WorldWideScience

Sample records for c-jun gene expression

  1. c-jun gene expression in human cells exposed to either ionizing radiation or hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Collart, F.R.; Horio, M.; Huberman, E.

    1993-06-01

    We investigated the role of reactive oxygen intermediates (ROIs) and protein kinase C (PKC) in radiation- and H{sub 2}O{sub 2}-evoked c-jun gene expression in human HL-205 cells. This induction of c-jun gene expression could be prevented by pretreatment of the cells with Nacetylcysteine (an antioxidant) or H7 (a PKC and PKA inhibitor) but not by HA1004, a PKA inhibitor, suggesting a role for ROls and PKC in mediating c-jun gene expression. We also investigated potential differences in c-jun gene expression in a panel of normal and tumor cells untreated or treated with ionizing radiation or H{sub 2}O{sub 2}. Treatment with radiation or H{sub 2}O{sub 2} produced a varied response, from some reduction to an increase of more than an order of magnitude in the steady-state level of c-jun mRNA. These data indicate that although induction of c-jun may be a common response to ionizing radiation and H{sub 2}O{sub 2}, this response was reduced or absent in some cell types.

  2. Anthrax lethal toxin rapidly reduces c-Jun levels by inhibiting c-Jun gene transcription and promoting c-Jun protein degradation.

    Science.gov (United States)

    Ouyang, Weiming; Guo, Pengfei; Fang, Hui; Frucht, David M

    2017-10-27

    Anthrax is a life-threatening disease caused by infection with Bacillus anthracis , which expresses lethal factor and the receptor-binding protective antigen. These two proteins combine to form anthrax lethal toxin (LT), whose proximal targets are mitogen-activated kinase kinases (MKKs). However, the downstream mediators of LT toxicity remain elusive. Here we report that LT exposure rapidly reduces the levels of c-Jun, a key regulator of cell proliferation and survival. Blockade of proteasome-dependent protein degradation with the 26S proteasome inhibitor MG132 largely restored c-Jun protein levels, suggesting that LT promotes degradation of c-Jun protein. Using the MKK1/2 inhibitor U0126, we further show that MKK1/2-Erk1/2 pathway inactivation similarly reduces c-Jun protein, which was also restored by MG132 pre-exposure. Interestingly, c-Jun protein rebounded to normal levels 4 h following U0126 exposure but not after LT exposure. The restoration of c-Jun in U0126-exposed cells was associated with increased c-Jun mRNA levels and was blocked by inactivation of the JNK1/2 signaling pathway. These results indicate that LT reduces c-Jun both by promoting c-Jun protein degradation via inactivation of MKK1/2-Erk1/2 signaling and by blocking c-Jun gene transcription via inactivation of MKK4-JNK1/2 signaling. In line with the known functions of c-Jun, LT also inhibited cell proliferation. Ectopic expression of LT-resistant MKK2 and MKK4 variants partially restored Erk1/2 and JNK1/2 signaling in LT-exposed cells, enabling the cells to maintain relatively normal c-Jun protein levels and cell proliferation. Taken together, these findings indicate that LT reduces c-Jun protein levels via two distinct mechanisms, thereby inhibiting critical cell functions, including cellular proliferation.

  3. Pregnane and Xenobiotic Receptor gene expression in liver cells is modulated by Ets-1 in synchrony with transcription factors Pax5, LEF-1 and c-jun

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Sangeeta; Saradhi, Mallampati; Rana, Manjul; Chatterjee, Swagata [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Aumercier, Marc [IRI, CNRS USR 3078, Université de Lille-Nord de France, Parc CNRS de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq Cedex (France); Mukhopadhyay, Gauranga [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Tyagi, Rakesh K., E-mail: rktyagi@yahoo.com [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India)

    2015-01-15

    Nuclear receptor PXR is predominantly expressed in liver and intestine. Expression of PXR is observed to be dysregulated in various metabolic disorders indicating its involvement in disease development. However, information available on mechanisms of PXR self-regulation is fragmentary. The present investigation identifies some of the regulatory elements responsible for its tight regulation and low cellular expression. Here, we report that the PXR-promoter is a target for some key transcription factors like PU.1/Ets-1, Pax5, LEF-1 and c-Jun. Interestingly, we observed that PXR-promoter responsiveness to Pax5, LEF-1 and c-Jun, is considerably enhanced by Ets transcription factors (PU.1 and Ets-1). Co-transfection of cells with Ets-1, LEF-1 and c-Jun increased PXR-promoter activity by 5-fold and also induced expression of endogenous human PXR. Site-directed mutagenesis and transfection studies revealed that two Ets binding sites and two of the three LEF binding sites in the PXR-promoter are functional and have a positive effect on PXR transcription. Results suggest that expression of Ets family members, in conjunction with Pax5, LEF-1 and c-Jun, lead to coordinated up-regulation of PXR gene transcription. Insights obtained on the regulation of PXR gene have relevance in offering important cues towards normal functioning as well as development of several metabolic disorders via PXR signaling. - Highlights: • The study identified cis-regulatory elements in the nuclear receptor PXR promoter. • Several trans-acting factors modulating the PXR-promoter have been identified. • PU.1/Ets-1, Pax5, LEF-1, c-Jun, LyF-VI and NF-1 act as modulators of the PXR-promoter. • Ets-1 in conjunction with LEF-1 and c-Jun exhibit 5-fold activation of the PXR-promoter. • Insights into PXR-regulation have relevance in normal and pathological conditions.

  4. IL-6, IL-10, c-Jun and STAT3 expression in B-CLL.

    Science.gov (United States)

    Antosz, Halina; Wojciechowska, Katarzyna; Sajewicz, Joanna; Choroszyńska, Dorota; Marzec-Kotarska, Barbara; Osiak, Magdalena; Pająk, Natalia; Tomczak, Waldemar; Jargiełło-Baszak, Małgorzata; Baszak, Jacek

    2015-03-01

    Chronic lymphocytic leukemia is characterized by the accumulation of functionally abnormal, monoclonal B lymphocytes in the peripheral blood, bone marrow, lymph nodes and spleen, resulting in a reduction count of normal immunocompetent cells and their impaired immune function. The defect in transmission of signals from various types of extracellular receptors, leading to aberrant cytokines and transcription factors gene expression, may underlie the basis of immune failure in B-CLL. The aim of the study was to assess of IL-6, IL-10, c-Jun, and STAT3 expression. In response to antigenic stimulation IL-6, IL-10, c-Jun, and STAT3 proteins induce mutual activity. The subject of the study was subpopulations of leukemic lymphocytes (CD5+ CD19+) and CD19+ B cells from healthy donors (control group). Our results provide evidence that the regulation of IL-6, IL-10, c-Jun, and STAT3 gene expression in CLL B cells is clearly different from normal B lymphocytes. In B-CLL STAT3 expression in unstimulated lymphocytes is significantly higher (pCLL in comparison with the control group, in all cases (pCLL stage according Rai we revealed decreasing c-Jun expression, both at the mRNA and protein levels, along with advancing stage of disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Induction of c-myc and c-jun proto-oncogene expression in rat L6 myoblasts by cadmium is inhibited by zinc preinduction of the metallothionein gene

    Energy Technology Data Exchange (ETDEWEB)

    Abshire, M.K.; Buzard, G.S.; Shiraishi, Noriyuki; Waalkers, M.P. [National Cancer Institute, Fredrick, MD (United States)

    1996-07-01

    Certain proto-oncogenes transfer growth regulatory signals from the cell surface to the nucleus. These genes often show activation soon after cells are exposed to mitogenic stimulation but can also be activated as a nonmitogenic stress response. Cadmium (Cd) is a carcinogenic metal in humans and rodents and, though its mechanism of action is unknown, it could involve activation of such proto-oncogenes. Metallothionein (MT), a metal-inducible protein that binds Cd, can protect against many aspects of Cd toxicity, including genotoxicity and possibly carcinogenesis. Thus, the effects of Cd on expression of c-myc and c-jun in rat L6 myoblasts, and the effect of preactivation of the MT gene by Zn treatment on such oncogene expression, were studied. MT protein levels were measured using oligonucleotide hybridization and standardized to {beta}-actin levels. Cd (5 {mu}M CdCl{sub 2}, 0-30 h) stimulated both c-myc and c-jun mRNA expression. An initial peak of activation of c-myc expression occurred 2 h after initiation of Cd exposure, and levels remained elevated throughout the assessment period. Zn pretreatment markedly reduced the activation of c-myc expression by Cd compared to cells not receiving Zn pretreatment. Cd treatment increased c-jun mRNA levels by up to 3.5-fold. Again, Zn pretreatment markedly reduced. 10 refs., 8 figs.

  6. c-Jun-N-terminal phosphorylation regulates DNMT1 expression and genome wide methylation in gliomas.

    Science.gov (United States)

    Heiland, Dieter H; Ferrarese, Roberto; Claus, Rainer; Dai, Fangping; Masilamani, Anie P; Kling, Eva; Weyerbrock, Astrid; Kling, Teresia; Nelander, Sven; Carro, Maria S

    2017-01-24

    High-grade gliomas (HGG) are the most common brain tumors, with an average survival time of 14 months. A glioma-CpG island methylator phenotype (G-CIMP), associated with better clinical outcome, has been described in low and high-grade gliomas. Mutation of IDH1 is known to drive the G-CIMP status. In some cases, however, the hypermethylation phenotype is independent of IDH1 mutation, suggesting the involvement of other mechanisms. Here, we demonstrate that DNMT1 expression is higher in low-grade gliomas compared to glioblastomas and correlates with phosphorylated c-Jun. We show that phospho-c-Jun binds to the DNMT1 promoter and causes DNA hypermethylation. Phospho-c-Jun activation by Anisomycin treatment in primary glioblastoma-derived cells attenuates the aggressive features of mesenchymal glioblastomas and leads to promoter methylation and downregulation of key mesenchymal genes (CD44, MMP9 and CHI3L1). Our findings suggest that phospho-c-Jun activates an important regulatory mechanism to control DNMT1 expression and regulate global DNA methylation in Glioblastoma.

  7. ERK/c-Jun Recruits Tet1 to Induce Zta Expression and Epstein-Barr Virus Reactivation through DNA Demethylation.

    Science.gov (United States)

    Zhang, Wei; Han, Dongjie; Wan, Pin; Pan, Pan; Cao, Yanhua; Liu, Yingle; Wu, Kailang; Wu, Jianguo

    2016-10-06

    DNA demethylation plays an essential role in the reactivation of Epstein-Barr virus (EBV) from latency infection. However, it is unclear how epigenetic modification is initiated in responding to stimuli. Here, we demonstrate that ERK/c-Jun signaling is involved in DNA demethylation of EBV immediate early (IE) gene Zta in response to 12-O-Tetradecanoylphorbol-13-acetate (TPA) stimulation. Remarkably, Ser73 phosphorylation of c-Jun facilitates Zta promoter demethylation and EBV reactivation, whereas knockdown of c-Jun attenuates Zta demethylation and viral reactivation. More importantly, we reveal for the first time that c-Jun interacts with DNA dioxygenase Tet1 and facilitates Tet1 to bind to Zta promoter. The binding of c-Jun and Tet1 to Zta enhances promoter demethylation, resulting in the activation of Zta, the stimulation of BHRF1 (a lytic early gene) and gp350/220 (a lytic late gene), and ultimately the reactivation of EBV. Knockdown of Tet1 attenuates TPA-induced Zta demethylation and EBV reactivation. Thus, TPA activates ERK/c-Jun signaling, which subsequently facilitates Tet1 to bind to Zta promoter, leading to DNA demethylation, gene expression, and EBV reactivation. This study reveals important roles of ERK/c-Jun signaling and Tet1 dioxygenase in epigenetic modification, and provides new insights into the mechanism underlying the regulation of virus latent and lytic infection.

  8. Expression of c-Jun and Sox-2 in human schwannomas and traumatic neuromas.

    Science.gov (United States)

    Shivane, Aditya; Parkinson, David B; Ammoun, Sylwia; Hanemann, Clemens O

    2013-03-01

    Schwann cells myelinate axons of the peripheral nervous system. This process of myelination is regulated by various transcription factors. c-Jun and Sox-2 are negative regulators of myelination and control Schwann cell differentiation and plasticity. Schwannoma cells within tumours no longer express myelin markers, and show increased proliferation and decreased apoptosis. We have shown previously that several signalling pathways are activated in schwannoma cells in situ, in particular the c-Jun N-terminal kinase (JNK) pathway. Both in vitro and in vivo we have demonstrated that c-Jun and Sox-2 are co-regulated in Schwann cells and evidence shows that both these proteins regulate myelination negatively. In this study, we aimed to characterize the expression of c-Jun and Sox-2 in schwannoma and traumatic neuroma. Immunohistochemistry using antibodies to c-Jun and Sox-2 was applied to six schwannomas, and the results were compared with those seen in traumatic neuroma and normal nerve. Increased expression of c-Jun and Sox-2 was seen in schwannoma. We have demonstrated increased expression of c-Jun and Sox-2 in schwannoma compared to traumatic neuroma. There was no expression of c-Jun and Sox-2 in a histologically normal peripheral nerve. © 2012 Blackwell Publishing Ltd.

  9. [Expression of c-jun protein after experimental rat brain concussion].

    Science.gov (United States)

    Wang, Feng; Li, Yong-hong

    2010-02-01

    To observe e-jun protein expression after rat brain concussion and explore the forensic pathologic markers following brain concussion. Fifty-five rats were randomly divided into brain concussion group and control group. The expression of c-jun protein was observed by immunohistochemistry. There were weak positive expression of c-jun protein in control group. In brain concussion group, however, some neutrons showed positive expression of c-jun protein at 15 min after brain concussion, and reach to the peak at 3 h after brain concussion. The research results suggest that detection of c-jun protein could be a marker to determine brain concussion and estimate injury time after brain concussion.

  10. C-Jun expression in lichen planus, psoriasis and cutaneous squamous cell carcinoma, an immunohistochemical study.

    Science.gov (United States)

    Abdou, Asmaa Gaber; Marae, Alaa Hassan; Shoeib, Mohammed; Dawood, Ghada; Abouelfath, Enas

    2017-11-16

    The AP-1 transcription factor complex is a key player in regulating inflammatory processes, cell proliferation, differentiation and cell transformation. The aim of the present study is to investigate C-Jun (one of AP-1complex) expression and its proliferative role in skin samples of lichen planus, psoriasis as common inflammatory skin diseases and squamous cell carcinoma using immunohistochemical method. The present study was carried out on skin biopsies of 15 psoriatic patients, 15 lichen planus patients, 15 SCC and 15 normal skin biopsies. Nuclear expression of C-Jun was detected in basal and few suprabasal layers of epidermis of normal skin. C-Jun was expressed in the whole epidermal layers of both psoriasis (14/15) and lichen planus (15/15) in addition to its expression in lymphocytic infiltrate in the latter in about half of cases (8/15). C-Jun was also expressed in 93.3% (14/15) of SCC in a percentage lower than that of psoriasis, lichen planus and normal skin. The percentage of C-Jun expression in SCC was significantly associated with an early stage (p = 0.000), free surgical margins (p = 0.022) and small tumor size (p = 0.003). The marked reduction of C-Jun in SCC in comparison to normal skin and inflammatory skin dermatoses may refer to its tumor suppressor activity. C-Jun expression in SCC carries favorable prognosis. Absence of significant association between C-Jun and Ki-67 either in SCC or inflammatory skin diseases indicates that it does not affect proliferative capacity of cells.

  11. Docosahexaenoic acid downregulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes via the c-Jun NH2-terminal kinase mitogen-activated protein kinase pathway.

    Science.gov (United States)

    Lu, Chia-Yang; Li, Chien-Chun; Liu, Kai-Li; Lii, Chong-Kuei; Chen, Haw-Wen

    2009-03-01

    Mitogen-activated protein kinase (MAPK) pathways play central roles in the transduction of extracellular stimuli into cells and the regulation of expression of numerous genes. Docosahexaenoic acid (DHA) was shown to be involved in the regulation of expression of drug metabolizing enzymes (DMEs) in rat primary hepatocytes in response to xenobiotics. Cytochrome P450 2B1 (CYP 2B1) is a DME that is dramatically induced by phenobarbital-type inducers. The constitutive androstane receptor (CAR) plays a critical role in regulating the expression of DMEs, and the phosphorylation/dephosphorylation of CAR is an important event in CYP 2B1 expression. In the present study, we determined the effect of DHA on MAPK transactivation and its role in CYP 2B1 expression induced by phenobarbital. c-Jun NH2-terminal kinase (JNK) JNK1/2 and ERK1/2 were activated by phenobarbital in a dose-dependent manner. DHA (100 muM) inhibited JNK1/2 and ERK2 activation induced by phenobarbital in a time-dependent manner. Both SP600125 (a JNK inhibitor) and SB203580 (a p38 MAPK inhibitor) inhibited CYP 2B1 protein and mRNA expression induced by phenobarbital. SB203580 significantly increased the intracellular 3'-5'-cyclic adenosine monophosphate (cAMP) concentration compared with a control group (p expression induced by phenobarbital.

  12. Hypertonic stress induces c-fos but not c-jun expression in the human embryonal EUE epithelial cell line.

    Science.gov (United States)

    Rossi, D; Fuhrman Conti, A M; De Grada, L; Larizza, L

    1995-12-01

    Recent evidence has indicated a role for the two early response genes c-fos and c-jun in transcriptional regulation of genes acting in osmoregulation. On this basis we investigated their expression in response to hypertonic stress in the human embryonal EUE epithelial cell line. EUE cells have proven to be a useful tool for studying long-term in vitro adaptation to hypertonic stress. After culturing EUE cells in hypertonic medium a marked c-fos induction was observed, both at the mRNA and the protein level. Northern analysis of fos-mRNA showed a peak expression at 4 h, followed by a progressive decline till complete extinction at 8 h. Immunofluorescence analysis of FOS protein evidenced a similar, although slightly delayed kinetics of expression. Conversely, neither c-jun nor c-myc up-regulation could be detected. The treatment of EUE cells with cycloheximide led to superinduction of c-fos expression, (with high levels up to 12 h), and to a c-jun expression that was just detectable. Hypertonic stimulation of the transformed cell lines A549, MCF7 and JR induced both c-fos and c-jun only in JR cells. Hypertonic shock was also effective in inducing c-fos expression in fetal human diploid fibroblasts, although the response was earlier and more transient than in EUE cells. These findings indicate that c-fos is a primary response gene in hypertonic stress-activated cells, although the pattern and kinetics of its induction may differ according to the type of cell.

  13. Elevated cJUN expression and an ATF/CRE site within the ATF3 promoter contribute to activation of ATF3 transcription by the amino acid response.

    Science.gov (United States)

    Fu, Lingchen; Kilberg, Michael S

    2013-02-15

    Mammalian cells respond to amino acid deprivation through multiple signaling pathways referred to as the amino acid response (AAR). Transcription factors mediate the AAR after their activation by several mechanisms; examples include translational control (activating transcription factor 4, ATF4), phosphorylation (p-cJUN), and transcriptional control (ATF3). ATF4 induces ATF3 transcription through a promoter-localized C/EBP-ATF response element (CARE). The present report characterizes an ATF/CRE site upstream of the CARE that also contributes to AAR-induced ATF3 transcription. ATF4 binds to the ATF/CRE and CARE sequences and both are required for a maximal response to ATF4 induction. ATF3, which antagonizes ATF4 and represses its own gene, also exhibited binding activity to the ATF/CRE and CARE sequences. The AAR resulted in elevated total cJUN and p-cJUN protein levels and both forms exhibited binding activity to the ATF/CRE and CARE ATF3 sequences. Knockdown of AAR-enhanced cJUN expression blocked induction of the ATF3 gene and mutation of either the ATF/CRE or the CARE site prevented the cJUN-dependent increase in ATF3-driven luciferase activity. The results indicate that both increased cJUN and the cis-acting ATF/CRE sequence within the ATF3 promoter contribute to the transcriptional activation of the gene during the AAR.

  14. c-Jun N-terminal kinase 2 prevents luminal cell commitment in normal mammary glands and tumors by inhibiting p53/Notch1 and breast cancer gene 1 expression

    Science.gov (United States)

    Pfefferle, Adam D.; Perou, Charles M.; Van Den Berg, Carla Lynn

    2015-01-01

    Breast cancer is a heterogeneous disease with several subtypes carrying unique prognoses. Patients with differentiated luminal tumors experience better outcomes, while effective treatments are unavailable for poorly differentiated tumors, including the basal-like subtype. Mechanisms governing mammary tumor subtype generation could prove critical to developing better treatments. C-Jun N-terminal kinase 2 (JNK2) is important in mammary tumorigenesis and tumor progression. Using a variety of mouse models, human breast cancer cell lines and tumor expression data, studies herein support that JNK2 inhibits cell differentiation in normal and cancer-derived mammary cells. JNK2 prevents precocious pubertal mammary development and inhibits Notch-dependent expansion of luminal cell populations. Likewise, JNK2 suppresses luminal populations in a p53-competent Polyoma Middle T-antigen tumor model where jnk2 knockout causes p53-dependent upregulation of Notch1 transcription. In a p53 knockout model, JNK2 restricts luminal populations independently of Notch1, by suppressing Brca1 expression and promoting epithelial to mesenchymal transition. JNK2 also inhibits estrogen receptor (ER) expression and confers resistance to fulvestrant, an ER inhibitor, while stimulating tumor progression. These data suggest that therapies inhibiting JNK2 in breast cancer may promote tumor differentiation, improve endocrine therapy response, and inhibit metastasis. PMID:25970777

  15. Anti-proliferative activities of finasteride in benign prostate epithelial cells require stromal fibroblasts and c-Jun gene.

    Directory of Open Access Journals (Sweden)

    Kai Wang

    Full Text Available This study aimed to identify the role of mouse fibroblast-mediated c-Jun and IGF-1 signaling in the therapeutic effect of finasteride on benign prostatic epithelial cells. BPH-1 cells, alone or with fibroblasts (c-Jun+/+ or c-Jun-/-, were implanted subcutaneously in male nude mice who were then treated with finasteride. The degrees of cell proliferation, apoptosis, and sizes of the xenografts were determined. BPH-1 cells were grown alone or co-cultured with mouse fibroblasts in the presence of finasteride and the level of IGF-1 secreted into the medium by the fibroblasts was determined. The proliferation-associated signaling pathway in BPH-1 cells was also evaluated. Fibroblasts and c-Jun promoted xenograft growth, stimulated Ki-67 expression, and inhibited BPH-1 apoptosis. Finasteride did not induce the shrinkage of xenografts in the combined-grafted groups despite repressing Ki-67 expression and inducing cell apoptosis. The addition of c-Jun-/- fibroblasts did not promote xenograft growth. In the absence of c-Jun and fibroblasts, finasteride did not alter xenograft growth, Ki-67 expression, or cell apoptosis. The in vitro results demonstrated that when BPH-1 cells were grown in monoculture, treatment with finasteride did not induce cell death and stimulated the expression of pro-proliferative signaling molecules, while in the presence of fibroblasts containing c-Jun, finasteride treatment repressed epithelial cell proliferation, the level of IGF-1 in the medium, and the activation of downstream pro-proliferative signaling pathways. Taken together, our results suggest that fibroblasts, c-Jun, and IGF-1 play key roles in mediating stromal-epithelial interactions that are required for the therapeutic effects of finasteride in benign prostate epithelial cells.

  16. Anti-proliferative activities of finasteride in benign prostate epithelial cells require stromal fibroblasts and c-Jun gene.

    Science.gov (United States)

    Wang, Kai; Jin, Song; Fan, Dongdong; Wang, Mingshuai; Xing, Nianzeng; Niu, Yinong

    2017-01-01

    This study aimed to identify the role of mouse fibroblast-mediated c-Jun and IGF-1 signaling in the therapeutic effect of finasteride on benign prostatic epithelial cells. BPH-1 cells, alone or with fibroblasts (c-Jun+/+ or c-Jun-/-), were implanted subcutaneously in male nude mice who were then treated with finasteride. The degrees of cell proliferation, apoptosis, and sizes of the xenografts were determined. BPH-1 cells were grown alone or co-cultured with mouse fibroblasts in the presence of finasteride and the level of IGF-1 secreted into the medium by the fibroblasts was determined. The proliferation-associated signaling pathway in BPH-1 cells was also evaluated. Fibroblasts and c-Jun promoted xenograft growth, stimulated Ki-67 expression, and inhibited BPH-1 apoptosis. Finasteride did not induce the shrinkage of xenografts in the combined-grafted groups despite repressing Ki-67 expression and inducing cell apoptosis. The addition of c-Jun-/- fibroblasts did not promote xenograft growth. In the absence of c-Jun and fibroblasts, finasteride did not alter xenograft growth, Ki-67 expression, or cell apoptosis. The in vitro results demonstrated that when BPH-1 cells were grown in monoculture, treatment with finasteride did not induce cell death and stimulated the expression of pro-proliferative signaling molecules, while in the presence of fibroblasts containing c-Jun, finasteride treatment repressed epithelial cell proliferation, the level of IGF-1 in the medium, and the activation of downstream pro-proliferative signaling pathways. Taken together, our results suggest that fibroblasts, c-Jun, and IGF-1 play key roles in mediating stromal-epithelial interactions that are required for the therapeutic effects of finasteride in benign prostate epithelial cells.

  17. c-fos/c-jun expression and AP-1 activation in skin fibroblasts from centenarians.

    Science.gov (United States)

    Grassilli, E; Bellesia, E; Salomoni, P; Croce, M A; Sikora, E; Radziszewska, E; Tesco, G; Vergelli, M; Latorraca, S; Barbieri, D; Fagiolo, U; Santacaterina, S; Amaducci, L; Tiozzo, R; Sorbi, S; Franceschi, C

    1996-09-13

    In vitro replicative senescence is characterized by an irreversible growth arrest due to the inability of the cell to induce some key regulators of cell cycle progression, such as c-fos and AP-1, in response to mitogenic stimuli. In vitro replicative senescence and in vivo aging have been assumed to be two related phenomena, likely controlled by overlapping or interacting genes. As a corollary, fibroblasts from centenarians, which have undergone a long process of senescence in vivo should have very limited proliferative capability. On the contrary, in a previous work we found that fibroblasts from centenarians exhibited the same capacity to respond to different mitogenic stimuli as fibroblasts from young donors. Here we provide evidences that the well preserved proliferative response is likely due to the fact that some pivotal regulators- c-fos, c-jun and AP-1-are still fully inducible, despite a long process of in vivo senescence. Our data therefore suggest that in vivo and in vitro aging are separate phenomena whose possible relationships, if any, have to be ascertained very carefully.

  18. Cigarette smoke inhibits LPS-induced FABP5 expression by preventing c-Jun binding to the FABP5 promoter.

    Science.gov (United States)

    Rao, Deviyani; Perraud, Anne-Laure; Schmitz, Carsten; Gally, Fabienne

    2017-01-01

    Cigarette smoking is the primary cause of chronic obstructive pulmonary disease (COPD) with repeated and sustained infections linked to disease pathogenesis and exacerbations. The airway epithelium constitutes the first line of host defense against infection and is known to be impaired in COPD. We have previously identified Fatty Acid Binding Protein 5 (FABP5) as an important anti-inflammatory player during respiratory infections and showed that overexpression of FABP5 in primary airway epithelial cells protects against bacterial infection and inflammation. While cigarette smoke down regulates FABP5 expression, its mechanism remains unknown. In this report, we have identified three putative c-Jun binding sites on the FABP5 promoter and show that cigarette smoke inhibits the binding of c-Jun to its consensus sequence and prevents LPS-induced FABP5 expression. Using chromatin immunoprecipitation, we have determined that c-Jun binds the FABP5 promoter when stimulated with LPS but the presence of cigarette smoke greatly reduces this binding. Furthermore, cigarette smoke or a mutation in the c-Jun binding site inhibits LPS-induced FABP5 promoter activity. These data demonstrate that cigarette smoke interferes with FABP5 expression in response to bacterial infection. Thus, functional activation of FABP5 may be a new therapeutic strategy when treating COPD patients suffering from exacerbations.

  19. β-glucan reduces exercise-induced stress through downregulation of c-Fos and c-Jun expression in the brains of exhausted rats.

    Science.gov (United States)

    Hong, Heeok; Kim, Chang-Ju; Kim, Jae-Deung; Seo, Jin-Hee

    2014-05-01

    Immediate-early genes are involved in acute stress responses in the central nervous system. β-glucan stimulates innate immune defenses, exerts an anti-tumor response and increases resistance to a wide variety of types of infection. To date, the effect of β-glucan on the expression of immediate-early genes under stressful conditions has not been elucidated. In the present study, the effects of β-glucan on the expression of the oncogenes c-Fos and c-Jun in the hypothalamus, dentate gyrus and dorsal raphe in rats following exhaustive treadmill running were investigated. Male Sprague Dawley rats were randomly divided into five groups (n=10 in each group) as follows: Control, exercise, exercise and 50 mg/kg β-glucan treatment, exercise and 100 mg/kg β-glucan treatment, and exercise and 200 mg/kg β-glucan treatment. Rats in the β-glucan‑treated groups were administered β-glucan at the respective dose once per day for seven days. Rats in the exercise groups performed treadmill running once per day for six days. On the seventh day of the experiment, the time to exhaustion in response to treadmill running was determined for the exercise groups. The expression of c-Fos and c-Jun in the hypothalamus, dorsal raphe and hippocampus was enhanced by exhaustive treadmill running. Administration of β-glucan resulted in an increase in the time to exhaustion and the suppression of the exercise-induced increment in c-Fos and c-Jun expression. In conclusion, β-glucan may exert an alleviating effect on exercise-induced stress through the suppression of c-Fos and c-Jun expression in the brains of exhausted rats.

  20. Effect of growth hormone and serum on the expression of the proto-oncogenes c-jun and c-fos in insulin producing cells

    DEFF Research Database (Denmark)

    Petersen, Elisabeth D.; Billestrup, N; Nielsen, Jens Høiriis

    1990-01-01

    Expression of the proto-oncogenes c-fos and c-jun was analysed in the insulin producing rat tumor cell line, RIN 5AH. Addition of fetal calf serum (FCS) to serum-starved cells in the presence of cycloheximid induced a modest increase in c-fos and c-jun mRNA levels, whereas growth hormone (GH...

  1. Alcohol induces RNA polymerase III-dependent transcription through c-Jun by co-regulating TATA-binding protein (TBP) and Brf1 expression.

    Science.gov (United States)

    Zhong, Shuping; Machida, Keigo; Tsukamoto, Hide; Johnson, Deborah L

    2011-01-28

    Chronic alcohol consumption is associated with steatohepatitis and cirrhosis, enhancing the risk for hepatocellular carcinoma. RNA polymerase (pol) III transcribes a variety of small, untranslated RNAs, including tRNAs and 5S rRNAs, which determine the biosynthetic capacity of cells. Increased RNA pol III-dependent transcription, observed in transformed cells and human tumors, is required for oncogenic transformation. Given that alcohol consumption increases risk for liver cancer, we examined whether alcohol regulates this class of genes. Ethanol induces RNA pol III-dependent transcription in both HepG2 cells and primary mouse hepatocytes in a manner that requires ethanol metabolism and the activation of JNK1. This regulatory event is mediated, at least in part, through the ability of ethanol to induce expression of the TFIIIB components, Brf1, and the TATA-binding protein (TBP). Induction of TBP, Brf1, and RNA pol III-dependent gene expression is driven by enhanced c-Jun expression. Ethanol promotes a marked increase in the direct recruitment of c-Jun to TBP, Brf1, and tRNA gene promoters. Chronic alcohol administration in mice leads to enhanced expression of TBP, Brf1, tRNA, and 5S rRNA gene transcription in the liver. These alcohol-dependent increases are more pronounced in transgenic animals that express the HCV NS5A protein that display increased incidence of liver tumors. Together, these results identify a new class of genes that are regulated by alcohol through the co-regulation of TFIIIB components and define a central role for c-Jun in this process.

