80% of which is endometrial endometrioid carcinoma. Dysregulation of spindle assembly checkpoint plays a vital role in endometrial endometrioid carcinoma tumorigenesis and progression. The purpose of this study was to explore how tyrosine threonine kinase, a spindle assembly checkpoint-related protein, promotes the endometrial endometrioid carcinoma progression. We found that both messenger RNA and protein levels of tyrosine threonine kinase in endometrial endometrioid carcinoma tissues are higher than those in normal endometrial tissues, and its expression is associated with tumor stages. Genetic depletion of tyrosine threonine kinase by RNA interference in two endometrial endometrioid carcinoma cell lines significantly inhibits cell proliferation and induces apoptosis. Mechanistically, depletion of tyrosine threonine kinase induces G2/M cell cycle arrest and triggers caspase-dependent cell apoptosis. Collectively, tyrosine threonine kinase is significantly upregulated in endometrial endometrioid carcinoma, and downregulation of tyrosine threonine kinase can suppress endometrial endometrioid carcinoma cell proliferation and promote apoptosis via G2/M cell cycle arrest. Our study demonstrates that tyrosine threonine kinase can be a potential therapeutic target for endometrial endometrioid carcinoma treatment.

  5. Paxillin Enables Attachment-independent Tyrosine Phosphorylation of Focal Adhesion Kinase and Transformation by RAS*

    Science.gov (United States)

    Wade, Ramon; Brimer, Nicole; Lyons, Charles; Pol, Scott Vande

    2011-01-01

    Paxillin and HIC5 are closely related adapter proteins that regulate cell migration and are tyrosine-phosphorylated by focal adhesion kinase (FAK). Paxillin, HIC5, and FAK tyrosine phosphorylation increase upon cell attachment and decrease upon detachment from extracellular matrix. Unexpectedly, we found that although FAK tyrosine phosphorylation in attached cells did not require paxillin, in detached fibroblasts there was remaining FAK tyrosine phosphorylation that required expression of paxillin and was not supported by HIC5. The support of attachment-independent FAK tyrosine phosphorylation required the paxillin LIM domains and suggested that paxillin might facilitate oncogenic transformation. Paxillin but not HIC5 augmented anchorage-independent cell proliferation induced by RAS. Both anchorage-independent FAK tyrosine phosphorylation and RAS-induced colony formation required multiple docking sites on paxillin, including LD4 (docking sites for FAK-Src and GIT1/2-PIX-NCK-PAK complex), LD5, and all four carboxyl-terminal LIM domains (that bind tubulin and PTP-PEST). Analysis using paxillin mutants dissociated domains of paxillin that are required for regulation of cell migration from domains that are required for anchorage-independent cell proliferation and demonstrated essential functions of the paxillin LIM domains that are not found in HIC5 LIM domains. These results highlight the role of paxillin in facilitating attachment-independent signal transduction implicated in cancer. PMID:21900245

  6. Integrin-mediated tyrosine phosphorylation and cytokine message induction in monocytic cells. A possible signaling role for the Syk tyrosine kinase.

    Science.gov (United States)

    Lin, T H; Rosales, C; Mondal, K; Bolen, J B; Haskill, S; Juliano, R L

    1995-07-07

    Activation of cytoplasmic tyrosine kinases is an important aspect of signal transduction mediated by integrins. In the human monocytic cell line THP-1, either integrin-dependent cell adhesion to fibronectin or ligation of beta 1 integrins with antibodies causes a rapid and intense tyrosine phosphorylation of two sets of proteins of about 65-75 and 120-125 kDa. In addition, integrin ligation leads to nuclear translocation of the p50 and p65 subunits of the NF-kappa B transcription factor, to activation of a reporter gene driven by a promoter containing NF-kappa B sites, and to increased levels of mRNAs for immediate-early genes, including the cytokine interleukin (IL)-1 beta. The tyrosine kinase inhibitors genistein and herbimycin A block both integrin-mediated tyrosine phosphorylation and increases in IL-1 beta message levels, indicating a causal relationship between the two events. The components tyrosine phosphorylated subsequent to cell adhesion include paxillin, pp125FAK, and the SH2 domain containing tyrosine kinase Syk. In contrast, integrin ligation with antibodies induces tyrosine phosphorylation of Syk but not of FAK or paxillin. In adhering cells, pre-treatment with cytochalasin D suppresses tyrosine phosphorylation of FAK and paxillin but not of Syk, while IL-1 beta message induction is unaffected. These observations indicate that the Syk tyrosine kinase may be an important component of an integrin signaling pathway in monocytic cells, leading to activation of NF-kappa B and to increased levels of cytokine messages.

  7. A novel activating mutation in the RET tyrosine kinase domain mediates neoplastic transformation.

    Science.gov (United States)

    Cranston, Aaron; Carniti, Cristiana; Martin, Sam; Mondellini, Piera; Hooks, Yvette; Leyland, Jean; Hodgson, Shirley; Clarke, Sue; Pierotti, Marco; Ponder, Bruce A J; Bongarzone, Italia

    2006-07-01

    We report the finding of a novel missense mutation at codon 833 in the tyrosine kinase of the RET proto-oncogene in a patient with a carcinoma of the thyroid. In vitro experiments demonstrate that the R833C mutation induces transformed foci only when present in the long 3' splice isoform and, in keeping with a model in which the receptor has to dimerize to be completely activated, glial cell line-derived neurotrophic factor stimulation leads the RET(R833C) receptor to a higher level of activation. Tyrosine kinase assays show that the RET(R833C) long isoform has weak intrinsic kinase activity and phosphorylation of an exogenous substrate is not elevated even in the presence of glial cell line-derived neurotrophic factor. Furthermore, the R833C mutation is capable of sustaining the transformed phenotype in vivo but does not confer upon the transformed cells the ability to degrade the basement membrane in a manner analogous to metastasis. Our functional characterization of the R833C substitution suggests that, like the V804M and S891A mutations, this tyrosine kinase mutation confers a weak activating potential upon RET. This is the first report demonstrating that the introduction of an intracellular cysteine can activate RET. However, this does not occur via dimerization in a manner analogous to the extracellular cysteine mutants.

  8. TEC protein tyrosine kinase is involved in the Erk signaling pathway induced by HGF

    Energy Technology Data Exchange (ETDEWEB)

    Li, Feifei; Jiang, Yinan [Department of Pathophysiology, Anhui Medical University, Hefei 230032 (China); Zheng, Qiping [Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612 (United States); Yang, Xiaoming [Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850 (China); Wang, Siying, E-mail: sywang@ahmu.edu.cn [Department of Pathophysiology, Anhui Medical University, Hefei 230032 (China)

    2011-01-07

    Research highlights: {yields} TEC is rapidly tyrosine-phosphorylated and activated by HGF-stimulation in vivo or after partial hepatectomy in mice. {yields} TEC enhances the activity of Elk and serum response element (SRE) in HGF signaling pathway in hepatocyte. {yields} TEC promotes hepatocyte proliferation through the Erk-MAPK pathway. -- Abstract: Background/aims: TEC, a member of the TEC family of non-receptor type protein tyrosine kinases, has recently been suggested to play a role in hepatocyte proliferation and liver regeneration. This study aims to investigate the putative mechanisms of TEC kinase regulation of hepatocyte differentiation, i.e. to explore which signaling pathway TEC is involved in, and how TEC is activated in hepatocyte after hepatectomy and hepatocyte growth factor (HGF) stimulation. Methods: We performed immunoprecipitation (IP) and immunoblotting (IB) to examine TEC tyrosine phosphorylation after partial hepatectomy in mice and HGF stimulation in WB F-344 hepatic cells. The TEC kinase activity was determined by in vitro kinase assay. Reporter gene assay, antisense oligonucleotide and TEC dominant negative mutant (TEC{sup KM}) were used to examine the possible signaling pathways in which TEC is involved. The cell proliferation rate was evaluated by {sup 3}H-TdR incorporation. Results: TEC phosphorylation and kinase activity were increased in 1 h after hepatectomy or HGF treatment. TEC enhanced the activity of Elk and serum response element (SRE). Inhibition of MEK1 suppressed TEC phosphorylation. Blocking TEC activity dramatically decreased the activation of Erk. Reduced TEC kinase activity also suppressed the proliferation of WB F-344 cells. These results suggest TEC is involved in the Ras-MAPK pathway and acts between MEK1 and Erk. Conclusions: TEC promotes hepatocyte proliferation and regeneration and is involved in HGF-induced Erk signaling pathway.

  9. How tyrosine kinase inhibitors impair metabolism and endocrine system function: a systematic updated review.

    Science.gov (United States)

    Breccia, Massimo; Molica, Matteo; Alimena, Giuliana

    2014-12-01

    Tyrosine kinase inhibitors (TKIs) advent has deeply changed the outcome of chronic myeloid leukemia (CML) patients, with improved rates of response and overall survival. However, for this success some patients paid the price of a number of peculiar side effects, the so-called off-target side effects, specific for each one TKI. These effects are due to non-selective inhibition of other tyrosine kinase receptors, such as PDGFR, c-KIT, Src, VEGF. Consequences of this inhibition, some metabolic changes during the treatment with TKIs are reported. Aim of present review is to report metabolic changes and potential mechanisms involved in the pathogenesis related to imatinib, second (nilotinib and dasatinib) and third generation (bosutinib and ponatinib) TKIs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. HER2-targeted therapy in breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors

    DEFF Research Database (Denmark)

    Nielsen, Dorte Lisbet; Andersson, Michael; Kamby, Claus

    2008-01-01

    There is strong clinical evidence that trastuzumab, a monoclonal antibody targeting the human epidermal growth factor receptor (HER) two tyrosine kinase receptor, is an important component of first-line treatment of patients with HER2-positive metastatic breast cancer. In particular the combination...... with taxanes and vinorelbine has been established. In the preoperative setting inclusion of trastuzumab has significantly increased the pathological complete response rate. Results from large phase III trials evaluating adjuvant therapy in HER2-positive early breast cancer indicate that the addition...... of trastuzumab to chemotherapy improves disease-free and overall survival. The use of lapatinib, a dual tyrosine kinase inhibitor of both HER1 and HER2, in combination with capecitabine in the second-line treatment of HER2-positive patients with metastatic breast cancer previously treated with trastuzumab has...

  11. Analysis of Cellular Tyrosine Phosphorylation via Chemical Rescue of Conditionally Active Abl Kinase.

    Science.gov (United States)

    Wang, Zhihong; Kim, Min-Sik; Martinez Ferrando, Isabel; Koleske, Anthony John; Pandey, Akhilesh; Cole, Philip Arthur

    2018-01-17

    Identifying direct substrates targeted by protein kinases is important in understanding cellular physiology and intracellular signal transduction. Mass-spectrometry based quantitative proteomics provides a powerful tool for comprehensively characterizing the downstream substrates of protein kinases. This approach is efficiently applied to receptor kinases which can be precisely, directly, and rapidly activated by some agent, such as a growth factor. However, non-receptor tyrosine kinase Abl lacks the experimental advantage of extracellular growth factors as immediate and direct stimuli. To circumvent this limitation, we combine a chemical rescue approach with quantitative phosphoproteomics to identify targets of Abl and their phosphorylation sites with enhanced temporal resolution. Both known and novel putative substrates are identified, presenting opportunities for studying unanticipated functions of Abl under physiological and pathological conditions.

  12. Purification, characterization, and crystallization of membrane bound Escherichia coli tyrosine kinase.

    Science.gov (United States)

    Chesterman, Chelsy; Jia, Zongchao

    2016-09-01

    Escherichia coli tyrosine kinase (Etk) is a membrane bound kinase in gram-negative bacteria that regulates the export of capsular polysaccharides (CPS). The molecular mechanism behind CPS regulation remains unclear, despite access to a crystal structure of the cytoplasmic kinase domain of Etk. In this study, an efficient protocol to produce full length Etk solubilized in n-dodecyl-β-d-maltoside has been established with high yield. We have determined that detergent solubilized Etk retains kinase activity, but the protein is prone to aggregation, degradation, and has been unsuccessful in protein crystallization trials. In response, we designed and characterized truncations of Etk that do not aggregate and have led to successful crystallization experiments. In this article, we discuss our optimized expression and purification protocol for Etk, the design of Etk protein truncations, and the behavior of Etk during purification in a range of stabilizing detergents. These efforts have successfully produced protein suitable for crystallization. Our results will be a useful guide for future structural and functional studies of the bacterial tyrosine kinase family. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Okabe, Seiichi, E-mail: okabe@tokyo-med.ac.jp; Tauchi, Tetsuzo; Tanaka, Yuko; Ohyashiki, Kazuma

    2013-06-07

    Highlights: •Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells okabe et al. •Imatinib or nilotinib resistance was involved Src family kinase. •The BCR-ABL point mutation (E334V) was highly resistant to imatinib or nilotinib. •Ponatinib was a powerful strategy against imatinib or nilotinib resistant Ph-positive cells. -- Abstract: Because a substantial number of patients with chronic myeloid leukemia acquire resistance to ABL tyrosine kinase inhibitors (TKIs), their management remains a challenge. Ponatinib, also known as AP24534, is an oral multi-targeted TKI. Ponatinib is currently being investigated in a pivotal phase 2 clinical trial. In the present study, we analyzed the molecular and functional consequences of ponatinib against imatinib- or nilotinib-resistant (R) K562 and Ba/F3 cells. The proliferation of imatinib- or nilotinib-resistant K562 cells did not decrease after treatment with imatinib or nilotinib. Src family kinase Lyn was activated. Point mutation Ba/F3 cells (E334 V) were also highly resistant to imatinib and nilotinib. Treatment with ponatinib for 72 h inhibited the growth of imatinib- and nilotinib-resistant cells. The phosphorylation of BCR-ABL, Lyn, and Crk-L was reduced. This study demonstrates that ponatinib has an anti-leukemia effect by reducing ABL and Lyn kinase activity and this information may be of therapeutic relevance.

  14. Receptor Tyrosine Kinases as Targets for Treatment of Peripheral Nerve Sheath Tumors in NF 1 Patients

    Science.gov (United States)

    2010-03-01

    a pharmacologic IC50 of < 2 μM (Holtkamp et al. 2006). Also gefinitib reduced vitality of the MPNST cells (Fig. 1) Figure 1. Effect of imatinib and...recommendations in pretreatment solution (Abbott, Ludwigshafen, Ger- many) and then in protease or pepsin . The LSI EGFR SpectrumOrange/CEP 7...Hidalgo M, Siu LL, Nemunaitis J, et al. Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in

  15. Bosutinib: a SRC–ABL tyrosine kinase inhibitor for treatment of chronic myeloid leukemia

    OpenAIRE

    Khoury, Jean; El Rassi,

    2013-01-01

    Fuad El Rassi, Hanna Jean KhouryDivision of Hematology, Department of Hematology and Medical Oncology, the Winship Cancer Institute at Emory University, Atlanta, Georgia, USAAbstract: Bosutinib is one of five tyrosine kinase inhibitors commercially available in the United States for the treatment of chronic myeloid leukemia. This review of bosutinib summarizes the mode of action, pharmacokinetics, efficacy and safety data, as well as the patient-focused perspective through quality-of-life dat...

  16. Fasting potentiates the anticancer activity of tyrosine kinase inhibitors by strengthening MAPK signaling inhibition

    OpenAIRE

    Caffa, Irene; D'Agostino, Vito; Damonte, Patrizia; Soncini, Debora; Cea, Michele; Monacelli, Fiammetta; Odetti, Patrizio; Ballestrero, Alberto; Provenzani, Alessandro; Longo, Valter D.; Nencioni, Alessio

    2015-01-01

    Tyrosine kinase inhibitors (TKIs) are now the mainstay of treatment in many types of cancer. However, their benefit is frequently short-lived, mandating the search for safe potentiation strategies. Cycles of fasting enhance the activity of chemo-radiotherapy in preclinical cancer models and dietary approaches based on fasting are currently explored in clinical trials. Whether combining fasting with TKIs is going to be potentially beneficial remains unknown. Here we report that starvation cond...

  17. Human ether-à-go-go gene potassium channels are regulated by EGFR tyrosine kinase.

    Science.gov (United States)

    Wu, Wei; Dong, Ming-Qing; Wu, Xing-Gang; Sun, Hai-Ying; Tse, Hung-Fat; Lau, Chu-Pak; Li, Gui-Rong

    2012-02-01

    Human ether á-go-go gene potassium channels (hEAG1 or Kv10.1) are expressed in brain and various human cancers and play a role in neuronal excitement and tumor progression. However, the functional regulation of hEAG channels by signal transduction is not fully understood. The present study was therefore designed to investigate whether hEAG1 channels are regulated by protein tyrosine kinases (PTKs) in HEK 293 cells stably expressing hEAG1 gene using whole-cell patch voltage-clamp, immunoprecipitation, Western blot, and mutagenesis approaches. We found that the selective epidermal growth factor receptor (EGFR) kinase inhibitor AG556 (10 μM), but not the platelet growth factor receptor (PDGFR) kinase inhibitor AG1295 (10 μM) or the Src-family inhibitor PP2 (10 μM), can inhibit hEAG1 current, and the inhibitory effect can be reversed by the protein tyrosine phosphatase (PTP) inhibitor orthovanadate. Immunoprecipitation and Western blot analysis revealed that tyrosine phosphorylation level of hEAG1 channels was reduced by AG556, and the reduction was significantly countered by orthovanadate. The hEAG1 mutants Y90A, Y344A and Y485A, but not Y376A and Y479A, exhibited reduced response to AG556. Interestingly, the inhibition effect of AG556 was lost in triple mutant hEAG1 channels at Y90, Y344, and Y485 with alanine. These results demonstrate for the first time that hEAG1 channel activity is regulated by EGFR kinase at the tyrosine residues Tyr90, Try344, and Try485. This effect is likely involved in regulating neuronal activity and/or tumor growth. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Functions of the Lyn tyrosine kinase in health and disease

    Directory of Open Access Journals (Sweden)

    Ingley Evan

    2012-07-01

    Full Text Available Abstract Src family kinases such as Lyn are important signaling intermediaries, relaying and modulating different inputs to regulate various outputs, such as proliferation, differentiation, apoptosis, migration and metabolism. Intriguingly, Lyn can mediate both positive and negative signaling processes within the same or different cellular contexts. This duality is exemplified by the B-cell defect in Lyn−/− mice in which Lyn is essential for negative regulation of the B-cell receptor; conversely, B-cells expressing a dominant active mutant of Lyn (Lynup/up have elevated activities of positive regulators of the B-cell receptor due to this hyperactive kinase. Lyn has well-established functions in most haematopoietic cells, viz. progenitors via influencing c-kit signaling, through to mature cell receptor/integrin signaling, e.g. erythrocytes, platelets, mast cells and macrophages. Consequently, there is an important role for this kinase in regulating hematopoietic abnormalities. Lyn is an important regulator of autoimmune diseases such as asthma and psoriasis, due to its profound ability to influence immune cell signaling. Lyn has also been found to be important for maintaining the leukemic phenotype of many different liquid cancers including acute myeloid leukaemia (AML, chronic myeloid leukaemia (CML and B-cell lymphocytic leukaemia (BCLL. Lyn is also expressed in some solid tumors and here too it is establishing itself as a potential therapeutic target for prostate, glioblastoma, colon and more aggressive subtypes of breast cancer. Lay Abstract To relay information, a cell uses enzymes that put molecular markers on specific proteins so they interact with other proteins or move to specific parts of the cell to have particular functions. A protein called Lyn is one of these enzymes that regulate information transfer within cells to modulate cell growth, survival and movement. Depending on which type of cell and the source of the information

  19. Autophosphorylation of the Bacterial Tyrosine-Kinase CpsD Connects Capsule Synthesis with the Cell Cycle in Streptococcus pneumoniae

    National Research Council Canada - National Science Library

    Nourikyan, Julien; Kjos, Morten; Mercy, Chryslène; Cluzel, Caroline; Morlot, Cécile; Noirot-Gros, Marie-Francoise; Guiral, Sébastien; Lavergne, Jean-Pierre; Veening, Jan-Willem; Grangeasse, Christophe

    2015-01-01

    Bacterial capsular polysaccharides (CPS) are produced by a multi-protein membrane complex, in which a particular type of tyrosine-autokinases named BY-kinases, regulate their polymerization and export...

  20. axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase

    Energy Technology Data Exchange (ETDEWEB)

    O' Bryan, J.P.; Frye, R.A.; Cogswell, P.C.; Neubauer, A.; Kitch, B.; Prokop, C.; Earp, H.S.; Liu, E.T. (Univ. of North Carolina, Chapel Hill (United States)); Espinosa, R. III; Le Beau, M.M. (Univ. of Chicago, IL (United States))

    1991-10-01

    Using a sensitive transfection-tumorigenicity assay, the authors have isolated a novel transforming gene from the DNA of two patients with chronic myelogenous leukemia. Sequence analysis indicates that the product of this gene, axl, is a receptor tyrosine kinase. Overexpression of axl cDNA in NIH 3T3 cells induces neoplastic transformation with the concomitant appearance of a 140-kDa axl tyrosine-phosphorylated protein. Expression of axl cDNA in the baculovirus system results in the expression of the appropriate recombinant protein that is recognized by antophosphotyrosine antibodies, confirming that the axl protein is a tyrosine kinase. The juxtaposition of fibronectin type II and immunoglobulinlike repeats in the extracellular domain, as well as distinct amino acid sequences in the kinase domain, indicate that the axl protein represents a novel subclass of receptor tyrosine kinases.

  1. Changes in insulin receptor tyrosine kinase activity associated with metformin treatment of type 2 diabetes.

    Science.gov (United States)

    Santos, R F; Nomizo, R; Wajhenberg, B L; Reaven, G M; Azhar, S

    1995-10-01

    This study was performed to define the effect of metformin on glycaemic control and erythrocyte insulin receptor tyrosine kinase activity in patients with non-insulin-dependent (Type 2) diabetes mellitus. A case-control study of the effect of metformin treatment in hyperglycaemic patients with Type 2 diabetes was conducted in outpatients of the Diabetes Clinical Center. The study population consisted of 14 patients with Type 2 diabetes (5 males, 9 females) whose hyperglycaemia was uncontrolled by diet. Patients were treated with metformin 850 mg twice daily for 2 1/2 months. Fasting plasma glucose concentrations decreased from 8.9 to 6.4 mmol/L after 10 weeks of metformin treatment (p metformin treatment. There was no change in erythrocyte insulin receptor binding associated with metformin treatment, but both basal and insulin-stimulated insulin receptor tyrosine kinase activities of solubilized erythrocyte insulin receptors were significantly higher after 10 weeks of metformin treatment. It is concluded that the increase in insulin-stimulated tyrosine kinase activity contributed to the improvement in glucose insulin and lipoprotein metabolism associated with metformin treatment of Type 2 diabetes.

  2. A combination of tyrosine kinase inhibitors, crizotinib and dasatinib for the treatment of glioblastoma multiforme.

    Science.gov (United States)

    Nehoff, Hayley; Parayath, Neha N; McConnell, Melanie J; Taurin, Sebastien; Greish, Khaled

    2015-11-10

    Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. Despite the advances in surgery, radiotherapy and chemotherapy, patient survival averages only 14.6 months. In most GBM tumors, tyrosine kinases show increased activity and/or expression and actively contribute to the development, recurrence and onset of treatment resistance; making their inhibition an appealing therapeutic strategy. We compared the cytotoxicity of 12 tyrosine kinase inhibitors in vitro. A combination of crizotinib and dasatinib emerged as the most cytotoxic across established and primary human GBM cell lines. The combination treatment induced apoptotic cell death and polyploidy. Furthermore, the combination treatment led to the altered expression and localization of several tyrosine kinase receptors such as Met and EGFR and downstream effectors as such as SRC. Furthermore, the combination treatment reduced the migration and invasion of GBM cells and prevented endothelial cell tube formation in vitro. Overall, our study demonstrated the broad specificity of a combination of crizotinib and dasatinib across multiple GBM cell lines. These findings provide insight into the development of alternative therapy for the treatment of GBM.

  3. Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis.

    Science.gov (United States)

    Napier, Ruth J; Rafi, Wasiulla; Cheruvu, Mani; Powell, Kimberly R; Zaunbrecher, M Analise; Bornmann, William; Salgame, Padmini; Shinnick, Thomas M; Kalman, Daniel

    2011-11-17

    The lengthy course of treatment with currently used antimycobacterial drugs and the resulting emergence of drug-resistant strains have intensified the need for alternative therapies against Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis. We show that Mtb and Mycobacterium marinum use ABL and related tyrosine kinases for entry and intracellular survival in macrophages. In mice, the ABL family tyrosine kinase inhibitor, imatinib (Gleevec), when administered prophylactically or therapeutically, reduced both the number of granulomatous lesions and bacterial load in infected organs and was also effective against a rifampicin-resistant strain. Further, when coadministered with current first-line drugs, rifampicin or rifabutin, imatinib acted synergistically. These data implicate host tyrosine kinases in entry and intracellular survival of mycobacteria and suggest that imatinib may have therapeutic efficacy against Mtb. Because imatinib targets host, it is less likely to engender resistance compared to conventional antibiotics and may decrease the development of resistance against coadministered drugs. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Ret function in muscle stem cells points to tyrosine kinase inhibitor therapy for facioscapulohumeral muscular dystrophy.

    Science.gov (United States)

    Moyle, Louise A; Blanc, Eric; Jaka, Oihane; Prueller, Johanna; Banerji, Christopher Rs; Tedesco, Francesco Saverio; Harridge, Stephen Dr; Knight, Robert D; Zammit, Peter S

    2016-11-14

    Facioscapulohumeral muscular dystrophy (FSHD) involves sporadic expression of DUX4, which inhibits myogenesis and is pro-apoptotic. To identify target genes, we over-expressed DUX4 in myoblasts and found that the receptor tyrosine kinase Ret was significantly up-regulated, suggesting a role in FSHD. RET is dynamically expressed during myogenic progression in mouse and human myoblasts. Constitutive expression of either RET9 or RET51 increased myoblast proliferation, whereas siRNA-mediated knockdown of Ret induced myogenic differentiation. Suppressing RET activity using Sunitinib, a clinically-approved tyrosine kinase inhibitor, rescued differentiation in both DUX4-expressing murine myoblasts and in FSHD patient-derived myoblasts. Importantly, Sunitinib also increased engraftment and differentiation of FSHD myoblasts in regenerating mouse muscle. Thus, DUX4-mediated activation of Ret prevents myogenic differentiation and could contribute to FSHD pathology by preventing satellite cell-mediated repair. Rescue of DUX4-induced pathology by Sunitinib highlights the therapeutic potential of tyrosine kinase inhibitors for treatment of FSHD.

  5. The LAR protein tyrosine phosphatase enables PDGF beta-receptor activation through attenuation of the c-Abl kinase activity.

    NARCIS (Netherlands)

    Zheng, W.; Lennartsson, J.; Hendriks, W.J.A.J.; Heldin, C.H.; Hellberg, C.

    2011-01-01

    The receptor tyrosine phosphatase (RPTP) LAR negatively regulates the activity of several receptor tyrosine kinases. To investigate if LAR affects the platelet-derived growth factor (PDGF) receptor signaling, mouse embryonic fibroblasts (MEFs) from mice where the LAR phosphatase domains were deleted

  6. MHC class I signaling in T cells leads to tyrosine kinase activity and PLC-gamma 1 phosphorylation

    DEFF Research Database (Denmark)

    Skov, S; Odum, Niels; Claesson, M H

    1995-01-01

    phosphorylation and the subsequent calcium response. The early tyrosine kinase activity was found to be dependent on expression of the TCR/CD3 complex and the CD45 molecule on the surface of the T cells. Furthermore, MHC-I cross-linking was shown to tyrosine phosphorylate PLC-gamma 1 (phospholipase C-gamma 1...

  7. Molecular docking studies of banana flower flavonoids as insulin receptor tyrosine kinase activators as a cure for diabetes mellitus.

    Science.gov (United States)

    Ganugapati, Jayasree; Baldwa, Aashish; Lalani, Sarfaraz

    2012-01-01

    Diabetes mellitus is a metabolic disorder caused due to insulin deficiency. Banana flower is a rich source of flavonoids that exhibit anti diabetic activity. Insulin receptor is a tetramer that belongs to a family of receptor tyrosine kinases. It contains two alpha subunits that form the extracellular domain and two beta subunits that constitute the intracellular tyrosine kinase domain. Insulin binds to the extracellular region of the receptor and causes conformational changes that lead to the activation of the tyrosine kinase. This leads to autophosphorylation, a step that is crucial in insulin signaling pathway. Hence, compounds that augment insulin receptor tyrosine kinase activity would be useful in the treatment of diabetes mellitus. The 3D structure of IR tyrosine kinase was obtained from PDB database. The list of flavonoids found in banana flower was obtained from USDA database. The structures of the flavonoids were obtained from NCBI Pubchem. Docking analysis of the flavonoids was performed using Autodock 4.0 and Autodock Vina. The results indicate that few of the flavonoids may be potential activators of IR tyrosine kinase.

  8. NS-187 (INNO-406, a Bcr-Abl/Lyn Dual Tyrosine Kinase Inhibitor

    Directory of Open Access Journals (Sweden)

    Tomoko Niwa

    2007-01-01

    Full Text Available Protein kinases catalyze the transfer of the γ-phosphoryl group of adenosine triphosphate (ATP to the hydroxyl groups of protein side chains, and they play critical roles in regulating cellular signal transduction and other biochemical processes. They are attractive targets for today’s drug discovery and development, and many pharmaceutical companies are intensively developing various kinds of protein kinase inhibitors. A good example is the recent success with the Bcr-Abl tyrosine kinase inhibitor imatinib mesylate (GleevecTM in the treatment of chronic myeloid leukemia. Though imatinib has dramatically improved the treatment of Bcr-Abl-positive chronic myeloid leukemia, resistance is often found in patients with advanced-stage disease. Several mechanisms have been proposed to explain this resistance, including point mutations within the Abl kinase domain, amplification of the bcr-abl gene, overexpression of the corresponding mRNA, increased drug efflux mediated by P-glycoprotein, and activation of the Src-family kinase (SFK Lyn. We set out to develop a novel drug whose affinity for Abl is higher than that of imatinib and whose specifi city in inhibiting Lyn is higher than that of SFK/Abl inhibitors such as dasatinib (SprycelTM or bosutinib (SKI-606. Our work has led to the development of NS-187 (INNO-406, a novel Abl/Lyn dual tyrosine kinase inhibitor with clinical prospects. To provide an overview of how a selective kinase inhibitor has been developed, this review presents chemical-modification studies carried out with the guidance of molecular modeling, the structural basis for the high potency and selectivity of NS-187 based on the X-ray structure of the NS-187/Abl complex, and the biological profi ling of NS-187, including site-directed mutagenesis experiments.

  9. Endocytosis of somatodendritic NCKX2 is regulated by Src family kinase-dependent tyrosine phosphorylation

    Directory of Open Access Journals (Sweden)

    Kyu-Hee eLee

    2013-02-01

    Full Text Available We have previously reported that the surface expression of K+-dependent Na+/Ca2+ exchanger 2 (NCKX2 in the somatodendritic compartment is kept low by constitutive endocytosis, which results in the polarization of surface NCKX2 to the axon. Clathrin-mediated endocytosis is initiated by interaction of the μ subunit of adaptor protein complex 2 (AP-2 with the canonical tyrosine motif (YxxΦ of a target molecule. We examined whether endocytosis of NCKX2 involves two putative tyrosine motifs (365YGKL and 371YDTM in the cytoplasmic loop of NCKX2. Coimmunoprecipitation assay revealed that the 365YGKL motif is essential for the interaction with the μ subunit of AP-2 (AP2M1. Consistently, either overexpression of NCKX2-Y365A mutant or knockdown of AP2M1 in cultured hippocampal neurons significantly reduced the internalization of NCKX2 from the somatodendritic surface and thus abolished the axonal polarization of surface NCKX2. Next, we tested whether the interaction between the tyrosine motif and AP2M1 is regulated by phosphorylation of the 365th tyrosine residue (Tyr-365. Tyrosine phosphorylation of heterologously expressed NCKX2-WT, but not NCKX2-Y365A, was increased by carbachol in PC-12 cells. The effect of carbachol was inhibited by PP2, a Src family kinase (SFK inhibitor. Moreover, PP2 facilitated the endocytosis of NCKX2 in both the somatodendritic and axonal compartments, suggesting that tyrosine phosphorylation of NCKX2 by SFK negatively regulates its endocytosis. Supporting this idea, activation of SFK enhanced the NCKX activity in the proximal dendrites of dentate granule cells. These results suggest that endocytosis of somatodendritic NCKX2 is regulated by SFK-dependent phosphorylation of Tyr-365.

  10. Phosphotyrosine phosphatase and tyrosine kinase inhibition modulate airway pressure-induced lung injury.

    Science.gov (United States)

    Parker, J C; Ivey, C L; Tucker, A

    1998-11-01

    We determined whether drugs which modulate the state of protein tyrosine phosphorylation could alter the threshold for high airway pressure-induced microvascular injury in isolated perfused rat lungs. Lungs were ventilated for successive 30-min periods with peak inflation pressures (PIP) of 7, 20, 30, and 35 cmH2O followed by measurement of the capillary filtration coefficient (Kfc), a sensitive index of hydraulic conductance. In untreated control lungs, Kfc increased by 1.3- and 3.3-fold relative to baseline (7 cmH2O PIP) after ventilation with 30 and 35 cmH2O PIP. However, in lungs treated with 100 microM phenylarsine oxide (a phosphotyrosine phosphatase inhibitor), Kfc increased by 4.7- and 16.4-fold relative to baseline at these PIP values. In lungs treated with 50 microM genistein (a tyrosine kinase inhibitor), Kfc increased significantly only at 35 cmH2O PIP, and the three groups were significantly different from each other. Thus phosphotyrosine phosphatase inhibition increased the susceptibility of rat lungs to high-PIP injury, and tyrosine kinase inhibition attenuated the injury relative to the high-PIP control lungs.

  11. Functional interaction between nonreceptor tyrosine kinase c-Abl and SR-Rich protein RBM39

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Sanyue [Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850 (China); Qu, Xiuhua [General Navy Hospital of PLA, 6 Fucheng Rd, Haidian District, Beijing 100037 (China); Li, Ping; Ma, Qingjun [Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850 (China); Liu, Xuan, E-mail: liux931932@163.com [Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850 (China); Cao, Cheng, E-mail: cao_c@sohu.com [Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850 (China)

    2016-04-22

    RBM39, also known as splicing factor HCC1.4, acts as a transcriptional coactivator for the steroid nuclear receptors JUN/AP-1, ESR1/ER-α and ESR2/ER-β. RBM39 is involved in the regulation of the transcriptional responses of these steroid nuclear receptors and promotes transcriptional initiation. In this paper, we report that RBM39 interacts with the nonreceptor tyrosine kinase c-Abl. Both the Src homology (SH) 2 and SH3 domains of c-Abl interact with RBM39. The major tyrosine phosphorylation sites on RBM39 that are phosphorylated by c-Abl are Y95 and Y99, as demonstrated by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) and mutational analysis. c-Abl was shown boost the transcriptional coactivation activity of RBM39 for ERα and PRβ in a tyrosine kinase-dependent manner. The results suggest that mammalian c-Abl plays an important role in steroid hormone receptor-mediated transcription by regulating RBM39. - Highlights: • c-Abl interacts with RBM39. • RBM39 is phosphorylated by c-Abl. • c-Abl regulates transcriptional coactivation activity of RBM39 on the ERα and PRβ.

  12. Autophosphorylation of the Bacterial Tyrosine-Kinase CpsD Connects Capsule Synthesis with the Cell Cycle in Streptococcus pneumoniae

    NARCIS (Netherlands)

    Nourikyan, Julien; Kjos, Morten; Mercy, Chryslène; Cluzel, Caroline; Morlot, Cécile; Noirot-Gros, Marie-Francoise; Guiral, Sébastien; Lavergne, Jean-Pierre; Veening, Jan-Willem; Grangeasse, Christophe

    2015-01-01

    Bacterial capsular polysaccharides (CPS) are produced by a multi-protein membrane complex, in which a particular type of tyrosine-autokinases named BY-kinases, regulate their polymerization and export. However, our understanding of the role of BY-kinases in these processes remains incomplete. In the

  13. Abelson tyrosine kinase links PDGFbeta receptor activation to cytoskeletal regulation of NMDA receptors in CA1 hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Beazely Michael A

    2008-12-01

    Full Text Available Abstract Background We have previously demonstrated that PDGF receptor activation indirectly inhibits N-methyl-D-aspartate (NMDA currents by modifying the cytoskeleton. PDGF receptor ligand is also neuroprotective in hippocampal slices and cultured neurons. PDGF receptors are tyrosine kinases that control a variety of signal transduction pathways including those mediated by PLCγ. In fibroblasts Src and another non-receptor tyrosine kinase, Abelson kinase (Abl, control PDGF receptor regulation of cytoskeletal dynamics. The mechanism whereby PDGF receptor regulates cytoskeletal dynamics in central neurons remains poorly understood. Results Intracellular applications of active Abl, but not heat-inactivated Abl, decreased NMDA-evoked currents in isolated hippocampal neurons. This mimics the effects of PDGF receptor activation in these neurons. The Abl kinase inhibitor, STI571, blocked the inhibition of NMDA currents by Abl. We demonstrate that PDGF receptors can activate Abl kinase in hippocampal neurons via mechanisms similar to those observed previously in fibroblasts. Furthermore, PDGFβ receptor activation alters the subcellular localization of Abl. Abl kinase is linked to actin cytoskeletal dynamics in many systems. We show that the inhibition of NMDA receptor currents by Abl kinase is blocked by the inclusion of the Rho kinase inhibitor, Y-27632, and that activation of Abl correlates with an increase in ROCK tyrosine phosphorylation. Conclusion This study demonstrates that PDGFβ receptors act via an interaction with Abl kinase and Rho kinase to regulated cytoskeletal regulation of NMDA receptor channels in CA1 pyramidal neurons.

  14. Paeonol Suppresses Chondrosarcoma Metastasis through Up-Regulation of miR-141 by Modulating PKCδ and c-Src Signaling Pathway

    Science.gov (United States)

    Horng, Chi-Ting; Shieh, Po-Chuen; Tan, Tzu-Wei; Yang, Wei-Hung; Tang, Chih-Hsin

    2014-01-01

    Chondrosarcoma, a primary malignant bone cancer, has potential for local invasion and distant metastasis, especially to the lungs. Patients diagnosed with it show poor prognosis. Paeonol (2'-hydroxy-4'-methoxyacetophenone), the main active compound of traditional Chinese remedy Paeonia lactiflora Pallas, exhibits anti-inflammatory and anti-tumor activity; whether paeonol regulates metastatic chondrosarcoma is largely unknown. Here, we find paeonol do not increase apoptosis. By contrast, at non-cytotoxic concentrations, paeonol suppresses migration and invasion of chondrosarcoma cells. We also demonstrate paeonol enhancing miR-141 expression and miR-141 inhibitor reversing paeonol-inhibited cell motility; paeonol also reduces protein kinase C (PKC)δ and c-Src kinase activity. Since paeonol inhibits migration and invasion of human chondrosarcoma via up-regulation of miR-141 via PKCδ and c-Src pathways, it thus might be a novel anti-metastasis agent for treatment of metastatic chondrosarcoma. PMID:24992595

  15. Paeonol Suppresses Chondrosarcoma Metastasis through Up-Regulation of miR-141 by Modulating PKCδ and c-Src Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Chi-Ting Horng

    2014-07-01

    Full Text Available Chondrosarcoma, a primary malignant bone cancer, has potential for local invasion and distant metastasis, especially to the lungs. Patients diagnosed with it show poor prognosis. Paeonol (2'-hydroxy-4'-methoxyacetophenone, the main active compound of traditional Chinese remedy Paeonia lactiflora Pallas, exhibits anti-inflammatory and anti-tumor activity; whether paeonol regulates metastatic chondrosarcoma is largely unknown. Here, we find paeonol do not increase apoptosis. By contrast, at non-cytotoxic concentrations, paeonol suppresses migration and invasion of chondrosarcoma cells. We also demonstrate paeonol enhancing miR-141 expression and miR-141 inhibitor reversing paeonol-inhibited cell motility; paeonol also reduces protein kinase C (PKCd and c-Src kinase activity. Since paeonol inhibits migration and invasion of human chondrosarcoma via up-regulation of miR-141 via PKCd and c-Src pathways, it thus might be a novel anti-metastasis agent for treatment of metastatic chondrosarcoma.

  16. The Cytoplasmic Adaptor Protein Dok7 Activates the Receptor Tyrosine Kinase MuSK via Dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Bergamin, E.; Hallock, P; Burden, S; Hubbard, S

    2010-01-01

    Formation of the vertebrate neuromuscular junction requires, among others proteins, Agrin, a neuronally derived ligand, and the following muscle proteins: LRP4, the receptor for Agrin; MuSK, a receptor tyrosine kinase (RTK); and Dok7 (or Dok-7), a cytoplasmic adaptor protein. Dok7 comprises a pleckstrin-homology (PH) domain, a phosphotyrosine-binding (PTB) domain, and C-terminal sites of tyrosine phosphorylation. Unique among adaptor proteins recruited to RTKs, Dok7 is not only a substrate of MuSK, but also an activator of MuSK's kinase activity. Here, we present the crystal structure of the Dok7 PH-PTB domains in complex with a phosphopeptide representing the Dok7-binding site on MuSK. The structure and biochemical data reveal a dimeric arrangement of Dok7 PH-PTB that facilitates trans-autophosphorylation of the kinase activation loop. The structure provides the molecular basis for MuSK activation by Dok7 and for rationalizing several Dok7 loss-of-function mutations found in patients with congenital myasthenic syndromes.

  17. Erkitinib, a novel EGFR tyrosine kinase inhibitor screened using a ProteoChip system from a phytochemical library

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eung-Yoon; Choi, Young-Jin [Biochip Research Center, Hoseo University, Asan 336-795 (Korea, Republic of); Innopharmascreen, Inc., Asan 336-795 (Korea, Republic of); Park, Chan-Won [Biochip Research Center, Hoseo University, Asan 336-795 (Korea, Republic of); Dept. of Biological Science, Hoseo University, Asan 336-795 (Korea, Republic of); Kang, In-Cheol, E-mail: ickang@hoseo.edu [Biochip Research Center, Hoseo University, Asan 336-795 (Korea, Republic of); Dept. of Biological Science, Hoseo University, Asan 336-795 (Korea, Republic of); Innopharmascreen, Inc., Asan 336-795 (Korea, Republic of)

    2009-11-20

    Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer. Therefore PTK inhibitors are currently under intensive investigation as potential drug candidates. Herein, we report on a ProteoChip-based screening of an epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor, Erkitinibs, from phytochemical libraries. PLC-{gamma}-1 was used as a substrate immobilized on a ProteoChip and incubated with an EGFR kinase to phosphorylate tyrosine residues of the substrate, followed by a fluorescence detection of the substrate recognized by a phospho-specific monoclonal antibody. Erkitinibs inhibited HeLa cell proliferation in a dose-dependent manner. In conclusion, these data suggest that Erkitinibs can be a specific inhibitor of an EGFR kinase and can be further developed as a potent anti-tumor agent.

  18. Oncogenic signaling by Kit tyrosine kinase occurs selectively on the Golgi apparatus in gastrointestinal stromal tumors.

    Science.gov (United States)

    Obata, Y; Horikawa, K; Takahashi, T; Akieda, Y; Tsujimoto, M; Fletcher, J A; Esumi, H; Nishida, T; Abe, R

    2017-06-29

    Gastrointestinal stromal tumors (GISTs) are caused by gain-of-function mutations in the Kit receptor tyrosine kinase. Most primary GIST patients respond to the Kit inhibitor imatinib, but this drug often becomes ineffective because of secondary mutations in the Kit kinase domain. The characteristic intracellular accumulation of imatinib-sensitive and -resistant Kit protein is well documented, but its relationship to oncogenic signaling remains unknown. Here, we show that in cancer tissue from primary GIST patients as well as in cell lines, mutant Kit accumulates on the Golgi apparatus, whereas normal Kit localizes to the plasma membrane (PM). In imatinib-resistant GIST with a secondary Kit mutation, Kit localizes predominantly on the Golgi apparatus. Both imatinib-sensitive and imatinib-resistant Kit (Kit(mut)) become fully auto-phosphorylated only on the Golgi and only if in a complex-glycosylated form. Kit(mut) accumulates on the Golgi during the early secretory pathway, but not after endocytosis. The aberrant kinase activity of Kit(mut) prevents its export from the Golgi to the PM. Furthermore, Kit(mut) on the Golgi signals and activates the phosphatidylinositol 3-kinase-Akt (PI3K-Akt) pathway, signal transducer and activator of transcription 5 (STAT5), and the Mek-Erk pathway. Blocking the biosynthetic transport of Kit(mut) to the Golgi from the endoplasmic reticulum inhibits oncogenic signaling. PM localization of Kit(mut) is not required for its signaling. Activation of Src-family tyrosine kinases on the Golgi is essential for oncogenic Kit signaling. These results suggest that the Golgi apparatus serves as a platform for oncogenic Kit signaling. Our study demonstrates that Kit(mut)'s pathogenicity is related to its mis-localization, and may offer a new strategy for treating imatinib-resistant GISTs.

  19. N1-Src Kinase Is Required for Primary Neurogenesis in Xenopus tropicalis.

    Science.gov (United States)

    Lewis, Philip A; Bradley, Isobel C; Pizzey, Alastair R; Isaacs, Harry V; Evans, Gareth J O

    2017-08-30

    The presence of the neuronal-specific N1-Src splice variant of the C-Src tyrosine kinase is conserved through vertebrate evolution, suggesting an important role in complex nervous systems. Alternative splicing involving an N1-Src-specific microexon leads to a 5 or 6 aa insertion into the SH3 domain of Src. A prevailing model suggests that N1-Src regulates neuronal differentiation via cytoskeletal dynamics in the growth cone. Here we investigated the role of n1-src in the early development of the amphibian Xenopus tropicalis, and found that n1-src expression is regulated in embryogenesis, with highest levels detected during the phases of primary and secondary neurogenesis. In situ hybridization analysis, using locked nucleic acid oligo probes complementary to the n1-src microexon, indicates that n1-src expression is highly enriched in the open neural plate during neurula stages and in the neural tissue of adult frogs. Given the n1-src expression pattern, we investigated a possible role for n1-src in neurogenesis. Using splice site-specific antisense morpholino oligos, we inhibited n1-src splicing, while preserving c-src expression. Differentiation of neurons in the primary nervous system is reduced in n1-src-knockdown embryos, accompanied by a severely impaired touch response in later development. These data reveal an essential role for n1-src in amphibian neural development and suggest that alternative splicing of C-Src in the developing vertebrate nervous system evolved to regulate neurogenesis.SIGNIFICANCE STATEMENT The Src family of nonreceptor tyrosine kinases acts in signaling pathways that regulate cell migration, cell adhesion, and proliferation. Srcs are also enriched in the brain, where they play key roles in neuronal development and neurotransmission. Vertebrates have evolved a neuron-specific splice variant of C-Src, N1-Src, which differs from C-Src by just 5 or 6 aa. N1-Src is poorly understood and its high similarity to C-Src has made it difficult to

  20. Application of computational approaches to study signalling networks of nuclear and Tyrosine kinase receptors

    Directory of Open Access Journals (Sweden)

    Rebaï Ahmed

    2010-10-01

    Full Text Available Abstract Background Nuclear receptors (NRs and Receptor tyrosine kinases (RTKs are essential proteins in many cellular processes and sequence variations in their genes have been reported to be involved in many diseases including cancer. Although crosstalk between RTK and NR signalling and their contribution to the development of endocrine regulated cancers have been areas of intense investigation, the direct coupling of their signalling pathways remains elusive. In our understanding of the role and function of nuclear receptors on the cell membrane the interactions between nuclear receptors and tyrosine kinase receptors deserve further attention. Results We constructed a human signalling network containing nuclear receptors and tyrosine kinase receptors that identified a network topology involving eleven highly connected hubs. We further developed an integrated knowledge database, denominated NR-RTK database dedicated to human RTKs and NRs and their vertebrate orthologs and their interactions. These interactions were inferred using computational tools and those supported by literature evidence are indicated. NR-RTK database contains links to other relevant resources and includes data on receptor ligands. It aims to provide a comprehensive interaction map that identifies complex dynamics and potential crosstalk involved. Availability: NR-RTK database is accessible at http://www.bioinfo-cbs.org/NR-RTK/ Conclusions We infer that the NR-RTK interaction network is scale-free topology. We also uncovered the key receptors mediating the signal transduction between these two types of receptors. Furthermore, NR-RTK database is expected to be useful for researchers working on various aspects of the molecular basis of signal transduction by RTKs and NRs. Reviewers This article was reviewed by Professor Paul Harrison (nominated by Dr. Mark Gerstein, Dr. Arcady Mushegian and Dr. Anthony Almudevar.

  1. Coexpression of receptor tyrosine kinase AXL and EGFR in human primary lung adenocarcinomas.

    Science.gov (United States)

    Wu, Zhenzhou; Bai, Fan; Fan, Liyun; Pang, Wenshuai; Han, Ruiyu; Wang, Juan; Liu, Yueping; Yan, Xia; Duan, Huijun; Xing, Lingxiao

    2015-12-01

    AXL has been identified as a tyrosine kinase switch that causes resistance to inhibitors targeting epidermal growth factor receptor (EGFR) signaling in non-small cell lung cancer (NSCLC). However, the relationship between 2 receptor tyrosine kinases, AXL and EGFR, and the relevance of AXL expression with EGFR mutation status in treatment-naive human NSCLCs remain uncertain. In this study, we evaluated the coexpression pattern of AXL, EGFR, and pEGFR(1068) in 109 lung adenocarcinoma patients with or without an EGFR mutation. There were 68 (62.4%) patients with tumors harboring EGFR mutations such as 19 del and/or L858R; 2 patients were T790M positive. The expression of AXL, EGFR, and pEGFR(1068) was detected in 60 (55%), 68 (62.4%), and 57 (52.3%) of 109 patients, respectively. The positive rates of EGFR and pEGFR(1068) were associated with the L858R mutation alone or with the 19 del and L858R mutation status. Further analysis indicated that the percentage of AXL(+)/EGFR(+)/pEGFR(1068) coexpression in 68 EGFR-activating mutations patients was significantly higher than that in 39 EGFR wild-type patients (30.9% versus 10.3%, P=.015). Furthermore, in the subgroup of AXL(+) patients (35 mutation(+) and 23 wild-type patients), the coexpression rates of AXL(+)/pEGFR(1068+) and AXL(+)/EGFR(+)/pEGFR(1068+) in patients with EGFR mutations were significantly higher compared with those in wild-type patients (both P<.05). Our study emphasized that the AXL and EGFR receptor tyrosine kinases were coexpressed in a subgroup of treatment-naive lung adenocarcinomas with or without EGFR mutations. Anti-AXL therapeutics delivered up front in combination with an EGFR inhibitor might prevent or delay resistance in patients with AXL-positive, EGFR-mutant, or wild-type NSCLC. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Downsizing treatment with tyrosine kinase inhibitors in patients with advanced gastrointestinal stromal tumors improved resectability.

    Science.gov (United States)

    Sjölund, Katarina; Andersson, Anna; Nilsson, Erik; Nilsson, Ola; Ahlman, Håkan; Nilsson, Bengt

    2010-09-01

    Gastrointestinal stromal tumors (GISTs) express the receptor tyrosine kinase KIT. Most GISTs have mutations in the KIT or PDGFRA gene, causing activation of tyrosine kinase. Imatinib, a tyrosine kinase inhibitor (TKI), is the first-line palliative treatment for advanced GISTs. Sunitinib was introduced for patients with mutations not responsive to imatinib. The aim was to compare the survival of patients with high-risk resected GISTs treated with TKI prior to surgery with historical controls and to determine if organ-preserving surgery was facilitated. Ten high-risk GIST-patients had downsizing/adjuvant TKI treatment: nine with imatinib and one with sunitinib. The patients were matched with historical controls (n = 89) treated with surgery alone, from our population-based series (n = 259). Mutational analysis of KIT and PDGFRA was performed in all cases. The progression-free survival was calculated. The primary tumors decreased in mean diameter from 20.4 cm to 10.5 cm on downsizing imatinib. Four patients with R0 resection and a period of adjuvant imatinib had no recurrences versus 67% in the historical control group. Four patients with residual liver metastases have stable disease on continuous imatinib treatment after surgery. One patient has undergone reoperation with liver resection. The downsizing treatment led to organ-preserving surgery in nine patients and improved preoperative nutritional status in one patient. Downsizing TKI is recommended for patients with bulky tumors with invasion of adjacent organs. Sunitinib can be used for patients in case of imatinib resistance (e.g., wild-type GISTs), underlining the importance of mutational analysis for optimal surgical planning.

  3. Gastric mucosal proliferative and total tyrosine kinases activities increase in Helicobacter pylori-induced chronic gastritis.

    Science.gov (United States)

    Kotynia, Justyna; Kordek, Radzislaw; Kozlowska, Alicja; Malecka-Panas, Ewa

    2005-01-01

    The intestinal type of gastric cancer is thought to originate from cancer precursor lesions, progressing from H. pylori-induced chronic gastritis, atrophic gastritis, to intestinal metaplasia (IM) and dysplasia. Tyrosine kinases (tyr-k) represent the family of proteins that are widely expressed during cell metabolism and are considered as secondary markers for cellular proliferation and malignant transformation. The aim of the study was to evaluate the correlation between gastric mucosal histopathologic changes, total tyrosine kinases, and proliferative activities in patients with H. pylori infection. Biopsy specimens from the gastric mucosa of 94 patients were assessed for H. pylori infection, histopathology (according to the Sydney classification), proliferative activity [Ki-67 immunohistochemistry with labeling index (LI) estimation], and total tyr-k activities (ELISA assay kit). Total tyr-k activities and Ki-67 LI were significantly higher in H. pylori (+) than H. pylori (-) group (728.1 +/- 175.3 vs 360.1 +/- 44.4 pmol P/mg/min. p <0,01 and 20.0 +/- 5.8 vs 10.9 +/- 1.3 %, respectively). A significant correlation has been observed between the Ki-67 LI and total tyr-k activities in patients with and without H. pylori infection. In cases of gastritis accompanied with atrophic changes or intestinal metaplasia in H. pylori (+) patients, Ki-67 LI and total tyr-k activities were particularly high compared to chronic gastritis without atrophy or intestinal metaplasia. Those results suggest that tyrosine kinases may play an important role in the development of gastric mucosal hyperproliferation in H. pylori-induced gastritis and possibly in early phase of gastric carcinogenesis.

  4. Identification of tyrosine 806 as a molecular determinant of RET kinase sensitivity to ZD6474.

    Science.gov (United States)

    Carlomagno, Francesca; Guida, Teresa; Anaganti, Suresh; Provitera, Livia; Kjaer, Svend; McDonald, Neil Q; Ryan, Anderson J; Santoro, Massimo

    2009-03-01

    ZD6474 (vandetanib, Zactima, Astra Zeneca) is an anilinoquinazoline used to target the receptor tyrosine kinase RET in familial and sporadic thyroid carcinoma (IC(50): 100 nM). The aim of this study was to identify molecular determinants of RET sensitivity to ZD6474. Here, we show that mutation of RET tyrosine 806 to cysteine (Y806C) induced RET kinase resistance to ZD6474 (IC(50): 933 nM). Y806 maps close to the gate-keeper position at the RET kinase nucleotide-binding pocket. Although tyrosine 806 is a RET auto-phosphorylation site, its substitution to phenylalanine (Y806F) did not markedly affect RET susceptibility to ZD6474 (IC(50): 87 nM), suggesting that phosphorylation of Y806 is not required for compound binding. Accordingly, the introduction of a phosphomimetic residue (Y806E) also caused resistance to ZD6474, albeit of a lesser degree (IC(50): 512 nM) than the cysteine mutation. Y806C/E RET mutants were also resistant to ZD6474 with respect to intracellular signalling and activation of an AP1-responsive promoter. We conclude that Y806 is a molecular determinant of RET sensitivity to ZD6474. Y806C is a natural RET mutation identified in a patient affected by multiple endocrine neoplasia type 2B. Based on its rare occurrence, it is unlikely that Y806C will be a frequent cause of refractoriness to ZD6474; however, it may be envisaged that mutations at this site can mediate secondary resistance formation in patients treated with the compound.

  5. Oxidative Stress-Associated Protein Tyrosine Kinases and Phosphatases in Fanconi Anemia

    Science.gov (United States)

    Pang, Qishen

    2014-01-01

    Abstract Significance: Fanconi anemia (FA) is a genetic disorder featuring chromosomal instability, developmental defects, progressive bone marrow failure, and predisposition to cancer. Besides the predominant role in DNA damage response and/or repair, many studies have linked FA proteins to oxidative stress. Oxidative stress, defined as imbalance in pro-oxidant and antioxidant homeostasis, has been considered to contribute to disease development, including FA. Recent Advances: A variety of signaling pathways may be influenced by oxidative stress, particularly the equilibrium between protein kinases and phosphatases, consequently leading to an aberrant phosphorylation state of cellular proteins. Dysfunction of kinases/phosphatases has been implicated in the pathophysiology of human diseases. In FA, evidence is emerging that links abnormal phosphorylation/de-phosphorylation of signaling molecules to clinical complications and malformations. Critical Issues: In this study, we review the recent findings on the oxidative stress-related kinases and phosphatases, particularly tyrosine phosphatases in FA. Future Directions: Understanding the role of oxidative stress-related kinases and phosphatases in FA may provide unique and generic possibilities for the future development of therapeutic strategies by targeting the dysregulated protein kinases and phosphatases in a clinical setting. Antioxid. Redox Signal. 20, 2290–2301. PMID:24206276

  6. TNK2 Tyrosine Kinase as a Novel Therapeutic Target in Triple Negative Breast Cancer

    Science.gov (United States)

    2016-10-01

    protein phosphorylation levels with cellular oncogenic phenotypes, we observed a novel non-receptor tyrosine kinase, TNK2, to be hyperphosphorylated...phosphorylation is observed upon (R)-9bMS treatment (Figure 6A). Inhibition of TNK2 activation is also reflected in significant decrease in AKT Tyr176...Triple-negative breast cancer: a short review. American journal of clinical oncology . 2010;33(6):637-45. doi: 10.1097/COC.0b013e3181b8afcf. PubMed

  7. Linifanib--a multi-targeted receptor tyrosine kinase inhibitor and a low molecular weight gelator.

    Science.gov (United States)

    Marlow, Maria; Al-Ameedee, Mohammed; Smith, Thomas; Wheeler, Simon; Stocks, Michael J

    2015-04-14

    In this study we demonstrate that linifanib, a multi-targeted receptor tyrosine kinase inhibitor, with a key urea containing pharmacophore, self-assembles into a hydrogel in the presence of low amounts of solvent. We demonstrate the role of the urea functional group and that of fluorine substitution on the adjacent aromatic ring in promoting self-assembly. We have also shown that linifanib has superior mechanical strength to two structurally related analogues and hence increased potential for localisation at an injection site for drug delivery applications.

  8. Overall survival after immunotherapy, tyrosine kinase inhibitors and surgery in treatment of metastatic renal cell cancer

    DEFF Research Database (Denmark)

    de Lichtenberg, Trine Honnens; Hermann, Gregers G.; Rorth, Mikael

    2014-01-01

    , stage, performance status and white cell blood count were related to poor OS. Using multivariate analyses to adjust for risk predictors the difference in OS disappeared. Median OS before and after introduction of TKIs was 16 months and 14 months, respectively (p = 0.189). Memorial Sloan Kettering Cancer......Abstract Objective. The aim of this study was to evaluate overall survival (OS) after treatment of metastatic renal cell carcinoma (mRCC) following the introduction of tyrosine kinase inhibitors (TKIs) and mammalian target of rapamycin (mTOR) inhibitors. Material and methods. One-hundred and forty...

  9. Single cell imaging of Bruton's Tyrosine Kinase using an irreversible inhibitor

    Science.gov (United States)

    Turetsky, Anna; Kim, Eunha; Kohler, Rainer H.; Miller, Miles A.; Weissleder, Ralph

    2014-04-01

    A number of Bruton's tyrosine kinase (BTK) inhibitors are currently in development, yet it has been difficult to visualize BTK expression and pharmacological inhibition in vivo in real time. We synthesized a fluorescent, irreversible BTK binder based on the drug Ibrutinib and characterized its behavior in cells and in vivo. We show a 200 nM affinity of the imaging agent, high selectivity, and irreversible binding to its target following initial washout, resulting in surprisingly high target-to-background ratios. In vivo, the imaging agent rapidly distributed to BTK expressing tumor cells, but also to BTK-positive tumor-associated host cells.

  10. The insect neuropeptide PTTH activates receptor tyrosine kinase torso to initiate metamorphosis.

    Science.gov (United States)

    Rewitz, Kim F; Yamanaka, Naoki; Gilbert, Lawrence I; O'Connor, Michael B

    2009-12-04

    Holometabolous insects undergo complete metamorphosis to become sexually mature adults. Metamorphosis is initiated by brain-derived prothoracicotropic hormone (PTTH), which stimulates the production of the molting hormone ecdysone via an incompletely defined signaling pathway. Here we demonstrate that Torso, a receptor tyrosine kinase that regulates embryonic terminal cell fate in Drosophila, is the PTTH receptor. Trunk, the embryonic Torso ligand, is related to PTTH, and ectopic expression of PTTH in the embryo partially rescues trunk mutants. In larvae, torso is expressed specifically in the prothoracic gland (PG), and its loss phenocopies the removal of PTTH. The activation of Torso by PTTH stimulates extracellular signal-regulated kinase (ERK) phosphorylation, and the loss of ERK in the PG phenocopies the loss of PTTH and Torso. We conclude that PTTH initiates metamorphosis by activation of the Torso/ERK pathway.

  11. Molecular Mechanism of 17-Allylamino-17-demethoxygeldanamycin (17-AAG)-induced AXL Receptor Tyrosine Kinase Degradation*

    Science.gov (United States)

    Krishnamoorthy, Gnana Prakasam; Guida, Teresa; Alfano, Luigi; Avilla, Elvira; Santoro, Massimo; Carlomagno, Francesca; Melillo, Rosa Marina

    2013-01-01

    The receptor tyrosine kinase AXL is overexpressed in many cancer types including thyroid carcinomas and has well established roles in tumor formation and progression. Proper folding, maturation, and activity of several oncogenic receptor tyrosine kinases require HSP90 chaperoning. HSP90 inhibition by the antibiotic geldanamycin or its derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG) causes destabilization of its client proteins. Here we show that AXL is a novel client protein of HSP90. 17-AAG induced a time- and dose-dependent down-regulation of endogenous or ectopically expressed AXL protein, thereby inhibiting AXL-mediated signaling and biological activity. 17-AAG-induced AXL down-regulation specifically affected fully glycosylated mature receptor present on cell membrane. By using biotin and [35S]methionine labeling, we showed that 17-AAG caused depletion of membrane-localized AXL by mediating its degradation in the intracellular compartment, thus restricting its exposure on the cell surface. 17-AAG induced AXL polyubiquitination and subsequent proteasomal degradation; under basal conditions, AXL co-immunoprecipitated with HSP90. Upon 17-AAG treatment, AXL associated with the co-chaperone HSP70 and the ubiquitin E3 ligase carboxyl terminus of HSC70-interacting protein (CHIP). Overexpression of CHIP, but not of the inactive mutant CHIP K30A, induced accumulation of AXL polyubiquitinated species upon 17-AAG treatment. The sensitivity of AXL to 17-AAG required its intracellular domain because an AXL intracellular domain-deleted mutant was insensitive to the compound. Active AXL and kinase-dead AXL were similarly sensitive to 17-AAG, implying that 17-AAG sensitivity does not require receptor phosphorylation. Overall our data elucidate the molecular basis of AXL down-regulation by HSP90 inhibitors and suggest that HSP90 inhibition in anticancer therapy can exert its effect through inhibition of multiple kinases including AXL. PMID:23629654

  12. Tyrosine Kinase Domain Gene Polymorphism of Epidermal Growth Factor Receptor in Gastric Cancer in Northern Iran

    Directory of Open Access Journals (Sweden)

    Jeivad F

    2012-01-01

    Full Text Available Background: Gastric cancer is one of the most common diseases of digestive system with a low 5-year survival rate and metastasis is the main cause of death. Multi-factors, such as changes in molecular pathways and deregulation of cells are involved in the disease development. Epidermal growth factor receptor pathway (EGFR which is associated with cell proliferation and survival can influence cancer development. EGFR function is governed by its genetic polymorphism; thus, we aimed to study the tyrosine kinase domain gene mutations of the receptor in patients with gastric cancer.Methods : In this experimental study, 123 subjects (83 patients with gastric cancer and 40 normal subjects were investigated in north of Iran for EGFR gene polymorphisms during 1 year. Genomic DNA was extracted by DNA extraction kit according to the manufacture's protocol. Polymerase chain reaction single-stranded conformation polymorphism (PCR-SSCP and silver staining were performed for investigating EGFR gene polymorphisms. Results : The participants included 72 men and 44 women. Gene polymorphism in exon 18 was present in 10% of the study population but SSCP pattern in exon 19 did not show different migrate bands neither in patients nor in normal subjects.Conclusion: It seems that screening for tyrosine kinas gene polymorphism of epidermal growth factor receptor in patients with gastric cancer and use of tyrosine kinas inhibitors could be useful in the prevention of disease progress and improvement of treatment process for a better quality of life in these patients.

  13. EGF-receptor tyrosine kinase inhibition induces keratinocyte growth arrest and terminal differentiation.

    Science.gov (United States)

    Peus, D; Hamacher, L; Pittelkow, M R

    1997-12-01

    Epidermal keratinocyte growth and differentiation are regulated by specific families of growth factors and receptors. Peptide growth factors of the epidermal growth factor family stimulate proliferation of clonal density human keratinocytes and suppress markers of terminal differentiation in confluent cultures of human keratinocytes. We present evidence that selected inhibitors of activation of the type I human epidermal growth factor receptor (EGFR or HER-1), namely, neutralizing monoclonal antibody to HER-1/EGFR and the specific tyrosine kinase inhibitor PD 153035, potently inhibit proliferation of human keratinocytes in autonomously replicating subconfluent cultures. Coupled to growth arrest is the suppression of HER-1 tyrosine autophosphorylation in inhibitor-treated human keratinocytes. Proliferation and tyrosine autophosphorylation are initially reversible following removal of the inhibitor and restimulation of cells with epidermal growth factor. Sustained inactivation of HER-1 in autonomously replicating cultures of human keratinocytes induces expression of keratin 1 and keratin 10 genes, early markers of terminal differentiation. Reversal of growth inhibition by epidermal growth factor suppresses keratin 1 and keratin 10 expression. These results demonstrate that human keratinocyte terminal differentiation as well as proliferation are mediated by HER-1. Co-expression of autocrine epidermal growth factor-related ligands as well as HER-1 by human keratinocyte may function as part of the signal transduction network in epidermis to regulate cell number, replication rate, and terminal differentiation.

  14. Radiation induction of the receptor tyrosine kinase gene Ptk-3 in normal rat astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, S.; Hideyuki, S.; Akihiro, I. [Univ. of Texas, Houston, TX (United States)] [and others

    1995-07-01

    Radiation-induced gene expression was examined in rat astrocyte cultures using differential display of mRNA via reverse transcriptase-polymerase chain reaction. A 0.3-kb cDNA that was consistently observed in irradiated cultures but not in unirradiated cultures was cloned and sequenced. It was found to be identical to Ptk-3, a receptor tyrosine kinase gene identified recently. The protein encoded by Ptk-3 is a member of a novel class of receptor tyrosine kinases whose extracellular domain contains regions of homology with coagulation factors V and VIII and complement component C1. Northern blot analysis revealed that the expression of Ptk-3 was increased in rat astrocytes by 0.5 h after exposure to 10 Gy and remained at the same elevated level for at least 24 h. The maximum increase occurred after 5 Gy cloning studies indicated the presence of at least two Ptk-3 mRNA transcripts, which are probable the result of an alternative splicing mechanism. The short isoform lacks a 37 amino acid sequence in the glycine/proline-rich juxtamembrane region. The splicing pattern of the Ptk-3 gene was not altered by radiation. However, the ratios of the longer to the shorter mRNA transcripts differed between adult cortex, neonatal cortex and in vitro astrocyte cultures. 36 refs., 5 figs.

  15. Antibacterial and EGFR-Tyrosine Kinase Inhibitory Activities of Polyhydroxylated Xanthones from Garcinia succifolia

    Directory of Open Access Journals (Sweden)

    Susawat Duangsrisai

    2014-11-01

    Full Text Available Chemical investigation of the methanol extract of the wood of Garcinia succifolia Kurz (Clusiaceae led to the isolation of 1,5-dihydroxyxanthone (1, 1,7-dihydroxyxanthone (2, 1,3,7-trihydroxyxanthone (3, 1,5,6-trihydroxyxanthone (4, 1,6,7-trihydroxyxanthone (5, and 1,3,6,7-tetrahydroxyxanthone (6. All of the isolated xanthones were evaluated for their antibacterial activity against bacterial reference strains, two Gram-positive (Staphylococcus aureus ATTC 25923, Bacillus subtillis ATCC 6633 and two Gram-negative (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853, and environmental drug-resistant isolates (S. aureus B1, Enteroccoccus faecalis W1, and E. coli G1, as well as for their epidermal growth factor receptor (EGFR of tyrosine kinase inhibitory activity. Only 1,5,6-trihydroxy-(4, 1,6,7-trihydroxy-(5, and 1,3,6,7-tetrahydroxyxanthones (6 exhibited antibacterial activity against Gram-positive bacteria, however none was active against vancomycin-resistant E. faecalis. Additionally, 1,7-dihydroxyxanthone (2 showed synergism with oxacillin, but not with ampicillin. On the other hand, only 1,5-dihydroxyxanthone (1 and 1,7-dihydroxyxanthone (2 were found to exhibit the EGFR-tyrosine kinase inhibitory activity, with IC50 values of 90.34 and 223 nM, respectively.

  16. Tyrosine kinase inhibitors in pulmonary arterial hypertension: a double-edge sword?

    Science.gov (United States)

    Godinas, Laurent; Guignabert, Christophe; Seferian, Andrei; Perros, Frederic; Bergot, Emmanuel; Sibille, Yves; Humbert, Marc; Montani, David

    2013-10-01

    New treatments for pulmonary arterial hypertension (PAH) are a crucial need. The increased proliferation, migration, and survival of pulmonary vascular cells within the pulmonary artery wall in PAH have allowed successful transposition of pathophysiological elements from oncologic researches. Next steps will require translation of these biological advances in PAH therapeutic arsenal and guidelines. This review synthesizes recent data concerning the role of receptor tyrosine kinases and their inhibitors in PAH, with implications in animal models and humans. Results of clinical trials are now accumulating to establish beneficial role of tyrosine kinase inhibitors (TKIs) in PAH and further findings are expected in the near future. Beside this curative approach, evidences of a possible TKI-induced cardiotoxicity are emerging. These safety issues raise concern about a potential amplified harmful effect in PAH, a pathology characterized by an underlying cardiac dysfunction. In addition, analyses of PAH registries shed light on a selective pulmonary vascular toxicity triggered by TKIs, especially dasatinib. These possible dual effects of the TKIs in PAH need to be taken in account for future pharmacological development of this therapeutic class in PAH. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. Baicalin and Baicalein Inhibit Src Tyrosine Kinase and Production of IL-6

    Directory of Open Access Journals (Sweden)

    Dubravko Jelić

    2016-01-01

    Full Text Available Flavonoids play an important role in the treatment of various diseases, as they are able to inhibit reactive oxygen species, which cause damage to cells and tissues which may lead to increased risk of inflammatory diseases. Baicalin and baicalein, two flavonoids found in the roots of Scutellaria baicalensis, in the leaves of Thymus vulgaris and Oroxylum indicum, were tested for their anti-inflammatory activity as well as for their cytotoxicity. Thereby the two compounds were investigated on Src tyrosine kinase inhibition and inhibition of production of interleukin (IL-6 in lipopolysaccharide- (LPS- stimulated THP-1 cells. Additionally, the THP-1 cell line was used for the determination of the cytotoxicity. Both baicalin and baicalein showed some anti-inflammatory properties, while baicalein turned out to be the more active compound with higher inhibitory activities on both Src tyrosine kinase and production of cytokine IL-6. Baicalin and baicalein showed no signs of cytotoxicity in the MTS cytotoxicity assay in THP-1 cells.

  18. Regulation of serotonin transport in human platelets by tyrosine kinase Syk.

    Science.gov (United States)

    Pavanetto, Martina; Zarpellon, Alessandro; Borgo, Christian; Donella-Deana, Arianna; Deana, Renzo

    2011-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter involved in the regulation of numerous neuro-physiological processes. The circulating level of 5-HT is regulated by the membrane transporter SERT present both in the presynaptic nerve terminals and blood platelets. 5-HT transport is a process tightly regulated by a variety of factors including protein phosphorylation. Aim of this study was to ascertain if also the SERT Tyr-phosphorylation mediated by Syk-kinase concurs to the regulation of SERT activity. Indeed we found that 5-HT uptake decreased upon platelet exposure to piceatannol or Syk-inhibitor II, two structurally unrelated inhibitors of the tyrosine-kinase Syk. Tyr-phosphorylation of anti-SERT-immuno-stained proteins in membrane extracts and in anti-SERT-immuno-precipitates, decreased upon platelet treatment with piceatannol, in parallel with a reduction of Syk-activity. Syk was immuno-revealed in the anti-SERT immuno-precipitates, which displayed a piceatannol-sensitive kinase activity towards SERT itself and the Syk-substrate α-sinuclein. Syk inhibitors also caused a decrease of the monensin-induced 5-HT-efflux from platelets and of imipramine binding to them. It is concluded that, in addition to the phosphorylation of SERT mediated by various other kinases, also that catalyzed by Syk might play an important role in the 5-HT transport, likely favoring the transporter conformation exposing the neurotransmitter binding sites. Copyright © 2011 S. Karger AG, Basel.

  19. Characterization of the interactions between the active site of a protein tyrosine kinase and a divalent metal activator

    Directory of Open Access Journals (Sweden)

    Ayrapetov Marina K

    2005-11-01

    Full Text Available Abstract Background Protein tyrosine kinases are important enzymes for cell signalling and key targets for anticancer drug discovery. The catalytic mechanisms of protein tyrosine kinase-catalysed phosphorylation are not fully understood. Protein tyrosine kinase Csk requires two Mg2+ cations for activity: one (M1 binds to ATP, and the other (M2 acts as an essential activator. Results Experiments in this communication characterize the interaction between M2 and Csk. Csk activity is sensitive to pH in the range of 6 to 7. Kinetic characterization indicates that the sensitivity is not due to altered substrate binding, but caused by the sensitivity of M2 binding to pH. Several residues in the active site with potential of binding M2 are mutated and the effect on metal activation studied. An active mutant of Asn319 is generated, and this mutation does not alter the metal binding characteristics. Mutations of Glu236 or Asp332 abolish the kinase activity, precluding a positive or negative conclusion on their role in M2 coordination. Finally, the ability of divalent metal cations to activate Csk correlates to a combination of ionic radius and the coordination number. Conclusion These studies demonstrate that M2 binding to Csk is sensitive to pH, which is mainly responsible for Csk activity change in the acidic arm of the pH response curve. They also demonstrate critical differences in the metal activator coordination sphere in protein tyrosine kinase Csk and a protein Ser/Thr kinase, the cAMP-dependent protein kinase. They shed light on the physical interactions between a protein tyrosine kinase and a divalent metal activator.

  20. Targeting FMS-related tyrosine kinase receptor 3 with the human immunoglobulin G1 monoclonal antibody IMC-EB10.

    Science.gov (United States)

    Youssoufian, Hagop; Rowinsky, Eric K; Tonra, James; Li, Yiwen

    2010-02-15

    FMS-related tyrosine kinase receptor 3 (FLT3) is a class III receptor tyrosine kinase that holds considerable promise as a therapeutic target in hematologic malignancies. Current efforts directed toward the development of small-molecule tyrosine kinase inhibitors of FLT3 may be limited by off-target toxicities and the development of drug resistance. Target-specific antibodies could overcome these hurdles and provide additional mechanisms to enhance the antitumor efficacy of FLT3 inhibitors. IMC-EB10 is a novel antibody directed against FLT3. The binding of IMC-EB10 to FLT3 results in antiproliferative effects in vitro and in mouse models engrafted with human leukemia cells that harbor wild-type or constitutively activated FLT3. Future clinical trials will test these notions formally and will identify the most appropriate opportunities for this member of a new generation of antileukemic therapies. (c) 2010 American Cancer Society.

  1. Differential regulation of protein tyrosine kinase signalling by Dock and the PTP61F variants.

    Science.gov (United States)

    Willoughby, Lee F; Manent, Jan; Allan, Kirsten; Lee, Han; Portela, Marta; Wiede, Florian; Warr, Coral; Meng, Tzu-Ching; Tiganis, Tony; Richardson, Helena E

    2017-07-01

    Tyrosine phosphorylation-dependent signalling is coordinated by the opposing actions of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). There is a growing list of adaptor proteins that interact with PTPs and facilitate the dephosphorylation of substrates. The extent to which any given adaptor confers selectivity for any given substrate in vivo remains unclear. Here we have taken advantage of Drosophila melanogaster as a model organism to explore the influence of the SH3/SH2 adaptor protein Dock on the abilities of the membrane (PTP61Fm)- and nuclear (PTP61Fn)-targeted variants of PTP61F (the Drosophila othologue of the mammalian enzymes PTP1B and TCPTP respectively) to repress PTK signalling pathways in vivo. PTP61Fn effectively repressed the eye overgrowth associated with activation of the epidermal growth factor receptor (EGFR), PTK, or the expression of the platelet-derived growth factor/vascular endothelial growth factor receptor (PVR) or insulin receptor (InR) PTKs. PTP61Fn repressed EGFR and PVR-induced mitogen-activated protein kinase signalling and attenuated PVR-induced STAT92E signalling. By contrast, PTP61Fm effectively repressed EGFR- and PVR-, but not InR-induced tissue overgrowth. Importantly, coexpression of Dock with PTP61F allowed for the efficient repression of the InR-induced eye overgrowth, but did not enhance the PTP61Fm-mediated inhibition of EGFR and PVR-induced signalling. Instead, Dock expression increased, and PTP61Fm coexpression further exacerbated the PVR-induced eye overgrowth. These results demonstrate that Dock selectively enhances the PTP61Fm-mediated attenuation of InR signalling and underscores the specificity of PTPs and the importance of adaptor proteins in regulating PTP function in vivo. © 2017 Federation of European Biochemical Societies.

  2. Identification of nuclear protein targets for six leukemogenic tyrosine kinases governed by post-translational regulation.

    Directory of Open Access Journals (Sweden)

    Andrew Pierce

    Full Text Available Mutated tyrosine kinases are associated with a number of different haematological malignancies including myeloproliferative disorders, lymphoma and acute myeloid leukaemia. The potential commonalities in the action of six of these leukemogenic proteins on nuclear proteins were investigated using systematic proteomic analysis. The effects on over 3600 nuclear proteins and 1500 phosphopeptide sites were relatively quantified in seven isogenic cell lines. The effects of the kinases were diverse although some commonalities were found. Comparison of the nuclear proteomic data with transcriptome data and cytoplasmic proteomic data indicated that the major changes are due to post-translational mechanisms rather than changes in mRNA or protein distribution. Analysis of the promoter regions of genes whose protein levels changed in response to the kinases showed the most common binding site found was that for NFκB whilst other sites such as those for the glucocorticoid receptor were also found. Glucocorticoid receptor levels and phosphorylation were decreased by all 6 PTKs. Whilst Glucocorticoid receptor action can potentiate NFκB action those proteins where genes have NFκB binding sites were in often regulated post-translationally. However all 6 PTKs showed evidence of NFkB pathway modulation via activation via altered IkB and NFKB levels. Validation of a common change was also undertaken with PMS2, a DNA mismatch repair protein. PMS2 nuclear levels were decreased in response to the expression of all 6 kinases, with no concomitant change in mRNA level or cytosolic protein level. Response to thioguanine, that requires the mismatch repair pathway, was modulated by all 6 oncogenic kinases. In summary common targets for 6 oncogenic PTKs have been found that are regulated by post-translational mechanisms. They represent potential new avenues for therapies but also demonstrate the post-translational regulation is a key target of leukaemogenic kinases.

  3. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying-Nan P.; LaMarche, Matthew J.; Chan, Ho Man; Fekkes, Peter; Garcia-Fortanet, Jorge; Acker, Michael G.; Antonakos, Brandon; Chen, Christine Hiu-Tung; Chen, Zhouliang; Cooke, Vesselina G.; Dobson, Jason R.; Deng, Zhan; Fei, Feng; Firestone, Brant; Fodor, Michelle; Fridrich, Cary; Gao, Hui; Grunenfelder, Denise; Hao, Huai-Xiang; Jacob, Jaison; Ho, Samuel; Hsiao, Kathy; Kang, Zhao B.; Karki, Rajesh; Kato, Mitsunori; Larrow, Jay; La Bonte, Laura R.; Lenoir, Francois; Liu, Gang; Liu, Shumei; Majumdar, Dyuti; Meyer, Matthew J.; Palermo, Mark; Perez, Lawrence; Pu, Minying; Price, Edmund; Quinn, Christopher; Shakya, Subarna; Shultz, Michael D.; Slisz, Joanna; Venkatesan, Kavitha; Wang, Ping; Warmuth, Markus; Williams, Sarah; Yang, Guizhi; Yuan, Jing; Zhang, Ji-Hu; Zhu, Ping; Ramsey, Timothy; Keen, Nicholas J.; Sellers, William R.; Stams, Travis; Fortin, Pascal D.

    2016-06-29

    The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase1. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma1, 2, 3, 4, 5. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS–ERK signalling pathway2, 3. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways6, 7. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy8, 9. Here we report the discovery of a highly potent (IC50 = 0.071 μM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS–ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers.

  4. Thrombin-mediated Proteoglycan Synthesis Utilizes Both Protein-tyrosine Kinase and Serine/Threonine Kinase Receptor Transactivation in Vascular Smooth Muscle Cells*

    Science.gov (United States)

    Burch, Micah L.; Getachew, Robel; Osman, Narin; Febbraio, Mark A.; Little, Peter J.

    2013-01-01

    G protein-coupled receptor signaling is mediated by three main mechanisms of action; these are the classical pathway, β-arrestin scaffold signaling, and the transactivation of protein-tyrosine kinase receptors such as those for EGF and PDGF. Recently, it has been demonstrated that G protein-coupled receptors can also mediate signals via transactivation of serine/threonine kinase receptors, most notably the transforming growth factor-β receptor family. Atherosclerosis is characterized by the development of lipid-laden plaques in blood vessel walls. Initiation of plaque development occurs via low density lipoprotein retention in the neointima of vessels due to binding with modified proteoglycans secreted by vascular smooth muscle cells. Here we show that transactivation of protein-tyrosine kinase receptors is mediated by matrix metalloproteinase triple membrane bypass signaling. In contrast, serine/threonine kinase receptor transactivation is mediated by a cytoskeletal rearrangement-Rho kinase-integrin system, and both protein-tyrosine kinase and serine/threonine kinase receptor transactivation concomitantly account for the total proteoglycan synthesis stimulated by thrombin in vascular smooth muscle. This work provides evidence of thrombin-mediated proteoglycan synthesis and paves the way for a potential therapeutic target for plaque development and atherosclerosis. PMID:23335513

  5. Crystal structure of the Sema-PSI extracellular domain of human RON receptor tyrosine kinase.

    Directory of Open Access Journals (Sweden)

    Kinlin L Chao

    Full Text Available Human RON (Recepteur d'Origine Nantais receptor tyrosine kinase is a cell surface receptor for Macrophage Stimulating Protein (MSP. RON mediates signal transduction pathways that regulate cell adhesion, invasion, motility and apoptosis processes. Elevated levels of RON and its alternatively spliced variants are implicated in the progression and metastasis of tumor cells. The binding of MSP α/β heterodimer to the extracellular region of RON receptor induces receptor dimerization and activation by autophosphorylation of the intracellular kinase domains. The ectodomain of RON, containing the ligand recognition and dimerization domains, is composed of a semaphorin (Sema, Plexins-Semaphorins-Integrins domain (PSI, and four Immunoglobulins-Plexins-Transcription factor (IPT domains. High affinity association between MSP and RON is mediated by the interaction between MSP β-chain and RON Sema, although RON activation requires intact RON and MSP proteins. Here, we report the structure of RON Sema-PSI domains at 1.85 Å resolution. RON Sema domain adopts a seven-bladed β-propeller fold, followed by disulfide bond rich, cysteine-knot PSI motif. Comparison with the homologous Met receptor tyrosine kinase reveals that RON Sema-PSI contains distinguishing secondary structural features. These define the receptors' exclusive selectivity towards their respective ligands, RON for MSP and Met for HGF. The RON Sema-PSI crystal packing generates a homodimer with interface formed by the Sema domain. Mapping of the dimer interface using the RON homology to Met, MSP homology to Hepatocyte Growth Factor (HGF, and the structure of the Met/HGF complex shows the dimer interface overlapping with the putative MSPβ binding site. The crystallographically determined RON Sema-PSI homodimer may represent the dimer assembly that occurs during ligand-independent receptor activation and/or the inhibition of the constitutive activity of RONΔ160 splice variant by the soluble RON

  6. Small Molecule Tyrosine Kinase Inhibitors of ErbB2/HER2/Neu in the Treatment of Aggressive Breast Cancer

    Directory of Open Access Journals (Sweden)

    Richard L. Schroeder

    2014-09-01

    Full Text Available The human epidermal growth factor receptor 2 (HER2 is a member of the erbB class of tyrosine kinase receptors. These proteins are normally expressed at the surface of healthy cells and play critical roles in the signal transduction cascade in a myriad of biochemical pathways responsible for cell growth and differentiation. However, it is widely known that amplification and subsequent overexpression of the HER2 encoding oncogene results in unregulated cell proliferation in an aggressive form of breast cancer known as HER2-positive breast cancer. Existing therapies such as trastuzumab (Herceptin® and lapatinib (Tyverb/Tykerb®, a monoclonal antibody inhibitor and a dual EGFR/HER2 kinase inhibitor, respectively, are currently used in the treatment of HER2-positive cancers, although issues with high recurrence and acquired resistance still remain. Small molecule tyrosine kinase inhibitors provide attractive therapeutic targets, as they are able to block cell signaling associated with many of the proposed mechanisms for HER2 resistance. In this regard we aim to present a review on the available HER2 tyrosine kinase inhibitors, as well as those currently in development. The use of tyrosine kinase inhibitors as sequential or combinatorial therapeutic strategies with other HER family inhibitors is also discussed.

  7. Protein-tyrosine kinase activity profiling in knock down zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Simone Lemeer

    Full Text Available BACKGROUND: Protein-tyrosine kinases (PTKs regulate virtually all biological processes. PTKs phosphorylate substrates in a sequence-specific manner and relatively short peptide sequences determine selectivity. Here, we developed new technology to determine PTK activity profiles using peptide arrays. The zebrafish is an excellent model system to investigate signaling in the whole organism, given its wealth of genetic tools, including morpholino-mediated knock down technology. We used zebrafish embryo lysates to determine PTK activity profiles, thus providing the unique opportunity to directly compare the effect of protein knock downs on PTK activity profiles on the one hand and phenotypic changes on the other. METHODOLOGY: We used multiplex arrays of 144 distinct peptides, spotted on a porous substrate, allowing the sample to be pumped up and down, optimizing reaction kinetics. Kinase reactions were performed using complex zebrafish embryo lysates or purified kinases. Peptide phosphorylation was detected by fluorescent anti-phosphotyrosine antibody binding and the porous chips allowed semi-continuous recording of the signal. We used morpholinos to knock down protein expression in the zebrafish embryos and subsequently, we determined the effects on the PTK activity profiles. RESULTS AND CONCLUSION: Reproducible PTK activity profiles were derived from one-day-old zebrafiish embryos. Morpholino-mediated knock downs of the Src family kinases, Fyn and Yes, induced characteristic phenotypes and distinct changes in the PTK activity profiles. Interestingly, the peptide substrates that were less phosphorylated upon Fyn and Yes knock down were preferential substrates of purified Fyn and Yes. Previously, we demonstrated that Wnt11 knock down phenocopied Fyn/Yes knock down. Interestingly, Wnt11 knock down induced similar changes in the PTK activity profile as Fyn/Yes knock down. The control Nacre/Mitfa knock down did not affect the PTK activity profile

  8. Stretch-induced mitogen-activated protein kinase activation in lung fibroblasts is independent of receptor tyrosine kinases.

    Science.gov (United States)

    Boudreault, Francis; Tschumperlin, Daniel J

    2010-07-01

    Lung growth and remodeling are modulated by mechanical stress, with fibroblasts thought to play a leading role. Little mechanistic information is available about how lung fibroblasts respond to mechanical stress. We exposed cultured lung fibroblasts to tonic stretch and measured changes in phosphorylation status of mitogen-activated protein kinases (MAPKs), selected receptor tyrosine kinases (RTKs), and phospholipase Cgamma1 (PLCgamma1) and activation of the small G-protein Ras. Human lung fibroblasts (LFs) were seeded on matrix-coated silicone membranes and exposed to equibiaxial 10 to 40% static stretch or 20% contraction. LFs were stimulated with EGF, FGF2, or PDGF-BB or exposed to stretch in the presence of inhibitors of EGFR (AG1478), FGFR (PD173074), and PDGFR (AG1296). Phospho-MAPK, phospho-RTK, and phospho-PLCgamma1 levels were measured by Western blotting. Active GTP-Ras was quantified by immunoblotting after pull-down with a glutathione S-transferase-Raf-RBD construct. Normalized p-ERK1/2, p-JNK, and p-p38 levels increased after stretch but not contraction. Ligands to RTKs broadly stimulated MAPKs, with the responses to EGF and PDGF most similar to stretch in terms of magnitude and rank order of MAPK responses. Stretching cells failed to elicit measurable activation of EGFR, FGFR (FRS2alpha phosphorylation), or PDGFR. Potent inhibitors of the kinase activity of each receptor failed to attenuate stretch-induced MAPK activation. PLCgamma1 and Ras, prominent effectors downstream of RTKs, were not activated by stretch. Our findings demonstrate that MAPKs are potently activated by stretch in lung fibroblasts, but, in contrast to stress responses observed in other cell types, RTKs are not necessary for stretch-induced MAPK activation in LFs.

  9. Targeting PIM kinases impairs survival of hematopoietic cells transformed by kinase inhibitor-sensitive and kinase inhibitor-resistant forms of Fms-like tyrosine kinase 3 and BCR/ABL

    NARCIS (Netherlands)

    Adam, M; Pogacic, [No Value; Bendit, M; Chappuis, R; Nawijn, MC; Duyster, J; Fox, CJ; Thompson, CB; Cools, J; Schwaller, J

    2006-01-01

    Previous studies have shown that activation of the signal transducer and activator of transcription 5 (STAT5) plays an essential role in leukemogenesis mediated through constitutive activated protein tyrosine kinases (PTK). Because PIM-1 is a STAT5 target gene, we analyzed the role of the family of

  10. Fatty acylated caveolin-2 is a substrate of insulin receptor tyrosine kinase for insulin receptor substrate-1-directed signaling activation.

    Science.gov (United States)

    Kwon, Hayeong; Lee, Jaewoong; Jeong, Kyuho; Jang, Donghwan; Pak, Yunbae

    2015-05-01

    Here, we demonstrate that insulin receptor (IR) tyrosine kinase catalyzes Tyr-19 and Tyr-27 phosphorylation of caveolin-2 (cav-2), leading to stimulation of signaling proteins downstream of IR, and that the catalysis is dependent on fatty acylation status of cav-2, promoting its interaction with IR. Cav-2 is myristoylated at Gly-2 and palmitoylated at Cys-109, Cys-122, and Cys-145. The fatty acylation deficient mutants are unable to localize in the plasma membrane and not phosphorylated by IR tyrosine kinase. IR interacts with the C-terminal domain of cav-2 containing the cysteines for palmitoylation. IR mutants, Y999F and K1057A, but not W1220S, fail interaction with cav-2. Insulin receptor substrate-1 (IRS-1) is recruited to interact with the IR-catalyzed phospho-tyrosine cav-2, which facilitates IRS-1 association with and activation by IR to initiate IRS-1-mediated downstream signaling. Cav-2 fatty acylation and tyrosine phosphorylation are necessary for the IRS-1-dependent PI3K-Akt and ERK activations responsible for glucose uptake and cell survival and proliferation. In conclusion, fatty acylated cav-2 is a new substrate of IR tyrosine kinase, and the fatty acylation and phosphorylation of cav-2 present novel mechanisms by which insulin signaling is activated. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Casein kinase 2 dependent phosphorylation of neprilysin regulates receptor tyrosine kinase signaling to Akt.

    Directory of Open Access Journals (Sweden)

    Martin Siepmann

    2010-10-01

    Full Text Available Neprilysin (NEP is a type II membrane metalloproteinase that cleaves physiologically active peptides at the cell surface thus regulating the local concentration of these peptides available for receptor binding and signal transduction. In addition, the cytoplasmic N-terminal domain of NEP interacts with the phosphatase and tensin homologue deleted on chromosome 10 (PTEN thereby regulating intracellular signaling via Akt. Thus, NEP serves dual functions in extracellular and intracellular signal transduction. Here, we show that NEP undergoes phosphorylation at serine residue 6 within the N-terminal cytoplasmic domain. In vitro and cell culture experiments demonstrate that Ser 6 is efficiently phosphorylated by protein kinase CK2. The phosphorylation of the cytoplasmic domain of NEP inhibits its interaction with PTEN. Interestingly, expression of a pseudophosphorylated NEP variant (Ser6Asp abrogates the inhibitory effect of NEP on insulin/insulin-like growth factor-1 (IGF-1 stimulated activation of Akt. Thus, our data demonstrate a regulatory role of CK2 in the interaction of NEP with PTEN and insulin/IGF-1 signaling.

  12. Carboxamide Spleen Tyrosine Kinase (Syk) Inhibitors: Leveraging Ground State Interactions To Accelerate Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J. Michael; Altman, Michael D.; Cash, Brandon; Haidle, Andrew M.; Kubiak, Rachel L.; Maddess, Matthew L.; Yan, Youwei; Northrup, Alan B. (Merck)

    2016-12-08

    Optimization of a series of highly potent and kinome selective carbon-linked carboxamide spleen tyrosine kinase (Syk) inhibitors with favorable drug-like properties is described. A pervasive Ames liability in an analogous nitrogen-linked carboxamide series was obviated by replacement with a carbon-linked moiety. Initial efforts lacked on-target potency, likely due to strain induced between the hinge binding amide and solvent front heterocycle. Consideration of ground state and bound state energetics allowed rapid realization of improved solvent front substituents affording subnanomolar Syk potency and high kinome selectivity. These molecules were also devoid of mutagenicity risk as assessed via the Ames test using the TA97a Salmonella strain.

  13. Tyrosine kinase inhibitors in treating soft tissue sarcomas: sunitinib in non-GIST sarcomas.

    Science.gov (United States)

    Homet Moreno, Blanca; Garralda Cabanas, Elena; Hitt, Ricardo

    2010-07-01

    Sarcomas are uncommon malignancies that represent more than 50 different tumor types. Surgery remains the mainstay of treating localised disease. Anthracycline and ifosfamide-based chemotherapy is an option for advanced disease; however, effective treatment of advanced soft tissue sarcoma remains a challenge. Advances in understanding the genetic nature of cancer have led to the development of new treatment options for sarcoma. Sunitinib malate is an oral multitargeted tyrosine kinase inhibitor with antiangiogenic properties and promising activity in the treatment of GIST refractory to imatinib, however in either soft tissue sarcoma, experience with sunitinib is under development in different clinical trials. In this review we offer the experience with this small molecular target in non-GIST sarcomas.

  14. Bosutinib: a third generation tyrosine kinase inhibitor for the treatment of chronic myeloid leukemia.

    Science.gov (United States)

    Hill, Brittany G; Kota, Vamsi K; Khoury, Hanna Jean

    2014-07-01

    Bosutinib is an oral tyrosine kinase inhibitor (TKI) with very potent dual inhibitory activity against SRC and abelson gene. Bosutinib was approved in 2012 for the treatment of resistant Philadelphia chromosome positive chronic myeloid leukemia (CML). Bosutinib is a very effective TKI against all phases of intolerant or resistant CML regardless of the presence or absence of an abelson gene domain mutation, except for cases with detectable T315I or V299L. Bosutinib is overall well tolerated and associated with a unique, but manageable toxicity profile. Factors that influence the prescribing pattern of this drug are complex and include physicians', and increasingly patients and families' preference, patients' comorbid conditions, schedule of administration, as well as financial factors. This paper provides an overview of CML, the TKI market, pharmacokinetics, pharmacodynamics, clinical efficacy, safety and tolerability of bosutinib.

  15. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction.

    Science.gov (United States)

    Green, Jennifer; Nusse, Roel; van Amerongen, Renée

    2014-02-01

    Receptor tyrosine kinases of the Ryk and Ror families were initially classified as orphan receptors because their ligands were unknown. They are now known to contain functional extracellular Wnt-binding domains and are implicated in Wnt-signal transduction in multiple species. Although their signaling mechanisms still remain to be resolved in detail, both Ryk and Ror control important developmental processes in different tissues. However, whereas many other Wnt-signaling responses affect cell proliferation and differentiation, Ryk and Ror are mostly associated with controlling processes that rely on the polarized migration of cells. Here we discuss what is currently known about the involvement of this exciting class of receptors in development and disease.

  16. The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity

    Science.gov (United States)

    Chan, Pamela Y.; Carrera Silva, Eugenio A.; De Kouchkovsky, Dimitri; Joannas, Leonel D.; Hao, Liming; Hu, Donglei; Huntsman, Scott; Eng, Celeste; Licona-Limón, Paula; Weinstein, Jason S.; Herbert, De’Broski R.; Craft, Joseph E.; Flavell, Richard A.; Repetto, Silvia; Correale, Jorge; Burchard, Esteban G.; Torgerson, Dara G.; Ghosh, Sourav; Rothlin, Carla V.

    2016-01-01

    Host responses against metazoan parasites or an array of environmental substances elicit type 2 immunity. Despite its protective function, type 2 immunity also drives allergic diseases. The mechanisms that regulate the magnitude of the type 2 response remain largely unknown. Here, we show that genetic ablation of a receptor tyrosine kinase encoded by Tyro3 in mice or the functional neutralization of its ortholog in human dendritic cells resulted in enhanced type 2 immunity. Furthermore, the TYRO3 agonist PROS1 was induced in T cells by the quintessential type 2 cytokine, interleukin-4. T cell–specific Pros1 knockouts phenocopied the loss of Tyro3. Thus, a PROS1-mediated feedback from adaptive immunity engages a rheostat, TYRO3, on innate immune cells to limit the intensity of type 2 responses. PMID:27034374

  17. Efficacy of HER2-targeted therapy in metastatic breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors

    DEFF Research Database (Denmark)

    Nielsen, Dorte L; Kümler, Iben; Palshof, Jesper Andreas

    2013-01-01

    Therapies targeting the human epidermal growth factor receptor (HER) 2 are effective in metastatic breast cancer (MBC). We review the efficacy of HER2-directed therapies, focussing on monoclonal antibodies and tyrosine kinase inhibitors targeting HER2 that have been tested in phase II-III studies...... in MBC. Trastuzumab is an important component of first-line treatment of HER2-positive MBC. New anti-HER2 drugs have the potential to change clinical practice. The potential role of the different drugs and regimens is yet to be determined. The response rate for trastuzumab-DM1 of 26-64% is comparable...... to those obtained for capecitabine plus lapatinib (48%), continuing trastuzumab in combination with capecitabine (48%), pertuzumab plus trastuzumab (24%), and neratinib (24%). Strategies combining multiple HER2-directed therapies might yield additive or synergistic effects and lead to improved outcome...

  18. Fyn tyrosine kinase increases Apolipoprotein E Receptor 2 levels and phosphorylation.

    Directory of Open Access Journals (Sweden)

    Teal C Burrell

    Full Text Available Apolipoprotein E Receptor 2 (ApoER2 and the tyrosine kinase Fyn are both members of the Reelin pathway, a signaling pathway essential for the laminar formation of the cortex during development and proper dendritic spine density and long-term potential (LTP in the adult brain. In the presence of extracellular Reelin, ApoER2 binds the intracellular protein Dab1, an adaptor protein that is phosphorylated by Fyn. However, direct interactions between ApoER2 and Fyn are not well defined. Here, we show that total levels of ApoER2 and surface levels of ApoER2 are increased by active Fyn. Via a separate mechanism, ApoER2 is also phosphorylated by Fyn, an event that peaks in the postnatal cortex at day 5 and can occur at multiple ApoER2 tyrosine residues. Dab1 is also involved in this phosphorylation, promoting the phosphorylation of ApoER2 by Fyn when it is itself phosphorylated. These results elucidate some of the intracellular mechanisms that give rise to a functional Reelin pathway.

  19. The tricarboxylic acid cycle activity in cultured primary astrocytes is strongly accelerated by the protein tyrosine kinase inhibitor tyrphostin 23

    DEFF Research Database (Denmark)

    Hohnholt, Michaela C; Blumrich, Eva-Maria; Waagepetersen, Helle S

    2017-01-01

    Tyrphostin 23 (T23) is a well-known inhibitor of protein tyrosine kinases and has been considered as potential anti-cancer drug. T23 was recently reported to acutely stimulate the glycolytic flux in primary cultured astrocytes. To investigate whether T23 also affects the tricarboxylic acid (TCA...

  20. Mutation pattern in the Bruton's tyrosine kinase gene in 26 unrelated patients with X-linked agammaglobulinemia

    DEFF Research Database (Denmark)

    Vorechovský, I; Luo, L; Hertz, Jens Michael

    1997-01-01

    Mutation pattern was characterized in the Bruton's tyrosine kinase gene (BTK) in 26 patients with X-linked agammaglobulinemia, the first described immunoglobulin deficiency, and was related to BTK expression. A total of 24 different mutations were identified. Most BTK mutations were found to resu...

  1. DMPD: Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available regulators of macrophage inflammatory activities. Wang MH, Zhou YQ, Chen YQ. Scand J Immunol. 2002 Dec;56(6)... potentialregulators of macrophage inflammatory activities. PubmedID 12472665 Tit...le Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities

  2. Roles of mitochondrial Src tyrosine kinase and zinc in nitric oxide-induced cardioprotection against ischemia/reperfusion injury.

    Science.gov (United States)

    Zhang, Y; Xing, F; Zheng, H; Xi, J; Cui, X; Xu, Z

    2013-07-01

    While nitric oxide (NO) induces cardioprotection by targeting the mitochondrial permeability transition pore (mPTP), the precise mitochondrial signaling events that mediate the action of NO remain unclear. The purpose of this study was to test whether NO induces cardioprotection against ischemia/reperfusion by inhibiting oxidative stress through mitochondrial zinc and Src tyrosine kinase. The NO donor S-nitroso-N-acetyl penicillamine (SNAP) given before the onset of ischemia reduced cell death in rat cardiomyocytes subjected to simulated ischemia/reperfusion, and this was abolished by the zinc chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN) and the Src tyrosine kinase inhibitor PP2. SNAP also prevented loss of mitochondrial membrane potential (ΔΨm) at reperfusion, an effect that was blocked by TPEN and PP2. SNAP increased mitochondrion-free zinc upon reperfusion and enhanced mitochondrial Src phosphorylation in a zinc-dependent manner. SNAP inhibited both mitochondrial complex I activity and mitochondrial reactive oxygen species (ROS) generation at reperfusion through zinc and Src tyrosine kinase. Finally, the anti-infarct effect of SNAP was abrogated by TPEN and PP2 applied at reperfusion in isolated rat hearts. In conclusion, NO induces cardioprotection at reperfusion by targeting mitochondria through attenuation of oxidative stress resulted from the inhibition of complex I at reperfusion. Activation of mitochondrial Src tyrosine kinase by zinc may account for the inhibition of complex I.

  3. Tyrosine kinase inhibitor BIBF1120 ameliorates inflammation, angiogenesis and fibrosis in CCl4-induced liver fibrogenesis mouse model

    NARCIS (Netherlands)

    Öztürk Akcora, Büsra; Storm, Gert|info:eu-repo/dai/nl/073356328; Prakash, Jai; Bansal, Ruchi

    2017-01-01

    Hepatic fibrosis, a progressive chronic disease mainly caused by hepatitis viral infections, alcohol abuse or metabolic syndrome leading to liver dysfunction and is the growing cause of mortality worldwide. Tyrosine kinase inhibitor BIBF1120 (Nintedanib) has been evaluated in clinical trials for

  4. The c-Met tyrosine kinase inhibitor JNJ-38877605 causes renal toxicity through species-specific insoluble metabolite formation

    NARCIS (Netherlands)

    M.P. Lolkema (Martijn); H.H. Bohets (Hilde H.); H.-T. Arkenau (H.); A. Lampo (Ann); E. Barale (Erio); M.J.A. de Jonge (Maja); L. van Doorn (Leni); P. Hellemans (Peter); J.S. de Bono (Johann); F.A.L.M. Eskens (Ferry)

    2015-01-01

    textabstractPurpose: The receptor tyrosine kinase c-Met plays an important role in tumorigenesis and is a novel target for anticancer treatment. This phase I, first-in-human trial, explored safety, pharmacokinetics, pharmacodynamics, and initial antitumor activity of JNJ-38877605, a potent and

  5. Autophosphorylation of the Bacterial Tyrosine-Kinase CpsD Connects Capsule Synthesis with the Cell Cycle in Streptococcus pneumoniae

    OpenAIRE

    Julien Nourikyan; Morten Kjos; Chryslène Mercy; Caroline Cluzel; Cécile Morlot; Marie-Francoise Noirot-Gros; Sébastien Guiral; Jean-Pierre Lavergne; Jan-Willem Veening; Christophe Grangeasse

    2015-01-01

    Bacterial capsular polysaccharides (CPS) are produced by a multi-protein membrane complex, in which a particular type of tyrosine-autokinases named BY-kinases, regulate their polymerization and export. However, our understanding of the role of BY-kinases in these processes remains incomplete. In the human pathogen Streptococcus pneumoniae, the BY-kinase CpsD localizes at the division site and participates in the proper assembly of the capsule. In this study, we show that the cytoplasmic C-ter...

  6. A point mutation at tyrosine-809 in the human colony-stimulating factor 1 receptor impairs mitogenesis without abrogating tyrosine kinase activity, association with phosphatidylinositol 3-kinase, or induction of c-fos and junB genes

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, M.F. (Univ. of Tennessee, Memphis (USA)); Shurtleff, S.A.; Downing, J.R. (Saint Jude Children' s Research Hospital, Memphis, TN (USA)); Sherr, C.J. (Univ. of Tennessee College of Medicine, Memphis (USA) Saint Jude Children' s Research Hospital, Memphis, TN (USA))

    1990-09-01

    Substitution of phenylalanine for tyrosine-809 in the human colony-stimulating factor 1 receptor (CSF-1R) inhibited its ability to transduce ligand-dependent mitogenic signals in mouse NIH 3T3 cells. When combined with an activating mutation at codon 301 that induces constitutive CSF-1R tyrosine kinase activity, the codon 809 mutation suppressed ligand-independent cell transformation. Comparative mapping tryptic phosphopeptides from mutant and wild-type CSF-1R indicated that tyrosine-809 is a site of ligand-dependent receptor phosphorylation in vivo. The mutant receptor was active as a tyrosine kinase in vitro and in vivo, underwent CSF-1-dependent association with a phosphatidylinositol 3-kinase, and induced expression of the protooncogenes c-fos and junB, underscoring its ability to trigger some of the known cellular responses to CSF-1. The mutant receptor is likely to be impaired in its ability to interact with critical cellular effectors whose activity is required for mitogenesis.

  7. Non-Targeted Metabolomics Analysis of the Effects of Tyrosine Kinase Inhibitors Sunitinib and Erlotinib on Heart, Muscle, Liver and Serum Metabolism In Vivo

    OpenAIRE

    Jensen, Brian C; Parry, Traci L; Wei Huang; Amro Ilaiwy; Bain, James R; Muehlbauer, Michael J.; O’Neal, Sara K.; Cam Patterson; Johnson, Gary L; Monte S. Willis

    2017-01-01

    Background: More than 90 tyrosine kinases have been implicated in the pathogenesis of malignant transformation and tumor angiogenesis. Tyrosine kinase inhibitors (TKIs) have emerged as effective therapies in treating cancer by exploiting this kinase dependency. The TKI erlotinib targets the epidermal growth factor receptor (EGFR), whereas sunitinib targets primarily vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR).TKIs that impact the fun...

  8. Fasting potentiates the anticancer activity of tyrosine kinase inhibitors by strengthening MAPK signaling inhibition.

    Science.gov (United States)

    Caffa, Irene; D'Agostino, Vito; Damonte, Patrizia; Soncini, Debora; Cea, Michele; Monacelli, Fiammetta; Odetti, Patrizio; Ballestrero, Alberto; Provenzani, Alessandro; Longo, Valter D; Nencioni, Alessio

    2015-05-20

    Tyrosine kinase inhibitors (TKIs) are now the mainstay of treatment in many types of cancer. However, their benefit is frequently short-lived, mandating the search for safe potentiation strategies. Cycles of fasting enhance the activity of chemo-radiotherapy in preclinical cancer models and dietary approaches based on fasting are currently explored in clinical trials. Whether combining fasting with TKIs is going to be potentially beneficial remains unknown. Here we report that starvation conditions increase the ability of commonly administered TKIs, including erlotinib, gefitinib, lapatinib, crizotinib and regorafenib, to block cancer cell growth, to inhibit the mitogen-activated protein kinase (MAPK) signaling pathway and to strengthen E2F-dependent transcription inhibition. In cancer xenografts models, both TKIs and cycles of fasting slowed tumor growth, but, when combined, these interventions were significantly more effective than either type of treatment alone. In conclusion, cycles of fasting or of specifically designed fasting-mimicking diets should be evaluated in clinical studies as a means to potentiate the activity of TKIs in clinical use.

  9. Fasting potentiates the anticancer activity of tyrosine kinase inhibitors by strengthening MAPK signaling inhibition

    Science.gov (United States)

    Caffa, Irene; D'Agostino, Vito; Damonte, Patrizia; Soncini, Debora; Cea, Michele; Monacelli, Fiammetta; Odetti, Patrizio; Ballestrero, Alberto; Provenzani, Alessandro; Longo, Valter D.; Nencioni, Alessio

    2015-01-01

    Tyrosine kinase inhibitors (TKIs) are now the mainstay of treatment in many types of cancer. However, their benefit is frequently short-lived, mandating the search for safe potentiation strategies. Cycles of fasting enhance the activity of chemo-radiotherapy in preclinical cancer models and dietary approaches based on fasting are currently explored in clinical trials. Whether combining fasting with TKIs is going to be potentially beneficial remains unknown. Here we report that starvation conditions increase the ability of commonly administered TKIs, including erlotinib, gefitinib, lapatinib, crizotinib and regorafenib, to block cancer cell growth, to inhibit the mitogen-activated protein kinase (MAPK) signaling pathway and to strengthen E2F-dependent transcription inhibition. In cancer xenografts models, both TKIs and cycles of fasting slowed tumor growth, but, when combined, these interventions were significantly more effective than either type of treatment alone. In conclusion, cycles of fasting or of specifically designed fasting-mimicking diets should be evaluated in clinical studies as a means to potentiate the activity of TKIs in clinical use. PMID:25909220

  10. Dialkoxyquinazolines: Screening Epidermal Growth Factor ReceptorTyrosine Kinase Inhibitors for Potential Tumor Imaging Probes

    Energy Technology Data Exchange (ETDEWEB)

    VanBrocklin, Henry F.; Lim, John K.; Coffing, Stephanie L.; Hom,Darren L.; Negash, Kitaw; Ono, Michele Y.; Hanrahan, Stephen M.; Taylor,Scott E.; Vanderpoel, Jennifer L.; Slavik, Sarah M.; Morris, Andrew B.; Riese II, David J.

    2005-09-01

    The epidermal growth factor receptor (EGFR), a long-standingdrug development target, is also a desirable target for imaging. Sixteendialkoxyquinazoline analogs, suitable for labeling with positron-emittingisotopes, have been synthesized and evaluated in a battery of in vitroassays to ascertain their chemical and biological properties. Thesecharacteristics provided the basis for the adoption of a selection schemato identify lead molecules for labeling and in vivo evaluation. A newEGFR tyrosine kinase radiometric binding assay revealed that all of thecompounds possessed suitable affinity (IC50 = 0.4 - 51 nM) for the EGFRtyrosine kinase. All of the analogs inhibited ligand-induced EGFRtyrosine phosphorylation (IC50 = 0.8 - 20 nM). The HPLC-estimatedoctanol/water partition coefficients ranged from 2.0-5.5. Four compounds,4-(2'-fluoroanilino)- and 4-(3'-fluoroanilino)-6,7-diethoxyquinazoline aswell as 4-(3'-chloroanilino)- and4-(3'-bromoanilino)-6,7-dimethoxyquinazoline, possess the bestcombination of characteristics that warrant radioisotope labeling andfurther evaluation in tumor-bearing mice.

  11. Interplay of Matrix Stiffness and c-SRC in Hepatic Fibrosis

    DEFF Research Database (Denmark)

    Görtzen, Jan; Schierwagen, Robert; Bierwolf, Jeanette

    2015-01-01

    . This study investigated the interaction of c-SRC and RhoA under different matrix stiffness conditions. METHODS: Liver fibrosis was induced in rats using bile duct ligation (BDL), thioacetamide (TAA) or carbon tetrachloride (CCl4) models. mRNA levels of albumin, PDGF-R, RHOA, COL1A1, and αSMA were analyzed....... RESULTS: Transcription of albumin and RhoA was decreased, whereas transcription and activation of c-SRC was increased in hepatocytes cultured on 12 kPa compared to 1 kPa gels. LX2 cells cultured on 12 kPa gels showed upregulation of RHOA, COL1A1, and αSMA mRNA levels. Inhibition of c-SRC by PP2 in LX2...... cells led to an increase in COL1A1 and αSMA most prominently in 12 kPa gels. In LX2 cells with RhoA overexpression, c-SRC inhibition by PP2 failed to improve fibrosis. RhoA expression was significantly elevated in human and experimental liver fibrosis, while c-SRC was inactivated. CONCLUSIONS...

  12. Random mutagenesis reveals residues of JAK2 critical in evading inhibition by a tyrosine kinase inhibitor.

    Directory of Open Access Journals (Sweden)

    Michael R Marit

    Full Text Available The non-receptor tyrosine kinase JAK2 is implicated in a group of myeloproliferative neoplasms including polycythemia vera, essential thrombocythemia, and primary myelofibrosis. JAK2-selective inhibitors are currently being evaluated in clinical trials. Data from drug-resistant chronic myeloid leukemia patients demonstrate that treatment with a small-molecule inhibitor generates resistance via mutation or amplification of BCR-ABL. We hypothesize that treatment with small molecule inhibitors of JAK2 will similarly generate inhibitor-resistant mutants in JAK2.In order to identify inhibitor-resistant JAK2 mutations a priori, we utilized TEL-JAK2 to conduct an in vitro random mutagenesis screen for JAK2 alleles resistant to JAK Inhibitor-I. Isolated mutations were evaluated for their ability to sustain cellular growth, stimulate downstream signaling pathways, and phosphorylate a novel JAK2 substrate in the presence of inhibitor.Mutations were found exclusively in the kinase domain of JAK2. The panel of mutations conferred resistance to high concentrations of inhibitor accompanied by sustained activation of the Stat5, Erk1/2, and Akt pathways. Using a JAK2 substrate, enhanced catalytic activity of the mutant JAK2 kinase was observed in inhibitor concentrations 200-fold higher than is inhibitory to the wild-type protein. When testing the panel of mutations in the context of the Jak2 V617F allele, we observed that a subset of mutations conferred resistance to inhibitor, validating the use of TEL-JAK2 in the initial screen. These results demonstrate that small-molecule inhibitors select for JAK2 inhibitor-resistant alleles, and the design of next-generation JAK2 inhibitors should consider the location of mutations arising in inhibitor-resistant screens.

  13. PELP1 Suppression Inhibits Colorectal Cancer through c-Src Downregulation

    Directory of Open Access Journals (Sweden)

    Zhifeng Ning

    2014-01-01

    Full Text Available Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1, a coregulator of estrogen receptors alpha and beta, is a potential protooncogene implicated in several human cancers, including sexual hormone-responsive or sexual hormone-nonresponsive cancers. However, the functions of PELP1 in colorectal cancer remain unclear. In this study, western blot and bioinformatics revealed that PELP1 expression was higher in several colorectal cancer cell lines than in immortalized normal colorectal epithelium. PELP1 silencing by short hairpin RNA promoted the senescence and inhibited the proliferation, colony formation, migration, invasion, and xenograft tumor formation of the CRC cell line HT-29. Moreover, PELP1 silencing was accompanied by c-Src downregulation. c-Src upregulation partly alleviated the damage in HT-29 malignant behavior induced by PELP1 RNA interference. In conclusion, PELP1 exhibits an oncogenic function in colorectal cancer through c-Src upregulation.

  14. The tyrosine kinase receptor ROR1 is constitutively phosphorylated in chronic lymphocytic leukemia (CLL cells.

    Directory of Open Access Journals (Sweden)

    Mohammad Hojjat-Farsangi

    Full Text Available Phosphorylation of receptor tyrosine kinases (RTKs has a key role in cellular functions contributing to the malignant phenotype of tumor cells. We and others have previously demonstrated that RTK ROR1 is overexpressed in chronic lymphocytic leukemia (CLL. Silencing siRNA downregulated ROR1 and induced apoptosis of CLL cells. In the present study we analysed ROR1 isoforms and the phosphorylation pattern in CLL cells (n=38 applying western blot and flow-cytometry using anti-ROR1 antibodies and an anti-phospho-ROR1 antibody against the TK domain. Two major ROR1 bands with the size of 105 and 130 kDa respectively were identified, presumably representing unglycosylated (immature and glycosylated (mature ROR1 respectively as well as a 260 kDa band which may represent dimerized ROR1. A ROR1 band of 64 kDa that may correspond to a C-terminal fragment was also noted, present only in the nucleus. The 105 kDa ROR1 isoform was more frequently expressed in non-progressive as compared to progressive CLL patients (p=0.03. The 64, 105, 130 and 260 kDa bands were constitutively phosphorylated both at tyrosine and serine residues. Phosphorylation intensity of the mature (130 kDa isoform was significantly higher in progressive than in non-progressive disease (p<0.001. Incubation of CLL cells with a mouse anti-ROR1 KNG or an anti-ROR1 CRD mAb respectively induced dephosphorylation of ROR1 before entering apoptosis. In conclusion CLL cells expressed different isoforms of ROR1 which were constitutively phosphorylated. The mature, phosphorylated ROR1 isoform was associated with a progressive disease stage. Targeting ROR1 by mAbs induced specific dephosphorylation and leukemic cell death. ROR1 might be an interesting therapeutic target.