  2. Extracellular-regulated kinase 1/2, Jun N-terminal kinase, and c-Jun are involved in NF-kappa B-dependent IL-6 expression in human monocytes

    NARCIS (Netherlands)

    Tuyt, LML; Dokter, WHA; Birbenkamp, K; Koopmans, S.B.; Lummen, C; Kruijer, W; Vellenga, E

    1999-01-01

    In the present study we investigated the possible involvement of the mitogen-activated protein kinase family members extracellular-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) in mediating IL-6 gene expression in human monocytes, in particular their role in enhancing NF-kappa B

  3. Critical role of c-Jun overexpression in liver metastasis of human breast cancer xenograft model

    Directory of Open Access Journals (Sweden)

    Qian Lu

    2007-08-01

    Full Text Available Abstract Background c-Jun/AP-1 has been linked to invasive properties of aggressive breast cancer. Recently, it has been reported that overexpression of c-Jun in breast cancer cell line MCF-7 resulted in increased AP-1 activity, motility and invasiveness of the cells in vitro and tumor formation in nude mice. However, the role of c-Jun in metastasis of human breast cancer in vivo is currently unknown. Methods To further investigate the direct involvement of c-Jun in tumorigenesis and metastasis, in the present study, the effects of c-Jun overexpression were studied in both in vitro and in nude mice. Results Ectopic overexpression of c-Jun promoted the growth of MCF-7 cells and resulted in a significant increase in the percentage of cells in S phase and increased motility and invasiveness. Introduction of c-Jun gene alone into weakly invasive MCF-7 cells resulted in the transfected cells capable of metastasizing to the nude mouse liver following tail vein injection. Conclusion The present study confirms that overexpression of c-Jun contributes to a more invasive phenotype in MCF-7 cells. It indicates an interesting relationship between c-Jun expression and increased property of adhesion, migration and in vivo liver metastasis of MCF-7/c-Jun cells. The results provide further evidence that c-Jun is involved in the metastasis of breast cancer. The finding also opens an opportunity for development of anti-c-Jun strategies in breast cancer therapy.

  4. Radiation-induced apoptosis in developing rats and kainic acid-induced excitotoxicity in adult rats are associated with distinctive morphological and biochemical c-Jun/AP-1 (N) expression

    Energy Technology Data Exchange (ETDEWEB)

    Pozas, E. [Unitat de Neuropatologia, Servei d' Anatomia Patologica, Hospital Princeps d' Espanya, Universitat de Barcelona, 08907 Hospitalet de Llobregat (Spain); Planas, A.M. [Departament de Farmacologia i Toxicologia, IIBB, CSIC Barcelona (Spain); Ferrer, I. [Unitat de Neuropatologia, Servei d' Anatomia Patologica, Hospital Princeps d' Espanya, Universitat de Barcelona, 08907 Hospitalet de Llobregat (Spain)

    1997-07-14

    Ionizing radiation produces apoptosis in the developing rat brain. Strong c-Jun immunoreactivity, as revealed with the antibody c-Jun/AP-1 (N) which is raised against the amino acids 91-105 mapping with the amino terminal domain of mouse c-Jun p39, is simultaneously observed in the nucleus and cytoplasm of apoptotic cells. Western blotting of total brain homogenates, using the same antibody, shows a p39 band in control rats which is accompanied by a strong, phosphorylated p62 double-band in irradiated animals. In addition, increased c-Jun N-terminal kinase 1 expression, as found on western blots, is found in irradiated rats when compared with controls. Intraperitoneal injection of kainic acid at convulsant doses to the adult rat produces cell death with morphological features of necrosis, together with the appearance of cells with fine granular chromatin degeneration and small numbers of apoptotic-like cells, in the entorhinal and piriform cortices, basal amygdala, certain thalamic nuclei, and CA1 region of the hippocampus. c-Jun expression in kainic acid-treated rats, as revealed with the c-Jun/AP-1 (N) antibody, is found in the nuclei of a minority of cells in the same areas. The vast majority of c-Jun-immunoreactive cells have normal nuclear morphology, whereas necrotic cells are negative and only a few cells with fine granular chromatin condensation and apoptotic cells following kainic acid injection are stained with c-Jun antibodies. Western blotting, using the same antibody, shows a p39 band in control rats, which is accompanied by a band at about p26 from 6 h onwards following kainic acid injection. Decreased c-Jun N-terminal kinase 1 expression, as revealed on western blots, is observed in kainic acid-treated rats.These results show that the antibody c-Jun/AP-1 (N) recognizes three different forms of c-Jun-related immunoreactivity in normal and pathological states, which are associated with the different outcome of cells. These results stress the necessity

  5. Flavopiridol suppresses tumor necrosis factor-induced activation of activator protein-1, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase (MAPK), p44/p42 MAPK, and Akt, inhibits expression of antiapoptotic gene products, and enhances apoptosis through cytochrome c release and caspase activation in human myeloid cells.

    Science.gov (United States)

    Takada, Yasunari; Sethi, Gautam; Sung, Bokyung; Aggarwal, Bharat B

    2008-05-01

    Although flavopiridol, a semisynthetic flavone, was initially thought to be a specific inhibitor of cyclin-dependent kinases, it has now been shown that flavopiridol mediates antitumor responses through mechanism(s) yet to be defined. We have shown previously that flavopiridol abrogates tumor necrosis factor (TNF)-induced nuclear factor-kappaB (NF-kappaB) activation. In this report, we examined whether this flavone affects other cellular responses activated by TNF. TNF is a potent inducer of activator protein-1 (AP-1), and flavopiridol abrogated this activation in a dose- and time-dependent manner. Flavopiridol also suppressed AP-1 activation induced by various carcinogens and inflammatory stimuli. When examined for its effect on other signaling pathways, flavopiridol inhibited TNF-induced activation of various mitogen-activated protein kinases, including c-Jun NH(2)-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and p44/p42 MAPK. It is noteworthy that this flavone also suppressed TNF-induced activation of Akt, a cell survival kinase, and expression of various antiapoptotic proteins, such as IAP-1, IAP-2, XIAP, Bcl-2, Bcl-xL, and TRAF-1. Flavopiridol also inhibited the TNF-induced induction of intercellular adhesion molecule-1, c-Myc, and c-Fos, all known to mediate tumorigenesis. Moreover, TNF-induced apoptosis was enhanced by flavopiridol through activation of the bid-cytochrome-caspase-9-caspase-3 pathway. Overall, our results clearly suggest that flavopiridol interferes with the TNF cell-signaling pathway, leading to suppression of antiapoptotic mechanisms and enhancement of apoptosis.

  6. c-Jun N-terminal kinase 3 expression in the retina of ocular hypertension mice: a possible target to reduce ganglion cell apoptosis

    Directory of Open Access Journals (Sweden)

    Yue He

    2015-01-01

    Full Text Available Glaucoma, a type of optic neuropathy, is characterized by the loss of retinal ganglion cells. It remains controversial whether c-Jun N-terminal kinase (JNK participates in the apoptosis of retinal ganglion cells in glaucoma. This study sought to explore a possible mechanism of action of JNK signaling pathway in glaucoma-induced retinal optic nerve damage. We established a mouse model of chronic ocular hypertension by reducing the aqueous humor followed by photocoagulation using the laser ignition method. Results showed significant pathological changes in the ocular tissues after the injury. Apoptosis of retinal ganglion cells increased with increased intraocular pressure, as did JNK3 mRNA expression in the retina. These data indicated that the increased expression of JNK3 mRNA was strongly associated with the increase in intraocular pressure in the retina, and correlated positively with the apoptosis of retinal ganglion cells.

  7. c-Jun N-terminal kinase negatively regulates epidermal growth factor-induced cyclooxygenase-2 expression in oral squamous cell carcinoma cell lines.

    Science.gov (United States)

    Husvik, Camilla; Bryne, Magne; Halstensen, Trond S

    2009-12-01

    Epidermal growth factor (EGF)-induced cyclooxygenase-2 (COX-2) expression in squamous cell carcinomas is mediated through the extracellular signal-regulated kinase 1/2 and p38 pathways. Examination of a basaloid and a conventional oral squamous cell carcinoma cell line revealed that inhibition of c-Jun N-terminal kinase (JNK) with SP600125 increased EGF-induced (but not basal) COX-2 transcription 1.5-1.9-fold in extracellular signal-regulated kinase 1/2 and p38 pathway-dependent manners. Although JNK may phosphorylate the cyclosporine A-sensitive transcription factor, nuclear factor of activated T cells c3, it was seemingly not involved because cyclosporine A did not reduce EGF-induced COX-2 expression. Thus, JNK negatively regulated EGF-induced extracellular signal-regulated kinase 1/2 and/or p38-mediated COX-2 transcription, presumably through activating an unidentified phosphatase.

  8. Nintedanib modulates surfactant protein-D expression in A549 human lung epithelial cells via the c-Jun N-terminal kinase-activator protein-1 pathway.

    Science.gov (United States)

    Kamio, Koichiro; Usuki, Jiro; Azuma, Arata; Matsuda, Kuniko; Ishii, Takeo; Inomata, Minoru; Hayashi, Hiroki; Kokuho, Nariaki; Fujita, Kazue; Saito, Yoshinobu; Miya, Toshimichi; Gemma, Akihiko

    2015-06-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease with a high mortality rate. Signalling pathways activated by several tyrosine kinase receptors are known to be involved in lung fibrosis, and this knowledge has led to the development of the triple tyrosine kinase inhibitor nintedanib, an inhibitor of vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and fibroblast growth factor receptor (FGFR), for the treatment of IPF. Pulmonary surfactant protein D (SP-D), an important biomarker of IPF, reportedly attenuates bleomycin-induced pulmonary fibrosis in mice. In this study, we investigated whether nintedanib modulates SP-D expression in human lung epithelial (A549) cells using quantitative real-time reverse transcriptase polymerase chain reaction and western blotting. To investigate the mechanisms underlying the effects of nintedanib, we evaluated the phosphorylation of c-Jun N-terminal kinase (JNK) and its downstream target c-Jun. The effect of the JNK inhibitor SP600125 on c-Jun phosphorylation was also tested. Activation of activator protein-1 (AP-1) was examined using an enzyme-linked immunosorbent assay-based test, and cell proliferation assays were performed to estimate the effect of nintedanib on cell proliferation. Furthermore, we treated mice with nintedanib to examine its in vivo effect on SP-D levels in lungs. These experiments showed that nintedanib up-regulated SP-D messenger RNA expression in a dose-dependent manner at concentrations up to 5 μM, with significant SP-D induction observed at concentrations of 3 μM and 5 μM, in comparison with that observed in vehicle controls. Nintedanib stimulated a rapid increase in phosphorylated JNK in A549 cells within 30 min of treatment and stimulated c-Jun phosphorylation, which was inhibited by the JNK inhibitor SP600125. Additionally, nintedanib was found to activate AP-1. A549 cell proliferation was not affected by nintedanib at any of the tested

  9. ATF3 expression precedes death of spinal motoneurons in amyotrophic lateral sclerosis-SOD1 transgenic mice and correlates with c-Jun phosphorylation, CHOP expression, somato-dendritic ubiquitination and Golgi fragmentation.

    Science.gov (United States)

    Vlug, Angela S; Teuling, Eva; Haasdijk, Elize D; French, Pim; Hoogenraad, Casper C; Jaarsma, Dick

    2005-10-01

    To obtain insight into the morphological and molecular correlates of motoneuron degeneration in amyotrophic lateral sclerosis (ALS) mice that express G93A mutant superoxide dismutase (SOD)1 (G93A mice), we have mapped and characterized 'sick' motoneurons labelled by the 'stress transcription factors' ATF3 and phospho-c-Jun. Immunocytochemistry and in situ hybridization showed that a subset of motoneurons express ATF3 from a relatively early phase of disease before the onset of active caspase 3 expression and motoneuron loss. The highest number of ATF3-expressing motoneurons occurred at symptom onset. The onset of ATF3 expression correlated with the appearance of ubiquitinated neurites. Confocal double-labelling immunofluorescence showed that all ATF3-positive motoneurons were immunoreactive for phosphorylated c-Jun. Furthermore, the majority of ATF3 and phospho-c-Jun-positive motoneurons were also immunoreactive for CHOP (GADD153) and showed Golgi fragmentation. A subset of ATF3 and phosphorylated c-Jun-immunoreactive motoneurons showed an abnormal appearance characterized by a number of distinctive features, including an eccentric flattened nucleus, perikaryal accumulation of ubiquitin immunoreactivity, juxta-nuclear accumulation of the Golgi apparatus and the endoplasmic reticulum, and intense Hsp70 immunoreactivity. These abnormal cells were not immunoreactive for active caspase 3. We conclude that motoneurons in ALS-SOD1 mice prior to their death and disappearance experience a prolonged sick phase, characterized by the gradual accumulation of ubiquitinated material first in the neurites and subsequently the cell body.

  10. Recruitment of nuclear factor Y to the inverted CCAAT element (ICE) by c-Jun and E1A stimulates basal transcription of the bone sialoprotein gene in osteosarcoma cells.

    Science.gov (United States)

    Su, Ming; Bansal, Anil K; Mantovani, Roberto; Sodek, Jaro

    2005-11-18

    Bone sialoprotein (BSP), a major protein in the extracellular matrix of bone, is expressed almost exclusively by bone cells and by cancer cells that have a propensity to metastasize to bone. Previous studies have shown that v-src stimulates basal transcription of bsp in osteosarcoma (ROS 17/2.8) cells by targeting the inverted CCAAT element (ICE) in the proximal promoter. To identify possible downstream effectors of Src we studied the effects of the proto-oncogene c-jun, which functions downstream of Src, on basal transcription of bsp using transient transfection assays. Increased expression of endogenous c-Jun induced by the tumor promoter 12-O-tetradecanoyl-phorbol 13-acetate and ectopic expression of c-Jun increased basal transcription of chimeric reporter constructs encompassing the proximal promoter by 1.5-3-fold in ROS 17/2.8 osteosarcoma cells, with more modest effects in a normal bone cell line, RBMC-D8. The effects of c-Jun were abrogated by mutations in the ICE box and by co-expression of dominant negative nuclear factor Y, subunit A (NF-YA). The increase in bsp transcription did not require phosphorylation of c-Jun and was not altered by trichostatin treatment or by ectopic expression of p300/CREB-binding protein (CBP) or mutated forms lacking histone acetyltransferase (HAT) activity. Similarly, ectopic expression of p300/CBP-associated factor (P/CAF), which transduces p300/CBP effects, or of HAT-defective P/CAF did not influence the c-jun effects. Surprisingly, E1A, which competes with P/CAF binding to p300/CBP, also stimulated BSP transcription through NF-Y independently of c-jun, p300/CBP, and P/CAF. Collectively, these studies show that c-Jun and E1A regulate basal transcription of bsp in osteosarcoma cells by recruiting the NF-Y transcriptional complex to the ICE box in a mechanism that is independent of p300/CBP and P/CAF HAT activities.

  11. (-)-Epigallocatechin-3-gallate decreases thrombin/paclitaxel-induced endothelial tissue factor expression via the inhibition of c-Jun terminal NH2 kinase phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huang-Joe [Institute of Biotechnology, National Tsing Hua University, No. 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan (China); Division of Cardiology, Department of Medicine, China Medical University Hospital, No. 2, Yuh-Der Road, Taichung 40447, Taiwan (China); Lo, Wan-Yu [Department of Medical Research, China Medical University Hospital, No. 2, Yuh-Der Road, Taichung 40447, Taiwan (China); Graduate Integration of Chinese and Western Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Lu, Te-Ling [School of Pharmacy, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Huang, Haimei, E-mail: hmhuang@life.nthu.edu.tw [Institute of Biotechnology, National Tsing Hua University, No. 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan (China)

    2010-01-01

    Patients with paclitaxel-eluting stents are concerned with stent thrombosis caused by premature discontinuation of dual antiplatelet therapy or clopidogrel resistance. This study investigates the effect of (-)-epigallocatechin-3-gallate (EGCG) on the expression of thrombin/paclitaxel-induced endothelial tissue factor (TF) expressions in human aortic endothelial cells (HAECs). EGCG was nontoxic to HAECs at 6 h up to a concentration of 25 {mu}mol/L. At a concentration of 25 {mu}mol/L, EGCG pretreatment potently inhibited both thrombin-stimulated and thrombin/paclitaxel-stimulated endothelial TF protein expression. Thrombin and thrombin/paclitaxel-induced 2.6-fold and 2.9-fold increases in TF activity compared with the control. EGCG pretreatment caused a 29% and 38% decrease in TF activity on thrombin and thrombin/paclitaxel treatment, respectively. Real-time polymerase chain reaction (PCR) showed that thrombin and thrombin/paclitaxel-induced 3.0-fold and 4.6-fold TF mRNA expressions compared with the control. EGCG pretreatment caused an 82% and 72% decrease in TF mRNA expression on thrombin and thrombin/paclitaxel treatment, respectively. The c-Jun terminal NH2 kinase (JNK) inhibitor SP600125 reduced thrombin/paclitaxel-induced TF expression. Furthermore, EGCG significantly inhibited the phosphorylation of JNK to 49% of thrombin/paclitaxel-stimulated HAECs at 60 min. Immunofluorescence assay did not show an inhibitory effect of EGCG on P65 NF-{kappa}B nuclear translocation in the thrombin/paclitaxel-stimulated endothelial cells. In conclusion, EGCG can inhibit TF expression in thrombin/paclitaxel-stimulated endothelial cells via the inhibition of JNK phosphorylation. The unique property of EGCG may be used to develop a new drug-eluting stent by co-coating EGCG and paclitaxel.

  12. In vivo crypt surface hyperproliferation is decreased by butyrate and increased by deoxycholate in normal rat colon: associated in vivo effects on c-Fos and c-Jun expression.

    Science.gov (United States)

    Velázquez, O C; Zhou, D; Seto, R W; Jabbar, A; Choi, J; Lederer, H M; Rombeau, J L

    1996-01-01

    Studies on colon carcinogenesis suggest that the short-chain fatty acid butyrate may be protective, whereas the secondary bile acid deoxycholate may promote tumor development. Crypt surface hyperproliferation is regarded as a biomarker of colon cancer risk and can be modulated in vitro by the differentiation inducer butyrate and the tumor promoter deoxycholate. We hypothesized that butyrate decreases and deoxycholate increases crypt surface proliferation in vivo and that these effects are mediated by changes in the expression of the protooncogenes c-Fos and c-Jun, which are known to regulate proliferation and differentiation. Twenty-five adult Sprague-Dawley rats underwent colonic isolation and 24-hour intraluminal instillation of 10 mmol/L sodium chloride, 10 mmol/ L sodium butyrate, or 10 mmol/L sodium deoxycholate. Proliferation of the whole crypt and five crypt compartments from base to surface was assessed by proliferating cell nuclear antigen immunohistochemistry. The øh value, an index of "premalignant" hyperproliferation, was calculated as the ratio of labeled cells in the two surface compartments divided by the labeled cells in the entire crypt. Expression of c-Fos and c-Jun was evaluated by Western blot. Crypt surface proliferation and the øh value were significantly decreased by butyrate and increased by deoxycholate. Butyrate increased colonic expression of c-Jun, whereas deoxycholate significantly induced c-Fos. The in vivo effects on surface proliferation are consistent with a potential protective [corrected] role for butyrate and a promotive role for deoxycholate in colon carcinogenesis. The concurrently observed effects on colonic c-Jun and c-Fos expression represent a novel finding and suggest that direct or indirect modulation of protooncogene expression may be the mechanism by which these dietary byproducts regulate proliferation in vivo.

  13. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Changchien, Jung-Jung; Chen, Ying-Jung; Huang, Chia-Hui [Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Cheng, Tian-Lu [Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lin, Shinne-Ren [Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, Long-Sen, E-mail: lschang@mail.nsysu.edu.tw [Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)

    2015-04-01

    Although previous studies have revealed the anti-cancer activity of quinacrine, its effect on leukemia is not clearly resolved. We sought to explore the cytotoxic effect and mechanism of quinacrine action in human leukemia K562 cells. Quinacrine induced K562 cell apoptosis accompanied with ROS generation, mitochondrial depolarization, and down-regulation of BCL2L1 and BCL2. Upon exposure to quinacrine, ROS-mediated p38 MAPK activation and ERK inactivation were observed in K562 cells. Quinacrine-induced cell death and mitochondrial depolarization were suppressed by the p38MAPK inhibitor SB202190 and constitutively active MEK1 over-expression. Activation of p38 MAPK was shown to promote BCL2 degradation. Further, ERK inactivation suppressed c-Jun-mediated transcriptional expression of BCL2L1. Over-expression of BCL2L1 and BCL2 attenuated quinacrine-evoked mitochondrial depolarization and rescued the viability of quinacrine-treated cells. Taken together, our data indicate that quinacrine-induced K562 cell apoptosis is mediated through mitochondrial alterations triggered by p38 MAPK-mediated BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. - Highlights: • Quinacrine induces K562 cell apoptosis via down-regulation of BCL2 and BCL2L1. • Quinacrine induces p38 MAPK activation and ERK inactivation in K562 cells. • Quinacrine elicits p38 MAPK-mediated BCL2 down-regulation. • Quinacrine suppresses ERK/c-Jun-mediated BCL2L1 expression.

  14. Differential expression of c-Jun proteins during müllerian duct growth and apoptosis: caspase-related tissue death blocked by diethylstilbestrol.

    Science.gov (United States)

    Teng, C S

    2000-12-01

    To elucidate whether the differentiation of the Müllerian duct (MD) is mediated by c-Jun proteins, Western immunoblot with c-Jun/sc-45 antibody was used to investigate these proteins in female chick left and right MDs (LMD and RMD, respectively). The content of these proteins (e.g., the 66-kDa, 45-kDa, and 39-kDa forms) in the LMD or RMD of various stages of embryos was detected by measuring their density in autoradiograms by a Spot-denso-program with Alpha Ease software. In the LMD, the growing embryonic sex tract, the content of the 66-kDa and 39-kDa proteins increased to their highest level in 9th to 12th day embryos and then declined thereafter. In the RMD, the apoptotic embryonic sex tract, the content of these proteins also showed a linear increase from the 9th to 10th day and then declined at the 13th day. When the RMD entered the apoptosis stages (14th to 18th day of incubation), these proteins were persistently overexpressed. Another protein (45 kDa) was detected in both ducts only at the 9th to 13th days, and its content was higher in RMD than in the LMD. In parallel to this finding, high caspase-3 activity (determined by the measurement of the fragmented 85-kDa poly ADP-ribose polymerase) was found in the RMD during apoptosis. The apoptotic death of RMD was prevented by in vivo diethylstilbestrol treatment, which inhibited the overexpression of the 66-kDa and 45-kDa proteins, the fragmentation of DNA, and the activity of caspase-3. No inhibitory effect was found for the 39-kDa protein.

  15. Roles of PI3K/Akt and c-Jun signaling pathways in human papillomavirus type 16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis in non-small cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Erying Zhang

    Full Text Available Human papillomavirus (HPV-16 infection may be related to non-smoking associated lung cancer. Our previous studies have found that HPV-16 oncoproteins promoted angiogenesis via enhancing hypoxia-inducible factor-1α (HIF-1α, vascular endothelial growth factor (VEGF, and interleukin-8 (IL-8 expression in non-small cell lung cancer (NSCLC cells. In this study, we further investigated the roles of PI3K/Akt and c-Jun signaling pathways in it.Human NSCLC cell lines, A549 and NCI-H460, were stably transfected with pEGFP-16 E6 or E7 plasmids. Western blotting was performed to analyze the expression of HIF-1α, p-Akt, p-P70S6K, p-P85S6K, p-mTOR, p-JNK, and p-c-Jun proteins. VEGF and IL-8 protein secretion and mRNA levels were determined by ELISA and Real-time PCR, respectively. The in vitro angiogenesis was observed by human umbilical vein endothelial cells (HUVECs tube formation assay. Co-immunoprecipitation was performed to analyze the interaction between c-Jun and HIF-1α.HPV-16 E6 and E7 oncoproteins promoted the activation of Akt, P70S6K, P85S6K, mTOR, JNK, and c-Jun. LY294002, a PI3K inhibitor, inhibited HPV-16 oncoprotein-induced activation of Akt, P70S6K, and P85S6K, expression of HIF-1α, VEGF, and IL-8, and in vitro angiogenesis. c-Jun knockdown by specific siRNA abolished HPV-16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis. Additionally, HPV-16 oncoproteins promoted HIF-1α protein stability via blocking proteasome degradation pathway, but c-Jun knockdown abrogated this effect. Furthermore, HPV-16 oncoproteins increased the quantity of c-Jun binding to HIF-1α.PI3K/Akt signaling pathway and c-Jun are involved in HPV-16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis. Moreover, HPV-16 oncoproteins promoted HIF-1α protein stability possibly through enhancing the interaction between c-Jun and HIF-1α, thus making a contribution to angiogenesis in NSCLC cells.

  16. Selection and characterization of a DNA aptamer that can discriminate between cJun/cJun and cJun/cFos.

    Directory of Open Access Journals (Sweden)

    Ryan D Walters

    Full Text Available The AP-1 family of transcriptional activators plays pivotal roles in regulating a wide range of biological processes from the immune response to tumorigenesis. Determining the roles of specific AP-1 dimers in cells, however, has remained challenging because common molecular biology techniques are unable to distinguish between the role of, for example, cJun/cJun homodimers versus cJun/cFos heterodimers. Here we used SELEX (systematic evolution of ligands by exponential enrichment to identify and characterize DNA aptamers that are >100-fold more specific for binding cJun/cJun compared to cJun/cFos, setting the foundation to investigate the biological functions of different AP-1 dimer compositions.

  17. Reciprocal regulation of transcription factors and PLC isozyme gene expression in adult cardiomyocytes.

    Science.gov (United States)

    Singal, Tushi; Dhalla, Naranjan S; Tappia, Paramjit S

    2010-06-01

    By employing a pharmacological approach, we have shown that phospholipase C (PLC) activity is involved in the regulation of gene expression of transcription factors such as c-Fos and c-Jun in cardiomyocytes in response to norepinephrine (NE). However, there is no information available regarding the identity of specific PLC isozymes involved in the regulation of c-Fos and c-Jun or on the involvement of these transcription factors in PLC isozyme gene expression in adult cardiomyocytes. In this study, transfection of cardiomyocytes with PLC isozyme specific siRNA was found to prevent the NE-mediated increases in the corresponding PLC isozyme gene expression, protein content and activity. Unlike PLC gamma(1) gene, silencing of PLC beta(1), beta(3) and delta(1) genes with si RNA prevented the increases in c-Fos and c-Jun gene expression in response to NE. On the other hand, transfection with c-Jun si RNA suppressed the NE-induced increase in c-Jun as well as PLC beta(1), beta(3) and delta(1) gene expression, but had no effect on PLC gamma(1) gene expression. Although transfection of cardiomyocytes with c-Fos si RNA prevented NE-induced expression of c-Fos, PLC beta(1) and PLC beta(3) genes, it did not affect the increases in PLC delta(1) and PLC gamma(1) gene expression. Silencing of either c-Fos or c-Jun also depressed the NE-mediated increases in PLC beta(1), beta(3) and gamma(1) protein content and activity in an isozyme specific manner. Furthermore, silencing of all PLC isozymes as well as of c-Fos and c-Jun resulted in prevention of the NE-mediated increase in atrial natriuretic factor gene expression. These findings, by employing gene silencing techniques, demonstrate that there occurs a reciprocal regulation of transcription factors and specific PLC isozyme gene expression in cardiomyocytes.

  18. MAGE-A1 promotes melanoma proliferation and migration through C-JUN activation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong [Department of Dermatology, General Hospital of People' s Liberation Army, Beijing 100853 (China); The 309th Hospital of China People' s Liberation Army, Beijing 100091 (China); Wang, Junyun; Ding, Nan [CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Yongjun; Yang, Yaran [CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); Fang, Xiangdong, E-mail: fangxd@big.ac.cn [CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); Zhao, Hua, E-mail: luckhua301@163.com [Department of Dermatology, General Hospital of People' s Liberation Army, Beijing 100853 (China)

    2016-05-13

    MAGE-A1 belongs to the chromosome X-clustered genes of cancer-testis antigen family and is normally expressed in the human germ line but is also overexpressed in various tumors. Previous studies of MAGE-A1 in melanoma mainly focused on methylation changes or its role in immunotherapy, however, its biological functions in melanoma have remained unknown. In order to determine the role of MAGE-A1 in melanoma growth and metastasis, we manipulated melanoma cell lines with overexpression and knockdown of MAGE-A1. Integration of cell proliferation assays, transwell migration and invasion assays, and RNA-Seq analysis revealed that up-regulation of MAGE-A1 dramatically promoted proliferation, migration, and invasion of human melanoma cell lines in vitro, while down-regulation of MAGE-A1 inhibited those characteristics associated with tumor cells. Furthermore, transcriptome sequencing revealed that MAGE-A1 exerts its tumor promoting activity by activating p-C-JUN directly or through ERK-MAPK signaling pathways. Based on our findings, we propose that MAGE-A1 may be a potential therapeutic target for melanoma patients. - Highlights: • MAGE-A1 promotes proliferation and clone formation in melanoma cell lines. • MAGE-A1 enhances tumor cell migration and invasion in melanoma cell lines. • Network including C-JUN, IL8, and ARHGAP29 play critical role in malignant melanoma. • Oncogenic MAGE-A1 increases p-C-JUN levels, possibly via ERK-MAPK signaling pathway.

  19. Activation of the c-Jun N-terminal kinase pathway aggravates proteotoxicity of hepatic mutant Z alpha1-antitrypsin.

    Science.gov (United States)

    Pastore, Nunzia; Attanasio, Sergio; Granese, Barbara; Castello, Raffaele; Teckman, Jeffrey; Wilson, Andrew A; Ballabio, Andrea; Brunetti-Pierri, Nicola

    2017-06-01

    Alpha1-antitrypsin deficiency is a genetic disease that can affect both the lung and the liver. The vast majority of patients harbor a mutation in the serine protease inhibitor 1A (SERPINA1) gene leading to a single amino acid substitution that results in an unfolded protein that is prone to polymerization. Alpha1-antitrypsin defciency-related liver disease is therefore caused by a gain-of-function mechanism due to accumulation of the mutant Z alpha1-antitrypsin (ATZ) and is a key example of an disease mechanism induced by protein toxicity. Intracellular retention of ATZ triggers a complex injury cascade including apoptosis and other mechanisms, although several aspects of the disease pathogenesis are still unclear. We show that ATZ induces activation of c-Jun N-terminal kinase (JNK) and c-Jun and that genetic ablation of JNK1 or JNK2 decreased ATZ levels in vivo by reducing c-Jun-mediated SERPINA1 gene expression. JNK activation was confirmed in livers of patients homozygous for the Z allele, with severe liver disease requiring hepatic transplantation. Treatment of patient-derived induced pluripotent stem cell-hepatic cells with a JNK inhibitor reduced accumulation of ATZ. These data reveal that JNK is a key pathway in the disease pathogenesis and add new therapeutic entry points for liver disease caused by ATZ. (Hepatology 2017;65:1865-1874). © 2017 The Authors. Hepatology published by Wiley Periodicals, Inc., on behalf of the American Association for the Study of Liver Diseases.