  15. A novel role of protein tyrosine kinase2 in mediating chloride secretion in human airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Lihua Liang

    Full Text Available Ca(2+ activated Cl(- channels (CaCC are up-regulated in cystic fibrosis (CF airway surface epithelia. The presence and functional properties of CaCC make it a possible therapeutic target to compensate for the deficiency of Cl(- secretion in CF epithelia. CaCC is activated by an increase in cytosolic Ca(2+, which not only activates epithelial CaCCs, but also inhibits epithelial Na(+ hyperabsorption, which may also be beneficial in CF. Our previous study has shown that spiperone, a known antipsychotic drug, activates CaCCs and stimulates Cl(- secretion in polarized human non-CF and CF airway epithelial cell monolayers in vitro, and in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR knockout mice in vivo. Spiperone activates CaCC not by acting in its well-known role as an antagonist of either 5-HT2 or D2 receptors, but through a protein tyrosine kinase-coupled phospholipase C-dependent pathway. Moreover, spiperone independently activates CFTR through a novel mechanism. Herein, we performed a mass spectrometry analysis and identified the signaling molecule that mediates the spiperone effect in activating chloride secretion through CaCC and CFTR. Proline-rich tyrosine kinase 2 (PYK2 is a non-receptor protein tyrosine kinase, which belongs to the focal adhesion kinase family. The inhibition of PYK2 notably reduced the ability of spiperone to increase intracellular Ca(2+ and Cl(- secretion. In conclusion, we have identified the tyrosine kinase, PYK2, as the modulator, which plays a crucial role in the activation of CaCC and CFTR by spiperone. The identification of this novel role of PYK2 reveals a new signaling pathway in human airway epithelial cells.

  16. Tyrosine kinase receptor inhibitor-targeted combined chemotherapy for metastatic bladder cancer

    Directory of Open Access Journals (Sweden)

    Chia-Lun Wu

    2012-04-01

    Full Text Available Overexpression of hypoxia-inducible factor-1 alpha is noted during the invasive and metastatic process of transitional cell carcinoma. It will upregulate vascular endothelial growth factor (VEGF and drive proliferation, invasiveness, metastasis, and antiapoptotic ability of cancer cells. We proposed that tyrosine kinase receptor inhibitor, sunitinib malate—(Sutent; Pfizer Inc., Taiwan, combined with chemotherapeutic drug may present synergistic cytotoxic enhancement to transitional cell carcinoma cells with subsequent inhibition of their cellular behaviors, including proliferation, invasiveness, and metastatic activity. The contents of VEGF-A in mouse bladder tumor cells (MBT-2 and culture medium were detected by quantification-polymerase chain reaction and Western blot individually. The inhibitory concentrations of various chemotherapeutic drugs, sunitinib, and their combination treatment in MBT-2 were determined by 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide (MTT assay. Microchamber transmembrane migration assay was applied in evaluation of the inhibitory effects of different dosages of sunitinib and combination treatment on tumor cells. The cell cycle and apoptosis were analyzed after combination therapy by flow cytometry. Variation in apoptotic pathway was elucidated by Western blot using specific antibodies with cleaved PARP and caspase-3. Metastatic animal model mimicked by tail vein injection of MBT-2 cells was used to evaluate the treatment efficiency in tumor weight and survival rate. The mRNA and protein level of VEGF-A in MBT-2 cells increased by 70% at 48 hours interval under hypoxia stress condition. In MTT assay, MBT-2 cells had shown the highest sensitivity to epirubicin. Sunitinib combined with epirubicin had shown a synergistic cytotoxic effect to MBT-2 cells. Sunitinib and its combination with epirubicin showed significant inhibition on MBT-2 cells migration in microchambers. G2/M phase arrest and

  17. Fluoride increases tyrosine kinase activity in osteoblast-like cells: regulatory role for the stimulation of cell proliferation and Pi transport across the plasma membrane.

    Science.gov (United States)

    Burgener, D; Bonjour, J P; Caverzasio, J

    1995-01-01

    Fluoride is one of the most effective agents for the treatment of vertebral osteoporosis because of its ability to increase osteoblast proliferation. The present study further investigates the role of protein tyrosine phosphorylation previously suggested to mediate the mitogenic effect of fluoride on bone-forming cells. The activity of the plasma membrane Na-coupled Pi transport system was monitored to assess the relationship between alterations in tyrosine phosphorylation and osteoblast activity induced by fluoride. The results indicate that vanadate, a selective inhibitor of tyrosine phosphatase, mimicked the stimulatory effect of fluoride on Pi transport. The change in Pi transport induced by fluoride was dose dependently inhibited by genistein, a potent inhibitor of tyrosine kinase. Genistein also inhibited the change in cell proliferation induced by fluoride. Associated with these observations, tyrosine phosphorylation activity was significantly increased in subcellular fractions isolated from UMR-106 cells treated with fluoride as compared with those isolated from vehicle-treated cells. This change in tyrosine phosphorylation activity was markedly blunted when genistein was added to the kinase assay buffer. It was not associated with any alteration in specific tyrosine phosphatase activity. There was also no evidence of a direct effect of fluoride on tyrosine phosphatase activity in isolated plasma membrane of UMR-106 cells. In conclusion, the results of the present study suggest that fluoride enhances protein tyrosine phosphorylation in osteoblast-like cells by enhancing tyrosine kinase activity. The results further support the hypothesis that this signal transduction mechanism is involved in the osteogenic effects of fluoride.

  18. Axl receptor tyrosine kinase is up-regulated in metformin resistant prostate cancer cells.

    Science.gov (United States)

    Bansal, Nitu; Mishra, Prasun J; Stein, Mark; DiPaola, Robert S; Bertino, Joseph R

    2015-06-20

    Recent epidemiological studies showed that metformin, a widely used anti-diabetic drug might prevent certain cancers. Metformin also has an anti-proliferative effect in preclinical studies of both hematologic malignancies as well as solid cancers and clinical studies testing metformin as an anti-cancer drug are in progress. However, all cancer types do not respond to metformin with the same effectiveness or acquire resistance. To understand the mechanism of acquired resistance and possibly its mechanism of action as an anti-proliferative agent, we developed metformin resistant LNCaP prostate cancer cells. Metformin resistant LNCaP cells had an increased proliferation rate, increased migration and invasion ability as compared to the parental cells, and expressed markers of epithelial-mesenchymal transition (EMT). A detailed gene expression microarray comparing the resistant cells to the wild type cells revealed that Edil2, Ereg, Axl, Anax2, CD44 and Anax3 were the top up-regulated genes and calbindin 2 and TPTE (transmembrane phosphatase with tensin homology) and IGF1R were down regulated. We focused on Axl, a receptor tyrosine kinase that has been shown to be up regulated in several drug resistance cancers. Here, we show that the metformin resistant cell line as well as castrate resistant cell lines that over express Axl were more resistant to metformin, as well as to taxotere compared to androgen sensitive LNCaP and CWR22 cells that do not overexpress Axl. Forced overexpression of Axl in LNCaP cells decreased metformin and taxotere sensitivity and knockdown of Axl in resistant cells increased sensitivity to these drugs. Inhibition of Axl activity by R428, a small molecule Axl kinase inhibitor, sensitized metformin resistant cells that overexpressed Axl to metformin. Inhibitors of Axl may enhance tumor responses to metformin and other chemotherapy in cancers that over express Axl.

  19. The Plasticity of Oncogene Addiction: Implications for Targeted Therapies Directed to Receptor Tyrosine Kinases

    Directory of Open Access Journals (Sweden)

    Vinochani Pillay

    2009-05-01

    Full Text Available A common mutation of the epidermal growth factor receptor (EGFR in glioblastoma multiforme (GBM is an extracellular truncation known as the de2-7 EGFR (or EGFRvIII. Hepatocyte growth factor (HGF is the ligand for the receptor tyrosine kinase (RTK c-Met, and this signaling axis is often active in GBM. The expression of the HGF/c-Met axis or de2-7 EGFR independently enhances GBMgrowth and invasiveness, particularly through the phosphatidylinositol-3 kinase/pAkt pathway. Using RTK arrays, we show that expression of de2-7 EGFR in U87MG GBM cells leads to the coactivation of several RTKs, including platelet-derived growth factor receptor β and c-Met. A neutralizing antibody to HGF (AMG102 did not inhibit de2-7 EGFR-mediated activation of c-Met, demonstrating that it is ligand-independent. Therapy for parental U87MG xenografts with AMG 102 resulted in significant inhibition of tumor growth, whereas U87MG.Δ2-7 xenografts were profoundly resistant. Treatment of U87MG.Δ2-7 xenografts with panitumumab, an anti-EGFR antibody, only partially inhibited tumor growth as xenografts rapidly reverted to the HGF/c-Met signaling pathway. Cotreatment with panitumumab and AMG 102 prevented this escape leading to significant tumor inhibition through an apoptotic mechanism, consistent with the induction of oncogenic shock. This observation provides a rationale for using panitumumab and AMG 102 in combination for the treatment of GBM patients. These results illustrate that GBM cells can rapidly change the RTK driving their oncogene addiction if the alternate RTK signals through the same downstream pathway. Consequently, inhibition of a dominant oncogene by targeted therapy can alter the hierarchy of RTKs resulting in rapid therapeutic resistance.

  20. MHC-I-induced apoptosis in human B-lymphoma cells is dependent on protein tyrosine and serine/threonine kinases

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Bregenholt, S; Johansen, B

    1999-01-01

    B lymphoma cells, is dependent on protein tyrosine kinases and the phosphatidylinositol 3 (PI-3) kinase. Functional studies showed that MHC-I crosslinking induced almost complete inhibition of the spontaneous proliferation of the B lymphoma cells as early as 6 h post-crosslinking and apoptosis 24 h...... post-crosslinking. Preincubation with either protein tyrosine kinase or protein serine/threonine kinase inhibitors reduced the MHC-I-induced apoptosis to background levels, whereas inhibition of PI-3 kinase had no effect. These data demonstrate a pivotal role for protein tyrosine and serine....../threonine kinases in MHC-I-mediated apoptosis in human B-cells and suggest the presence of several MHC-I signaling pathways leading to diverse effects in these cells....

  1. Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion

    Science.gov (United States)

    Davy, Alice; Gale, Nicholas W.; Murray, Elizabeth W.; Klinghoffer, Richard A.; Soriano, Philippe; Feuerstein, Claude; Robbins, Stephen M.

    1999-01-01

    Eph receptor tyrosine kinases and their corresponding surface-bound ligands, the ephrins, provide cues to the migration of cells and growth cones during embryonic development. Here we show that ephrin-A5, which is attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidylinositol-anchor, induces compartmentalized signaling within a caveolae-like membrane microdomain when bound to the extracellular domain of its cognate Eph receptor. The physiological response induced by this signaling event is concomitant with a change in the cellular architecture and adhesion of the ephrin-A5-expressing cells and requires the activity of the Fyn protein tyrosine kinase. This study stresses the relevance of bidirectional signaling involving the ephrins and Eph receptors during brain development. PMID:10601038

  2. The significance of major and stable molecular responses in chronic myeloid leukemia in the tyrosine kinase inhibitor era

    Directory of Open Access Journals (Sweden)

    Ilana Zalcberg Renault

    2011-12-01

    Full Text Available Tyrosine kinase inhibitors have changed the management and outcomes of chronic myeloid leukemia patients. Quantitative polymerase chain reaction is used to monitor molecular responses to tyrosine kinase inhibitors. Molecular monitoring represents the most sensitive tool to judge chronic myeloid leukemia disease course and allows early detection of relapse. Evidence of achieving molecular response is important for several reasons: 1. early molecular response is associated with major molecular response rates at 18-24 months; 2. patients achieving major molecular response are less likely to lose their complete cytogenetic response; 3. a durable, stable major molecular response is associated with increased progression-free survival. However, standardization of molecular techniques is still challenging.

  3. Cardiovascular toxicities of BCR-ABL tyrosine kinase inhibitors in chronic myeloid leukemia: preventive strategies and cardiovascular surveillance

    Directory of Open Access Journals (Sweden)

    Aghel N

    2017-08-01

    Full Text Available Nazanin Aghel,1 Diego Hernan Delgado,1 Jeffrey Howard Lipton2 1Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network,University of Toronto, 2Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada Abstract: Tyrosine kinase inhibitors (TKIs have revolutionized the treatment and outcomes of chronic myeloid leukemia (CML. Despite their significant impact on the management of CML, there is growing evidence that TKIs may cause cardiovascular and/or metabolic complications. In this review, we present the current evidence regarding the cardiovascular safety profiles of BCR-ABL TKIs. Methodological challenges of studies that reported the cardiovascular safety of TKIs are discussed. We also propose management strategies for cardiovascular surveillance and risk factor modification during treatment with these agents. Keywords: BCR-ABL, tyrosine kinase inhibitor, peripheral arterial disease, cardiovascular disease, adverse event 

  4. Insulin receptor binding and tyrosine kinase activity in skeletal muscle from normal pregnant women and women with gestational diabetes

    DEFF Research Database (Denmark)

    Damm, P; Handberg, A; Kühl, C

    1993-01-01

    OBJECTIVE: To ascertain whether the decreased glucose tolerance and insulin resistance found in normal and gestational diabetic pregnancy might be associated with changes in insulin receptor function. METHODS: Eight nonpregnant healthy women (nonpregnant controls), eight healthy pregnant women...... (pregnant controls), and eight women with gestational diabetes were investigated. All were non-obese. Muscle biopsies were obtained from the vastus lateralis muscle, and insulin binding and tyrosine kinase activities in partially purified skeletal muscle insulin receptors were studied. The pregnant controls...... with gestational diabetes compared to nonpregnant controls (P pregnant women did not differ from the other two groups. Postpartum, no differences in insulin binding were found between the groups. Basal and maximal tyrosine kinase activities toward the exogenous substrate poly(Glu4Tyr1) were...

  5. A protein-binding domain, EH, identified in the receptor tyrosine kinase substrate Eps15 and conserved in evolution

    DEFF Research Database (Denmark)

    Wong, W T; Schumacher, C; Salcini, A E

    1995-01-01

    In this report we structurally and functionally define a binding domain that is involved in protein association and that we have designated EH (for Eps15 homology domain). This domain was identified in the tyrosine kinase substrate Eps15 on the basis of regional conservation with several heteroge...... (for Eps15-related). Structural comparison of Eps15 and Eps15r defines a family of signal transducers possessing extensive networking abilities including EH-mediated binding and association with Src homology 3-containing proteins.......In this report we structurally and functionally define a binding domain that is involved in protein association and that we have designated EH (for Eps15 homology domain). This domain was identified in the tyrosine kinase substrate Eps15 on the basis of regional conservation with several...

  6. The tyrosine kinases Fyn and Hck favor the recruitment of tyrosine-phosphorylated APOBEC3G into vif-defective HIV-1 particles.

    Science.gov (United States)

    Douaisi, Marc; Dussart, Sylvie; Courcoul, Marianne; Bessou, Gilles; Lerner, Edwina C; Decroly, Etienne; Vigne, Robert

    2005-04-15

    The main function of Vif is to limit the antiviral activity of APOBEC3G by counteracting its packaging into HIV-1 virions. In this work, we examine the possible functional interactions between Vif, APOBEC3G, and two Src family tyrosine kinases, Fyn and Hck, present in T lymphocytes and in monocyte-macrophages, respectively. By GST pull-down, we show that the SH3 domains of Fyn and Hck, and the corresponding full-length proteins bind Vif of HIV-1. One consequence of this interaction is a reduction in their catalytic activity. Interestingly, we also observed that APOBEC3G can be phosphorylated on tyrosine in the presence of Fyn or Hck, suggesting that both kinases may regulate APOBEC3G function. Accordingly, we demonstrate that in the presence of Fyn or Hck and in the absence of Vif, the overall level of APOBEC3G incorporated into HIV-1 particles is decreased, whereas the level of encapsidation of its phosphorylated form is significantly enhanced.

  7. The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression.

    Science.gov (United States)

    Ragimbeau, Josiane; Dondi, Elisabetta; Alcover, Andrés; Eid, Pierre; Uzé, Gilles; Pellegrini, Sandra

    2003-02-03

    The four mammalian Jak tyrosine kinases are non-covalently associated with cell surface receptors binding helical bundled cytokines. In the type I interferon receptor, Tyk2 associates with the IFNAR1 receptor subunit and positively influences ligand binding to the receptor complex. Here, we report that Tyk2 is essential for stable cell surface expression of IFNAR1. In the absence of Tyk2, mature IFNAR1 is weakly expressed on the cell surface. Rather, it is localized into a perinuclear endosomal compartment which overlaps with that of recycling transferrin receptors and with early endosomal antigen-1 (EEA1) positive vesicles. Conversely, co-expressed Tyk2 greatly enhances surface IFNAR1 expression. Importantly, we demonstrate that Tyk2 slows down IFNAR1 degradation and that this is due, at least in part, to inhibition of IFNAR1 endocytosis. In addition, Tyk2 induces plasma membrane relocalization of the R2 subunit of the interleukin-10 receptor. These results reveal a novel function of a Jak protein on internalization of a correctly processed cytokine receptor. This function is distinct from the previously reported effect of other Jak proteins on receptor exit from the endoplasmic reticulum.

  8. Tyrosine Kinase Inhibitor–Associated Cardiovascular Toxicity in Chronic Myeloid Leukemia

    Science.gov (United States)

    Moslehi, Javid J.; Deininger, Michael

    2015-01-01

    For most patients with chronic myeloid leukemia, tyrosine kinase inhibitors (TKIs) have turned a fatal disease into a manageable chronic condition. Imatinib, the first BCR-ABL1 TKI granted regulatory approval, has been surpassed in terms of molecular responses by the second-generation TKIs nilotinib, dasatinib, and bosutinib. Recently, ponatinib was approved as the only TKI with activity against the T315I mutation. Although all TKIs are associated with nonhematologic adverse events (AEs), experience with imatinib suggested that toxicities are typically manageable and apparent early during drug development. Recent reports of cardiovascular AEs with nilotinib and particularly ponatinib and of pulmonary arterial hypertension with dasatinib have raised concerns about long-term sequelae of drugs that may be administered for decades. Here, we review what is currently known about the cardiovascular toxicities of BCR-ABL1 TKIs, discuss potential mechanisms underlying cardiovascular AEs, and elucidate discrepancies between the reporting of such AEs between oncology and cardiovascular trials. Whenever possible, we provide practical recommendations, but we concede that cause-directed interventions will require better mechanistic understanding. We suggest that chronic myeloid leukemia heralds a fundamental shift in oncology toward effective but mostly noncurative long-term therapies. Realizing the full potential of these treatments will require a proactive rational approach to minimize long-term cardiovascular and cardiometabolic toxicities. PMID:26371140

  9. Protection from impulse noise-induced hearing loss with novel Src-protein tyrosine kinase inhibitors.

    Science.gov (United States)

    Bielefeld, Eric C; Hangauer, David; Henderson, Donald

    2011-12-01

    Apoptosis is a significant mechanism of cochlear hair cell loss from noise. Molecules that inhibit apoptotic intracellular signaling reduce cochlear damage and hearing loss from noise. The current study is an extension of a previous study of the protective value of Src-protein tyrosine kinase inhibitors against noise (Harris et al., 2005). The current study tested three Src-inhibitors: the indole-based KX1-141, the biaryl-based KX2-329, and the ATP-competitive KX2-328. Each of the three drugs was delivered into the chinchillas' cochleae by allowing the solutions to diffuse across the round window membrane thirty minutes prior to exposure to impulse noise. Hearing thresholds were measured using auditory evoked responses from electrodes in the inferior colliculi. Ears treated with KX2-329 showed significantly lower threshold shifts and outer hair cell losses than the control group. The cochleae treated with KX1-141 and KX2-328 did not show statistically significant protection from the impulse noise. The finding of protection with KX2-329 demonstrates that a biaryl-based Src inhibitor has protective capacity against noise-induced hearing loss that is as good as that demonstrated by KX1-004, a Src inhibitor drug that has been studied extensively as an otoprotectant against noise, and suggests that KX2-329 could be useful for protection against noise. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  10. Tyrosine Kinase Inhibitors as Initial Therapy for Patients with Chronic Myeloid Leukemia in Accelerated Phase

    Science.gov (United States)

    Ohanian, Maro; Kantarjian, Hagop M.; Quintas-Cardama, Alfonso; Jabbour, Elias; Abruzzo, Lynne; Verstovsek, Srdan; Borthakur, Gautam; Ravandi, Farhad; Garcia-Manero, Guillermo; Champlin, Richard; Pierce, Sherry; Alattar, Mona Lisa; Trinh, Long Xuan; Luthra, Raja; Ferrajoli, Alessandra; Kadia, Tapan; O’Brien, Susan; Cortes, Jorge E.

    2013-01-01

    Background Accelerated phase CML (CML-AP) most frequently represents a progression state in CML. However, some patients present with AP features at the time of diagnosis. There is limited information on the outcome of these patients when receiving tyrosine kinase inhibitors (TKI) as initial therapy. Methods We analyzed the outcome of 51 consecutive patients with CML who presented with features of AP at the time of diagnosis, including blasts ≥15% (n=6), basophils ≥20%, (n=22), platelets <100×109/L (n=3), cytogenetic clonal evolution (n=17), or more than 1 feature (n=3). Patients received initial therapy with imatinib (n=30), dasatinib (n=5) or nilotinib (n=16). Results The rate of complete cytogenetic response (CCyR) for patients treated with imatinib was 80%, and with dasatinib or nilotinib was 90%. Major molecular response (MMR, BCR-ABL/ABL ≤0.1%, by International Scale [IS]) was achieved in 69% including complete molecular responses (MR4.5, BCR-ABL/ABL ≤0.0032% IS) in 49%. MMR rates for patients treated with imatinib were 63%, and with second generation TKI (2GTKIs) 76%. Overall survival at 36 months was 87% with imatinib and 95% with 2GTKI’s. Conclusion TKIs should be considered standard initial therapy for patients with AP at the time of diagnosis. PMID:24332214

  11. Review : Third Generation Tyrosine Kinase Inhibitors and Their Development in Advanced Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Ronald M Bukowski

    2012-02-01

    Full Text Available Angiogenesis in general and the VEGF signaling axis in particular is a validated target in renal cell carcinoma. Clear cell carcinoma of the kidney is now recognized as a malignancy that is sensitive to inhibitors of the vascular endothelial growth factor pathway. Treatment options for patients with metastatic renal cell carcinoma have evolved in dramatic fashion over the past six years, and a new paradigm has developed. The cytokines interferon-α and interleukin-2 were previously utilized for therapy, but since December 2005, six new agents have been approved in the United States for the treatment of advanced RCC. Three are tyrosine kinase inhibitors (TKI’s including sunitinib, sorafenib, and recently pazopanib. The current review examines the evolving data with the next generation of TKI’s, axitinib and tivozanib being developed for the treatment of advanced RCC. These agents were synthesized to provide increased target specificity and enhanced target inhibition. The preclinical and clinical data are examined, an overview of the development of these TKI’s is provided, and discussion plus speculation concerning their potential roles as RCC therapy is provided.

  12. Third generation tyrosine kinase inhibitors and their development in advanced renal cell carcinoma.

    Science.gov (United States)

    Bukowski, Ronald M

    2012-01-01

    Angiogenesis in general and the vascular endothelial growth factor (VEGF) signaling axis in particular is a validated target in renal cell carcinoma (RCC). Clear-cell carcinoma of the kidney is now recognized as a malignancy that is sensitive to inhibitors of the VEGF pathway. Treatment options for patients with metastatic renal cell carcinoma have evolved in dramatic fashion over the past 6 years, and a new paradigm has developed. The cytokines interferon-α and interleukin-2 were previously utilized for therapy, but since December 2005, six new agents have been approved in the United States for the treatment of advanced RCC. Two are tyrosine kinase inhibitors (TKI's) including sunitinib and recently pazopanib, and the multikinase inhibitor sorafenib. The current review examines the evolving data with the next generation of TKI's, axitinib and tivozanib being developed for the treatment of advanced RCC. These agents were synthesized to provide increased target specificity and enhanced target inhibition. The preclinical and clinical data are examined, an overview of the development of these TKI's is provided, and discussion plus speculation concerning their potential roles as RCC therapy is provided.

  13. Expression of the HER-1-4 family of receptor tyrosine kinases in neuroendocrine tumours.

    Science.gov (United States)

    Srirajaskanthan, Rajaventhan; Shah, Tahir; Watkins, Jennifer; Marelli, Laura; Khan, Korsa; Caplin, Martyn E

    2010-04-01

    The type I receptor tyrosine kinase family comprises four homologous members: Epidermal growth factor receptor (EGFR), HER-2, HER-3 and HER-4. Studies have shown that EGFR and HER-2 play a critical role in oncogenesis. In this study we sought to determine the pattern of expression and the prognostic significance of EGFR, HER-2, HER-3 and HER-4 in a variety of neuroendocrine tumours using immunohistochemistry. HER family receptor expression in 82 paraffin-embedded specimens of neuroendocrine tumours using immunohistochemistry was examined. The pattern and protein expression levels for each receptor were correlated with clinical and pathological parameters. EGFR expression was identified in 86.6% samples, HER-2 was not expressed in any samples, HER-3 was expressed in 8.5% samples and HER-4 was expressed 91.5%. EGFR and HER-4 were co-expressed in 79.3% of cases. HER-3 was correlated with better survival. EGFR was not associated with poor prognosis. This study has demonstrated EGFR, HER-2 and HER-4 expression is not associated with poorer survival. HER-3 expression is correlated with better prognosis. Overexpression of EGFR and HER-4 may offer potential new therapeutic targets.

  14. Phosphorylation impact on Spleen Tyrosine kinase conformation by Surface Enhanced Raman Spectroscopy

    Science.gov (United States)

    Cottat, Maximilien; Yasukuni, Ryohei; Homma, Yo; Lidgi-Guigui, Nathalie; Varin-Blank, Nadine; Lamy de La Chapelle, Marc; Le Roy, Christine

    2017-01-01

    Spleen Tyrosine Kinase (Syk) plays a crucial role in immune cell signalling and its altered expression or activation are involved in several cancers. Syk activity relies on its phosphorylation status and its multiple phosphorylation sites predict several Syk conformations. In this report, we characterized Syk structural changes according to its phosphorylation/activation status by Surface Enhanced Raman Spectroscopy (SERS). Unphosphorylated/inactive and phosphorylated/active Syk forms were produced into two expression systems with different phosphorylation capability. Syk forms were then analysed by SERS that was carried out in liquid condition on a lithographically designed gold nanocylinders array. Our study demonstrated that SERS signatures of the two Syk forms were drastically distinct, indicating structural modifications related to their phosphorylation status. By comparison with the atomic structure of the unphosphorylated Syk, the SERS peak assignments of the phosphorylated Syk nearest gold nanostructures revealed a differential interaction with the gold surface. We finally described a model for Syk conformational variations according to its phosphorylation status. In conclusion, SERS is an efficient technical approach for studying in vitro protein conformational changes and might be a powerful tool to determine protein functions in tumour cells.

  15. Reactive Neutrophil Responses Dependent on the Receptor Tyrosine Kinase c-MET Limit Cancer Immunotherapy.

    Science.gov (United States)

    Glodde, Nicole; Bald, Tobias; van den Boorn-Konijnenberg, Debby; Nakamura, Kyohei; O'Donnell, Jake S; Szczepanski, Sabrina; Brandes, Maria; Eickhoff, Sarah; Das, Indrajit; Shridhar, Naveen; Hinze, Daniel; Rogava, Meri; van der Sluis, Tetje C; Ruotsalainen, Janne J; Gaffal, Evelyn; Landsberg, Jennifer; Ludwig, Kerstin U; Wilhelm, Christoph; Riek-Burchardt, Monika; Müller, Andreas J; Gebhardt, Christoffer; Scolyer, Richard A; Long, Georgina V; Janzen, Viktor; Teng, Michele W L; Kastenmüller, Wolfgang; Mazzone, Massimiliano; Smyth, Mark J; Tüting, Thomas; Hölzel, Michael

    2017-10-17

    Inhibitors of the receptor tyrosine kinase c-MET are currently used in the clinic to target oncogenic signaling in tumor cells. We found that concomitant c-MET inhibition promoted adoptive T cell transfer and checkpoint immunotherapies in murine cancer models by increasing effector T cell infiltration in tumors. This therapeutic effect was independent of tumor cell-intrinsic c-MET dependence. Mechanistically, c-MET inhibition impaired the reactive mobilization and recruitment of neutrophils into tumors and draining lymph nodes in response to cytotoxic immunotherapies. In the absence of c-MET inhibition, neutrophils recruited to T cell-inflamed microenvironments rapidly acquired immunosuppressive properties, restraining T cell expansion and effector functions. In cancer patients, high serum levels of the c-MET ligand HGF correlated with increasing neutrophil counts and poor responses to checkpoint blockade therapies. Our findings reveal a role for the HGF/c-MET pathway in neutrophil recruitment and function and suggest that c-MET inhibitor co-treatment may improve responses to cancer immunotherapy in settings beyond c-MET-dependent tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Teratogenicity study of the dihydroorotate-dehydrogenase inhibitor and protein tyrosine kinase inhibitor Leflunomide in mice.

    Science.gov (United States)

    Fukushima, Ryou; Kanamori, Susumu; Hirashiba, Masahiro; Hishikawa, Atsuko; Muranaka, Ri-Ich; Kaneto, Masako; Nakamura, Kazuichi; Kato, Ikuo

    2007-01-01

    Leflunomide is an immunosuppressive agent that inhibits de novo synthesis of pyrimidine nucleotides and the activity of protein tyrosine kinase. This study examined the teratogenicity of Leflunomide in mice. Pregnant mice were treated orally with Leflunomide at a dose of 10, 30 or 70 mg/kg/day from day 6 to 15 of pregnancy. At 70 mg/kg, all embryos were resorbed and no live fetuses were detected. At 30 mg/kg, Leflunomide reduced fetal viability, and increased the incidence of multiple external, skeletal and visceral malformations. Characteristic external malformations were neural tube defects, cleft palate and tail deformities. Limb malformations were observed in a small number of fetuses. Skeletal examinations revealed malformations of cervical to sacral vertebrae, ribs and sternebrae. In the viscerae, the main anomalies were membranous ventricular septum defect and persistent truncus arteriosus. The results of this study indicate that Leflunomide administered at 30 mg/kg on days 6 to 15 of pregnancy can induce craniofacial malformations and deformities of the axial skeleton, heart and great vessels in mice.

  17. Anti-Angiogenic Tyrosine Kinase Inhibitors and Reversible Posterior Leukoencephalopathy Syndrome: Could Hypomagnesaemia Be the Trigger?

    Science.gov (United States)

    Shah, Rashmi R

    2017-05-01

    Reversible posterior leukoencephalopathy syndrome (RPLS), also known frequently as posterior reversible encephalopathy syndrome (PRES), is a characteristic acute neuro-radiology syndrome with clinical presentation that typically includes acute hypertension, seizures and other neurological symptoms and signs. Many patients with RPLS have (a history of) pre-existing hypertension and in receipt of diuretics. It is being diagnosed more frequently and in association with an increasing number of morbidities and medications. Drugs most frequently implicated are immunosuppressant drugs and anticancer agents, including a number of anti-angiogenic tyrosine kinase inhibitors (TKIs). Hypomagnesaemia is a frequent finding at presentation in RPLS patients, which is known to lead to or aggravate hypertension. Pre-eclampsia, a variant of RPLS, responds effectively to intravenous magnesium. Cyclosporin, tacrolimus and some TKIs that induce RPLS are also known to give rise to both hypertension and hypomagnesaemia. This raises an interesting hypothesis that hypomagnesaemia may play a contributory role in triggering RPLS in some patients by acutely raising the blood pressure further. Additional systematic studies are required to test this hypothesis. If the hypothesis is confirmed, hypomagnesaemia offers an effective target for risk mitigation and prevention of RPLS in patients identified at risk.

  18. Expression of receptor tyrosine kinase RYK in developing rat central nervous system.

    Science.gov (United States)

    Kamitori, K; Machide, M; Osumi, N; Kohsaka, S

    1999-04-12

    Receptor tyrosine kinase RYK is a mammalian homologue of Drosophila Lio, which is involved in learning and memory and in axon guidance. We cloned a rat ryk gene and characterized its expression pattern in the central nervous system. Northern blot analysis of the whole brain revealed that the RYK mRNA was abundant during the period from 13 to 18 embryonic days (E13-18) and it decreased by E20. In the postnatal brain, the RYK signal was higher in postnatal one week (P1W) cerebrum and in P2W cerebellum than in later stages. In situ hybridization revealed that RYK was expressed throughout the central nervous system, mainly in the ventricular zone on E11 and E13. On E18 and E20, the remarkable level of RYK mRNA was detected in the ventricular zone as well as in the cortical plate of the forebrain. These two regions overlapped the immunoreactive areas of nestin and MAP2, a neural stem cell marker and a mature neural marker, respectively. Moreover, the double-labeling analysis showed that the same cells expressed both RYK and nestin in the ventricular zone. In the postnatal brain, RYK was predominantly expressed in neurons of various regions. These observations suggest that RYK plays a contributory role as a multifunctional molecule in the differentiation and maturation of neuronal cells in the central nervous system. Copyright 1999 Elsevier Science B.V.

  19. Resequencing analysis of the candidate tyrosine kinase and RAS pathway gene families in multiple myeloma.

    Science.gov (United States)

    Hucthagowder, Vishwanathan; Meyer, Rekha; Mullins, Chelsea; Nagarajan, Rakesh; DiPersio, John F; Vij, Ravi; Tomasson, Michael H; Kulkarni, Shashikant

    2012-09-01

    Multiple myeloma (MM) is an incurable, B-cell malignancy characterized by the clonal proliferation and accumulation of malignant plasma cells in bone marrow. Despite recent advances in the understanding of genomic aberrations, a comprehensive catalogue of clinically actionable mutations in MM is just beginning to emerge. The tyrosine kinase (TK) and RAS oncogenes, which encode important regulators of various signaling pathways, are among the most frequently altered gene families in cancer. To clarify the role of TK and RAS genes in the pathogenesis of MM, we performed a systematic, targeted screening of mutations on prioritized RAS and TK genes, in CD138-sorted bone marrow specimens from 42 untreated patients. We identified a total of 24 mutations in the KRAS, PIK3CA, INSR, LTK, and MERTK genes. In particular, seven novel mutations in addition to known KRAS mutations were observed. Prediction analysis tools PolyPhen and Sorting Intolerant from Tolerant (SIFT) were used to assess the functional significance of these novel mutations. Our analysis predicted that these mutations may have a deleterious effect, resulting in the functional alteration of proteins involved in the pathogenesis of myeloma. While further investigation is needed to determine the functional consequences of these proteins, mutational testing of the RAS and TK genes in larger myeloma cohorts might also be useful to establish the recurrent nature of these mutations. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Congenital central hypoventilation syndrome: Mutation analysis of the receptor tyrosine kinase RET

    Energy Technology Data Exchange (ETDEWEB)

    Bolk, S.; Angrist, M.; Schwartz, S.; Chakravarti, A. [Case Western Reserve Univ., Cleveland, OH (United States)]|[University Hospitals, Cleveland, OH (United States)] [and others

    1996-06-28

    Congenital central hypoventilation syndrome (CCHS) usually occurs as an isolated phenotype. However, 16% of the index cases are also affected with Hirschsprung disease (HSCR). Complex segregation analysis suggests that CCHS is familial and has the same inheritance pattern with or without HSCR. We postulate that alteration of normal function of the receptor tyrosine kinase, RET, may contribute to CCHS based on RET`s expression pattern and the identification of RET mutations in HSCR patients. To further explore the nature of the inheritance of CCHS, we have undertaken two main routes of investigation: cytogenetic analysis and mutation detection. Cytogenetic analysis of metaphase chromosomes showed normal karyotypes in 13 of the 14 evaluated index cases; one index case carried a familial pericentric inversion on chromosome 2. Mutation analysis showed no sequence changes unique to index cases, as compared to control individuals, and as studied by single strand conformational polymorphism (SSCP) analysis of the coding region of RET. We conclude that point mutations in the RET coding region cannot account for a substantial fraction of CCHS in this patient population, and that other candidate genes involved in neural crest cell differentiation and development must be considered. 54 refs.

  1. L-selectin stimulation of canine neutrophil initiates calcium signal secondary to tyrosine kinase activation.

    Science.gov (United States)

    Crockett-Torabi, E; Fantone, J C

    1997-03-01

    Neutrophils play an important role in myocardial ischemia-reperfusion injury. Neutrophil adhesion to the vascular endothelium is one of the important early mechanisms that lead to reperfusion injury. The leukocyte adhesion molecule, L-selectin, plays a major role in the initial interaction between neutrophils and endothelial cells. Intervention aimed at blocking selectins or their associated ligands can exert cardioprotective effects. The purpose of this study was to examine the role of L-selectin in the initiation of transmembrane signaling and regulation of canine neutrophil responses. Cross-linking of canine neutrophil L-selectin using anti-L-selectin antibody induced a rapid and transient increase in intracellular Ca2+ levels and superoxide anion generation that were dependent on the extent of L-selectin cross-linking. The responses were significantly inhibited by the protein tyrosine kinase inhibitor, genistein. The results demonstrate that ligation of canine neutrophil L-selectin is coupled to intracellular signal transduction pathways and the generation of second messengers, which may independently play important regulatory roles in modulating neutrophil-endothelial cell interactions.

  2. Regulation of Discrete Functional Responses by Syk and Src Family Tyrosine Kinases in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    Thornin Ear

    2017-01-01

    Full Text Available Neutrophils play a critical role in innate immunity and also influence adaptive immune responses. This occurs in good part through their production of inflammatory and immunomodulatory cytokines, in conjunction with their prolonged survival at inflamed foci. While a picture of the signaling machinery underlying these neutrophil responses is now emerging, much remains to be uncovered. In this study, we report that neutrophils constitutively express various Src family isoforms (STKs, as well as Syk, and that inhibition of these protein tyrosine kinases selectively hinders inflammatory cytokine generation by acting posttranscriptionally. Accordingly, STK or Syk inhibition decreases the phosphorylation of signaling intermediates (e.g., eIF-4E, S6K, and MNK1 involved in translational control. By contrast, delayed apoptosis appears to be independent of either STKs or Syk. Our data therefore significantly extend our understanding of which neutrophil responses are governed by STKs and Syk and pinpoint some signaling intermediates that are likely involved. In view of the foremost role of neutrophils in several chronic inflammatory conditions, our findings identify potential molecular targets that could be exploited for future therapeutic intervention.

  3. Drug combination approach to overcome resistance to EGFR tyrosine kinase inhibitors in lung cancer.

    Science.gov (United States)

    Tong, Christy W S; Wu, William K K; Loong, Herbert H F; Cho, William C S; To, Kenneth K W

    2017-10-01

    The discovery of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI) has led to unprecedented clinical response in a subset of lung cancer patients carrying the sensitizing EGFR mutations (L858R or exon 19 deletion). However, disease progression invariably occurs within a year after the initial TKI treatment, predominantly due to the development of acquired resistance caused by the secondary EGFR T790 M mutation. Numerous second generation irreversible and third generation EGFR T790 M selective EGFR TKIs have been developed to overcome resistance. Besides developing new EGFR TKIs, combination therapy represents another promising strategy to combat resistance. This approach aims at circumventing drug resistance through a so-called bypass signaling mechanism by targeting horizontal pathways or vertical pathways or both. The logical combinations of different molecular targeted drugs inhibiting various oncogenic signaling have been studied. On the other hand, the repurposing of drugs with indications other than oncology has also emerged as a promising approach. In this review, we focus on the effectiveness of combination therapy of EGFR-TKIs with different agents in advanced lung cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Advances in mass spectrometry based strategies to study receptor tyrosine kinases

    Directory of Open Access Journals (Sweden)

    Simon Vyse

    2017-03-01

    Full Text Available Receptor tyrosine kinases (RTKs are key transmembrane environmental sensors that are capable of transmitting extracellular information into phenotypic responses, including cell proliferation, survival and metabolism. Advances in mass spectrometry (MS-based phosphoproteomics have been instrumental in providing the foundations of much of our current understanding of RTK signalling networks and activation dynamics. Furthermore, new insights relating to the deregulation of RTKs in disease, for instance receptor co-activation and kinome reprogramming, have largely been identified using phosphoproteomic-based strategies. This review outlines the current approaches employed in phosphoproteomic workflows, including phosphopeptide enrichment and MS data-acquisition methods. Here, recent advances in the application of MS-based phosphoproteomics to bridge critical gaps in our knowledge of RTK signalling are focused on. The current limitations of the technology are discussed and emerging areas such as computational modelling, high-throughput phosphoproteomic workflows and next-generation single-cell approaches to further our understanding in new areas of RTK biology are highlighted.

  5. BIOLUMINISCENCE RESONANCE ENERGY TRANSFER (BRET) METHODS TO STUDY G PROTEIN-COUPLED RECEPTOR - RECEPTOR TYROSINE KINASE HETERORECEPTOR COMPLEXES

    OpenAIRE

    Borroto-Escuela, Dasiel O.; Flajolet, Marc; Agnati, Luigi F.; Greengard, Paul; Fuxe, Kjell

    2013-01-01

    A large body of evidence indicates that G protein-coupled receptors (GPCRs) and Receptor tyrosine kinases (RTKs) can form heteroreceptor complexes. In these complexes, the signalling from each interacting protomer is modulated to produce an integrated and therefore novel response upon agonist(s) activation. In the GPCR-RTK heteroreceptor complexes, GPCRs can activate RTK in the absence of added growth factor through the use of RTK signalling molecules. This integrative phenomenon is reciproca...

  6. Epidermal Growth Factor Receptor Tyrosine Kinase: A Potential Target in Treatment of Non-Small-Cell Lung Carcinoma.

    Science.gov (United States)

    Prabhu, Venugopal Vinod; Devaraj, Niranjali

    2017-01-01

    Lung cancer is responsible for 1.6 million deaths. Approximately 80%-85% of lung cancers are of the non-small-cell variety, which includes squamous cell carcinoma, adenocarcinoma, and large-cell carcinoma. Knowing the stage of cancer progression is a requisite for determining which management approach-surgery, chemotherapy, radiotherapy, and/or immunotherapy-is optimal. Targeted therapeutic approaches with antiangiogenic monoclonal antibodies or tyrosine kinase inhibitors are one option if tumors harbor oncogene mutations. Another, newer approach is directed against cancer-specific molecules and signaling pathways and thus has more limited nonspecific toxicities. This approach targets the epidermal growth factor receptor (EGFR, HER-1/ErbB1), a receptor tyrosine kinase of the ErbB family, which consists of four closely related receptors: HER-1/ErbB1, HER-2/neu/ErbB2, HER-3/ErbB3, and HER-4/ErbB4. Because EGFR is expressed at high levels on the surface of some cancer cells, it has been recognized as an effective anticancer target. EGFR-targeted therapies include monoclonal antibodies (mAbs) and small-molecule tyrosine kinase inhibitors. Tyrosine kinases are an especially important target because they play an important role in the modulation of growth factor signaling. This review highlights various classes of synthetically derived molecules that have been reported in the last few years as potential EGFR-TK inhibitors (TKIs) and their targeted therapies in NSCLC, along with effective strategies for overcoming EGFR-TKI resistance and efforts to develop a novel potent EGFR-TKI as an efficient target of NSCLC treatment in the foreseeable future.

  7. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    Directory of Open Access Journals (Sweden)

    Krause Michael

    2010-07-01

    Full Text Available Abstract Background Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Methods Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Results Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1, early growth response 1 (Egr1, osteopontin (Opn, insulin-like growth factor binding protein 3 (Igfbp3, dual-specificity phosphatase 4 (Dusp4, and tumor-associated antigen L6 (Taal6. Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Conclusion Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute

  8. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins.

    Science.gov (United States)

    Teutschbein, Janka; Haydn, Johannes M; Samans, Birgit; Krause, Michael; Eilers, Martin; Schartl, Manfred; Meierjohann, Svenja

    2010-07-21

    Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase) triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1), early growth response 1 (Egr1), osteopontin (Opn), insulin-like growth factor binding protein 3 (Igfbp3), dual-specificity phosphatase 4 (Dusp4), and tumor-associated antigen L6 (Taal6). Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute new possible molecular players in melanoma development

  9. Oral adverse events associated with tyrosine kinase and mammalian target of rapamycin inhibitors in renal cell carcinoma: a structured literature review

    NARCIS (Netherlands)

    Boers-Doets, Christine B.; Epstein, Joel B.; Raber-Durlacher, Judith E.; Ouwerkerk, Jan; Logan, Richard M.; Brakenhoff, Jan A.; Lacouture, Mario E.; Gelderblom, Hans

    2012-01-01

    Oral adverse events (OAEs) associated with multitargeted tyrosine kinase inhibitors (TKIs) and mammalian target of rapamycin inhibitors (mTORIs) are underestimated but frequent and novel presentations of mucosal manifestations. Because optimal antitumor activity requires maintaining the optimal

  10. Oral adverse events associated with tyrosine kinase and mammalian target of rapamycin inhibitors in renal cell carcinoma: a structured literature review

    NARCIS (Netherlands)

    Boers-Doets, C.B.; Epstein, J.B.; Raber-Durlacher, J.E.; Ouwerkerk, J.; Logan, R.M.; Brakenhoff, J.A.; Lacouture, M.E.; Gelderblom, H.

    2012-01-01

    Background. Oral adverse events (OAEs) associated with multitargeted tyrosine kinase inhibitors (TKIs) and mammalian target of rapamycin inhibitors (mTORIs) are underestimated but frequent and novel presentations of mucosal manifestations. Because optimal antitumor activity requires maintaining the

  11. A validated assay for the simultaneous quantification of six tyrosine kinase inhibitors and two active metabolites in human serum using liquid chromatography coupled with tandem mass spectrometry

    NARCIS (Netherlands)

    Erp, N. van; Wit, D. de; Guchelaar, H.J.; Gelderblom, H.; Hessing, T.J.; Hartigh, J. den

    2013-01-01

    A sensitive, sophisticated and practical bioanalytical assay for the simultaneous determination of six tyrosine kinase inhibitors (imatinib, sunitinib, nilotinib, dasatinib, pazopanib, regorafenib) and two active metabolites (N-desmethyl imatinib and N-desethyl sunitinib) was developed and

  12. Autophosphorylation of the Bacterial Tyrosine-Kinase CpsD Connects Capsule Synthesis with the Cell Cycle in Streptococcus pneumoniae: e1005518

    National Research Council Canada - National Science Library

    Julien Nourikyan; Morten Kjos; Chryslène Mercy; Caroline Cluzel; Cécile Morlot; Marie-Francoise Noirot-Gros; Sébastien Guiral; Jean-Pierre Lavergne; Jan-Willem Veening; Christophe Grangeasse

    2015-01-01

      Bacterial capsular polysaccharides (CPS) are produced by a multi-protein membrane complex, in which a particular type of tyrosine-autokinases named BY-kinases, regulate their polymerization and export...

  13. Protein tyrosine kinases p53/56lyn and p72syk in MHC class I-mediated signal transduction in B lymphoma cells

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Bregenholt, S; Skov, S

    1998-01-01

    Crosslinking of major histocompatibility complex class I (MHC-I) molecules on the surface of human B lymphoma cells was shown to induce protein tyrosine phosphorylation and mobilization of intracellular free calcium. Immunoprecipitations indicated that the protein tyrosine kinases p53/56lyn and p72......syk are among the tyrosine-phosphorylated proteins. The kinetics of phosphorylation of these kinases after MHC-I crosslinking differ from the kinetics observed after crosslinking of the B cell antigen receptor (BCR). Additional experiments were performed with chicken lyn- and syk-negative DT40 B cells...... and the results indicate that these two kinases have different substrate specificity and regulate intracellular free calcium differently in response to MHC-I crosslinking. In addition MHC-I crosslinking of a sIgM-negative DT40 chicken B cell variant results in less activity of tyrosine kinases and less...

  14. Reduced intensity conditioning is superior to nonmyeloablative conditioning for older chronic myelogenous leukemia patients undergoing hematopoietic cell transplant during the tyrosine kinase inhibitor era

    DEFF Research Database (Denmark)

    Warlick, Erica; Ahn, Kwang Woo; Pedersen, Tanya L

    2012-01-01

    Tyrosine kinase inhibitors (TKIs) and reduced intensity conditioning (RIC)/nonmyeloablative (NMA) conditioning hematopoietic cell transplants (HCTs) have changed the therapeutic strategy for chronic myelogenous leukemia (CML) patients. We analyzed post-HCT outcomes of 306 CML patients reported...

  15. Tyrosine kinase inhibition increases functional parkin-Beclin-1 interaction and enhances amyloid clearance and cognitive performance

    Science.gov (United States)

    Lonskaya, Irina; Hebron, Michaeline L; Desforges, Nicole M; Franjie, Alexander; Moussa, Charbel E-H

    2013-01-01

    Tyrosine kinase inhibitors (TKIs) are effective therapies for leukaemia. Alzheimer is a neurodegenerative disease characterized by accumulation of β-amyloid (plaques) and hyper-phosphorylated Tau (tangles). Here we show that AD animals have high levels of insoluble parkin and decreased parkin-Beclin-1 interaction, while peripheral administration of TKIs, including Nilotinib and Bosutinib, increases soluble parkin leading to amyloid clearance and cognitive improvement. Blocking Beclin-1 expression with shRNA or parkin deletion prevents tyrosine kinase (TK) inhibition-induced amyloid clearance, suggesting that functional parkin-Beclin-1 interaction mediates amyloid degradation. Isolation of autophagic vacuoles (AVs) in AD mouse brain shows accumulation of parkin and amyloid, consistent with previous results in AD brains, while Bosutinib and Nilotinib increase parkin-Beclin-1 interaction and result in protein deposition in the lysosome. These data suggest that decreased parkin solubility impedes parkin-Beclin-1 interaction and amyloid clearance. We identified two FDA-approved anti-cancer drugs as potential treatment for AD. Two FDA-approved tyrosine kinase inhibitor drugs, Bosutinib and Nilotinib, are shown to ameliorate Alzheimer's disease pathology in mouse models by increasing soluble parkin and leading to amyloid clearance and cognitive improvement. PMID:23737459

  16. Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells.

    Science.gov (United States)

    Carter, Bing Z; Mak, Po Yee; Mu, Hong; Zhou, Hongsheng; Mak, Duncan H; Schober, Wendy; Leverson, Joel D; Zhang, Bin; Bhatia, Ravi; Huang, Xuelin; Cortes, Jorge; Kantarjian, Hagop; Konopleva, Marina; Andreeff, Michael

    2016-09-07

    BCR-ABL tyrosine kinase inhibitors (TKIs) are effective against chronic myeloid leukemia (CML), but they rarely eliminate CML stem cells. Disease relapse is common upon therapy cessation, even in patients with complete molecular responses. Furthermore, once CML progresses to blast crisis (BC), treatment outcomes are dismal. We hypothesized that concomitant targeting of BCL-2 and BCR-ABL tyrosine kinase could overcome these limitations. We demonstrate increased BCL-2 expression at the protein level in bone marrow cells, particularly in Lin(-)Sca-1(+)cKit(+) cells of inducible CML in mice, as determined by CyTOF mass cytometry. Further, selective inhibition of BCL-2, aided by TKI-mediated MCL-1 and BCL-XL inhibition, markedly decreased leukemic Lin(-)Sca-1(+)cKit(+) cell numbers and long-term stem cell frequency and prolonged survival in a murine CML model. Additionally, this combination effectively eradicated CD34(+)CD38(-), CD34(+)CD38(+), and quiescent stem/progenitor CD34(+) cells from BC CML patient samples. Our results suggest that BCL-2 is a key survival factor for CML stem/progenitor cells and that combined inhibition of BCL-2 and BCR-ABL tyrosine kinase has the potential to significantly improve depth of response and cure rates of chronic-phase and BC CML. Copyright © 2016, American Association for the Advancement of Science.

  17. Identifying resistance mechanisms against five tyrosine kinase inhibitors targeting the ERBB/RAS pathway in 45 cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Zsófia Pénzváltó

    Full Text Available Because of the low overall response rates of 10-47% to targeted cancer therapeutics, there is an increasing need for predictive biomarkers. We aimed to identify genes predicting response to five already approved tyrosine kinase inhibitors. We tested 45 cancer cell lines for sensitivity to sunitinib, erlotinib, lapatinib, sorafenib and gefitinib at the clinically administered doses. A resistance matrix was determined, and gene expression profiles of the subsets of resistant vs. sensitive cell lines were compared. Triplicate gene expression signatures were obtained from the caArray project. Significance analysis of microarrays and rank products were applied for feature selection. Ninety-five genes were also measured by RT-PCR. In case of four sunitinib resistance associated genes, the results were validated in clinical samples by immunohistochemistry. A list of 63 top genes associated with resistance against the five tyrosine kinase inhibitors was identified. Quantitative RT-PCR analysis confirmed 45 of 63 genes identified by microarray analysis. Only two genes (ANXA3 and RAB25 were related to sensitivity against more than three inhibitors. The immunohistochemical analysis of sunitinib-treated metastatic renal cell carcinomas confirmed the correlation between RAB17, LGALS8, and EPCAM and overall survival. In summary, we determined predictive biomarkers for five tyrosine kinase inhibitors, and validated sunitinib resistance biomarkers by immunohistochemistry in an independent patient cohort.

  18. The effect of EGF on electrolyte transport is mediated by tyrosine kinases in the rabbit cortical collecting duct.

    Science.gov (United States)

    Ookawara, S; Tabei, K; Furuya, H; Asano, Y

    1999-01-01

    Epidermal growth factor (EGF) inhibits amiloride-sensitive Na(+) conductance in the apical membrane of the isolated rabbit cortical collecting duct. However, there is no information on the relationship between electrolyte transport and tyrosine kinase. We examined the effect of EGF on transport of potassium and chloride as well as sodium and the roles of tyrosine kinases in the rabbit cortical collecting duct using in vitro isolated tubular microperfusion. Basolateral EGF depolarized the transepithelial voltage in a dose-dependent manner within a concentration range of 10(-10) in 10(-8) M. Basolateral ouabain and luminal amiloride completely abolished EGF-induced depolarization. However, luminal BaCl(2) did not abolish its depolarization. To confirm the mechanism, sodium, potassium, and chloride fluxes were measured in the presence of 10(-10) M EGF. EGF significantly decreased the lumen-to-bath isotope flux of sodium and chloride from 93.6+/-12.5 to 61.1+/-9.6 pmol/mm/min (n = 5, ptransport primarily and potassium and chloride transport secondarily. These effects were blocked by nonspecific tyrosine kinase inhibitors.

  19. Tyrosine kinase-mediated activation of NADPH oxidase enhances proliferative capacity of diabetic vascular smooth muscle cells.

    Science.gov (United States)

    Jeong, Hye Young; Son, Seok Man; Kim, Yong Ki; Yun, Mi Ran; Lee, Sun Mi; Kim, Chi Dae

    2005-02-25

    To investigate a potential molecular basis for a link between diabetes and atherosclerosis, experiments were performed to determine the role of NADPH oxidase in the enhanced proliferative capacity of vascular smooth muscle cells (VSMC) from OLETF rat, an animal model of type 2 diabetes. An enhanced proliferative response to 10% fetal bovine serum with an increased cell cycle progression from G1 to S phase as well as an augmented superoxide generation with an increased NADPH oxidase activity were observed in diabetic versus control VSMC. Both the enhanced proliferation and superoxide generation in diabetic VSMC were significantly attenuated not only by diphenyleneiodonium (10 microM) and apocynin (100 microM), NADPH oxidase inhibitors but also by protein tyrosine kinase inhibitors such as genistein (100 microM) and AG 112 (100 microM). Furthermore, the enhanced NADPH oxidase activity in diabetic VSMC was significantly attenuated by genistein and AG112, but not by daidzein (100 microM), a genistein analogue devoid of protein tyrosine kinase inhibitory properties. Based on these results, it is suggested that the enhanced proliferative capacity of diabetic VSMC is closely related to the activation of NADPH oxidase that is induced through activation of protein tyrosine kinase.

  20. Receptor tyrosine kinase (c-Kit inhibitors: a potential therapeutic target in cancer cells

    Directory of Open Access Journals (Sweden)

    Abbaspour Babaei M

    2016-08-01

    Full Text Available Maryam Abbaspour Babaei,1 Behnam Kamalidehghan,2,3 Mohammad Saleem,4–6 Hasniza Zaman Huri,1,7 Fatemeh Ahmadipour1 1Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 2Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB, Shahrak-e Pajoohesh, 3Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 4Department of Urology, 5Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, 6Section of Molecular Therapeutics & Cancer Health Disparity, The Hormel Institute, Austin, MN, USA; 7Clinical Investigation Centre, University Malaya Medical Centre, Lembah Pantai, Kuala Lumpur, Malaysia Abstract: c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c

  1. Activation of Bacillus subtilis Ugd by the BY-Kinase PtkA Proceeds via Phosphorylation of Its Residue Tyrosine 70

    DEFF Research Database (Denmark)

    Petranovic, Dina; Grangeasse, C.; Macek, B.

    2009-01-01

    -specific phosphoproteomic study indicated that tyrosine 70 is phosphorylated in the Bacillus subtilis UDP-glucose dehydrogenase Ugd. In this study we confirm that this tyrosine 70 is indeed the main residue phosphorylated by the cognate BY-kinase PtkA. Homology-based modeling of the Ugd structure using structures from UDP...

  2. Role of c-Src inhibitor in the regulation of hepatocarcinoma cell ...

    African Journals Online (AJOL)

    It has been discovered that hepatocellular carcinoma (HCC) has high ability of migration and angiogenesis. This study aimed to explore the mechanism of HCC cell migration and angiogenesis. BEL-7402 cell line was used as HCC cell model for investigating the regulation of cell migration upon c-Src inhibitors (PP2 and ...

  3. Regulation of c-Fes Tyrosine Kinase and Biological Activities by N-Terminal Coiled-Coil Oligomerization Domains

    Science.gov (United States)

    Cheng, Haiyun; Rogers, Jim A.; Dunham, Nancy A.; Smithgall, Thomas E.