  20. c-Jun interacts with the corepressor TG-interacting factor (TGIF) to suppress Smad2 transcriptional activity

    Science.gov (United States)

    Pessah, Marcia; Prunier, Céline; Marais, Jacqueline; Ferrand, Nathalie; Mazars, Anne; Lallemand, François; Gauthier, Jean-Michel; Atfi, Azeddine

    2001-01-01

    The Sma and Mad related (Smad) family proteins are critical mediators of the transforming growth factor-β (TGF-β) superfamily signaling. After TGF-β-mediated phosphorylation and association with Smad4, Smad2 moves to the nucleus and activates expression of specific genes through cooperative interactions with DNA-binding proteins, including members of the winged-helix family of transcription factors, forkhead activin signal transducer (FAST)-1 and FAST2. TGF-β has also been described to activate other signaling pathways, such as the c-Jun N-terminal Kinase (JNK) pathway. Here, we show that activation of JNK cascade blocked the ability of Smad2 to mediate TGF-β-dependent activation of the FAST proteins. This inhibitory activity is mediated through the transcriptional factor c-Jun, which enhances the association of Smad2 with the nuclear transcriptional corepressor TG-interacting factor (TGIF), thereby interfering with the assembly of Smad2 and the coactivator p300 in response to TGF-β signaling. Interestingly, c-Jun directly binds to the nuclear transcriptional corepressor TGIF and is required for TGIF-mediated repression of Smad2 transcriptional activity. These studies thus reveal a mechanism for suppression of Smad2 signaling pathway by JNK cascade through transcriptional repression. PMID:11371641

  1. Exopolysaccharides from Lactobacillus plantarum NCU116 induce c-Jun dependent Fas/Fasl-mediated apoptosis via TLR2 in mouse intestinal epithelial cancer cells.

    Science.gov (United States)

    Zhou, Xingtao; Hong, Tao; Yu, Qiang; Nie, Shaoping; Gong, Deming; Xiong, Tao; Xie, Mingyong

    2017-10-27

    Exopolysaccharides (EPS) from lactic acid bacteria (LAB) have been reported to play vital parts in the modulation of cell-cycle and apoptosis in cancer cells. However, the mechanisms by which EPS regulate the proliferation and apoptosis of cancer cells remain incompletely understood. We thus used different cancer cells to evaluate the anticancer ability and to investigate the underlying molecular mechanism of EPS from Lactobacillus plantarum NCU116 (EPS116). Our studies showed that EPS116 inhibited the proliferation of cancer cells in a cell type manner, and remarkably repressed the growth and survival of CT26 through induction of apoptosis. Moreover, EPS116 increased the expression of pro-apoptotic genes, including Fas, Fasl and c-Jun, induced the phosphorylation of c-Jun in CT26 cells. Furthermore, TLR2 (Toll like receptor 2) was upregulated by EPS116, and the CT26 cells with TLR2 knockdown were found to be insensitive to EPS116, suggesting that the anti-cancer activity of EPS116 may be TLR2-dependent. Taken together, the suppressive efficacy of EPS116 on the proliferation of CT26 cells may be mediated via TLR2 and the activation of c-Jun dependent Fas/Fasl-mediated apoptotic pathway. Our study has, for the first time, shown that EPS from LAB induced c-Jun dependent Fas/Fasl-mediated apoptosis via TLR2 in CT26 cells.

  2. The sequence-specific transcription factor c-Jun targets Cockayne syndrome protein B to regulate transcription and chromatin structure.

    Science.gov (United States)

    Lake, Robert J; Boetefuer, Erica L; Tsai, Pei-Fang; Jeong, Jieun; Choi, Inchan; Won, Kyoung-Jae; Fan, Hua-Ying

    2014-04-01

    Cockayne syndrome is an inherited premature aging disease associated with numerous developmental and neurological defects, and mutations in the gene encoding the CSB protein account for the majority of Cockayne syndrome cases. Accumulating evidence suggests that CSB functions in transcription regulation, in addition to its roles in DNA repair, and those defects in this transcriptional activity might contribute to the clinical features of Cockayne syndrome. Transcription profiling studies have so far uncovered CSB-dependent effects on gene expression; however, the direct targets of CSB's transcriptional activity remain largely unknown. In this paper, we report the first comprehensive analysis of CSB genomic occupancy during replicative cell growth. We found that CSB occupancy sites display a high correlation to regions with epigenetic features of promoters and enhancers. Furthermore, we found that CSB occupancy is enriched at sites containing the TPA-response element. Consistent with this binding site preference, we show that CSB and the transcription factor c-Jun can be found in the same protein-DNA complex, suggesting that c-Jun can target CSB to specific genomic regions. In support of this notion, we observed decreased CSB occupancy of TPA-response elements when c-Jun levels were diminished. By modulating CSB abundance, we found that CSB can influence the expression of nearby genes and impact nucleosome positioning in the vicinity of its binding site. These results indicate that CSB can be targeted to specific genomic loci by sequence-specific transcription factors to regulate transcription and local chromatin structure. Additionally, comparison of CSB occupancy sites with the MSigDB Pathways database suggests that CSB might function in peroxisome proliferation, EGF receptor transactivation, G protein signaling and NF-κB activation, shedding new light on the possible causes and mechanisms of Cockayne syndrome.

  3. The sequence-specific transcription factor c-Jun targets Cockayne syndrome protein B to regulate transcription and chromatin structure.

    Directory of Open Access Journals (Sweden)

    Robert J Lake

    2014-04-01

    Full Text Available Cockayne syndrome is an inherited premature aging disease associated with numerous developmental and neurological defects, and mutations in the gene encoding the CSB protein account for the majority of Cockayne syndrome cases. Accumulating evidence suggests that CSB functions in transcription regulation, in addition to its roles in DNA repair, and those defects in this transcriptional activity might contribute to the clinical features of Cockayne syndrome. Transcription profiling studies have so far uncovered CSB-dependent effects on gene expression; however, the direct targets of CSB's transcriptional activity remain largely unknown. In this paper, we report the first comprehensive analysis of CSB genomic occupancy during replicative cell growth. We found that CSB occupancy sites display a high correlation to regions with epigenetic features of promoters and enhancers. Furthermore, we found that CSB occupancy is enriched at sites containing the TPA-response element. Consistent with this binding site preference, we show that CSB and the transcription factor c-Jun can be found in the same protein-DNA complex, suggesting that c-Jun can target CSB to specific genomic regions. In support of this notion, we observed decreased CSB occupancy of TPA-response elements when c-Jun levels were diminished. By modulating CSB abundance, we found that CSB can influence the expression of nearby genes and impact nucleosome positioning in the vicinity of its binding site. These results indicate that CSB can be targeted to specific genomic loci by sequence-specific transcription factors to regulate transcription and local chromatin structure. Additionally, comparison of CSB occupancy sites with the MSigDB Pathways database suggests that CSB might function in peroxisome proliferation, EGF receptor transactivation, G protein signaling and NF-κB activation, shedding new light on the possible causes and mechanisms of Cockayne syndrome.

  4. Sustained activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase pathways by hepatitis B virus X protein mediates apoptosis via induction of Fas/FasL and tumor necrosis factor (TNF) receptor 1/TNF-alpha expression.

    Science.gov (United States)

    Wang, Wen-Horng; Grégori, Gérald; Hullinger, Ronald L; Andrisani, Ourania M

    2004-12-01

    Activation of the cellular stress pathways (c-Jun N-terminal kinase [JNK] and p38 mitogen-activated protein [MAP] kinase) is linked to apoptosis. However, whether both pathways are required for apoptosis remains unresolved. Hepatitis B virus X protein (pX) activates p38 MAP kinase and JNK pathways and, in response to weak apoptotic signals, sensitizes hepatocytes to apoptosis. Employing hepatocyte cell lines expressing pX, which was regulated by tetracycline, we investigated the mechanism of apoptosis by p38 MAP kinase and JNK pathway activation. Inhibition of the p38 MAP kinase pathway rescues by 80% the initiation of pX-mediated apoptosis, whereas subsequent apoptotic events involve both pathways. pX-mediated activation of p38 MAP kinase and JNK pathways is sustained, inducing the transcription of the death receptor family genes encoding Fas/FasL and tumor necrosis factor receptor 1 (TNFR1)/TNF-alpha and the p53-regulated Bax and Noxa genes. The pX-dependent expression of Fas/FasL and TNFR1/TNF-alpha mediates caspase 8 activation, resulting in Bid cleavage. In turn, activated Bid, acting with pX-induced Bax and Noxa, mediates the mitochondrial release of cytochrome c, resulting in the activation of caspase 9 and apoptosis. Combined antibody neutralization of FasL and TNF-alpha reduces by 70% the initiation of pX-mediated apoptosis. These results support the importance of the pX-dependent activation of both the p38 MAP kinase and JNK pathways in pX-mediated apoptosis and suggest that this mechanism of apoptosis occurs in vivo in response to weak apoptotic signals.

  5. c-Jun is involved in interstitial cystitis antiproliferative factor (APF)-induced growth inhibition of human bladder cancer T24 cells.

    Science.gov (United States)

    Li, Zeliang; Zhu, Yuyan; Yu, Meng; Ji, Decai; Yang, Zhenxing; Kong, Chuize

    2013-02-01

    To uncover the role of c-Jun, a proto-oncogene, in inhibitory effects of antiproliferative factor (APF) on tumor cell growth. Expression of c-Jun was analyzed by Western blotting in 45 clinical specimens (30 tumorous tissues and 15 paired non-tumorous tissues) and 3 bladder cancer cell lines. APF-responsive T24 transitional carcinoma bladder cells were treated with APF or mock control. Cell proliferation was measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. Change of c-Jun expression was detected by RT-PCR and Western blotting. The influence of c-Jun on APF treatment was evaluated by transient transfection of c-Jun and MTT assay in T24 cells. c-Jun was significantly higher in invasive bladder cancer tissues and cell lines. T24 cells treated with APF had decreased c-Jun expression and suppressed cell growth. More importantly, ectopic c-Jun attenuated APF inhibitory effects on cell growth. These observations suggest that c-Jun is involved in APF-mediated inhibition for bladder tumor cell growth, as potential target of APF in patients with aggressive bladder carcinoma. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Spinal release of tumour necrosis factor activates c-Jun N-terminal kinase and mediates inflammation-induced hypersensitivity.

    Science.gov (United States)

    Bas, D B; Abdelmoaty, S; Sandor, K; Codeluppi, S; Fitzsimmons, B; Steinauer, J; Hua, X Y; Yaksh, T L; Svensson, C I

    2015-02-01

    Mounting evidence points to individual contributions of tumour necrosis factor-alpha (TNF) and the c-Jun N-terminal kinase (JNK) pathway to the induction and maintenance of various pain states. Here we explore the role of spinal TNF and JNK in carrageenan-induced hypersensitivity. As links between TNF and JNK have been demonstrated in vitro, we investigated if TNF regulates spinal JNK activity in vivo. TNF levels in lumbar cerebrospinal fluid (CSF) were measured by enzyme-linked immunosorbent assay, spinal TNF gene expression by real-time polymerase chain reaction and TNF protein expression, JNK and c-Jun phosphorylation by western blotting. The role of spinal TNF and JNK in inflammation-induced mechanical and thermal hypersensitivity was assessed by injecting the TNF inhibitor etanercept and the JNK inhibitors SP600125 and JIP-1 intrathecally (i.t.). TNF-mediated regulation of JNK activity was examined by assessing the effect of i.t. etanercept on inflammation-induced spinal JNK activity. TNF levels were increased in CSF and spinal cord following carrageenan-induced inflammation. While JNK phosphorylation followed the same temporal pattern as TNF, c-jun was only activated at later time points. Intrathecal injection of TNF and JNK inhibitors attenuated carrageenan-induced mechanical and thermal hypersensitivity. TNF stimulation induced JNK phosphorylation in cultured spinal astrocytes and blocking the spinal actions of TNF in vivo by i.t. injection of etanercept reduced inflammation-induced spinal JNK activity. Here we show that spinal JNK activity is dependent on TNF and that both TNF and the JNK signalling pathways modulate pain-like behaviour induced by peripheral inflammation. © 2014 The Authors. European Journal of Pain published by John Wiley & Sons Ltd on behalf of European Pain Federation - EFIC®.

  7. A feed-forward regulation of endothelin receptors by c-Jun in human non-pigmented ciliary epithelial cells and retinal ganglion cells.

    Science.gov (United States)

    Wang, Junming; Ma, Hai-Ying; Krishnamoorthy, Raghu R; Yorio, Thomas; He, Shaoqing

    2017-01-01

    c-Jun, c-Jun N-terminal kinase(JNK) and endothelin B (ETB) receptor have been shown to contribute to the pathogenesis of glaucoma. Previously, we reported that an increase of c-Jun and CCAAT/enhancer binding protein β (C/EBPβ) immunohistostaining is associated with upregulation of the ETB receptor within the ganglion cell layer of rats with elevated intraocular pressure (IOP). In addition, both transcription factors regulate the expression of the ETB receptor in human non-pigmented ciliary epithelial cells (HNPE). The current study addressed the mechanisms by which ET-1 produced upregulation of ET receptors in primary rat retinal ganglion cells (RGCs) and HNPE cells. Treatment of ET-1 and ET-3 increased the immunocytochemical staining of c-Jun and C/EBPβ in primary rat RGCs and co-localization of both transcription factors was observed. A marked increase in DNA binding activity of AP-1 and C/EBPβ as well as elevated protein levels of c-Jun and c-Jun-N-terminal kinase (JNK) were detected following ET-1 treatment in HNPE cells. Overexpression of ETA or ETB receptor promoted the upregulation of c-Jun and also elevated its promoter activity. In addition, upregulation of C/EBPβ augmented DNA binding and mRNA expression of c-Jun, and furthermore, the interaction of c-Jun and C/EBPβ was confirmed using co-immunoprecipitation. Apoptosis of HNPE cells was identified following ET-1 treatment, and overexpression of the ETA or ETB receptor produced enhanced apoptosis. ET-1 mediated upregulation of c-Jun and C/EBPβ and their interaction may represent a novel mechanism contributing to the regulation of endothelin receptor expression. Reciprocally, c-Jun was also found to regulate the ET receptors and C/EBPβ appeared to play a regulatory role in promoting expression of c-Jun. Taken together, the data suggests that ET-1 triggers the upregulation of c-Jun through both ETA and ETB receptors, and conversely c-Jun also upregulates endothelin receptor expression, thereby

  8. A feed-forward regulation of endothelin receptors by c-Jun in human non-pigmented ciliary epithelial cells and retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Junming Wang

    Full Text Available c-Jun, c-Jun N-terminal kinase(JNK and endothelin B (ETB receptor have been shown to contribute to the pathogenesis of glaucoma. Previously, we reported that an increase of c-Jun and CCAAT/enhancer binding protein β (C/EBPβ immunohistostaining is associated with upregulation of the ETB receptor within the ganglion cell layer of rats with elevated intraocular pressure (IOP. In addition, both transcription factors regulate the expression of the ETB receptor in human non-pigmented ciliary epithelial cells (HNPE. The current study addressed the mechanisms by which ET-1 produced upregulation of ET receptors in primary rat retinal ganglion cells (RGCs and HNPE cells. Treatment of ET-1 and ET-3 increased the immunocytochemical staining of c-Jun and C/EBPβ in primary rat RGCs and co-localization of both transcription factors was observed. A marked increase in DNA binding activity of AP-1 and C/EBPβ as well as elevated protein levels of c-Jun and c-Jun-N-terminal kinase (JNK were detected following ET-1 treatment in HNPE cells. Overexpression of ETA or ETB receptor promoted the upregulation of c-Jun and also elevated its promoter activity. In addition, upregulation of C/EBPβ augmented DNA binding and mRNA expression of c-Jun, and furthermore, the interaction of c-Jun and C/EBPβ was confirmed using co-immunoprecipitation. Apoptosis of HNPE cells was identified following ET-1 treatment, and overexpression of the ETA or ETB receptor produced enhanced apoptosis. ET-1 mediated upregulation of c-Jun and C/EBPβ and their interaction may represent a novel mechanism contributing to the regulation of endothelin receptor expression. Reciprocally, c-Jun was also found to regulate the ET receptors and C/EBPβ appeared to play a regulatory role in promoting expression of c-Jun. Taken together, the data suggests that ET-1 triggers the upregulation of c-Jun through both ETA and ETB receptors, and conversely c-Jun also upregulates endothelin receptor expression

  9. ATF3 expression precedes death of spinal motoneurons in amyotrophic lateral sclerosis-SOD1 transgenic mice and correlates with c-Jun phosphorylation, CHOP expression, somato-dendritic ubiquitination and Golgi fragmentation

    NARCIS (Netherlands)

    Vlug, Angela S; Teuling, Eva; Haasdijk, Elize D; French, Pim; Hoogenraad, Casper C; Jaarsma, Dick

    2005-01-01

    To obtain insight into the morphological and molecular correlates of motoneuron degeneration in amyotrophic lateral sclerosis (ALS) mice that express G93A mutant superoxide dismutase (SOD)1 (G93A mice), we have mapped and characterized 'sick' motoneurons labelled by the 'stress transcription

  10. TAK1 Participates in c-Jun N-Terminal Kinase Signaling during Drosophila Development

    Science.gov (United States)

    Takatsu, Yoshihiro; Nakamura, Makoto; Stapleton, Mark; Danos, Maria C.; Matsumoto, Kunihiro; O'Connor, Michael B.; Shibuya, Hiroshi; Ueno, Naoto

    2000-01-01

    Transforming growth factor β (TGF-β)-activated kinase 1 (TAK1) is a member of the MAPKKK superfamily and has been characterized as a component of the TGF-β/bone morphogenetic protein signaling pathway. TAK1 function has been extensively studied in cultured cells, but its in vivo function is not fully understood. In this study, we isolated a Drosophila homolog of TAK1 (dTAK1) which contains an extensively conserved NH2-terminal kinase domain and a partially conserved COOH-terminal domain. To learn about possible endogenous roles of TAK1 during animal development, we generated transgenic flies which express dTAK1 or the mouse TAK1 (mTAK1) gene in the fly visual system. Ectopic activation of TAK1 signaling leads to a small eye phenotype, and genetic analysis reveals that this phenotype is a result of ectopically induced apoptosis. Genetic and biochemical analyses also indicate that the c-Jun amino-terminal kinase (JNK) signaling pathway is specifically activated by TAK1 signaling. Expression of a dominant negative form of dTAK during embryonic development resulted in various embryonic cuticle defects including dorsal open phenotypes. Our results strongly suggest that in Drosophila melanogaster, TAK1 functions as a MAPKKK in the JNK signaling pathway and participates in such diverse roles as control of cell shape and regulation of apoptosis. PMID:10757786

  11. Modeling the Mechanism of GR/c-Jun/Erg Crosstalk in Apoptosis of Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Chen, Daphne Wei-Chen; Krstic-Demonacos, Marija; Schwartz, Jean-Marc

    2012-01-01

    Acute lymphoblastic leukemia (ALL) is one of the most common forms of malignancy that occurs in lymphoid progenitor cells, particularly in children. Synthetic steroid hormones glucocorticoids (GCs) are widely used as part of the ALL treatment regimens due to their apoptotic function, but their use also brings about various side effects and drug resistance. The identification of the molecular differences between the GCs responsive and resistant cells therefore are essential to decipher such complexity and can be used to improve therapy. However, the emerging picture is complicated as the activities of genes and proteins involved are controlled by multiple factors. By adopting the systems biology framework to address this issue, we here integrated the available knowledge together with experimental data by building a series of mathematical models. This rationale enabled us to unravel molecular interactions involving c-Jun in GC induced apoptosis and identify Ets-related gene (Erg) as potential biomarker of GC resistance. The results revealed an alternative possible mechanism where c-Jun may be an indirect GR target that is controlled via an upstream repressor protein. The models also highlight the importance of Erg for GR function, particularly in GC sensitive C7 cells where Erg directly regulates GR in agreement with our previous experimental results. Our models describe potential GR-controlled molecular mechanisms of c-Jun/Bim and Erg regulation. We also demonstrate the importance of using a systematic approach to translate human disease processes into computational models in order to derive information-driven new hypotheses.

  12. miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway

    Energy Technology Data Exchange (ETDEWEB)

    He, Siyi; Liu, Peng; Jian, Zhao; Li, Jingwei; Zhu, Yun; Feng, Zezhou; Xiao, Yingbin, E-mail: xiaoyb@vip.sina.com

    2013-11-29

    Highlights: •First time to find miR-138 is up-regulated in hypoxic cardiomyocytes. •First time to find miR-138 targets MLK3 and regulates JNK/c-jun pathway. •Rare myocardial biopsy of patients with CHD were collected. •Both silence and overexpression of miR-138 were implemented. •Various methods were used to detect cell function. -- Abstract: Cardiomyocytes experience a series of complex endogenous regulatory mechanisms against apoptosis induced by chronic hypoxia. MicroRNAs are a class of endogenous small non-coding RNAs that regulate cellular pathophysiological processes. Recently, microRNA-138 (miR-138) has been found related to hypoxia, and beneficial for cell proliferation. Therefore, we intend to study the role of miR-138 in hypoxic cardiomyocytes and the main mechanism. Myocardial samples of patients with congenital heart disease (CHD) were collected to test miR-138 expression. Agomir or antagomir of miR-138 was transfected into H9C2 cells to investigate its effect on cell apoptosis. Higher miR-138 expression was observed in patients with cyanotic CHD, and its expression gradually increased with prolonged hypoxia time in H9C2 cells. Using MTT and LDH assays, cell growth was significantly greater in the agomir group than in the negative control (NC) group, while antagomir decreased cell survival. Dual luciferase reporter gene and Western-blot results confirmed MLK3 was a direct target of miR-138. It was found that miR-138 attenuated hypoxia-induced apoptosis using TUNEL, Hoechst staining and Annexin V-PE/7-AAD flow cytometry analysis. We further detected expression of apoptosis-related proteins. In the agomir group, the level of pro-apoptotic proteins such as cleaved-caspase-3, cleaved-PARP and Bad significantly reduced, while Bcl-2 and Bcl-2/Bax ratio increased. Opposite changes were observed in the antagomir group. Downstream targets of MLK3, JNK and c-jun, were also suppressed by miR-138. Our study demonstrates that up-regulation of miR-138 plays

  13. Modelling the mechanism of GR/c-Jun/Erg crosstalk in apoptosis of acute lymphoblastic leukaemia

    Directory of Open Access Journals (Sweden)

    Daphne eChen

    2012-11-01

    Full Text Available Acute lymphoblastic leukaemia (ALL is one of the most common forms of malignancy that occurs in lymphoid progenitor cells, particularly in children. Synthetic steroid hormones glucocorticoids (GCs are widely used as part of the ALL treatment regimens due to their apoptotic function, but their use also brings about various side effects and drug resistance. The identification of the molecular differences between the GCs responsive and resistant cells therefore are essential to decipher such complexity and can be used to improve therapy. However, the emerging picture is complicated as the activities of genes and proteins involved are controlled by multiple factors. By adapting the systems biology framework to address this issue, we here integrated the available knowledge together with experimental data via the building of a series of mathematical models. This rationale enabled us to unravel molecular interactions involving c-Jun in GC induced apoptosis and identify Erg as determinant for GC resistance. The results revealed an alternative potential mechanism where c-Jun may be an indirect GR target that is controlled via an upstream repressor protein. The models also highlight the importance of Erg for GR function, particularly in GC sensitive C7 cells where Erg directly regulates GR in agreement with our previous experimental results. Our models describe potential GR-controlled molecular mechanisms of c-Jun/Bim and Erg regulation. We also demonstrate the importance of using a systematic approach to translate human disease processes into computational models in order to derive information-driven new hypotheses.

  14. Correlation between spina bifida manifesta in fetal rats and c-Jun N-terminal kinase signaling★

    Science.gov (United States)

    Ma, Yinghuan; Bao, Yongxin; Li, Chenghao; Jiao, Fubin; Xin, Hongjie; Yuan, Zhengwei

    2012-01-01

    Fetal rat models with neural tube defects were established by injection with retinoic acid at 10 days after conception. The immunofluorescence assay and western blot analysis showed that the number of caspase-3 positive cells in myeloid tissues for spina bifida manifesta was increased. There was also increased phosphorylation of c-Jun N-terminal kinase, a member of the mitogen activated protein kinase family. The c-Jun N-terminal kinase phosphorylation level was positively correlated with caspase-3 expression in myeloid tissues for spina bifida manifesta. Experimental findings indicate that abnormal apoptosis is involved in retinoic acid-induced dominant spina bifida formation in fetal rats, and may be associated with the c-Jun N-terminal kinase signal transduction pathway. PMID:25337099

  15. Growth arrest- and DNA-damage-inducible 45beta gene inhibits c-Jun N-terminal kinase and extracellular signal-regulated kinase and decreases IL-1beta-induced apoptosis in insulin-producing INS-1E cells

    DEFF Research Database (Denmark)

    Larsen, Claus Morten; Døssing, M G; Papa, S

    2006-01-01

    -activated protein kinase (MAPK) family. Inhibition of JNK prevents IL-1beta-mediated beta cell destruction. In mouse embryo fibroblasts and 3DO T cells, overexpression of the gene encoding growth arrest and DNA-damage-inducible 45beta (Gadd45b) downregulates pro-apoptotic JNK signalling. The aim of this study...

  16. c-Jun DNAzymes inhibit myocardial inflammation, ROS generation, infarct size, and improve cardiac function after ischemia-reperfusion injury.

    Science.gov (United States)

    Luo, Xiao; Cai, Hong; Ni, Jun; Bhindi, Ravinay; Lowe, Harry C; Chesterman, Colin N; Khachigian, Levon M

    2009-11-01

    Coronary reperfusion has been the mainstay therapy for reduced infarct size after a heart attack. However, this intervention also results in myocardial injury by initiating a marked inflammatory reaction, and new treatments are keenly sought. The basic-region leucine zipper protein, c-Jun is poorly expressed in the normal myocardium and is induced within 24 hours after myocardial ischemia-reperfusion injury. Synthetic catalytic DNA molecules (DNAzymes) targeting c-Jun (Dz13) reduce infarct size in the area-at-risk (AAR) regardless of whether it is delivered intramyocardially at the initiation of ischemia or at the time of reperfusion. Dz13 attenuates neutrophil infiltration, c-Jun and ICAM-1 expression in vascular endothelium, cardiomyocyte apoptosis, and the generation of reactive oxygen species in the reperfused myocardium. It inhibits infiltration into the AAR of complement 3 (C3), C3a receptor (C3aR), membrane attack complex-1 (Mac-1), or matrix metalloproteinase-2 (MMP-2) positive inflammatory cells. Dz13 also improves cardiac function without influencing myocardial vascularity or fibrosis. These findings demonstrate the regulatory role of c-Jun in the pathogenesis of myocardial inflammation and infarction following ischemia-reperfusion injury, and inhibition of this process using catalytic DNA.

  17. Tristetraprolin induces cell cycle arrest in breast tumor cells through targeting AP-1/c-Jun and NF-κB pathway.

    Science.gov (United States)

    Xu, Li; Ning, Huan; Gu, Ling; Wang, Qinghong; Lu, Wenbao; Peng, Hui; Cui, Weiguang; Ying, Baoling; Ross, Christina R; Wilson, Gerald M; Wei, Lin; Wold, William S M; Liu, Jianguo

    2015-12-08

    The main characteristic of cancers, including breast cancer, is the ability of cancer cells to proliferate uncontrollably. However, the underlying mechanisms of cancer cell proliferation, especially those regulated by the RNA binding protein tristetraprolin (TTP), are not completely understood. In this study, we found that TTP inhibits cell proliferation in vitro and suppresses tumor growth in vivo through inducing cell cycle arrest at the S phase. Our studies demonstrate that TTP inhibits c-Jun expression through the C-terminal Zn finger and therefore increases Wee1 expression, a regulatory molecule which controls cell cycle transition from the S to the G2 phase. In contrast to the well-known function of TTP in regulating mRNA stability, TTP inhibits c-Jun expression at the level of transcription by selectively blocking NF-κB p65 nuclear translocation. Reconstitution of NF-κB p65 completely abolishes the inhibition of c-Jun transcription by TTP. Moreover, reconstitution of c-Jun in TTP-expressing breast tumor cells diminishes Wee1 overexpression and promotes cell proliferation. Our results indicate that TTP suppresses c-Jun expression that results in Wee1 induction which causes cell cycle arrest at the S phase and inhibition of cell proliferation. Our study provides a new pathway for TTP function as a tumor suppressor which could be targeted in tumor treatment.

  18. miR200c attenuates P-gp-mediated MDR and metastasis by targeting JNK2/c-Jun signaling pathway in colorectal cancer.

    Science.gov (United States)

    Sui, Hua; Cai, Guo-Xiang; Pan, Shu-Fang; Deng, Wan-Li; Wang, Yu-Wei; Chen, Zhe-Sheng; Cai, San-Jun; Zhu, Hui-Rong; Li, Qi

    2014-12-01

    MicroRNA-200c (miR200c) recently emerged as an important regulator of tumorigenicity and cancer metastasis; however, its role in regulating multidrug resistance (MDR) remains unknown. In the current study, we found that the expression levels of miR200c in recurrent and metastatic colorectal cancers were significantly lower, whereas the JNK2 expression was higher compared with primary tumors. We showed that in MDR colorectal cancer cells, miR200c targeted the 3' untranslated region of the JNK2 gene. Overexpression of miR200c attenuated the levels of p-JNK, p-c-Jun, P-gp, and MMP-2/-9, the downstream factors of the JNK signaling pathway, resulting in increased sensitivity to chemotherapeutic drugs, which was accompanied by heightened apoptosis and decreased cell invasion and migration. Moreover, in an orthotopic MDR colorectal cancer mouse model, we demonstrated that overexpression of miR200c effectively inhibited the tumor growth and metastasis. At last, in the tumor samples from patients with locally advanced colorectal cancer with routine postsurgical chemotherapy, we observed an inverse correlation between the levels of mRNA expression of miR200c and JNK2, ABCB1, and MMP-9, thus predicting patient therapeutic outcomes. In summary, we found that miR200c negatively regulated the expression of JNK2 gene and increased the sensitivity of MDR colorectal cancer cells to chemotherapeutic drugs, via inhibiting the JNK2/p-JNK/p-c-Jun/ABCB1 signaling. Restoration of miR200c expression in MDR colorectal cancer may serve as a promising therapeutic approach in MDR-induced metastasis. ©2014 American Association for Cancer Research.

  19. WNT6 promotes the migration and differentiation of human dental pulp cells partly through c-Jun N-terminal kinase signaling pathway.