    1999-01-01

    The cytoplasmic protein-tyrosine kinase Fes has been implicated in cytokine signal transduction, hematopoiesis, and embryonic development. Previous work from our laboratory has shown that active Fes exists as a large oligomeric complex in vitro. However, when Fes is expressed in mammalian cells, its kinase activity is tightly repressed. The Fes unique N-terminal sequence has two regions with strong homology to coiled-coil-forming domains often found in oligomeric proteins. Here we show that disruption or deletion of the first coiled-coil domain upregulates Fes tyrosine kinase and transforming activities in Rat-2 fibroblasts and enhances Fes differentiation-inducing activity in myeloid leukemia cells. Conversely, expression of a Fes truncation mutant consisting only of the unique N-terminal domain interfered with Rat-2 fibroblast transformation by an activated Fes mutant, suggesting that oligomerization is essential for Fes activation in vivo. Coexpression with the Fes N-terminal region did not affect the transforming activity of v-Src in Rat-2 cells, arguing against a nonspecific suppressive effect. Taken together, these findings suggest a model in which Fes activation may involve coiled-coil-mediated interconversion of monomeric and oligomeric forms of the kinase. Mutation of the first coiled-coil domain may activate Fes by disturbing intramolecular coiled-coil interaction, allowing for oligomerization via the second coiled-coil domain. Deletion of the second coiled-coil domain blocks fibroblast transformation by an activated form of c-Fes, consistent with this model. These results provide the first evidence for regulation of a nonreceptor protein-tyrosine kinase by coiled-coil domains. PMID:10567558

  4. The expression of COX-2 in VEGF-treated endothelial cells is mediated through protein tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Pravit Akarasereenont

    2002-01-01

    Full Text Available Cyclooxygenase (COX, existing as the COX-1 and COX-2 isoforms, converts arachidonic acid to prostaglandin H2, which is then further metabolized to various prostaglandins. Vascular endothelial growth factor (VEGF has been shown to play important roles in inflammation and is upregulated by the prostaglandin E series through COX-2 in several cell types. Here, we have investigated the effects of VEGF on the COX isoform expressed in human umbilical vein endothelial cells (HUVEC. The signalling mechanism of the COX isoform expressed in endothelial cells activated with VEGF will be also investigated using the tyrosine kinase inhibitor, genistein, and protein kinase C inhibitor, staurosporine. The activity of COX2 was assessed by measuring the production of 6-keto-prostaglandin F1α in the presence of exogenous arachidonic acids (10 μM, 10 min by enzyme immunoassay. The expression of COX isoform protein was detected by immunoblot using specific antibodies. Untreated HUVEC contained no COX-2 protein. In HUVEC treated with VEGF (0.01-50 ng/ml, COX-2 protein, but not COX-1, and COX activity were increased in a dose-dependent manner. Interestingly, the increased COX-2 protein and activity in response to VEGF (10 ng/ml was inhibited by the tyrosine kinase inhibitor, genistein (0.05-5 μg/ml, but not by the protein kinase C inhibitor, staurosporine (0.1-10 ng/ml. Thus, the induction of COX-2 by VEGF in endothelial cells was mediated through protein tyrosine kinase, and the uses of specific COX-2 inhibitors in these conditions, in which VEGF was involved, might have a role.

  5. Naturally occurring tyrosine kinase inserts block high affinity binding of phospholipase C gamma and Shc to TrkC and neurotrophin-3 signaling.

    Science.gov (United States)

    Guiton, M; Gunn-Moore, F J; Glass, D J; Geis, D R; Yancopoulos, G D; Tavaré, J M

    1995-09-01

    Neurotrophin-3 binds to the receptor tyrosine kinase, TrkC. Several naturally occurring splice variants of TrkC exist including those with 14- and 39-amino acid inserts within the tyrosine kinase homology region. When expressed in fibroblasts, full-length TrkC, but not the kinase insert variants, mediated neurotrophin-3-stimulated cell proliferation. We investigated the molecular basis of this signaling defect. The kinase inserts blocked the ability of TrkC to mediate neurotrophin-3 stimulated c-myc and c-fos transcription and activation of the AP-1 transcriptional complex. In cells expressing full-length TrkC, neurotrophin-3 promoted a sustained activation of mitogen-activated protein kinase; TrkC containing kinase inserts only mediated transient activation of mitogen-activated protein kinase. The kinase inserts specifically blocked neurotrophin-3-stimulated autophosphorylation of the phospholipase C gamma binding site on TrkC (tyrosine 789) resulting in a severe reduction in phospholipase C gamma association with TrkC and its tyrosine phosphorylation. Neurotrophin-3-stimulated phosphorylation of the Shc binding site (tyrosine 485) on TrkC, and tyrosine phosphorylation of Shc itself, was unaffected by the kinase inserts; however, the kinase inserts blocked high affinity Shc association with TrkC. It is proposed that the lack of high affinity binding of Shc and/or phospholipase C gamma to the TrkC kinase insert variants may be responsible for the inability of these variants to bring about a full biological response in fibroblasts.

  6. Receptor tyrosine kinases activate canonical WNT/β-catenin signaling via MAP kinase/LRP6 pathway and direct β-catenin phosphorylation.

    Directory of Open Access Journals (Sweden)

    Pavel Krejci

    Full Text Available Receptor tyrosine kinase signaling cooperates with WNT/β-catenin signaling in regulating many biological processes, but the mechanisms of their interaction remain poorly defined. We describe a potent activation of WNT/β-catenin by FGFR2, FGFR3, EGFR and TRKA kinases, which is independent of the PI3K/AKT pathway. Instead, this phenotype depends on ERK MAP kinase-mediated phosphorylation of WNT co-receptor LRP6 at Ser1490 and Thr1572 during its Golgi network-based maturation process. This phosphorylation dramatically increases the cellular response to WNT. Moreover, FGFR2, FGFR3, EGFR and TRKA directly phosphorylate β-catenin at Tyr142, which is known to increase cytoplasmic β-catenin concentration via release of β-catenin from membranous cadherin complexes. We conclude that signaling via ERK/LRP6 pathway and direct β-catenin phosphorylation at Tyr142 represent two mechanisms used by various receptor tyrosine kinase systems to activate canonical WNT signaling.

  7. Protein tyrosine phosphatase SAP-1 protects against colitis through regulation of CEACAM20 in the intestinal epithelium.

    Science.gov (United States)

    Murata, Yoji; Kotani, Takenori; Supriatna, Yana; Kitamura, Yasuaki; Imada, Shinya; Kawahara, Kohichi; Nishio, Miki; Daniwijaya, Edwin Widyanto; Sadakata, Hisanobu; Kusakari, Shinya; Mori, Munemasa; Kanazawa, Yoshitake; Saito, Yasuyuki; Okawa, Katsuya; Takeda-Morishita, Mariko; Okazawa, Hideki; Ohnishi, Hiroshi; Azuma, Takeshi; Suzuki, Akira; Matozaki, Takashi

    2015-08-04

    Intestinal epithelial cells contribute to regulation of intestinal immunity in mammals, but the detailed molecular mechanisms of such regulation have remained largely unknown. Stomach-cancer-associated protein tyrosine phosphatase 1 (SAP-1, also known as PTPRH) is a receptor-type protein tyrosine phosphatase that is localized specifically at microvilli of the brush border in gastrointestinal epithelial cells. Here we show that SAP-1 ablation in interleukin (IL)-10-deficient mice, a model of inflammatory bowel disease, resulted in a marked increase in the severity of colitis in association with up-regulation of mRNAs for various cytokines and chemokines in the colon. Tyrosine phosphorylation of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 20, an intestinal microvillus-specific transmembrane protein of the Ig superfamily, was greatly increased in the intestinal epithelium of the SAP-1-deficient animals, suggesting that this protein is a substrate for SAP-1. Tyrosine phosphorylation of CEACAM20 by the protein tyrosine kinase c-Src and the consequent association of CEACAM20 with spleen tyrosine kinase (Syk) promoted the production of IL-8 in cultured cells through the activation of nuclear factor-κB (NF-κB). In addition, SAP-1 and CEACAM20 were found to form a complex through interaction of their ectodomains. SAP-1 and CEACAM20 thus constitute a regulatory system through which the intestinal epithelium contributes to intestinal immunity.

  8. Oral adverse events in cancer patients treated with VEGFR-directed multitargeted tyrosine kinase inhibitors.

    Science.gov (United States)

    Yuan, Anna; Kurtz, Sharyn L; Barysauskas, Constance M; Pilotte, Amy P; Wagner, Andrew J; Treister, Nathaniel S

    2015-11-01

    This study characterized the incidence and clinical features of oral adverse events among cancer patients who received VEGFR-directed multitargeted tyrosine kinase inhibitor (VR-TKI) therapies. Electronic medical records of adult cancer patients treated with sunitinib, sorafenib, regorafenib, pazopanib, cabozantinib, imatinib, and bevacizumab therapy at Dana-Farber Cancer Institute from 2009 to 2012 were reviewed. Data collected included patient characteristics, oral and non-oral adverse events, and time to onset. Time oral adverse event-free was the primary outcome. A total of 747 patients with 806 individual courses of therapy were treated for a median of 3.9months with sunitinib (n=161), sorafenib (n=172), regorafenib (n=15), pazopanib (n=132), cabozantinib (n=23), imatinib (n=144), or bevacizumab (n=159) for lung cancer (21%), gastrointestinal stromal tumor (15%), and metastatic renal cell carcinoma (13%). An oral adverse event was reported in 23.7% of patients at a median of 1.9months after starting therapy. The most commonly reported oral adverse event was oral mucosal sensitivity (dysesthesia), occurring in 12% of patients, typically without clinical findings. Multivariate models showed patients who received VR-TKI therapy were at greater risk of any oral adverse event compared with patients treated with imatinib or bevacizumab. Patients receiving VR-TKI therapy who developed an oral adverse event were also at increased risk for hand-foot skin reaction (15.9%). VR-TKI associated oral adverse events are characterized primarily by dysesthesia with lack of clinical signs. Oral dysesthesia is more commonly associated with VR-TKIs than with bevacizumab or imatinib. Management is largely empirical and requires further investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyeon-Ok [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Hong, Sung-Eun [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Kim, Chang Soon [Department of Microbiological Engineering, Kon-Kuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143–701 (Korea, Republic of); Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Park, In-Chul, E-mail: parkic@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Lee, Jin Kyung, E-mail: jklee@kirams.re.kr [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of)

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.

  10. Removal of Soluble Fms-Like Tyrosine Kinase-1 by Dextran Sulfate Apheresis in Preeclampsia.

    Science.gov (United States)

    Thadhani, Ravi; Hagmann, Henning; Schaarschmidt, Wiebke; Roth, Bernhard; Cingoez, Tuelay; Karumanchi, S Ananth; Wenger, Julia; Lucchesi, Kathryn J; Tamez, Hector; Lindner, Tom; Fridman, Alexander; Thome, Ulrich; Kribs, Angela; Danner, Marco; Hamacher, Stefanie; Mallmann, Peter; Stepan, Holger; Benzing, Thomas

    2016-03-01

    Preeclampsia is a devastating complication of pregnancy. Soluble Fms-like tyrosine kinase-1 (sFlt-1) is an antiangiogenic protein believed to mediate the signs and symptoms of preeclampsia. We conducted an open pilot study to evaluate the safety and potential efficacy of therapeutic apheresis with a plasma-specific dextran sulfate column to remove circulating sFlt-1 in 11 pregnant women (20-38 years of age) with very preterm preeclampsia (23-32 weeks of gestation, systolic BP ≥140 mmHg or diastolic BP ≥90 mmHg, new onset protein/creatinine ratio >0.30 g/g, and sFlt-1/placental growth factor ratio >85). We evaluated the extent of sFlt-1 removal, proteinuria reduction, pregnancy continuation, and neonatal and fetal safety of apheresis after one (n=6), two (n=4), or three (n=1) apheresis treatments. Mean sFlt-1 levels were reduced by 18% (range 7%-28%) with concomitant reductions of 44% in protein/creatinine ratios. Pregnancy continued for 8 days (range 2-11) and 15 days (range 11-21) in women treated once and multiple times, respectively, compared with 3 days (range 0-14) in untreated contemporaneous preeclampsia controls (n=22). Transient maternal BP reduction during apheresis was managed by withholding pre-apheresis antihypertensive therapy, saline prehydration, and reducing blood flow through the apheresis column. Compared with infants born prematurely to untreated women with and without preeclampsia (n=22 per group), no adverse effects of apheresis were observed. In conclusion, therapeutic apheresis reduced circulating sFlt-1 and proteinuria in women with very preterm preeclampsia and appeared to prolong pregnancy without major adverse maternal or fetal consequences. A controlled trial is warranted to confirm these findings. Copyright © 2016 by the American Society of Nephrology.

  11. Quantitative assessment of intragenic receptor tyrosine kinase deletions in primary glioblastomas: their prevalence and molecular correlates.

    Science.gov (United States)

    Kastenhuber, Edward R; Huse, Jason T; Berman, Samuel H; Pedraza, Alicia; Zhang, Jianan; Suehara, Yoshiyuki; Viale, Agnes; Cavatore, Magali; Heguy, Adriana; Szerlip, Nicholas; Ladanyi, Marc; Brennan, Cameron W

    2014-05-01

    Intragenic deletion is the most common form of activating mutation among receptor tyrosine kinases (RTK) in glioblastoma. However, these events are not detected by conventional DNA sequencing methods commonly utilized for tumor genotyping. To comprehensively assess the frequency, distribution, and expression levels of common RTK deletion mutants in glioblastoma, we analyzed RNA from a set of 192 glioblastoma samples from The Cancer Genome Atlas for the expression of EGFRvIII, EGFRvII, EGFRvV (carboxyl-terminal deletion), and PDGFRAΔ8,9. These mutations were detected in 24, 1.6, 4.7, and 1.6 % of cases, respectively. Overall, 29 % (55/189) of glioblastomas expressed at least one RTK intragenic deletion transcript in this panel. For EGFRvIII, samples were analyzed by both quantitative real-time PCR (QRT-PCR) and single mRNA molecule counting on the Nanostring nCounter platform. Nanostring proved to be highly sensitive, specific, and linear, with sensitivity comparable or exceeding that of RNA seq. We evaluated the prognostic significance and molecular correlates of RTK rearrangements. EGFRvIII was only detectable in tumors with focal amplification of the gene. Moreover, we found that EGFRvIII expression was not prognostic of poor outcome and that neither recurrent copy number alterations nor global changes in gene expression differentiate EGFRvIII-positive tumors from tumors with amplification of wild-type EGFR. The wide range of expression of mutant alleles and co-expression of multiple EGFR variants suggests that quantitative RNA-based clinical assays will be important for assessing the relative expression of intragenic deletions as therapeutic targets and/or candidate biomarkers. To this end, we demonstrate the performance of the Nanostring assay in RNA derived from routinely collected formalin-fixed paraffin-embedded tissue.

  12. Bosutinib: a second-generation tyrosine kinase inhibitor for chronic myelogenous leukemia.

    Science.gov (United States)

    Stansfield, Lindsay; Hughes, Thomas E; Walsh-Chocolaad, Tracey L

    2013-12-01

    To review clinical trials and main characteristics of bosutinib, a second-generation tyrosine kinase inhibitor (TKI) for treatment of chronic myelogenous leukemia (CML). Pertinent data were identified through a search of PubMed (January 1990-April 2013) using the primary search terms SKI-606, bosutinib, and CML. Additionally, preliminary reports published in abstract form by the American Society of Clinical Oncology and American Society of Hematology (January 1990-April 2013) were screened for inclusion. Clinical Phase 1, 2, and 3 studies reported in English evaluating the safety and efficacy of bosutinib in patients with CML were reviewed. Bosutinib is a TKI of the breakpoint cluster region/Abelson murine leukemia (BCR-ABL) gene approved by the Food and Drug Administration on September 4, 2012, for second-line treatment of chronic phase, accelerated phase, and blast phase CML. In the second-line setting, bosutinib is effective in some patients with CML resistant or intolerant to imatinib, dasatinib, and/or nilotinib, but it is not effective in patients whose disease expresses the T315I point mutation in BCR-ABL. Bosutinib also has been compared with imatinib, the standard first-line treatment, in 502 patients with newly diagnosed chronic phase CML in a Phase 3 trial. Complete cytogenetic response at 12 months, the primary efficacy end point, is similar between bosutinib and imatinib (p = 0.601); therefore, bosutinib is not indicated in the first-line setting. Common adverse events associated with bosutinib include diarrhea, nausea, and vomiting. Grade 3 and 4 adverse events reported in at least 5% of bosutinib-treated patients include elevated serum lipase and liver aminotransferases, anemia, thrombocytopenia, neutropenia, and diarrhea. Currently available clinical trials suggest that bosutinib is generally a safe and effective treatment option for patients with CML who have failed first-line TKIs and who do not express the T315I mutation; however, tolerability

  13. Tyrosine kinase inhibitor therapy-induced changes in humoral immunity in patients with chronic myeloid leukemia.

    Science.gov (United States)

    Rajala, Hanna L M; Missiry, Mohamed El; Ruusila, Anniina; Koskenvesa, Perttu; Brümmendorf, Tim H; Gjertsen, Bjorn T; Janssen, Jeroen; Lotfi, Kourosh; Markevärn, Berit; Olsson-Strömberg, Ulla; Stenke, Leif; Stentoft, Jesper; Richter, Johan; Hjorth-Hansen, Henrik; Kreutzman, Anna; Mustjoki, Satu

    2017-08-01

    Tyrosine kinase inhibitors (TKIs) have well-characterized immunomodulatory effects on T and NK cells, but the effects on the humoral immunity are less well known. In this project, we studied TKI-induced changes in B cell-mediated immunity. We collected peripheral blood (PB) and bone marrow (BM) samples from chronic myeloid leukemia (CML) patients before and during first-line imatinib (n = 20), dasatinib (n = 16), nilotinib (n = 8), and bosutinib (n = 12) treatment. Plasma immunoglobulin levels were measured, and different B cell populations in PB and BM were analyzed with flow cytometry. Imatinib treatment decreased plasma IgA and IgG levels, while dasatinib reduced IgM levels. At diagnosis, the proportion of patients with IgA, IgG, and IgM levels below the lower limit of normal (LLN) was 0, 11, and 6% of all CML patients, respectively, whereas at 12 months timepoint the proportions were 6% (p = 0.13), 31% (p = 0.042) and 28% (p = 0.0078). Lower initial Ig levels predisposed to the development of hypogammaglobulinemia during TKI therapy. Decreased Ig levels in imatinib-treated patients were associated with higher percentages of immature BM B cells. The patients, who had low Ig levels during the TKI therapy, had significantly more frequent minor infections during the follow-up compared with the patients with normal Ig values (33% vs. 3%, p = 0.0016). No severe infections were reported, except recurrent upper respiratory tract infections in one imatinib-treated patient, who developed severe hypogammaglobulinemia. TKI treatment decreases plasma Ig levels, which should be measured in patients with recurrent infections.

  14. Protein tyrosine kinase 7 is essential for tubular morphogenesis of the Wolffian duct.

    Science.gov (United States)

    Xu, Bingfang; Washington, Angela M; Domeniconi, Raquel Fantin; Ferreira Souza, Ana Cláudia; Lu, Xiaowei; Sutherland, Ann; Hinton, Barry T

    2016-04-15

    The Wolffian duct, the proximal end of the mesonephric duct, undergoes non-branching morphogenesis to achieve an optimal length and size for sperm maturation. It is important to examine the mechanisms by which the developing mouse Wolffian duct elongates and coils for without proper morphogenesis, male infertility will result. Here we show that highly proliferative epithelial cells divide in a random orientation relative to the elongation axis in the developing Wolffian duct. Convergent extension (CE)-like of cell rearrangements is required for elongating the duct while maintaining a relatively unchanged duct diameter. The Wolffian duct epithelium is planar polarized, which is characterized by oriented cell elongation, oriented cell rearrangements, and polarized activity of regulatory light chain of myosin II. Conditional deletion of protein tyrosine kinase 7 (PTK7), a regulator of planar cell polarity (PCP), from mesoderm results in loss of the PCP characteristics in the Wolffian duct epithelium. Although loss of Ptk7 does not alter cell proliferation or division orientation, it affects CE and leads to the duct with significantly shortened length, increased diameter, and reduced coiling, which eventually results in loss of sperm motility, a key component of sperm maturation. In vitro experiments utilizing inhibitors of myosin II results in reduced elongation and coiling, similar to the phenotype of Ptk7 knockout. This data suggest that PTK7 signaling through myosin II regulates PCP, which in turn ensures CE-like of cell rearrangements to drive elongation and coiling of the Wolffian duct. Therefore, PTK7 is essential for Wolffian duct morphogenesis and male fertility. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Discoidin domain receptor (DDR) 1 and 2: collagen-activated tyrosine kinase receptors in the cornea.

    Science.gov (United States)

    Mohan, R R; Mohan, R R; Wilson, S E

    2001-01-01

    Discoidin domain receptor (DDR) 1 and 2 have recently been found to serve as receptors for several collagen types. These receptors have been found to modulate cell proliferation and metalloprotease expression in response to collagen stimulation. The purpose of this study was to examine expression of DDR1 and DDR2 in the cornea and to determine the effect of several collagen types on proliferation and response to pro-apoptotic cytokines by corneal fibroblasts. DDR1 and DDR2 mRNAs were detected by RT-PCR. Proteins were detected by immunocytochemistry and immunoprecipitation with Western blotting. Cell proliferation in response to acetic acid-solubilized collagen type I, II, IV, IX or X was determined by cell counting. The effect of these collagen types on Fas-stimulating antibody-induced cell death was determined by trypan blue assay. DDR1 and DDR2 mRNAs were detected in each major human cell type of the cornea. Both were also detected in ex vivo human corneal epithelium. DDR1 and DDR2 proteins were detected in all three major cell types in culture and in human corneal tissue. Collagen types I, II, IV, IX and X stimulated proliferation, but had no effect on Fas-mediated apoptosis, of corneal fibroblasts. DDR1 and DDR2 tyrosine kinase receptors are expressed in the cornea. Collagen-stimulated mitosis of corneal fibroblasts in culture is likely mediated by the DDR receptors. Collagen had no effect on Fas-mediated apoptosis of corneal fibroblasts. Copyright 2001 Academic Press.

  16. UV-Vis spectroscopy and solvatochromism of the tyrosine kinase inhibitor AG-1478.

    Science.gov (United States)

    Khattab, Muhammad; Wang, Feng; Clayton, Andrew H A

    2016-07-05

    The effect of twenty-one solvents on the UV-Vis spectrum of the tyrosine kinase inhibitor AG-1478 was investigated. The absorption spectrum in the range 300-360nm consisted of two partially overlapping bands at approximately 340nm and 330nm. The higher energy absorption band was more sensitive to solvent and exhibited a peak position that varied from 327nm to 336nm, while the lower energy absorption band demonstrated a change in peak position from 340nm to 346nm in non-chlorinated solvents. The fluorescence spectrum of AG-1478 was particularly sensitive to solvent. The wavelength of peak intensity varied from 409nm to 495nm with the corresponding Stokes shift in the range of 64nm to 155nm (4536cm(-1) to 9210cm(-1)). We used a number of methods to assess the relationship between spectroscopic properties and solvent properties. The detailed analysis revealed that for aprotic solvents, the peak position of the emission spectrum in wavenumber scale correlated with the polarity (dielectric constant or ET(30)) of the solvent. In protic solvents, a better correlation was observed between the hydrogen bonding power of the solvent and the position of the emission spectrum. Moreover, the fluorescence quantum yields were larger in aprotic solvents as compared to protic solvents. This analysis underscores the importance of polarity and hydrogen-bonding environment on the spectroscopic properties of AG-1478. These studies will assume relevance in understanding the interaction of AG-1478 in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Estimated glomerular filtration rate changes in patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors.

    Science.gov (United States)

    Yilmaz, Musa; Lahoti, Amit; O'Brien, Susan; Nogueras-González, Graciela M; Burger, Jan; Ferrajoli, Alessandra; Borthakur, Gautam; Ravandi, Farhad; Pierce, Sherry; Jabbour, Elias; Kantarjian, Hagop; Cortes, Jorge E

    2015-11-01

    Chronic use of tyrosine kinase inhibitors (TKIs) may lead to previously unrecognized adverse events. This study evaluated the incidence of acute kidney injury (AKI) and chronic kidney disease (CKD) in chronic-phase (CP) chronic myeloid leukemia (CML) patients treated with imatinib, dasatinib, and nilotinib. Four hundred sixty-eight newly diagnosed CP CML patients treated with TKIs were analyzed. The molecular and cytogenetic response data, creatinine, and glomerular filtration rate (GFR) were followed from the start of therapy to the last follow-up (median, 52 months). GFR was estimated with the Modification of Diet in Renal Disease equation. Nineteen patients (4%) had TKI-associated AKI. Imatinib was associated with a higher incidence of AKI in comparison with dasatinib and nilotinib (P = .014). Fifty-eight patients (14%) developed CKD while they were receiving a TKI; 49 of these patients (84%) did so while they were being treated with imatinib (P < .001). Besides imatinib, age, a history of hypertension, and diabetes mellitus were also associated with the development of CKD. In patients with no CKD at the baseline, imatinib was shown to reduce GFR over time. Interestingly, imatinib did not cause a significant decline in the GFRs of patients with a history of CKD. Imatinib, dasatinib, and nilotinib increased the mean GFR after 3 months of treatment, and nilotinib led with the most significant increase (P < .001). AKI or CKD had no significant impact on overall cytogenetic and molecular response rates or survival. The administration of TKIs may be safe in the setting of CKD in CP CML patients, but close monitoring is still warranted. © 2015 American Cancer Society.

  18. Hepatocellular Toxicity Associated with Tyrosine Kinase Inhibitors: Mitochondrial Damage and Inhibition of Glycolysis

    Directory of Open Access Journals (Sweden)

    Franziska Paech

    2017-06-01

    Full Text Available Tyrosine kinase inhibitors (TKIs are anticancer drugs with a lesser toxicity than classical chemotherapeutic agents but still with a narrow therapeutic window. While hepatotoxicity is known for most TKIs, underlying mechanisms remain mostly unclear. We therefore aimed at investigating mechanisms of hepatotoxicity for imatinib, sunitinib, lapatinib and erlotinib in vitro. We treated HepG2 cells, HepaRG cells and mouse liver mitochondria with TKIs (concentrations 1–100 μM for different periods of time and assessed toxicity. In HepG2 cells maintained with glucose (favoring glycolysis, all TKIs showed a time- and concentration-dependent cytotoxicity and, except erlotinib, a drop in intracellular ATP. In the presence of galactose (favoring mitochondrial metabolism, imatinib, sunitinib and erlotinib showed a similar toxicity profile as for glucose whereas lapatinib was less toxic. For imatinib, lapatinib and sunitinib, cytotoxicity increased in HepaRG cells induced with rifampicin, suggesting formation of toxic metabolites. In contrast, erlotinib was more toxic in HepaRG cells under basal than CYP-induced conditions. Imatinib, sunitinib and lapatinib reduced the mitochondrial membrane potential in HepG2 cells and in mouse liver mitochondria. In HepG2 cells, these compounds increased reactive oxygen species production, impaired glycolysis, and induced apoptosis. In addition, imatinib and sunitinib impaired oxygen consumption and activities of complex I and III (only imatinib, and reduced the cellular GSH pool. In conclusion, imatinib and sunitinib are mitochondrial toxicants after acute and long-term exposure and inhibit glycolysis. Lapatinib affected mitochondria only weakly and inhibited glycolysis, whereas the cytotoxicity of erlotinib could not be explained by a mitochondrial mechanism.

  19. Pharmacologic treatment of downstream of tyrosine kinase 7 congenital myasthenic syndrome.

    Science.gov (United States)

    Witting, Nanna; Vissing, John

    2014-03-01

    Congenital myasthenic syndromes (CMSs) are increasingly recognized as causes of muscle fatigue and weakness. However, treatment of individual syndromes has been described only in small case series. To analyze the information published thus far concerning the effect of pharmacologic treatment of one of the most common subtypes of CMS, downstream of tyrosine kinase 7 (DOK7) CMS. In a search of the PubMed database, we found 16 publications describing the response to medication in 122 individuals with DOK7 deficiency. The last search was performed August 15, 2013. If more than 1 article had been published by the same group, a comparison of the participants in the studies was made, and data appearing more than once were excluded. Positive effects were observed in 6 of 66 patients who received an acetylcholinesterase inhibitor, 65 of 69 patients who received ephedrine or salbutamol, 18 of 29 who were given 3,4-diaminopyridine, and 13 of 16 individuals who received a combination of these drugs. Our analysis found no evidence that age at disease onset, age at treatment start, drug dosage, or mutation type influenced treatment results. The magnitude of treatment effect with ephedrine or salbutamol seems to increase gradually, peaking after approximately 6 to 8 months. Treatment with acetylcholinesterase inhibitors resulted in worsened conditions for most patients. This analysis suggests that (1) ephedrine or salbutamol is the first choice of treatment in DOK7 CMS; (2) 3,4-diaminopyridine may provide additional benefi; (3) it is never too late to initiate treatment; and (4) in contrast to acquired myasthenia gravis, treatment with acetylcholinesterase inhibitors should be avoided in DOK7 CMS.

  20. Molecular analysis of alternative transcripts of equine AXL receptor tyrosine kinase gene

    Directory of Open Access Journals (Sweden)

    Jeong-Woong Park

    2017-10-01

    Full Text Available Objective Since athletic performance is a most importance trait in horses, most research focused on physiological and physical studies of horse athletic abilities. In contrast, the molecular analysis as well as the regulatory pathway studies remain insufficient for evaluation and prediction of horse athletic abilities. In our previous study, we identified AXL receptor tyrosine kinase (AXL gene which was expressed as alternative spliced isoforms in skeletal muscle during exercise. In the present study, we validated two AXL alternative splicing transcripts (named as AXLa for long form and AXLb for short form in equine skeletal muscle to gain insight(s into the role of each alternative transcript during exercise. Methods We validated two isoforms of AXL transcripts in horse tissues by reverse transcriptase polymerase chain reaction (RT-PCR, and then cloned the transcripts to confirm the alternative locus and its sequences. Additionally, we examined the expression patterns of AXLa and AXLb transcripts in horse tissues by quantitative RT-PCR (qRT-PCR. Results Both of AXLa and AXLb transcripts were expressed in horse skeletal muscle and the expression levels were significantly increased after exercise. The sequencing analysis showed that there was an alternative splicing event at exon 11 between AXLa and AXLb transcripts. 3-dimentional (3D prediction of the alternative protein structures revealed that the structural distance of the connective region between fibronectin type 3 (FN3 and immunoglobin (Ig domain was different between two alternative isoforms. Conclusion It is assumed that the expression patterns of AXLa and AXLb transcripts would be involved in regulation of exercise-induced stress in horse muscle possibly through an NF-κB signaling pathway. Further study is necessary to uncover biological function(s and significance of the alternative splicing isoforms in race horse skeletal muscle.

  1. Tyrosine kinase inhibitors and multidrug resistance proteins: interactions and biological consequences.

    Science.gov (United States)

    Azzariti, Amalia; Porcelli, Letizia; Simone, Grazia M; Quatrale, Anna E; Colabufo, Nicola A; Berardi, Francesco; Perrone, Roberto; Zucchetti, Massimo; D'Incalci, Maurizio; Xu, Jian Ming; Paradiso, Angelo

    2010-01-01

    Although multidrug resistance (MDR) proteins are known to play a role in drug resistance and modification pharmacodynamic characteristics of certain conventional chemotherapeutics, information about their interactions with tyrosine kinase inhibitors (TKIs) remains fragmentary and somewhat controversial. The chronic administration of TKIs in many clinical situations strongly suggests that any possible interactions with MDR transporters should be studied as a function of time. For example, short periods of exposure to TKIs could provide insights into the nature of the binding to MDR-related proteins, either as substrates or as inhibitors, whereas prolonged exposure to TKIs could provide insights into cellular responses to binding/inhibition of MDR-related proteins. In this report, we provide evidence that suggests that both Gefitinib and Vandetanib may act as transported substrates for Breast Cancer Resistance Protein (BCRP, ABCG2). Conversely, the interaction of Gefitinib and Vandetanib with P-glycoprotein (PgP, MDR1) appeared to be as inhibitors alone. Consistent with this, short periods of exposure (≤24 h) to either Gefitinib or Vandetanib increased the effectiveness of SN-38, the active metabolite of CPT-11. Conversely, prolonged exposure (5 days) decreased SN-38 effectiveness, and was associated with BCRP up-regulation and reduced cell accumulation in S-phase, possibly though reduced intracellular accumulation of SN-38. This report underlines the needs for more detailed characterisation new biologically targeted anticancer drugs, in particular analysing periods of both short and prolonged drug exposure reflecting potentially distinct situations in the clinic in order to optimise future development in combination with established chemotherapeutic approaches.

  2. Spontaneous Immunity Against the Receptor Tyrosine Kinase ROR1 in Patients with Chronic Lymphocytic Leukemia.

    Directory of Open Access Journals (Sweden)

    Mohammad Hojjat-Farsangi

    Full Text Available ROR1 is a receptor tyrosine kinase expressed in chronic lymphocytic leukemia (CLL and several other malignancies but absent in most adult normal tissues. ROR1 is considered an onco-fetal antigen. In the present study we analysed spontaneous humoral and cellular immunity against ROR1 in CLL patients.Antibodies against ROR1 were analysed in 23 patients and 20 healthy donors by ELISA and Western blot. Purified serum IgG from patients was tested for cytotoxicity against CLL cells using the MTT viability assay. A cellular immune response against ROR1 derived HLA-A2 restricted 9 aa and 16 aa long peptides were analysed using peptide loaded dendritic cells co-cultured with autologous T cells from CLL patients (n = 9 and healthy donors (n = 6. IFN-γ, IL-5 and IL-17A-secreting T cells were assessed by ELISPOT and a proliferative response using a H3-thymidine incorporation assay.The majority of CLL patients had antibodies against ROR1. Significantly higher titers of anti-ROR1 antibodies were noted in patients with non-progressive as compared to progressive disease. The extracellular membrane-close ROR1 KNG domain seemed to be an immunodominant epitope. Ten patients with high titers of anti-ROR1 binding antibodies were tested for cytotoxicity. Five of those had cytotoxic anti-ROR1 antibodies against CLL cells. ROR1-specific IFN-γ and IL-17A producing T cells could be detected in CLL patients, preferentially in non-progressive as compared to patients with progressive disease (p<0.05.ROR1 seemed to spontaneously induce a humoral as well as a T cell response in CLL patients. The data support the notion that ROR1 might be a specific neo-antigen and may serve as a target for immunotherapy.

  3. Alignment independent 3D-QSAR, quantum calculations and molecular docking of Mer specific tyrosine kinase inhibitors as anticancer drugs

    Directory of Open Access Journals (Sweden)

    Fereshteh Shiri

    2016-03-01

    Full Text Available Mer receptor tyrosine kinase is a promising novel cancer therapeutic target in many human cancers, because abnormal activation of Mer has been implicated in survival signaling and chemoresistance. 3D-QSAR analyses based on alignment independent descriptors were performed on a series of 81 Mer specific tyrosine kinase inhibitors. The fractional factorial design (FFD and the enhanced replacement method (ERM were applied and tested as variable selection algorithms for the selection of optimal subsets of molecular descriptors from a much greater pool of such regression variables. The data set was split into 65 molecules as the training set and 16 compounds as the test set. All descriptors were generated by using the GRid INdependent descriptors (GRIND approach. After variable selection, GRIND were correlated with activity values (pIC50 by PLS regression. Of the two applied variable selection methods, ERM had a noticeable improvement on the statistical parameters of PLS model, and yielded a q2 value of 0.77, an rpred2 of 0.94, and a low RMSEP value of 0.25. The GRIND information contents influencing the affinity on Mer specific tyrosine kinase were also confirmed by docking studies. In a quantum calculation study, the energy difference between HOMO and LUMO (gap implied the high interaction of the most active molecule in the active site of the protein. In addition, the molecular electrostatic potential energy at DFT level confirmed results obtained from the molecular docking. The identified key features obtained from the molecular modeling, enabled us to design novel kinase inhibitors.

  4. Structural and Functional Characterization of the JH2 Pseudokinase Domain of JAK Family Tyrosine Kinase 2 (TYK2).

    Science.gov (United States)

    Min, Xiaoshan; Ungureanu, Daniela; Maxwell, Sarah; Hammarén, Henrik; Thibault, Steve; Hillert, Ellin-Kristina; Ayres, Merrill; Greenfield, Brad; Eksterowicz, John; Gabel, Chris; Walker, Nigel; Silvennoinen, Olli; Wang, Zhulun

    2015-11-06

    JAK (Janus family of cytoplasmic tyrosine kinases) family tyrosine kinase 2 (TYK2) participates in signaling through cytokine receptors involved in immune responses and inflammation. JAKs are characterized by dual kinase domain: a tyrosine kinase domain (JH1) that is preceded by a pseudokinase domain (JH2). The majority of disease-associated mutations in JAKs map to JH2, demonstrating its central regulatory function. JH2s were considered catalytically inactive, but JAK2 JH2 was found to have low autoregulatory catalytic activity. Whether the other JAK JH2s share ATP binding and enzymatic activity has been unclear. Here we report the crystal structure of TYK2 JH2 in complex with adenosine 5'-O-(thiotriphosphate) (ATP-γS) and characterize its nucleotide binding by biochemical and biophysical methods. TYK2 JH2 did not show phosphotransfer activity, but it binds ATP and the nucleotide binding stabilizes the protein without inducing major conformational changes. Mutation of the JH2 ATP-binding pocket increased basal TYK2 phosphorylation and downstream signaling. The overall structural characteristics of TYK2 JH2 resemble JAK2 JH2, but distinct stabilizing molecular interactions around helix αAL in the activation loop provide a structural basis for differences in substrate access and catalytic activities among JAK family JH2s. The structural and biochemical data suggest that ATP binding is functionally important for both TYK2 and JAK2 JH2s, whereas the regulatory phosphorylation appears to be a unique property of JAK2. Finally, the co-crystal structure of TYK2 JH2 complexed with a small molecule inhibitor demonstrates that JH2 is accessible to ATP-competitive compounds, which offers novel approaches for targeting cytokine signaling as well as potential therapeutic applications. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. MT1-MMP promotes cell growth and ERK activation through c-Src and paxillin in three-dimensional collagen matrix

    Energy Technology Data Exchange (ETDEWEB)

    Takino, Takahisa; Tsuge, Hisashi; Ozawa, Terumasa [Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Sato, Hiroshi, E-mail: vhsato@kenroku.kanazawa-u.ac.jp [Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)

    2010-06-11

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21{sup WAF1} and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin {alpha}{sub v}{beta}{sub 3} were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.

  6. Bruton's tyrosine kinase (BTK) function is important to the development and expansion of chronic lymphocytic leukemia (CLL).

    Science.gov (United States)

    Woyach, Jennifer A; Bojnik, Engin; Ruppert, Amy S; Stefanovski, Matthew R; Goettl, Virginia M; Smucker, Kelly A; Smith, Lisa L; Dubovsky, Jason A; Towns, William H; MacMurray, Jessica; Harrington, Bonnie K; Davis, Melanie E; Gobessi, Stefania; Laurenti, Luca; Chang, Betty Y; Buggy, Joseph J; Efremov, Dimitar G; Byrd, John C; Johnson, Amy J

    2014-02-20

    Chronic lymphocytic leukemia (CLL) is characterized by constitutive activation of the B-cell receptor (BCR) signaling pathway, but variable responsiveness of the BCR to antigen ligation. Bruton's tyrosine kinase (BTK) shows constitutive activity in CLL and is the target of irreversible inhibition by ibrutinib, an orally bioavailable kinase inhibitor that has shown outstanding activity in CLL. Early clinical results in CLL with other reversible and irreversible BTK inhibitors have been less promising, however, raising the question of whether BTK kinase activity is an important target of ibrutinib and also in CLL. To determine the role of BTK in CLL, we used patient samples and the Eμ-TCL1 (TCL1) transgenic mouse model of CLL, which results in spontaneous leukemia development. Inhibition of BTK in primary human CLL cells by small interfering RNA promotes apoptosis. Inhibition of BTK kinase activity through either targeted genetic inactivation or ibrutinib in the TCL1 mouse significantly delays the development of CLL, demonstrating that BTK is a critical kinase for CLL development and expansion and thus an important target of ibrutinib. Collectively, our data confirm the importance of kinase-functional BTK in CLL.

  7. Protein tyrosine phosphatase receptor delta acts as a neuroblastoma tumor suppressor by destabilizing the aurora kinase a oncogene

    LENUS (Irish Health Repository)

    Meehan, Maria

    2012-02-05

    Abstract Background Protein tyrosine phosphatase receptor delta (PTPRD) is a member of a large family of protein tyrosine phosphatases which negatively regulate tyrosine phosphorylation. Neuroblastoma is a major childhood cancer arising from precursor cells of the sympathetic nervous system which is known to acquire deletions and alterations in the expression patterns of PTPRD, indicating a potential tumor suppressor function for this gene. The molecular mechanism, however, by which PTPRD renders a tumor suppressor effect in neuroblastoma is unknown. Results As a molecular mechanism, we demonstrate that PTPRD interacts with aurora kinase A (AURKA), an oncogenic protein that is over-expressed in multiple forms of cancer, including neuroblastoma. Ectopic up-regulation of PTPRD in neuroblastoma dephosphorylates tyrosine residues in AURKA resulting in a destabilization of this protein culminating in interfering with one of AURKA\\'s primary functions in neuroblastoma, the stabilization of MYCN protein, the gene of which is amplified in approximately 25 to 30% of high risk neuroblastoma. Conclusions PTPRD has a tumor suppressor function in neuroblastoma through AURKA dephosphorylation and destabilization and a downstream destabilization of MYCN protein, representing a novel mechanism for the function of PTPRD in neuroblastoma.

  8. Differential Sensitivity of Src-Family Kinases to Activation by SH3 Domain Displacement

    Science.gov (United States)

    Moroco, Jamie A.; Craigo, Jodi K.; Iacob, Roxana E.; Wales, Thomas E.; Engen, John R.; Smithgall, Thomas E.

    2014-01-01

    Src-family kinases (SFKs) are non-receptor protein-tyrosine kinases involved in a variety of signaling pathways in virtually every cell type. The SFKs share a common negative regulatory mechanism that involves intramolecular interactions of the SH3 domain with the PPII helix formed by the SH2-kinase linker as well as the SH2 domain with a conserved phosphotyrosine residue in the C-terminal tail. Growing evidence suggests that individual SFKs may exhibit distinct activation mechanisms dictated by the relative strengths of these intramolecular interactions. To elucidate the role of the SH3:linker interaction in the regulation of individual SFKs, we used a synthetic SH3 domain-binding peptide (VSL12) to probe the sensitivity of downregulated c-Src, Hck, Lyn and Fyn to SH3-based activation in a kinetic kinase assay. All four SFKs responded to VSL12 binding with enhanced kinase activity, demonstrating a conserved role for SH3:linker interaction in the control of catalytic function. However, the sensitivity and extent of SH3-based activation varied over a wide range. In addition, autophosphorylation of the activation loops of c-Src and Hck did not override regulatory control by SH3:linker displacement, demonstrating that these modes of activation are independent. Our results show that despite the similarity of their downregulated conformations, individual Src-family members show diverse responses to activation by domain displacement which may reflect their adaptation to specific signaling environments in vivo. PMID:25144189

  9. Differential sensitivity of Src-family kinases to activation by SH3 domain displacement.

    Directory of Open Access Journals (Sweden)

    Jamie A Moroco

    Full Text Available Src-family kinases (SFKs are non-receptor protein-tyrosine kinases involved in a variety of signaling pathways in virtually every cell type. The SFKs share a common negative regulatory mechanism that involves intramolecular interactions of the SH3 domain with the PPII helix formed by the SH2-kinase linker as well as the SH2 domain with a conserved phosphotyrosine residue in the C-terminal tail. Growing evidence suggests that individual SFKs may exhibit distinct activation mechanisms dictated by the relative strengths of these intramolecular interactions. To elucidate the role of the SH3:linker interaction in the regulation of individual SFKs, we used a synthetic SH3 domain-binding peptide (VSL12 to probe the sensitivity of downregulated c-Src, Hck, Lyn and Fyn to SH3-based activation in a kinetic kinase assay. All four SFKs responded to VSL12 binding with enhanced kinase activity, demonstrating a conserved role for SH3:linker interaction in the control of catalytic function. However, the sensitivity and extent of SH3-based activation varied over a wide range. In addition, autophosphorylation of the activation loops of c-Src and Hck did not override regulatory control by SH3:linker displacement, demonstrating that these modes of activation are independent. Our results show that despite the similarity of their downregulated conformations, individual Src-family members show diverse responses to activation by domain displacement which may reflect their adaptation to specific signaling environments in vivo.

  10. Identification of in vivo brain-derived neurotrophic factor-stimulated autophosphorylation sites on the TrkB receptor tyrosine kinase by site-directed mutagenesis.

    Science.gov (United States)

    Guiton, M; Gunn-Moore, F J; Stitt, T N; Yancopoulos, G D; Tavaré, J M

    1994-12-02

    Brain-derived neurotrophic factor (BDNF) interacts with the TrkB receptor tyrosine kinase, the tyrosine kinase domain of which has homology with the insulin receptor subfamily of protein kinases. This includes the conservation of three regulatory tyrosines (residues 670, 674, and 675) known to play a crucial role in signal transmission by the insulin receptor (tyrosines 1158, 1162, and 1163). Wild-type TrkB and TrkB mutants with Y670F, Y674F/Y675F, Y751F (the tyrosine reported to be important in phosphatidylinositol 3-kinase binding (Obermeier, A., Lammers, R., Wiesmuller, K. H., June, G., Schlessinger, J., and Ullrich, A. (1993) J. Biol. Chem. 268, 22963-22966)), and K540R (consensus ATP binding lysine) substitutions were transiently expressed in COS cells for analysis of phosphorylation sites by two-dimensional phosphopeptide mapping. TrkB phosphorylation sites were also studied in MG86 cells stably expressing wild-type TrkB. In addition, the mutants were expressed in Chinese hamster ovary cells for analysis of the ability of the receptor to mediate BDNF-stimulated transcription from a 12-O-tetradecanoylphorbol-13-acetate response element (TRE). BDNF stimulated the phosphorylation of wild-type TrkB on multiple tyrosine and serine residues. This phosphorylation occurred on tyrosines 670, 674, and 675 plus two other tyrosines and at least two serines that were not unequivocally identified. Wild-type TrkB mediated a pronounced stimulation of TRE-dependent transcription. A Y674F/Y675F, but not Y670F, substitution dramatically inhibited this response. Surprisingly, in COS cells, a Y751F substitution induced dramatically lower tyrosine and serine phosphorylation at all sites but mediated a normal BDNF-stimulated activation of a TRE. Our results demonstrate a critical role for the phosphorylation of tyrosines 674 and 675 in BDNF-dependent signaling by wild-type TrkB.

  11. Signal transduction by HLA-DR is mediated by tyrosine kinase(s) and regulated by CD45 in activated T cells

    DEFF Research Database (Denmark)

    Odum, Niels; Martin, P J; Schieven, G L

    1991-01-01

    Recently, it was shown that HLA class II molecules on B cells and activated human T cells can transmit signals involving tyrosine phosphorylation of specific proteins, activation of the inositol phospholipid pathway, and release of cytosolic free Ca2+(Ca2+)i. The regulation of class II induced...... signals is poorly understood, however, and it remained unknown whether these pathways were coupled or activated independently. Here we show that a specific inhibitor of protein tyrosine kinases (PTK), herbimycin, abrogated DR-induced elevation of (Ca2+)i in activated human T cells. Genistein, belonging......, but the inhibitory effect of CD45 dominated over the enhancing effect of CD4. These data indicate that PTK activation is obligatory for DR-induced (Ca2+)i responses, suggesting a linkage between these pathways in class II signal transduction. This conclusion is consistent with our observation that in activated human...

  12. The role of small adaptor proteins in the control of oncogenic signaling driven by tyrosine kinases in human cancer

    Science.gov (United States)

    Naudin, Cécile; Chevalier, Clément; Roche, Serge

    2016-01-01

    Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology. PMID:26788993

  13. The role of small adaptor proteins in the control of oncogenic signalingr driven by tyrosine kinases in human cancer.

    Science.gov (United States)

    Naudin, Cécile; Chevalier, Clément; Roche, Serge

    2016-03-08

    Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology.

  14. Dual inhibition of Fes and Flt3 tyrosine kinases potently inhibits Flt3-ITD+ AML cell growth.

    Science.gov (United States)

    Weir, Mark C; Hellwig, Sabine; Tan, Li; Liu, Yao; Gray, Nathanael S; Smithgall, Thomas E

    2017-01-01

    Acute myelogenous leukemia (AML) is often associated with activating mutations in the receptor tyrosine kinase, Flt3, including internal tandem duplications (ITDs) within the regulatory juxtamembrane region. Previous studies have linked Flt3-ITD to the activation of the Fes protein tyrosine kinase in AML, and RNAi-knockdown studies suggest that Fes may be required for Flt3 function. In this study, we tested Fes inhibitors from three different chemical classes for their growth-suppressive activity against Flt3-ITD+ myeloid leukemia cell lines (MV4-11, MOLM-13 and MOLM-14) vs. myeloid cells with wild-type Flt3 (THP-1). All Fes inhibitors selectively inhibited the growth of Flt3-ITD+ AML cells, with IC50 values for diaminopyrimidine and pyrrolopyridine inhibitors ranging from 19 to 166 nM. In contrast, a pyrazolopyrimidine inhibitor was less potent in Flt3-ITD+ AML cells, with IC50 values in the 1.0 μM range. In vitro kinase assays showed that the most potent inhibitors of Flt3-ITD+ AML cell proliferation blocked both Fes and Flt3-ITD kinase activity, while the pyrazolopyrimidine was more selective for Fes vs. Flt3-ITD. All three inhibitors induced significant apoptosis in Flt3-ITD+ AML cells, with potency equivalent to or greater than the established Flt3-ITD inhibitor, tandutinib. Transformation of TF-1 cells with Flt3-ITD resulted in constitutive activation of endogenous Fes, and rendered the cells highly sensitive to all three Fes inhibitors with IC50 values in the 30-500 nM range. The pyrrolopyridine compound also induced apoptotic responses in patient-derived Flt3-ITD+ AML bone marrow cells but not in normal bone marrow mononuclear cells. These results demonstrate that Fes kinase activity contributes to Flt3-ITD signaling in AML, and suggests that dual inhibition of both Flt3 and Fes may provide a therapeutic advantage for the treatment of Flt3-ITD+ AML.

  15. Oxyhemoglobin-induced suppression of voltage-dependent K+ channels in cerebral arteries by enhanced tyrosine kinase activity.

    Science.gov (United States)

    Ishiguro, Masanori; Morielli, Anthony D; Zvarova, Katarina; Tranmer, Bruce I; Penar, Paul L; Wellman, George C

    2006-11-24

    Cerebral vasospasm following aneurysmal subarachnoid hemorrhage (SAH) has devastating consequences. Oxyhemoglobin (oxyhb) has been implicated in SAH-induced cerebral vasospasm as it causes cerebral artery constriction and increases tyrosine kinase activity. Voltage-dependent, Ca(2+)-selective and K(+)-selective ion channels play an important role in the regulation of cerebral artery diameter and represent potential targets of oxyhb. Here we provide novel evidence that oxyhb selectively decreases 4-aminopyridine sensitive, voltage-dependent K(+) channel (K(v)) currents by approximately 30% in myocytes isolated from rabbit cerebral arteries but did not directly alter the activity of voltage-dependent Ca(2+) channels or large conductance Ca(2+)-activated (BK) channels. A combination of tyrosine kinase inhibitors (tyrphostin AG1478, tyrphostin A23, tyrphostin A25, genistein) abolished both oxyhb-induced suppression of K(v) channel currents and oxyhb-induced constriction of isolated cerebral arteries. The K(v) channel blocker 4-aminopyridine also inhibited oxyhb-induced cerebral artery constriction. The observed oxyhb-induced decrease in K(v) channel activity could represent either channel block, or a decrease in K(v) channel density on the plasma membrane. To explore whether oxyhb altered trafficking of K(v) channels to the plasma membrane, we used an antibody generated against an extracellular epitope of K(v)1.5 channels. In the presence of oxyhb, staining of K(v)1.5 on the plasma membrane surface was markedly reduced. Furthermore, oxyhb caused a loss of spatial distinction between staining with K(v)1.5 and the general anti-phosphotyrosine antibody PY-102. We propose that oxyhb-induced suppression of K(v) currents occurs via a mechanism involving enhanced tyrosine kinase activity and channel endocytosis. This novel mechanism may contribute to oxyhb-induced cerebral artery constriction following SAH.

  16. The tyrosine kinase inhibitor imatinib mesylate suppresses uric acid crystal-induced acute gouty arthritis in mice.

    Directory of Open Access Journals (Sweden)

    Laurent L Reber

    Full Text Available Gouty arthritis is caused by the deposition of monosodium urate (MSU crystals in joints. Despite many treatment options for gout, there is a substantial need for alternative treatments for patients unresponsive to current therapies. Tyrosine kinase inhibitors have demonstrated therapeutic benefit in experimental models of antibody-dependent arthritis and in rheumatoid arthritis in humans, but to date, the potential effects of such inhibitors on gouty arthritis has not been evaluated. Here we demonstrate that treatment with the tyrosine kinase inhibitor imatinib mesylate (imatinib can suppress inflammation induced by injection of MSU crystals into subcutaneous air pouches or into the ankle joint of wild type mice. Moreover, imatinib treatment also largely abolished the lower levels of inflammation which developed in IL-1R1-/- or KitW-sh/W-sh mice, indicating that this drug can inhibit IL-1-independent pathways, as well as mast cell-independent pathways, contributing to pathology in this model. Imatinib treatment not only prevented ankle swelling and synovial inflammation when administered before MSU crystals but also diminished these features when administrated after the injection of MSU crystals, a therapeutic protocol more closely mimicking the clinical situation in which treatment occurs after the development of an acute gout flare. Finally, we also assessed the efficiency of local intra-articular injections of imatinib-loaded poly(lactic-co-glycolic acid (PLGA nanoparticles in this model of acute gout. Treatment with low doses of this long-acting imatinib:PLGA formulation was able to reduce ankle swelling in a therapeutic protocol. Altogether, these results raise the possibility that tyrosine kinase inhibitors might have utility in the treatment of acute gout in humans.

  17. The beneficial effects of protein tyrosine kinase inhibition on the circulatory failure induced by endotoxin in the rat.

    Science.gov (United States)

    Fatehi, Mohammad; Anvari, Khaleda; Fatehi-Hassanabad, Zahra

    2002-11-01

    Implication of enhanced activity of tyrosine kinases has been established in the pathophysiology of many diseases associated with local (e.g., atherosclerosis) or systemic (e.g., septic shock) inflammation. The main objective of this study was to elucidate whether tyrosine kinase and nitric oxide were involved in endotoxin-induced impairment of vascular responses to sympathetic nerve stimulation (SNS) in rat isolated mesenteric bed. Therefore, the effects of genistein, an inhibitor of protein tyrosine kinase, and L-NAME (N-nitro-L-arginine methyl ester), an inhibitor of nitric oxide synthase, on endotoxin-induced shock were investigated in the thiopental-anesthetized rats. We also studied the effects of endotoxin on the vasoconstrictor responses to SNS in the rat isolated perfused mesenteric bed. Endotoxin injection (10 mg kg(-1), i.p.) produced a marked hypotension and a reduction of the pressor responses elicited by phenylephrine (0.1, 0.3, and 3 microg kg(-1), i.v.). Pretreatment of the rats with either genistein (10 mg kg(-1) i.p., 2 h before endotoxin injection), L-NAME (0.1 mg kg(-1), i.p., 30 min before endotoxin injection), or a combination of both attenuated the hypotension caused by endotoxin. SNS in the rat isolated perfused mesenteric bed caused a frequency-dependent vasoconstrictor response, which was abolished by tetrodotoxin (10(-7) M), prazoscin (10(-7) M), and guanethidine (10(-7)M). In mesenteric vascular beds removed from rats injected with endotoxin, the vasoconstrictor responses to SNS were markedly impaired. Although genistein and L-NAME pretreatment attenuated the vascular hyporeactivity to phenylephrine, they did not improve the impaired SNS response of the isolated vascular bed of endotoxin-treated animals. These results indicate that genistein and L-NAME pretreatment prevent the hypotension and the delayed hyporeactivity to phenylephrine induced by endotoxin, but they failed to restore the vascular hyporeactivity to SNS.

  18. ABCB1 haplotypes do not influence transport or efficacy of tyrosine kinase inhibitors in vitro

    Directory of Open Access Journals (Sweden)

    Skoglund K

    2013-08-01

    Full Text Available Karin Skoglund,1 Samuel Boiso Moreno,1 Maria Baytar,1 Jan-Ingvar Jönsson,2 Henrik Gréen1,3 1Department of Medical and Health Sciences, 2Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; 3Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden Abstract: Single-nucleotide polymorphisms (SNPs in the gene coding for the efflux-transport protein ABCB1 (P-glycoprotein are commonly inherited as haplotypes. ABCB1 SNPs and haplotypes have been suggested to influence the pharmacokinetics and therapeutic outcome of the tyrosine kinase inhibitor (TKI imatinib, used for treatment of chronic myeloid leukemia (CML. However, no consensus has yet been reached with respect to the significance of variant ABCB1 in CML treatment. Functional studies of variant ABCB1 transport of imatinib as well as other TKIs might aid the interpretation of results from in vivo association studies, but are currently lacking. The aim of this study was to investigate the consequences of ABCB1 variant haplotypes for transport and efficacy of TKIs (imatinib, its major metabolite N-desmethyl imatinib [CGP74588], dasatinib, nilotinib, and bosutinib in CML cells. Variant haplotypes – including the 61A>G, 1199G>A, 1236C>T, 1795G>A, 2677G>T/A, and 3435T>C SNPs – were constructed in ABCB1 complementary DNA and transduced to K562 cells using retroviral gene transfer. The ability of variant cells to express ABCB1 protein and protect against TKI cytotoxicity was investigated. It was found that dasatinib and the imatinib metabolite CGP74588 are effectively transported by ABCB1, while imatinib, nilotinib, and bosutinib are comparatively weaker ABCB1 substrates. None of the investigated haplotypes altered the protective effect of ABCB1 expression against TKI cytotoxicity. These findings imply that the ABCB1 haplotypes investigated here are not likely to influence TKI pharmacokinetics or

  19. Tyrosine kinase domain mutations of EGFR gene in head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Vatte C

    2017-03-01

    Full Text Available Chittibabu Vatte,1 Ali M Al Amri,2 Cyril Cyrus,1 Shahanas Chathoth,1 Sadananda Acharya,3 Tariq Mohammad Hashim,4 Zhara Al Ali,2 Saleh Tawfeeq Alshreadah,2 Ahmed Alsayyah,4 Amein K Al-Ali5 1Department of Genetic Research, Institute for Research and Medical Consultation, University of Dammam, Dammam, 2Department of Internal Medicine, King Fahd Hospital of the University, University of Dammam, Al-Khobar, 3Department of Stemcell Research, Institute for Research and Medical Consultation, 4Department of Pathology, King Fahd Hospital of the University, University of Dammam, Al-Khobar, 5Department of Biochemistry, College of Medicine, University of Dammam, Dammam, Kingdom of Saudi Arabia Background: Epidermal growth factor receptor (EGFR is a commonly altered gene that is identified in various cancers, including head and neck squamous cell carcinoma (HNSCC. Therefore, EGFR is a promising molecular marker targeted by monoclonal antibodies and small molecule inhibitors targeting the tyrosine kinase (TK domain. Objective: The objective of this study was to investigate the spectrum of mutations in exons 18, 19, 20, and 21 of the EGFR gene in HNSCC patients. Materials and methods: This retrospective study included 47 confirmed HNSCC cases. Mutations in the TK domain, exons 18, 19, 20, and 21 of the EGFR gene, were detected by Scorpion® chemistry and ARMS® technologies on Rotor-Gene Q real-time polymerase chain reaction.Results: The tumors exhibited EGFR-TK domain mutations in 57% of cases. Four cases of T790M mutations were reported for the first time among HNSCC patients. Out of the total mutations, L861Q (exon 21, exon 20 insertions and deletions of exon 19 accounted for the majority of mutations (21%, 19%, and 17%, respectively. EGFR mutation status was correlated with the higher grade (P=0.026 and advanced stage (P=0.034 of HNSCC tumors.Conclusion: Higher frequency of EGFR-TK domain mutations together with the presence of the T790M mutation suggests

  20. Oncogenic potential is related to activating effect of cancer single and double somatic mutations in receptor tyrosine kinases

    Science.gov (United States)

    Hashimoto, Kosuke; Rogozin, Igor B.; Panchenko, Anna R.