    Science.gov (United States)

    Li, Ruimin; Wang, Chenglin; Tong, Juan; Su, Yingying; Lin, Yunfeng; Zhou, Xuedong; Ye, Ling

    2014-07-01

    During the dental pulp repair process, human dental pulp cells (HDPCs) migrate to injury sites where they may differentiate into odontoblastlike cells. WNT6 plays a role in dental development and can activate a noncanonical pathway including the c-Jun N-terminal kinase (JNK) pathway. The mechanism of WNT6 in dental pulp repair is still unknown. The purpose of this study was to explore the potential role of the WNT6/JNK signaling pathway in the promotion of cell migration and the differentiation of HDPCs. The third passage of HDPCs were cultured in vitro and treated with WNT6 conditioned medium with or without the pretreatment of JNK inhibitor SP600125. The activation of JNK was detected by Western blot, the expression of c-Jun was quantified by reverse-transcription polymerase chain reaction, the migration of HDPCs was determined by wound healing and transwell migration assays, and the differentiation of HDPCs was investigated using alkaline phosphatase staining and alizarin red staining. The expression of odontogenesis-related genes such as Runt-related transcription factor 2, dentin sialophosphoprotein, and dentin matrix protein 1 was quantified. WNT6 activates the JNK pathway in HDPCs and enhances cell migration, mineralization nodule formation, and alkaline phosphatase activation. WNT6 also increases the expression of Runt-related transcription factor 2, dentin sialophosphoprotein, and dentin matrix protein messenger RNA in HDPCs. Blockage of the JNK pathway in HDPCs decreases but does not completely abolish the cell migration and differentiation capacity induced by WNT6. WNT6 activates the JNK signaling pathway in HDPCs, leading to migration and differentiation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Telmisartan directly ameliorates the neuronal inflammatory response to IL-1β partly through the JNK/c-Jun and NADPH oxidase pathways

    Directory of Open Access Journals (Sweden)

    Pang Tao

    2012-05-01

    Full Text Available Abstract Background Blockade of angiotensin II type 1 (AT1 receptors ameliorates brain inflammation, and reduces excessive brain interleukin-1 beta (IL-1β production and release from cortical microglia. The aim of this study was to determine whether, in addition, AT1 receptor blockade directly attenuates IL-1β-induced inflammatory responses in neuronal cultures. Methods SK-N-SH human neuroblasts and primary rat cortical neurons were pretreated with telmisartan followed by exposure to IL-1β. Gene expression was determined by reverse transcriptase (RT-PCR, protein expression and kinase activation by western blotting, NADPH oxidase activity by the lucigenin method, prostaglandin E2 (PGE2 release by enzyme immunoassay, reactive oxygen species (ROS generation by the dichlorodihydrofluorescein diacetate fluorescent probe assay, and peroxisome proliferator-activated receptor gamma (PPARγ involvement was assessed with the antagonists GW9662 and T0070907, the agonist pioglitazone and the expression of PPARγ target genes ABCG1 and CD36. Results We found that SK-N-SH neuroblasts expressed AT1 but not AT2 receptor mRNA. Telmisartan reduced IL-1β-induced cyclooxygenase-2 (COX-2 expression and PGE2 release more potently than did candesartan and losartan. Telmisartan reduced the IL-1β-induced increase in IL-1R1 receptor and NADPH oxidase-4 (NOX-4 mRNA expression, NADPH oxidase activity, and ROS generation, and reduced hydrogen peroxide-induced COX-2 gene expression. Telmisartan did not modify IL-1β-induced ERK1/2 and p38 mitogen-activated protein kinase (MAPK phosphorylation or nuclear factor-κB activation but significantly decreased IL-1β-induced c-Jun N-terminal kinase (JNK and c-Jun activation. The JNK inhibitor SP600125 decreased IL-1β-induced PGE2 release with a potency similar to that of telmisartan. The PPARγ agonist pioglitazone reduced IL-1β-induced inflammatory reaction, whereas telmisartan did not activate PPARγ, as shown by its

  1. Silymarin suppresses TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosis.

    Science.gov (United States)

    Manna, S K; Mukhopadhyay, A; Van, N T; Aggarwal, B B

    1999-12-15

    Silymarin is a polyphenolic flavonoid derived from milk thistle (Silybum marianum) that has anti-inflammatory, cytoprotective, and anticarcinogenic effects. How silymarin produces these effects is not understood, but it may involve suppression of NF-kappa B, a nuclear transcription factor, which regulates the expression of various genes involved in inflammation, cytoprotection, and carcinogenesis. In this report, we investigated the effect of silymarin on NF-kappa B activation induced by various inflammatory agents. Silymarin blocked TNF-induced activation of NF-kappa B in a dose- and time-dependent manner. This effect was mediated through inhibition of phosphorylation and degradation of Iota kappa B alpha, an inhibitor of NF-kappa B. Silymarin blocked the translocation of p65 to the nucleus without affecting its ability to bind to the DNA. NF-kappa B-dependent reporter gene transcription was also suppressed by silymarin. Silymarin also blocked NF-kappa B activation induced by phorbol ester, LPS, okadaic acid, and ceramide, whereas H2O2-induced NF-kappa B activation was not significantly affected. The effects of silymarin on NF-kappa B activation were specific, as AP-1 activation was unaffected. Silymarin also inhibited the TNF-induced activation of mitogen-activated protein kinase kinase and c-Jun N-terminal kinase and abrogated TNF-induced cytotoxicity and caspase activation. Silymarin suppressed the TNF-induced production of reactive oxygen intermediates and lipid peroxidation. Overall, the inhibition of activation of NF-kappa B and the kinases may provide in part the molecular basis for the anticarcinogenic and anti-inflammatory effects of silymarin, and its effects on caspases may explain its role in cytoprotection.

  2. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Sidjanin, D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences; Grdina, D. [Argonne National Lab., IL (United States); Woloschak, G.E. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  3. Influence of X-rays on early response gene expression in rat astrocytes and brain tumour cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Vrdoljak, E.; Borchardt, P.E.; Bill, C.A.; Stephens, L.C.; Tofilon, P.J. [Anderson (M.D.) Cancer Center, Houston, TX (United States)

    1994-12-01

    The effects of ionizing radiation on c-fos, c-jun and jun-B mRNA levels were determined in cultures of rat perinatal type 1 astrocytes and two rat brain tumour cell lines, 175A and 9L. In astrocyte cultures X-ray doses as low as 1 Gy induced the expression of c-fos and jun-B but had essentially no effect on c-jun. The maximum increase in expression was found 1 h after irradiation, which then rapidly returned to control levels. These findings suggest that astrocytes may play a role in mediating the radiation response of the central nervous system via X-ray-induced changes in gene expression. In contrast, doses of up to 20 Gy had no effect on c-fos, c-jun and jun-B mRNA levels in the two brain tumour cell lines. In addition, whereas 12-0-tetradecanoylphorbol-13-acetate induced the expression of these genes in astrocytes, it had little or no effect on fos or jun expression in 9L or 175A cells. These results suggest that the signal transduction pathways mediating radiation-induced genes expression may be different in normal astrocytes and brain tumour cells. (author).

  4. The MEKK1 SWIM domain is a novel substrate receptor for c-Jun ubiquitylation.

    Science.gov (United States)

    Rieger, Michael A; Duellman, Tyler; Hooper, Christopher; Ameka, Magdalene; Bakowska, Joanna C; Cuevas, Bruce D

    2012-08-01

    MEKK1 [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase kinase 1] is a MAP3K (MAPK kinase kinase) that regulates MAPK activation, and is the only known mammalian kinase that is also a ubiquitin ligase. MEKK1 contains a RING domain within its N-terminal regulatory region, and MEKK1 has been shown to ubiquitylate the AP-1 (activator protein 1) transcription factor protein c-Jun, but the mechanism by which MEKK1 interacts with c-Jun to induce ubiquitylation has not been defined. Proximal to the RING domain is a SWIM (SWI2/SNF2 and MuDR) domain of undetermined function. In the present study, we demonstrate that the MEKK1 SWIM domain, but not the RING domain, directly associates with the c-Jun DNA-binding domain, and that the SWIM domain is required for MEKK1-dependent c-Jun ubiquitylation. We further show that this MEKK1 SWIM-Jun interaction is specific, as SWIM domains from other proteins failed to bind c-Jun. We reveal that, although the Jun and Fos DNA-binding domains are highly conserved, the MEKK1 SWIM domain does not bind Fos. Finally, we identify the sequence unique to Jun proteins required for specific interaction with the MEKK1 SWIM domain. Therefore we propose that the MEKK1 SWIM domain represents a novel substrate-binding domain necessary for direct interaction between c-Jun and MEKK1 that promotes MEKK1-dependent c-Jun ubiquitylation.

  5. Using c-Jun to identify fear extinction learning-specific patterns of neural activity that are affected by single prolonged stress.

    Science.gov (United States)

    Knox, Dayan; Stanfield, Briana R; Staib, Jennifer M; David, Nina P; DePietro, Thomas; Chamness, Marisa; Schneider, Elizabeth K; Keller, Samantha M; Lawless, Caroline

    2017-12-29

    Neural circuits via which stress leads to disruptions in fear extinction is often explored in animal stress models. Using the single prolonged stress (SPS) model of post traumatic stress disorder and the immediate early gene (IEG) c-Fos as a measure of neural activity, we previously identified patterns of neural activity through which SPS disrupts extinction retention. However, none of these stress effects were specific to fear or extinction learning and memory. C-Jun is another IEG that is sometimes regulated in a different manner to c-Fos and could be used to identify emotional learning/memory specific patterns of neural activity that are sensitive to SPS. Animals were either fear conditioned (CS-fear) or presented with CSs only (CS-only) then subjected to extinction training and testing. C-Jun was then assayed within neural substrates critical for extinction memory. Inhibited c-Jun levels in the hippocampus (Hipp) and enhanced functional connectivity between the ventromedial prefrontal cortex (vmPFC) and basolateral amygdala (BLA) during extinction training was disrupted by SPS in the CS-fear group only. As a result, these effects were specific to emotional learning/memory. SPS also disrupted inhibited Hipp c-Jun levels, enhanced BLA c-Jun levels, and altered functional connectivity among the vmPFC, BLA, and Hipp during extinction testing in SPS rats in the CS-fear and CS-only groups. As a result, these effects were not specific to emotional learning/memory. Our findings suggest that SPS disrupts neural activity specific to extinction memory, but may also disrupt the retention of fear extinction by mechanisms that do not involve emotional learning/memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Involvement of c-Jun N-Terminal Kinase in TNF-α-Driven Remodeling.

    Science.gov (United States)

    Eurlings, Irene M J; Reynaert, Niki L; van de Wetering, Cheryl; Aesif, Scott W; Mercken, Evi M; de Cabo, Rafael; van der Velden, Jos L; Janssen-Heininger, Yvonne M; Wouters, Emiel F M; Dentener, Mieke A

    2017-03-01

    Lung tissue remodeling in chronic obstructive pulmonary disease (COPD) is characterized by airway wall thickening and/or emphysema. Although the bronchial and alveolar compartments are functionally independent entities, we recently showed comparable alterations in matrix composition comprised of decreased elastin content and increased collagen and hyaluronan contents of alveolar and small airway walls. Out of several animal models tested, surfactant protein C (SPC)-TNF-α mice showed remodeling in alveolar and airway walls similar to what we observed in patients with COPD. Epithelial cells are able to undergo a phenotypic shift, gaining mesenchymal properties, a process in which c-Jun N-terminal kinase (JNK) signaling is involved. Therefore, we hypothesized that TNF-α induces JNK-dependent epithelial plasticity, which contributes to lung matrix remodeling. To this end, the ability of TNF-α to induce a phenotypic shift was assessed in A549, BEAS2B, and primary bronchial epithelial cells, and phenotypic markers were studied in SPC-TNF-α mice. Phenotypic markers of mesenchymal cells were elevated both in vitro and in vivo, as shown by the expression of vimentin, plasminogen activator inhibitor-1, collagen, and matrix metalloproteinases. Concurrently, the expression of the epithelial markers, E-cadherin and keratin 7 and 18, was attenuated. A pharmacological inhibitor of JNK attenuated this phenotypic shift in vitro, demonstrating involvement of JNK signaling in this process. Interestingly, activation of JNK signaling was also clearly present in lungs of SPC-TNF-α mice and patients with COPD. Together, these data show a role for TNF-α in the induction of a phenotypic shift in vitro, resulting in increased collagen production and the expression of elastin-degrading matrix metalloproteinases, and provide evidence for involvement of the TNF-α-JNK axis in extracellular matrix remodeling.

  7. c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    2015-03-01

    1 AWARD NUMBER: W81XWH-12-1-0431 TITLE: “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis ” PRINCIPAL...TITLE AND SUBTITLE “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Scelerosis” 5a. CONTRACT NUMBER 5b. GRANT NUMBER... Lateral   Sclerosis ”   Final  Report:  Project  Period  Sept  2012-­‐Dec  2014     Personnel  List:     Feng,  Yangbo

  8. c-Jun NH2-terminal kinase 1/2 and endoplasmic reticulum stress as interdependent and reciprocal causation in diabetic embryopathy.

    Science.gov (United States)

    Li, Xuezheng; Xu, Cheng; Yang, Peixin

    2013-02-01

    Embryos exposed to high glucose exhibit aberrant maturational and cytoarchitectural cellular changes, implicating cellular organelle stress in diabetic embryopathy. c-Jun-N-terminal kinase 1/2 (JNK1/2) activation is a causal event in maternal diabetes-induced neural tube defects (NTD). However, the relationship between JNK1/2 activation and endoplasmic reticulum (ER) stress in diabetic embryopathy has never been explored. We found that maternal diabetes significantly increased ER stress markers and induced swollen/enlarged ER lumens in embryonic neuroepithelial cells during neurulation. Deletion of either jnk1 or jnk2 gene diminished hyperglycemia-increased ER stress markers and ER chaperone gene expression. In embryos cultured under high-glucose conditions (20 mmol/L), the use of 4-phenylbutyric acid (4-PBA), an ER chemical chaperone, diminished ER stress markers and abolished the activation of JNK1/2 and its downstream transcription factors, caspase 3 and caspase 8, and Sox1 neural progenitor apoptosis. Consequently, both 1 and 2 mmol/L 4-PBA significantly ameliorated high glucose-induced NTD. We conclude that hyperglycemia induces ER stress, which is responsible for the proapoptotic JNK1/2 pathway activation, apoptosis, and NTD induction. Suppressing JNK1/2 activation by either jnk1 or jnk2 gene deletion prevents ER stress. Thus, our study reveals a reciprocal causation of ER stress and JNK1/2 in mediating the teratogenicity of maternal diabetes.

  9. gene structure, gene expression

    Indian Academy of Sciences (India)

    Primer 5.0 software. To adjust for RNA quality and diffe- rences in cDNA concentration, we amplified actin as an internal control with the following primers: PtActin-F (5′-TG. AAGGAGAAACTTGCGTAT-3′) and PtActin-R (5′-GCA. CAATGTTACCGTACAGAT-3′). These genes were ampli- fied from first-strand cDNA using ...

  10. Effects of lipopolysaccharide-induced inflammation on expression of growth-associated genes by corticospinal neurons

    Directory of Open Access Journals (Sweden)

    Lieberman AR

    2006-01-01

    Full Text Available Abstract Background Inflammation around cell bodies of primary sensory neurons and retinal ganglion cells enhances expression of neuronal growth-associated genes and stimulates axonal regeneration. We have asked if inflammation would have similar effects on corticospinal neurons, which normally show little response to spinal cord injury. Lipopolysaccharide (LPS was applied onto the pial surface of the motor cortex of adult rats with or without concomitant injury of the corticospinal tract at C4. Inflammation around corticospinal tract cell bodies in the motor cortex was assessed by immunohistochemistry for OX42 (a microglia and macrophage marker. Expression of growth-associated genes c-jun, ATF3, SCG10 and GAP-43 was investigated by immunohistochemistry or in situ hybridisation. Results Application of LPS induced a gradient of inflammation through the full depth of the motor cortex and promoted c-Jun and SCG10 expression for up to 2 weeks, and GAP-43 upregulation for 3 days by many corticospinal neurons, but had very limited effects on neuronal ATF3 expression. However, many glial cells in the subcortical white matter upregulated ATF3. LPS did not promote sprouting of anterogradely labelled corticospinal axons, which did not grow into or beyond a cervical lesion site. Conclusion Inflammation produced by topical application of LPS promoted increased expression of some growth-associated genes in the cell bodies of corticospinal neurons, but was insufficient to promote regeneration of the corticospinal tract.

  11. Opposing roles of C/EBPbeta and AP-1 in the control of fibroblast proliferation and growth arrest-specific gene expression

    DEFF Research Database (Denmark)

    Gagliardi, Mark; Maynard, Scott; Miyake, Tetsuaki

    2003-01-01

    a proliferative advantage over cells with one or two functional copies of this gene. C/EBP inhibition enhanced the expression of the three major components of AP-1 in cycling CEF, namely c-Jun, JunD, and Fra-2, and stimulated AP-1 activity. In contrast, the over-expression of C/EBPbeta caused a dramatic reduction...... in the levels of AP-1 proteins. Therefore, C/EBPbeta is a negative regulator of AP-1 expression and activity in CEF. The expression of cyclin D1 and cell proliferation were stimulated by the dominant negative mutant of C/EBPbeta but not in the presence of TAM67, a dominant negative mutant of c-Jun and AP-1. CEF...... over-expressing c-Jun, and to a lesser extent JunD and Fra-2, did not growth arrest at high cell density and did not express p20K. Therefore, AP-1 interfered with the action of C/EBPbeta at high cell density, indicating that these factors play opposing roles in the control of GAS gene expression...

  12. Fibroblast growth factor-4 enhances proliferation of mouse embryonic stem cells via activation of c-Jun signaling.

    Directory of Open Access Journals (Sweden)

    Sung-Ho Kook

    Full Text Available Fibroblast growth factor-4 (FGF4 is expressed in embryonic stages and in adult tissues, where it plays critical roles in modulating multiple cellular functions. However, the exact roles of FGF4 on proliferation and differentiation of embryonic stem cells (ESCs are not completely understood. Exogenous addition of FGF4 stimulated proliferation of mouse ESCs (mESCs, as proven by the increases in DNA synthesis and cell cycle regulatory protein induction. These increases were almost completely inhibited by pre-treating cells with anti-FGF4 antibody. FGF4 also activated c-Jun N-terminal kinase (JNK and extracellular-signal regulated kinase (ERK signaling, but not p38 kinase. Blockage of JNK signaling by SP600125 or by transfection with its specific siRNA significantly inhibited FGF4-stimulated cell proliferation through the suppression of c-Jun induction and activator protein-1 (AP-1 activity. However, ERK or p38 kinase inhibitor did not affect FGF4-stimulated proliferation in mESCs. FGF4 suppressed osteogenic differentiation of mESCs by inhibiting expression of transcription factors involved in bone formation. Further, exogenous FGF4 addition stimulated proliferation of human periodontal ligament stem cells (hPDLSCs and bone marrow mesenchymal stem cells (BMMSCs via activation of ERK signaling. FGF4 also augmented mineralization of hPDLSCs, but not of BMMSCs. Collectively, it is suggested that FGF4 triggers proliferation of stem cells by activating MAPK-mediated signaling, while it affects differently osteogenic differentiation according to the origins of stem cells.

  13. [Regulating effect of N-acetyl-seryl-aspartyl-lysyl-proline on activation of c-jun N-terminal kinase pathway in rats with silicosis].

    Science.gov (United States)

    Wei, Zhong-qiu; Yu, Wan-ying; Feng, Hai-li; Ma, Wen-dong; Li, Zhi-guo; Xu, Hong; Wang, Rui-min; Yang, Fang

    2013-05-01

    To investigate the regulatory effect of N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) on the activation of c-jun N-terminal kinase (JNK) signal transduction pathway and its role in silicotic fibrosis. A rat model of silicosis was developed by intratracheal instillation. Sixty rats were randomly divided into 4-week control group (n = 10), 8-week control group (n = 10), 4-week silicosis model group (n = 10), 8-week silicosis model group (n = 10), AcSDKP treatment group (n = 10), and AcSDKP prevention group (n = 10). The content of hydroxyproline in lung tissue was measured using a p-dimethylaminoben-zaldehyde reagent; the expression levels of transforming growth factor (TGF)-beta 1 (TGF-β1), phospho-JNK, JNK, and c-jun in lung tissue were measured by Western blot. The lung fibroblasts from neonatal rats were cultured, and the 4th generation of cells were used in the experiment; these cells were divided into control group, TGF-β1 stimulation group, SP600125 intervention group, and AcSDKP intervention group. The distributions of phospho-JNK and c-jun in lung fibroblasts were observed by immunocytochemistry; the expression levels of type I collagen and type III collagen in lung fibroblasts were measured by Western blot. The expression levels of TGF-β1, phospho-JNK, and c-jun and the content of hydroxyproline in the AcSDKP treatment group were 70.60%, 78.03%, 79.85%, and 71.28%, respectively, of those in the 4-week silicosis model group (P silicosis model group (P silicosis model group (P < 0.05). The expression levels of phospho-JNK and c-jun in the AcSDKP intervention group were 54.59% and 55.56%, respectively, of those in the TGF-β1 stimulation group; the expression levels of type I collagen and type III collagen in the AcSDKP intervention group were 79.9% and 84.4%, respectively, of those in the TGF-β1 stimulation group (P < 0.05). AcSDKP exerts anti-silicotic fibrosis effect probably by inhibiting the activation of JNK signal transduction pathway mediated by

  14. Mesenchymal stem cells promote liver regeneration and prolong survival in small-for-size liver grafts: involvement of C-Jun N-terminal kinase, cyclin D1, and NF-κB.

    Directory of Open Access Journals (Sweden)

    Weijie Wang

    Full Text Available BACKGROUND: The therapeutic potential of mesenchymal stem cells (MSCs has been highlighted recently for treatment of acute or chronic liver injury, by possibly differentiating into hepatocyte-like cells, reducing inflammation, and enhancing tissue repair. Despite recent progress, exact mechanisms of action are not clearly elucidated. In this study, we attempted to explore whether and how MSCs protected hepatocytes and stimulated allograft regeneration in small-for-size liver transplantation (SFSLT. METHODS: SFSLT model was established with a 30% partial liver transplantation (30PLT in rats. The differentiation potential and characteristics of bone marrow derived MSCs were explored in vitro. MSCs were infused transvenously immediately after graft implantation in therapy group. Expressions of apoptosis-, inflammatory-, anti-inflammatory-, and growth factor-related genes were measured by RT-PCR, activities of transcription factors AP-1 and NF-κB were analyzed by EMSA, and proliferative responses of the hepatic graft were evaluated by immunohistochemistry and western blot. RESULTS: MSCs were successfully induced into hepatocyte-like cells, osteoblasts and adipocytes in vitro. MSCs therapy could not only alleviate ischemia reperfusion injury and acute inflammation to promote liver regeneration, but also profoundly improve one week survival rate. It markedly up-regulated the mRNA expressions of HGF, Bcl-2, Bcl-XL, IL-6, IL-10, IP-10, and CXCR2, however, down-regulated TNF-α. Increased activities of AP-1 and NF-κB, as well as elevated expressions of p-c-Jun, cyclin D1, and proliferating cell nuclear antigen (PCNA, were also found in MSCs therapy group. CONCLUSION: These data suggest that MSCs therapy promotes hepatocyte proliferation and prolongs survival in SFSLT by reducing ischemia reperfusion injury and acute inflammation, and sustaining early increased expressions of c-Jun N-terminal Kinase, Cyclin D1, and NF-κB.

  15. Dynamic acetylation of all lysine 4-methylated histone H3 in the mouse nucleus: analysis at c-fos and c-jun.

    Directory of Open Access Journals (Sweden)

    Catherine A Hazzalin

    2005-12-01

    Full Text Available A major focus of current research into gene induction relates to chromatin and nucleosomal regulation, especially the significance of multiple histone modifications such as phosphorylation, acetylation, and methylation during this process. We have discovered a novel physiological characteristic of all lysine 4 (K4-methylated histone H3 in the mouse nucleus, distinguishing it from lysine 9-methylated H3. K4-methylated histone H3 is subject to continuous dynamic turnover of acetylation, whereas lysine 9-methylated H3 is not. We have previously reported dynamic histone H3 phosphorylation and acetylation as a key characteristic of the inducible proto-oncogenes c-fos and c-jun. We show here that dynamically acetylated histone H3 at these genes is also K4-methylated. Although all three modifications are proven to co-exist on the same nucleosome at these genes, phosphorylation and acetylation appear transiently during gene induction, whereas K4 methylation remains detectable throughout this process. Finally, we address the functional significance of the turnover of histone acetylation on the process of gene induction. We find that inhibition of turnover, despite causing enhanced histone acetylation at these genes, produces immediate inhibition of gene induction. These data show that all K4-methylated histone H3 is subject to the continuous action of HATs and HDACs, and indicates that at c-fos and c-jun, contrary to the predominant model, turnover and not stably enhanced acetylation is relevant for efficient gene induction.

  16. Rhinovirus infection causes steroid resistance in airway epithelium through nuclear factor κB and c-Jun N-terminal kinase activation.

    Science.gov (United States)

    Papi, Alberto; Contoli, Marco; Adcock, Ian M; Bellettato, Cinzia; Padovani, Anna; Casolari, Paolo; Stanciu, Luminita A; Barnes, Peter J; Johnston, Sebastian L; Ito, Kazuhiro; Caramori, Gaetano

    2013-11-01

    Although inhaled glucocorticoids are the mainstays of asthma treatment, they are poorly effective at treating and preventing virus-induced asthma exacerbations. The major viruses precipitating asthma exacerbations are rhinoviruses. We sought to evaluate whether rhinovirus infection interferes with the mechanisms of action of glucocorticoids. Cultured primary human bronchial or transformed (A549) respiratory epithelial cells were infected with rhinovirus 16 (RV-16) before dexamethasone exposure. Glucocorticoid receptor (GR) α nuclear translocation, glucocorticoid response element (GRE) binding, and transactivation/transrepression functional readouts were evaluated by using immunocytochemistry, Western blotting, DNA binding assays, real-time quantitative PCR, coimmunoprecipitation, and ELISA techniques. Specific inhibitors of c-Jun N-terminal kinase (JNK) and of IκB kinase (IKK) were used to investigate the involvement of intracellular signaling pathways. RV-16 infection impaired dexamethasone-dependent (1) inhibition of IL-1β-induced CXCL8 release, (2) induction of mitogen-activated protein kinase phosphatase 1 gene expression, and (3) binding of GR to GREs in airway epithelial cells. This was associated with impaired GRα nuclear translocation, as assessed by means of both immunochemistry (54.0% ± 6.8% vs 24.7% ± 3.8% GR-positive nuclei after 10 nmol/L dexamethasone treatment in sham- or RV-16-infected cells, respectively; P rhinovirus-infected cells the combination of JNK and IKK2 inhibitors totally restored dexamethasone suppression of CXCL8 release, induction of mitogen-activated protein kinase phosphatase 1 gene expression, and GRα nuclear translocation. RV-16 infection of human airway epithelium induces glucocorticoid resistance. Inhibition of RV-16-induced JNK and nuclear factor κB activation fully reversed rhinovirus impairment of both GRα nuclear translocation and the transactivation/transrepression activities of glucocorticoids. Copyright © 2013

  17. Upregulated ROS production induced by the proteasome inhibitor MG-132 on XBP1 gene expression and cell apoptosis in Tca-8113 cells.

    Science.gov (United States)

    Chen, Hai-ying; Ren, Xiao-yan; Wang, Wei-hua; Zhang, Ying-xin; Chen, Shuang-feng; Zhang, Bin; Wang, Le-xin

    2014-07-01

    Exposure of Tca-8113 cells to proteasome inhibitor carbobenzoxy-Leu-Leu-leucinal (MG-132) causing apoptosis is associated with endoplasmic reticulum (ER) stress. X-box-binding protein-1 (XBP1) is an important regulator of a subset of genes active during ER stress, which is related to cell survival and is required for tumor growth. The present study is to evaluate the effect of MG-132 on ROS production, XBP1 gene expression, tumor necrosis factor receptor-associated factor 2 (TRAF2), ASK1 and c-jun protein expression in tongue squamous cell carcinoma cell line Tca-8113 cells. ROS production was measured by reactive oxygen species assay. X-box binding protein-1 (XBP1) mRNA was analyzed by real-time-PCR, TRAF2, ASK1 and c-jun protein were investigated by western blot and immunocytochemistry respectively. The result indicated that ROS production, TRAF2, ASK1 and c-jun were elevated in MG-132 treated cells. Giving ROS scavenger N-acetyl-L-cysteine (NAC) largely prevented the effects of MG-132. Furthermore, treating with MG-132 lead to decreased XBP1 mRNA expression but could not completely block the expression of XBP1. Taken together, these findings provide the evidence that MG-132 induced ER stress lead to Tca-8113 cells apoptosis through ROS generation and TRAF2-ASK1-JNK signal pathway activation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Overexpression of ATF3 or the combination of ATF3, c-Jun, STAT3 and Smad1 promotes regeneration of the central axon branch of sensory neurons but without synergistic effects

    NARCIS (Netherlands)

    Fagoe, Nitish D; Attwell, Callan L; Kouwenhoven, Dorette; Verhaagen, J.; Mason, M.R.J.

    2015-01-01

    Peripheral nerve injury results in the activation of a number of transcription factors (TFs) in injured neurons, some of which may be key regulators of the regeneration-associated gene (RAG) programme. Among known RAG TFs, ATF3, Smad1, STAT3 and c-Jun have all been linked to successful axonal

  19. c-Jun NH2-terminal kinase-dependent upregulation of DR5 mediates cooperative induction of apoptosis by perifosine and TRAIL

    Directory of Open Access Journals (Sweden)

    Chen Georgia Z

    2010-12-01

    Full Text Available Abstract Background Perifosine, an alkylphospholipid tested in phase II clinical trials, modulates the extrinsic apoptotic pathway and cooperates with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL to augment apoptosis. The current study focuses on revealing the mechanisms by which perifosine enhances TRAIL-induced apoptosis. Results The combination of perifosine and TRAIL was more active than each single agent alone in inducing apoptosis of head and neck squamous cell carcinoma cells and inhibiting the growth of xenografts. Interestingly, perifosine primarily increased cell surface levels of DR5 although it elevated the expression of both DR4 and DR5. Blockade of DR5, but not DR4 upregulation, via small interfering RNA (siRNA inhibited perifosine/TRAIL-induced apoptosis. Perifosine increased phosphorylated c-Jun NH2-terminal kinase (JNK and c-Jun levels, which were paralleled with DR4 and DR5 induction. However, only DR5 upregulaiton induced by perifosine could be abrogated by both the JNK inhibitor SP600125 and JNK siRNA. The antioxidants, N-acetylcysteine and glutathione, but not vitamin C or tiron, inhibited perifosine-induced elevation of p-c-Jun, DR4 and DR5. Moreover, no increased production of reactive oxygen species was detected in perifosine-treated cells although reduced levels of intracellular GSH were measured. Conclusions DR5 induction plays a critical role in mediating perifosine/TRAIL-induced apoptosis. Perifosine induces DR5 expression through a JNK-dependent mechanism independent of reactive oxygen species.

  20. Gene Expression Omnibus (GEO)

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene Expression Omnibus is a public functional genomics data repository supporting MIAME-compliant submissions of array- and sequence-based data. Tools are provided...

  1. Monosodium Urate in the Presence of RANKL Promotes Osteoclast Formation through Activation of c-Jun N-Terminal Kinase

    Directory of Open Access Journals (Sweden)

    Jung-Yoon Choe

    2015-01-01

    Full Text Available The aim of this study was to clarify the role of monosodium urate (MSU crystals in receptor activator of nuclear factor kB ligand- (RANKL- RANK-induced osteoclast formation. RAW 264.7 murine macrophage cells were incubated with MSU crystals or RANKL and differentiated into osteoclast-like cells as confirmed by staining for tartrate-resistant acid phosphatase (TRAP and actin ring, pit formation assay, and TRAP activity assay. MSU crystals in the presence of RANKL augmented osteoclast differentiation, with enhanced mRNA expression of NFATc1, cathepsin K, carbonic anhydrase II, and matrix metalloproteinase-9 (MMP-9, in comparison to RAW 264.7 macrophages incubated in the presence of RANKL alone. Treatment with both MSU crystals and RANKL induced osteoclast differentiation by activating downstream molecules in the RANKL-RANK pathway including tumor necrosis factor receptor-associated factor 6 (TRAF-6, JNK, c-Jun, and NFATc1. IL-1b produced in response to treatment with both MSU and RANKL is involved in osteoclast differentiation in part through the induction of TRAF-6 downstream of the IL-1b pathway. This study revealed that MSU crystals contribute to enhanced osteoclast formation through activation of RANKL-mediated pathways and recruitment of IL-1b. These findings suggest that MSU crystals might be a pathologic causative agent of bone destruction in gout.

  2. The c-Fos and c-Jun from Litopenaeus vannamei play opposite roles in Vibrio parahaemolyticus and white spot syndrome virus infection.

    Science.gov (United States)

    Li, Chaozheng; Li, Haoyang; Wang, Sheng; Song, Xuan; Zhang, Zijian; Qian, Zhe; Zuo, Hongliang; Xu, Xiaopeng; Weng, Shaoping; He, Jianguo

    2015-09-01

    Growing evidence indicates that activator protein-1 (AP-1) plays a major role in stimulating the transcription of immune effector molecules in cellular response to an incredible array of stimuli, including growth factors, cytokines, cellular stresses and bacterial and viral infection. Here, we reported the isolation and characterization of a cDNA from Litopenaeus vannamei encoding the full-length c-Fos protein (named as Lvc-Fos). The predicted amino acid sequences of Lvc-Fos contained a basic-leucine zipper (bZIP) domain, which was characteristic of members of the AP-1 family. Immunoprecipitation and native-PAGE assays determined that Lvc-Fos could interact with the Lvc-Jun, a homolog of c-Jun family in L. vannamei, in a heterodimer manner. Further investigation demonstrated that Lvc-Fos and Lvc-Jun were expressed in all tested tissues and located in the nucleus. Real-time RT-PCR analysis showed both Lvc-Fos and Lvc-Jun in gills were up-regulated during Vibrio parahaemolyticus and white spot syndrome virus (WSSV) challenges. In addition, reporter gene assays indicated Lvc-Fos and Lvc-Jun could activate the expression of antimicrobial peptides (AMPs) of Drosophila and shrimp, as well as WSSV immediate early (IE) genes wsv069 and wsv249, in a different manner. Knockdown of Lvc-Fos or Lvc-Jun by RNA interference (RNAi) resulted in higher mortalities of L. vannamei after infection with V. parahaemolyticus, suggesting that Lvc-Fos and Lvc-Jun might play protective roles in bacterial infection. However, silencing of Lvc-Fos or Lvc-Jun in shrimp caused lower mortalities and virus loads under WSSV infection, suggesting that Lvc-Fos and Lvc-Jun could be engaged for WSSV replication and pathogenesis. In conclusion, our results provided experimental evidence and novel insight into the roles of L. vannamei AP-1 in bacterial and viral infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Stimulation of Pol III-dependent 5S rRNA and U6 snRNA gene expression by AP-1 transcription factors.

    Science.gov (United States)

    Ahuja, Richa; Kumar, Vijay

    2017-07-01

    RNA polymerase III transcribes structurally diverse group of essential noncoding RNAs including 5S ribosomal RNA (5SrRNA) and U6 snRNA. These noncoding RNAs are involved in RNA processing and ribosome biogenesis, thus, coupling Pol III activity to the rate of protein synthesis, cell growth, and proliferation. Even though a few Pol II-associated transcription factors have been reported to participate in Pol III-dependent transcription, its activation by activator protein 1 (AP-1) factors, c-Fos and c-Jun, has remained unexplored. Here, we show that c-Fos and c-Jun bind to specific sites in the regulatory regions of 5S rRNA (type I) and U6 snRNA (type III) gene promoters and stimulate their transcription. Our chromatin immunoprecipitation studies suggested that endogenous AP-1 factors bind to their cognate promoter elements during the G1/S transition of cell cycle apparently synchronous with Pol III transcriptional activity. Furthermore, the interaction of c-Jun with histone acetyltransferase p300 promoted the recruitment of p300/CBP complex on the promoters and facilitated the occupancy of Pol III transcriptional machinery via histone acetylation and chromatin remodeling. The findings of our study, together, suggest that AP-1 factors are novel regulators of Pol III-driven 5S rRNA and U6 snRNA expression with a potential role in cell proliferation. © 2017 Federation of European Biochemical Societies.

  4. Palbociclib inhibits epithelial-mesenchymal transition and metastasis in breast cancer via c-Jun/COX-2 signaling pathway.

    Science.gov (United States)

    Qin, Ge; Xu, Fei; Qin, Tao; Zheng, Qiufan; Shi, Dingbo; Xia, Wen; Tian, Yun; Tang, Yanlai; Wang, Jingshu; Xiao, Xiangshen; Deng, Wuguo; Wang, Shusen

    2015-12-08

    Palbociclib, a highly selective CDK4/6 inhibitor, has been shown to be a novel anti-tumor agent that suppresses breast cancer cell proliferation. However, its anti-metastasis activity remains controversial. In the present study, we evaluated whether palbociclib prevented breast cancer cell metastasis and revealed its regulatory mechanism. We found that palbociclib inhibited migration and invasion in the breast cancer cells MDA-MB-231 and T47D. The epithelial-mesenchymal transition (EMT) markers, vimentin and Snail, were down-regulated with palbociclib treatment. Moreover, we revealed that this inhibition was mediated by the c-Jun/COX-2 pathway. COX-2 was decreased after palbociclib treatment. The production of PGE2 was also reduced along with COX-2. Additionally, our data showed that c-Jun, a crucial transcriptional regulator of COX-2, was down-regulated by palbociclib. We found that palbociclib weakened the COX-2 promoter binding activity of c-Jun and prevented its translocation from the cytoplasm to cell nuclei. Bioluminescence imaging and tail intravenous injection were used to evaluate the anti-metastasis effect of palbociclib in vivo. The data demonstrated that palbociclib reduced breast cancer metastasis to the lung. These results therefore demonstrated that the anti-metastasis activity of palbociclib is mediated via the c-Jun/COX-2 signaling pathway by inhibiting EMT in breast cancer cells.

  5. c-Jun N-Terminal Kinases (JNKs) Are Critical Mediators of Osteoblast Activity In Vivo.

    Science.gov (United States)

    Xu, Ren; Zhang, Chao; Shin, Dong Yeon; Kim, Jung-Min; Lalani, Sarfaraz; Li, Na; Yang, Yeon-Suk; Liu, Yifang; Eiseman, Mark; Davis, Roger J; Shim, Jae-Hyuck; Greenblatt, Matthew B

    2017-09-01

    The c-Jun N-terminal kinases (JNKs) are ancient and evolutionarily conserved regulators of proliferation, differentiation, and cell death responses. Currently, in vitro studies offer conflicting data about whether the JNK pathway augments or represses osteoblast differentiation, and the contribution of the JNK pathway to regulation of bone mass in vivo remains unclear. Here we show that Jnk1-/- mice display severe osteopenia due to impaired bone formation, whereas Jnk2-/- mice display a mild osteopenia only evident in long bones. In order to both confirm that these effects were osteoblast intrinsic and assess whether redundancy with JNK1 masks a potential contribution of JNK2, mice with a conditional deletion of both JNK1 and JNK2 floxed conditional alleles in osteoblasts (Jnk1-2osx ) were bred. These mice displayed a similar degree of osteopenia to Jnk1-/- mice due to decreased bone formation. In vitro, Jnk1-/- osteoblasts display a selective defect in the late stages of osteoblast differentiation with impaired mineralization activity. Downstream of JNK1, phosphorylation of JUN is impaired in Jnk1-/- osteoblasts. Transcriptome analysis showed that JNK1 is required for upregulation of several osteoblast-derived proangiogenic factors such as IGF2 and VEGFa. Accordingly, JNK1 deletion results in a significant reduction skeletal vasculature in mice. Taken together, this study establishes that JNK1 is a key mediator of osteoblast function in vivo and in vitro. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  6. Evolutionary conserved role of c-Jun-N-terminal kinase in CO2-induced epithelial dysfunction.

    Directory of Open Access Journals (Sweden)

    István Vadász

    Full Text Available Elevated CO(2 levels (hypercapnia occur in patients with respiratory diseases and impair alveolar epithelial integrity, in part, by inhibiting Na,K-ATPase function. Here, we examined the role of c-Jun N-terminal kinase (JNK in CO(2 signaling in mammalian alveolar epithelial cells as well as in diptera, nematodes and rodent lungs. In alveolar epithelial cells, elevated CO(2 levels rapidly induced activation of JNK leading to downregulation of Na,K-ATPase and alveolar epithelial dysfunction. Hypercapnia-induced activation of JNK required AMP-activated protein kinase (AMPK and protein kinase C-ζ leading to subsequent phosphorylation of JNK at Ser-129. Importantly, elevated CO(2 levels also caused a rapid and prominent activation of JNK in Drosophila S2 cells and in C. elegans. Paralleling the results with mammalian epithelial cells, RNAi against Drosophila JNK fully prevented CO(2-induced downregulation of Na,K-ATPase in Drosophila S2 cells. The importance and specificity of JNK CO(2 signaling was additionally demonstrated by the ability of mutations in the C. elegans JNK homologs, jnk-1 and kgb-2 to partially rescue the hypercapnia-induced fertility defects but not the pharyngeal pumping defects. Together, these data provide evidence that deleterious effects of hypercapnia are mediated by JNK which plays an evolutionary conserved, specific role in CO(2 signaling in mammals, diptera and nematodes.

  7. c-Jun N-terminal kinase is required for thermotherapy-induced apoptosis in human gastric cancer cells.

    Science.gov (United States)

    Xiao, Feng; Liu, Bin; Zhu, Qing-Xian

    2012-12-28

    To investigate the role of c-Jun N-terminal kinase (JNK) in thermotherapy-induced apoptosis in human gastric cancer SGC-7901 cells. Human gastric cancer SGC-7901 cells were cultured in vitro. Following thermotherapy at 43°C for 0, 0.5, 1, 2 or 3 h, the cells were cultured for a further 24 h with or without the JNK specific inhibitor, SP600125 for 2 h. Apoptosis was evaluated by immunohistochemistry [terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)] and flow cytometry (Annexin vs propidium iodide). Cell proliferation was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. The production of p-JNK, Bcl-2, Bax and caspase-3 proteins was evaluated by Western blotting. The expression of JNK at mRNA level was determined by reverse transcription polymerase chain reaction. The proliferation of gastric carcinoma SGC-7901 cells was significantly inhibited following thermotherapy, and was 32.7%, 30.6%, 43.8% and 52.9% at 0.5, 1, 2 and 3 h post-thermotherapy, respectively. Flow cytometry analysis revealed an increased population of SGC-790l cells in G0/G1 phase, but a reduced population in S phase following thermotherapy for 1 or 2 h, compared to untreated cells (P thermotherapy for 0.5, 1, 2 or 3 h, compared to the untreated group (46.5% ± 0.23%, 39.9% ± 0.53%, 56.6% ± 0.35% and 50.4% ± 0.29% vs 7.3% ± 0.10%, P thermotherapy, compared to mock-inhibitor treatment, which was in line with the decreased rate of apoptosis. The expression of Bcl-2 was consistent with thermotherapy alone. Thermotherapy induced apoptosis in gastric cancer cells by promoting p-JNK at the mRNA and protein levels, and up-regulated the expression of Bax and caspase-3 proteins. Bcl-2 may play a protective role during thermotherapy. Activation of JNK via the Bax-caspase-3 pathway may be important in thermotherapy-induced apoptosis in gastric cancer cells.

  8. Evolution of gene expression after gene amplification.

    Science.gov (United States)

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-04-24

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat-maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Molecular mechanism of anticancer effect of Sclerotium rolfsii lectin in HT29 cells involves differential expression of genes associated with multiple signaling pathways: A microarray analysis.

    Science.gov (United States)

    Barkeer, Srikanth; Guha, Nilanjan; Hothpet, Vishwanathreddy; Saligrama Adavigowda, Deepak; Hegde, Prajna; Padmanaban, Arunkumar; Yu, Lu-Gang; Swamy, Bale M; Inamdar, Shashikala R

    2015-12-01

    Sclerotium rolfsii lectin (SRL) is a lectin isolated from fungus S. rolfsii and has high binding specificity toward the oncofetal Thomsen-Friedenreich carbohydrate antigen (Galβ1-3GalNAc-α-O-Ser/Thr, T or TF), which is expressed in more than 90% of human cancers. Our previous studies have shown that binding of SRL to human colon, breast and ovarian cancer cells induces cell apoptosis in vitro and suppresses tumor growth in vivo. This study investigated the SRL-mediated cell signaling in human colon cancer HT29 cells by mRNA and miRNA microarrays. It was found that SRL treatment results in altered expression of several hundred molecules including mitogen-activated protein kinase (MAPK) and c-JUN-associated, apoptosis-associated and cell cycle and DNA replication-associated signaling molecules. Pathway analysis using GeneSpring 12.6.1 revealed that SRL treatment induces changes of MAPK and c-JUN-associated signaling pathways as early as 2 h while changes of cell cycle, DNA replication and apoptosis pathways were significantly affected only after 24 h. A significant change of cell miRNA expression was also observed after 12 h treatment of the cells with SRL. These changes were further validated by quantitative real time polymerase chain reaction and immunoblotting. This study thus suggests that the presence of SRL affects multiple signaling pathways in cancer cells with early effects on cell proliferation pathways associated with MAPK and c-JUN, followed by miRNA-associated cell activity and apoptosis. This provides insight information into the molecular mechanism of the anticancer activity of this fungal lectin. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Melatonin promotes sorafenib-induced apoptosis through synergistic activation of JNK/c-jun pathway in human hepatocellular carcinoma.

    Science.gov (United States)

    Lin, Shibo; Hoffmann, Katrin; Gao, Chao; Petrulionis, Marius; Herr, Ingrid; Schemmer, Peter

    2017-04-01

    Melatonin has been shown to exert anticancer activity on hepatocellular carcinoma (HCC) through its antiproliferative and pro-apoptotic effect in both experimental and clinical studies, and sorafenib is the only approved drug for the systemic treatment of HCC. Thus, this study was designed to investigate the combined effect of melatonin and sorafenib on proliferation, apoptosis, and its possible mechanism in human HCC. Here, we found that both melatonin and sorafenib resulted in a dose-dependent growth inhibition of HuH-7 cells after 48 hours treatment, and the combination of them enhanced the growth inhibition in a synergistic manner. Colony formation assay indicated that co-treatment of HuH-7 cells with melatonin and sorafenib significantly decreased the clonogenicity compared to the treatment with single agent. Furthermore, FACS and TUNEL assay confirmed that melatonin synergistically augmented the sorafenib-induced apoptosis after 48 hours incubation, which was in accordance with the activation of caspase-3 and the JNK/c-jun pathway. Inhibition of JNK/c-jun pathway with its inhibitor SP600125 reversed the phosphorylation of c-jun and the activation of caspase-3 induced by co-treatment of HuH-7 cells with melatonin and sorafenib in a dose-dependent manner. Furthermore, SP600125 exhibited protective effect against apoptosis induced by the combination of melatonin and sorafenib. This study demonstrates that melatonin in combination with sorafenib synergistically inhibits proliferation and induces apoptosis in human HCC cells; therefore, supplementation of sorafenib with melatonin may serve as a potential therapeutic choice for advanced HCC. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. cJun NH2-terminal kinase 1 (JNK1): roles in metabolic regulation of insulin resistance

    OpenAIRE

    Sabio, Guadalupe; Davis, Roger J

    2010-01-01

    The cJun NH2-terminal kinase isoform JNK1 is implicated in the mechanism of obesity-induced insulin resistance. Feeding a high fat diet causes activation of the JNK1 signaling pathway, insulin resistance, and obesity in mice. Germ-line ablation of Jnk1 prevents both diet-induced obesity and insulin resistance. Genetic analysis indicates that the effects of JNK1 on insulin resistance can be separated from effects of JNK1 on obesity. Emerging research indicates that JNK1 plays multiple roles in...

  12. Effects of alpha-mangostin on the expression of anti-inflammatory genes in U937 cells

    Directory of Open Access Journals (Sweden)

    Liu Szu-Hsiu

    2012-08-01

    Full Text Available Abstract Background α-Mangostin (α-MG is a main constituent of the fruit hull of the mangosteen. Previous studies have shown that α-MG has pharmacological activities such as antioxidant, antitumor, anti-inflammatory, antiallergic, antibacterial, antifungal and antiviral effects. This study aims to investigate the anti-inflammatory molecular action of α-MG on gene expression profiles. Methods U937 and EL4 cells were treated with different concentrations of α-MG in the presence of 0.1 ng/mL lipopolysaccharide (LPS for 4 h. The anti-inflammatory effects of α-MG were measured by the levels of tumor necrosis factor (TNF-α and interleukin (IL-4 in cell culture media, which were determined with enzyme-linked immunosorbent assay kits. The gene expression profiles of all samples were analyzed with a whole human genome microarray, Illumina BeadChip WG-6 version 3, containing 48804 probes. The protein levels were determined by Western blotting analyses. Results α-MG decreased the LPS induction of the inflammatory cytokines TNF-α (P = 0.038 and IL-4 (P = 0.04. α-MG decreased the gene expressions in oncostatin M signaling via mitogen-activated protein kinase (MAPK pathways, including extracellular signal-regulated kinases (P = 0.016, c-Jun N-terminal kinase (P = 0.01 , and p38 (P = 0.008. α-MG treatment of U937 cells reduced the phosphorylation of MAPK kinase 3 / MAPK kinase 6 (P = 0.0441, MAPK-activated protein kinase-2 (P = 0.0453, signal transducers and activators of transcription-1 (STAT1 (P = 0.0012, c-Fos (P = 0.04, c-Jun (P = 0.019 and Ets-like molecule 1 (Elk-1 (P = 0.038. Conclusion This study demonstrates that α-MG attenuates LPS-mediated activation of MAPK, STAT1, c-Fos, c-Jun and EIK-1, inhibiting TNF-α and IL-4 production in U937 cells.

  13. Homeobox gene expression in Brachiopoda

    DEFF Research Database (Denmark)

    Altenburger, Andreas; Martinez, Pedro; Wanninger, Andreas

    2011-01-01

    The molecular control that underlies brachiopod ontogeny is largely unknown. In order to contribute to this issue we analyzed the expression pattern of two homeobox containing genes, Not and Cdx, during development of the rhynchonelliform (i.e., articulate) brachiopod Terebratalia transversa....... Not is a homeobox containing gene that regulates the formation of the notochord in chordates, while Cdx (caudal) is a ParaHox gene involved in the formation of posterior tissues of various animal phyla. The T. transversa homolog, TtrNot, is expressed in the ectoderm from the beginning of gastrulation until...... formation. TtrNot expression is absent in unfertilized eggs, in embryos prior to gastrulation, and in settled individuals during and after metamorphosis. Comparison with the expression patterns of Not genes in other metazoan phyla suggests an ancestral role for this gene in gastrulation and germ layer...

  14. Differential gene expressions of the MAPK signaling pathway in enterovirus 71-infected rhabdomyosarcoma cells

    Directory of Open Access Journals (Sweden)

    Weifeng Shi

    Full Text Available BACKGROUND: Mitogen-activated protein kinase (MAPK signaling pathway plays an important role in response to viral infection. The aim of this study was to explore the function and mechanism of MAPK signaling pathway in enterovirus 71 (EV71 infection of human rhabdomyosarcoma (RD cells. METHODS: Apoptosis of RD cells was observed using annexin V-FITC/PI binding assay under a fluorescence microscope. Cellular RNA was extracted and transcribed to cDNA. The expressions of 56 genes of MAPK signaling pathway in EV71-infected RD cells at 8 h and 20 h after infection were analyzed by PCR array. The levels of IL-2, IL-4, IL-10, and TNF-α in the supernatant of RD cells infected with EV71 at different time points were measured by ELISA. RESULTS: The viability of RD cells decreased obviously within 48 h after EV71 infection. Compared with the control group, EV71 infection resulted in the significantly enhanced releases of IL-2, IL-4, IL-10 and TNF-α from infected RD cells (p < 0.05. At 8 h after infection, the expressions of c-Jun, c-Fos, IFN-i, MEKK1, MLK3 and NIK genes in EV71-infected RD cells were up-regulated by 2.08-6.12-fold, whereas other 19 genes (e.g. AKT1, AKT2, E2F1, IKK and NF-κB1 exhibited down-regulation. However, at 20 h after infection, those MAPK signaling molecules including MEKK1, ASK1, MLK2, MLK3, NIK, MEK1, MEK2, MEK4, MEK7, ERK1, JNK1 and JNK2 were up-regulated. In addition, the expressions of AKT2, ELK1, c-Jun, c-Fos, NF-κB p65, PI3K and STAT1 were also increased. CONCLUSION: EV71 infection induces the differential gene expressions of MAPK signaling pathway such as ERK, JNK and PI3K/AKT in RD cells, which may be associated with the secretions of inflammatory cytokines and host cell apoptosis.

  15. Pb2+ induces gastrin gene expression by extracellular signal-regulated kinases 1/2 and transcription factor activator protein 1 in human gastric carcinoma cells.

    Science.gov (United States)

    Chan, Chien-Pin; Tsai, Yao-Ting; Chen, Yao-Li; Hsu, Yu-Wen; Tseng, Joseph T; Chuang, Hung-Yi; Shiurba, Robert; Lee, Mei-Hsien; Wang, Jaw-Yuan; Chang, Wei-Chiao

    2015-02-01

    Divalent lead ions (Pb(2+) ) are toxic environmental pollutants known to cause serious health problems in humans and animals. Absorption of Pb(2+) from air, water, and food takes place in the respiratory and digestive tracts. The ways in which absorbed Pb(2+) affects cell physiology are just beginning to be understood at the molecular level. Here, we used reverse transcription PCR and Western blotting to analyze cultures of human gastric carcinoma cells exposed to 10 μM lead nitrate. We found that Pb(2+) induces gastrin hormone gene transcription and translation in a time-dependent manner. Promoter deletion analysis revealed that activator protein 1 (AP1) was necessary for gastrin gene transcription in cells exposed to Pb(2+) . MitogIen-activated protein kinase (MAPK)/ERK kinase inhibitor PD98059 suppressed the Pb(2+) -induced increase in messenger RNA. Epidermal growth factor receptor (EGFR) inhibitors AG1478 and PD153035 reduced both transcription and phosphorylation by extracellular signal-regulated kinase (ERK1/2). Cells exposed to Pb(2+) also increased production of c-Jun protein, a component of AP1, and over-expression of c-Jun enhanced activation of the gastrin promoter. In sum, the findings suggest the EGFR-ERK1/2-AP1 pathway mediates the effects of Pb(2+) on gastrin gene activity in cell culture. © 2013 Wiley Periodicals, Inc.

  16. Human Lacrimal Gland Gene Expression.

    Directory of Open Access Journals (Sweden)

    Vinay Kumar Aakalu

    Full Text Available The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development.We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium.The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described.Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas.

  17. Phylogenetic analysis of gene expression.

    Science.gov (United States)

    Dunn, Casey W; Luo, Xi; Wu, Zhijin

    2013-11-01

    Phylogenetic analyses of gene expression have great potential for addressing a wide range of questions. These analyses will, for example, identify genes that have evolutionary shifts in expression that are correlated with evolutionary changes in morphological, physiological, and developmental characters of interest. This will provide entirely new opportunities to identify genes related to particular phenotypes. There are, however, 3 key challenges that must be addressed for such studies to realize their potential. First, data on gene expression must be measured from multiple species, some of which may be field-collected, and parameterized in such a way that they can be compared across species. Second, it will be necessary to develop comparative phylogenetic methods suitable for large multidimensional datasets. In most phylogenetic comparative studies to date, the number n of independent observations (independent contrasts) has been greater than the number p of variables (characters). The behavior of comparative methods for these classic problems is now well understood under a wide variety of conditions. In studies of gene expression, and in studies based on other high-throughput tools, the number n of samples is dwarfed by the number p of variables. The estimated covariance matrices will be singular, complicating their analysis and interpretation, and prone to spurious results. Third, new approaches are needed to investigate the expression of the many genes whose phylogenies are not congruent with species phylogenies due to gene loss, gene duplication, and incomplete lineage sorting. Here we outline general considerations of project design for phylogenetic analyses of gene expression and suggest solutions to these three categories of challenges. These topics are relevant to high-throughput phenotypic data well beyond gene expression.

  18. Idiomatic (gene) expressions.

    Science.gov (United States)

    Rockman, Matthew V

    2003-05-01

    Hidden among the myriad nucleotide variants that constitute each species' gene pool are a few variants that contribute to phenotypic variation. Many of these differences that make a difference are non-coding cis-regulatory variants, which, unlike coding variants, can only be identified through laborious experimental analysis. Recently, Cowles et al.1 described a screening method that does an end-run around this problem by searching for genes whose cis regulation varies without having to find the polymorphic nucleotides that influence transcription. While we will continue to require a diverse arsenal of experimental methods, this versatile method will speed the identification of functional genetic variation. Copyright 2003 Wiley Periodicals, Inc.

  19. Correction of gene expression data

    DEFF Research Database (Denmark)

    Darbani Shirvanehdeh, Behrooz; Stewart, C. Neal, Jr.; Noeparvar, Shahin

    2014-01-01

    This report investigates for the first time the potential inter-treatment bias source of cell number for gene expression studies. Cell-number bias can affect gene expression analysis when comparing samples with unequal total cellular RNA content or with different RNA extraction efficiencies....... For maximal reliability of analysis, therefore, comparisons should be performed at the cellular level. This could be accomplished using an appropriate correction method that can detect and remove the inter-treatment bias for cell-number. Based on inter-treatment variations of reference genes, we introduce...

  20. Sleep deprivation and gene expression.

    Science.gov (United States)

    da Costa Souza, Annie; Ribeiro, Sidarta

    2015-01-01

    Sleep occurs in a wide range of animal species as a vital process for the maintenance of homeostasis, metabolic restoration, physiological regulation, and adaptive cognitive functions in the central nervous system. Long-term perturbations induced by the lack of sleep are mostly mediated by changes at the level of transcription and translation. This chapter reviews studies in humans, rodents, and flies to address the various ways by which sleep deprivation affects gene expression in the nervous system, with a focus on genes related to neuronal plasticity, brain function, and cognition. However, the effects of sleep deprivation on gene expression and the functional consequences of sleep loss are clearly not restricted to the cognitive domain but may include increased inflammation, expression of stress-related genes, general impairment of protein translation, metabolic imbalance, and thermal deregulation.

  1. ASPM gene expression in medulloblastoma.

    Science.gov (United States)

    Vulcani-Freitas, Tânia M; Saba-Silva, Najsla; Cappellano, Andréa; Cavalheiro, Sérgio; Marie, Sueli K N; Oba-Shinjo, Sueli M; Malheiros, Suzana M F; de Toledo, Sílvia Regina Caminada

    2011-01-01

    Medulloblastomas are the most common malignant tumors of the central nervous system in childhood. The incidence is about 19-20% between children younger than 16 years old with peak incidence between 4 and 7 years. Despite its sensibility to no specific therapeutic means like chemotherapy and radiotherapy, the treatment is very aggressive and frequently results in regression, growth deficit, and endocrine dysfunction. From this point of view, new treatment approaches are needed such as molecular targeted therapies. Studies in glioblastoma demonstrated that ASPM gene was overexpressed when compared to normal brain and ASPM inhibition by siRNA-mediated inhibits tumor cell proliferation and neural stem cell proliferation, supporting ASPM gene as a potential molecular target in glioblastoma. The aim of this work was to evaluate ASPM expression in medulloblastoma fragment samples, and to compare the results with the patient clinical features. Analysis of gene expression was performed by quantitative PCR real time using SYBR Green system in tumor samples from 37 children. The t test was used to analyze the gene expression, and Mann-Whitney test was performed to analyze the relationship between gene expressions and clinical characteristics. Kaplan-Meier test evaluated curve survival. All samples overexpressed ASPM gene more than 40-fold. However, we did not find any association between the overexpressed samples and the clinical parameters. ASPM overexpression may modify the ability of stem cells to differentiate during the development of the central nervous system, contributing to the development of medulloblastoma, a tumor of embryonic origin from cerebellar progenitor cells.

  2. Inhibition of spinal astrocytic c-Jun N-terminal kinase (JNK activation correlates with the analgesic effects of ketamine in neuropathic pain

    Directory of Open Access Journals (Sweden)

    Wang Wen

    2011-01-01

    Full Text Available Abstract Background We have previously reported that inhibition of astrocytic activation contributes to the analgesic effects of intrathecal ketamine on spinal nerve ligation (SNL-induced neuropathic pain. However, the underlying mechanisms are still unclear. c-Jun N-terminal kinase (JNK, a member of mitogen-activated protein kinase (MAPK family, has been reported to be critical for spinal astrocytic activation and neuropathic pain development after SNL. Ketamine can decrease lipopolysaccharide (LPS-induced phosphorylated JNK (pJNK expression and could thus exert its anti-inflammatory effect. We hypothesized that inhibition of astrocytic JNK activation might be involved in the suppressive effect of ketamine on SNL-induced spinal astrocytic activation. Methods Immunofluorescence histochemical staining was used to detect SNL-induced spinal pJNK expression and localization. The effects of ketamine on SNL-induced mechanical allodynia were confirmed by behavioral testing. Immunofluorescence histochemistry and Western blot were used to quantify the SNL-induced spinal pJNK expression after ketamine administration. Results The present study showed that SNL induced ipsilateral pJNK up-regulation in astrocytes but not microglia or neurons within the spinal dorsal horn. Intrathecal ketamine relieved SNL-induced mechanical allodynia without interfering with motor performance. Additionally, intrathecal administration of ketamine attenuated SNL-induced spinal astrocytic JNK activation in a dose-dependent manner, but not JNK protein expression. Conclusions The present results suggest that inhibition of JNK activation may be involved in the suppressive effects of ketamine on SNL-induced spinal astrocyte activation. Therefore, inhibition of spinal JNK activation may be involved in the analgesic effects of ketamine on SNL-induced neuropathic pain.

  3. The drosophila T-box transcription factor midline functions within Insulin/Akt and c-Jun-N terminal kinase stress-reactive signaling pathways to regulate interommatial bristle formation and cell survival.