    2012-01-01

    Aberrant activation of receptor tyrosine kinases (RTKs) is a common feature of many cancer cells. It was previously suggested that the mechanisms of kinase activation in cancer might be linked to transitions between active and inactive states. Here we estimate the effects of single and double cancer mutations on the stability of active and inactive states of the kinase domains from different RTKs. We show that singleton cancer mutations destabilize active and inactive states, however inactive states are destabilized more than the active ones leading to kinase activation. We show that there exists a relationship between the estimate of oncogenic potential of cancer mutation and kinase activation. Namely, more frequent mutations have a higher activating effect, which might allow us to predict the activating effect of the mutations from the mutation spectra. Independent evolutionary analysis of mutation spectra complements this observation and finds the same frequency threshold defining mutation hot spots. We analyze double mutations and report a positive epistasis and additional advantage of doublets with respect to cancer cell fitness. The activation mechanisms of double mutations differ from those of single mutations and double mutation spectrum is found to be dissimilar to the mutation spectrum of singletons. PMID:22753356

  1. Paxillin enables attachment-independent tyrosine phosphorylation of focal adhesion kinase and transformation by RAS

    National Research Council Canada - National Science Library

    Wade, Ramon; Brimer, Nicole; Lyons, Charles; Vande Pol, Scott

    2011-01-01

    ... expression of paxillin and was not supported by HIC5. The support of attachment-independent FAK tyrosine phosphorylation required the paxillin LIM domains and suggested that paxillin might facilitate oncogenic transformation...

  2. Control of EpsE, the phosphoglycosyltransferase initiating exopolysaccharide synthesis in Streptococcus thermophilus, by EpsD tyrosine kinase

    OpenAIRE

    Minic, Zoran; Marie, Corinne; Delorme, Christine; Faurie, Jean-Michel; Mercier, Gérald; Dusko Ehrlich, Stanislav

    2007-01-01

    We studied the roles of Streptococcus thermophilus phosphogalactosyltransferase (EpsE) (the priming enzyme), tyrosine kinase (EpsD), phosphatase (EpsB), and a membrane-associated protein with no known biochemical function (EpsC) in exopolysaccharide (EPS) synthesis. These proteins are well-conserved among bacteria and are usually encoded by clustered genes. Exopolysaccharide synthesis took place in the wild-type strain and a mutant lacking EpsB but not in mutants lacking EpsC, EpsD, or EpsE. ...

  3. Cardiovascular toxicities of BCR-ABL tyrosine kinase inhibitors in chronic myeloid leukemia: preventive strategies and cardiovascular surveillance.

    Science.gov (United States)

    Aghel, Nazanin; Delgado, Diego Hernan; Lipton, Jeffrey Howard

    2017-01-01

    Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment and outcomes of chronic myeloid leukemia (CML). Despite their significant impact on the management of CML, there is growing evidence that TKIs may cause cardiovascular and/or metabolic complications. In this review, we present the current evidence regarding the cardiovascular safety profiles of BCR-ABL TKIs. Methodological challenges of studies that reported the cardiovascular safety of TKIs are discussed. We also propose management strategies for cardiovascular surveillance and risk factor modification during treatment with these agents.

  4. Metformin as a prevention and treatment for preeclampsia: effects on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion and endothelial dysfunction.

    Science.gov (United States)

    Brownfoot, Fiona C; Hastie, Roxanne; Hannan, Natalie J; Cannon, Ping; Tuohey, Laura; Parry, Laura J; Senadheera, Sevvandi; Illanes, Sebastian E; Kaitu'u-Lino, Tu'uhevaha J; Tong, Stephen

    2016-03-01

    Preeclampsia is associated with placental ischemia/hypoxia and secretion of soluble fms-like tyrosine kinase 1 and soluble endoglin into the maternal circulation. This causes widespread endothelial dysfunction that manifests clinically as hypertension and multisystem organ injury. Recently, small molecule inhibitors of hypoxic inducible factor 1α have been found to reduce soluble fms-like tyrosine kinase 1 and soluble endoglin secretion. However, their safety profile in pregnancy is unknown. Metformin is safe in pregnancy and is also reported to inhibit hypoxic inducible factor 1α by reducing mitochondrial electron transport chain activity. The purposes of this study were to determine (1) the effects of metformin on placental soluble fms-like tyrosine kinase 1 and soluble endoglin secretion, (2) to investigate whether the effects of metformin on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion are regulated through the mitochondrial electron transport chain, and (3) to examine its effects on endothelial dysfunction, maternal blood vessel vasodilation, and angiogenesis. We performed functional (in vitro and ex vivo) experiments using primary human tissues to examine the effects of metformin on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion from placenta, endothelial cells, and placental villous explants. We used succinate, mitochondrial complex II substrate, to examine whether the effects of metformin on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion were mediated through the mitochondria. We also isolated mitochondria from preterm preeclamptic placentas and gestationally matched control subjects and measured mitochondrial electron transport chain activity using kinetic spectrophotometric assays. Endothelial cells or whole maternal vessels were incubated with metformin to determine whether it rescued endothelial dysfunction induced by either tumor necrosis factor-α (to endothelial cells) or placenta villous

  5. Cellular settings mediating Src Substrate switching between focal adhesion kinase tyrosine 861 and CUB-domain-containing protein 1 (CDCP1) tyrosine 734.

    Science.gov (United States)

    Wortmann, Andreas; He, Yaowu; Christensen, Melinda E; Linn, Mayla; Lumley, John W; Pollock, Pamela M; Waterhouse, Nigel J; Hooper, John D

    2011-12-09

    Reciprocal interactions between Src family kinases (SFKs) and focal adhesion kinase (FAK) are critical during changes in cell attachment. Recently it has been recognized that another SFK substrate, CUB-domain-containing protein 1 (CDCP1), is differentially phosphorylated during these events. However, the molecular processes underlying SFK-mediated phosphorylation of CDCP1 are poorly understood. Here we identify a novel mechanism in which FAK tyrosine 861 and CDCP1-Tyr-734 compete as SFK substrates and demonstrate cellular settings in which SFKs switch between these sites. Our results show that stable CDCP1 expression induces robust SFK-mediated phosphorylation of CDCP1-Tyr-734 with concomitant loss of p-FAK-Tyr-861 in adherent HeLa cells. SFK substrate switching in these cells is dependent on the level of expression of CDCP1 and is also dependent on CDCP1-Tyr-734 but is independent of CDCP1-Tyr-743 and -Tyr-762. In HeLa CDCP1 cells, engagement of SFKs with CDCP1 is accompanied by an increase in phosphorylation of Src-Tyr-416 and a change in cell morphology to a fibroblastic appearance dependent on CDCP1-Tyr-734. SFK switching between FAK-Tyr-861 and CDCP1-Tyr-734 also occurs during changes in adhesion of colorectal cancer cell lines endogenously expressing these two proteins. Consistently, increased p-FAK-Tyr-861 levels and a more epithelial morphology are seen in colon cancer SW480 cells silenced for CDCP1. Unlike protein kinase Cδ, FAK does not appear to form a trimeric complex with Src and CDCP1. These data demonstrate novel aspects of the dynamics of SFK-mediated cell signaling that may be relevant during cancer progression.

  6. Frontal affinity chromatography with MS detection of EphB2 tyrosine kinase receptor. 1. Comparison with conventional ELISA.

    Science.gov (United States)

    Slon-Usakiewicz, Jacek J; Ng, William; Foster, J Estelle; Dai, Jin-Rui; Deretey, Eugen; Toledo-Sherman, Leticia; Redden, Peter R; Pasternak, Andrew; Reid, Neil

    2004-10-07

    FAC-MS offers a convenient method for measuring the relative binding strengths of ligands in a mixture and enables a rapid ranking and identification of ligands in the mixture as potential hits against immobilized targets. Using immobilized EphB2 receptor tyrosine kinase as the target and known kinase inhibitors, the results of FAC-MS screening (% shift) have been shown to correlate with the binding constant, K(d), and with IC(50) results from the more traditional ELISA assay. Therefore, since FAC-MS can accommodate a wide variety of target proteins, its applications could play a broad role in drug discovery not only at the hit discovery stage but also during the subsequent more rigorous screening at the hit-to-lead and lead optimization stages.

  7. An in silico high-throughput screen identifies potential selective inhibitors for the non-receptor tyrosine kinase Pyk2

    Directory of Open Access Journals (Sweden)

    Meirson T

    2017-05-01

    Full Text Available Tomer Meirson, Abraham O Samson, Hava Gil-Henn Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel Abstract: The non-receptor tyrosine kinase proline-rich tyrosine kinase 2 (Pyk2 is a critical mediator of signaling from cell surface growth factor and adhesion receptors to cell migration, proliferation, and survival. Emerging evidence indicates that signaling by Pyk2 regulates hematopoietic cell response, bone density, neuronal degeneration, angiogenesis, and cancer. These physiological and pathological roles of Pyk2 warrant it as a valuable therapeutic target for invasive cancers, osteoporosis, Alzheimer’s disease, and inflammatory cellular response. Despite its potential as a therapeutic target, no potent and selective inhibitor of Pyk2 is available at present. As a first step toward discovering specific potential inhibitors of Pyk2, we used an in silico high-throughput screening approach. A virtual library of six million lead-like compounds was docked against four different high-resolution Pyk2 kinase domain crystal structures and further selected for predicted potency and ligand efficiency. Ligand selectivity for Pyk2 over focal adhesion kinase (FAK was evaluated by comparative docking of ligands and measurement of binding free energy so as to obtain 40 potential candidates. Finally, the structural flexibility of a subset of the docking complexes was evaluated by molecular dynamics simulation, followed by intermolecular interaction analysis. These compounds may be considered as promising leads for further development of highly selective Pyk2 inhibitors. Keywords: virtual screen, efficiency metrics, MM-GBSA, molecular dynamics

  8. A Dual Role for the Nonreceptor Tyrosine Kinase Pyk2 during the Intracellular Trafficking of Human Papillomavirus 16.

    Science.gov (United States)

    Gottschalk, Elinor Y; Meneses, Patricio I

    2015-09-01

    The infectious process of human papillomaviruses (HPVs) has been studied considerably, and many cellular components required for viral entry and trafficking continue to be revealed. In this study, we investigated the role of the nonreceptor tyrosine kinase Pyk2 during HPV16 pseudovirion infection of human keratinocytes. We found that Pyk2 is necessary for infection and appears to be involved in the intracellular trafficking of the virus. Small interfering RNA-mediated reduction of Pyk2 resulted in a significant decrease in infection but did not prevent viral entry at the plasma membrane. Pyk2 depletion resulted in altered endolysosomal trafficking of HPV16 and accelerated unfolding of the viral capsid. Furthermore, we observed retention of the HPV16 pseudogenome in the trans-Golgi network (TGN) in Pyk2-depleted cells, suggesting that the kinase could be required for the viral DNA to exit the TGN. While Pyk2 has previously been shown to function during the entry of enveloped viruses at the plasma membrane, the kinase has not yet been implicated in the intracellular trafficking of a nonenveloped virus such as HPV. Additionally, these data enrich the current literature on Pyk2's function in human keratinocytes. In this study, we investigated the role of the nonreceptor tyrosine kinase Pyk2 during human papillomavirus (HPV) infection of human skin cells. Infections with high-risk types of HPV such as HPV16 are the leading cause of cervical cancer and a major cause of genital and oropharyngeal cancer. As a nonenveloped virus, HPV enters cells by interacting with cellular receptors and established cellular trafficking routes to ensure that the viral DNA reaches the nucleus for productive infection. This study identified Pyk2 as a cellular component required for the intracellular trafficking of HPV16 during infection. Understanding the infectious pathways of HPVs is critical for developing additional preventive therapies. Furthermore, this study advances our knowledge of

  9. SKI-606 (bosutinib), a novel Src kinase inhibitor, suppresses migration and invasion of human breast cancer cells

    Science.gov (United States)

    Vultur, Adina; Buettner, Ralf; Kowolik, Claudia; Liang, Wei; Smith, David; Boschelli, Frank; Jove, Richard

    2009-01-01

    Src family kinase (SFK) activity is elevated in many human tumors, including breast cancer, and is often associated with aggressive disease. We examined the effects of SKI-606 (bosutinib), a selective SFK inhibitor, on human cancer cells derived from breast cancer patients in order to assess its potential for breast cancer treatment. Our results show that SKI-606 caused a decrease in cell motility and invasion of breast cancer cell lines with an IC50 of ~250 nM, which was also the IC50 for inhibition of c-Src kinase activity in intact tumor cells. These changes were accompanied by an increase in cell-to-cell adhesion and membrane localization of beta-catenin. By contrast, cell proliferation and survival were unaffected by SKI-606 at concentrations sufficient to block cell migration and invasion. Analysis of downstream effectors of Src revealed that SKI-606 inhibits the phosphorylation of focal adhesion kinase (FAK), proline-rich tyrosine kinase 2 (Pyk2) and Crk-associated substrate (p130Cas) with an IC50 similar to inhibition of c-Src kinase. Our findings indicate that SKI-606 inhibits signaling pathways involved in controlling tumor cell motility and invasion, suggesting that SKI-606 is a promising therapeutic for breast cancer. PMID:18483306

  10. ARQ 197, a novel and selective inhibitor of the human c-Met receptor tyrosine kinase with antitumor activity.

    Science.gov (United States)

    Munshi, Neru; Jeay, Sébastien; Li, Youzhi; Chen, Chang-Rung; France, Dennis S; Ashwell, Mark A; Hill, Jason; Moussa, Magdi M; Leggett, David S; Li, Chiang J

    2010-06-01

    The met proto-oncogene is functionally linked with tumorigenesis and metastatic progression. Validation of the receptor tyrosine kinase c-Met as a selective anticancer target has awaited the emergence of selective c-Met inhibitors. Herein, we report ARQ 197 as the first non-ATP-competitive small molecule that selectively targets the c-Met receptor tyrosine kinase. Exposure to ARQ 197 resulted in the inhibition of proliferation of c-Met-expressing cancer cell lines as well as the induction of caspase-dependent apoptosis in cell lines with constitutive c-Met activity. These cellular responses to ARQ 197 were phenocopied by RNAi-mediated c-Met depletion and further demonstrated by the growth inhibition of human tumors following oral administration of ARQ 197 in multiple mouse xenograft efficacy studies. Cumulatively, these data suggest that ARQ 197, currently in phase II clinical trials, is a promising agent for targeting cancers in which c-Met-driven signaling is important for their survival and proliferation.

  11. A receptor tyrosine kinase inhibitor, Tyrphostin A9 induces cancer cell death through Drp1 dependent mitochondria fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Park, So Jung; Park, Young Jun; Shin, Ji Hyun; Kim, Eun Sung [Graduate School of East-West Medical Science, Kyung Hee University, Gyeoggi-Do 446-701 (Korea, Republic of); Hwang, Jung Jin; Jin, Dong-Hoon; Kim, Jin Cheon [Institute for Innovative Cancer Research, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Cho, Dong-Hyung, E-mail: dhcho@khu.ac.kr [Graduate School of East-West Medical Science, Kyung Hee University, Gyeoggi-Do 446-701 (Korea, Republic of)

    2011-05-13

    Highlights: {yields} We screened and identified Tyrphostin A9, a receptor tyrosine kinase inhibitor as a strong mitochondria fission inducer. {yields} Tyrphostin A9 treatment promotes mitochondria dysfunction and contributes to cytotoxicity in cancer cells. {yields} Tyrphostin A9 induces apoptotic cell death through a Drp1-mediated pathway. {yields} Our studies suggest that Tyrphostin A9 induces mitochondria fragmentation and apoptotic cell death via Drp1 dependently. -- Abstract: Mitochondria dynamics controls not only their morphology but also functions of mitochondria. Therefore, an imbalance of the dynamics eventually leads to mitochondria disruption and cell death. To identify specific regulators of mitochondria dynamics, we screened a bioactive chemical compound library and selected Tyrphostin A9, a tyrosine kinase inhibitor, as a potent inducer of mitochondrial fission. Tyrphostin A9 treatment resulted in the formation of fragmented mitochondria filament. In addition, cellular ATP level was decreased and the mitochondrial membrane potential was collapsed in Tyr A9-treated cells. Suppression of Drp1 activity by siRNA or over-expression of a dominant negative mutant of Drp1 inhibited both mitochondrial fragmentation and cell death induced by Tyrpohotin A9. Moreover, treatment of Tyrphostin A9 also evoked mitochondrial fragmentation in other cells including the neuroblastomas. Taken together, these results suggest that Tyrphostin A9 induces Drp1-mediated mitochondrial fission and apoptotic cell death.

  12. BCR-ABL tyrosine kinase inhibitors in chronic myeloid leukemia: using guidelines to make rational treatment choices.

    Science.gov (United States)

    Kantarjian, Hagop; Cortes, Jorge

    2008-03-01

    The success of the BCR-ABL tyrosine kinase inhibitor (TKI) imatinib in improving prognosis in chronic myeloid leukemia (CML) has led to its wide use as first-line therapy at a standard dose of 400 mg daily. As more patients have undergone therapy, the development of molecular and clinical resistance to imatinib has raised further therapeutic challenges. The 2 main approaches to overcoming resistance are imatinib dose escalation and the use of alternative more potent TKIs, such as dasatinib or nilotinib. The phase II SRC/ABL Tyrosine Kinase Inhibition Activity Research Trials (START) of dasatinib have established dasatinib as potent and effective in overcoming imatinib resistance or intolerance in all phases of CML. The most recent treatment guidelines by the National Comprehensive Cancer Network now contain recommendations for using dasatinib in this setting. The issue of when to change from imatinib to an alternative agent in preference to imatinib dose escalation is keenly debated, particularly as new clinical evidence emerges, which highlights the importance of achieving early cytogenetic and molecular responses for a good long-term outcome. Identifying patients in whom a change to dasatinib or nilotinib is more appropriate than imatinib dose escalation is therefore important.

  13. The Molecular Crosstalk between the MET Receptor Tyrosine Kinase and the DNA Damage Response — Biological and Clinical Aspects

    Energy Technology Data Exchange (ETDEWEB)

    Medová, Michaela, E-mail: michaela.medova@dkf.unibe.ch; Aebersold, Daniel M.; Zimmer, Yitzhak, E-mail: michaela.medova@dkf.unibe.ch [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern (Switzerland); Department of Clinical Research, University of Bern, DKF, MEM-E807, Murtenstrasse 35, 3010 Bern (Switzerland)

    2013-12-19

    Radiation therapy remains an imperative treatment modality for numerous malignancies. Enduring significant technical achievements both on the levels of treatment planning and radiation delivery have led to improvements in local control of tumor growth and reduction in healthy tissue toxicity. Nevertheless, resistance mechanisms, which presumably also involve activation of DNA damage response signaling pathways that eventually may account for loco-regional relapse and consequent tumor progression, still remain a critical problem. Accumulating data suggest that signaling via growth factor receptor tyrosine kinases, which are aberrantly expressed in many tumors, may interfere with the cytotoxic impact of ionizing radiation via the direct activation of the DNA damage response, leading eventually to so-called tumor radioresistance. The aim of this review is to overview the current known data that support a molecular crosstalk between the hepatocyte growth factor receptor tyrosine kinase MET and the DNA damage response. Apart of extending well established concepts over MET biology beyond its function as a growth factor receptor, these observations directly relate to the role of its aberrant activity in resistance to DNA damaging agents, such as ionizing radiation, which are routinely used in cancer therapy and advocate tumor sensitization towards DNA damaging agents in combination with MET targeting.

  14. Lyn tyrosine kinase promotes silencing of ATM-dependent checkpoint signaling during recovery from DNA double-strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Yasunori, E-mail: fukumoto@faculty.chiba-u.jp; Kuki, Kazumasa; Morii, Mariko; Miura, Takahito; Honda, Takuya; Ishibashi, Kenichi; Hasegawa, Hitomi; Kubota, Sho; Ide, Yudai; Yamaguchi, Noritaka; Nakayama, Yuji; Yamaguchi, Naoto, E-mail: nyama@faculty.chiba-u.jp

    2014-09-26

    Highlights: • Inhibition of Src family kinases decreased γ-H2AX signal. • Inhibition of Src family increased ATM-dependent phosphorylation of Chk2 and Kap1. • shRNA-mediated knockdown of Lyn increased phosphorylation of Kap1 by ATM. • Ectopic expression of Src family kinase suppressed ATM-mediated Kap1 phosphorylation. • Src is involved in upstream signaling for inactivation of ATM signaling. - Abstract: DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the process by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint.

  15. Comparative evaluation of bone marrow cells morpho-functional activity in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors of the first and second generation

    Directory of Open Access Journals (Sweden)

    I. O. Zhaleyko

    2014-07-01

    Full Text Available The efficiency of using the culture techniques of research for monitoring the patient’s response to the treatment by tyrosine kinase inhibitors of the first and second generation is shown. Thus, the functional activity of bone marrow cells in patients having the optimal treatment response to inhibitors of tyrosine kinases was significantly lower compared with patients with the acquired resistance to the drug, and patients who had CML diagnosed for first time. Furthermore, for patients with the optimal response to the nilotinib therapy, numbers of colonies in semi-solid agar in vitro was lower, than in patients with the optimal response to imatinib. When the leukaemic cell clone becomes resistant to tyrosine kinase inhibitors, the prevalence of early cells of granulocyte-macrophage hematopoietic stem cells is observed in CFU culture which can be an important prognostic factor for choosing the appropriate treatment strategy.

  16. Inhaled tyrosine kinase inhibitors for pulmonary hypertension: a possible future treatment

    Directory of Open Access Journals (Sweden)

    Pitsiou G

    2014-10-01

    Full Text Available Georgia Pitsiou,1 Paul Zarogoulidis,1 Dimitris Petridis,2 Ioannis Kioumis,1 Sofia Lampaki,1 John Organtzis,1 Konstantinos Porpodis,1 Antonis Papaiwannou,1 Theodora Tsiouda,3 Wolfgang Hohenforst-Schmidt,4 Stylianos Kakolyris,5 Konstantinos Syrigos,6 Haidong Huang,7 Qiang Li,7 J Francis Turner,8 Konstantinos Zarogoulidis1 1Pulmonary Department, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, 2Department of Food Technology, School of Food Technology and Nutrition, Alexander Technological Educational Institute, 3Internal Medicine Department, Thegenio Anticancer Hospital, Thessaloniki, Greece; 4II Medical Department, Coburg Regional Hospital, Coburg, Germany; 5Oncology Department, Sotiria Hospital of Chest Diseases, University of Athens, Athens, 6Oncology Department, University General Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece; 7Department of Respiratory Diseases, Changhai Hospital/First Affiliated Hospital of the Second Military Medical University, Shanghai, People’s Republic of China; 8Division of Interventional Pulmonology and Medical Oncology, Cancer Treatment Centers of America, Western Regional Medical Center, Goodyear, AZ, USA Abstract: Pulmonary hypertension is a disease with severe consequences for the human body. There are several diseases and situations that induce pulmonary hypertension and are usually underdiagnosed. Treatments include conventional medical therapies and oral, inhaled, intravenous, and subcutaneous options. Depending on its severity, heart or lung transplant may also be an option. A possible novel treatment could be tyrosine kinase inhibitors. We conducted experiments with three jet nebulizers and three ultrasound nebulizers with erlotinib, gefitinib, and imatinib. Different residual cup designs and residual cup loadings were used in order to identify the best combination to produce droplets of less than 5 µm in mass median aerodynamic diameter. We

  17. rse, a novel receptor-type tyrosine kinase with homology to Axl/Ufo, is expressed at high levels in the brain.

    Science.gov (United States)

    Mark, M R; Scadden, D T; Wang, Z; Gu, Q; Goddard, A; Godowski, P J

    1994-04-08

    We have isolated cDNA clones that encode the human and murine forms of a novel receptor-type tyrosine kinase termed Rse. Sequence analysis indicates that human Rse contains 890 amino acids, with an extracellular region composed of two immunoglobulin-like domains followed by two fibronectin type III domains. Murine Rse contains 880 amino acids and shares 90% amino acid identity with its human counterpart. Rse is structurally similar to the receptor-type tyrosine kinase Axl/Ufo, and the two proteins have 35 and 63% sequence identity in their extracellular and intracellular domains, respectively. To study the synthesis and activation of this putative receptor-type tyrosine kinase, we constructed a version of Rse (termed gD-Rse, where gD represents glycoprotein D) that contains an NH2-terminal epitope tag. NIH3T3 cells were engineered to express gD-Rse, which could be detected at the cell surface by fluorescence-activated cell sorting. Moreover, gD-Rse was rapidly phosphorylated on tyrosine residues upon incubation of the cells with an antibody directed against the epitope tag, suggesting that rse encodes an active tyrosine kinase. In the human tissues we examined, the highest level of expression of rse mRNA was observed in the brain; rse mRNA was also detected in the premegakaryocytopoietic cell lines CMK11-5 and Dami. The gene for rse was localized to human chromosome 15.

  18. Jak2 tyrosine kinase residues glutamic acid 1024 and arginine 1113 form a hydrogen bond interaction that is essential for Jak-STAT signal transduction.

    Science.gov (United States)

    Sandberg, Eric M; VonDerLinden, Dannielle; Ostrov, David A; Sayeski, Peter P

    2004-10-01

    Angiotensin II is a well-known vasoactive peptide, but it can also act as a potent growth factor, partially through activation of the tyrosine kinase Jak2. Activated Jak2 tyrosine phosphorylates and activates members of the Signal Transducers and Activators of Transcription (STAT) family of cytoplasmic transcription factors. Recently, we demonstrated that tryptophan 1020 and glutamic acid 1024 within the Jak2 activation loop are required for Jak2 tyrosine kinase activity. Here, we sought to elucidate the requirement of glutamic acid 1024 for Jak2 function. Using molecular modeling algorithms of the Jak2 kinase domain, we identified a putative interaction between glutamic acid 1024 and an arginine at position 1113. We generated a series of charge-based substitution mutations at position 1113 and found that conversion of arginine 1113 to glutamic acid, alanine, or lysine prevented Jak2 autophosphorylation. Furthermore, mutation of arginine 1113 prevented the following angiotensin II-dependent processes from occurring: (1) Jak2 tyrosine phosphorylation, (2) Jak2/AT1receptor co-association, (3) STAT1 recruitment to the Jak2/AT1receptor complex, (4) STAT1 tyrosine phosphorylation, and (5) STAT-mediated gene expression. We determined that the interaction between glutamic acid 1024 and arginine 1113 consists of two distinct hydrogen bonds. We conclude that these hydrogen bond interactions are critical for Jak2 kinase function and subsequent angiotensin II-dependent activation of the Jak/STAT signaling pathway.

  19. Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Boer, Judith M.; Steeghs, Elisabeth M. P.; Marchante, João R. M.; Boeree, Aurélie; Beaudoin, James J.; Beverloo, H. Berna; Kuiper, Roland P.; Escherich, Gabriele; van der Velden, Vincent H. J.; van der Schoot, C. Ellen; de Groot-Kruseman, Hester A.; Pieters, Rob; den Boer, Monique L.

    2017-01-01

    Approximately 15% of pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL) is characterized by gene expression similar to that of BCR-ABL1-positive disease and unfavorable prognosis. This BCR-ABL1-like subtype shows a high frequency of B-cell development gene aberrations and tyrosine

  20. ABL tyrosine kinase inhibition variable effects on the invasive properties of different triple negative breast cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Clément Chevalier

    Full Text Available The non-receptor tyrosine kinase ABL drives myeloid progenitor expansion in human chronic myeloid leukemia. ABL inhibition by the tyrosine kinase inhibitor nilotinib is a first-line treatment for this disease. Recently, ABL has also been implicated in the transforming properties of solid tumors, including triple negative (TN breast cancer. TN breast cancers are highly metastatic and several cell lines derived from these tumors display high invasive activity in vitro. This feature is associated with the activation of actin-rich membrane structures called invadopodia that promote extracellular matrix degradation. Here, we investigated nilotinib effect on the invasive and migratory properties of different TN breast cancer cell lines. Nilotinib decreased both matrix degradation and invasion in the TN breast cancer cell lines MDA-MB 231 and MDA-MB 468. However, and unexpectedly, nilotinib increased by two-fold the invasive properties of the TN breast cancer cell line BT-549 and of Src-transformed fibroblasts. Both display much higher levels of ABL kinase activity compared to MDA-MB 231. Similar effects were obtained by siRNA-mediated down-regulation of ABL expression, confirming ABL central role in this process. ABL anti-tumor effect in BT-549 cells and Src-transformed fibroblasts was not dependent on EGF secretion, as recently reported in neck and squamous carcinoma cells. Rather, we identified the TRIO-RAC1 axis as an important downstream element of ABL activity in these cancer cells. In conclusion, the observation that TN breast cancer cell lines respond differently to ABL inhibitors could have implications for future therapies.

  1. Three novel patient-derived BCR/ABL mutants show different sensitivity to second and third generation tyrosine kinase inhibitors.

    Science.gov (United States)

    Redaelli, Sara; Mologni, Luca; Rostagno, Roberta; Piazza, Rocco; Magistroni, Vera; Ceccon, Monica; Viltadi, Michela; Flynn, Daniel; Gambacorti-Passerini, Carlo

    2012-11-01

    BCR/ABL (Breakpoint Cluster Region protein/Abelson tyrosine-protein kinase 1) kinase domain (KD) mutations represent the most frequently described mechanism of resistance to the treatment with tyrosine kinase inhibitors (TKI) in patients with chronic myeloid leukemia (CML). Mutations may impair TKI activity by directly or indirectly impairing the drug binding to the protein. We report the discovery of three new BCR/ABL mutations, L248R, T315V, and F317R identified in two patients with CML (L248R and T315V) and in one patient with Ph+ acute lymphoblastic leukemia (ALL) (F317R). Mutations were screened against second-generation (bosutinib, nilotinib, and dasatinib), as well as third-generation TKIs (ponatinib/AP-24534 and DCC-2036). Furthermore, the activity profile of ponatinib and DCC-2036 against a panel of 24 clinically relevant BCR/ABL mutants is presented and compared to the other TKIs. The IC50 values for each TKI against the mutants and the IC50 increase over wild type BCR/ABL (relative resistance, RR) were calculated to define four resistance levels: sensitive (RR ≤ 2), moderately resistant (2 10). L248R and T315V showed high resistance to imatinib, bosutinib, dasatinib, and nilotinib, intermediate resistance to ponatinib, but were sensitive to DCC-2036. Interestingly, F317R showed a moderate resistance to imatinib and nilotinib, but is resistant/highly resistant to dasatinib, bosutinib, ponatinib, and DCC-2036. The availability of drugs activity profiles may become a useful tool for clinicians dealing with the treatment of drug-resistant CML patients.

  2. Os inibidores de tirosino quinase de segunda geração The inhibitors of tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Márcia T. Delamain

    2008-04-01

    Full Text Available O imatinibe tem sido confirmado como terapia de primeira linha para a Leucemia Mielóide Crônica (LMC por apresentar respostas duradouras na maior parte dos pacientes, principalmente nos que se encontram em fase precoce da doença. Entretanto, resistência ou intolerância ao imatinibe podem ocorrer. A resistência ao imatinibe ocorre com muito mais freqüência em fases mais avançadas da doença, sendo a causa mais comum o desenvolvimento de mutações no sítio BCR-ABL. Em face deste problema, novos inibidores de tirosino quinase têm sido desenvolvidos, com maior potência, diminuindo assim a chance de desenvolvimento de resistência ao tratamento. O nilotinibe e o dasatinibe são dois exemplos de inibidores de segunda geração de tirosino quinase recentemente aprovados. Ambos têm demonstrado excelentes resultados em pacientes que desenvolvem resistência ou são intolerantes ao imatinibe.Despite the success with imatinib as the first choice treatment of chronic myeloid leukemia (CML, there is still a subset of patients that do not respond optimally to or are intolerant of this drug or lose response. Imatinib resistance can occur at any phase, but it is more frequent in advanced phases, with mutations in the BCR-ABL kinase domain being the most common mechanism of resistance. More potent tyrosine kinase inhibitors have been developed that can overcome resistance to imatinib. Nilotinib and dasatinib are good examples of new tyrosine kinase inhibitors that are available. With these new agents, patients who develop imatinib resistance or those unable to tolerate imatinib treatment can achieve significant clinical responses.

  3. Origin and evolution of the c-src-transducing avian sarcoma virus PR2257.

    Science.gov (United States)

    Yatsula, B A; Geryk, J; Briestanska, J; Karakoz, I; Svoboda, J; Rynditch, A V; Calothy, G; Dezélée, P

    1994-10-01

    Avian sarcoma virus PR2257 transduced de novo the c-src gene and about 900 bp of 3' non-coding sequences belonging to the src locus. This virus contains only one mutation in the c-src coding sequence causing a reading frame shift after Pro-525. The molecular clone studied was derived from a cell line of transformed quail fibroblasts, C7. It contains endogenous virus (ev) derived sequences in the U5 and 3' non-coding regions, indicating that multiple recombination occurred with endogenous virus. Here we investigated the possible evolution of PR2257 when the original tumour was repeatedly passaged in vivo. After 16 passages a new virus, designated PR2257/16, appeared with a tenfold higher titre. The sequence of PR2257/16 was determined and showed that PR2257/16 resulted from recombination of PR2257 with the env gene of the helper virus (td daPR-C). This recombination expanded the env gene content in PR2257/16 and, in addition, five point mutations occurred in its genome. Because we thought that an endogenous virus might be involved in the mechanism of c-src transduction, we also reinvestigated the presence of ev sequences in PR2257 proviruses from several early passages of the original tumour. We found that in contrast with the first isolate from the C7 cell line, the provirus in these tumours did not contain such sequences. These results do not support the hypothesis that endogenous sequences were involved in the transduction process.

  4. The triple angiokinase inhibitor nintedanib directly inhibits tumor cell growth and induces tumor shrinkage via blocking oncogenic receptor tyrosine kinases.

    Science.gov (United States)

    Hilberg, Frank; Tontsch-Grunt, Ulrike; Baum, Anke; Le, Anh T; Doebele, Robert C; Lieb, Simone; Dianni, Davide; Voss, Tilman; Garin-Chesa, Pilar; Haslinger, Christian; Kraut, Norbert

    2017-12-20

    The triple angiokinase inhibitor nintedanib is an orally available, potent and selective inhibitor of tumor angiogenesis by blocking the tyrosine kinase activities of VEGFR 1-3, PDGFR α and β and FGFR 1-3. Nintedanib has received regulatory approval in second line adenocarcinoma NSCLC in combination with docetaxel. In addition, nintedanib has been approved for the treatment of idiopathic lung fibrosis. Here we report the results from a broad kinase screen that identified additional kinases as targets for nintedanib in the low nanomolar range. Several of these kinases are known to be mutated or overexpressed and are involved in tumor development (DDR1 and 2, TRKA and C, Ret) as well as in fibrotic diseases (eg. DDRs). In tumor cell lines displaying molecular alterations in potential nintedanib targets, the inhibitor demonstrates direct anti-proliferative effects: in the NSCLC cell line NCI-H1703 carrying a PDGFRα amplification; the gastric cancer cell line KatoIII and the breast cancer cell line MFM223 both driven by a FGFR2 amplification; AN3CA (endometrial carcinoma) bearing a mutated FGFR2; the AML cell lines MOLM-13 and MV-4-11-B with FLT3 mutations; the NSCLC adenocarcinoma LC-2/ad harboring a CCDC6-RET fusion. However, potent kinase inhibition does not strictly translate into anti-proliferative activity as demonstrated in the TRKA dependent cell lines CUTO-3 and KM-12. Importantly, nintedanib treatment of NCI-H1703 tumor xenografts triggered effective tumor shrinkage, indicating the direct effect on the tumor cells on top of the antiangiogenic effect on the tumor stroma. These findings will be instructive to guide future genome-based clinical trials with nintedanib. The American Society for Pharmacology and Experimental Therapeutics.

  5. Patients harboring EGFR mutation after primary resistance to crizotinib and response to EGFR-tyrosine kinase inhibitor

    Directory of Open Access Journals (Sweden)

    Wang WX

    2016-01-01

    Full Text Available Wenxian Wang,1 Xiaowen Jiang,1 Zhengbo Song,1,2 Yiping Zhang1,2 1Department of Chemotherapy, Zhejiang Cancer Hospital, 2Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, Zhejiang, People’s Republic of China Abstract: Anaplastic lymphoma kinase (ALK rearrangement lung cancer responds to ALK tyrosine kinase inhibitors. It is known that many cases ultimately acquired resistance to crizotinib. However, a case of primary resistance is rare. We present a case of harboring exon 19 deletion in epidermal growth factor receptor in ALK rearranged lung adenocarcinoma, who experienced a partial tumor response to icotinib after failure with crizotinib therapy and chemotherapy. Considering the partial response, we conclude that it is important to find the cause of resistance to crizotinib. We detected gene mutations with plasma by the next-generation sequencing; the next-generation sequencing demonstrates an attractive system to identify mutations improving the outcome of patients with a deadly disease. Keywords: non-small cell lung cancer, anaplastic lymphoma kinase, crizotinib, epidermal growth factor receptor

  6. Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and β-catenin signaling

    Directory of Open Access Journals (Sweden)

    Cabot Myles C

    2010-06-01

    GSLs (globotriaosylceramide Gb3, globotetraosylceramide Gb4 on GSL-enriched microdomain (GEM, activated cSrc kinase, decreased β-catenin phosphorylation, and increased nuclear β-catenin. These consequently increased MDR1 promoter activation and its expression. Conversely, MBO-asGCS treatments decreased globo series GSLs (Gb3, Gb4, cSrc kinase and nuclear β-catenin, and suppressed MDR-1 expression in dose-dependent pattern. Conclusion This study demonstrates, for the first time, that GCS upregulates MDR1 expression modulating drug resistance of cancer. GSLs, in particular globo series GSLs mediate gene expression of MDR1 through cSrc and β-catenin signaling pathway.

  7. Araguspongine C Induces Autophagic Death in Breast Cancer Cells through Suppression of c-Met and HER2 Receptor Tyrosine Kinase Signaling

    Directory of Open Access Journals (Sweden)

    Mohamed R. Akl

    2015-01-01

    Full Text Available Receptor tyrosine kinases are key regulators of cellular growth and proliferation. Dysregulations of receptor tyrosine kinases in cancer cells may promote tumorigenesis by multiple mechanisms including enhanced cell survival and inhibition of cell death. Araguspongines represent a group of macrocyclic oxaquinolizidine alkaloids isolated from the marine sponge Xestospongia species. This study evaluated the anticancer activity of the known oxaquinolizidine alkaloids araguspongines A, C, K and L, and xestospongin B against breast cancer cells. Araguspongine C inhibited the proliferation of multiple breast cancer cell lines in vitro in a dose-dependent manner. Interestingly, araguspongine C-induced autophagic cell death in HER2-overexpressing BT-474 breast cancer cells was characterized by vacuole formation and upregulation of autophagy markers including LC3A/B, Atg3, Atg7, and Atg16L. Araguspongine C-induced autophagy was associated with suppression of c-Met and HER2 receptor tyrosine kinase activation. Further in-silico docking studies and cell-free Z-LYTE assays indicated the potential of direct interaction between araguspongine C and the receptor tyrosine kinases c-Met and HER2 at their kinase domains. Remarkably, araguspongine C treatment resulted in the suppression of PI3K/Akt/mTOR signaling cascade in breast cancer cells undergoing autophagy. Induction of autophagic death in BT-474 cells was also associated with decreased levels of inositol 1,4,5-trisphosphate receptor upon treatment with effective concentration of araguspongine C. In conclusion, results of this study are the first to reveal the potential of araguspongine C as an inhibitor to receptor tyrosine kinases resulting in the induction of autophagic cell death in breast cancer cells.

  8. Protein kinase C-dependent dephosphorylation of tyrosine hydroxylase requires the B56δ heterotrimeric form of protein phosphatase 2A.

    Directory of Open Access Journals (Sweden)

    Jung-Hyuck Ahn

    Full Text Available Tyrosine hydroxylase, which plays a critical role in regulation of dopamine synthesis, is known to be controlled by phosphorylation at several critical sites. One of these sites, Ser40, is phosphorylated by a number of protein kinases, including protein kinase A. The major protein phosphatase that dephosphorylates Ser40 is protein phosphatase-2A (PP2A. A recent study has also linked protein kinase C to the dephosphorylation of Ser40 [1], but the mechanism is unclear. PP2A isoforms are comprised of catalytic, scaffold, and regulatory subunits, the regulatory B subunits being able to influence cellular localization and substrate selection. In the current study, we find that protein kinase C is able to phosphorylate a key regulatory site in the B56δ subunit leading to activation of PP2A. In turn, activation of the B56δ-containing heterotrimeric form of PP2A is responsible for enhanced dephosphorylation of Ser40 of tyrosine hydroylase in response to stimulation of PKC. In support of this mechanism, down-regulation of B56δ expression in N27 cells using RNAi was found to increase dopamine synthesis. Together these studies reveal molecular details of how protein kinase C is linked to reduced tyrosine hydroxylase activity via control of PP2A, and also add to the complexity of protein kinase/protein phosphatase interactions.

  9. Prevention of pulmonary vascular and myocardial remodeling by the combined tyrosine and serine-/threonine kinase inhibitor, sorafenib, in pulmonary hypertension and right heart failure

    Directory of Open Access Journals (Sweden)

    M. Klein

    2008-06-01

    Full Text Available Inhibition of tyrosine kinases can reverse pulmonary hypertension but little is known about the role of serine-/threonine kinases in vascular and myocardial remodeling. We investigated the effects of sorafenib, an inhibitor of the tyrosine kinases VEGFR, PDGFR and c-kit as well as the serine-/threonine kinase Raf-1, in pulmonary hypertension and right ventricular (RV pressure overload. In monocrotaline treated rats, sorafenib (10 mg·kg–1·d–1 p.o. reduced pulmonary arterial pressure, pulmonary artery muscularization and RV hypertrophy, and improved systemic hemodynamics (table 1. Sorafenib prevented phosphorylation of Raf-1 and suppressed activation of downstream signaling pathways (Erk 1/2. After pulmonary banding, sorafenib, but not the PDGFR/c-KIT/ABL-inhibitor imatinib reduced RV mass and RV filling pressure significantly. Congruent with these results, sorafenib only prevented ERK phosphorylation and vasopressin induced hypertrophy of the cardiomyocyte cell line H9c2 dose dependently (IC50 = 300 nM. Combined inhibition of tyrosine and serine-/threonine kinases by sorafenib prevents vascular and cardiac remodeling in pulmonary hypertension, which is partly mediated via inhibition of the Raf kinase pathway.

  10. Dual Inhibition of Bruton's Tyrosine Kinase and Phosphoinositide-3-Kinase p110δ as a Therapeutic Approach to Treat Non-Hodgkin's B Cell Malignancies.

    Science.gov (United States)

    Alfaro, Jennifer; Pérez de Arce, Felipe; Belmar, Sebastián; Fuentealba, Glenda; Avila, Patricio; Ureta, Gonzalo; Flores, Camila; Acuña, Claudia; Delgado, Luz; Gaete, Diana; Pujala, Brahmam; Barde, Anup; Nayak, Anjan K; Upendra, T V R; Patel, Dhananjay; Chauhan, Shailender; Sharma, Vijay K; Kanno, Stacy; Almirez, Ramona G; Hung, David T; Chakravarty, Sarvajit; Rai, Roopa; Bernales, Sebastián; Quinn, Kevin P; Pham, Son M; McCullagh, Emma

    2017-05-01

    Although new targeted therapies, such as ibrutinib and idelalisib, have made a large impact on non-Hodgkin's lymphoma (NHL) patients, the disease is often fatal because patients are initially resistant to these targeted therapies, or because they eventually develop resistance. New drugs and treatments are necessary for these patients. One attractive approach is to inhibit multiple parallel pathways that drive the growth of these hematologic tumors, possibly prolonging the duration of the response and reducing resistance. Early clinical trials have tested this approach by dosing two drugs in combination in NHL patients. We discovered a single molecule, MDVN1003 (1-(5-amino-2,3-dihydro-1H-inden-2-yl)-3-(8-fluoro-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine), that inhibits Bruton's tyrosine kinase and phosphatidylinositol-3-kinase δ, two proteins regulated by the B cell receptor that drive the growth of many NHLs. In this report, we show that this dual inhibitor prevents the activation of B cells and inhibits the phosphorylation of protein kinase B and extracellular signal-regulated kinase 1/2, two downstream mediators that are important for this process. Additionally, MDVN1003 induces cell death in a B cell lymphoma cell line but not in an irrelevant erythroblast cell line. Importantly, we found that this orally bioavailable dual inhibitor reduced tumor growth in a B cell lymphoma xenograft model more effectively than either ibrutinib or idelalisib. Taken together, these results suggest that dual inhibition of these two key pathways by a single molecule could be a viable approach for treatment of NHL patients. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Strategies of targeting the extracellular domain of RON tyrosine kinase receptor for cancer therapy and drug delivery.

    Science.gov (United States)

    Zarei, Omid; Benvenuti, Silvia; Ustun-Alkan, Fulya; Hamzeh-Mivehroud, Maryam; Dastmalchi, Siavoush

    2016-12-01

    Cancer is one of the most important life-threatening diseases in the world. The current efforts to combat cancer are being focused on molecular-targeted therapies. The main purpose of such approaches is based on targeting cancer cell-specific molecules to minimize toxicity for the normal cells. RON (Recepteur d'Origine Nantais) tyrosine kinase receptor is one of the promising targets in cancer-targeted therapy and drug delivery. In this review, we will summarize the available agents against extracellular domain of RON with potential antitumor activities. The presented antibodies and antibody drug conjugates against RON in this review showed wide spectrum of in vitro and in vivo antitumor activities promising the hope for them entering the clinical trials. Due to critical role of extracellular domain of RON in receptor activation, the development of therapeutic agents against this region could lead to fruitful outcome in cancer therapy.

  12. Primary cilia and coordination of receptor tyrosine kinase (RTK) and transforming growth factor β (TGF-β) signaling

    DEFF Research Database (Denmark)

    Christensen, Søren Tvorup; Morthorst, Stine Kjær; Mogensen, Johanne Bay

    2017-01-01

    Since the beginning of the millennium, research in primary cilia has revolutionized our way of understanding how cells integrate and organize diverse signaling pathways during vertebrate development and in tissue homeostasis. Primary cilia are unique sensory organelles that detect changes...... in their extracellular environment and integrate and transmit signaling information to the cell to regulate various cellular, developmental, and physiological processes. Many different signaling pathways have now been shown to rely on primary cilia to function properly, and mutations that lead to ciliary dysfunction...... are at the root of a pleiotropic group of diseases and syndromic disorders called ciliopathies. In this review, we present an overview of primary cilia-mediated regulation of receptor tyrosine kinase (RTK) and transforming growth factor β (TGF-β) signaling. Further, we discuss how defects in the coordination...

  13. Inibidores de tirosino quinase na leucemia mieloide crônica Tyrosine kinase inhibitors in chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Nei R. Lopes

    2009-01-01

    Full Text Available A leucemia mieloide crônica (LMC é uma neoplasia da medula óssea originada da translocação entre os cromossomos 9 e 22 t(9:22(q34;11 e forma o gene híbrido BCR-ABL, que possui intensa atividade tirosino quinase, sendo responsável pela proliferação das células tumorais. Um grande avanço no tratamento da LMC foi conquistado com o surgimento dos inibidores da tirosino quinase, entre eles o imatinibe, que vem demonstrando ser efetivo na maior parte dos pacientes com LMC por apresentar respostas duradouras. Entretanto, há pacientes resistentes ou que desenvolvem resistência durante o tratamento com esta droga; sendo assim, inibidores de tirosino quinase de segunda geração, como o dasatinibe e o nilotinibe, foram desenvolvidos apresentando maior potência com a finalidade de diminuir a chance de desenvolvimento de resistência. O bosutinibe e o INNO-406 estão sendo estudados para atender pacientes resistentes às drogas anteriormente citadas e também com a finalidade de diminuir efeitos colaterais das mesmas; entretanto, eles ainda estão em fase clínica de estudo. Há ainda outras drogas inibidoras da tirosino quinase que estão em desenvolvimento na fase clínica ou pré-clínica. A partir do desenvolvimento destas novas drogas, múltiplas opções de tratamento para os pacientes com LMC poderão ser propostas, podendo, desta forma, individualizar o tratamento de acordo com o que cada paciente necessita. Este estudo visa descrever as drogas antineoplásicas que têm como mecanismo de ação a inibição da enzima tirosino quinase na LMC.Chronic myeloid leukemia (CML is a neoplastic transformation of the hematopoietic system resulting from a t(9;22(q34;q11 translocation forming a BCR-ABL hybrid gene which has intense enzyme tyrosine kinase activity responsible for the proliferation of tumor cells. A dramatic positive response was achieved in CML patients with imatinib. This drug is effective in most patients because it presents long

  14. Risk of severe rash in cancer patients treated with EGFR tyrosine kinase inhibitors: a systematic review and meta-analysis.

    Science.gov (United States)

    Zhang, Xi; Ran, Yu-Ge; Wang, Kun-Jie

    2016-12-01

    We performed a meta-analysis to evaluate the incidence and risk factors of severe rash associated with the use of EGFR tyrosine kinase inhibitors (TKIs). PubMed, EMBASE and oncology conference proceedings were searched for articles published till March 2016. A total of 18,309 patients from 37 randomized controlled trials were available for the meta-analysis. The overall incidence for severe rash was 6.6% (95% CI: 5.2-8.3%) among patients receiving EGFR-TKIs. The use of EGFR-TKIs significantly increased the risk of developing severe rash (risk ratio: 7.70; 95% CI: 5.79-10.23) in cancer patients. On subgroup analysis, the increased risk of severe rash was driven predominantly by drug type (p = 0.002). EGFR-TKIs significantly increase the risk of developing severe rash in cancer patients.

  15. The continuing role of epidermal growth factor receptor tyrosine kinase inhibitors in advanced squamous cell carcinoma of the lung.

    Science.gov (United States)

    Tan, Wan Ling; Ng, Quan-Sing

    2016-02-01

    Squamous cell carcinoma (SCC) of the lung represents about 20-30% of non-small cell lung cancers (NSCLC) and is associated with a poorer prognosis with limited treatment options. Erlotinib is an approved, standard second-line therapy in this setting, besides docetaxel. The LUX-Lung 8 study has shown superior overall survival (OS), progression-free survival (PFS), as well as disease control rates for treatment with afatinib compared to erlotinib in this head-to-head trial in patients with previously treated advanced SCC of the lung, with manageable side effect profile. This is the first and largest prospective phase III trial comparing two different tyrosine kinase inhibitors in patients with advanced SCC of the lung. Whether the results would be practice-changing remains to be seen, especially with the advent of novel immunotherapeutic agents such as nivolumab, which is recently approved for advanced lung SCC.

  16. Anti-VEGF strategies - from antibodies to tyrosine kinase inhibitors: background and clinical development in human cancer.

    LENUS (Irish Health Repository)

    Korpanty, Grzegorz

    2012-01-01

    Tumour angiogenesis (formation of new blood vessels supporting tumour growth and metastasis) is a result of complex interactions between the tumour and the surrounding microenvironment. Targeting tumours with anti-angiogenic therapy remains an exciting area of preclinical and clinical studies. Although many significant advances have been achieved and the clinical use of anti-angiogenic drugs is now well recognized in many solid malignancies, these therapies fall short of their anticipated clinical benefits and leave many unanswered questions like exact mechanism of action, patients\\' selection and monitoring response to anti-angiogenic drugs. Tumour angiogenesis is controlled by complex signaling cascades and ongoing research into molecular mechanisms of tumour angiogenesis not only helps to understand its basic mechanisms but hopefully will identify new therapeutic targets. In 2012, both monoclonal antibodies and small molecule tyrosine kinase inhibitors remain the two major clinically useful therapeutic options that interfere with tumour angiogenesis in many solid malignancies.

  17. The receptor tyrosine kinase gene linotte is required for neuronal pathway selection in the Drosophila mushroom bodies.

    Science.gov (United States)

    Moreau-Fauvarque, C; Taillebourg, E; Boissoneau, E; Mesnard, J; Dura, J M

    1998-11-01

    The linotte (lio) mutant was first isolated as a memory mutant. The lio gene encodes a putative receptor tyrosine kinase (RTK), homologous to the human protein RYK. This gene has been independently identified in a screen for embryonic nervous system axonal guidance defects and called derailed (drl). Here, we report that linotte mutants present structural brain defects in the adult central complex (CX) and mushroom bodies (MB). linotte and derailed are allelic for this phenotype, which can be rescued by a drl+ transgene. The Lio RTK is expressed preferentially in the adult CX and MB. Our results suggest that, analogous to its role within the embryonic nervous system, the Lio RTK is involved in neuronal pathway selection during adult brain development. Copyright 1998 Elsevier Science Ireland Ltd. All Rights Reserved

  18. Melanoma-associated antigen expression and the efficacy of tyrosine kinase inhibitors in head and neck cancer

    DEFF Research Database (Denmark)

    Hartmann, Stefan; Brands, Roman C; Küchler, Nora

    2015-01-01

    Melanoma-associated antigen (MAGE) has been identified in a variety of types of cancer. The expression of several MAGE subgroups is correlated with poor prognosis and chemotherapeutic resistance. One target of chemotherapeutic treatment in head and neck cancer is the epidermal growth factor...... receptor (EGFR). The efficacy of tyrosine kinase inhibitors (TKI) in the context of melanoma-associated antigens is discussed in the present study. Five human squamous cell carcinoma cell lines were treated with the EGFR TKIs, erlotinib and gefitinib. The efficacy of these agents was measured using...... a crystal violet assay. Furthermore, the expression levels of MAGE-A1, -A5, -A8, -A9, -A11 and -A12 were determined by reverse transcription-quantitative polymerase chain reaction. The association between TKI efficacy and MAGE-A expression was analyzed by linear regression. The cell lines revealed...

  19. An iterative compound screening contest method for identifying target protein inhibitors using the tyrosine-protein kinase Yes.

    Science.gov (United States)

    Chiba, Shuntaro; Ishida, Takashi; Ikeda, Kazuyoshi; Mochizuki, Masahiro; Teramoto, Reiji; Taguchi, Y-H; Iwadate, Mitsuo; Umeyama, Hideaki; Ramakrishnan, Chandrasekaran; Thangakani, A Mary; Velmurugan, D; Gromiha, M Michael; Okuno, Tatsuya; Kato, Koya; Minami, Shintaro; Chikenji, George; Suzuki, Shogo D; Yanagisawa, Keisuke; Shin, Woong-Hee; Kihara, Daisuke; Yamamoto, Kazuki Z; Moriwaki, Yoshitaka; Yasuo, Nobuaki; Yoshino, Ryunosuke; Zozulya, Sergey; Borysko, Petro; Stavniichuk, Roman; Honma, Teruki; Hirokawa, Takatsugu; Akiyama, Yutaka; Sekijima, Masakazu

    2017-09-20

    We propose a new iterative screening contest method to identify target protein inhibitors. After conducting a compound screening contest in 2014, we report results acquired from a contest held in 2015 in this study. Our aims were to identify target enzyme inhibitors and to benchmark a variety of computer-aided drug discovery methods under identical experimental conditions. In both contests, we employed the tyrosine-protein kinase Yes as an example target protein. Participating groups virtually screened possible inhibitors from a library containing 2.4 million compounds. Compounds were ranked based on functional scores obtained using their respective methods, and the top 181 compounds from each group were selected. Our results from the 2015 contest show an improved hit rate when compared to results from the 2014 contest. In addition, we have successfully identified a statistically-warranted method for identifying target inhibitors. Quantitative analysis of the most successful method gave additional insights into important characteristics of the method used.

  20. Bruton's tyrosine kinase mediates the synergistic signalling between TLR9 and the B cell receptor by regulating calcium and calmodulin.

    Directory of Open Access Journals (Sweden)

    Elaine F Kenny

    Full Text Available B cells signal through both the B cell receptor (BCR which binds antigens and Toll-like receptors (TLRs including TLR9 which recognises CpG DNA. Activation of TLR9 synergises with BCR signalling when the BCR and TLR9 co-localise within an auto-phagosome-like compartment. Here we report that Bruton's tyrosine kinase (BTK is required for synergistic IL6 production and up-regulation of surface expression of MHC-class-II, CD69 and CD86 in primary murine and human B cells. We show that BTK is essential for co-localisation of the BCR and TLR9 within a potential auto-phagosome-like compartment in the Namalwa human B cell line. Downstream of BTK we find that calcium acting via calmodulin is required for this process. These data provide new insights into the role of BTK, an important target for autoimmune diseases, in B cell activation.

  1. Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis.

    Science.gov (United States)

    Wollin, Lutz; Maillet, Isabelle; Quesniaux, Valérie; Holweg, Alexander; Ryffel, Bernhard

    2014-05-01

    The tyrosine kinase inhibitor nintedanib (BIBF 1120) is in clinical development for the treatment of idiopathic pulmonary fibrosis. To explore its mode of action, nintedanib was tested in human lung fibroblasts and mouse models of lung fibrosis. Human lung fibroblasts expressing platelet-derived growth factor (PDGF) receptor-α and -β were stimulated with platelet-derived growth factor BB (homodimer) (PDGF-BB). Receptor activation was assessed by autophosphorylation and cell proliferation by bromodeoxyuridine incorporation. Transforming growth factor β (TGFβ)-induced fibroblast to myofibroblast transformation was determined by α-smooth muscle actin (αSMA) mRNA analysis. Lung fibrosis was induced in mice by intratracheal bleomycin or silica particle administration. Nintedanib was administered every day by gavage at 30, 60, or 100 mg/kg. Preventive nintedanib treatment regimen started on the day that bleomycin was administered. Therapeutic treatment regimen started at various times after the induction of lung fibrosis. Bleomycin caused increased macrophages and lymphocytes in the bronchoalveolar lavage (BAL) and elevated interleukin-1β (IL-1β), tissue inhibitor of metalloproteinase-1 (TIMP-1), and collagen in lung tissue. Histology revealed chronic inflammation and fibrosis. Silica-induced lung pathology additionally showed elevated BAL neutrophils, keratinocyte chemoattractant (KC) levels, and granuloma formation. Nintedanib inhibited PDGF receptor activation, fibroblast proliferation, and fibroblast to myofibroblast transformation. Nintedanib significantly reduced BAL lymphocytes and neutrophils but not macrophages. Furthermore, interleukin-1β, KC, TIMP-1, and lung collagen were significantly reduced. Histologic analysis showed significantly diminished lung inflammation, granuloma formation, and fibrosis. The therapeutic effect was dependent on treatment start and duration. Nintedanib inhibited receptor tyrosine kinase activation and the proliferation and

  2. EGFR tyrosine kinase inhibitory peptide attenuates Helicobacter pylori-mediated hyper-proliferation in AGS enteric epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Himaya, S.W.A. [Marine Bio-Process Research Center, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of); Dewapriya, Pradeep [Department of Chemistry, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of); Kim, Se-Kwon, E-mail: sknkim@pknu.ac.kr [Marine Bio-Process Research Center, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of); Department of Chemistry, Pukyong National University, Nam-Gu, Busan, 608-737 (Korea, Republic of)

    2013-06-15

    Helicobacter pylori infection is one of the most critical causes of stomach cancer. The current study was conducted to explore the protective effects of an isolated active peptide H-P-6 (Pro-Gln-Pro-Lys-Val-Leu-Asp-Ser) from microbial hydrolysates of Chlamydomonas sp. against H. pylori-induced carcinogenesis. The peptide H-P-6 has effectively suppressed H. pylori-induced hyper-proliferation and migration of gastric epithelial cells (AGS). However, the peptide did not inhibit the viability of the bacteria or invasion into AGS cells. Therefore, the effect of the peptide on regulating H. pylori-induced molecular signaling was investigated. The results indicated that H. pylori activates the EGFR tyrosine kinase signaling and nuclear translocation of the β-catenin. The EGFR activation has led to the up-regulation of PI3K/Akt signaling pathway. Moreover, the nuclear translocation levels of β-catenin were significantly increased as a result of Akt mediated down-regulation of GSK3/β protein levels in the cytoplasm. Both of these consequences have resulted in increased expression of cell survival and migration related genes such as c-Myc, cyclin-D, MMP-2 and matrilysin. Interestingly, the isolated peptide potently inhibited H. pylori-mediated EGFR activation and thereby down-regulated the subsequent P13K/Akt signaling leading to β-catenin nuclear translocation. The effect of the peptide was confirmed with the use of EGFR tyrosine kinase inhibitor AG1487 and molecular docking studies. Collectively this study identifies a potent peptide which regulates the H. pylori-induced hyper-proliferation and migration of AGS cells at molecular level. - Highlights: • Chlamydomonas sp. derived peptide H-P-6 inhibits H. pylori-induced pathogenesis. • H-P-6 suppresses H. pylori-induced hyper-proliferation and migration of AGS cells. • The peptide inhibits H. pylori-induced EGFR activation.