    Science.gov (United States)

    Chen, Q Brent; Das, Sudeshna; Visic, Petra; Buford, Kendrick D; Zong, Yan; Buti, Wisam; Odom, Kelly R; Lee, Hannah; Leal, Sandra M

    2015-05-01

    We recently reported that the T-box transcription factor midline (mid) functions within the Notch-Delta signaling pathway to specify sensory organ precursor (SOP) cell fates in early-staged pupal eye imaginal discs and to suppress apoptosis (Das et al.). From genetic and allelic modifier screens, we now report that mid interacts with genes downstream of the insulin receptor(InR)/Akt, c-Jun-N-terminal kinase (JNK) and Notch signaling pathways to regulate interommatidial bristle (IOB) formation and cell survival. One of the most significant mid-interacting genes identified from the modifier screen is dFOXO, a transcription factor exhibiting a nucleocytoplasmic subcellular distribution pattern. In common with dFOXO, we show that Mid exhibits a nucleocytoplasmic distribution pattern within WT third-instar larval (3(o)L) tissue homogenates. Because dFOXO is a stress-responsive factor, we assayed the effects of either oxidative or metabolic stress responses on modifying the mid mutant phenotype which is characterized by a 50% loss of IOBs within the adult compound eye. While metabolic starvation stress does not affect the mid mutant phenotype, either 1 mM paraquat or 20% coconut oil, oxidative stress inducers, partially suppresses the mid mutant phenotype resulting in a significant recovery of IOBs. Another significant mid-interacting gene we identified is groucho (gro). Mid and Gro are predicted to act as corepressors of the enhancer-of-split gene complex downstream of Notch. Immunolabeling WT and dFOXO null 3(o)L eye-antennal imaginal discs with anti-Mid and anti-Engrailed (En) antibodies indicate that dFOXO is required to activate Mid and En expression within photoreceptor neurons of the eye disc. Taken together, these studies show that Mid and dFOXO serve as critical effectors of cell fate specification and survival within integrated Notch, InR/dAkt, and JNK signaling pathways during 3(o)L and pupal eye imaginal disc development. Copyright © 2015 Elsevier Ireland

  4. Gene expression during phorbol ester-induced differentiation of cultured human megakaryoblastic cells.

    Science.gov (United States)

    Dorn, G W; Davis, M G; D'Angelo, D D

    1994-05-01

    Platelet protein makeup is determined during transformation of megakaryoblasts to mature megakaryocytes, the immediate precursor of circulating platelets. To better understand the molecular mechanisms of megakaryocyte formation, gene expression was characterized by Northern analysis and RNA fingerprinting of cultured human CHRF-288 megakaryoblastic cells undergoing phorbol ester-stimulated megakaryocytic differentiation or serum-stimulated megakaryoblast proliferation. Protooncogenes c-fos and c-jun were coordinately upregulated in both proliferating and differentiating cells, whereas c-myc transcripts were upregulated during proliferation only. In contrast, mRNAs for transforming growth factor-beta 1 (TGF-beta 1) and thromboxane receptors were coordinately upregulated during differentiation but differentially regulated during proliferation. RNA fingerprinting revealed multiple transcripts specific to either proliferating or differentiated cells. Three of these were identified by homology to known DNA sequence: CDw44 adhesion molecule (upregulated during differentiation), glutathione sulfhydryl peroxidase (downregulated during differentiation), and plectin cytoskeletal protein (upregulated during differentiation). Thus, although megakaryoblast proliferation and megakaryocyte differentiation both involve DNA and protein synthesis, each growth response is characterized by a distinct pattern of gene expression.

  5. The intriguing role of fibroblasts and c-Jun in the chemopreventive and therapeutic effect of finasteride on xenograft models of prostate cancer.

    Science.gov (United States)

    Niu, Yi-Nong; Wang, Kai; Jin, Song; Fan, Dong-Dong; Wang, Ming-Shuai; Xing, Nian-Zeng; Xia, Shu-Jie

    2016-01-01

    In a large clinical trial, finasteride reduced the rate of low-grade prostate cancer (PCa) while increasing the incidence of high-grade cancer. Whether finasteride promotes the development of high-grade tumors remains controversial. We demonstrated the role of fibroblasts and c-Jun in chemopreventive and therapeutic effect of finasteride on xenograft models of PCa. LNCaP (PC3) cells or recombinants of cancer cells and fibroblasts were implanted in male athymic nude mice treated with finasteride. Tumor growth, cell proliferation, apoptosis, p-Akt, and p-ERK1/2 were evaluated. In LNCaP (PC3) mono-grafted models, finasteride did not change the tumor growth. In recombinant-grafted models, fibroblasts and c-Jun promoted tumor growth; finasteride induced proliferation of LNCaP cells and repressed PC3 cell apoptosis. When c-Jun was knocked out, fibroblasts and/or finasteride did not promote the tumor growth. Finasteride inhibited p-Akt and p-ERK1/2 in mono-culture cancer cells while stimulating the same signaling molecules in the presence of fibroblasts. Reduced p-Akt and p-ERK1/2 were noted in the presence of c-Jun-/- fibroblasts. Fibroblasts and c-Jun promote PCa growth; finasteride further stimulates tumor growth with promoted proliferation, repressed apoptosis, and up-regulated pro-proliferative molecular pathway in the presence of fibroblasts and c-Jun. Stromal-epithelial interactions play critical roles in finasteride's therapeutic effects on PCa. Our findings have preliminary implications in using finasteride as a chemopreventive or therapeutic agent for PCa patients.

  6. Gene expression based cancer classification

    OpenAIRE

    Sara Tarek; Reda Abd Elwahab; Mahmoud Shoman

    2017-01-01

    Cancer classification based on molecular level investigation has gained the interest of researches as it provides a systematic, accurate and objective diagnosis for different cancer types. Several recent researches have been studying the problem of cancer classification using data mining methods, machine learning algorithms and statistical methods to reach an efficient analysis for gene expression profiles. Studying the characteristics of thousands of genes simultaneously offered a deep in...

  7. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  8. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each......%). Fifteen nuclear encoded mitochondrial proteins were all down-regulated in CRC. We identified several chromosomal locations with clusters of either potential oncogenes or potential tumor suppressors. Some of these, such as aminopeptidase N/CD13 and sigma B3 protein on chromosome 15q25, coincided...

  9. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress

    Science.gov (United States)

    Go, Y. M.; Boo, Y. C.; Park, H.; Maland, M. C.; Patel, R.; Pritchard, K. A. Jr; Fujio, Y.; Walsh, K.; Darley-Usmar, V.; Jo, H.

    2001-01-01

    Laminar shear stress activates c-Jun NH(2)-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (Akt(AA)) and a constitutively active mutant (Akt(Myr)) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of Akt(AA) in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of Akt(Myr) by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O(2-), which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.

  10. Plasticity in the rat prefrontal cortex: linking gene expression and an operant learning with a computational theory.

    Directory of Open Access Journals (Sweden)

    Maximiliano Rapanelli

    Full Text Available The plasticity in the medial Prefrontal Cortex (mPFC of rodents or lateral prefrontal cortex in non human primates (lPFC, plays a key role neural circuits involved in learning and memory. Several genes, like brain-derived neurotrophic factor (BDNF, cAMP response element binding (CREB, Synapsin I, Calcium/calmodulin-dependent protein kinase II (CamKII, activity-regulated cytoskeleton-associated protein (Arc, c-jun and c-fos have been related to plasticity processes. We analysed differential expression of related plasticity genes and immediate early genes in the mPFC of rats during learning an operant conditioning task. Incompletely and completely trained animals were studied because of the distinct events predicted by our computational model at different learning stages. During learning an operant conditioning task, we measured changes in the mRNA levels by Real-Time RT-PCR during learning; expression of these markers associated to plasticity was incremented while learning and such increments began to decline when the task was learned. The plasticity changes in the lPFC during learning predicted by the model matched up with those of the representative gene BDNF. Herein, we showed for the first time that plasticity in the mPFC in rats during learning of an operant conditioning is higher while learning than when the task is learned, using an integrative approach of a computational model and gene expression.

  11. Gene Expression Analysis of Breast Cancer Progression

    National Research Council Canada - National Science Library

    Gerald, Wiliam L

    2004-01-01

    ... to identify genes, gene expression profiles and molecular pathways associated with metastatic BC we have performed genome-wide gene expression analysis of a large number of breast cancer samples...

  12. Resveratrol reduces prostaglandin E1-stimulated osteoprotegerin synthesis in osteoblasts: suppression of stress-activated protein kinase/c-Jun N-terminal kinase.

    Science.gov (United States)

    Yamamoto, Naohiro; Otsuka, Takanobu; Kuroyanagi, Gen; Kondo, Akira; Kainuma, Shingo; Nakakami, Akira; Matsushima-Nishiwaki, Rie; Kozawa, Osamu; Tokuda, Haruhiko

    2015-01-01

    Resveratrol, a natural polyphenol mainly existing in red grapes and berries, possesses beneficial effects on human being. We have previously reported that prostaglandin E1 (PGE1) stimulates vascular endothelial growth factor synthesis via activation of p38 mitogen-activated protein (MAP) kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) but not p44/p42 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the PGE1-effect on osteoprotegerin (OPG) synthesis and the effect of resveratrol on the synthesis in MC3T3-E1 cells. PGE1 induced the expression levels of OPG mRNA and stimulated the OPG release. Resveratrol significantly reduced the PGE1-induced OPG release and the mRNA expression. SRT1720, an activator of SIRT1, suppressed the release of OPG. The protein levels of SIRT1 were not up-regulated by resveratrol with or without PGE1. Both SB203580 and SP600125, a specific p38 MAP kinase inhibitor and a specific SAPK/JNK inhibitor, respectively, but not PD98059, a specific MEK inhibitor, reduced the PGE1-stimulated OPG release. Resveratrol or SRT1720 failed to affect the phosphorylation of p38 MAP kinase. On the contrary, PGE1-induced phosphorylation of SAPK/JNK was significantly attenuated by both resveratrol and SRT1720. Our results strongly suggest that resveratrol inhibits PGE1-stimulated OPG synthesis via suppressing SAPK/JNK but not p38 MAP kinase in osteoblasts. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  14. Early Gene Expression in Wounded Human Keratinocytes Revealed by DNA Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Pascal Barbry

    2006-04-01

    Full Text Available Wound healing involves several steps: spreading of the cells, migration and proliferation. We have profiled gene expression during the early events of wound healing in normal human keratinocytes with a home-made DNA microarray containing about 1000 relevant human probes. An original wounding machine was used, that allows the wounding of up to 40% of the surface of a confluent monolayer of cultured cells grown on a Petri dish (compared with 5% with a classical ‘scratch’ method. The two aims of the present study were: (a to validate a limited number of genes by comparing the expression levels obtained with this technique with those found in the literature; (b to combine the use of the wounding machine with DNA microarray analysis for large-scale detection of the molecular events triggered during the early stages of the wound-healing process. The time-courses of RNA expression observed at 0.5, 1.5, 3, 6 and 15 h after wounding for genes such as c-Fos, c-Jun, Egr1, the plasminogen activator PLAU (uPA and the signal transducer and transcription activator STAT3, were consistent with previously published data. This suggests that our methodologies are able to perform quantitative measurement of gene expression. Transcripts encoding two zinc finger proteins, ZFP36 and ZNF161, and the tumour necrosis factor α-induced protein TNFAIP3, were also overexpressed after wounding. The role of the p38 mitogen-activated protein kinase (p38MAPK in wound healing was shown after the inhibition of p38 by SB203580, but our results also suggest the existence of surrogate activating pathways.

  15. Neighboring Genes Show Correlated Evolution in Gene Expression

    Science.gov (United States)

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  16. Predicting Virulence of Aeromonas Isolates Based-on Changes in Transcription of c-jun and c-fos in Human Tissue Culture Cells

    Science.gov (United States)

    Aims: To assess virulence of Aeromonas isolates based on the change in regulation of c-jun and c-fos in the human intestinal tissue culture cell line Caco-2. Methods and Results: Aeromonas cells were added to Caco-2 cells at approximately a one to one ratio. After 1, 2 and 3 ...

  17. Induction of c-Jun immunoreactivity in spinal cord and brainstem neurons in a transgenic mouse model for amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    Jaarsma, D.; Holstege, J. C.; Troost, D.; Davis, M.; Kennis, J.; Haasdijk, E. D.; de Jong, V. J.

    1996-01-01

    Transgenic mice carrying amyotrophic lateral sclerosis (ALS)-linked superoxide dismutase 1 (SOD1) mutations develop a motoneuron disease resembling human ALS. c-Jun is a transcription factor frequently induced in injured neurons. In this study we have examined the distribution of

  18. Induction of c-Jun immunoreactivity in spinal cord and brainstem neurons in a transgenic mouse model for amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    D. Jaarsma (Dick); J.C. Holstege (Jan); D. Troost (Dirk); M. Davis (Maria); J.H.H. Kennis (Josette); E.D. Haasdijk (Elize); J.M.B.V. de Jong (Vianney)

    1996-01-01

    textabstractTransgenic mice carrying amyotrophic lateral sclerosis (ALS)-linked superoxide dismutase 1 (SOD1) mutations develop a motoneuron disease resembling human ALS. c-Jun is a transcription factor frequently induced in injured neurons. In this study we have examined the distribution of

  19. Gene expression profile of pulpitis

    Science.gov (United States)

    Galicia, Johnah C.; Henson, Brett R.; Parker, Joel S.; Khan, Asma A.

    2016-01-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the Significance Analysis of Microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (≥30mm on VAS) compared to those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  20. Gene Expression in Trypanosomatid Parasites

    Directory of Open Access Journals (Sweden)

    Santiago Martínez-Calvillo

    2010-01-01

    Full Text Available The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.

  1. Gene expression profile of pulpitis.

    Science.gov (United States)

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology.

  2. Metformin prevents endoplasmic reticulum stress-induced apoptosis through AMPK-PI3K-c-Jun NH2 pathway

    Science.gov (United States)

    Jung, T.W.; Lee, M.W.; Lee, Y.-J.; Kim, S.M.

    2012-01-01

    Type 2 diabetes mellitus is thought to be partially associated with endoplasmic reticulum (ER) stress toxicity on pancreatic beta cells and the result of decreased insulin synthesis and secretion. In this study, we showed that a well-known insulin sensitizer, metformin, directly protects against dysfunction and death of ER stress-induced NIT-1 cells (a mouse pancreatic beta cell line) via AMP-activated protein kinase (AMPK) and phosphatidylinositol-3 (PI3) kinase activation. We also showed that exposure of NIT-1 cells to metformin (5mM) increases cellular resistance against ER stress-induced NIT-1 cell dysfunction and death. AMPK and PI3 kinase inhibitors abolished the effect of metformin on cell function and death. Metformin-mediated protective effects on ER stress-induced apoptosis were not a result of an unfolded protein response or the induced inhibitors of apoptotic proteins. In addition, we showed that exposure of ER stressed-induced NIT-1 cells to metformin decreases the phosphorylation of c-Jun NH(2) terminal kinase (JNK). These data suggest that metformin is an important determinant of ER stress-induced apoptosis in NIT-1 cells and may have implications for ER stress-mediated pancreatic beta cell destruction via regulation of the AMPK-PI3 kinase-JNK pathway.

  3. c-Jun N-terminal kinase-dependent apoptotic photocytotoxicity of solvent exchange-prepared curcumin nanoparticles.

    Science.gov (United States)

    Paunovic, Verica; Ristic, Biljana; Markovic, Zoran; Todorovic-Markovic, Biljana; Kosic, Milica; Prekodravac, Jovana; Kravic-Stevovic, Tamara; Martinovic, Tamara; Micusik, Matej; Spitalsky, Zdeno; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2016-04-01

    Indian spice curcumin is known for its anticancer properties, but the anticancer mechanisms of nanoparticulate curcumin have not been completely elucidated. We here investigated the in vitro anticancer effect of blue light (470 nm, 1 W)-irradiated curcumin nanoparticles prepared by tetrahydrofuran/water solvent exchange, using U251 glioma, B16 melanoma, and H460 lung cancer cells as targets. The size of curcumin nanocrystals was approximately 250 nm, while photoexcitation induced their oxidation and partial agglomeration. Although cell membrane in the absence of light was almost impermeable to curcumin nanoparticles, photoexcitation stimulated their internalization. While irradiation with blue light (1-8 min) or nanocurcumin (1.25-10 μg/ml) alone was only marginally toxic to tumor cells, photoexcited nanocurcumin displayed a significant cytotoxicity depending both on the irradiation time and nanocurcumin concentration. Photoexcited nanocurcumin induced phosphorylation of c-Jun N-terminal kinase (JNK), mitochondrial depolarization, caspase-3 activation, and cleavage of poly (ADP-ribose) polymerase, indicating apoptotic cell death. Accordingly, pharmacologial inhibition of JNK and caspase activity rescued cancer cells from photoexcited nanocurcumin. On the other hand, antioxidant treatment did not reduce photocytotoxicity of nanocurcumin, arguing against the involvement of oxidative stress. By demonstrating the ability of photoexcited nanocurcumin to induce oxidative-stress independent, JNK- and caspase-dependent apoptosis, our results support its further investigation in cancer therapy.

  4. Systems Biophysics of Gene Expression

    Science.gov (United States)

    Vilar, Jose M.G.; Saiz, Leonor

    2013-01-01

    Gene expression is a process central to any form of life. It involves multiple temporal and functional scales that extend from specific protein-DNA interactions to the coordinated regulation of multiple genes in response to intracellular and extracellular changes. This diversity in scales poses fundamental challenges to the use of traditional approaches to fully understand even the simplest gene expression systems. Recent advances in computational systems biophysics have provided promising avenues to reliably integrate the molecular detail of biophysical process into the system behavior. Here, we review recent advances in the description of gene regulation as a system of biophysical processes that extend from specific protein-DNA interactions to the combinatorial assembly of nucleoprotein complexes. There is now basic mechanistic understanding on how promoters controlled by multiple, local and distal, DNA binding sites for transcription factors can actively control transcriptional noise, cell-to-cell variability, and other properties of gene regulation, including precision and flexibility of the transcriptional responses. PMID:23790365

  5. Control of Renin Gene Expression

    Science.gov (United States)

    Glenn, Sean T.; Jones, Craig A.; Gross, Kenneth W.; Pan, Li

    2015-01-01

    Renin, as part of the renin-angiotensin system, plays a critical role in the regulation of blood pressure, electrolyte homeostasis, mammalian renal development and progression of fibrotic/hypertrophic diseases. Renin gene transcription is subject to complex developmental and tissue-specific regulation. Initial studies using the mouse As4.1 cell line, which has many characteristics of the renin-expressing juxtaglomerular cells of the kidney, have identified a proximal promoter region (−197 to −50 bp) and an enhancer (−2866 to −2625 bp) upstream of the Ren-1c gene, which are critical for renin gene expression. The proximal promoter region contains several transcription factor-binding sites including a binding site for the products of the developmental control genes Hox. The enhancer consists of at least 11 transcription factor-binding sites and is responsive to various signal transduction pathways including cAMP, retinoic acid, endothelin-1, and cytokines, all of which are known to alter renin mRNA levels. Furthermore, in vivo models have validated several of these key components found within the proximal promoter region and the enhancer as well as other key sites necessary for renin gene transcription. PMID:22576577

  6. Synthetic promoter libraries- tuning of gene expression

    DEFF Research Database (Denmark)

    Hammer, Karin; Mijakovic, Ivan; Jensen, Peter Ruhdal

    2006-01-01

    The study of gene function often requires changing the expression of a gene and evaluating the consequences. In principle, the expression of any given gene can be modulated in a quasi-continuum of discrete expression levels but the traditional approaches are usually limited to two extremes: gene ...

  7. Extracellular signal-regulated kinase is essential for interleukin-1-induced and nuclear factor kappaB-mediated gene expression in insulin-producing INS-1E cells

    DEFF Research Database (Denmark)

    Larsen, Lykke; Størling, J; Darville, M

    2005-01-01

    The beta cell destruction and insulin deficiency that characterises type 1 diabetes mellitus is partially mediated by cytokines, such as IL-1beta, and by nitric oxide (NO)-dependent and -independent effector mechanisms. IL-1beta activates mitogen-activated protein kinases (MAPKs), including...... extracellular signal-regulated kinase (ERK), p38 and c-Jun NH2-terminal kinase (JNK), and the nuclear factor kappa B (NFkappaB) pathway. Both pathways are required for expression of the gene encoding inducible nitric oxide synthase (iNOS) and for IL-1beta-mediated beta cell death. The molecular mechanisms...... by which these two pathways regulate beta cell Nos2 expression are currently unknown. Therefore, the aim of this study was to clarify the putative crosstalk between MAPK and NFkappaB activation in beta cells....

  8. The intriguing role of fibroblasts and c-Jun in the chemopreventive and therapeutic effect of finasteride on xenograft models of prostate cancer

    Directory of Open Access Journals (Sweden)

    Yi-Nong Niu

    2016-01-01

    Full Text Available In a large clinical trial, finasteride reduced the rate of low-grade prostate cancer (PCa while increasing the incidence of high-grade cancer. Whether finasteride promotes the development of high-grade tumors remains controversial. We demonstrated the role of fibroblasts and c-Jun in chemopreventive and therapeutic effect of finasteride on xenograft models of PCa. LNCaP (PC3 cells or recombinants of cancer cells and fibroblasts were implanted in male athymic nude mice treated with finasteride. Tumor growth, cell proliferation, apoptosis, p-Akt, and p-ERK1/2 were evaluated. In LNCaP (PC3 mono-grafted models, finasteride did not change the tumor growth. In recombinant-grafted models, fibroblasts and c-Jun promoted tumor growth; finasteride induced proliferation of LNCaP cells and repressed PC3 cell apoptosis. When c-Jun was knocked out, fibroblasts and/or finasteride did not promote the tumor growth. Finasteride inhibited p-Akt and p-ERK1/2 in mono-culture cancer cells while stimulating the same signaling molecules in the presence of fibroblasts. Reduced p-Akt and p-ERK1/2 were noted in the presence of c-Jun−/− fibroblasts. Fibroblasts and c-Jun promote PCa growth; finasteride further stimulates tumor growth with promoted proliferation, repressed apoptosis, and up-regulated pro-proliferative molecular pathway in the presence of fibroblasts and c-Jun. Stromal-epithelial interactions play critical roles in finasteride′s therapeutic effects on PCa. Our findings have preliminary implications in using finasteride as a chemopreventive or therapeutic agent for PCa patients.

  9. Using gene expression noise to understand gene regulation

    NARCIS (Netherlands)

    Munsky, B.; Neuert, G.; van Oudenaarden, A.

    2012-01-01

    Phenotypic variation is ubiquitous in biology and is often traceable to underlying genetic and environmental variation. However, even genetically identical cells in identical environments display variable phenotypes. Stochastic gene expression, or gene expression "noise," has been suggested as a

  10. The gene expression signatures of melanoma progression

    OpenAIRE

    Haqq, Christopher; Nosrati, Mehdi; Sudilovsky, Daniel; Crothers, Julia; Khodabakhsh, Daniel; Pulliam, Brian L.; Federman, Scot; Miller, James R.; Allen, Robert E.; Singer, Mark I.; Leong, Stanley P L; Ljung, Britt-Marie; Sagebiel, Richard W.; Kashani-Sabet, Mohammed

    2005-01-01

    Because of the paucity of available tissue, little information has previously been available regarding the gene expression profiles of primary melanomas. To understand the molecular basis of melanoma progression, we compared the gene expression profiles of a series of nevi, primary melanomas, and melanoma metastases. We found that metastatic melanomas exhibit two dichotomous patterns of gene expression, which unexpectedly reflect gene expression differences already apparent in comparing laser...

  11. Nongenomic regulation of gene expression.

    Science.gov (United States)

    Iglesias-Platas, Isabel; Monk, David

    2016-08-01

    The purpose of this review is to highlight the recent advances in epigenetic regulation and chromatin biology for a better understanding of gene regulation related to human disease. Alterations to chromatin influence genomic function, including gene transcription. At its most simple level, this involves DNA methylation and posttranscriptional histone modifications. However, recent developments in biochemical and molecular techniques have revealed that transcriptional regulation is far more complex, involving combinations of histone modifications and discriminating transcription factor binding, and long-range chromatin loops with enhancers, to generate a multifaceted code. Here, we describe the most recent advances, culminating in the example of genomic imprinting, the parent-of-origin monoallelic expression that utilizes the majority of these mechanisms to attain one active and one repressed allele. It is becoming increasingly evident that epigenetic mechanisms work in unison to maintain tight control of gene expression and genome function. With the wealth of knowledge gained from recent molecular studies, future goals should focus on the application of this information in deciphering their role in developmental diseases.

  12. Hyperoside Downregulates the Receptor for Advanced Glycation End Products (RAGE and Promotes Proliferation in ECV304 Cells via the c-Jun N-Terminal Kinases (JNK Pathway Following Stimulation by Advanced Glycation End-Products In Vitro

    Directory of Open Access Journals (Sweden)

    Zhengyu Zhang

    2013-11-01

    Full Text Available Hyperoside is a major active constituent in many medicinal plants which are traditionally used in Chinese medicines for their neuroprotective, anti-inflammatory and antioxidative effects. The molecular mechanisms underlying these effects are unknown. In this study, quiescent ECV304 cells were treated in vitro with advanced glycation end products (AGEs in the presence or absence of hyperoside. The results demonstrated that AGEs induced c-Jun N-terminal kinases (JNK activation and apoptosis in ECV304 cells. Hyperoside inhibited these effects and promoted ECV304 cell proliferation. Furthermore, hyperoside significantly inhibited RAGE expression in AGE-stimulated ECV304 cells, whereas knockdown of RAGE inhibited AGE-induced JNK activation. These results suggested that AGEs may promote JNK activation, leading to viability inhibition of ECV304 cells via the RAGE signaling pathway. These effects could be inhibited by hyperoside. Our findings suggest a novel role for hyperoside in the treatment and prevention of diabetes.

  13. A peptide fragment of ependymin neurotrophic factor uses protein kinase C and the mitogen-activated protein kinase pathway to activate c-Jun N-terminal kinase and a functional AP-1 containing c-Jun and c-Fos proteins in mouse NB2a cells.

    Science.gov (United States)

    Adams, David S; Hasson, Brendan; Boyer-Boiteau, Anne; El-Khishin, Adam; Shashoua, Victor E

    2003-05-01

    Ependymin (EPN) is a goldfish brain neurotrophic factor previously shown to function in a variety of cellular events related to long-term memory formation and neuronal regeneration. CMX-8933, an 8-amino-acid synthetic peptide fragment of EPN, was designed for aiding an investigation of the biological properties of this glycoprotein. We reported from previous studies that treatment of mouse neuroblastoma (NB2a) cultures with CMX-8933 promotes activation of transcription factor AP-1, a characteristic previously associated with the following full-length neurotrophic factors: nerve growth factor, neurotropin-3, and brain-derived neurotrophic factor. The CMX-8933-activated AP-1 specifically bound an AP-1 consensus probe and appeared to contain c-Jun and c-Fos protein components in antibody supershift experiments. Because AP-1 influences a variety of positive and negative cellular processes, determined in part by its exact protein composition and mechanism of activation, we extended these initial AP-1 observations in the current study to confirm the identity of the CMX-8933-activated c-Jun and c-Fos components. CMX-8933 increases the enzymatic activity of c-Jun N-terminal kinase (JNK), increases the phosphorylation of JNK and c-Jun proteins, and increases the cellular titers of c-Jun and c-Fos mRNAs. Furthermore, the AP-1 activated by CMX-8933 is functional, insofar as it transactivates both synthetic and natural AP-1-dependent reporter plasmids. Inhibition studies indicate that activation of the 8933-induced AP-1 occurs via the mitogen-activated protein kinase pathway. These data are in agreement with the recently proposed model for the conversion of short- to long-term synaptic plasticity and memory, in which a JNK-activated transcription factor AP-1, containing c-Jun and c-Fos components, functions at the top of a hierarchy of transcription factors known to regulate long-term neural plasticity. Copyright 2003 Wiley-Liss, Inc.

  14. Does inbreeding affect gene expression in birds?

    Science.gov (United States)

    Hansson, Bengt; Naurin, Sara; Hasselquist, Dennis

    2014-09-01

    Inbreeding increases homozygosity, exposes genome-wide recessive deleterious alleles and often reduces fitness. The physiological and reproductive consequences of inbreeding may be manifested already during gene regulation, but the degree to which inbreeding influences gene expression is unknown in most organisms, including in birds. To evaluate the pattern of inbreeding-affected gene expression over the genome and in relation to sex, we performed a transcriptome-wide gene expression (10 695 genes) study of brain tissue of 10-day-old inbred and outbred, male and female zebra finches. We found significantly lower gene expression in females compared with males at Z-linked genes, confirming that dosage compensation is incomplete in female birds. However, inbreeding did not affect gene expression at autosomal or sex-linked genes, neither in males nor in females. Analyses of single genes again found a clear sex-biased expression at Z-linked genes, whereas only a single gene was significantly affected by inbreeding. The weak effect of inbreeding on gene expression in zebra finches contrasts to the situation, for example, in Drosophila where inbreeding has been found to influence gene expression more generally and at stress-related genes in particular. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Reactivation of proliferin gene expression is associated with increased angiogenesis in a cell culture model of fibrosarcoma tumor progression

    Science.gov (United States)

    Toft, Daniel J.; Rosenberg, Suzanne B.; Bergers, Gabriele; Volpert, Olga; Linzer, Daniel I. H.

    2001-01-01

    Proliferin (PLF) is an angiogenic placental hormone. We now report that PLF gene expression can also occur in a progressive fibrosarcoma mouse tumor cell model. PLF mRNA and protein are detectable at very low levels in cell lines derived from the mild noninvasive stage of tumor development. Expression is greatly augmented in cell lines from the aggressively invasive stage of development, a stage at which the tumor becomes highly angiogenic, and PLF expression remains high in cell lines from the end stage of fibrosarcoma. Activator protein 1 factors present at high levels in the more invasive stages of the tumor may in part allow for increased PLF expression, as cells from the mild stage in which c-jun and junB are stably expressed secrete levels of PLF comparable to that of the advanced stages. Secreted PLF protein is functionally important in tumor cell angiogenic activity, as demonstrated by the reduction of angiogenic activity in fibrosarcoma cell culture medium by immunodepletion of PLF. These results suggest that an extraembryonic genetic program, which has evolved to support fetal growth, may be reactivated in certain tumors and contribute to tumor growth. PMID:11606769

  16. Modulation of gene expression made easy

    DEFF Research Database (Denmark)

    Solem, Christian; Jensen, Peter Ruhdal

    2002-01-01

    A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example...... that the method can be applied to modulating the expression of native genes on the chromosome. We constructed a series of strains in which the expression of the las operon, containing the genes pfk, pyk, and ldh, was modulated by integrating a truncated copy of the pfk gene. Importantly, the modulation affected...

  17. Phosphorylation of purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal Kinase-3 modifies channel voltage-dependence.

    Science.gov (United States)

    Gupta, Rajeev; Ghosh, Subhendu

    2017-06-01

    Voltage-Dependent Anion Channel (VDAC) phosphorylated by c-Jun N-terminal Kinase-3 (JNK3) was incorporated into the bilayer lipid membrane. Single-channel electrophysiological properties of the native and the phosphorylated VDAC were compared. The open probability versus voltage curve of the native VDAC displayed symmetry around the voltage axis, whereas that of the phosphorylated VDAC showed asymmetry. This result indicates that phosphorylation by JNK3 modifies voltage-dependence of VDAC.

  18. Adaptive Evolution of Gene Expression in Drosophila

    Directory of Open Access Journals (Sweden)

    Armita Nourmohammad

    2017-08-01

    Full Text Available Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis.

  19. Gene expression analysis identifies global gene dosage sensitivity in cancer

    DEFF Research Database (Denmark)

    Fehrmann, Rudolf S. N.; Karjalainen, Juha M.; Krajewska, Malgorzata

    2015-01-01

    Many cancer-associated somatic copy number alterations (SCNAs) are known. Currently, one of the challenges is to identify the molecular downstream effects of these variants. Although several SCNAs are known to change gene expression levels, it is not clear whether each individual SCNA affects gene...... expression. We reanalyzed 77,840 expression profiles and observed a limited set of 'transcriptional components' that describe well-known biology, explain the vast majority of variation in gene expression and enable us to predict the biological function of genes. On correcting expression profiles...... for these components, we observed that the residual expression levels (in 'functional genomic mRNA' profiling) correlated strongly with copy number. DNA copy number correlated positively with expression levels for 99% of all abundantly expressed human genes, indicating global gene dosage sensitivity. By applying...

  20. Expression of evolutionarily novel genes in tumors

    OpenAIRE

    A. P. Kozlov

    2016-01-01

    The evolutionarily novel genes originated through different molecular mechanisms are expressed in tumors. Sometimes the expression of evolutionarily novel genes in tumors is highly specific. Moreover positive selection of many human tumor-related genes in primate lineage suggests their involvement in the origin of new functions beneficial to organisms. It is suggested to consider the expression of evolutionarily young or novel genes in tumors as a new biological phenomenon, a phenomenon of TS...

  1. Antinociceptive Effect of Najanalgesin from Naja Naja Atra in a Neuropathic Pain Model via Inhibition of c-Jun NH2-terminal Kinase.

    Science.gov (United States)

    Liang, Ying-Xia; Zhang, Zhi-Yu; Zhang, Rui

    2015-09-05

    Najanalgesin, a toxin isolated from the venom of Naja naja atra, has been shown to exert significant analgesic effects in a neuropathic pain model in rats. However, the molecular mechanism underlying this protective effect of najanalgesin is poorly understood. The present study sought to evaluate the intracellular signaling pathways that are involved in the antinociceptive effect of najanalgesin on neuropathic pain. The antinociceptive properties of najanalgesin were tested in hind paw withdrawal thresholds in response to mechanical stimulation. We analyzed the participation of the mitogen-activated protein kinase p38, extracellular-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) by western blot analysis. This inhibition of JNK was confirmed by immunohistochemistry. The phosphorylation levels of JNK (as well as its downstream molecule c-Jun), p38, and ERK were significantly increased after injury. Najanalgesin only inhibited JNK and c-Jun phosphorylation but had no effect on either ERK or p38. This inhibition of JNK was confirmed by immunohistochemistry, which suggested that the antinociceptive effect of najanalgesin on spinal nerve ligation-induced neuropathic pain in rats is associated with JNK activation in the spinal cord. The antinociceptive effect of najanalgesin functions by inhibiting the JNK in a neuropathic pain model.

  2. Interplay between viral Tat protein and c-Jun transcription factor in controlling LTR promoter activity in different human immunodeficiency virus type I subtypes.

    Science.gov (United States)

    van der Sluis, Renée M; Derking, Ronald; Breidel, Seyguerney; Speijer, Dave; Berkhout, Ben; Jeeninga, Rienk E

    2014-04-01

    HIV-1 transcription depends on cellular transcription factors that bind to sequences in the long-terminal repeat (LTR) promoter. Each HIV-1 subtype has a specific LTR promoter configuration, and minor sequence changes in transcription factor binding sites (TFBSs) or their arrangement can influence transcriptional activity, virus replication and latency properties. Previously, we investigated the proviral latency properties of different HIV-1 subtypes in the SupT1 T cell line. Here, subtype-specific latency and replication properties were studied in primary PHA-activated T lymphocytes. No major differences in latency and replication capacity were measured among the HIV-1 subtypes. Subtype B and AE LTRs were studied in more detail with regard to a putative AP-1 binding site using luciferase reporter constructs. c-Jun, a member of the AP-1 transcription factor family, can activate both subtype B and AE LTRs, but the latter showed a stronger response, reflecting a closer match with the consensus AP-1 binding site. c-Jun overexpression enhanced Tat-mediated transcription of the viral LTR, but in the absence of Tat inhibited basal promoter activity. Thus, c-Jun can exert a positive or negative effect via the AP-1 binding site in the HIV-1 LTR promoter, depending on the presence or absence of Tat.

  3. The gap junction inhibitor 2-aminoethoxy-diphenyl-borate protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes and c-jun N-terminal kinase activation

    Energy Technology Data Exchange (ETDEWEB)

    Du, Kuo; Williams, C. David; McGill, Mitchell R.; Xie, Yuchao [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Farhood, Anwar [Department of Pathology, St. David' s North Austin Medical Center, Austin, TX 78756 (United States); Vinken, Mathieu [Department of Toxicology, Center for Pharmaceutical Sciences, Vrije Universiteit Brussels, 1090 Brussels (Belgium); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2013-12-15

    Acetaminophen (APAP) hepatotoxicity is the leading cause of acute liver failure in the US. Although many aspects of the mechanism are known, recent publications suggest that gap junctions composed of connexin32 function as critical intercellular communication channels which transfer cytotoxic mediators into neighboring hepatocytes and aggravate liver injury. However, these studies did not consider off-target effects of reagents used in these experiments, especially the gap junction inhibitor 2-aminoethoxy-diphenyl-borate (2-APB). In order to assess the mechanisms of protection of 2-APB in vivo, male C56Bl/6 mice were treated with 400 mg/kg APAP to cause extensive liver injury. This injury was prevented when animals were co-treated with 20 mg/kg 2-APB and was attenuated when 2-APB was administered 1.5 h after APAP. However, the protection was completely lost when 2-APB was given 4–6 h after APAP. Measurement of protein adducts and c-jun-N-terminal kinase (JNK) activation indicated that 2-APB reduced both protein binding and JNK activation, which correlated with hepatoprotection. Although some of the protection was due to the solvent dimethyl sulfoxide (DMSO), in vitro experiments clearly demonstrated that 2-APB directly inhibits cytochrome P450 activities. In addition, JNK activation induced by phorone and tert-butylhydroperoxide in vivo was inhibited by 2-APB. The effects against APAP toxicity in vivo were reproduced in primary cultured hepatocytes without use of DMSO and in the absence of functional gap junctions. We conclude that the protective effect of 2-APB was caused by inhibition of metabolic activation of APAP and inhibition of the JNK signaling pathway and not by blocking connexin32-based gap junctions. - Highlights: • 2-APB protected against APAP-induced liver injury in mice in vivo and in vitro • 2-APB protected by inhibiting APAP metabolic activation and JNK signaling pathway • DMSO inhibited APAP metabolic activation as the solvent of 2-APB

  4. EGF-R is Expressed and AP-1 and NF-κ:B Are Activated in Stromal Myofibroblasts Surrounding Colon Adenocarcinomas Paralleling Expression of COX-2 and VEGF

    Science.gov (United States)

    Konstantinopoulos, Panagiotis A.; Vandoros, Gerasimos P.; Karamouzis, Michalis V.; Gkermpesi, Maria; Sotiropoulou-Bonikou, Georgia; Papavassiliou, Athanasios G.

    2007-01-01

    Background: COX-2 and VEGF are important triggers of colon cancer growth, metastasis and angiogenesis. Cox-2 promoter contains transcriptional regulatory elements for AP-1 and NF-κ:B transcription factors whilst vegf is a known AP-1 downstream target gene. We investigated whether stromal myofibroblasts surrounding colon adenocarcinomas express COX-2 and VEGF and whether activation of AP-1 and NF-κ:B, as well as expression of EGF-R parallel expression of COX-2 and VEGF in these cells. Methods: Immunohistochemical methodology was performed on archival sections from 40 patients with colon adenocarcinomas. We evaluated c-FOS, p-c-JUN (phosphorylated c-JUN), p-Iκ:B-α (phosphorylated Iκ:B-α), EGF-R, COX-2, NF-κ:B and VEGF expression in stromal myofibroblasts surrounding colon adenocarcinomas. Double immunostaining with a-smooth muscle actin and each antibody was done to verify the expression of these molecules in stromal myofibroblasts. Results: VEGF, p-Iκ:B-α, NF-κ:B, c-FOS, p-c-JUN, EGF-R and COX-2 were expressed in stromal myofibroblasts surrounding colon adenocarcinomas in the majority of cases. EGF-R, p-Iκ:B-α, NF-κ:B, c-FOS and p-c-JUN correlated positively with COX-2 and VEGF expression. Conclusion: Stromal myofibroblasts surrounding colon adenocarcinomas are an important source of VEGF and COX-2 production, while AP-1 and NF-κ:B transcription factors are activated and EGF-R is expressed in these cells and associated with COX-2 and VEGF production. PMID:18032824

  5. EGF-R is Expressed and AP-1 and NF-κ:B Are Activated in Stromal Myofibroblasts Surrounding Colon Adenocarcinomas Paralleling Expression of COX-2 and VEGF

    Directory of Open Access Journals (Sweden)

    Panagiotis A. Konstantinopoulos

    2007-01-01

    Full Text Available Background: COX-2 and VEGF are important triggers of colon cancer growth, metastasis and angiogenesis. Cox-2 promoter contains transcriptional regulatory elements for AP-1 and NF-κ:B transcription factors whilst vegf is a known AP-1 downstream target gene. We investigated whether stromal myofibroblasts surrounding colon adenocarcinomas express COX-2 and VEGF and whether activation of AP-1 and NF-κ:B, as well as expression of EGF-R parallel expression of COX-2 and VEGF in these cells. Methods: Immunohistochemical methodology was performed on archival sections from 40 patients with colon adenocarcinomas. We evaluated c-FOS, p-c-JUN (phosphorylated c-JUN, p-Iκ:B-α (phosphorylated Iκ:B-α, EGF-R, COX-2, NF-κ:B and VEGF expression in stromal myofibroblasts surrounding colon adenocarcinomas. Double immunostaining with a-smooth muscle actin and each antibody was done to verify the expression of these molecules in stromal myofibroblasts. Results: VEGF, p-Iκ:B-α, NF-κ:B, c-FOS, p-c-JUN, EGF-R and COX-2 were expressed in stromal myofibroblasts surrounding colon adenocarcinomas in the majority of cases. EGF-R, p-Iκ:B-α, NF-κ:B, c-FOS and p-c-JUN correlated positively with COX-2 and VEGF expression. Conclusion: Stromal myofibroblasts surrounding colon adenocarcinomas are an important source of VEGF and COX-2 production, while AP-1 and NF-κ:B transcription factors are activated and EGF-R is expressed in these cells and associated with COX-2 and VEGF production.

  6. Genetics of human gene expression.

    Science.gov (United States)

    Stranger, Barbara E; Raj, Towfique

    2013-12-01

    A steadily growing number of studies have identified and characterized expression quantitative trait loci (eQTLs) in human cell-lines, primary cells, and tissues. This class of variation has been shown to play a role in complex traits, including disease. Here, we discuss how eQTLs have the potential to accelerate discovery of disease genes and functional mechanisms underlying complex traits. We discuss how context-specificity of eQTLs is being characterized at an unprecedented scale and breadth, and how this both informs on the intricacy of human genome function, and has important ramifications for elucidating function of genetic variants of interest, particularly for those contributing to disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Sialic acid metabolism is involved in the regulation of gene expression during neuronal differentiation of PC12 cells.

    Science.gov (United States)

    Kontou, Maria; Bauer, Christian; Reutter, Werner; Horstkorte, Rüdiger

    2008-04-01

    Sialic acid precursors are mediators of the sialic acid pathway. In this manuscript we present evidence that the application of sialic acid a precursor modulates gene expression and cell differentiation. The concept that sugars are involved in cellular transcription was first proposed by Jacob and Monod nearly 40 years ago studying the regulation of the lac-operon in prokaryotes. Surprisingly, these findings have never been transferred to eukaryotic systems. For our studies we have chosen PC12 cells. PC12-cells differentiate after application of NGF into a neuron-like phenotype. It is shown that treatment of PC12 cells with two different sialic acid precursors N-acetyl- or N-propanoylmannosamine, without application of NGF also induces neurite outgrowth. Moreover, the PC12 cells show the same morphology as the NGF-treated cells. Surprisingly, after application of both sialic acid precursors the phosphorylation and translocation of erk1/2 into the nucleus are activated, thus influencing the expression of genes involved in the differentiation of cells, such as the transcription factor c-Jun or TOAD-64/Ulip/CRMP (Turned ON After Division, 64 kd/ unc-33-like phosphoprotein/Collapsin Response Mediator Protein). These are the first experimental data showing that the sialic acid metabolism is closely associated with signal transduction and regulation of neuronal differentiation.

  8. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy [Davis, CA; Bachkirova, Elena [Davis, CA; Rey, Michael [Davis, CA

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  9. Methods for monitoring multiple gene expression

    Science.gov (United States)

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  10. Gene expression inference with deep learning.

    Science.gov (United States)

    Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui

    2016-06-15

    Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. D-GEX is available at https://github.com/uci-cbcl/D-GEX CONTACT: xhx@ics.uci.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Gene expression of immediate early genes of AP-1 transcription factor in human peripheral blood mononuclear cells in response to ionizing radiation.

    Science.gov (United States)

    Nishad, S; Ghosh, Anu

    2016-11-01

    Ionizing radiation (IR) is considered ubiquitous in nature. The immediate early genes are considered the earliest nuclear targets of IR and are induced in the absence of de novo protein synthesis. Many of these genes encode transcription factors that constitute the first step in signal transduction to couple cytoplasmic effects with long-term cellular response. In this paper, coordinated transcript response of fos and jun family members which constitute activator protein 1 transcription factor was studied in response to IR in human peripheral blood lymphocytes at the G0 stage. Gene expression was monitored 5 min, 1 h and 4 h post-irradiation with Co(60) γ-rays (dose rate of 0.417 Gy/min) and compared with sham-irradiated controls. When gene expression was analyzed at the early time point of 5 min post-irradiation with 0.3 Gy, the studied samples showed two distinct trends. Six out of ten individuals (called 'Group I responders') showed transient, but significant up-regulation for fosB, fosL1, fosL2 and c-jun with an average fold change (FC) ≥1.5 as compared to sham-irradiated controls. The Students's t test p value for all four genes was ≤0.001, indicating strong up-regulation. The remaining four individuals (called Group II responders) showed down-regulation for these same four genes. The average FC with 0.3 Gy in Group II individuals was 0.53 ± 0.22 (p = 0.006) for fosB, 0.60 ± 0.14 (p = 0.001) for fosL1, 0.52 ± 0.16 (p = 0.001) for fosL2 and 0.59 ± 0.28 (p = 0.03) for c-jun. The two groups could be clearly distinguished at this dose/time point using principal component analysis. Both Group I and Group II responders did not show any change in expression for three genes (c-fos, junB and junD) as compared to sham-irradiated controls. Though a similar trend was seen 5 min post-irradiation with a relatively high dose of 1 Gy, the average FC was lower and change in gene expression was not statistically significant (at p regulation at

  12. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death.

    Science.gov (United States)

    Guida, Natascia; Laudati, Giusy; Anzilotti, Serenella; Secondo, Agnese; Montuori, Paolo; Di Renzo, Gianfranco; Canzoniero, Lorella M T; Formisano, Luigi

    2015-11-01

    Resveratrol (3,5,4'-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Regulation of serum response factor-dependent gene expression by proteasome inhibitors.

    Science.gov (United States)

    Sandbo, Nathan; Qin, Yimin; Taurin, Sebastien; Hogarth, D Kyle; Kreutz, Barry; Dulin, Nickolai O

    2005-03-01

    Serum response factor (SRF) is activated by contractile and hypertrophic agonists, such as endothelin-1 (ET1) to stimulate expression of cytoskeletal proteins in vascular smooth muscle cells (VSMCs). While studying the regulation of smooth muscle alpha-actin (SMA) expression at the level of protein stability, we discovered that inhibition of proteasome-dependent protein degradation by N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal (MG132) or lactacystin (LC) did not enhance the levels of SMA, but, unexpectedly, attenuated SMA expression in response to ET1, without affecting the viability of VSMCs. Down-regulation of SMA protein by MG132 or LC occurred at the level of SMA transcription and via the inhibition of SRF activity. By contrast, MG132 and LC potentiated the activity of activator protein-1 transcription factor. Regulation of SRF by MG132 was not related to inhibition of nuclear factor-kappaB, an established target of proteasome inhibitors, and was not mediated by protein kinase A, a powerful regulator of SRF activity. Signaling studies indicate that inhibition of ET1-induced SRF activity by MG132 occurs at the level downstream of heterotrimeric G proteins Gq/11 and G13, of small GTPase RhoA, and of actin dynamics but at the level of SRF-DNA binding. MG132 treatment did not result in ubiquitination or accumulation of SRF. By contrast, the levels of c-Jun were rapidly increased upon incubation of cells with MG132, and ectopic overexpression of c-Jun mimicked the effect of MG132 on SRF activity. Together, these data suggest that inhibition of proteasome results in down-regulation of SMA expression via up-regulation of c-Jun and repression of SRF activity at the level of DNA binding.

  14. Gene expression profiling during murine tooth development

    Directory of Open Access Journals (Sweden)

    Maria A dos Santos silva Landin

    2012-07-01

    Full Text Available The aim of this study was to describe the expression of genes, including ameloblastin (Ambn, amelogenin X chromosome (Amelx and enamelin (Enam during early (pre-secretory tooth development. The expression of these genes has predominantly been studied at post-secretory stages. Deoxyoligonucleotide microarrays were used to study gene expression during development of the murine first molar tooth germ at 24h intervals, starting at the eleventh embryonic day (E11.5 and up to the seventh day after birth (P7. The profile search function of Spotfire software was used to select genes with similar expression profile as the enamel genes (Ambn, Amelx and Enam. Microarray results where validated using real-time Reverse Transcription-Polymerase Chain Reaction (real-time RT-PCR, and translated proteins identified by Western blotting. In situ localisation of the Ambn, Amelx and Enam mRNAs were monitored from E12.5 to E17.5 using deoxyoligonucleotide probes. Bioinformatics analysis was used to associate biological functions with differentially (p ≤0.05 expressed (DE genes.Microarray results showed a total of 4362 genes including Ambn, Amelx and Enam to be significant differentially expressed throughout the time-course. The expression of the three enamel genes was low at pre-natal stages (E11.5-P0 increasing after birth (P1-P7. Profile search lead to isolation of 87 genes with significantly similar expression to the three enamel proteins. The mRNAs expressed in dental epithelium and epithelium derived cells. Although expression of Ambn, Amelx and Enam were lower during early tooth development compared to secretory stages enamel proteins were detectable by Western blotting. Bioinformatic analysis associated the 87 genes with multiple biological functions. Around thirty-five genes were associated with fifteen transcription factors.

  15. Chromatin loops, gene positioning, and gene expression

    NARCIS (Netherlands)

    Holwerda, S.; de Laat, W.

    2012-01-01

    Technological developments and intense research over the last years have led to a better understanding of the 3D structure of the genome and its influence on genome function inside the cell nucleus. We will summarize topological studies performed on four model gene loci: the alpha- and beta-globin

  16. Gene Expression and Microarray Investigation of Dendrobium ...

    African Journals Online (AJOL)

    Conclusion: Progressive therapy with Dendrobium mixture, which has glucose- and lipid-lowering effects, is associated with multi-gene expression pathways. By treating diabetic r and wild-type rats with the mixture, the disorder is further understood at the transcriptomic level. Keywords: Diabetes, Gene expression, ...

  17. Serial analysis of gene expression (SAGE)

    NARCIS (Netherlands)

    van Ruissen, Fred; Baas, Frank

    2007-01-01

    In 1995, serial analysis of gene expression (SAGE) was developed as a versatile tool for gene expression studies. SAGE technology does not require pre-existing knowledge of the genome that is being examined and therefore SAGE can be applied to many different model systems. In this chapter, the SAGE

  18. Modulation of c-Jun NH2-Terminal (JNK) by Cholinergic Autoantibodies from Patients with Sjögren’s Syndrome

    OpenAIRE

    Borda, Enri Santiago; Passafaro, Daniela; Reina, Silvia; Sterin Borda, Leonor

    2017-01-01

    Background: We wanted to determine (via an immunopharmacological approach) whether the c-Jun NH2 terminal kinase (JNK) cascade is phosphorylated in the submandibular gland by carbachol and cholinergic autoantibodies (IgG) present in the sera of patients with primary Sjögren’s syndrome (pSS) by interaction and activation of salivary gland muscarinic acetylcholine receptors (mAChRs). Methods: The JNK, PGE2 and NOS assays were measured in rat sub- mandibular gland with pSS IgG and carbachol alon...

  19. c-myc, c-fos, and c-jun regulation in the regenerating livers of normal and H-2K/c-myc transgenic mice.

    OpenAIRE

    Morello, D; Fitzgerald, M J; Babinet, C; Fausto, N

    1990-01-01

    We investigated the mechanisms of regulation of c-myc, c-fos, and c-jun at the early stages of liver regeneration in mice. We show that the transient increase in steady-state levels of c-myc mRNA at the start of liver regeneration is most probably regulated by posttranscriptional mechanisms. Although there was a marked increase in c-myc transcriptional initiation shortly after partial hepatectomy, a block in elongation prevented the completion of most transcripts. To gain further information ...

  20. Calcium has a permissive role in interleukin-1beta-induced c-jun N-terminal kinase activation in insulin-secreting cells

    DEFF Research Database (Denmark)

    Størling, Joachim; Zaitsev, Sergei V; Kapelioukh, Iouri L

    2005-01-01

    The c-jun N-terminal kinase (JNK) signaling pathway mediates IL-1beta-induced apoptosis in insulin-secreting cells, a mechanism relevant to the destruction of pancreatic beta-cells in type 1 and 2 diabetes. However, the mechanisms that contribute to IL-1beta activation of JNK in beta-cells are la......+) ionophore A23187, or exposure to thapsigargin, an inhibitor of sarco(endo)plasmic reticulum Ca(2+) ATPase, all caused an amplification of IL-1beta-induced JNK activation in INS-1 cells. Finally, a chelator of intracellular free Ca(2+) [bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid...

  1. Phenotypic and gene expression diversity of malignant cells in human blast crisis chronic myeloid leukemia.

    Science.gov (United States)

    Simanovsky, Masha; Berlinsky, Sagi; Sinai, Pirchia; Leiba, Merav; Nagler, Arnon; Galski, Hanan

    2008-10-01

    Chronic myeloid leukemia (CML) is considered as a paradigm of neoplasias developing through multistep track. It is believed that in the blast crisis (BC) terminal phase of the disease, blood-circulating blasts represent an expansion of a single CML clone. However, although these blasts grow mostly in suspension under standard culture conditions, a relatively small cell-fraction adheres to the plastic dish. Yet, it is unknown whether these two cell-fractions are distinct sub-populations that originated from a common CML clone and whether they have different biological and malignant properties. To address these questions, we have characterized the plastic-adherent and non-adherent sub-populations of various cell lines and primary cells derived from patients with CML in BC. This study indicated that the adherent-subsets retain repopulating ability with indications of increased malignant properties as greater anchorage-independent clonogenicity, impairment of cell-cell contact inhibition, loss of serum-dependent attenuation of plastic-adhesion, and a significant up-regulation of the oncogenes BCR-ABL, c-JUN, and c-FOS along with the adhesion-related genes KiSS-1, THBS3, and ITGB5. The adherent blasts stably retain their unique properties even after elimination of the adherence selection pressure. Sub-cloning analyses indicated that the adherent cells could be continuously evolved from any parental non-adherent clone in a unidirectional manner. This study provides new insights into the biology and the malignant evolution of CML, indicating that at the BC phase, circulating blasts are heterogeneous and consisting of at least two distinct populations of a common clonal origin. The existence of a minor "pool" of blasts of greater clonogenic capacity along with significantly higher expression level of BCR-ABL, individually or in conjunction with other cancer and adhesion-related genes, might also signify clonal evolution toward subsequent increased malignancy and lower

  2. Expression of Sox genes in tooth development

    Science.gov (United States)

    KAWASAKI, KATSUSHIGE; KAWASAKI, MAIKO; WATANABE, MOMOKO; IDRUS, ERIK; NAGAI, TAKAHIRO; OOMMEN, SHELLY; MAEDA, TAKEYASU; HAGIWARA, NOBUKO; QUE, JIANWEN; SHARPE, PAUL T.; OHAZAMA, ATSUSHI

    2017-01-01

    Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development. PMID:26864488

  3. Expression of Sox genes in tooth development.

    Science.gov (United States)

    Kawasaki, Katsushige; Kawasaki, Maiko; Watanabe, Momoko; Idrus, Erik; Nagai, Takahiro; Oommen, Shelly; Maeda, Takeyasu; Hagiwara, Nobuko; Que, Jianwen; Sharpe, Paul T; Ohazama, Atsushi

    2015-01-01

    Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development.

  4. Gearbox gene expression and growth rate.

    Science.gov (United States)

    Aldea, M; Garrido, T; Tormo, A

    1993-07-01

    Regulation of gene expression in prokaryotic cells usually takes place at the level of transcription initiation. Different forms of RNA polymerase recognizing specific promoters are engaged in the control of many prokaryotic regulons. This also seems to be the case for some Escherichia coli genes that are induced at low growth rates and by nutrient starvation. Their gene products are synthesized at levels inversely proportional to growth rate, and this mode of regulation has been termed gearbox gene expression. This kind of growth-rate modulation is exerted by specific transcriptional initiation signals, the gearbox promoters, and some of them depend on a putative new σ factor (RpoS). Gearbox promoters drive expression of morphogenetic and cell division genes at constant levels per cell and cycle to meet the demands of cell division and septum formation. A mechanism is proposed that could sense the growth rate of the cell to alter gene expression by the action of specific σ factors.

  5. Gene set analysis for longitudinal gene expression data

    Directory of Open Access Journals (Sweden)

    Piepho Hans-Peter

    2011-07-01

    Full Text Available Abstract Background Gene set analysis (GSA has become a successful tool to interpret gene expression profiles in terms of biological functions, molecular pathways, or genomic locations. GSA performs statistical tests for independent microarray samples at the level of gene sets rather than individual genes. Nowadays, an increasing number of microarray studies are conducted to explore the dynamic changes of gene expression in a variety of species and biological scenarios. In these longitudinal studies, gene expression is repeatedly measured over time such that a GSA needs to take into account the within-gene correlations in addition to possible between-gene correlations. Results We provide a robust nonparametric approach to compare the expressions of longitudinally measured sets of genes under multiple treatments or experimental conditions. The limiting distributions of our statistics are derived when the number of genes goes to infinity while the number of replications can be small. When the number of genes in a gene set is small, we recommend permutation tests based on our nonparametric test statistics to achieve reliable type I error and better power while incorporating unknown correlations between and within-genes. Simulation results demonstrate that the proposed method has a greater power than other methods for various data distributions and heteroscedastic correlation structures. This method was used for an IL-2 stimulation study and significantly altered gene sets were identified. Conclusions The simulation study and the real data application showed that the proposed gene set analysis provides a promising tool for longitudinal microarray analysis. R scripts for simulating longitudinal data and calculating the nonparametric statistics are posted on the North Dakota INBRE website http://ndinbre.org/programs/bioinformatics.php. Raw microarray data is available in Gene Expression Omnibus (National Center for Biotechnology Information with

  6. Gene expression trees in lymphoid development

    Directory of Open Access Journals (Sweden)

    Schliep Alexander

    2007-10-01

    Full Text Available Abstract Background The regulatory processes that govern cell proliferation and differentiation are central to developmental biology. Particularly well studied in this respect is the lymphoid system due to its importance for basic biology and for clinical applications. Gene expression measured in lymphoid cells in several distinguishable developmental stages helps in the elucidation of underlying molecular processes, which change gradually over time and lock cells in either the B cell, T cell or Natural Killer cell lineages. Large-scale analysis of these gene expression trees requires computational support for tasks ranging from visualization, querying, and finding clusters of similar genes, to answering detailed questions about the functional roles of individual genes. Results We present the first statistical framework designed to analyze gene expression data as it is collected in the course of lymphoid development through clusters of co-expressed genes and additional heterogeneous data. We introduce dependence trees for continuous variates, which model the inherent dependencies during the differentiation process naturally as gene expression trees. Several trees are combined in a mixture model to allow inference of potentially overlapping clusters of co-expressed genes. Additionally, we predict microRNA targets. Conclusion Computational results for several data sets from the lymphoid system demonstrate the relevance of our framework. We recover well-known biological facts and identify promising novel regulatory elements of genes and their functional assignments. The implementation of our method (licensed under the GPL is available at http://algorithmics.molgen.mpg.de/Supplements/ExpLym/.

  7. Methodological limitations in determining astrocytic gene expression.

    Science.gov (United States)

    Peng, Liang; Guo, Chuang; Wang, Tao; Li, Baoman; Gu, Li; Wang, Zhanyou

    2013-11-25

    Traditionally, astrocytic mRNA and protein expression are studied by in situ hybridization (ISH) and immunohistochemically. This led to the concept that astrocytes lack aralar, a component of the malate-aspartate-shuttle. At least similar aralar mRNA and protein expression in astrocytes and neurons isolated by fluorescence-assisted cell sorting (FACS) reversed this opinion. Demonstration of expression of other astrocytic genes may also be erroneous. Literature data based on morphological methods were therefore compared with mRNA expression in cells obtained by recently developed methods for determination of cell-specific gene expression. All Na,K-ATPase-α subunits were demonstrated by immunohistochemistry (IHC), but there are problems with the cotransporter NKCC1. Glutamate and GABA transporter gene expression was well determined immunohistochemically. The same applies to expression of many genes of glucose metabolism, whereas a single study based on findings in bacterial artificial chromosome (BAC) transgenic animals showed very low astrocytic expression of hexokinase. Gene expression of the equilibrative nucleoside transporters ENT1 and ENT2 was recognized by ISH, but ENT3 was not. The same applies to the concentrative transporters CNT2 and CNT3. All were clearly expressed in FACS-isolated cells, followed by biochemical analysis. ENT3 was enriched in astrocytes. Expression of many nucleoside transporter genes were shown by microarray analysis, whereas other important genes were not. Results in cultured astrocytes resembled those obtained by FACS. These findings call for reappraisal of cellular nucleoside transporter expression. FACS cell yield is small. Further development of cell separation methods to render methods more easily available and less animal and cost consuming and parallel studies of astrocytic mRNA and protein expression by ISH/IHC and other methods are necessary, but new methods also need to be thoroughly checked.

  8. Src Inhibition Can Synergize with Gemcitabine and Reverse Resistance in Triple Negative Breast Cancer Cells via the AKT/c-Jun Pathway.

    Directory of Open Access Journals (Sweden)

    Zhen-Hua Wu

    Full Text Available Gemcitabine-based chemotherapy remains one of the standards in management of metastatic breast cancer. However, intrinsic and acquired resistance to gemcitabine inevitably occurs. The aims of this study were to assess the efficacy of the combination of src inhibition and gemcitabine in gemcitabine-resistant breast cancer cells.By using colony formation, sphere forming, flow cytometry, cell counting kit-8 and transwell assays, 231/GEM-res (gemcitabine-resistant cell line, which was 10 times more resistant, was shown to have elevated drug tolerance, enhanced proliferative and self-renewal abilities, compared with its parental cells. Inhibition of src by both saracatinib (AZD0530 and siRNA could partially reverse gemcitabine resistance and attenuate resistance-associated anti-apoptosis, migration and stem cell capacities. In addition, the combination of src inhibition and gemcitabine had synergistic antitumor effects. Western blot analysis revealed up-regulation of pro-apoptotic protein BAX, along with the down-regulation of anti-apoptotic proteins (BCL-XL, Survivin, migration associated proteins (p-FAK, MMP-3 and cancer stem cell (CSC markers (CD44, Oct-4, which was probably mediated by AKT/c-Jun pathway.In highly gemcitabine-resistant 231 cells, src inhibition can synergize with gemcitabine, reverse drug resistance, inhibit tumor growth/metastasis/stemness of cancer stem cells, possibly via the AKT/c-Jun pathway.

  9. Epigenetic regulation of monoallelic gene expression.

    Science.gov (United States)

    Shiba, Hiroshi; Takayama, Seiji

    2012-01-01

    Monoallelic expression from biallelic genes is frequently observed in diploid eukaryotic organisms. Classic examples of this phenomenon include the well-characterized cases of genomic imprinting and X-chromosome inactivation. However, recent studies have shown that monoallelic expression is widespread in autosomal genes. This discovery was met with great interest because it represents another mechanism to generate diversity in gene expression that can affect cell fate and physiology. To date, the molecular mechanisms underlying this phenomenon are largely unknown. In our original study describing the dominant ⁄ recessive relationships of pollen- determinant alleles in Brassica self-incompatibility, we found that the recessive allele was specifically methylated and silenced through the action of small RNA derived from the dominant allele. In this review, we focus on recent studies of monoallelic expression in autosomal genes, and discuss the possible mechanisms driving this form of monoallelic gene suppression.