  3. Cardiovascular toxicity of multi-tyrosine kinase inhibitors in advanced solid tumors: a population-based observational study.

    Science.gov (United States)

    Srikanthan, Amirrtha; Ethier, Josee-Lyne; Ocana, Alberto; Seruga, Bostjan; Krzyzanowska, Monika K; Amir, Eitan

    2015-01-01

    Treatment with small molecule tyrosine kinase inhibitors (TKIs) has improved survival in many cancers, yet has been associated with an increased risk of adverse events. Warnings of cardiovascular events are common in drug labels of many TKIs. Despite these warnings, cardiovascular toxicity of patients treated with TKIs remains unclear. Here, we evaluate the cardiovascular outcomes of advanced cancer patients treated with small molecule tyrosine kinase inhibitors. A population based cohort study was undertaken involving adults aged >18 years in Ontario, Canada, diagnosed with any advanced malignancy between 2006 and 2012. Data were extracted from linked administrative governmental databases. Adults with advanced cancer receiving TKIs were identified and followed throughout the time period. The main outcomes of interest were rates of hospitalization for ischemic heart disease (acute myocardial infarction and angina) or cerebrovascular accidents and death. 1642 patients with a mean age of 62.5 years were studied; 1046 were treated with erlotinib, 166 with sorafenib and 430 with sunitinib. Over the 380 day median follow-up period (range 6-1970 days), 1.1% of all patients had ischemic heart events, 0.7% had cerebrovascular accidents and 72.1% died. Rates of cardiovascular events were similar to age and gender-matched individuals without cancer. In a subgroup analysis of treatment patients with a prior history of ischemic heart disease, 3.3% had ischemic heart events while 1.2% had cerebrovascular accidents. TKIs do not appear to increase the cause-specific hazard of ischemic heart disease and cerebrovascular accidents compared to age and gender-matched individuals without advanced cancer.

  4. Role of focal adhesion tyrosine kinases in GPVI-dependent platelet activation and reactive oxygen species formation.

    Directory of Open Access Journals (Sweden)

    Naadiya Carrim

    Full Text Available We have previously shown the presence of a TRAF4/p47phox/Hic5/Pyk2 complex associated with the platelet collagen receptor, GPVI, consistent with a potential role of this complex in GPVI-dependent ROS formation. In other cell systems, NOX-dependent ROS formation is facilitated by Pyk2, which along with its closely related homologue FAK are known to be activated and phosphorylated downstream of ligand binding to GPVI.To evaluate the relative roles of Pyk2 and FAK in GPVI-dependent ROS formation and to determine their location within the GPVI signaling pathway.Human and mouse washed platelets (from WT or Pyk2 KO mice were pre-treated with pharmacological inhibitors targeting FAK or Pyk2 (PF-228 and Tyrphostin A9, respectively and stimulated with the GPVI-specific agonist, CRP. FAK, but not Pyk2, was found to be essential for GPVI-dependent ROS production and aggregation. Subsequent human platelet studies with PF-228 confirmed FAK is essential for GPVI-mediated phosphatidylserine exposure, α-granule secretion (P-selectin (CD62P surface expression and integrin αIIbβ3 activation. To determine the precise location of FAK within the GPVI pathway, we analyzed the effect of PF-228 inhibition in CRP-stimulated platelets in conjunction with immunoprecipitation and pulldown analysis to show that FAK is downstream of Lyn, Spleen tyrosine kinase (Syk, PI3-K and Bruton's tyrosine kinase (Btk and upstream of Rac1, PLCγ2, Ca2+ release, PKC, Hic-5, NOX1 and αIIbβ3 activation.Overall, these data suggest a novel role for FAK in GPVI-dependent ROS formation and platelet activation and elucidate a proximal signaling role for FAK within the GPVI pathway.

  5. Role of protein tyrosine kinase in the effect of IP6 on IL-8 secretion in intestinal epithelial cells.

    Science.gov (United States)

    Wawszczyk, Joanna; Orchel, Arkadiusz; Kapral, Małgorzata; Wéglarz, Ludmiła

    2013-01-01

    Phytic acid (IP6) is a major fiber-associated component of a diet physiologically present in human intestines. Studies showed that this phytochemical can modulate immune functions of intestinal epithelium through regulation of proinflammatory cytokines secretion but mechanisms underlying these cellular response to IP6 have weakly been examined, as yet. The aim of this study was to determine the role of protein tyrosine kinase (PTK) in secretion of IL-8, a central proinflammatory cytokine, by unstimulated and IL-1beta-stimulated intestinal epithelial cells Caco-2 treated with IP6 (1 and 2.5 mM). To study the involvement of PTK signal pathway in IL-8 secretion, inhibitors of phosphotyrosine phosphatase (sodium orthovanadate, OV) and tyrosine kinase (genistein, GEN) were incubated with Caco-2 cells prior to IP6 treatment. IP6 had suppressive effect on basal and IL-1beta-stimulated IL-8 secretion by cells. The effect of OV on IL-8 release by cells treated with IP6 was different under constitutive and stimulated conditions. Secretion of IL-8 was significantly down-regulated in cells with GEN and GEN plus IP6 treatment. In addition, total PTK activity in both unstimulated and IL-1beta stimulated cells was determined in the presence of IP6. The results suggest that physiological intestinal concentrations of IP6 may have an inhibitory effect on IL-8 secretion by Caco-2 cells and one of the mechanisms of its action is the inhibition of PTK signaling cascade. The study revealed for the first time that PTKs could be one of the molecular targets for IP6 effects in the intestinal epithelial cells.

  6. Tyrosine kinase inhibitors improve long-term outcome of allogeneic hematopoietic stem cell transplantation for adult patients with philadelphia chromosome positive acute lymphoblastic leukemia

    NARCIS (Netherlands)

    E. Brissot (Eolia); M. Labopin (Myriam); M.M. Beckers (Marielle M.); G. Socié (Gerard); A. Rambaldi (Alessandro); L. Volin (Liisa); J. Finke (Jürgen); S. Lenhoff (S.); N. Kröger; G.J. Ossenkoppele (Gert); C.F. Craddock (Charles); I. Yakoub-Agha (Ibrahim); G. Gürman (Günhan); N.H. Russell (Nigel H.); M. Aljurf (Mahmoud); M. Potter (M.); A. Nagler (Arnon); O.G. Ottmann; J.J. Cornelissen (Jan); J. Esteve (Jordi); M. Mohty (Mohamad)

    2015-01-01

    textabstractThis study aimed to determine the impact of tyrosine kinase inhibitors given pre- and post-allogeneic stem cell transplantation on long-term outcome of patients allografted for Philadelphia chromosome-positive acute lymphoblastic leukemia. This retrospective analysis from the EBMT Acute

  7. Severe toxicity of skin rash, fever and diarrhea associated with imatinib: case report and review of skin toxicities associated with tyrosine kinase inhibitors

    Directory of Open Access Journals (Sweden)

    Delong Liu

    2008-10-01

    Full Text Available Xuan Huang1, Samir Patel2, Nasir Ahmed2, Karen Seiter2, Delong Liu21Department of Medicine, Richmond University Medical Center, New York, NY, USA; 2Division of Oncology and Hematology, New York Medical College and Westchester Medical Center, New York, NY, USAAbstract: Chronic myeloid leukemia (CML is characterized by a Philadelphia chromosome which contains an oncogene, bcr-abl. This oncogene encodes a tyrosine kinase which is constitutively activated. Imatinib, a tyrosine kinase inhibitor (TKI, has been widely used in the treatment of CML. Dasatinib and nilotinib were recently approved for the treatment of CML. Other TKIs, such as bosutinib, erlotinib, and sunitinib, are under study for the treatment of CML as well as other hematologic and solid malignancies. Skin rash has been reported as one of the most common side effects of the TKIs. Here we present a case of severe skin rash together with unusual symptoms of high fever and diarrhea induced by imatinib in a CML patient. The dermatologic toxicities from a variety of tyrosine kinase inhibitors are reviewed and general principles of management are also discussed.Keywords: chronic myeloid leukemia, skin rash, tyrosine kinase inhibitor, imatinib

  8. Eps15R is a tyrosine kinase substrate with characteristics of a docking protein possibly involved in coated pits-mediated internalization

    DEFF Research Database (Denmark)

    Coda, L; Salcini, A E; Confalonieri, S

    1998-01-01

    eps15R was identified because of its relatedness to eps15, a gene encoding a tyrosine kinase substrate bearing a novel protein-protein interaction domain, called EH. In this paper, we report a biochemical characterization of the eps15R gene product(s). In NIH-3T3 cells, three proteins of 125, 108...

  9. Serum concentrations of nitrite and malondialdehyde as markers of oxidative stress in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors

    Directory of Open Access Journals (Sweden)

    Maria Juracy Petrola

    2012-01-01

    Full Text Available BACKGROUND: Chronic myeloid leukemia is a neoplasm characterized by clonal expansion of hematopoietic progenitor cells resulting from the (9:22(q34,11 translocation. The tyrosine kinase abl fusion protein,the initial leukemogenic event in chronic myeloid leukemia, is constitutively activated thus inducing the production of reactive oxygen species. Of particular relevance is the fact that an increase in reactive oxygen species can facilitate genomic instability and may contribute to disease progression. OBJETIVE: To evaluate oxidative stress by determining the levels of malondialdehyde and nitrite in chronic myeloid leukemia patients under treatment with 1st and 2nd generation tyrosine kinase inhibitors monitored at a referral hospital in Fortaleza, Ceará. METHODS: A cross-sectional study was performed of 64 male and female adults. Patients were stratified according to treatment. The levels of malondialdehyde and nitrite were determined by spectrophotometry. Statistical differences between groups were observed using the Student t-test and Fisher's exact test. The results are expressed as mean ± standard error of mean. The significance level was set for a p-value < 0.05 in all analyses. RESULTS: The results show significantly higher mean concentrations of nitrite and malondialdehyde in chronic myeloid leukemia patients using second-generation tyrosine kinase inhibitors compared to patients on imatinib. Conclusion: It follows that chronic myeloid leukemia patients present higher oxidative activity and that the increases in oxidative damage markers can indicate resistance to 1st generation tyrosine kinase inhibitors.

  10. Managing side effects of tyrosine kinase inhibitor therapy to optimize adherence in patients with chronic myeloid leukemia: the role of the midlevel practitioner.

    Science.gov (United States)

    Cornelison, Megan; Jabbour, Elias J; Welch, Mary Alma

    2012-01-01

    In the last decade, the development of imatinib, a tyrosine kinase inhibitor, has brought about unprecedented change in the way newly diagnosed, chronic-phase chronic myeloid leukemia patients are treated. Two next-generation tyrosine kinase inhibitors, nilotinib and dasatinib, were initially indicated for imatinib-resistant or imatinib-intolerant chronic myeloid leukemia patients and recently received approval from the Food and Drug Administration for treatment of newly diagnosed, chronic-phase chronic myeloid leukemia patients. In comparison with the previous standards of care, benefits with these three tyrosine kinase inhibitors have included more rapid response rates, increased survival, and fewer side effects. The improved long-term outcomes have altered the approach to management of chronic myeloid leukemia from a progressive fatal disease with a poor prognosis to a chronic condition similar to diabetes or hypertension. Prolonged survival increases the need for patient education, support, monitoring, and assistance with adverse event management. Even low-grade side effects can adversely affect patients' quality of life and, therefore, require prompt attention to prevent long-term complications or suboptimal outcomes. New evidence has indicated that patient adherence to tyrosine kinase inhibitor therapy is essential to successful treatment. Midlevel practitioners can help to optimize outcomes by educating patients regarding the importance of adherence, performing regular monitoring, helping patients to understand their test results, and aggressively managing treatment-related side effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Increased serum levels of anti-angiogenic factors soluble fms-like tyrosine kinase and soluble endoglin in sickle cell disease

    NARCIS (Netherlands)

    Landburg, P.P.; Elsenga, H.; Schnog, J.B.; Duits, A.J.

    2008-01-01

    The anti-angiogenic factors soluble fms-like tyrosine kinase (sFlt)-1 and soluble endoglin (sEng) have been shown to be of importance in angiogenesis by sequestering and inhibiting vascular endothelial growth factor, placenta-like growth factor and transforming growth factor-beta(1) signaling. Given

  12. Endoscopy in patients with diarrhea during treatment with vascular endothelial growth factor receptor tyrosine kinase inhibitors: Is the cause in the mucosa?

    NARCIS (Netherlands)

    Boers-Sonderen, M.J.; Mulder, S.F.; Nagtegaal, I.D.; Derikx, L.A.A.P.; Wanten, G.J.A.; Mulders, P.F.A.; Graaf, W.T.A. van der; Hoentjen, F.; Herpen, C.M.L. van

    2016-01-01

    Background Diarrhea is a frequently occurring adverse event during treatment with vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR TKIs) and is mostly accompanied by abdominal cramps, flatulence and pyrosis. These complaints impair quality of life and lead to dose

  13. Environmental neurotoxic pesticide dieldrin activates a non receptor tyrosine kinase to promote PKCδ-mediated dopaminergic apoptosis in a dopaminergic neuronal cell model.

    Science.gov (United States)

    Saminathan, Hariharan; Asaithambi, Arunkumar; Anantharam, Vellareddy; Kanthasamy, Anumantha G; Kanthasamy, Arthi

    2011-10-01

    Oxidative stress and apoptosis are two key pathophysiological mechanisms underlying dopaminergic degeneration in Parkinson's disease (PD). Recently, we identified that proteolytic activation of protein kinase C-delta (PKCδ), a member of the novel PKC family, contributes to oxidative stress-induced dopaminergic degeneration and that phosphorylation of tyrosine residue 311 (tyr311) on PKCδ is a key event preceding the PKCδ proteolytic activation during oxidative damage. Herein, we report that a non-receptor tyrosine kinase Fyn is significantly expressed in a dopaminergic neuronal N27 cell model. Exposure of N27 cells to the dopaminergic toxicant dieldrin (60 μM) rapidly activated Fyn kinase, PKCδ-tyr311 phosphorylation and proteolytic cleavage. Fyn kinase activation precedes the caspase-3-mediated proteolytic activation of PKCδ. Pre-treatment with p60-tyrosine-specific kinase inhibitor (TSKI) almost completely attenuated dieldrin-induced phosphorylation of PKCδ-tyr311 and its proteolytic activation. Additionally, TSKI almost completely blocked dieldrin-induced apoptotic cell death. To further confirm Fyn's role in the pro-apoptotic function of PKCδ, we adopted the RNAi approach. siRNA-mediated knockdown of Fyn kinase also effectively attenuated dieldrin-induced phosphorylation of PKCδ-tyr311, caspase-3-mediated PKCδ proteolytic cleavage, and DNA fragmentation, suggesting that Fyn kinase regulates the pro-apoptotic function of PKCδ. Collectively, these results demonstrate for the first time that Fyn kinase is a pro-apoptotic kinase that regulates upstream signaling of the PKCδ-mediated apoptotic cell death pathway in neurotoxicity models of pesticide exposure. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Activation of focal adhesion kinase enhances the adhesion of Fusarium solani to human corneal epithelial cells via the tyrosine-specific protein kinase signaling pathway.

    Science.gov (United States)

    Pan, Xiaojing; Wang, Ye; Zhou, Qingjun; Chen, Peng; Xu, Yuanyuan; Chen, Hao; Xie, Lixin

    2011-03-05

    To determine the role of the integrin-FAK signaling pathway triggered by the adherence of F. solani to human corneal epithelial cells (HCECs). After pretreatment with/without genistein, HCECs were incubated with F. solani spores at different times (0-24 h). Cell adhesion assays were performed by optical microscopy. Changes of the ultrastructure were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The expression of F-actin and Paxillin (PAX) were detected by immunofluorescence and western blotting to detect the expression of these key proteins with/without genistein treatment. Cell adhesion assays showed that the number of adhered spores began to rise at 6 h after incubation and peaked at 8 h. SEM and TEM showed that the HCECs exhibited a marked morphological alteration induced by the attachment and entry of the spores. The expression of PAX increased, while the expression of F-actin decreased by stimulation with F. solani. The interaction of F. solani with HCECs causes actin rearrangement in HCECs. Genistein strongly inhibited FAK phosphorylation and the activation of the downstream protein (PAX). F. solani-induced enhancement of cell adhesion ability was inhibited along with the inhibition of FAK phosphorylation. Our results suggest that the integrin-FAK signaling pathway is involved in the control of F. solani adhesion to HCECs and that the activation of focal adhesion kinase enhances the adhesion of human corneal epithelial cells to F. solani via the tyrosine-specific protein kinase signaling pathway.

  15. Negative Suppressors of Oncogenic Activation of the Met Receptor Tyrosine Kinase

    Science.gov (United States)

    2008-09-01

    thank Genetech Inc. for HGF, Dr. G Bokoch for Pak1 reagents and Dr. Marina Holgado-Madruga for Gab1-null cells. This research was supported by a...requires phosphatidylinositol 3-kinase. The Journal of biological chemistry 270: 27780- 27787 Sachs M, Brohmann H, Zechner D, Muller T, Hulsken J

  16. Novel Src/Abl tyrosine kinase inhibitor bosutinib suppresses neuroblastoma growth via inhibiting Src/Abl signaling.

    Science.gov (United States)

    Bieerkehazhi, Shayahati; Chen, Zhenghu; Zhao, Yanling; Yu, Yang; Zhang, Huiyuan; Vasudevan, Sanjeev A; Woodfield, Sarah E; Tao, Ling; Yi, Joanna S; Muscal, Jodi A; Pang, Jonathan C; Guan, Shan; Zhang, Hong; Nuchtern, Jed G; Li, Hui; Li, Huiwu; Yang, Jianhua

    2017-01-03

    Neuroblastoma (NB) is the most common extracranial solid tumor in children. Aberrant activation of the non-receptor tyrosine kinases Src and c-Abl contributes to the progression of NB. Thus, targeting these kinases could be a promising strategy for NB therapy. In this paper, we report that the potent dual Src/Abl inhibitor bosutinib exerts anti-tumor effects on NB. Bosutinib inhibited NB cell proliferation in a dose-dependent manner and suppressed colony formation ability of NB cells. Mechanistically, bosutinib effectively decreased the activity of Src/Abl and PI3K/AKT/mTOR, MAPK/ERK, and JAK/STAT3 signaling pathways. In addition, bosutinib enhanced doxorubicin (Dox)- and etoposide (VP-16)-induced cytotoxicity in NB cells. Furthermore, bosutinib demonstrated anti-tumor efficacy in an orthotopic xenograft NB mouse model in a similar mechanism as of that in vitro. In summary, our results reveal that Src and c-Abl are potential therapeutic targets in NB and that the novel Src/Abl inhibitor bosutinib alone or in combination with other chemotherapeutic agents may be a valuable therapeutic option for NB patients.

  17. Crystal Structure of the Frizzled-Like Cysteine-Rich Domain of the Receptor Tyrosine Kinase MuSK

    Energy Technology Data Exchange (ETDEWEB)

    Stiegler, A.; Burden, S; Hubbard, S

    2009-01-01

    Muscle-specific kinase (MuSK) is an essential receptor tyrosine kinase for the establishment and maintenance of the neuromuscular junction (NMJ). Activation of MuSK by agrin, a neuronally derived heparan-sulfate proteoglycan, and LRP4 (low-density lipoprotein receptor-related protein-4), the agrin receptor, leads to clustering of acetylcholine receptors on the postsynaptic side of the NMJ. The ectodomain of MuSK comprises three immunoglobulin-like domains and a cysteine-rich domain (Fz-CRD) related to those in Frizzled proteins, the receptors for Wnts. Here, we report the crystal structure of the MuSK Fz-CRD at 2.1 {angstrom} resolution. The structure reveals a five-disulfide-bridged domain similar to CRDs of Frizzled proteins but with a divergent C-terminal region. An asymmetric dimer present in the crystal structure implicates surface hydrophobic residues that may function in homotypic or heterotypic interactions to mediate co-clustering of MuSK, rapsyn, and acetylcholine receptors at the NMJ.

  18. The tyrosine kinase Hck is an inhibitor of HIV-1 replication counteracted by the viral vif protein.

    Science.gov (United States)

    Hassaïne, G; Courcoul, M; Bessou, G; Barthalay, Y; Picard, C; Olive, D; Collette, Y; Vigne, R; Decroly, E

    2001-05-18

    The virus infectivity factor (Vif) protein facilitates the replication of human immunodeficiency virus type 1 (HIV-1) in primary lymphocytes and macrophages. Its action is strongly dependent on the cellular environment, and it has been proposed that the Vif protein counteracts cellular activities that would otherwise limit HIV-1 replication. Using a glutathione S-transferase pull-down assay, we identified that Vif binds specifically to the Src homology 3 domain of Hck, a tyrosine kinase from the Src family. The interaction between Vif and the full-length Hck was further assessed by co-precipitation assays in vitro and in human cells. The Vif protein repressed the kinase activity of Hck and was not itself a substrate for Hck phosphorylation. Within one single replication cycle of HIV-1, Hck was able to inhibit the production and the infectivity of vif-deleted virus but not that of wild-type virus. Accordingly, HIV-1 vif- replication was delayed in Jurkat T cell clones stably expressing Hck. Our data demonstrate that Hck controls negatively HIV-1 replication and that this inhibition is suppressed by the expression of Vif. Hck, which is present in monocyte-macrophage cells, represents the first identified cellular inhibitor of HIV-1 replication overcome by Vif.

  19. Lemur tyrosine kinase-2 signalling regulates kinesin-1 light chain-2 phosphorylation and binding of Smad2 cargo.

    LENUS (Irish Health Repository)

    Manser, C

    2012-05-31

    A recent genome-wide association study identified the gene encoding lemur tyrosine kinase-2 (LMTK2) as a susceptibility gene for prostate cancer. The identified genetic alteration is within intron 9, but the mechanisms by which LMTK2 may impact upon prostate cancer are not clear because the functions of LMTK2 are poorly understood. Here, we show that LMTK2 regulates a known pathway that controls phosphorylation of kinesin-1 light chain-2 (KLC2) by glycogen synthase kinase-3β (GSK3β). KLC2 phosphorylation by GSK3β induces the release of cargo from KLC2. LMTK2 signals via protein phosphatase-1C (PP1C) to increase inhibitory phosphorylation of GSK3β on serine-9 that reduces KLC2 phosphorylation and promotes binding of the known KLC2 cargo Smad2. Smad2 signals to the nucleus in response to transforming growth factor-β (TGFβ) receptor stimulation and transport of Smad2 by kinesin-1 is required for this signalling. We show that small interfering RNA loss of LMTK2 not only reduces binding of Smad2 to KLC2, but also inhibits TGFβ-induced Smad2 signalling. Thus, LMTK2 may regulate the activity of kinesin-1 motor function and Smad2 signalling.

  20. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases*

    Science.gov (United States)

    Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J.; Nie, Guangjun

    2016-01-01

    Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment. PMID:26895960

  1. A tyrosine kinase inhibitor-based high-affinity PET radiopharmaceutical targets vascular endothelial growth factor receptor.

    Science.gov (United States)

    Li, Feng; Jiang, Sheng; Zu, Youli; Lee, Daniel Y; Li, Zheng

    2014-09-01

    Tyrosine kinase receptors including vascular endothelial growth factor receptor (VEGFR) have gained significant attention as pharmacologic targets. However, clinical evaluation of small-molecule drugs or biologics that target these pathways has so far yielded mixed results in a variety of solid tumors. The reasons for response variability remain unknown, including the temporal and spatial patterns of receptor tyrosine kinase expression. Methods to detect and quantify the presence of such cellular receptors would greatly facilitate drug development and therapy response assessment. We aimed to generate specific imaging agents as potential companion diagnostics that could also be used for targeted radionuclide therapy. Here, we report on the synthesis and initial preclinical performance of (64)Cu-labeled probes that were based on the kinase inhibitor already in clinical use, vandetanib (ZD6474), as a VEGFR-selective theranostic radiopharmaceutical. A monomeric (ZD-G1) and a dimeric (ZD-G2) derivative of ZD6474 were synthesized and conjugated with DOTA for chelation with (64)Cu to produce the probes (64)Cu-DOTA-ZD-G1 and (64)Cu-DOTA-ZD-G2. The binding affinity and specificity to VEGFR were measured using U-87 MG cells known to overexpress VEGFR. Small-animal PET and biodistribution studies were performed with (64)Cu-labeled probes (3-4 MBq) intravenously administered in U-87 MG tumor-bearing mice with or without coinjection of unlabeled ZD-G2 for up to 24 h after injection. Receptor-binding assays yielded a mean equilibrium dissociation constant of 44.7 and 0.45 nM for monomeric and dimeric forms, respectively, indicating a synergistic effect in VEGFR affinity by multivalency. Small-animal PET/CT imaging showed rapid tumor accumulation of (64)Cu-DOTA-ZD-G2, with excellent tumor-to-normal tissue contrast by 24 h. Coinjection of the (64)Cu-DOTA-ZD-G2 with 50 nmol (60 μg) of nonradioactive ZD-G2 effectively blocked tumor uptake. A (64)Cu-labeled probe derived from an

  2. Overexpressed pp60c-src can induce focus formation without complete transformation of NIH 3T3 cells.

    OpenAIRE

    Johnson, P J; Coussens, P M; Danko, A V; Shalloway, D

    1985-01-01

    NIH 3T3 cells were transfected with plasmids containing Moloney murine leukemia virus long terminal repeats and either chicken c-src or v-src genes. In contrast with the effects observed after transfection with plasmids containing c-src and avian retrovirus or simian virus 40 promoter-enhancers (H. Hanafusa, H. Iba, T. Takeya, and F. R. Cross, p. 1-8, in G. F. Vande Woude, A. J. Levine, W. C. Topp, and J. D. Watson, ed., Cancer Cells, vol. 2, 1984; H. Iba, T. Takeya, F. R. Cross, T. Hanafusa,...

  3. Janus kinase (Jak) subcellular localization revisited: the exclusive membrane localization of endogenous Janus kinase 1 by cytokine receptor interaction uncovers the Jak.receptor complex to be equivalent to a receptor tyrosine kinase.

    Science.gov (United States)

    Behrmann, Iris; Smyczek, Tanja; Heinrich, Peter C; Schmitz-Van de Leur, Hildegard; Komyod, Waraporn; Giese, Bernd; Müller-Newen, Gerhard; Haan, Serge; Haan, Claude

    2004-08-20

    The Janus kinases are considered to be cytoplasmic kinases that constitutively associate with the cytoplasmic region of cytokine receptors, and the Janus kinases (Jaks) are crucial for cytokine signal transduction. We investigated Jak1 localization using subcellular fractionation techniques and fluorescence microscopy (immunofluorescence and yellow fluorescent protein-tagged Jaks). In the different experimental approaches we found Jak1 (as well as Jak2 and Tyk2) predominantly located at membranes. In contrast to previous reports we did not observe Jak proteins in significant amounts within the nucleus or in the cytoplasm. The cytoplasmic localization observed for the Jak1 mutant L80A/Y81A, which is unable to associate with cytokine receptors, indicates that Jak1 does not have a strong intrinsic membrane binding potential and that only receptor binding is crucial for the membrane recruitment. Finally we show that Jak1 remains a membrane-localized protein after cytokine stimulation. These data strongly support the hypothesis that cytokine receptor.Janus kinase complexes can be regarded as receptor tyrosine kinases.

  4. Exploring the Hypersensitivity of PTEN Deleted Prostate Cancer Stem Cells to WEE1 Tyrosine Kinase Inhibitors

    Science.gov (United States)

    2015-12-01

    which permits unrestricted reuse, distribution, and reproduction in any medium , provided the original work is properly cited. 2 Nucleic Acids Research...theDNAdamage check- point kinase from the budding yeast, Saccharomyces cere- visiae, Rad53, (homolog of CHK2 in humans) which regu- Nucleic Acids...yeast Saccharomyces cerevisiae have laid the foundation for a number of genes important for preserving genome stability?2- 24 The ScPS04 gene, first

  5. Nintedanib, a triple tyrosine kinase inhibitor, attenuates renal fibrosis in chronic kidney disease.

    Science.gov (United States)

    Liu, Feng; Wang, Li; Qi, Hualin; Wang, Jun; Wang, Yi; Jiang, Wei; Xu, Liuqing; Liu, Na; Zhuang, Shougang

    2017-08-15

    Nintedanib (BIBF1120) is a triple kinase inhibitor of platelet-derived growth factor receptor (PDGFR), fibroblast growth factor receptors (FGFR), vascular endothelial growth factor receptor (VEGFR), and Src family kinase, which has recently been approved by FDA to treat idiopathic pulmonary fibrosis. Whether it affects renal fibrosis remains unknown. Here, we demonstrated that administration of nintedanib immediately or 3 days after unilateral ureteral obstruction (UUO) injury and with folic acid (FA) injection attenuated renal fibrosis and inhibited activation of renal interstitial fibroblasts. Delayed administration of nintedanib also partially reversed established renal fibrosis. Treatment with nintedanib blocked UUO-induced phosphorylation of PDGFRβ, FGFR1, FGFR2, VEGFR2, and several Src family kinases including Src, Lck, Lyn as well as activation of signal transducer and activator of transcription-3 (STAT3), nuclear factor-κB (NF-κB), and Smad-3 in the kidney. Furthermore, nintedanib inhibited UUO-elicited renal proinflammatory cytokine expression and macrophage infiltration. These data indicate that nintedanib is a potent anti-fibrotic agent in the kidney and may hold therapeutic potential as a treatment of chronic fibrotic kidney disease. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  6. Membrane Androgen Receptor Down-Regulates c-Src-Activity and Beta-Catenin Transcription and Triggers GSK-3beta-Phosphorylation in Colon Tumor Cells

    Directory of Open Access Journals (Sweden)

    Shuchen Gu

    2014-10-01

    Full Text Available Background/Aims: Functional membrane androgen receptors (mARs have recently been described in colon tumor cells and tissues. Their activation by specific testosterone albumin conjugates (TAC down-regulates the PI-3K/Akt pro-survival signaling and triggers potent pro-apoptotic responses both, in vitro and in vivo. The present study explored the mAR-induced regulation of gene products implicated in the tumorigenic activity of Caco2 colon cancer cells. Methods: In Caco2 human colon cancer cells transcript levels were determined by RT-PCR, protein abundance and phosphorylation by Western blotting and confocal microscopy, as well as cytoskeletal architecture by confocal microscopy. Results: We report time dependent significant decrease in Tyr-416 phosphorylation of c-Src upon mAR activation. In line with the reported late down-regulation of the PI-3K/Akt pathway in testosterone-treated colon tumors, GSK-3beta was phosphorylated at Tyr-216 after long term stimulation of the cells with TAC, a finding supporting the role of this kinase to promote apoptosis. PCR analysis revealed significant decrease of beta-catenin and cyclin D1 transcript levels following TAC treatment. Moreover, confocal laser scanning microscopic analysis disclosed co-localization of beta-catenin with actin cytoskeleton. It is thus conceivable that beta-catenin may participate in the reported modulation of cytoskeletal dynamics in mAR stimulated Caco2 cells. Conclusions: Our results provide strong evidence that mAR activation regulates late expression and/or activity of the tumorigenic gene products c-Src, GSK-3beta, and beta-catenin thus facilitating the pro-apoptotic response in colon tumor cells.

  7. Differential Utilization and Localization of ErbB Receptor Tyrosine Kinases in Skin Compared to Normal and Malignant Keratinocytes

    Directory of Open Access Journals (Sweden)

    Stefan W. Stoll

    2001-01-01

    Full Text Available Induction of heparin-binding epidermal growth factorlike growth factor (HB-EGF mRNA in mouse skin organ culture was blocked by two pan-ErbB receptor tyrosine kinase (RTK inhibitors but not by genetic ablation of ErbB1, suggesting involvement of multiple ErbB species in skin physiology. Human skin, cultured normal keratinocytes, and A431 skin carcinoma cells expressed ErbB1, ErbB2, and ErbB3, but not ErbB4. Skin and A431 cells expressed more ErbB3 than did keratinocytes. Despite strong expression of ErbB2 and ErbB3, heregulin was inactive in stimulating tyrosine phosphorylation in A431 cells. In contrast, it was highly active in MDA-MB-453 breast carcinoma cells. ErbB2 displayed punctate cytoplasmic staining in A431 and keratinocytes, compared to strong cell surface staining in MDA-MB-453. In skin, ErbB2 was cytoplasmic in basal keratinocytes, assuming a cell surface pattern in the upper suprabasal layers. In contrast, ErbB1 retained a cell surface distribution in all epidermal layers. Keratinocyte proliferation in culture was found to be ErbB1-RTK-dependent, using a selective inhibitor. These results suggest that in skin keratinocytes, ErbB2 transduces ligand-dependent differentiation signals, whereas ErbB1 transduces ligand-dependent proliferation/survival signals. Intracellular sequestration of ErbB2 may contribute to the malignant phenotype of A431 cells, by allowing them to respond to ErbB1dependent growth/survival signals, while evading ErbB2-dependent differentiation signals.

  8. Insulin Resistance Induced by Hyperinsulinemia Coincides with a Persistent Alteration at the Insulin Receptor Tyrosine Kinase Domain

    Science.gov (United States)

    Catalano, Karyn J.; Maddux, Betty A.; Szary, Jaroslaw; Youngren, Jack F.; Goldfine, Ira D.; Schaufele, Fred

    2014-01-01

    Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR) activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK) domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered ‘insulin refractory’ IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated) levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based ‘memory’ of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states. PMID:25259572

  9. Selective Targeting of SH2 Domain–Phosphotyrosine Interactions of Src Family Tyrosine Kinases with Monobodies

    Energy Technology Data Exchange (ETDEWEB)

    Kükenshöner, Tim; Schmit, Nadine Eliane; Bouda, Emilie; Sha, Fern; Pojer, Florence; Koide, Akiko; Seeliger, Markus; Koide, Shohei; Hantschel, Oliver

    2017-05-01

    The binding of Src-homology 2 (SH2) domains to phosphotyrosine (pY) sites is critical for the autoinhibition and substrate recognition of the eight Src family kinases (SFKs). The high sequence conservation of the 120 human SH2 domains poses a significant challenge to selectively perturb the interactions of even the SFK SH2 family against the rest of the SH2 domains. We have developed synthetic binding proteins, termed monobodies, for six of the SFK SH2 domains with nanomolar affinity. Most of these monobodies competed with pY ligand binding and showed strong selectivity for either the SrcA (Yes, Src, Fyn, Fgr) or SrcB subgroup (Lck, Lyn, Blk, Hck). Interactome analysis of intracellularly expressed monobodies revealed that they bind SFKs but no other SH2-containing proteins. Three crystal structures of monobody–SH2 complexes unveiled different and only partly overlapping binding modes, which rationalized the observed selectivity and enabled structure-based mutagenesis to modulate inhibition mode and selectivity. In line with the critical roles of SFK SH2 domains in kinase autoinhibition and T-cell receptor signaling, monobodies binding the Src and Hck SH2 domains selectively activated respective recombinant kinases, whereas an Lck SH2-binding monobody inhibited proximal signaling events downstream of the T-cell receptor complex. Our results show that SFK SH2 domains can be targeted with unprecedented potency and selectivity using monobodies. They are excellent tools for dissecting SFK functions in normal development and signaling and to interfere with aberrant SFK signaling networks in cancer cells.

  10. The impact of additional cytogenetic abnormalities at diagnosis and during therapy with tyrosine kinase inhibitors in Chronic Myeloid Leukaemia

    Science.gov (United States)

    Crisan, AM; Coriu, D; Arion, C; Colita, A; Jardan, C

    2015-01-01

    Background: Chronic Myeloid Leukemia’s (CML) treatment was optimized since the development of tyrosine kinase inhibitors (TKI) and an increased overall survival during TKI was noticed. During the TKI era, protocols for assessing response and resistance to treatment were developed. Additional chromosomal abnormalities (ACAs) are strongly associated with disease progression but their prognostic impact and influence on treatment response are yet to be defined. The aim of this study was to analyze the impact of ACAs on time to achieve complete cytogenetic response (CCyR), treatment and overall survival. Materials and methods: Since 2005 until 2013, the data from the Hematology and Bone Marrow Transplantation Department of Fundeni Clinical Institute was collected. In this observational retrospective single centre study, 28 CML patients with ACAs at diagnosis and during TKI treatment were included. Results: From ACAs at diagnosis group, the most frequent major route ACAs were trisomy 8, trisomy 19 and second Philadelphia (Ph) chromosome and the most frequent minor route ACAs were monosomies and structural abnormalities (inversions and translocations). From the ACAs during the TKI group, the most frequent major route cytogenetic abnormalities in Ph positive and negative cells were trisomy 8, trisomy 19 and second Ph chromosome and the most frequent minor route cytogenetic abnormalities in Ph positive and negative cells were marker chromosomes and structural abnormalities (inversions, translocations and dicentric chromosomes). Conclusions: In both groups, the time to CCyR was longer and long-term results were inferior in comparison with standard patients but the differences were not significant and in accordance to published data. The 12 months follow-up after the study’s end showed that 26 patients were alive and in long-term CCyR and 2 deaths were reported. Abbreviations: CML = Chronic Myeloid Leukemia, BCR-ABL1 = Break Cluster Region - Abelson gene, TKI = tyrosine

  11. Dacomitinib in lung cancer: a “lost generation” EGFR tyrosine-kinase inhibitor from a bygone era?

    Directory of Open Access Journals (Sweden)

    Ou SH

    2015-10-01

    Full Text Available Sai-Hong Ignatius Ou,1 Ross A Soo21Chao Family Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, University of California, Irvine School of Medicine, Orange, CA, USA; 2National University Health System and Cancer Science Institute of Singapore, SingaporeAbstract: EGFR tyrosine-kinase inhibitors (TKIs have now been firmly established as the first-line treatment for non-small-cell lung cancer (NSCLC patients harboring activating EGFR mutations, based on seven prospective randomized Phase III trials. However, despite significantly improved overall response rate and improved median progression-free survival when compared to platinum-doublet chemotherapy, EGFR-mutant NSCLC patients treated with EGFR TKIs invariably progress due to the emergence of acquired resistances, with the gatekeeper T790M mutation accounting for up to 60% of the resistance mechanisms. Second-generation irreversible EGFR TKIs were developed in part to inhibit the T790M mutation, in addition to the common activating EGFR mutations. Dacomitinib is one such second-generation EGFR TKI designed to inhibit both the wild-type (WT EGFR and EGFR T790M. Afatinib is another second-generation EGR TKI that has been now been approved for the first-line treatment of EGFR-mutant NSCLC patients, while dacomitinib continues to undergo clinical evaluation. We will review the clinical development of dacomitinib from Phase I to Phase III trials, including the two recently published negative large-scale randomized Phase III trials (ARCHER 1009, NCIC-BR-26. Results from another large-scale randomized trial (ARCHER 1050 comparing dacomitinib to gefitinib as first-line treatment of advanced treatment-naïve EGFR-mutant NSCLC patients will soon be available and will serve as the lynchpin trial for the potential approval of dacomitinib in NSCLC. Meanwhile, third-generation EGFR TKIs (eg, CO-1686 [rociletinib], AZ9291, HM61713, EGF816, and ASP8273 that preferentially

  12. The impact of additional cytogenetic abnormalities at diagnosis and during therapy with tyrosine kinase inhibitors in Chronic Myeloid Leukaemia.

    Science.gov (United States)

    Crisan, A M; Coriu, D; Arion, C; Colita, A; Jardan, C

    2015-01-01

    Chronic Myeloid Leukemia's (CML) treatment was optimized since the development of tyrosine kinase inhibitors (TKI) and an increased overall survival during TKI was noticed. During the TKI era, protocols for assessing response and resistance to treatment were developed. Additional chromosomal abnormalities (ACAs) are strongly associated with disease progression but their prognostic impact and influence on treatment response are yet to be defined. The aim of this study was to analyze the impact of ACAs on time to achieve complete cytogenetic response (CCyR), treatment and overall survival. Since 2005 until 2013, the data from the Hematology and Bone Marrow Transplantation Department of Fundeni Clinical Institute was collected. In this observational retrospective single centre study, 28 CML patients with ACAs at diagnosis and during TKI treatment were included. From ACAs at diagnosis group, the most frequent major route ACAs were trisomy 8, trisomy 19 and second Philadelphia (Ph) chromosome and the most frequent minor route ACAs were monosomies and structural abnormalities (inversions and translocations). From the ACAs during the TKI group, the most frequent major route cytogenetic abnormalities in Ph positive and negative cells were trisomy 8, trisomy 19 and second Ph chromosome and the most frequent minor route cytogenetic abnormalities in Ph positive and negative cells were marker chromosomes and structural abnormalities (inversions, translocations and dicentric chromosomes). In both groups, the time to CCyR was longer and long-term results were inferior in comparison with standard patients but the differences were not significant and in accordance to published data. The 12 months follow-up after the study's end showed that 26 patients were alive and in long-term CCyR and 2 deaths were reported. CML = Chronic Myeloid Leukemia, BCR-ABL1 = Break Cluster Region - Abelson gene, TKI = tyrosine kinase inhibitor treatment, ACAs = additional cytogenetic abnormalities, CCy

  13. Lenvatinib and other tyrosine kinase inhibitors for the treatment of radioiodine refractory, advanced, and progressive thyroid cancer

    Directory of Open Access Journals (Sweden)

    Lorusso L

    2016-10-01

    statistically significant difference in the overall survival of the entire group, this result was observed when the analysis was restricted to both the follicular histotype and the group of senior patients (>65 years. The study confirmed that the most common side effects of this drug are hypertension, diarrhea, decreased appetite, weight loss, nausea, and proteinuria. In this review, we report the results of the main studies on lenvatinib efficacy in patients with advanced and progressive thyroid cancer, mainly in DTCs but also in medullary and anaplastic thyroid cancer. We also compared the efficacy of lenvatinib with that of other tyrosine kinase inhibitors, mainly sorafenib, already tested in the same type of patient population. Keywords: lenvatinib, E7080, tyrosine kinase inhibitor, radioiodine refractory thyroid cancer

  14. Tyrosine-610 in the Receptor Kinase BAK1 Does Not Play a Major Role in Brassinosteroid Signaling or Innate Immunity

    Directory of Open Access Journals (Sweden)

    Vijayata Singh

    2017-08-01

    Full Text Available The plasma membrane-localized BRI1-ASSOCIATED KINASE1 (BAK1 functions as a co-receptor with several receptor kinases including the brassinosteroid (BR receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1, which is involved in growth, and the receptors for bacterial flagellin and EF-Tu, FLAGELLIN-SENSING 2 (FLS2 and EF-TU RECEPTOR (EFR, respectively, which are involved in immunity. BAK1 is a dual specificity protein kinase that can autophosphorylate on serine, threonine and tyrosine residues. It was previously reported that phosphorylation of Tyr-610 in the carboxy-terminal domain of BAK1 is required for its function in BR signaling and immunity. However, the functional role of Tyr-610 in vivo has recently come under scrutiny. Therefore, we have generated new BAK1 (Y610F transgenic plants for functional studies. We first produced transgenic Arabidopsis lines expressing BAK1 (Y610F-Flag in the homozygous bak1-4 bkk1-1 double null background. In a complementary approach, we expressed untagged BAK1 and BAK1 (Y610F in the bak1-4 null mutant. Neither BAK1 (Y610F transgenic line had any obvious growth phenotype when compared to wild-type BAK1 expressed in the same background. In addition, the BAK1 (Y610F-Flag plants responded similarly to plants expressing BAK1-Flag in terms of brassinolide (BL inhibition of root elongation, and there were only minor changes in gene expression between the two transgenic lines as monitored by microarray analysis and quantitative real-time PCR. In terms of plant immunity, there were no significant differences between plants expressing BAK1 (Y610F-Flag and BAK1-Flag in the growth of the non-pathogenic hrpA- mutant of Pseudomonas syringae pv. tomato DC3000. Furthermore, untagged BAK1 (Y610F transgenic plants were as responsive as plants expressing BAK1 (in the bak1-4 background and wild-type Col-0 plants toward treatment with the EF-Tu- and flagellin-derived peptide epitopes elf18- and flg22, respectively, as measured by reactive

  15. Dissecting specificity in the Janus kinases: the structures of JAK-specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains.

    Science.gov (United States)

    Williams, Neal K; Bamert, Rebecca S; Patel, Onisha; Wang, Christina; Walden, Patricia M; Wilks, Andrew F; Fantino, Emmanuelle; Rossjohn, Jamie; Lucet, Isabelle S

    2009-03-20

    The Janus kinases (JAKs) are a pivotal family of protein tyrosine kinases (PTKs) that play prominent roles in numerous cytokine signaling pathways, with aberrant JAK activity associated with a variety of hematopoietic malignancies, cardiovascular diseases and immune-related disorders. Whereas the structures of the JAK2 and JAK3 PTK domains have been determined, the structure of the JAK1 PTK domain is unknown. Here, we report the high-resolution crystal structures of the "active form" of the JAK1 PTK domain in complex with two JAK inhibitors, a tetracyclic pyridone 2-t-butyl-9-fluoro-3,6-dihydro-7H-benz[h]-imidaz[4,5-f]isoquinoline-7-one (CMP6) and (3R,4R)-3-[4-methyl-3-[N-methyl-N-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3-oxopropionitrile (CP-690,550), and compare them with the corresponding JAK2 PTK inhibitor complexes. Both inhibitors bound in a similar manner to JAK1, namely buried deep within a constricted ATP-binding site, thereby providing a basis for the potent inhibition of JAK1. As expected, the mode of inhibitor binding in JAK1 was very similar to that observed in JAK2, highlighting the challenges in developing JAK-specific inhibitors that target the ATP-binding site. Nevertheless, differences surrounding the JAK1 and JAK2 ATP-binding sites were apparent, thereby providing a platform for the rational design of JAK2- and JAK1-specific inhibitors.

  16. Nuclear localization of lymphocyte-specific protein tyrosine kinase (Lck) and its role in regulating LIM domain only 2 (Lmo2) gene

    Energy Technology Data Exchange (ETDEWEB)

    Venkitachalam, Srividya; Chueh, Fu-Yu [Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064 (United States); Yu, Chao-Lan, E-mail: chaolan.yu@rosalindfranklin.edu [Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064 (United States)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Lmo2 expression is elevated in Lck-transformed cells. Black-Right-Pointing-Pointer Both endogenous and exogenous Lck localize in the nucleus. Black-Right-Pointing-Pointer Nuclear Lck is active in Lck-transformed cells. Black-Right-Pointing-Pointer Lck binds to the promoter region of Lmo2 gene in vivo. Black-Right-Pointing-Pointer In contrast to JAK2, Lck does not increase histone H3 phosphorylation on Tyr 41. -- Abstract: LIM domain only protein 2 (Lmo2) is a transcription factor that plays a critical role in the development of T-acute lymphoblastic leukemia (T-ALL). A previous report established a link between Lmo2 expression and the nuclear presence of oncogenic Janus kinase 2 (JAK2), a non-receptor protein tyrosine kinase. The oncogenic JAK2 kinase phosphorylates histone H3 on Tyr 41 that leads to the relief of Lmo2 promoter repression and subsequent gene expression. Similar to JAK2, constitutive activation of lymphocyte-specific protein tyrosine kinase (Lck) has been implicated in lymphoid malignancies. However, it is not known whether oncogenic Lck regulates Lmo2 expression through a similar mechanism. We show here that Lmo2 expression is significantly elevated in T cell leukemia LSTRA overexpressing active Lck kinase and in HEK 293 cells expressing oncogenic Y505FLck kinase. Nuclear localization of active Lck kinase was confirmed in both Lck-transformed cells by subcellular fractionation and immunofluorescence microscopy. More importantly, in contrast to oncogenic JAK2, oncogenic Lck kinase does not result in significant increase in histone H3 phosphorylation on Tyr 41. Instead, chromatin immunoprecipitation experiment shows that oncogenic Y505FLck kinase binds to the Lmo2 promoter in vivo. This result raises the possibility that oncogenic Lck may activate Lmo2 promoter through direct interaction.

  17. GRP78 confers the resistance to 5-FU by activating the c-Src/LSF/TS axis in hepatocellular carcinoma.

    Science.gov (United States)

    Gu, Yan-jiao; Li, Hong-dan; Zhao, Liang; Zhao, Song; He, Wu-bin; Rui, Li; Su, Chang; Zheng, Hua-chuan; Su, Rong-jian

    2015-10-20

    5-FU is a common first-line chemotherapeutic drug for the treatment of hepatocellular carcinoma. However the development of acquired resistance to 5-FU confines its clinical usages. Although this phenomenon has been the subject of intense investigation, the exact mechanism of acquired resistance to 5-FU remains elusive. Here, we report that over-expression of GRP78 contributes to acquired resistance to 5-FU in HCC by up-regulating the c-Src/LSF/TS axis. Moreover, we found that the resistance to 5-FU conferred by GRP78 is mediated by its ATPase domain. The ATPase domain differentially increased the expression of LSF, TS and promoted the phosphorylation of ERK and Akt. We further identified that GRP78 interacts physically with c-Src through its ATPase domain and promotes the phosphorylation of c-Src, which in turn increases the expression of LSF in the nucleus. Together, GRP78 confers the resistance to 5-FU by up-regulating the c-Src/LSF/TS axis via its ATPase domain.

  18. Electroacupuncture effect on neurological behavior and tyrosine kinase-JAK 2 in rats with focal cerebral ischemia.

    Science.gov (United States)

    Liu, Rong; Xu, Nenggui; Yi, Wei; Huang, Kangbai; Su, Minzhi

    2012-09-01

    Electroacupuncture effect on neurological behavior and the expression of tyrosine kinase Janus kinase 2 (JAK 2) of ischemic cortex in rats with the focal cerebral ischemia were investigated in this study. The model of focal cerebral ischemia was established by the heat-coagulation induced the occlusion of the middle cerebral artery. The electro-acupuncture was applied on Baihui (GV 20) and Dazhui (GV 14), and AG490 was applied by intracerebroventricular infusion. The expressions of JAK2 mRNA and phospharylated JAK2 (p-JAK2) in the ischemic cortex were observed by in situ hybridization and western blotting. The expressions of JAK2 mRNA and p-JAK2 were rarely found in sham surgery group. In model group, the expression of JAK2 mRNA and JAK2 phosphorylation had increased. After 1 day of cerebral ischemia, the expression had reached its peak. After cerebral ischemia, the expressions of JAK2 mRNA and p-JAK2 were consistent with the neurological deficit score. Electroacupuncture treatment and AG490 intervention were able to improve the neurological deficit score after cerebral ischemia, and down-regulate the expressions of JAK2 mRNA and JAK2 phosphorylation. After cerebral ischemia, the excessive expressions of JAK2 and the JAK2 phosphorylation would be one of mechanisms by which the brain injury got worse. The therapy of electro-acupuncture could reduce the expression of JAK2, and inhibit JAK2 phosphorylated activation, so as to block the abnormal activation of signal transduction pathway which was induced by JAK2.

  19. Purine derivatives as potent Bruton’s tyrosine kinase (BTK) inhibitors for autoimmune diseases

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Qing; Tebben, Andrew; Dyckman, Alaric J.; Li, Hedy; Liu, Chunjian; Lin, James; Spergel, Steve; Burke, James R.; McIntyre, Kim W.; Olini, Gilbert C.; Strnad, Joann; Surti, Neha; Muckelbauer, Jodi K.; Chang, Chiehying; An, Yongmi; Cheng, Lin; Ruan, Qian; Leftheris, Katerina; Carter, Percy H.; Tino, Joseph; De Lucca, George V. (BMS)

    2014-05-01

    Investigation of various heterocyclic core isosteres of imidazopyrazines 1 & 2 yielded purine derivatives 3 & 8 as potent and selective BTK inhibitors. Subsequent SAR studies of the purine series led to the discovery of 20 as a leading compound. Compound 20 is very selective when screened against a panel of 400 kinases and is a potent inhibitor in cellular assays of human B cell function including B-Cell proliferation and CD86 cell surface expression and exhibited in vivo efficacy in a mouse PCA model. Its X-ray co-crystal structure with BTK shows that the high selectivity is gained from filling a BTK specific lipophilic pocket. However, physical and ADME properties leading to low oral exposure hindered further development.

  20. Diagnosis of preeclampsia with soluble Fms-like tyrosine kinase 1/placental growth factor ratio

    DEFF Research Database (Denmark)

    Andersen, Louise Bjørkholt; Frederiksen-Møller, Britta; Work Havelund, Kathrine

    2015-01-01

    The angiogenic factor ratio soluble Fms-kinase 1 (sFlt-1)/placental growth factor (PlGF) is a novel diagnostic tool for preeclampsia. We compared the efficacy of the KRYPTOR (BRAHMS) automated assays for sFlt-1 and PlGF with the Elecsys (Roche) assays in a routine clinical setting. Preeclamptic...... = .047). For early-onset preeclampsia, KRYPTOR area under the curve increased to 0.929 with a 100% specificity for preeclampsia at cut-off 85 and an 88.9% sensitivity for preeclampsia at cut-off 33. For women with preeclampsia and preterm delivery or Hemolysis, Elevated Liver enzymes, Low Platelet count...... (HELLP) syndrome, the KRYPTOR sFlt-1/PlGF ratio was manifold increased (P preeclampsia, preeclampsia with preterm delivery or HELLP, and among non-obese women....

  1. A receptor tyrosine kinase, UFO/Axl, and other genes isolated by a modified differential display PCR are overexpressed in metastatic prostatic carcinoma cell line DU145.

    Science.gov (United States)

    Jacob, A N; Kalapurakal, J; Davidson, W R; Kandpal, G; Dunson, N; Prashar, Y; Kandpal, R P

    1999-01-01

    We have used a modified differential display PCR protocol for isolating 3' restriction fragments of cDNAs specifically expressed or overexpressed in metastatic prostate carcinoma cell line DU145. Several cDNA fragments were identified that matched to milk fat globule protein, UFO/Axl, a receptor tyrosine kinase, human homologue of a Xenopus maternal transcript, laminin and laminin receptor, human carcinoma-associated antigen, and some expressed sequence tags. The transcript for milk fat globule protein, a marker protein shown to be overexpressed in breast tumors, was elevated in DU145 cells. The expression of UFO/Axl, a receptor tyrosine kinase, was considerably higher in DU145 cells as compared to normal prostate cells and prostatic carcinoma cell line PC-3. The overexpression of UFO oncogene in DU145 cells is discussed in the context of prostate cancer metastasis.

  2. Tumor-intrinsic and -extrinsic roles of c-Kit: mast cells as the primary off-target of tyrosine kinase inhibitors.

    Science.gov (United States)

    Pittoni, P; Piconese, S; Tripodo, C; Colombo, M P

    2011-02-17

    c-Kit tyrosine kinase receptor and its ligand stem cell factor have multiple functions during development, whereas in adulthood they are mostly needed for stem cell (SC) maintenance and mast cell (MC) biology. c-Kit plays an essential tumor-cell-intrinsic role in many types of cancer, either providing the tumorigenic force when aberrantly activated or conferring stem-like features characterizing the most aggressive variants. A tumor-cell-extrinsic role occurs through c-Kit-dependent accessory cells (such as MCs) that infiltrate tumors and deeply influence their progression. c-Kit-targeted therapy with tyrosine kinase inhibitors (TKIs) may ideally work against both tumor and stromal cells. Here, we summarize the tumor-intrinsic and -extrinsic roles of c-Kit in cancer and discuss TKIs with their on- and off-targets, with a special emphasis on MCs as paradigmatic c-Kit-dependent accomplices for tumor progression.

  3. Discovery of a novel Her-1/Her-2 dual tyrosine kinase inhibitor for the treatment of Her-1 selective inhibitor-resistant non-small cell lung cancer.

    Science.gov (United States)

    Cha, Mi Young; Lee, Kwang-Ok; Kim, Jong Woo; Lee, Chang Gon; Song, Ji Yeon; Kim, Young Hoon; Lee, Gwan Sun; Park, Seung Bum; Kim, Maeng Sup

    2009-11-12

    A novel series of (S)-1-acryloyl-N-[4-(arylamino)-7-(alkoxy)quinazolin-6-yl]pyrrolidine-2-carboxamides were synthesized and evaluated as Her-1/Her-2 dual inhibitors. In contrast to the Her-1 selective inhibitors, our novel compounds are irreversible inhibitors of Her-1 and Her-2 tyrosine kinases with the potential to overcome clinically relevant, mutation-induced drug resistance. The selected compounds (19c, 19d) showed excellent EGFR inhibition activity even toward the T790M mutation of Her-1 tyrosine kinase with excellent selectivity. The excellent pharmacokinetic profiles of these compounds in rats and their robust in vivo efficacy in an A431 xenograft model clearly demonstrate that they merit further investigation as novel therapeutic agents for EGFR-targeting treatment of solid tumors, especially Her-1 selective inhibitor-resistant non-small cell lung cancer.

  4. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering

    Science.gov (United States)

    Fu, Dan; Zhou, Jing; Zhu, Wenjing Suzanne; Manley, Paul W.; Wang, Y. Karen; Hood, Tami; Wylie, Andrew; Xie, X. Sunney

    2014-07-01

    ABL1 tyrosine-kinase inhibitors (TKI) are front-line therapy for chronic myelogenous leukaemia and are among the best-known examples of targeted cancer therapeutics. However, the dynamic uptake into cells of TKIs of low molecular weight and their intracellular behaviour is unknown because of the difficulty of observing non-fluorescent small molecules at subcellular resolution. Here we report the direct label-free visualization and quantification of two TKI drugs (imatinib and nilotinib) inside living cells using hyperspectral stimulated Raman scattering imaging. Concentrations of both drugs were enriched over 1,000-fold in lysosomes as a result of their lysosomotropic properties. In addition, low solubility appeared to contribute significantly to the surprisingly large accumulation of nilotinib. We further show that the lysosomal trapping of imatinib was reduced more than tenfold when chloroquine is used simultaneously, which suggests that chloroquine may increase the efficacy of TKIs through lysosome-mediated drug-drug interaction in addition to the commonly proposed autophagy-inhibition mechanism.

  5. Bioluminescence resonance energy transfer methods to study G protein-coupled receptor-receptor tyrosine kinase heteroreceptor complexes.

    Science.gov (United States)

    Borroto-Escuela, Dasiel O; Flajolet, Marc; Agnati, Luigi F; Greengard, Paul; Fuxe, Kjell

    2013-01-01

    A large body of evidence indicates that G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) can form heteroreceptor complexes. In these complexes, the signaling from each interacting protomer is modulated to produce an integrated and therefore novel response upon agonist(s) activation. In the GPCR-RTK heteroreceptor complexes, GPCRs can activate RTK in the absence of added growth factor through the use of RTK signaling molecules. This integrative phenomenon is reciprocal and can place also RTK signaling downstream of GPCR. Formation of either stable or transient complexes by these two important classes of membrane receptors is involved in regulating all aspects of receptor function, from ligand binding to signal transduction, trafficking, desensitization, and downregulation among others. Functional phenomena can be modulated with conformation-specific inhibitors that stabilize defined GPCR states to abrogate both GPCR agonist- and growth factor-stimulated cell responses or by means of small interfering heteroreceptor complex interface peptides. The bioluminescence resonance energy transfer (BRET) technology has emerged as a powerful method to study the structure of heteroreceptor complexes closely associated with the study of receptor-receptor interactions in such complexes. In this chapter, we provide an overview of different BRET(2) assays that can be used to study the structure of GPCR-RTK heteroreceptor complexes and their functions. Various experimental designs for optimization of these experiments are also described. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Targeting Receptor Tyrosine Kinases Using Monoclonal Antibodies: The Most Specific Tools for Targeted-Based Cancer Therapy.

    Science.gov (United States)

    Shabani, Mahdi; Hojjat-Farsangi, Mohammad

    2016-01-01

    Receptor tyrosine kinases (RTKs) family is comprised of different cell surface glycoproteins. These enzymes participate in and regulate vital processes such as cell proliferation, polarity, differentiation, cell to cell interactions, signaling, and cell survival. Dysregulation of RTKs contributes to the development of different types of tumors. RTKs deregulation in different types of cancer has been reported for more than 30 RTKs. Due to their critical roles, the specific targeting of RTKs in malignancies is a promising approach. Targeted cellular and molecular therapies (personalized medicine) have been known as new types of therapeutics, which prevent tumor cell proliferation and invasion by interfering with molecules essential for tumor growth and survival. Specific targeting of RTKs using monoclonal antibodies (mAbs) in malignancies as well as in autoimmune disorders is of great interest. The growing number of mAbs approved by the authorities implies on the increasing attentions and applications of these therapeutic tools. Due to the high specificity, mAbs are the most promising substances that target RTKs expressed on the tumor cell surface. In this communication, we review the recent progresses in the development of mAbs targeting oncogenic RTKs for cancer treatment.

  7. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins

    Science.gov (United States)

    Guix, Marta; Faber, Anthony C.; Wang, Shizhen Emily; Olivares, Maria Graciela; Song, Youngchul; Qu, Sherman; Rinehart, Cammie; Seidel, Brenda; Yee, Douglas; Arteaga, Carlos L.; Engelman, Jeffrey A.

    2008-01-01

    Although some cancers are initially sensitive to EGFR tyrosine kinase inhibitors (TKIs), resistance invariably develops. We investigated mechanisms of acquired resistance to the EGFR TKI gefitinib by generating gefitinib-resistant (GR) A431 squamous cancer cells. In GR cells, gefitinib reduced phosphorylation of EGFR, ErbB-3, and Erk but not Akt. These cells also showed hyperphosphorylation of the IGFI receptor (IGFIR) and constitutive association of IRS-1 with PI3K. Inhibition of IGFIR signaling disrupted the association of IRS-1 with PI3K and restored the ability of gefitinib to downregulate PI3K/Akt signaling and to inhibit GR cell growth. Gene expression analyses revealed that GR cells exhibited markedly reduced IGF-binding protein 3 (IGFBP-3) and IGFBP-4 RNA. Addition of recombinant IGFBP-3 restored the ability of gefitinib to downregulate PI3K/Akt signaling and to inhibit cell growth. Finally, gefitinib treatment of mice with A431 xenografts in combination with an IGFIR-specific monoclonal antibody prevented tumor recurrence, whereas each drug given alone was unable to do so. These data suggest that loss of expression of IGFBPs in tumor cells treated with EGFR TKIs derepresses IGFIR signaling, which in turn mediates resistance to EGFR antagonists. Moreover, combined therapeutic inhibition of EGFR and IGFIR may abrogate this acquired mechanism of drug resistance and is thus worthy of prospective clinical investigation. PMID:18568074

  8. Bosutinib safety and management of toxicity in leukemia patients with resistance or intolerance to imatinib and other tyrosine kinase inhibitors.

    Science.gov (United States)

    Kantarjian, Hagop M; Cortes, Jorge E; Kim, Dong-Wook; Khoury, H Jean; Brümmendorf, Tim H; Porkka, Kimmo; Martinelli, Giovanni; Durrant, Simon; Leip, Eric; Kelly, Virginia; Turnbull, Kathleen; Besson, Nadine; Gambacorti-Passerini, Carlo

    2014-02-27

    Bosutinib is an oral, dual SRC/ABL tyrosine kinase inhibitor (TKI) with clinical activity in Philadelphia chromosome-positive (Ph(+)) leukemia. We assessed the safety and tolerability of bosutinib 500 mg per day in a phase 1/2 study in chronic-phase (CP) chronic myeloid leukemia (CML) or advanced Ph(+) leukemia following resistance/intolerance to imatinib and possibly other TKIs. Patient cohorts included second-line CP CML (n = 286), third-/fourth-line CP CML (n = 118), and advanced leukemia (n = 166). Median bosutinib duration was 11.1 (range, 0.03-83.4) months. Treatment-emergent adverse events (TEAEs) in each cohort were primarily gastrointestinal (diarrhea [86%/83%/74%], nausea [46%/48%/48%], and vomiting [37%/38%/43%]). Diarrhea presented early, with few (8%) patients experiencing grade 3/4 events; dose reduction due to diarrhea occurred in 6% of affected patients. Grade 3/4 myelosuppression TEAEs were reported in 41% of patients; among affected patients, 46% were managed with bosutinib interruption and 32% with dose reduction. Alanine aminotransferase elevation TEAEs occurred in 17% of patients (grade 3/4, 7%); among patients managed with dose interruption, bosutinib rechallenge was successful in 74%. Bosutinib demonstrated acceptable safety with manageable toxicities in Ph(+) leukemia. This trial (NCT00261846) was registered at www.ClinicalTrials.gov (this manuscript is based on a different data snapshot from that in ClinicalTrials.gov).

  9. Successful treatment of follicular lymphoma with second-generation tyrosine kinase inhibitors administered for coexisting chronic myeloid leukemia.

    Science.gov (United States)

    Fujiwara, Shin-Ichiro; Shirato, Yuya; Ikeda, Takashi; Kawaguchi, Shin-Ichiro; Toda, Yumiko; Ito, Shoko; Ochi, Shin-Ichi; Nagayama, Takashi; Mashima, Kiyomi; Umino, Kento; Minakata, Daisuke; Nakano, Hirofumi; Morita, Kaoru; Yamasaki, Ryoko; Kawasaki, Yasufumi; Sugimoto, Miyuki; Ashizawa, Masahiro; Yamamoto, Chihiro; Hatano, Kaoru; Sato, Kazuya; Oh, Iekuni; Ohmine, Ken; Muroi, Kazuo; Kanda, Yoshinobu

    2017-11-28

    Tyrosine kinase inhibitors (TKIs) are standard therapy for chronic myeloid leukemia (CML). However, the effects of these agents on mature B cell lymphoma are not well known. We describe a 50-year-old man who was diagnosed with CML in the chronic phase and treated with imatinib. After 3 years of imatinib therapy that achieved a complete cytogenetic response of CML, he developed Philadelphia-negative follicular lymphoma (FL). Rituximab monotherapy induced a partial response of FL, and he subsequently achieved a major molecular response (MMR) of CML. Three years later, however, the MMR was lost, followed by the progression of FL. Imatinib was switched to nilotinib for the treatment of CML, while we chose watchful waiting for FL. He achieved MMR again under treatment with nilotinib for 8 months including one month of substitutional use of dasatinib due to adverse events, but thereafter nilotinib was switched to bosutinib due to hyperbilirubinemia. With the administration of second-generation TKIs (2G-TKIs) for a total of 18 months, he achieved a complete response to FL without antilymphoma treatment. This is the first report to suggest that 2G-TKIs may have direct or indirect effects on FL.

  10. Detection of centrosome aberrations in disease-unrelated cells from patients with tumor treated with tyrosine kinase inhibitors.

    Science.gov (United States)

    Giehl, Michelle; Leitner, Armin; Haferlach, Claudia; Duesberg, Peter; Hofmann, Wolf-Karsten; Hofheinz, Ralf; Seifarth, Wolfgang; Hochhaus, Andreas; Fabarius, Alice

    2010-08-01

    Tyrosine kinase inhibitors (TKIs) target various pathways associated with proliferation of aberrant clones in malignant diseases. Despite good response and acceptable tolerability, little is known concerning long-term toxicity. Furthermore, the influence of these inhibitors on disease-unrelated cells is not investigated yet. Centrosome aberrations are hallmarks of various cancers. We sought to evaluate the effect of TKIs on centrosomes of disease-unrelated cells. We examined cells of the oral mucosa (OM) and fibroblasts of patients with chronic myeloid leukemia (CML) treated with dasatinib and bosutinib. Results were compared with data from patients with CML treated with imatinib or nilotinib and with data from patients suffering from renal and hepatocellular carcinomas (RCC/HCC) treated with sorafenib or sunitinib. Cells of healthy donors served as controls. OM cells (n = 12) and fibroblasts (n = 7) of patients with CML treated with dasatinib and OM cells of three patients with CML treated with bosutinib showed centrosomal alterations (mean, 14%) compared with 16 (10 OM and 6 fibroblasts) controls (mean, 3%). OM cells of five patients with CML and one patient with systemic mastocytosis treated with imatinib or nilotinib and of eight patients with RCC or HCC treated with sorafenib or sunitinib showed centrosome defects in a mean of 15%. Our data have shown that TKI treatment of tumor patients may influence centrosomes in disease-unrelated cells or tissues. This may be important with regard to various observed side effects.

  11. Synthesis of capsular polysaccharide at the division septum of Streptococcus pneumoniae is dependent on a bacterial tyrosine kinase.

    Science.gov (United States)

    Henriques, Mafalda X; Rodrigues, Tatiana; Carido, Madalena; Ferreira, Luís; Filipe, Sérgio R

    2011-10-01

    One of the main virulence factors of the pathogenic bacterium Streptococcus pneumoniae is the capsule, present at the bacterial surface, surrounding the entire cell. Virtually all the 90 different capsular serotypes of S. pneumoniae, which vary in their chemical composition, express two conserved proteins, Wzd and Wze, which regulate the rate of the synthesis of capsule. In this work, we show that Wzd, a membrane protein, and Wze, a cytoplasmic tyrosine kinase, localize at the bacterial division septum, when expressed together in pneumococcal cells, without requiring the presence of additional proteins encoded in the capsule operon. The interaction between the two proteins and their consequent septal localization was dependent on a functional ATP binding domain of Wze. In the absence of either Wzd or Wze, capsule was still produced, linked to the cell surface, but it was absent from the division septum. We propose that Wzd and Wze are spatial regulators of capsular polysaccharide synthesis and, in the presence of ATP, localize at the division site, ensuring that capsule is produced in co-ordination with cell wall synthesis, resulting in full encapsulation of the pneumococcal cells. © 2011 Blackwell Publishing Ltd.

  12. Antitumor and antiangiogenic effect of the dual EGFR and HER-2 tyrosine kinase inhibitor lapatinib in a lung cancer model

    Directory of Open Access Journals (Sweden)

    Collantes Maria

    2010-05-01

    Full Text Available Abstract Background There is strong evidence demonstrating that activation of epidermal growth factor receptors (EGFRs leads to tumor growth, progression, invasion and metastasis. Erlotinib and gefitinib, two EGFR-targeted agents, have been shown to be relevant drugs for lung cancer treatment. Recent studies demonstrate that lapatinib, a dual tyrosine kinase inhibitor of EGFR and HER-2 receptors, is clinically effective against HER-2-overexpressing metastatic breast cancer. In this report, we investigated the activity of lapatinib against non-small cell lung cancer (NSCLC. Methods We selected the lung cancer cell line A549, which harbors genomic amplification of EGFR and HER-2. Proliferation, cell cycle analysis, clonogenic assays, and signaling cascade analyses (by western blot were performed in vitro. In vivo experiments with A549 cells xenotransplanted into nude mice treated with lapatinib (with or without radiotherapy were also carried out. Results Lapatinib dramatically reduced cell proliferation (P P P in vitro. Furthermore, lapatinib induced G1 cell cycle arrest (P P In vivo experiments revealed that A549 tumor-bearing mice treated with lapatinib had significantly less active tumors (as assessed by PET analysis (P P Conclusion Overall, these data suggest that lapatinib may be a clinically useful agent for the treatment of lung cancer.

  13. Second generation tyrosine kinase inhibitors prevent disease progression in high-risk (high CIP2A) chronic myeloid leukaemia patients.

    Science.gov (United States)

    Lucas, C M; Harris, R J; Holcroft, A K; Scott, L J; Carmell, N; McDonald, E; Polydoros, F; Clark, R E

    2015-07-01

    High cancerous inhibitor of PP2A (CIP2A) protein levels at diagnosis of chronic myeloid leukaemia (CML) are predictive of disease progression in imatinib-treated patients. It is not known whether this is true in patients treated with second generation tyrosine kinase inhibitors (2G TKI) from diagnosis, and whether 2G TKIs modulate the CIP2A pathway. Here, we show that patients with high diagnostic CIP2A levels who receive a 2G TKI do not progress, unlike those treated with imatinib (P=BCR-ABL suppression. CIP2A increases proliferation and this is only reduced by 2G TKIs. Patients with high CIP2A levels should be offered 2G TKI treatment in preference to imatinib. 2G TKIs disrupt the CIP2A/c-Myc/E2F1 positive feedback loop, leading to lower disease progression risk. The data supports the view that CIP2A inhibits PP2Ac, stabilising E2F1, creating a CIP2A/c-Myc/E2F1 positive feedback loop, which imatinib cannot overcome.

  14. Serum Soluble Fms-Like Tyrosine Kinase 1 (sFlt-1 Predicts the Severity of Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Paulina Dumnicka

    2016-12-01

    Full Text Available Organ failure is the most important determinant of the severity of acute pancreatitis (AP. Soluble fms-like tyrosine kinase 1 (sFlt-1 is positively associated with organ failure in sepsis. Our aim was to evaluate the diagnostic utility of automated sFlt-1 measurements for early prediction of AP severity. Adult patients (66 with AP were recruited, including 46 with mild (MAP, 15 with moderately-severe (MSAP and 5 with severe AP (SAP. Serum and urine samples were collected twice. Serum sFlt-1 was measured with automated electrochemiluminescence immunoassay. Serum concentrations of sFlt-1 were significantly higher in patients with MSAP and SAP as compared to MAP. SAP patients had the highest concentrations. At 24 and 48 h, sFlt-1 positively correlated with inflammatory markers (leukocyte count, C-reactive protein, kidney function (creatinine, urea, cystatin C, serum and urine neutrophil gelatinase-associated lipocalin, urine albumin/creatinine ratio, D-dimer and angiopoietin-2. sFlt-1 positively correlated with the bedside index of severity in AP (BISAP score and the duration of hospital stay. Serum sFlt-1 above 139 pg/mL predicted more severe AP (MSAP + SAP. In the early phase of AP, sFlt-1 is positively associated with the severity of AP and predicts organ failure, in particular kidney failure. Serum sFlt-1 may be a practical way to improve early assessment of AP severity.

  15. Breakdown of immune homeostasis in the testis of mice lacking Tyro3, Axl and Mer receptor tyrosine kinases.

    Science.gov (United States)

    Zhang, Yue; Li, Nan; Chen, Qiaoyuan; Yan, Keqin; Liu, Zhenghui; Zhang, Xiaoyan; Liu, Peng; Chen, Yongmei; Han, Daishu

    2013-07-01

    Tyro3, Axl and Mer (TAM) receptor tyrosine kinases triple knockout (TAM(-/-)) mice are male infertile due to impaired spermatogenesis. However, the mechanism by which TAM receptors regulate spermatogenesis remains unclear. In this study, we demonstrate that the testicular immune homeostasis was impaired in TAM(-/-) mice. As development after the onset of sexual maturity, germ cells were progressively degenerated. Macrophages and lymphocytes infiltrated into the testis as TAM(-/-) mice aged. Moreover, the integrity of blood-testis barrier was impaired, and the autoantibodies against germ cell antigens were produced. Major inflammatory cytokines, including tumor necrosis factor-α, interleukin-6 and monocyte chemotactic protein 1 were upregulated in the testis of TAM(-/-) mice, and predominantly located in Sertoli cells (SCs). In vitro assays showed that TAM(-/-) SCs secrete significantly high levels of inflammatory cytokines compared with wild-type SCs after coculture with apoptotic germ cells. These results suggest that TAM receptors are important in the maintenance of the immune homeostasis in the testis.

  16. A Pan-BCL2 inhibitor renders bone-marrow-resident human leukemia stem cells sensitive to tyrosine kinase inhibition.

    Science.gov (United States)

    Goff, Daniel J; Court Recart, Angela; Sadarangani, Anil; Chun, Hye-Jung; Barrett, Christian L; Krajewska, Maryla; Leu, Heather; Low-Marchelli, Janine; Ma, Wenxue; Shih, Alice Y; Wei, Jun; Zhai, Dayong; Geron, Ifat; Pu, Minya; Bao, Lei; Chuang, Ryan; Balaian, Larisa; Gotlib, Jason; Minden, Mark; Martinelli, Giovanni; Rusert, Jessica; Dao, Kim-Hien; Shazand, Kamran; Wentworth, Peggy; Smith, Kristen M; Jamieson, Christina A M; Morris, Sheldon R; Messer, Karen; Goldstein, Lawrence S B; Hudson, Thomas J; Marra, Marco; Frazer, Kelly A; Pellecchia, Maurizio; Reed, John C; Jamieson, Catriona H M

    2013-03-07

    Leukemia stem cells (LSCs) play a pivotal role in the resistance of chronic myeloid leukemia (CML) to tyrosine kinase inhibitors (TKIs) and its progression to blast crisis (BC), in part, through the alternative splicing of self-renewal and survival genes. To elucidate splice-isoform regulators of human BC LSC maintenance, we performed whole-transcriptome RNA sequencing, splice-isoform-specific quantitative RT-PCR (qRT-PCR), nanoproteomics, stromal coculture, and BC LSC xenotransplantation analyses. Cumulatively, these studies show that the alternative splicing of multiple prosurvival BCL2 family genes promotes malignant transformation of myeloid progenitors into BC LSCS that are quiescent in the marrow niche and that contribute to therapeutic resistance. Notably, sabutoclax, a pan-BCL2 inhibitor, renders marrow-niche-resident BC LSCs sensitive to TKIs at doses that spare normal progenitors. These findings underscore the importance of alternative BCL2 family splice-isoform expression in BC LSC maintenance and suggest that the combinatorial inhibition of prosurvival BCL2 family proteins and BCR-ABL may eliminate dormant LSCs and obviate resistance. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Lung adenocarcinoma patients of young age have lower EGFR mutation rate and poorer efficacy of EGFR tyrosine kinase inhibitors

    Directory of Open Access Journals (Sweden)

    Shang-Gin Wu

    2017-07-01

    Full Text Available Patients aged ≤50 years are rarely diagnosed with nonsmall cell lung cancer. We conducted a retrospective cohort study to understand the mutation status of EGFR and the efficacy of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI treatment in young Asian patients with lung adenocarcinoma. We collected tumour specimens and malignant pleural effusions from lung adenocarcinoma patients from June 2005 to April 2014, recorded their clinical demographic data, and analysed EGFR mutations by reverse transcriptase PCR. EGFR mutation data were collected from 1039 lung adenocarcinoma patients, including 161 patients aged ≤50 years and 878 patients aged >50 years. Fewer patients aged ≤50 years had EGFR mutations than older patients (p=0.043, but they showed a higher rate of uncommon EGFR mutations (p=0.035. A total of 524 patients with EGFR mutations received EGFR-TKI treatment, including 81 patients aged ≤50 years. Younger patients had a lower response rate than older patients (p=0.038 and had the shortest progression-free survival compared with other predefined age categories (p=0.033. Multivariate analysis of overall survival revealed age ≤50 years as a poor prognostic factor. In conclusion, fewer Asian patients aged ≤50 years had EGFR mutations, but the EGFR mutation types were more uncommon. Age ≤50 years is associated with poorer efficacy of EGFR-TKI treatment.

  18. Clinical modes of EGFR tyrosine kinase inhibitor failure and subsequent management in advanced non-small cell lung cancer.

    Science.gov (United States)

    Yang, Jin-Ji; Chen, Hua-Jun; Yan, Hong-Hong; Zhang, Xu-Chao; Zhou, Qing; Su, Jian; Wang, Zhen; Xu, Chong-Rui; Huang, Yi-Sheng; Wang, Bin-Chao; Yang, Xue-Ning; Zhong, Wen-Zhao; Nie, Qiang; Liao, Ri-Qiang; Jiang, Ben-Yuan; Dong, Song; Wu, Yi-Long

    2013-01-01

    There is no published overview of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) failure modes in advanced non-small-cell lung cancer (NSCLC). This study aimed to classify the diversity of EGFR-TKI failure, and to investigate the usefulness of clinical modes in subsequent management and prognosis. One-hundred and twenty consecutive clinical trial patients with EGFR-TKI failure were enrolled as the training set to establish a clinical model based on clinical factors. Another 107 routine patients were enrolled as the validating set according to a Bayes discriminant analysis. EGFR mutations and c-MET amplification were analyzed. Kaplan-Meier survival analysis was used to test the differences among three clinical modes and subsequent management. The duration of disease control, evolution of tumor burden, and clinical symptom were verified as feasible grouping variables. A correct grouping rate achieved 87.9%. The cohort was classified into three groups, as follows: 130 patients with dramatic progression, 42 with gradual progression, and 55 with local progression. Progression-free survivals (PFSs) for the dramatic progression, gradual progression, and local progression groups were 9.3, 12.9, and 9.2 months, respectively (P = 0.007). Overall survivals for the groups (OSs) were 17.1, 39.4, and 23.1 months, respectively (P modes of EGFR-TKI failure could favor strategies for subsequent treatment and predicting a survival benefit in advanced NSCLC. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. PAH- and PCB-induced Alterations of Protein Tyrosine Kinase and Cytokine Gene Transcription in Harbor Seal (Phoca Vitulina PBMC

    Directory of Open Access Journals (Sweden)

    Jennifer C. C. Neale

    2005-01-01

    Full Text Available Mechanisms underlying in vitro immunomodulatory effects of polycyclic aromatic hydrocarbons (PAHs and polychlorinated biphenyls (PCBs were investigated in harbor seal peripheral leukocytes, via real-time PCR. We examined the relative genetic expression of the protein tyrosine kinases (PTKs Fyn and Itk, which play a critical role in T cell activation, and IL-2, a cytokine of central importance in initiating adaptive immune responses. IL-1, the macrophage-derived pro-inflammatory cytokine of innate immunity, was also included as a measure of macrophage function. Harbor seal PBMC were exposed to the prototypic immunotoxic PAH benzo[a]pyrene (BaP, 3,3',4,4',5,5'-hexachlorobiphenyl (CB-169, a model immunotoxic PCB, or DMSO (vehicle control. Exposure of Con A-stimulated harbor seal PBMC to both BaP and CB-169 produced significantly altered expression in all four targets relative to vehicle controls. The PTKs Fyn and Itk were both up-regulated following exposure to BaP and CB-169. In contrast, transcripts for IL-2 and IL-1 were decreased relative to controls by both treatments. Our findings are consistent with those of previous researchers working with human and rodent systems and support a hypothesis of contaminant-altered lymphocyte function mediated (at least in part by disruption of T cell receptor (TCR signaling and cytokine production.

  20. Characterization and response of newly developed high-grade glioma cultures to the tyrosine kinase inhibitors, erlotinib, gefitinib and imatinib.

    LENUS (Irish Health Repository)

    Kinsella, Paula

    2012-03-10

    High-grade gliomas (HGG), are the most common aggressive brain tumours in adults. Inhibitors targeting growth factor signalling pathways in glioma have shown a low clinical response rate. To accurately evaluate response to targeted therapies further in vitro studies are necessary. Growth factor pathway expression using epidermal growth factor receptor (EGFR), mutant EGFR (EGFRvIII), platelet derived growth factor receptor (PDGFR), C-Kit and C-Abl together with phosphatase and tensin homolog (PTEN) expression and downstream activation of AKT and phosphorylated ribosomal protein S6 (P70S6K) was analysed in 26 primary glioma cultures treated with the tyrosine kinase inhibitors (TKIs) erlotinib, gefitinib and imatinib. Response to TKIs was assessed using 50% inhibitory concentrations (IC(50)). Response for each culture was compared with the EGFR\\/PDGFR immunocytochemical pathway profile using hierarchical cluster analysis (HCA) and principal component analysis (PCA). Erlotinib response was not strongly associated with high expression of the growth factor pathway components. PTEN expression did not correlate with response to any of the three TKIs. Increased EGFR expression was associated with gefitinib response; increased PDGFR-α expression was associated with imatinib response. The results of this in vitro study suggest gefitinib and imatinib may have therapeutic potential in HGG tumours with a corresponding growth factor receptor expression profile.

  1. Met receptor tyrosine kinase signaling induces secretion of the angiogenic chemokine interleukin-8/CXCL8 in pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Kristen S Hill

    Full Text Available At diagnosis, the majority of pancreatic cancer patients present with advanced disease when curative resection is no longer feasible and current therapeutic treatments are largely ineffective. An improved understanding of molecular targets for effective intervention of pancreatic cancer is thus urgent. The Met receptor tyrosine kinase is one candidate implicated in pancreatic cancer. Notably, Met is over expressed in up to 80% of invasive pancreatic cancers but not in normal ductal cells correlating with poor overall patient survival and increased recurrence rates following surgical resection. However the functional role of Met signaling in pancreatic cancer remains poorly understood. Here we used RNA interference to directly examine the pathobiological importance of increased Met signaling for pancreatic cancer. We show that Met knockdown in pancreatic tumor cells results in decreased cell survival, cell invasion, and migration on collagen I in vitro. Using an orthotopic model for pancreatic cancer, we provide in vivo evidence that Met knockdown reduced tumor burden correlating with decreased cell survival and tumor angiogenesis, with minimal effect on cell growth. Notably, we report that Met signaling regulates the secretion of the pro-angiogenic chemokine interleukin-8/CXCL8. Our data showing that the interleukin-8 receptors CXCR1 and CXCR2 are not expressed on pancreatic tumor cells, suggests a paracrine mechanism by which Met signaling regulates interleukin-8 secretion to remodel the tumor microenvironment, a novel finding that could have important clinical implications for improving the effectiveness of treatments for pancreatic cancer.

  2. Two cases of gastrointestinal perforation after radiotherapy in patients receiving tyrosine kinase inhibitor for advanced renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Inoue Takaaki

    2012-08-01

    Full Text Available Abstract We report two cases of gastrointestinal perforation (GIP after radiotherapy in patients receiving tyrosine kinase inhibitor (TKI for advanced renal cell carcinoma (RCC. Case 1 was a 61-year-old woman with lung metastases after a radical nephrectomy for a right RCC (cT3aN0M0 treated with interferon-alpha (OIF, 5 MIU, three times per week. She developed lytic metastases of the left femur and the left acetabulum. She was treated with palliative radiotherapy to the metastatic portion (3 Gy × 10 fractions, and 400 mg sorafenib twice per day plus continuing interferon alpha. She experienced sudden left lower abdominal pain after four weeks of treatment, and was diagnosed with a perforation of the sigmoid colon with fecal peritonitis. Case 2 was a 48-year-old man with lung, lymph node, and bone metastases after a radical nephrectomy for a right RCC (cT2N0M0, and was treated with 400 mg sorafenib twice per day. He developed lytic bone metastases of the lumbar vertebrae, which was treated with palliative radiotherapy to L2-4 (3 Gy × 10 fractions. He experienced sudden abdominal pain after two months of radiation treatment, and was diagnosed with a perforation of the sigmoid colon with fecal peritonitis. These cases underwent radiotherapy, and therefore this may be related to the radiosensitivity of TKI.

  3. Wild Roman chamomile extracts and phenolic compounds: enzymatic assays and molecular modelling studies with VEGFR-2 tyrosine kinase.

    Science.gov (United States)

    Guimarães, Rafaela; Calhelha, Ricardo C; Froufe, Hugo J C; Abreu, Rui M V; Carvalho, Ana Maria; Queiroz, Maria João R P; Ferreira, Isabel C F R

    2016-01-01

    Angiogenesis is a process by which new blood vessels are formed from the pre-existing vasculature, and it is a key process that leads to tumour development. Some studies have recognized phenolic compounds as chemopreventive agents; flavonoids, in particular, seem to suppress the growth of tumor cells modifying the cell cycle. Herein, the antiangiogenic activity of Roman chamomile (Chamaemelum nobile L.) extracts (methanolic extract and infusion) and the main phenolic compounds present (apigenin, apigenin-7-O-glucoside, caffeic acid, chlorogenic acid, luteolin, and luteolin-7-O-glucoside) was evaluated through enzymatic assays using the tyrosine kinase intracellular domain of the Vascular Endothelium Growth Factor Receptor-2 (VEGFR-2), which is a transmembrane receptor expressed fundamentally in endothelial cells involved in angiogenesis, and molecular modelling studies. The methanolic extract showed a lower IC50 value (concentration that provided 50% of VEGFR-2 inhibition) than the infusion, 269 and 301 μg mL(-1), respectively. Regarding phenolic compounds, luteolin and apigenin showed the highest capacity to inhibit the phosphorylation of VEGFR-2, leading us to believe that these compounds are involved in the activity revealed by the methanolic extract.

  4. Systems Analysis of Drug-Induced Receptor Tyrosine Kinase Reprogramming Following Targeted Mono- and Combination Anti-Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Alexey Goltsov

    2014-06-01

    Full Text Available The receptor tyrosine kinases (RTKs are key drivers of cancer progression and targets for drug therapy. A major challenge in anti-RTK treatment is the dependence of drug effectiveness on co-expression of multiple RTKs which defines resistance to single drug therapy. Reprogramming of the RTK network leading to alteration in RTK co-expression in response to drug intervention is a dynamic mechanism of acquired resistance to single drug therapy in many cancers. One route to overcome this resistance is combination therapy. We describe the results of a joint in silico, in vitro, and in vivo investigations on the efficacy of trastuzumab, pertuzumab and their combination to target the HER2 receptors. Computational modelling revealed that these two drugs alone and in combination differentially suppressed RTK network activation depending on RTK co-expression. Analyses of mRNA expression in SKOV3 ovarian tumour xenograft showed up-regulation of HER3 following treatment. Considering this in a computational model revealed that HER3 up-regulation reprograms RTK kinetics from HER2 homodimerisation to HER3/HER2 heterodimerisation. The results showed synergy of the trastuzumab and pertuzumab combination treatment of the HER2 overexpressing tumour can be due to an independence of the combination effect on HER3/HER2 composition when it changes due to drug-induced RTK reprogramming.

  5. Structural basis for the binding specificity of human Recepteur d'Origine Nantais (RON) receptor tyrosine kinase to macrophage-stimulating protein.

    Science.gov (United States)

    Chao, Kinlin L; Gorlatova, Natalia V; Eisenstein, Edward; Herzberg, Osnat

    2014-10-24

    Recepteur d'origine nantais (RON) receptor tyrosine kinase and its ligand, serum macrophage-stimulating protein (MSP), play important roles in inflammation, cell growth, migration, and epithelial to mesenchymal transition during tumor development. The binding of mature MSPαβ (disulfide-linked α- and β-chains) to RON ectodomain modulates receptor dimerization, followed by autophosphorylation of tyrosines in the cytoplasmic receptor kinase domains. Receptor recognition is mediated by binding of MSP β-chain (MSPβ) to the RON Sema. Here we report the structure of RON Sema-PSI-IPT1 (SPI1) domains in complex with MSPβ at 3.0 Å resolution. The MSPβ serine protease-like β-barrel uses the degenerate serine protease active site to recognize blades 2, 3, and 4 of the β-propeller fold of RON Sema. Despite the sequence homology between RON and MET receptor tyrosine kinase and between MSP and hepatocyte growth factor, it is well established that there is no cross-reactivity between the two receptor-ligand systems. Comparison of the structure of RON SPI1 in complex with MSPβ and that of MET receptor tyrosine kinase Sema-PSI in complex with hepatocyte growth factor β-chain reveals the receptor-ligand selectivity determinants. Analytical ultracentrifugation studies of the SPI1-MSPβ interaction confirm the formation of a 1:1 complex. SPI1 and MSPαβ also associate primarily as a 1:1 complex with a binding affinity similar to that of SPI1-MSPβ. In addition, the SPI1-MSPαβ ultracentrifuge studies reveal a low abundance 2:2 complex with ∼ 10-fold lower binding affinity compared with the 1:1 species. These results support the hypothesis that the α-chain of MSPαβ mediates RON dimerization. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Structural Basis for the Binding Specificity of Human Recepteur d'Origine Nantais (RON) Receptor Tyrosine Kinase to Macrophage-stimulating Protein*

    Science.gov (United States)

    Chao, Kinlin L.; Gorlatova, Natalia V.; Eisenstein, Edward; Herzberg, Osnat

    2014-01-01

    Recepteur d'origine nantais (RON) receptor tyrosine kinase and its ligand, serum macrophage-stimulating protein (MSP), play important roles in inflammation, cell growth, migration, and epithelial to mesenchymal transition during tumor development. The binding of mature MSPαβ (disulfide-linked α- and β-chains) to RON ectodomain modulates receptor dimerization, followed by autophosphorylation of tyrosines in the cytoplasmic receptor kinase domains. Receptor recognition is mediated by binding of MSP β-chain (MSPβ) to the RON Sema. Here we report the structure of RON Sema-PSI-IPT1 (SPI1) domains in complex with MSPβ at 3.0 Å resolution. The MSPβ serine protease-like β-barrel uses the degenerate serine protease active site to recognize blades 2, 3, and 4 of the β-propeller fold of RON Sema. Despite the sequence homology between RON and MET receptor tyrosine kinase and between MSP and hepatocyte growth factor, it is well established that there is no cross-reactivity between the two receptor-ligand systems. Comparison of the structure of RON SPI1 in complex with MSPβ and that of MET receptor tyrosine kinase Sema-PSI in complex with hepatocyte growth factor β-chain reveals the receptor-ligand selectivity determinants. Analytical ultracentrifugation studies of the SPI1-MSPβ interaction confirm the formation of a 1:1 complex. SPI1 and MSPαβ also associate primarily as a 1:1 complex with a binding affinity similar to that of SPI1-MSPβ. In addition, the SPI1-MSPαβ ultracentrifuge studies reveal a low abundance 2:2 complex with ∼10-fold lower binding affinity compared with the 1:1 species. These results support the hypothesis that the α-chain of MSPαβ mediates RON dimerization. PMID:25193665

  7. Detection of a rare BCR-ABL tyrosine kinase fusion protein in H929 multiple myeloma cells using immunoprecipitation (IP)-tandem mass spectrometry (MS/MS).

    Science.gov (United States)

    Breitkopf, Susanne B; Yuan, Min; Pihan, German A; Asara, John M

    2012-10-02

    Hypothesis directed proteomics offers higher throughput over global analyses. We show that immunoprecipitation (IP)-tandem mass spectrometry (LC-MS/MS) in H929 multiple myeloma (MM) cancer cells led to the discovery of a rare and unexpected BCR-ABL fusion, informing a therapeutic intervention using imatinib (Gleevec). BCR-ABL is the driving mutation in chronic myeloid leukemia (CML) and is uncommon to other cancers. Three different IP-MS experiments central to cell signaling pathways were sufficient to discover a BCR-ABL fusion in H929 cells: phosphotyrosine (pY) peptide IP, p85 regulatory subunit of phosphoinositide-3-kinase (PI3K) IP, and the GRB2 adaptor IP. The pY peptides inform tyrosine kinase activity, p85 IP informs the activating adaptors and receptor tyrosine kinases (RTKs) involved in AKT activation and GRB2 IP identifies RTKs and adaptors leading to ERK activation. Integration of the bait-prey data from the three separate experiments identified the BCR-ABL protein complex, which was confirmed by biochemistry, cytogenetic methods, and DNA sequencing revealed the e14a2 fusion transcript. The tyrosine phosphatase SHP2 and the GAB2 adaptor protein, important for MAPK signaling, were common to all three IP-MS experiments. The comparative treatment of tyrosine kinase inhibitor (TKI) drugs revealed only imatinib, the standard of care in CML, was inhibitory to BCR-ABL leading to down-regulation of pERK and pS6K and inhibiting cell proliferation. These data suggest a model for directed proteomics from patient tumor samples for selecting the appropriate TKI drug(s) based on IP and LC-MS/MS. The data also suggest that MM patients, in addition to CML patients, may benefit from BCR-ABL diagnostic screening.

  8. Molecular cloning of L-JAK, a Janus family protein-tyrosine kinase expressed in natural killer cells and activated leukocytes.

    Science.gov (United States)

    Kawamura, M; McVicar, D W; Johnston, J A; Blake, T B; Chen, Y Q; Lal, B K; Lloyd, A R; Kelvin, D J; Staples, J E; Ortaldo, J R

    1994-01-01

    Protein-tyrosine kinases (PTKs) are critical enzymes for receptor-mediated signaling in lymphocytes. Because natural killer (NK) cells are large granular lymphocytes with specialized effector function, we set out to identify PTKs preferentially expressed in these cells. One such PTK was identified and molecularly cloned. The predicted amino acid sequence shows that this kinase lacks SH2 or SH3 domains typical of src family kinases but has tandem nonidentical catalytic domains, indicating that it is a member of the Janus family of PTKs. Immunoprecipitation using antiserum generated against a peptide corresponding to the deduced amino acid sequence of this gene revealed a kinase with a molecular weight of approximately 125,000. The pattern of expression of this kinase contrasted sharply with that of other Janus kinases, which are ubiquitously expressed. The kinase described in the present study was found to be more limited in its expression; expression was found in NK cells and an NK-like cell line but not in resting T cells or in other tissues. In contrast, stimulated and transformed T cells expressed the gene, suggesting a role in lymphoid activation. Because of its homology and tissue expression, we have tentatively termed this PTK gene L-JAK for leukocyte Janus kinase. Images PMID:8022790

  9. Autophosphorylation of the Bacterial Tyrosine-Kinase CpsD Connects Capsule Synthesis with the Cell Cycle in Streptococcus pneumoniae.

    Science.gov (United States)

    Nourikyan, Julien; Kjos, Morten; Mercy, Chryslène; Cluzel, Caroline; Morlot, Cécile; Noirot-Gros, Marie-Francoise; Guiral, Sébastien; Lavergne, Jean-Pierre; Veening, Jan-Willem; Grangeasse, Christophe

    2015-09-01

    Bacterial capsular polysaccharides (CPS) are produced by a multi-protein membrane complex, in which a particular type of tyrosine-autokinases named BY-kinases, regulate their polymerization and export. However, our understanding of the role of BY-kinases in these processes remains incomplete. In the human pathogen Streptococcus pneumoniae, the BY-kinase CpsD localizes at the division site and participates in the proper assembly of the capsule. In this study, we show that the cytoplasmic C-terminal end of the transmembrane protein CpsC is required for CpsD autophosphorylation and localization at mid-cell. Importantly, we demonstrate that the CpsC/CpsD complex captures the polysaccharide polymerase CpsH at the division site. Together with the finding that capsule is not produced at the division site in cpsD and cpsC mutants, these data show that CPS production occurs exclusively at mid-cell and is tightly dependent on CpsD interaction with CpsC. Next, we have analyzed the impact of CpsD phosphorylation on CPS production. We show that dephosphorylation of CpsD induces defective capsule production at the septum together with aberrant cell elongation and nucleoid defects. We observe that the cell division protein FtsZ assembles and localizes properly although cell constriction is impaired. DAPI staining together with localization of the histone-like protein HlpA further show that chromosome replication and/or segregation is defective suggesting that CpsD autophosphorylation interferes with these processes thus resulting in cell constriction defects and cell elongation. We show that CpsD shares structural homology with ParA-like ATPases and that it interacts with the chromosome partitioning protein ParB. Total internal reflection fluorescence microscopy imaging demonstrates that CpsD phosphorylation modulates the mobility of ParB. These data support a model in which phosphorylation of CpsD acts as a signaling system coordinating CPS synthesis with chromosome segregation

  10. Autophosphorylation of the Bacterial Tyrosine-Kinase CpsD Connects Capsule Synthesis with the Cell Cycle in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Julien Nourikyan

    2015-09-01

    Full Text Available Bacterial capsular polysaccharides (CPS are produced by a multi-protein membrane complex, in which a particular type of tyrosine-autokinases named BY-kinases, regulate their polymerization and export. However, our understanding of the role of BY-kinases in these processes remains incomplete. In the human pathogen Streptococcus pneumoniae, the BY-kinase CpsD localizes at the division site and participates in the proper assembly of the capsule. In this study, we show that the cytoplasmic C-terminal end of the transmembrane protein CpsC is required for CpsD autophosphorylation and localization at mid-cell. Importantly, we demonstrate that the CpsC/CpsD complex captures the polysaccharide polymerase CpsH at the division site. Together with the finding that capsule is not produced at the division site in cpsD and cpsC mutants, these data show that CPS production occurs exclusively at mid-cell and is tightly dependent on CpsD interaction with CpsC. Next, we have analyzed the impact of CpsD phosphorylation on CPS production. We show that dephosphorylation of CpsD induces defective capsule production at the septum together with aberrant cell elongation and nucleoid defects. We observe that the cell division protein FtsZ assembles and localizes properly although cell constriction is impaired. DAPI staining together with localization of the histone-like protein HlpA further show that chromosome replication and/or segregation is defective suggesting that CpsD autophosphorylation interferes with these processes thus resulting in cell constriction defects and cell elongation. We show that CpsD shares structural homology with ParA-like ATPases and that it interacts with the chromosome partitioning protein ParB. Total internal reflection fluorescence microscopy imaging demonstrates that CpsD phosphorylation modulates the mobility of ParB. These data support a model in which phosphorylation of CpsD acts as a signaling system coordinating CPS synthesis with

  11. A New Family of Receptor Tyrosine Kinases with a Venus Flytrap Binding Domain in Insects and Other Invertebrates Activated by Aminoacids

    Science.gov (United States)

    Ahier, Arnaud; Rondard, Philippe; Gouignard, Nadège; Khayath, Naji; Huang, Siluo; Trolet, Jacques; Donoghue, Daniel J.; Gauthier, Monique; Pin, Jean-Philippe; Dissous, Colette

    2009-01-01

    Background Tyrosine kinase receptors (RTKs) comprise a large family of membrane receptors that regulate various cellular processes in cell biology of diverse organisms. We previously described an atypical RTK in the platyhelminth parasite Schistosoma mansoni, composed of an extracellular Venus flytrap module (VFT) linked through a single transmembrane domain to an intracellular tyrosine kinase domain similar to that of the insulin receptor. Methods and Findings Here we show that this receptor is a member of a new family of RTKs found in invertebrates, and particularly in insects. Sixteen new members of this family, named Venus Kinase Receptor (VKR), were identified in many insects. Structural and phylogenetic studies performed on VFT and TK domains showed that VKR sequences formed monophyletic groups, the VFT group being close to that of GABAB receptors and the TK one being close to that of insulin receptors. We show that a recombinant VKR is able to autophosphorylate on tyrosine residues, and report that it can be activated by L-arginine. This is in agreement with the high degree of conservation of the alpha amino acid binding residues found in many amino acid binding VFTs. The presence of high levels of vkr transcripts in larval forms and in female gonads indicates a putative function of VKR in reproduction and/or development. Conclusion The identification of RTKs specific for parasites and insect vectors raises new perspectives for the control of human parasitic and infectious diseases. PMID:19461966

  12. Effect of the tyrosine kinase inhibitor lapatinib on CUB-domain containing protein (CDCP1)-mediated breast cancer cell survival and migration.

    Science.gov (United States)

    Seidel, Jeanette; Kunc, Klaudia; Possinger, Kurt; Jehn, Christian; Lüftner, Diana

    2011-10-14

    The surface receptor CUB domain-containing protein 1 (CDCP1) is highly expressed in several adenocarcinomas and speculated to participate in anchorage-independent cell survival and cell motility. Tyrosine kinase phosphorylation seems to be crucial for intracellular signaling of CDCP1. Lapatinib, a tyrosine kinase inhibitor (TKI), is approved for treatment of HER-2/neu overexpressing metastatic breast cancer and functions by preventing autophosphorylation following HER-2/neu receptor activation. This study aimed to investigate the effect of CDCP1 expression on anchorage-independent growth and cell motility of breast cancer cells. Moreover, studies were performed to examine if lapatinib provided any beneficial effect on HER-2/neu((+)/-)/CDCP1(+) breast cancer cell lines. In our studies, we affirmed that CDCP1 prevents cells from undergoing apoptosis when cultured in the absence of cell-substratum anchorage and that migratory and invasive properties of these cells were decreased when CDCP1 was down-regulated. However, only HER-2/neu(+), but not HER-2/neu((+)/-) cells showed decreased proliferation and invasion and an enhanced level of apoptosis towards loss of anchorage when treated with lapatinib. Therefore, we conclude that CDCP1 might be involved in regulating adhesion and motility of breast cancer cells but that lapatinib has no effect on tyrosine kinases regulating CDCP1. Nonetheless, other TKIs might offer therapeutic approaches for CDCP1-targeted breast cancer therapy and should be studied considering this aspect. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. A new family of receptor tyrosine kinases with a venus flytrap binding domain in insects and other invertebrates activated by aminoacids.

    Directory of Open Access Journals (Sweden)

    Arnaud Ahier

    Full Text Available BACKGROUND: Tyrosine kinase receptors (RTKs comprise a large family of membrane receptors that regulate various cellular processes in cell biology of diverse organisms. We previously described an atypical RTK in the platyhelminth parasite Schistosoma mansoni, composed of an extracellular Venus flytrap module (VFT linked through a single transmembrane domain to an intracellular tyrosine kinase domain similar to that of the insulin receptor. METHODS AND FINDINGS: Here we show that this receptor is a member of a new family of RTKs found in invertebrates, and particularly in insects. Sixteen new members of this family, named Venus Kinase Receptor (VKR, were identified in many insects. Structural and phylogenetic studies performed on VFT and TK domains showed that VKR sequences formed monophyletic groups, the VFT group being close to that of GABA(B receptors and the TK one being close to that of insulin receptors. We show that a recombinant VKR is able to autophosphorylate on tyrosine residues, and report that it can be activated by L-arginine. This is in agreement with the high degree of conservation of the alpha amino acid binding residues found in many amino acid binding VFTs. The presence of high levels of vkr transcripts in larval forms and in female gonads indicates a putative function of VKR in reproduction and/or development. CONCLUSION: The identification of RTKs specific for parasites and insect vectors raises new perspectives for the control of human parasitic and infectious diseases.

  14. MHC class I ligation of human T cells activates the ZAP70 and p56lck tyrosine kinases, leads to an alternative phenotype of the TCR/CD3 zeta-chain, and induces apoptosis

    DEFF Research Database (Denmark)

    Skov, S; Bregenholt, S; Claesson, Mogens Helweg

    1997-01-01

    Cross-linking of MHC class I (MHC-I) molecules on human T cells induces signal-transduction events, including activation of tyrosine kinases, tyrosine phosphorylation of phospholipase C-gamma 1, and elevation of the intracellular free calcium concentration. In this study, we demonstrate that the ...

  15. Evaluation of placental growth factor and soluble Fms-like tyrosine kinase 1 as predictors of all-cause and cardiovascular mortality in patients with Type 1 diabetes with and without diabetic nephropathy

    DEFF Research Database (Denmark)

    Theilade, S; Lajer, Maria Stenkil; Jorsal, Anders

    2012-01-01

    Placental growth factor is a vascular endothelial growth factor involved in angiogenesis, vascular inflammation and plaque formation. Soluble Fms-like tyrosine kinase 1 is a decoy receptor for placental growth factor, reducing its activity. The aim of this study is to evaluate the predictive valu...... of placental growth factor and soluble Fms-like tyrosine kinase 1 in relation to all-cause and cardiovascular mortality and decline in kidney function in Type 1 diabetes....

  16. Cardiovascular safety of tyrosine kinase inhibitors: Putting their “QT-phobia” in perspective

    Directory of Open Access Journals (Sweden)

    Rashmi Shah

    2016-10-01

    Full Text Available Many potentially valuable drugs, including protein kinase inhibitors (PKI, risk being dropped from further development, without exploration of their clinical benefits, if early studies show these drugs to inhibit hERG channel and therefore, to have a potential for prolonging ventricular repolarisation (QT interval. This QT-phobia results from a perceived possibility of the clinical risks of QT-related ventricular proarrhythmia, further aggravated by uncertainties surrounding the regulatory evaluation of the risk and either approvability or restrictive labelling of the drug concerned. In reality, QT interval prolongation per se is only an imperfect surrogate of the proarrhythmia risk which is much smaller than perceived and compared to their other cardiovascular and non-cardiovascular risks. PKI-induced clinical hepatotoxicity, also evaluated on the basis of surrogate markers (serum transaminases and bilirubin is another risk that far exceeds any risk arising from PKI-induced QT interval prolongation. This review of the currently approved 28 PKIs places the QT-phobia surrounding the development of PKIs in its perspective by juxta-positioning their potential to induce ventricular dysfunction, arterial thrombotic events and hepatotoxicity. Available evidence suggests that hERG channel may prove to be a valuable therapeutic target in oncology. Therefore, the development, approval and labelling of such vital oncology drugs requires careful assessment of their benefits and their risk/benefit generally, without being overtly consumed by their potential QT-liability, in terms of their more direct consequences on clinically relevant endpoints of morbidity, mortality and quality of life.

  17. Molecular Testing Guideline for Selection of Lung Cancer Patients for EGFR and ALK Tyrosine Kinase Inhibitors

    Science.gov (United States)

    Lindeman, Neal I.; Cagle, Philip T.; Beasley, Mary Beth; Chitale, Dhananjay Arun; Dacic, Sanja; Giaccone, Giuseppe; Jenkins, Robert Brian; Kwiatkowski, David J.; Saldivar, Juan-Sebastian; Squire, Jeremy; Thunnissen, Erik; Ladanyi, Marc

    2014-01-01

    Objective To establish evidence-based recommendations for the molecular analysis of lung cancers that are that are required to guide EGFR- and ALK-directed therapies, addressing which patients and samples should be tested, and when and how testing should be performed. Participants Three cochairs without conflicts of interest were selected, one from each of the 3 sponsoring professional societies: College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Writing and advisory panels were constituted from additional experts from these societies. Evidence Three unbiased literature searches of electronic databases were performed to capture articles published published from January 2004 through February 2012, yielding 1533 articles whose abstracts were screened to identify 521 pertinent articles that were then reviewed in detail for their relevance to the recommendations. Evidence was formally graded for each recommendation. Consensus Process Initial recommendations were formulated by the cochairs and panel members at a public meeting. Each guideline section was assigned to at least 2 panelists. Drafts were circulated to the writing panel (version 1), advisory panel (version 2), and the public (version 3) before submission (version 4). Conclusions The 37 guideline items address 14 subjects, including 15 recommendations (evidence grade A/B). The major recommendations are to use testing for EGFR mutations and ALK fusions to guide patient selection for therapy with an epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) inhibitor, respectively, in all patients with advanced-stage adenocarcinoma, regardless of sex, race, smoking history, or other clinical risk factors, and to prioritize EGFR and ALK testing over other molecular predictive tests. As scientific discoveries and clinical practice outpace the completion of randomized clinical trials, evidence-based guidelines developed

  18. Effects of inhibitors of vascular endothelial growth factor receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine hemangiosarcoma cell lines.

    Science.gov (United States)

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi

    2016-07-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application.

  19. The receptor-like protein-tyrosine phosphatase DEP-1 is constitutively associated with a 64-kDa protein serine/threonine kinase.

    Science.gov (United States)

    Jallal, B; Mossie, K; Vasiloudis, G; Knyazev, P; Zachwieja, J; Clairvoyant, F; Schilling, J; Ullrich, A

    1997-05-02

    Protein-tyrosine phosphatases (PTPs) are involved in the regulation of diverse cellular processes and may function as positive effectors as well as negative regulators of intracellular signaling. Recent data demonstrate that malignant transformation of cells is frequently associated with changes in PTP expression or activity. Our analysis of PTP expression in mammary carcinoma cell lines resulted in the molecular cloning of a receptor-like PTP, also known as DEP-1. DEP-1 was found to be expressed at varying levels in mammary carcinoma cell lines and A431 cells. In all tumor cell lines analyzed, DEP-1 was constitutively phosphorylated on tyrosine residues. Phosphorylation of DEP-1 increased significantly after treatment of cells with the PTP inhibitor pervanadate. In A431 cells, tyrosine phosphorylation of DEP-1 was also observed after stimulation with epidermal growth factor, however, only after prolonged exposure of the cells to the ligand, suggesting an indirect mechanism of phosphorylation. In addition, DEP-1 coprecipitated with several tyrosine-phosphorylated proteins from pervanadate-treated cells. In vitro binding experiments using a glutathione S-transferase fusion protein containing the catalytically inactive PTP domain of DEP-1 (Gst-DEP-1-C/S) identify these proteins as potential substrates of DEP-1. In addition, we found a 64-kDa serine/threonine kinase to be constitutively associated with DEP-1 in all tumor cell lines tested. The 64-kDa kinase forms a stable complex with DEP-1 and phosphorylates DEP-1 and DEP-1-interacting proteins in vitro. These data suggest a possible mechanism of DEP-1 regulation in tumor cell lines involving serine/threonine and/or tyrosine phosphorylation.

  20. Tyrosine kinase is involved in angiotensin II-stimulated phospholipase D activation in aortic smooth muscle cells: function of Ca2+ influx.

    Science.gov (United States)

    Suzuki, A; Shinoda, J; Oiso, Y; Kozawa, O

    1996-03-01

    In the present study, we examined the effect of angiotensin II (Ang II) on phosphatidylcholine-hydrolyzing phospholipase D activity in subcultured rat aortic smooth muscle cells (SMC). Ang II dose-dependently stimulated the formation of choline and inositol phosphates. The effect of Ang II on the formation of inositol phosphates (EC50 was 0.249 +/- 0.091 nM) was more potent than that on the formation of choline (EC50 was 2.39 +/- 1.29 nM). A combination of Ang II and 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C, additively stimulated the formation of choline. Staurosporine, an inhibitor of protein kinases, inhibited the TPA-induced formation of choline, but had little effect on the Ang II-induced choline formation. Ang II stimulated Ca2+ influx from extracellular space time- and dose-dependently. The depletion of extracellular Ca2+ by (ethylenebis(oxyethylenenitrilo)) tetraacetic acid (EGTA) significantly reduced the Ang II-induced formation of choline. Genistein and tyrphostin, protein tyrosine kinase inhibitors, significantly suppressed the Ang II-induced Ca2+ influx. Genistein and tyrphostin also suppressed the Ang II-induced formation of choline. These results suggest that Ang II stimulates phosphatidylcholine-hydrolyzing phospholipase D due to Ca2+ influx from the extracellular space in rat aortic SMC, and that protein tyrosine kinase is involved in the Ang II-induced Ca2+ influx, resulting in the promotion of phosphatidylcholine hydrolysis.

  1. Poorer prognosis in Taiwanese female ever smokers with stage IV lung adenocarcinoma who were readministered a tyrosine kinase inhibitor

    Directory of Open Access Journals (Sweden)

    Yang CJ

    2016-03-01

    Full Text Available Chih-Jen Yang,1–4 Ming-Ju Tsai,2 Jen-Yu Hung,2,4 Ying-Ming Tsai,1–3 Jui-Ying Lee,5 Shah-Hwa Chou,5,6 Ta-Chih Liu,7,8 Mei-Chiou Shen,9 Ming-Shyan Huang,2,4,10 Inn-Wen Chong2,6 1Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 2Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 3Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 4Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, 5Division of Chest Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 6Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, 7Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 8Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, 9Department of Pharmacy, Kaohsiung Medical University Hospital, 10Division of Geriatric Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan Background: Readministering a second epidermal growth factor receptor (EGFR tyrosine kinase inhibitor (TKI in patients with lung adenocarcinoma with acquired resistance to an initial EGFR TKI is a common treatment strategy. However, the prognostic factors for the second EGFR TKI are still uncertain.  Patients and methods: In this retrospective study, we enrolled patients with stage IV lung adenocarcinoma diagnosed between June 2009 and October 2013 at two university-affiliated hospitals in Taiwan. Basic characteristics including age, sex, smoking status, performance status, EGFR mutation status, tumor response, and progression-free survival (PFS of the second

  2. Expression pattern and function of tyrosine receptor kinase B isoforms in rat mesenteric arterial smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Otani, Kosuke; Okada, Muneyoshi; Yamawaki, Hideyuki, E-mail: yamawaki@vmas.kitasato-u.ac.jp

    2015-11-27

    Tyrosine receptor kinaseB (TrkB) is a high affinity receptor for brain-derived neurotrophic factor (BDNF). TrkB isoforms involve full length TrkB (TrkB FL) and truncated TrkB type1 (TrkB T1) and type 2 (TrkB T2) in rats. The aim of present study was to explore their expression pattern and function in mesenteric arterial smooth muscle cells (MASMCs). The expression of TrkB isoform protein and mRNA was examined by Western blotting, immunofluorescence and quantitative RT-PCR analyses. Cell proliferation was measured by a bromodeoxyuridine (BrdU) incorporation assay. Cell migration was measured by a Boyden chamber assay. Cell morphology was observed with a phase-contrast microscope. Protein and mRNA expression of BDNF and TrkB isoforms was confirmed in MASMCs. Expression level of TrkB FL was less, while that of TrkB T1 was the highest in MASMCs. Although BDNF increased phosphorylation of ERK, it had no influence on migration and proliferation of MASMCs. TrkB T1 gene knockdown by a RNA interference induced morphological changes and reduced expression level of α-smooth muscle actin (α-SMA) in MASMCs. Similar morphological changes and reduced α-SMA expression were induced in MASMCs by a Rho kinase inhibitor, Y-27632. In conclusion, we for the first time demonstrate that TrkB T1 expressed highly in MASMCs contributes to maintain normal cell morphology possibly via regulation of Rho activity. This study firstly defined expression level of TrkB isoforms and partly revealed their functions in peripheral vascular cells. - Highlights: • BDNF-TrkB axis mediates neurogenesis, growth, differentiation and survival. • Expression pattern and function of TrkB in vascular smooth muscle remain unclear. • Expression of TrkB FL is low, while that of TrkB T1 is the highest. • TrkB T1 contributes to maintain normal morphology possibly via activating Rho.

  3. Coarse-grained molecular simulation of epidermal growth factor receptor protein tyrosine kinase multi-site self-phosphorylation.

    Directory of Open Access Journals (Sweden)

    John G Koland

    2014-01-01

    Full Text Available Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR, the intrinsic protein tyrosine kinase (PTK activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites in either of the two C-terminal (CT domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in

  4. The transmembrane domain of the p75 neurotrophin receptor stimulates phosphorylation of the TrkB tyrosine kinase receptor.

    Science.gov (United States)

    Saadipour, Khalil; MacLean, Michael; Pirkle, Sean; Ali, Solav; Lopez-Redondo, Maria-Luisa; Stokes, David L; Chao, Moses V

    2017-10-06

    The function of protein products generated from intramembraneous cleavage by the γ-secretase complex is not well defined. The γ-secretase complex is responsible for the cleavage of several transmembrane proteins, most notably the amyloid precursor protein that results in Aβ, a transmembrane (TM) peptide. Another protein that undergoes very similar γ-secretase cleavage is the p75 neurotrophin receptor. However, the fate of the cleaved p75 TM domain is unknown. p75 neurotrophin receptor is highly expressed during early neuronal development and regulates survival and process formation of neurons. Here, we report that the p75 TM can stimulate the phosphorylation of TrkB (tyrosine kinase receptor B). In vitro phosphorylation experiments indicated that a peptide representing p75 TM increases TrkB phosphorylation in a dose- and time-dependent manner. Moreover, mutagenesis analyses revealed that a valine residue at position 264 in the rat p75 neurotrophin receptor is necessary for the ability of p75 TM to induce TrkB phosphorylation. Because this residue is just before the γ-secretase cleavage site, we then investigated whether the p75(αγ) peptide, which is a product of both α- and γ-cleavage events, could also induce TrkB phosphorylation. Experiments using TM domains from other receptors, EGFR and FGFR1, failed to stimulate TrkB phosphorylation. Co-immunoprecipitation and biochemical fractionation data suggested that p75 TM stimulates TrkB phosphorylation at the cell membrane. Altogether, our results suggest that TrkB activation by p75(αγ) peptide may be enhanced in situations where the levels of the p75 receptor are increased, such as during brain injury, Alzheimer's disease, and epilepsy. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Spectrophotometric and molecular modelling studies on in vitro interaction of tyrosine kinase inhibitor linifanib with bovine serum albumin.

    Directory of Open Access Journals (Sweden)

    Tanveer A Wani

    Full Text Available Linifanib (LNF possess antitumor activity and acts by inhibiting receptor tyrosine kinase VEGF and PDGF. The interaction of BSA with the drug can provide valuable information regarding the pharmacokinetic and pharmacodynamics behavior of drug. In our study the spectrophotometric methods and molecular docking studies were executed to understand the interaction behavior of BSA and LNF. BSA has an intrinsic fluorescence and that fluorescence was quenched by LNF. This quenching process was studied at three different temperatures of 288, 300and 308 K. The interaction between LNF and BSA was due to static quenching because the Ksv (Stern-Volmer constant at 288 K was higher than at 300 and 308 K. Kq (quenching rate constant behaved in a similar fashion as the Ksv. Several other parameters like binding constants, number of binding sites and binding energy in addition to molecular docking studies were also used to evaluate the interaction process. A decrease in the binding constants was observed with increasing temperatures and the binding site number approximated unity. The decreasing binding constant indicates LNF-BSA complex stability. The site mark competition experiment confirmed the binding site for LNF was located on site II of BSA. UV-visible studies along with synchronous fluorescence confirm a small change in the conformation of BSA upon interaction with LNF. The thermodynamic analysis provided the values for free energy ΔG0, ΔH0 and ΔS0. The ΔG0 at the 288, 300 and 308 K ranged in between -21.5 to -23.3 kJ mol-1, whereas the calculated values of ΔH (-55.91 kJ mol-1 and ΔS0 (-111.74 J mol-1·K-1. The experimental and molecular docking results suggest that the interaction between LNF and BSA was spontaneous and they exhibited hydrogen bonding and van der Waals force between them.

  6. Hepatocyte growth factor regulated tyrosine kinase substrate in the peripheral development and function of B-cells

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Takayuki [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Murata, Kazuko, E-mail: murata-k@iwakimu.ac.jp [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Murata, Ryo [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Sun, Shu-lan [Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Saito, Yutaro; Yamaga, Shuhei [Department of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551 (Japan); Tanaka, Nobuyuki; Tamai, Keiichi [Division of Immunology, Miyagi Cancer Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293 (Japan); Moriya, Kunihiko [Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Kasai, Noriyuki [Institute for Animal Experimentation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Sugamura, Kazuo [Division of Immunology, Miyagi Cancer Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293 (Japan); Ishii, Naoto [Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan)

    2014-01-10

    Highlights: •ESCRT-0 protein regulates the development of peripheral B-cells. •BCR expression on cell surface should be controlled by the endosomal-sorting system. •Hrs plays important roles in responsiveness to Ag stimulation in B lymphocytes. -- Abstract: Hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) is a vesicular sorting protein that functions as one of the endosomal-sorting proteins required for transport (ESCRT). Hrs, which binds to ubiquitinated proteins through its ubiquitin-interacting motif (UIM), contributes to the lysosomal transport and degradation of ubiquitinated membrane proteins. However, little is known about the relationship between B-cell functions and ESCRT proteins in vivo. Here we examined the immunological roles of Hrs in B-cell development and functions using B-cell-specific Hrs-deficient (Hrs{sup flox/flox};mb1{sup cre/+}:Hrs-cKO) mice, which were generated using a cre-LoxP recombination system. Hrs deficiency in B-cells significantly reduced T-cell-dependent antibody production in vivo and impaired the proliferation of B-cells treated in vitro with an anti-IgM monoclonal antibody but not with LPS. Although early development of B-cells in the bone marrow was normal in Hrs-cKO mice, there was a significant decrease in the number of the peripheral transitional B-cells and marginal zone B-cells in the spleen of Hrs-cKO mice. These results indicate that Hrs plays important roles during peripheral development and physiological functions of B lymphocytes.

  7. Brain-derived neurotrophic factor and tyrosine kinase B receptor signalling in post-mortem brain of teenage suicide victims.

    Science.gov (United States)

    Pandey, Ghanshyam N; Ren, Xinguo; Rizavi, Hooriyah S; Conley, Robert R; Roberts, Rosalinda C; Dwivedi, Yogesh

    2008-12-01

    Teenage suicide is a major public health concern, but its neurobiology is not very well understood. Stress and major mental disorders are major risk factors for suicidal behaviour, and it has been shown that brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase B (TrkB) are not only regulated by stress but are also altered in these illnesses. We therefore examined if BDNF/TrkB signalling is altered in the post-mortem brain of teenage suicide victims. Protein and mRNA expression of BDNF and of TrkB receptors were determined in the prefrontal cortex (PFC), Brodmann's Area 9 (BA 9), and hippocampus obtained from 29 teenage suicide victims and 25 matched normal control subjects. Protein expression was determined using the Western blot technique; mRNA levels by a quantitative RT-PCR technique. The protein expression of BDNF was significantly decreased in the PFC of teenage suicide victims compared with normal control subjects, whereas no change was observed in the hippocampus. Protein expression of TrkB full-length receptors was significantly decreased in both PFC and hippocampus of teenage suicide victims without any significant changes in the truncated form of TrkB receptors. mRNA expression of both BDNF and TrkB was significantly decreased in the PFC and hippocampus of teenage suicide victims compared with normal control subjects. These studies indicate a down-regulation of both BDNF and its receptor TrkB in the PFC and hippocampus of teenage suicide victims, which suggests that stress and altered BDNF may represent a major vulnerability factor in teenage suicidal behaviour.

  8. PYK2: A Calcium-sensitive Protein Tyrosine Kinase Activated in Response to Fertilization of the Zebrafish Oocyte

    Science.gov (United States)

    Sharma, Dipika; Kinsey, William H.

    2012-01-01

    Fertilization begins with binding and fusion of a sperm with the oocyte, a process that triggers a high amplitude calcium transient which propagates through the oocyte and stimulates a series of preprogrammed signal transduction events critical for zygote development. Identification of the pathways downstream of this calcium transient remains an important step in understanding the basis of zygote quality. The present study demonstrates that the calcium-calmodulin sensitive protein tyrosine kinase PYK2 is a target of the fertilization-induced calcium transient in the zebrafish oocyte and that it plays an important role in actin-mediated events critical for sperm incorporation. At fertilization, PYK2 was activated initially at the site of sperm-oocyte interaction and was closely associated with actin filaments forming the fertilization cone. Later PYK2 activation was evident throughout the entire oocyte cortex, however activation was most intense over the animal hemisphere. Fertilization-induced PYK2 activation could be blocked by suppressing calcium transients in the ooplasm via injection of BAPTA as a calcium chelator. PYK2 activation could be artificially induced in unfertilized oocytes by injection of IP3 at concentrations sufficient to induce calcium release. Functionally, suppression of PYK2 activity by chemical inhibition or by injection of a dominant-negative construct encoding the N-terminal ERM domain of PKY2 inhibited formation of an organized fertilization cone and reduced the frequency of successful sperm incorporation. Together, the above findings support a model in which PYK2 responds to the fertilization-induced calcium transient by promoting reorganization of the cortical actin cytoskeleton to form the fertilization cone. PMID:23084926

  9. Therapeutic potential and challenges of targeting receptor tyrosine kinase ROR1 with monoclonal antibodies in B-cell malignancies.

    Directory of Open Access Journals (Sweden)

    Jiahui Yang

    Full Text Available Based on its selective cell surface expression in chronic lymphocytic leukemia (CLL and mantle cell lymphoma (MCL, receptor tyrosine kinase ROR1 has recently emerged as a promising target for therapeutic monoclonal antibodies (mAbs. To further assess the suitability of ROR1 for targeted therapy of CLL and MCL, a panel of mAbs was generated and its therapeutic utility was investigated.A chimeric rabbit/human Fab library was generated from immunized rabbits and selected by phage display. Chimeric rabbit/human Fab and IgG1 were investigated for their capability to bind to human and mouse ROR1, to mediate antibody-dependent cellular cytotoxicity (ADCC, complement-dependent cytotoxicity (CDC, and internalization, and to agonize or antagonize apoptosis using primary CLL cells from untreated patients as well as MCL cell lines. A panel of mAbs demonstrated high affinity and specificity for a diverse set of epitopes that involve all three extracellular domains of ROR1, are accessible on the cell surface, and mediate internalization. The mAb with the highest affinity and slowest rate of internalization was found to be the only mAb that mediated significant, albeit weak, ADCC. None of the mAbs mediated CDC. Alone, they did not enhance or inhibit apoptosis.Owing to its relatively low cell surface density, ROR1 may be a preferred target for armed rather than naked mAbs. Provided is a panel of fully sequenced and thoroughly characterized anti-ROR1 mAbs suitable for conversion to antibody-drug conjugates, immunotoxins, chimeric antigen receptors, and other armed mAb entities for preclinical and clinical studies.

  10. CBL is frequently altered in lung cancers: its relationship to mutations in MET and EGFR tyrosine kinases.

    Directory of Open Access Journals (Sweden)

    Yi-Hung Carol Tan

    2010-01-01

    Full Text Available Non-small cell lung cancer (NSCLC is a heterogeneous group of disorders with a number of genetic and proteomic alterations. c-CBL is an E3 ubiquitin ligase and adaptor molecule important in normal homeostasis and cancer. We determined the genetic variations of c-CBL, relationship to receptor tyrosine kinases (EGFR and MET, and functionality in NSCLC.Using archival formalin-fixed paraffin embedded (FFPE extracted genomic DNA, we show that c-CBL mutations occur in somatic fashion for lung cancers. c-CBL mutations were not mutually exclusive of MET or EGFR mutations; however they were independent of p53 and KRAS mutations. In normal/tumor pairwise analysis, there was significant loss of heterozygosity (LOH for the c-CBL locus (22%, n = 8/37 and none of these samples revealed any mutation in the remaining copy of c-CBL. The c-CBL LOH also positively correlated with EGFR and MET mutations observed in the same samples. Using select c-CBL somatic mutations such as S80N/H94Y, Q249E and W802* (obtained from Caucasian, Taiwanese and African-American samples, respectively transfected in NSCLC cell lines, there was increased cell viability and cell motility.Taking the overall mutation rate of c-CBL to be a combination as somatic missense mutation and LOH, it is clear that c-CBL is highly mutated in lung cancers and may play an essential role in lung tumorigenesis and metastasis.

  11. Levels of soluble fms-like tyrosine kinase one in first trimester and outcomes of pregnancy: a systematic review

    Directory of Open Access Journals (Sweden)

    Hadfield Ruth

    2011-06-01

    Full Text Available Abstract Angiogenic factors are involved in formation of new blood vessels required for placental development and function; and critical for fetal growth and development. Soluble fms-like tyrosine kinase 1(sFlt-1 is an anti-angiogenic protein that inhibits formation of new blood vessels resulting in potential pregnancy complications. The objective of this study was to undertake a systematic review to assess levels of sFlt-1 in early pregnancy and association with adverse pregnancy outcomes. PubMed and Medline databases and reference lists were searched up to July 2010. Inclusion criteria were pregnant women, blood sample taken during first trimester and assessment/reporting of sFlt-1 concentrations and subsequent pregnancy complications. Twelve relevant studies were identified of 71 to 668 women. No pooling of results was undertaken due to variation in sFlt-1 concentrations (range, 166-6,349 pg/ml amongst controls, samples used (serum, plasma, different summary statistics (mean, median, odds ratio and outcome definitions applied. Levels of sFlt-1 were generally higher among women who developed preeclampsia (11 studies or gestational hypertension (two studies, but not significantly different to normotensive women in most studies. There was no consistent pattern in association between sFlt-1 concentrations and fetal growth restriction (4 studies; and levels were non-significantly higher for women with postpartum bleeding (1 study and significantly lower for stillbirths (1 study.This review found no clear evidence of an association between sFlt-1 levels in first trimester and adverse pregnancy outcomes. However, findings were affected by methodological, biological and testing variations between studies; highlighting the need for consistent testing of new biomarkers and reporting of outcome measures.

  12. Heightened cleavage of Axl receptor tyrosine kinase by ADAM metalloproteases may contribute to disease pathogenesis in SLE.

    Science.gov (United States)

    Orme, Jacob J; Du, Yong; Vanarsa, Kamala; Mayeux, Jessica; Li, Li; Mutwally, Azza; Arriens, Cristina; Min, Soyoun; Hutcheson, Jack; Davis, Laurie S; Chong, Benjamin F; Satterthwaite, Anne B; Wu, Tianfu; Mohan, Chandra

    2016-08-01

    Systemic lupus erythematosus (SLE) is characterized by antibody-mediated chronic inflammation in the kidney, lung, skin, and other organs to cause inflammation and damage. Several inflammatory pathways are dysregulated in SLE, and understanding these pathways may improve diagnosis and treatment. In one such pathway, Axl tyrosine kinase receptor responds to Gas6 ligand to block inflammation in leukocytes. A soluble form of the Axl receptor ectodomain (sAxl) is elevated in serum from patients with SLE and lupus-prone mice. We hypothesized that sAxl in SLE serum originates from the surface of leukocytes and that the loss of leukocyte Axl contributes to the disease. We determined that macrophages and B cells are a source of sAxl in SLE and in lupus-prone mice. Shedding of the Axl ectodomain from the leukocytes of lupus-prone mice is mediated by the matrix metalloproteases ADAM10 and TACE (ADAM17). Loss of Axl from lupus-prone macrophages renders them unresponsive to Gas6-induced anti-inflammatory signaling in vitro. This phenotype is rescued by combined ADAM10/TACE inhibition. Mice with Axl-deficient macrophages develop worse disease than controls when challenged with anti-glomerular basement membrane (anti-GBM) sera in an induced model of nephritis. ADAM10 and TACE also mediate human SLE PBMC Axl cleavage. Collectively, these studies indicate that increased metalloprotease-mediated cleavage of leukocyte Axl may contribute to end organ disease in lupus. They further suggest dual ADAM10/TACE inhibition as a potential therapeutic modality in SLE. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Stat3 activates the receptor tyrosine kinase like orphan receptor-1 gene in chronic lymphocytic leukemia cells.

    Directory of Open Access Journals (Sweden)

    Ping Li

    Full Text Available BACKGROUND: The receptor tyrosine kinase like orphan receptor (ROR-1 gene is overexpressed in chronic lymphocytic leukemia (CLL. Because Stat3 is constitutively activated in CLL and sequence analysis revealed that the ROR1 promoter harbors gamma-interferon activation sequence-like elements typically activated by Stat3, we hypothesized that Stat3 activates ROR1. METHODOLOGY/PRINCIPAL FINDINGS: Because IL-6 induced Stat3 phosphorylation and upregulated Ror1 protein levels in MM1 cells, we used these cells as a model. We transfected MM1 cells with truncated ROR1 promoter luciferase reporter constructs and found that IL-6 induced luciferase activity of ROR1-195 and upstream constructs. Co-transfection with Stat3 siRNA reduced the IL-6-induced luciferase activity, suggesting that IL-6 induced luciferase activity by activating Stat3. EMSA and the ChIP assay confirmed that Stat3 binds ROR1, and EMSA studies identified two Stat3 binding sites. In CLL cells, EMSA and ChIP studies determined that phosphorylated Stat3 bound to the ROR1 promoter at those two ROR1 promoter sites, and ChIP analysis showed that Stat3 co-immunoprecipitated DNA of STAT3, ROR1, and several Stat3-regulated genes. Finally, like STAT3-siRNA in MM1 cells, STAT3-shRNA downregulated STAT3, ROR1, and STAT3-regulated genes and Stat3 and Ror1 protein levels in CLL cells. CONCLUSION/SIGNIFICANCE: Our data suggest that constitutively activated Stat3 binds to the ROR1 promoter and activates ROR1 in CLL cells.

  14. Impact of long-term exposure to the tyrosine kinase inhibitor imatinib on the skeleton of growing rats.

    Directory of Open Access Journals (Sweden)

    Josephine T Tauer

    Full Text Available The tyrosine kinase (TK inhibitor imatinib provides a highly effective therapy for chronic myeloid leukemia (CML via inhibition of the oncogenic TK BCR-ABL1. However, off-target TKs like platelet-derived growth factor receptors (PDGF-R and colony-stimulating factor-1 receptor (c-fms, involved in bone remodeling, are also inhibited. Thus, pediatric patients with CML on imatinib exhibit altered bone metabolism, leading to linear growth failure. As TKI treatment might be necessary for a lifetime, long-term effects exerted on bone in children are of major concern. Therefore, we studied the skeletal long-term effects of continuous and intermittent imatinib exposure in a juvenile rat model. Four-weeks-old male Wistar rats were chronically exposed to imatinib via drinking water over a period of 10 weeks. Animals were exposed to a standard and high imatinib dosage continuously and to the high imatinib dose intermittently. Bone mass and strength were assessed using pQCT, micro-computed tomography (μCT, and biomechanical testing at the prepubertal, pubertal, and postpubertal age. Bone length and vertebral height as well as biochemical markers of bone turnover were analyzed. Femoral and tibial bone length were dose-dependently reduced by up to 24% (p<0.0001, femoral and tibial trabecular bone mass density (BMD were reduced by up to 25% (p<0.01, and femoral breaking strength was lowered by up to 20% (p<0.05. Intermittent exposure mitigated these skeletal effects. Long-term exposure resulted in reduced vertebral height by 15% and lower trabecular BMD by 5%. Skeletal changes were associated with suppressed serum osteocalcin (p<0.01 and non-significantly elevated serum CTX-I and PINP levels. In conclusion, imatinib mainly impaired longitudinal growth of long bones rather than the vertebrae of growing rats. Interestingly, intermittent imatinib exposure has less skeletal side effects, which may be beneficial in pediatric patients taking imatinib.

  15. EphA4 receptor tyrosine kinase is a modulator of onset and disease severity of experimental autoimmune encephalomyelitis (EAE.

    Directory of Open Access Journals (Sweden)

    Kathryn M Munro

    Full Text Available The EphA4 receptor tyrosine kinase is a major regulator of axonal growth and astrocyte reactivity and is a possible inflammatory mediator. Given that multiple sclerosis (MS is primarily an inflammatory demyelinating disease and in mouse models of MS, such as experimental autoimmune encephalomyelitis (EAE, axonal degeneration and reactive gliosis are prominent clinical features, we hypothesised that endogenous EphA4 could play a role in modulating EAE. EAE was induced in EphA4 knockout and wildtype mice using MOG peptide immunisation and clinical severity and histological features of the disease were then compared in lumbar spinal cord sections. EphA4 knockout mice exhibited a markedly less severe clinical course than wildtype mice, with a lower maximum disease grade and a slightly later onset of clinical symptoms. Numbers of infiltrating T cells and macrophages, the number and size of the lesions, and the extent of astrocytic gliosis were similar in both genotypes; however, EphA4 knockout mice appeared to have decreased axonal pathology. Blocking of EphA4 in wildtype mice by administration of soluble EphA4 (EphA4-Fc as a decoy receptor following induction of EAE produced a delay in onset of clinical symptoms; however, most mice had clinical symptoms of similar severity by 22 days, indicating that EphA4 blocking treatment slowed early EAE disease evolution. Again there were no apparent differences in histopathology. To determine whether the role of EphA4 in modulating EAE was CNS mediated or due to an altered immune response, MOG primed T cells from wildtype and EphA4 knockout mice were passively transferred into naive recipient mice and both were shown to induce disease of equivalent severity. These results are consistent with a non-inflammatory, CNS specific, deleterious effect of EphA4 during neuroinflammation that results in axonal pathology.

  16. Prediction for response duration to epidermal growth factor receptor-tyrosine kinase inhibitors in EGFR mutated never smoker lung adenocarcinoma.

    Science.gov (United States)

    Kim, Hye Ryun; Cho, Byoung Chul; Shim, Hyo Sup; Lim, Sun Min; Kim, Se Kyu; Chang, Joon; Kim, Dae Joon; Kim, Joo Hang

    2014-03-01

    Among non-small cell lung cancer (NSCLC) patients harboring activating epidermal growth factor receptor (EGFR) mutations, ∼ 20-30% exhibit de novo resistance to EGFR-tyrosine kinase inhibitor (TKI). The aim of this study was to examine whether mutations in the EGFR-downstream genes may be associated with de novo resistance to EGFR-TKIs in EGFR mutation-positive patients. Sixty-eight never-smoker adenocarcinoma patients with an activating EGFR mutation were included in the mutational analysis and 55 patients treated with EGFR-TKIs were analyzed for the treatment outcomes to EGFR-TKIs. We concurrently analyzed mutations in PIK3CA, PTEN, AKT and STK11, which are all EGFR-downstream genes. Mutations in PIK3CA, PTEN, AKT, and STK11 were analyzed by polymerase chain reaction-based sequencing. PIK3CA mutations were detected in 4.4% (3/68) of patients, PTEN mutations in 16.1% (11/68), AKT mutations in 5.9% (4/68), and STK11 mutations in 13.2% (9/68). One patient with an activating exon 21 L858R mutation concomitantly had an exon 20 T790M mutation in EGFR. The proportion of patients who had mutations in EGFR-downstream genes was 32.4% (22/68). When we analyzed the treatment outcome of 55 patients treated with EGFR-TKI, the presence of mutations in EGFR-downstream genes correlated with a poor overall response rate to EGFR-TKIs (63.6 vs.14.5% in patients with mutation in EGFR-downstream gene, Padenocarcinoma patients with activating EGFR mutations. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Role of hepatic transporters in the disposition and hepatotoxicity of a HER2 tyrosine kinase inhibitor CP-724,714.

    Science.gov (United States)

    Feng, Bo; Xu, Jinghai J; Bi, Yi-An; Mireles, Rouchelle; Davidson, Ralph; Duignan, David B; Campbell, Scott; Kostrubsky, Vsevolod E; Dunn, Margaret C; Smith, Arthur R; Wang, Huifen F

    2009-04-01

    CP-724,714, a potent and selective orally active HER2 tyrosine kinase inhibitor, was discontinued from clinical development due to unexpected hepatotoxicity in cancer patients. Based on the clinical manifestation of the toxicity, CP-724,714 likely exerted its hepatotoxicity via both hepatocellular injury and hepatobiliary cholestatic mechanisms. The direct cytotoxic effect, hepatobiliary disposition of CP-724,714, and its inhibition of active canalicular transport of bile constituents were evaluated in established human hepatocyte models and in vitro transporter systems. CP-724,714 exhibited direct cytotoxicity using human hepatocyte imaging assay technology with mitochondria identified as a candidate organelle for its off-target toxicity. Additionally, CP-724,714 was rapidly taken up into human hepatocytes, partially via an active transport process, with an uptake clearance approximately fourfold higher than efflux clearance. The major human hepatic uptake transporter, OATP1B1, and efflux transporters, multidrug resistance protein 1 (MDR1) and breast cancer resistance protein, were involved in hepatobiliary clearance of CP-724,714. Furthermore, CP-724,714 displayed a concentration-dependent inhibition of cholyl-lysyl fluorescein and taurocholate (TC) efflux into canaliculi in cryopreserved and fresh cultured human hepatocytes, respectively. Likewise, CP-724,714 inhibited TC transport in membrane vesicles expressing human bile salt export pump with an IC(50) of 16 microM. Finally, CP-724,714 inhibited the major efflux transporter in bile canaliculi, MDR1, with an IC(50) of approximately 28 microM. These results suggest that inhibition of hepatic efflux transporters contributed to hepatic accumulation of drug and bile constituents leading to hepatocellular injury and hepatobiliary cholestasis. This study provides likely explanations for clinically observed adverse liver effects of CP-724,714.

  18. Epidermal growth factor receptor-tyrosine kinase inhibitors in advanced squamous cell carcinoma of the lung: a meta-analysis.

    Science.gov (United States)

    Ameratunga, Malaka; Pavlakis, Nick; Gebski, Val; Broad, Adam; Khasraw, Mustafa

    2014-09-01

    Tyrosine kinase inhibitors (TKIs) targeting the epidermal growth factor receptor (EGFR) are well established in treating metastatic pulmonary adenocarcinoma, especially patients with activating EGFR mutations. EGFR mutations are rare in pulmonary squamous cell carcinomas (SCCs). There are conflicting data supporting the efficacy of EGFR-TKIs in advanced lung SCC. We analyzed the impact of EGFR-TKIs on progression-free survival (PFS) and overall survival (OS) in unselected patients with lung SCC. We searched for randomized controlled trials (RCTs) comparing EGFR-TKIs alone with placebo in patients with metastatic non-small cell lung cancer. RCTs in all settings (front line/maintenance/subsequent) were included. The primary outcome was OS in the SCC population. We used published hazard ratios (HRs), and when unavailable, unpublished data were sought. Pooled estimates of treatment effect on OS and PFS were calculated using the fixed-effects inverse variance weighted method. Eight eligible RCTs were included: 2 first-line, 6 second-line or beyond, evaluating 1781 patients. Data were available for OS in four studies (second-line; N=1420) and for PFS in four studies (3 second-line, 1 first-line; N=788). EGFR-TKIs significantly prolonged OS with a HR of 0.88 (95% confidence interval [CI] 0.78-1.00, P=0.04), and significantly prolonged PFS with a HR of 0.77 (95% CI 0.65-0.92, P=0.004). EGFR mutations are rare in lung SCC. However, EGFR-TKIs have a modest therapeutic effect compared to placebo in unselected patients with advanced pulmonary SCC, and can be considered in these patients. EGFR-mutation-independent mechanisms may explain efficacy of EGFR inhibitors in this setting. © 2014 Wiley Publishing Asia Pty Ltd.

  19. The anti-esophageal cancer cell activity by a novel tyrosine/phosphoinositide kinase inhibitor PP121

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yi; Zhou, Yajuan [Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan 430071 (China); Cheng, Long [Department of Interventional Radiology, the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215001 (China); Hu, Desheng; Zhou, Xiaoyi; Wang, Zhaohua [Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan 430071 (China); Xie, Conghua, E-mail: chxie_65@hotmail.com [Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Zhou, Fuxiang, E-mail: ZhouFuxiangwuhan@126.com [Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China)

    2015-09-11

    Here we explored the potential effect of PP121, a novel dual inhibitor of tyrosine and phosphoinositide kinases, against human esophageal cancer cells. We showed that PP121 exerted potent cytotoxic effect in primary (patient-derived) and established (Eca-109, TE-1 and TE-3 lines) esophageal cancer cells, possibly through activating caspase-3-dependnent apoptosis. PP121 was, however, non-cytotoxic to the normal human esophageal epithelial cells (EECs). At the molecular level, we showed that PP121 blocked Akt-mTOR (mammalian target of rapamycin) activation in esophageal cancer cells, which was restored by introducing a constitutively-active Akt (CA-Akt). Yet, CA-Akt only partly inhibited cytotoxicity by PP121 in Eca-109 cells. Importantly, we showed that PP121 inhibited nuclear factor kappa B (NFκB) signaling activation in esophageal cancer cells, which appeared independent of Akt-mTOR blockage. In vivo, oral administration of PP121 remarkably inhibited Eca-109 xenograft growth in nude mice, and significantly improved mice survival. Further, the immunohistochemistry (IHC) and Western blot assays analyzing xenografted tumors showed that PP121 inhibited Akt-mTOR and NFκB activations in vivo. Together, we demonstrate that PP121 potently inhibits esophageal cancer cells in vitro and in vivo, possibly through concurrently inhibiting Akt-mTOR and NFκB signalings. - Highlights: • PP121 is cytotoxic against primary and established esophageal cancer cells. • PP121 induces caspase-3-dependnent apoptosis in esophageal cancer cells. • PP121 blocks Akt-mTOR activation in esophageal cancer cells. • PP121 inhibits NFκB activation, independent of Akt-mTOR blockage. • PP121 inhibits Eca-109 xenograft growth and Akt-mTOR/NFκB activation in vivo.

  20. Antitumor activity of sorafenib in human cancer cell lines with acquired resistance to EGFR and VEGFR tyrosine kinase inhibitors.

    Directory of Open Access Journals (Sweden)

    Floriana Morgillo

    Full Text Available Treatment of non small cell lung cancer (NSCLC and colorectal cancer (CRC have substantially changed in the last years with the introduction of epidermal growth factor receptor (EGFR inhibitors in the clinical practice. The understanding of mechanisms which regulate cells sensitivity to these drugs is necessary for their optimal use.An in vitro model of acquired resistance to two tyrosine kinase inhibitors (TKI targeting the EGFR, erlotinib and gefitinib, and to a TKI targeting EGFR and VEGFR, vandetanib, was developed by continuously treating the human NSCLC cell line CALU-3 and the human CRC cell line HCT116 with escalating doses of each drug. MTT, western blot analysis, migration, invasion and anchorage-independent colony forming assays were conducted in vitro and experiments with established xenografts in athymic nude mice were performed in vivo in sensitive, wild type (WT and TKI-resistant CALU-3 and HCT116 cell lines.As compared to WT CALU-3 and HCT116 human cancer cells, TKI-resistant cell lines showed a significant increase in the levels of activated, phosphorylated AKT, MAPK, and of survivin. Considering the role of RAS and RAF as downstream signals of both the EGFR and VEGFR pathways, we treated resistant cells with sorafenib, an inhibitor of C-RAF, B-RAF, c-KIT, FLT-3, RET, VEGFR-2, VEGFR-3, and PDGFR-β. Sorafenib reduced the activation of MEK and MAPK and caused an inhibition of cell proliferation, invasion, migration, anchorage-independent growth in vitro and of tumor growth in vivo of all TKI-resistant CALU-3 and HCT116 cell lines.These data suggest that resistance to EGFR inhibitors is predominantly driven by the RAS/RAF/MAPK pathway and can be overcame by treatment with sorafenib.

  1. Herpes Simplex Virus Type 1 Neuronal Infection Perturbs Golgi Apparatus Integrity through Activation of Src Tyrosine Kinase and Dyn-2 GTPase

    Directory of Open Access Journals (Sweden)

    Carolina Martin

    2017-08-01

    Full Text Available Herpes simplex virus type 1 (HSV-1 is a ubiquitous pathogen that establishes a latent persistent neuronal infection in humans. The pathogenic effects of repeated viral reactivation in infected neurons are still unknown. Several studies have reported that during HSV-1 epithelial infection, the virus could modulate diverse cell signaling pathways remodeling the Golgi apparatus (GA membranes, but the molecular mechanisms implicated, and the functional consequences to neurons is currently unknown. Here we report that infection of primary neuronal cultures with HSV-1 triggers Src tyrosine kinase activation and subsequent phosphorylation of Dynamin 2 GTPase, two players with a role in GA integrity maintenance. Immunofluorescence analyses showed that HSV-1 productive neuronal infection caused a scattered and fragmented distribution of the GA through the cytoplasm, contrasting with the uniform perinuclear distribution pattern observed in control cells. In addition, transmission electron microscopy revealed swollen cisternae and disorganized stacks in HSV-1 infected neurons compared to control cells. Interestingly, PP2, a selective inhibitor for Src-family kinases markedly reduced these morphological alterations of the GA induced by HSV-1 infection strongly supporting the possible involvement of Src tyrosine kinase. Finally, we showed that HSV-1 tegument protein VP11/12 is necessary but not sufficient to induce Dyn2 phosphorylation. Altogether, these results show that HSV-1 neuronal infection triggers activation of Src tyrosine kinase, phosphorylation of Dynamin 2 GTPase, and perturbation of GA integrity. These findings suggest a possible neuropathogenic mechanism triggered by HSV-1 infection, which could involve dysfunction of the secretory system in neurons and central nervous system.

  2. Persistent inhibition of ABL tyrosine kinase causes enhanced apoptotic response to TRAIL and disrupts the pro-apoptotic effect of chloroquine.

    Directory of Open Access Journals (Sweden)

    Priya Sridevi

    Full Text Available TNF-Related Apoptosis Inducing Ligand (TRAIL binds to and activates death receptors to stimulate caspase-8 and apoptosis with higher efficiency in cancer than normal cells but the development of apoptosis resistance has limited its clinical efficacy. We found that stable, but not transient knockdown of the ABL tyrosine kinase enhanced the apoptotic response to TRAIL. Re-expression of Abl, but not its nuclear import- or kinase-defective mutant, in the ABL-knockdown cells re-established apoptosis suppression. TRAIL is known to stimulate caspase-8 ubiquitination (Ub-C8, which can facilitate caspase-8 activation or degradation by the lysosomes. In the ABL-knockdown cells, we found a higher basal level of Ub-C8 that was not further increased by lysosomal inhibition. Re-expression of Abl in the ABL-knockdown cells reduced the basal Ub-C8, correlating with apoptosis suppression. We found that lysosomal inhibition by chloroquine (CQ could also enhance TRAIL-induced apoptosis. However, this pro-apoptotic effect of CQ was lost in the ABL-knockdown cells but restored by Abl re-expression. Interestingly, kinase inhibition at the time of TRAIL stimulation was not sufficient to enhance apoptosis. Instead, persistent treatment for several days with imatinib, an ABL kinase inhibitor, was required to cause the enhanced and the CQ-insensitive apoptotic response to TRAIL. Together, these results show that persistent loss of nuclear ABL tyrosine kinase function can sensitize cells to TRAIL and suggest that long-term exposure to the FDA-approved ABL kinase inhibitors may potentiate apoptotic response to TRAIL-based cancer therapy.

  3. Role of miR-222-3p in c-Src-Mediated Regulation of Osteoclastogenesis

    Directory of Open Access Journals (Sweden)

    Shinya Takigawa

    2016-02-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs that play a mostly post-transcriptional regulatory role in gene expression. Using RAW264.7 pre-osteoclast cells and genome-wide expression analysis, we identified a set of miRNAs that are involved in osteoclastogenesis. Based on in silico analysis, we specifically focused on miR-222-3p and evaluated its role in osteoclastogenesis. The results show that the inhibitor of miR-222-3p upregulated the mRNA levels of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1 and tartrate-resistant acid phosphatase (TRAP, while its mimicking agent downregulated their mRNA levels. Western blot analysis showed that its inhibitor increased the protein levels of TRAP and cathepsin K, while its mimicking agent decreased their levels. Genome-wide mRNA expression analysis in the presence and absence of receptor activator of nuclear factor κ-B ligand (RANKL predicted c-Src as a potential regulatory target of miR-222-3p. Live cell imaging using a fluorescence resonance energy transfer (FRET technique revealed that miR-222-3p acted as an inhibitor of c-Src activity, and a partial silencing of c-Src suppressed RANKL-induced expression of TRAP and cathepsin K, as well as the number of multi-nucleated osteoclasts and their pit formation. Collectively, the study herein demonstrates that miR-222-3p serves as an inhibitor of osteoclastogenesis and c-Src mediates its inhibition of cathepsin K and TRAP.

  4. The proto-oncogene c-src is involved in primordial follicle activation through the PI3K, PKC and MAPK signaling pathways

    Directory of Open Access Journals (Sweden)

    Du Xiao-Yu

    2012-08-01

    Full Text Available Abstract Background C-src is an evolutionarily conserved proto-oncogene that regulates cell proliferation, differentiation and apoptosis. In our previous studies, we have reported that another proto-oncogene, c-erbB2, plays an important role in primordial follicle activation and development. We also found that c-src was expressed in mammalian ovaries, but its functions in primordial follicle activation remain unclear. The objective of this study is to investigate the role and mechanism of c-src during the growth of primordial follicles. Methods Ovaries from 2-day-old rats were cultured in vitro for 8 days. Three c-src-targeting and one negative control siRNA were designed and used in the present study. PCR, Western blotting and primordial follicle development were assessed for the silencing efficiency of the lentivirus c-src siRNA and its effect on primordial follicle onset. The expression of c-src mRNA and protein in primordial follicle growth were examined using the PCR method and immunohistochemical staining. Furthermore, the MAPK inhibitor PD98059, the PKC inhibitor Calphostin and the PI3K inhibitor LY294002 were used to explore the possible signaling pathways of c-src in primordial folliculogenesis. Results The results showed that Src protein was distributed in the ooplasmic membrane and the granulosa cell membrane in the primordial follicles, and c-src expression level increased with the growth of primordial follicle. The c-src -targeting lentivirus siRNAs had a silencing effect on c-src mRNA and protein expression. Eight days after transfection of rat ovaries with c-src siRNA, the GFP fluorescence in frozen ovarian sections was clearly discernible under a fluorescence microscope, and its relative expression level was 5-fold higher than that in the control group. Furthermore, the c-src-targeting lentivirus siRNAs lowered its relative expression level 1.96 times. We also found that the development of cultured primordial follicles was

  5. Micro-osmotic pumps for continuous release of the tyrosine kinase inhibitor bosutinib in juvenile rats and its impact on bone growth.

    Science.gov (United States)

    Tauer, Josephine Tabea; Hofbauer, Lorenz C; Jung, Rolang; Erben, Reinhold G; Suttorp, Meinolf

    2013-11-04

    Bosutinib is a third-generation dual tyrosine kinase inhibitor (TKI) inhibiting Abl and Src kinases. It was developed to act on up-regulated tyrosine kinases (TKs) like BCR-ABL in Philadelphia chromosome positive (Ph+) chronic myeloid leukemia (CML) when resistance to first- and second-generation TKIs developed. However, first- and second-generation TKIs show off-target effects on bone metabolism, whereas studies on skeletal adverse effects of bosutinib are still lacking. Therefore, it was the aim of this study to continuously expose juvenile rats to bosutinib and to analyze its influence on the growing bone. Starting after weaning, 4-week-old Wistar rats were chronically exposed over a 28-day period to varying concentrations of bosutinib, which were continuously administered subcutaneously via implanted Alzet® micro-osmotic pumps. After necropsy, the length of the femora and tibiae were analyzed. Continuous administration of bosutinib by micro-osmotic pumps led to serum drug levels in the lower therapeutic range, was well tolerated, and exhibited only minor adverse effects on the growing skeleton. Micro-osmotic pumps represent a convenient system for continuous TKI release in young growing rats. Compared to first- and second-generation TKIs, bosutinib seems to exert fewer adverse effects on the growing bone.

  6. P-loop conformation governed crizotinib resistance in G2032R-mutated ROS1 tyrosine kinase: clues from free energy landscape.

    Directory of Open Access Journals (Sweden)

    Huiyong Sun

    2014-07-01

    Full Text Available Tyrosine kinases are regarded as excellent targets for chemical drug therapy of carcinomas. However, under strong purifying selection, drug resistance usually occurs in the cancer cells within a short term. Many cases of drug resistance have been found to be associated with secondary mutations in drug target, which lead to the attenuated drug-target interactions. For example, recently, an acquired secondary mutation, G2032R, has been detected in the drug target, ROS1 tyrosine kinase, from a crizotinib-resistant patient, who responded poorly to crizotinib within a very short therapeutic term. It was supposed that the mutation was located at the solvent front and might hinder the drug binding. However, a different fact could be uncovered by the simulations reported in this study. Here, free energy surfaces were characterized by the drug-target distance and the phosphate-binding loop (P-loop conformational change of the crizotinib-ROS1 complex through advanced molecular dynamics techniques, and it was revealed that the more rigid P-loop region in the G2032R-mutated ROS1 was primarily responsible for the crizotinib resistance, which on one hand, impaired the binding of crizotinib directly, and on the other hand, shortened the residence time induced by the flattened free energy surface. Therefore, both of the binding affinity and the drug residence time should be emphasized in rational drug design to overcome the kinase resistance.

  7. Synthesis and biological evaluation of pyrimidine-based dual inhibitors of human epidermal growth factor receptor 1 (HER-1) and HER-2 tyrosine kinases.

    Science.gov (United States)

    Cha, Mi Young; Lee, Kwang-Ok; Kang, Seok-Jong; Jung, Young Hee; Song, Ji Yeon; Choi, Kyung Jin; Byun, Joo Yun; Lee, Han-Jae; Lee, Gwan Sun; Park, Seung Bum; Kim, Maeng Sup

    2012-03-22

    A novel series of N(4)-(3-chlorophenyl)-5-(oxazol-2-yl)pyrimidine-4,6-diamines were synthesized and evaluated as dual inhibitors of HER-1/HER-2 tyrosine kinases. In contrast to the currently approved HER-2-targeted agent (lapatinib, 1), our irreversible HER-1/HER-2 inhibitors have the potential to overcome the clinically relevant and mutation-induced drug resistance. The selected compound (19a) showed excellent inhibitory activity toward HER-1/HER-2 tyrosine kinases with selectivity over 20 other kinases and inhibited the proliferation of both cancer cell types: lapatinib-sensitive cell lines (SK-Br3, MDA-MB-175, and N87) and lapatinib-resistant cell lines (MDA-MB-453, H1781, and H1975). The excellent pharmacokinetic profiles of 19a in mice and rats led us to further investigation of a novel therapeutic agent for HER-2-targeting treatment of solid tumors, especially HER-2-positive breast/gastric cancer and HER-2-mutated lung cancer.

  8. BMP-7 enhances cell migration and αvβ3 integrin expression via a c-Src-dependent pathway in human chondrosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Jui-Chieh Chen

    Full Text Available Bone morphogenic protein (BMP-7 is a member of the transforming growth factor (TGF-beta superfamily, which is originally identified based on its ability to induce cartilage and bone formation. In recent years, BMP-7 is also defined as a potent promoter of cell motility, invasion, and metastasis. However, there is little knowledge of the role of BMP-7 and its cellular function in chondrosarcoma cells. In the present study, we investigated the biological impact of BMP-7 on cell motility using transwell assay. In addition, the intracellular signaling pathways were also investigated by pharmacological and genetic approaches. Our results demonstrated that treatment with exogenous BMP-7 markedly increased cell migration by activating c-Src/PI3K/Akt/IKK/NF-κB signaling pathway, resulting in the transactivation of αvβ3 integrin expression. Indeed, abrogation of signaling activation, by chemical inhibition or expression of a kinase dead form of the protein attenuated BMP-7-induced expression of integrin αvβ3 and cell migration. These findings may provide a useful tool for diagnostic/prognostic purposes and even therapeutically in late-stage chondrosarcoma as an anti-metastatic agent.

  9. Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-Garcia, Estefania; Saceda, Miguel [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Grasso, Silvina; Rocamora-Reverte, Lourdes; Conde, Mariano; Gomez-Martinez, Angeles [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Garcia-Morales, Pilar [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Ferragut, Jose A. [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Martinez-Lacaci, Isabel, E-mail: imlacaci@umh.es [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad AECC de Investigacion Traslacional en Cancer, Hospital Universitario Virgen de la Arrixaca, 30120 Murcia (Spain)

    2011-06-10

    Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G{sub 1} arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G{sub 1} arrest. This G{sub 1} arrest was associated with up-regulation of p27{sup kip1}, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G{sub 1} arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 {Delta}EGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.

  10. PO-55 - Individual variation in hemostatic alterations caused by tyrosine kinase inhibitors - a way to improve personalized cancer therapy?

    Science.gov (United States)

    Deb, S; Sjöström, C; Tharmakulanathan, A; Boknäs, N; Lotfi, K; Ramström, S

    2016-04-01

    During the last two decades, Bcr-Abl tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of chronic myelogenous leukemia (CML), and are now considered standard treatment for this disease. However, TKIs can induce serious hemostatic side effects including cardiovascular disease and bleeding disorders. Blood platelet aggregation and formation of pro-coagulant platelets are important to allow a well-balanced hemostatic response. Therefore, a detailed understanding of what effect different TKIs exert on platelets and hemostasis could help to understand if there are differences of importance to minimize the risk of bleeding complications in treated patients. To investigate how TKIs used in CML (imatinib, dasatinib, nilotinib, bosutinib, and ponatinib) affect platelet activation and hemostasis. We have developed a multi-parameter six color flow cytometry protocol to study different aspects of platelet function upon activation, e.g. formation of aggregatory (PAC-1-positive) and pro-coagulant (phosphatidylserine-exposing) platelets, exocytosis of alpha- and lysosomal granules and mitochondrial membrane potential.This protocol was performed in presence or absence of TKIs in blood from normal donors and in treated patients. Whole blood aggregometry (Multiplate®), thrombin generation in platelet-rich plasma and in vitro thrombus formation by free oscillation rheometry (ReoRox G2) was further evaluated in some situations. At clinically relevant concentrations, dasatinib significantly decreased the formation of procoagulant platelets. Ponatinib induced a slight decrease in formation of procoagulant platelets, whereas bosutinib and nilotinib showed opposite tendencies (n=7). Dasatinib also decreased platelet aggregation (n=4-6) and in vitro thrombus formation (n=3). Thrombin generation was not significantly affected by therapeutic levels of TKIs, whereas higher doses of dasatinib, bosutinib, ponatinib and imatinib significantly changed one or several of the

  11. Does the frequency of molecular monitoring after tyrosine kinase inhibitor discontinuation affect outcomes of patients with chronic myeloid leukemia?

    Science.gov (United States)

    Kong, Jee Hyun; Winton, Elliott F; Heffner, Leonard T; Chen, Zhengjia; Langston, Amelia A; Hill, Brittany; Arellano, Martha; El-Rassi, Fuad; Kim, Audrey; Jillella, Anand; Kota, Vamsi K; Bodó, Imre; Khoury, Hanna Jean

    2017-07-01

    To the authors' knowledge, the optimal frequency of monitoring after tyrosine kinase inhibitor (TKI) discontinuation in patients with chronic myeloid leukemia (CML) has not been established. Data regarding the discontinuation of second-generation TKIs used in first-line treatment or after the failure of first-line treatment with TKIs are limited. Herein, the authors report real-world experience with "reduced frequency" molecular monitoring in patients with CML in all phases who discontinued treatment with imatinib, dasatinib, or bosutinib. The records of patients who discontinued TKIs were reviewed. Patients who discontinued TKIs were monitored prospectively on an intended schedule of monthly blood quantitative reverse transcriptase-polymerase chain reaction for BCR-ABL1 for 3 months, quarterly for 12 months, and every 6 months thereafter until loss of major molecular response (MMR). After loss of MMR, the TKI that previously was discontinued was reinitiated. Between January 2010 and September 2015, a total of 24 patients in chronic (21 patients), accelerated (2 patients), and lymphoid blast (1 patient) phase discontinued imatinib (16 patients), dasatinib (5 patients), or bosutinib (3 patients) used in the front-line treatment or beyond. Blood quantitative reverse transcriptase-polymerase chain reaction for BCR-ABL1 was performed 1.3 ± 0.7 times within the first 3 months (24 patients) and 2.7 ± 1.4 times in the following 12 months (18 patients). With a median follow-up of 36.5 months (range, 3.2-67.4 months), the probabilities of treatment-free remission at 1 year and 2 years were 65.7% (95% confidence interval, 55.8%-75.6%) and 59.7% (95% confidence interval, 49.1%-70.3%), respectively. Loss of MMR was observed in 9 patients at a median of 2.8 months (range, 1.8-14.2 months) after discontinuation of TKIs. With the limitations of a small sample size, the results of the current study demonstrate that less frequent monitoring of BCR-ABL1 does not appear to affect

  12. The tyrosine kinase receptor Tyro3 enhances lifespan and neuropeptide Y (Npy neuron survival in the mouse anorexia (anx mutation

    Directory of Open Access Journals (Sweden)

    Dennis Y. Kim

    2017-05-01

    Full Text Available Severe appetite and weight loss define the eating disorder anorexia nervosa, and can also accompany the progression of some neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS. Although acute loss of hypothalamic neurons that produce appetite-stimulating neuropeptide Y (Npy and agouti-related peptide (Agrp in adult mice or in mice homozygous for the anorexia (anx mutation causes aphagia, our understanding of the factors that help maintain appetite regulatory circuitry is limited. Here we identify a mutation (C19T that converts an arginine to a tryptophan (R7W in the TYRO3 protein tyrosine kinase 3 (Tyro3 gene, which resides within the anx critical interval, as contributing to the severity of anx phenotypes. Our observation that, like Tyro3−/− mice, anx/anx mice exhibit abnormal secondary platelet aggregation suggested that the C19T Tyro3 variant might have functional consequences. Tyro3 is expressed in the hypothalamus and other brain regions affected by the anx mutation, and its mRNA localization appeared abnormal in anx/anx brains by postnatal day 19 (P19. The presence of wild-type Tyro3 transgenes, but not an R7W-Tyro3 transgene, doubled the weight and lifespans of anx/anx mice and near-normal numbers of hypothalamic Npy-expressing neurons were present in Tyro3-transgenic anx/anx mice at P19. Although no differences in R7W-Tyro3 signal sequence function or protein localization were discernible in vitro, distribution of R7W-Tyro3 protein differed from that of Tyro3 protein in the cerebellum of transgenic wild-type mice. Thus, R7W-Tyro3 protein localization deficits are only detectable in vivo. Further analyses revealed that the C19T Tyro3 mutation is present in a few other mouse strains, and hence is not the causative anx mutation, but rather an anx modifier. Our work shows that Tyro3 has prosurvival roles in the appetite regulatory circuitry and could also provide useful insights towards the development of interventions

  13. The patient journey in chronic myeloid leukemia patients on tyrosine kinase inhibitor therapies: qualitative insights using a global ethnographic approach.

    Science.gov (United States)

    Guilhot, François; Coombs, John; Szczudlo, Tomasz; Zernovak, Oleg; Paolantonio, Marc; Bender, Christina; Macdonald, Nancy J; Shapiro, Ari

    2013-01-01

    The advent and approval of tyrosine kinase inhibitors (TKIs) have dramatically improved the life expectancy of patients with chronic myeloid leukemia (CML), which has been transformed into a chronically manageable disease. The objective was to qualitatively assess the effects of diagnosis and treatment on patients with CML to offer recommendations for health-care providers (HCPs) for the better support of patients. By use of an ethnographic approach based on in-home interviews, photo journals, and an optional telephone debriefing interview, this study included 50 patients with CML from Brazil, France, Germany, Russia, and Spain, including patients within 18 months of diagnosis and receiving frontline TKI therapy (n = 20), patients between >18 months and 7 years from diagnosis and receiving ongoing frontline therapy (n = 20), and patients who switched to second- or third-line TKI therapy (n = 10). In-home interviews were designed to address patient perceptions and experiences regarding such issues as adherence, disease knowledge, disease management, and relationships with HCPs. Transcripts from these interviews and other data were analyzed to identify similar patterns and themes experienced by patients with CML. The investigation generated a five-stage, patient-centered model of the experience of the patient throughout diagnosis, treatment, and management of CML: crisis, hope, adaptation, new normal, and uncertainty. Patients proceeded through these stages in the course of their disease management. The stages were affected by the patients' emotional and social experiences, their knowledge about CML, their positive experiences with their HCPs and/or treatment, and their optimism about their long-term prognosis. We identified five common stages experienced by patients with CML and suggest several recommendations for HCPs on the management of patients through their disease journey. By providing support, education, and reassurance, HCPs can help patients as

  14. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Carol R., E-mail: cgardner@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Hankey, Pamela [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Mishin, Vladimir; Francis, Mary [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Yu, Shan [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)

    2012-07-15

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK{sup −/−} mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK{sup −/−} mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK{sup −/−} mice. Whereas F4/80{sup +} macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK{sup −/−} mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK{sup −/−} mice

  15. Sequential treatment of tyrosine kinase inhibitors and chemotherapy for EGFR-mutated non-small cell lung cancer: a meta-analysis of Phase III trials

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2013-11-01

    Full Text Available Yiliang Zhang,1,* Yihua Sun,1,* Lei Wang,1 Ting Ye,1 Yunjian Pan,1 Haichuan Hu,1 Yongfu Yu,2 Naiqing Zhao,2 Yanyan Song,3 David Garfield,4 Haiquan Chen1 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 2Department of Biostatistics, School of Public Health, Fudan University, 3Department of Pharmacology and Biostatistics, Institute of Medical Science, Shanghai Jiaotong University School of Medicine, 4ProMed Cancer Centers, Shanghai, People’s Republic of China *These authors contributed equally to this work Background: This aim of this study was to compare the efficacy of first-line tyrosine kinase inhibitor therapy followed, upon progression, by chemotherapy with the reverse sequence in patients with EGFR-mutated non-small cell lung cancer (NSCLC in terms of overall survival. Methods: We performed a meta-analysis of studies that met the following criteria: Phase III clinical trial comparing the sequencing of epidermal growth factor receptor (EGFR tyrosine kinase inhibitors with chemotherapy in the treatment of advanced EGFR-mutated NSCLC; activating mutations reported; and availability of hazard ratio estimates with 95% confidence intervals (CIs for overall survival. Results: Six clinical trials were included in this study. The pooled hazard ratio for overall survival of the EGFR-mutated population that completed sequential treatment was 1.03 (95% CI 0.86–1.22, P=0.776. There was no statistically significant heterogeneity between the studies (tau2 =0; I2=0, 95% CI 0–0.37, P=0.548. Evidence of marked publication bias for the two treatment sequences was insufficient (P=0.145. Conclusion: In patients with advanced NSCLC and activating EGFR mutations, first-line chemotherapy followed upon progression by a tyrosine kinase inhibitor was not inferior in terms of overall survival compared with the inverse sequence. This may serve as an indication that

  16. Importance of monitoring and early switch to second generation tyrosine kinase inhibitors for the prognosis of patients with chronic myeloid leukemia with imatinib resistance or intolerance

    Directory of Open Access Journals (Sweden)

    Belinda Pinto Simões

    2011-02-01

    Full Text Available Imatinib mesylate was the first BCR-ABL-target agent approved for the treatment of chronic myeloid leukemia. Although most patients respond well to imatinib therapy, the literature shows that one third develops resistance or intolerance. The timing of second-line treatment after failure of initial treatment may have a significant impact on long-term outcome. Thus, appropriate monitoring to identify resistance and/or intolerance is crucial to early intervention with second generation tyrosine kinase inhibitors and attainment of better results

  17. Frontal affinity chromatography with MS detection of EphB2 tyrosine kinase receptor. 2. Identification of small-molecule inhibitors via coupling with virtual screening.

    Science.gov (United States)

    Toledo-Sherman, Leticia; Deretey, Eugen; Slon-Usakiewicz, Jacek J; Ng, William; Dai, Jin-Rui; Foster, J Estelle; Redden, Peter R; Uger, Marni D; Liao, Linda C; Pasternak, Andrew; Reid, Neil

    2005-05-05

    We have integrated two complementary methods, high-throughput virtual screening with a "high-content" wet screening technique based on frontal affinity chromatography with mass spectrometry detection (FAC-MS), for identification of hits against the erythropoietin-producing hepatocellular B2 (EphB2) receptor tyrosine kinase domain. Both an EphB2-directed virtual screen combining docking and scoring and a kinase-directed pharmacophore search strategy were used to identify a compound set enriched in bioactive compounds against EphB2. The coupling of virtual screening methodologies with FAC-MS is a unique hybrid approach that can be used to increase the efficacy of both hit discovery and optimization efforts in drug discovery and has successfully identified hits, in particular 19a (36% shift, IC(50) = 5.2 microM, K(d) = 3.3 microM), as inhibitors for EphB2, a potential cancer target.

  18. {delta}-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Anika; Ammer, Hermann [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany); Eisinger, Daniela A., E-mail: eisinger@pharmtox.vetmed.uni-muenchen.de [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany)

    2009-07-15

    {delta}-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen{sup 2,5}]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G{sub i/o} proteins, because pre-treatment with pertussis toxin, but not over-expression of the G{sub q/11} scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the G{beta}{gamma} scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  19. Involvement of Src tyrosine kinase and protein kinase C in the expression of macrophage migration inhibitory factor induced by H{sub 2}O{sub 2} in HL-1 mouse cardiac muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Rao, F. [Department of Cardiology, Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou (China); Research Center of Medical Sciences, Guangdong General Hospital, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China); Deng, C.Y. [Research Center of Medical Sciences, Guangdong General Hospital, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China); Zhang, Q.H.; Xue, Y.M. [Department of Cardiology, Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China); Xiao, D.Z.; Kuang, S.J.; Lin, Q.X.; Shan, Z.X.; Liu, X.Y.; Zhu, J.N. [Research Center of Medical Sciences, Guangdong General Hospital, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China); Yu, X.Y. [Department of Cardiology, Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou (China); Research Center of Medical Sciences, Guangdong General Hospital, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China); Wu, S.L. [Department of Cardiology, Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou (China); Guangdong Academy of Medical Sciences, Guangzhou (China)

    2013-09-06

    Macrophage migration inhibitory factor (MIF), a pleiotropic cytokine, plays an important role in the pathogenesis of atrial fibrillation; however, the upstream regulation of MIF in atrial myocytes remains unclear. In the present study, we investigated whether and how MIF is regulated in response to the renin-angiotensin system and oxidative stress in atrium myocytes (HL-1 cells). MIF protein and mRNA levels in HL-1 cells were assayed using immunofluorescence, real-time PCR, and Western blot. The result indicated that MIF was expressed in the cytoplasm of HL-1 cells. Hydrogen peroxide (H{sub 2}O{sub 2}), but not angiotensin II, stimulated MIF expression in HL-1 cells. H{sub 2}O{sub 2}-induced MIF protein and gene levels increased in a dose-dependent manner and were completely abolished in the presence of catalase. H{sub 2}O{sub 2}-induced MIF production was completely inhibited by tyrosine kinase inhibitors genistein and PP1, as well as by protein kinase C (PKC) inhibitor GF109203X, suggesting that redox-sensitive MIF production is mediated through tyrosine kinase and PKC-dependent mechanisms in HL-1 cells. These results suggest that MIF is upregulated by HL-1 cells in response to redox stress, probably by the activation of Src and PKC.

  20. Internal tandem duplication and tyrosine kinase domain mutations in FLT3 alter the response to daunorubicin in Ba/F3 cells.

    Science.gov (United States)

    Takahashi, Shinichiro; Shirahama, Kumi

    2016-01-01

    Internal tandem duplication (ITD) and activating point mutations, mainly at aspartic acid 835 in the tyrosine kinase domain (TKD), are frequently identified in the Fms-related tyrosine kinase 3 (FLT3) receptor gene in acute myeloid leukemia. The ITD in FLT3 (FLT3-ITD) confers resistance to several chemotherapeutic drugs; however, the relative effects of FLT3-ITD and FLT3-TKD mutations on the efficacy of these drugs have not been reported. In the present study, ITD or TKD mutant forms of FLT3 in Ba/F3 cells were expressed, as in the absence of interleukin-3 (IL-3) the