  10. A comparative gene expression database for invertebrates

    Directory of Open Access Journals (Sweden)

    Ormestad Mattias

    2011-08-01

    Full Text Available Abstract Background As whole genome and transcriptome sequencing gets cheaper and faster, a great number of 'exotic' animal models are emerging, rapidly adding valuable data to the ever-expanding Evo-Devo field. All these new organisms serve as a fantastic resource for the research community, but the sheer amount of data, some published, some not, makes detailed comparison of gene expression patterns very difficult to summarize - a problem sometimes even noticeable within a single lab. The need to merge existing data with new information in an organized manner that is publicly available to the research community is now more necessary than ever. Description In order to offer a homogenous way of storing and handling gene expression patterns from a variety of organisms, we have developed the first web-based comparative gene expression database for invertebrates that allows species-specific as well as cross-species gene expression comparisons. The database can be queried by gene name, developmental stage and/or expression domains. Conclusions This database provides a unique tool for the Evo-Devo research community that allows the retrieval, analysis and comparison of gene expression patterns within or among species. In addition, this database enables a quick identification of putative syn-expression groups that can be used to initiate, among other things, gene regulatory network (GRN projects.

  11. Differential gene expression during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Krieger

    1999-09-01

    Full Text Available The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE. The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells, while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

  12. Digital gene expression signatures for maize development.

    Science.gov (United States)

    Eveland, Andrea L; Satoh-Nagasawa, Namiko; Goldshmidt, Alexander; Meyer, Sandra; Beatty, Mary; Sakai, Hajime; Ware, Doreen; Jackson, David

    2010-11-01

    Genome-wide expression signatures detect specific perturbations in developmental programs and contribute to functional resolution of key regulatory networks. In maize (Zea mays) inflorescences, mutations in the RAMOSA (RA) genes affect the determinacy of axillary meristems and thus alter branching patterns, an important agronomic trait. In this work, we developed and tested a framework for analysis of tag-based, digital gene expression profiles using Illumina's high-throughput sequencing technology and the newly assembled B73 maize reference genome. We also used a mutation in the RA3 gene to identify putative expression signatures specific to stem cell fate in axillary meristem determinacy. The RA3 gene encodes a trehalose-6-phosphate phosphatase and may act at the interface between developmental and metabolic processes. Deep sequencing of digital gene expression libraries, representing three biological replicate ear samples from wild-type and ra3 plants, generated 27 million 20- to 21-nucleotide reads with frequencies spanning 4 orders of magnitude. Unique sequence tags were anchored to 3'-ends of individual transcripts by DpnII and NlaIII digests, which were multiplexed during sequencing. We mapped 86% of nonredundant signature tags to the maize genome, which associated with 37,117 gene models and unannotated regions of expression. In total, 66% of genes were detected by at least nine reads in immature maize ears. We used comparative genomics to leverage existing information from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) in functional analyses of differentially expressed maize genes. Results from this study provide a basis for the analysis of short-read expression data in maize and resolved specific expression signatures that will help define mechanisms of action for the RA3 gene.

  13. Population genomics of human gene expression

    Science.gov (United States)

    Stranger, Barbara E.; Nica, Alexandra C.; Forrest, Matthew S.; Dimas, Antigone; Bird, Christine P.; Beazley, Claude; Ingle, Catherine E.; Dunning, Mark; Flicek, Paul; Koller, Daphne; Montgomery, Stephen; Tavaré, Simon; Deloukas, Panagiotis; Dermitzakis, Emmanouil T.

    2009-01-01

    Genetic variation influences gene expression, and this can be efficiently mapped to specific genomic regions and variants. We used gene expression profiling of EBV-transformed lymphoblastoid cell lines of all 270 individuals of the HapMap consortium to elucidate the detailed features of genetic variation underlying gene expression variation. We find gene expression levels to be heritable and differentiation between populations in agreement with earlier small-scale studies. A detailed association analysis of over 2.2 million common SNPs per population (5% frequency HapMap) with gene expression identified at least 1348 genes with association signals in cis and at least 180 in trans. Replication in at least one independent population was achieved for 37% of cis- signals and 15% of trans- signals, respectively. Our results strongly support an abundance of cis- regulatory variation in the human genome. Detection of trans- effects is limited but suggests that regulatory variation may be the key primary effect contributing to phenotypic variation in humans. Finally, we explore a variety of methodologies that improve the current state of analysis of gene expression variation. PMID:17873874

  14. Gene expression in periodontal tissues following treatment

    Directory of Open Access Journals (Sweden)

    Eisenacher Martin

    2008-07-01

    Full Text Available Abstract Background In periodontitis, treatment aimed at controlling the periodontal biofilm infection results in a resolution of the clinical and histological signs of inflammation. Although the cell types found in periodontal tissues following treatment have been well described, information on gene expression is limited to few candidate genes. Therefore, the aim of the study was to determine the expression profiles of immune and inflammatory genes in periodontal tissues from sites with severe chronic periodontitis following periodontal therapy in order to identify genes involved in tissue homeostasis. Gingival biopsies from 12 patients with severe chronic periodontitis were taken six to eight weeks following non-surgical periodontal therapy, and from 11 healthy controls. As internal standard, RNA of an immortalized human keratinocyte line (HaCaT was used. Total RNA was subjected to gene expression profiling using a commercially available microarray system focusing on inflammation-related genes. Post-hoc confirmation of selected genes was done by Realtime-PCR. Results Out of the 136 genes analyzed, the 5% most strongly expressed genes compared to healthy controls were Interleukin-12A (IL-12A, Versican (CSPG-2, Matrixmetalloproteinase-1 (MMP-1, Down syndrome critical region protein-1 (DSCR-1, Macrophage inflammatory protein-2β (Cxcl-3, Inhibitor of apoptosis protein-1 (BIRC-1, Cluster of differentiation antigen 38 (CD38, Regulator of G-protein signalling-1 (RGS-1, and Finkel-Biskis-Jinkins murine osteosarcoma virus oncogene (C-FOS; the 5% least strongly expressed genes were Receptor-interacting Serine/Threonine Kinase-2 (RIP-2, Complement component 3 (C3, Prostaglandin-endoperoxide synthase-2 (COX-2, Interleukin-8 (IL-8, Endothelin-1 (EDN-1, Plasminogen activator inhibitor type-2 (PAI-2, Matrix-metalloproteinase-14 (MMP-14, and Interferon regulating factor-7 (IRF-7. Conclusion Gene expression profiles found in periodontal tissues following

  15. Comparison of gene expression of mitogenic kinin path in adherent and non-adherent CD 34-stem cells using oligonucleotide microarrays.

    Directory of Open Access Journals (Sweden)

    Krzysztof Machaj

    2008-02-01

    Full Text Available One of the more interesting cells present in the umbilical cord blood - as far as their potential clinical use is concerned - are stem cells not presenting the CD34 antigen. These are the pluripotential cells with their biological properties similar to mesenchymal stem cells, with the ability to differentiate into such tissue types as bone, cartilage, nervous (to some extent, glia and muscle. The authors compared the activity of genes coding the proteins in mitogenic signal paths activated by kinin receptors using oligonucleotide microarrays in adherent and non-adherent CD 34- cells derived from umbilical cord blood. In the linear regression model with a 95% prognosis area for differentiating genes outside this area, the following genes were selected: c-jun (present in 3 isoforms and c-fos. The fos and jun genes create the AP-1 transcriptive factor which regulates the expression of genes taking part in numerous cellular processes, including the cell cycle and mitosis. The obtained results shed some light on the molecular processes behind the MSC proliferation and are a starting point for further studies on the mesenchymal stem cell biology.

  16. Dynamic modeling of gene expression data

    Science.gov (United States)

    Holter, N. S.; Maritan, A.; Cieplak, M.; Fedoroff, N. V.; Banavar, J. R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small.

  17. Nucleosomal promoter variation generates gene expression noise.

    Science.gov (United States)

    Brown, Christopher R; Boeger, Hinrich

    2014-12-16

    Gene product molecule numbers fluctuate over time and between cells, confounding deterministic expectations. The molecular origins of this noise of gene expression remain unknown. Recent EM analysis of single PHO5 gene molecules of yeast indicated that promoter molecules stochastically assume alternative nucleosome configurations at steady state, including the fully nucleosomal and nucleosome-free configuration. Given that distinct configurations are unequally conducive to transcription, the nucleosomal variation of promoter molecules may constitute a source of gene expression noise. This notion, however, implies an untested conjecture, namely that the nucleosomal variation arises de novo or intrinsically (i.e., that it cannot be explained as the result of the promoter's deterministic response to variation in its molecular surroundings). Here, we show--by microscopically analyzing the nucleosome configurations of two juxtaposed physically linked PHO5 promoter copies--that the configurational variation, indeed, is intrinsically stochastic and thus, a cause of gene expression noise rather than its effect.

  18. Gene expression profiling in autoimmune diseases

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Brynskov, Jørn; Hegedüs, Laszlo

    2007-01-01

    A central issue in autoimmune disease is whether the underlying inflammation is a repeated stereotypical process or whether disease specific gene expression is involved. To shed light on this, we analysed whether genes previously found to be differentially regulated in rheumatoid arthritis (RA......) patients and healthy individuals were specific for the arthritic process or likewise altered in other chronic inflammatory diseases such as chronic autoimmune thyroiditis (Hashimoto's thyroiditis, HT) and inflammatory bowel disease (IBD). Using qPCR for 18 RA-discriminative genes, there were no significant...... differences in peripheral blood mononuclear cell (MNC) gene expression patterns between 15 newly diagnosed HT patients and 15 matched healthy controls. However, the MNC expression levels of five genes were significantly upregulated in 25 IBD patients, compared to 18 matched healthy controls (CD14, FACL2, FCN1...

  19. From gene expression to gene regulatory networks in Arabidopsis thaliana.

    Science.gov (United States)

    Needham, Chris J; Manfield, Iain W; Bulpitt, Andrew J; Gilmartin, Philip M; Westhead, David R

    2009-09-03

    The elucidation of networks from a compendium of gene expression data is one of the goals of systems biology and can be a valuable source of new hypotheses for experimental researchers. For Arabidopsis, there exist several thousand microarrays which form a valuable resource from which to learn. A novel Bayesian network-based algorithm to infer gene regulatory networks from gene expression data is introduced and applied to learn parts of the transcriptomic network in Arabidopsis thaliana from a large number (thousands) of separate microarray experiments. Starting from an initial set of genes of interest, a network is grown by iterative addition to the model of the gene, from another defined set of genes, which gives the 'best' learned network structure. The gene set for iterative growth can be as large as the entire genome. A number of networks are inferred and analysed; these show (i) an agreement with the current literature on the circadian clock network, (ii) the ability to model other networks, and (iii) that the learned network hypotheses can suggest new roles for poorly characterized genes, through addition of relevant genes from an unconstrained list of over 15,000 possible genes. To demonstrate the latter point, the method is used to suggest that particular GATA transcription factors are regulators of photosynthetic genes. Additionally, the performance in recovering a known network from different amounts of synthetically generated data is evaluated. Our results show that plausible regulatory networks can be learned from such gene expression data alone. This work demonstrates that network hypotheses can be generated from existing gene expression data for use by experimental biologists.

  20. Mining gene expression data of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Pi Guo

    Full Text Available Microarray produces a large amount of gene expression data, containing various biological implications. The challenge is to detect a panel of discriminative genes associated with disease. This study proposed a robust classification model for gene selection using gene expression data, and performed an analysis to identify disease-related genes using multiple sclerosis as an example.Gene expression profiles based on the transcriptome of peripheral blood mononuclear cells from a total of 44 samples from 26 multiple sclerosis patients and 18 individuals with other neurological diseases (control were analyzed. Feature selection algorithms including Support Vector Machine based on Recursive Feature Elimination, Receiver Operating Characteristic Curve, and Boruta algorithms were jointly performed to select candidate genes associating with multiple sclerosis. Multiple classification models categorized samples into two different groups based on the identified genes. Models' performance was evaluated using cross-validation methods, and an optimal classifier for gene selection was determined.An overlapping feature set was identified consisting of 8 genes that were differentially expressed between the two phenotype groups. The genes were significantly associated with the pathways of apoptosis and cytokine-cytokine receptor interaction. TNFSF10 was significantly associated with multiple sclerosis. A Support Vector Machine model was established based on the featured genes and gave a practical accuracy of ∼86%. This binary classification model also outperformed the other models in terms of Sensitivity, Specificity and F1 score.The combined analytical framework integrating feature ranking algorithms and Support Vector Machine model could be used for selecting genes for other diseases.

  1. Comparative gene expression between two yeast species

    Directory of Open Access Journals (Sweden)

    Guan Yuanfang

    2013-01-01

    Full Text Available Abstract Background Comparative genomics brings insight into sequence evolution, but even more may be learned by coupling sequence analyses with experimental tests of gene function and regulation. However, the reliability of such comparisons is often limited by biased sampling of expression conditions and incomplete knowledge of gene functions across species. To address these challenges, we previously systematically generated expression profiles in Saccharomyces bayanus to maximize functional coverage as compared to an existing Saccharomyces cerevisiae data repository. Results In this paper, we take advantage of these two data repositories to compare patterns of ortholog expression in a wide variety of conditions. First, we developed a scalable metric for expression divergence that enabled us to detect a significant correlation between sequence and expression conservation on the global level, which previous smaller-scale expression studies failed to detect. Despite this global conservation trend, between-species gene expression neighborhoods were less well-conserved than within-species comparisons across different environmental perturbations, and approximately 4% of orthologs exhibited a significant change in co-expression partners. Furthermore, our analysis of matched perturbations collected in both species (such as diauxic shift and cell cycle synchrony demonstrated that approximately a quarter of orthologs exhibit condition-specific expression pattern differences. Conclusions Taken together, these analyses provide a global view of gene expression patterns between two species, both in terms of the conditions and timing of a gene's expression as well as co-expression partners. Our results provide testable hypotheses that will direct future experiments to determine how these changes may be specified in the genome.

  2. PRAME gene expression profile in medulloblastoma

    Directory of Open Access Journals (Sweden)

    Tânia Maria Vulcani-Freitas

    2011-02-01

    Full Text Available Medulloblastoma is the most common malignant tumors of central nervous system in the childhood. The treatment is severe, harmful and, thus, has a dismal prognosis. As PRAME is present in various cancers, including meduloblastoma, and has limited expression in normal tissues, this antigen can be an ideal vaccine target for tumor immunotherapy. In order to find a potential molecular target, we investigated PRAME expression in medulloblastoma fragments and we compare the results with the clinical features of each patient. Analysis of gene expression was performed by real-time quantitative PCR from 37 tumor samples. The Mann-Whitney test was used to analysis the relationship between gene expression and clinical characteristics. Kaplan-Meier curves were used to evaluate survival. PRAME was overexpressed in 84% samples. But no statistical association was found between clinical features and PRAME overexpression. Despite that PRAME gene could be a strong candidate for immunotherapy since it is highly expressed in medulloblastomas.

  3. Inferring gene networks from discrete expression data

    KAUST Repository

    Zhang, L.

    2013-07-18

    The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.

  4. Perspectives: Gene Expression in Fisheries Management

    Science.gov (United States)

    Nielsen, Jennifer L.; Pavey, Scott A.

    2010-01-01

    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  5. Expression of Deinococcus geothermalis trehalose synthase gene ...

    African Journals Online (AJOL)

    A novel trehalose synthase gene from Deinococcus geothermalis (DSMZ 11300) containing 1692 bp reading-frame encoding 564 amino acids was amplified using polymerase chain reaction (PCR). The gene was ligated into pET30Ek/LIC vector and expressed after isopropyl β-D-thiogalactopyranoside induction in ...

  6. Identification of genes showing differential expression profile ...

    Indian Academy of Sciences (India)

    firmed difference in expression profiles of the identified genes in musculus longissimus muscle tissues between the two Lan- ..... Discussion. The EEF1A2, TSG101 and TTN identified as upregulated genes in high-growth group have been reported to be involved in myotube survival and .... cDNA probes and libraries. Proc.

  7. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis

    Science.gov (United States)

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  8. The effects of urotensin II on migration and invasion are mediated by NADPH oxidase-derived reactive oxygen species through the c-Jun N-terminal kinase pathway in human hepatoma cells.

    Science.gov (United States)

    Li, Ying-Ying; Shi, Zheng-Ming; Yu, Xiao-Tong; Feng, Ping; Wang, Xue-Jiang

    2017-02-01

    Urotensin II (UII) is a vasoactive neuropeptide involved in migration and invasion in various cell types. However, the effects of UII on human hepatoma cells still remain unclear. The aim of this study was to investigate the role and mechanism of UII on migration and invasion in human hepatoma cells. Migration was measured by wound healing assays and a Transwell(®) methodology, and invasion was analyzed using Matrigel(®) invasion chambers. Reactive oxygen species (ROS) levels were detected using a 2', 7'-dichlorofluorescein diacetate probe, and flow cytometry, and protein expression levels were evaluated by western blotting. Cell proliferation and actin polymerization were examined using cell proliferation reagent WST-1 and F-actin immunohistochemistry staining. Exposure to UII promoted migration and invasion in hepatoma cells compared with that in cells without UII. UII also increased matrix metalloproteinase-2 (MMP2) expression in a time-independent manner. Furthermore, UII markedly enhanced ROS generation and NADPH oxidase subunit expression, and consequently facilitated the phosphorylation of c-Jun N-terminal kinase (JNK). The UT antagonist urantide or the antioxidant/NADPH oxidase inhibitor apocynin decreased UII-induced ROS production. JNK phosphorylation, migration, invasion, and MMP9/2 expression were also reversed by pretreatment with apocynin. Urantide and JNK inhibitor SP600125 abrogated migration, invasion, or MMP9/2 expression in response to UII. UII induced actin polymerization and fascin protein expression, and could be reversed by apocynin and SP600125. Exogenous UII induced migration and invasion in hepatoma cells that mainly involved NADPH oxidase-derived ROS through JNK activation. UT played an additional role in regulating hepatoma cells migration and invasion. Thus, our data suggested an important effect of UII in hepatocellular carcinoma metastasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Application of multidisciplinary analysis to gene expression.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuefel (University of New Mexico, Albuquerque, NM); Kang, Huining (University of New Mexico, Albuquerque, NM); Fields, Chris (New Mexico State University, Las Cruces, NM); Cowie, Jim R. (New Mexico State University, Las Cruces, NM); Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy (New Mexico State University, Las Cruces, NM); Mosquera-Caro, Monica P. (University of New Mexico, Albuquerque, NM); Xu, Yuexian (University of New Mexico, Albuquerque, NM); Martin, Shawn Bryan; Helman, Paul (University of New Mexico, Albuquerque, NM); Andries, Erik (University of New Mexico, Albuquerque, NM); Ar, Kerem (University of New Mexico, Albuquerque, NM); Potter, Jeffrey (University of New Mexico, Albuquerque, NM); Willman, Cheryl L. (University of New Mexico, Albuquerque, NM); Murphy, Maurice H. (University of New Mexico, Albuquerque, NM)

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  10. Aberrant Gene Expression in Acute Myeloid Leukaemia

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen

    Acute Myeloid Leukaemia (AML) is an aggressive cancer of the bone marrow, affecting formation of blood cells during haematopoiesis. This thesis presents investigation of AML using mRNA gene expression profiles (GEP) of samples extracted from the bone marrow of healthy and diseased subjects. Here...... signatures and for reducing dimensionally of gene expression data. Next, we have used machine-learning methods to predict survival and to assess important predictors based on these results. General application of a number of these methods has been implemented into two public query-based gene...

  11. Aberrant Gene Expression in Acute Myeloid Leukaemia

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen

    Summary Acute Myeloid Leukaemia (AML) is an aggressive cancer of the bone marrow, affecting formation of blood cells during haematopoiesis. This thesis presents investigation of AML using mRNA gene expression profiles (GEP) of samples extracted from the bone marrow of healthy and diseased subjects...... genes and genetic signatures and for reducing dimensionally of gene expression data. Next, we have used machine-learning methods to predict survival and to assess important predictors based on these results. General application of a number of these methods has been implemented into two public query...

  12. The c-Jun N-terminal kinase (JNK)-binding protein (JNKBP1) acts as a negative regulator of NOD2 protein signaling by inhibiting its oligomerization process.

    Science.gov (United States)

    Lecat, Aurore; Di Valentin, Emmanuel; Somja, Joan; Jourdan, Samuel; Fillet, Marianne; Kufer, Thomas A; Habraken, Yvette; Sadzot, Catherine; Louis, Edouard; Delvenne, Philippe; Piette, Jacques; Legrand-Poels, Sylvie

    2012-08-24

    NOD2 is one of the best characterized members of the cytosolic NOD-like receptor family. NOD2 is able to sense muramyl dipeptide, a specific bacterial cell wall component, and to subsequently induce various signaling pathways leading to NF-κB activation and autophagy, both events contributing to an efficient innate and adaptive immune response. Interestingly, loss-of-function NOD2 variants were associated with a higher susceptibility for Crohn disease, which highlights the physiological importance of proper regulation of NOD2 activity. We performed a biochemical screen to search for new NOD2 regulators. We identified a new NOD2 partner, c-Jun N-terminal kinase-binding protein 1 (JNKBP1), a scaffold protein characterized by an N-terminal WD-40 domain. JNKBP1, through its WD-40 domain, binds to NOD2 following muramyl dipeptide activation. This interaction attenuates NOD2-mediated NF-κB activation and IL-8 secretion as well as NOD2 antibacterial activity. JNKBP1 exerts its repressor effect by disturbing NOD2 oligomerization and RIP2 tyrosine phosphorylation, both steps required for downstream NOD2 signaling. We furthermore showed that JNKBP1 and NOD2 are co-expressed in the human intestinal epithelium and in immune cells recruited in the lamina propria, which suggests that JNKBP1 contributes to maintain NOD2-mediated intestinal immune homeostasis.

  13. Antiepileptic Effect of Uncaria rhynchophylla and Rhynchophylline Involved in the Initiation of c-Jun N-Terminal Kinase Phosphorylation of MAPK Signal Pathways in Acute Seizures of Kainic Acid-Treated Rats

    Directory of Open Access Journals (Sweden)

    Hsin-Cheng Hsu

    2013-01-01

    Full Text Available Seizures cause inflammation of the central nervous system. The extent of the inflammation is related to the severity and recurrence of the seizures. Cell surface receptors are stimulated by stimulators such as kainic acid (KA, which causes intracellular mitogen-activated protein kinase (MAPK signal pathway transmission to coordinate a response. It is known that Uncaria rhynchophylla (UR and rhynchophylline (RP have anticonvulsive effects, although the mechanisms remain unclear. Therefore, the purpose of this study is to develop a novel strategy for treating epilepsy by investigating how UR and RP initiate their anticonvulsive mechanisms. Sprague-Dawley rats were administered KA (12 mg/kg, i.p. to induce seizure before being sacrificed. The brain was removed 3 h after KA administration. The results indicate that pretreatment with UR (1.0 g/kg, RP (0.25 mg/kg, and valproic acid (VA, 250 mg/kg for 3 d could reduce epileptic seizures and could also reduce the expression of c-Jun aminoterminal kinase phosphorylation (JNKp of MAPK signal pathways in the cerebral cortex and hippocampus brain tissues. Proinflammatory cytokines interleukin (IL-1β, IL-6, and tumor necrosis factor-α remain unchanged, indicating that the anticonvulsive effect of UR and RP is initially involved in the JNKp MAPK signal pathway during the KA-induced acute seizure period.

  14. Effects of different therapeutic methods and typical recipes of Chinese medicine on activation of c-Jun N-terminal kinase in kupffer cells of rats with fatty liver disease.

    Science.gov (United States)

    Yang, Qin-He; Hu, Si-Ping; Zhang, Yu-Pei; Ping, Huan-Huan; Yang, Huan-Wen; Chen, Tong-Yan; Liu, Hai-Tao

    2012-10-01

    To observe the effects of different therapeutic methods and the recipes of Chinese medicine (CM) on the activation of c-Jun N-terminal kinase (JNK) in Kupffer cells of rats with fatty liver disease and to explore the mechanisms of these therapeutic methods. By using a random number table, 98 rats were randomly divided into 7 groups: control group, model group, and 5 treatment groups, including soothing Liver (Gan) recipe group, invigorating Spleen (Pi) recipe group, dispelling dampness recipe group, promoting blood recipe group, and complex recipe group. Rats in the control group were fed with normal food and distilled water by gastric perfusion, while rats in the model group were fed with high-fat food and distilled spirits by gastric perfusion. Rats in the 5 treatment groups were fed with high-fat food and corresponding recipes by gastric perfusion. Twelve weeks later, all rats were sacrificed and liver tissues were stained for pathohistological observation. Kupffer cells were isolated from livers of rats to evaluate JNK and phospho-JNK expressions by Western blotting. The grade of hepatic steatosis was higher in the model group than the control group (PLiver recipe group and invigorating Spleen recipe group were significantly ameliorated (Pliver disease in rats. The recipes of CM, especially invigorating Spleen recipe and soothing Liver recipe, might protect liver against injury by reducing the total JNK protein content and inhibiting the activation of JNK protein in Kupffer cells of fatty liver model rats, which showed beneficial effects on fatty liver disease.

  15. Ranking differentially expressed genes from Affymetrix gene expression data: methods with reproducibility, sensitivity, and specificity

    OpenAIRE

    Shimizu Kentaro; Nakai Yuji; Kadota Koji

    2009-01-01

    Abstract Background To identify differentially expressed genes (DEGs) from microarray data, users of the Affymetrix GeneChip system need to select both a preprocessing algorithm to obtain expression-level measurements and a way of ranking genes to obtain the most plausible candidates. We recently recommended suitable combinations of a preprocessing algorithm and gene ranking method that can be used to identify DEGs with a higher level of sensitivity and specificity. However, in addition to th...

  16. Identification of a c-Jun N-terminal kinase-2-dependent signal amplification cascade that regulates c-Myc levels in ras transformation

    DEFF Research Database (Denmark)

    Mathiasen, D.P.; Egebjerg, C.; Andersen, S.H.

    2012-01-01

    that is critical for ras transformation in murine embryonic fibroblasts. This cascade is coordinated by ERK and JNK2 MAPKs, whose Ras-mediated activation leads to the enhanced levels of three oncogenic transcription factors, namely, c-Myc, activating transcription factor 2 (ATF2) and ATF3, all of which...... are essential for ras transformation. Previous studies show that ERK-mediated serine 62 phosphorylation protects c-Myc from proteasomal degradation. ERK is, however, not alone sufficient to stabilize c-Myc but requires the cooperation of cancerous inhibitor of protein phosphatase 2A (CIP2A), an oncogene......Ras is one of the most frequently activated oncogenes in cancer. Two mitogen-activated protein kinases (MAPKs) are important for ras transformation: extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase 2 (JNK2). Here we present a downstream signal amplification cascade...

  17. Gene expression profiles in skeletal muscle after gene electrotransfer

    DEFF Research Database (Denmark)

    Hojman, Pernille; Zibert, John R; Gissel, Hanne

    2007-01-01

    BACKGROUND: Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have...... therefore investigated transcriptional changes through gene expression profile analyses, morphological changes by histological analysis, and physiological changes by force generation measurements. DNA electrotransfer was obtained using a combination of a short high voltage pulse (HV, 1000 V/cm, 100 mus......) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment. RESULTS: Differentially expressed genes were...

  18. Reference gene screening for analyzing gene expression across goat tissue.

    Science.gov (United States)

    Zhang, Yu; Zhang, Xiao-Dong; Liu, Xing; Li, Yun-Sheng; Ding, Jian-Ping; Zhang, Xiao-Rong; Zhang, Yun-Hai

    2013-12-01

    Real-time quantitative PCR (qRT-PCR) is one of the important methods for investigating the changes in mRNA expression levels in cells and tissues. Selection of the proper reference genes is very important when calibrating the results of real-time quantitative PCR. Studies on the selection of reference genes in goat tissues are limited, despite the economic importance of their meat and dairy products. We used real-time quantitative PCR to detect the expression levels of eight reference gene candidates (18S, TBP, HMBS, YWHAZ, ACTB, HPRT1, GAPDH and EEF1A2) in ten tissues types sourced from Boer goats. The optimal reference gene combination was selected according to the results determined by geNorm, NormFinder and Bestkeeper software packages. The analyses showed that tissue is an important variability factor in genes expression stability. When all tissues were considered, 18S, TBP and HMBS is the optimal reference combination for calibrating quantitative PCR analysis of gene expression from goat tissues. Dividing data set by tissues, ACTB was the most stable in stomach, small intestine and ovary, 18S in heart and spleen, HMBS in uterus and lung, TBP in liver, HPRT1 in kidney and GAPDH in muscle. Overall, this study provided valuable information about the goat reference genes that can be used in order to perform a proper normalisation when relative quantification by qRT-PCR studies is undertaken.

  19. Reference Gene Screening for Analyzing Gene Expression Across Goat Tissue

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2013-12-01

    Full Text Available Real-time quantitative PCR (qRT-PCR is one of the important methods for investigating the changes in mRNA expression levels in cells and tissues. Selection of the proper reference genes is very important when calibrating the results of real-time quantitative PCR. Studies on the selection of reference genes in goat tissues are limited, despite the economic importance of their meat and dairy products. We used real-time quantitative PCR to detect the expression levels of eight reference gene candidates (18S, TBP, HMBS, YWHAZ, ACTB, HPRT1, GAPDH and EEF1A2 in ten tissues types sourced from Boer goats. The optimal reference gene combination was selected according to the results determined by geNorm, NormFinder and Bestkeeper software packages. The analyses showed that tissue is an important variability factor in genes expression stability. When all tissues were considered, 18S, TBP and HMBS is the optimal reference combination for calibrating quantitative PCR analysis of gene expression from goat tissues. Dividing data set by tissues, ACTB was the most stable in stomach, small intestine and ovary, 18S in heart and spleen, HMBS in uterus and lung, TBP in liver, HPRT1 in kidney and GAPDH in muscle. Overall, this study provided valuable information about the goat reference genes that can be used in order to perform a proper normalisation when relative quantification by qRT-PCR studies is undertaken.

  20. Gene Expression Profiling and Molecular Signaling of Dental Pulp Cells in Response to Tricalcium Silicate Cements: A Systematic Review.

    Science.gov (United States)

    Rathinam, Elanagai; Rajasekharan, Sivaprakash; Chitturi, Ravi Teja; Martens, Luc; De Coster, Peter

    2015-11-01

    Signaling molecules and responding dental pulp stem cells are the 2 main control keys of dentin regeneration/dentinogenesis. The aim of this study was to present a systematic review investigating the gene expression of various dental pulp cells in response to different variants of tricalcium silicate cements. A systematic search of the literature was performed by 2 independent reviewers followed by article selection and data extraction. Studies analyzing all sorts of dental pulp cells (DPCs) and any variant of tricalcium silicate cement either as the experimental or as the control group were included. A total of 39 articles were included in the review. Among the included studies, ProRoot MTA (Dentsply, Tulsa Dental, OK) was the most commonly used tricalcium silicate cement variant. The extracellular signal regulated kinase/mitogen-activated protein kinase pathway was the most commonly activated pathway to be identified, and similarly, dentin sialophosphoprotein osteocalcin dentin matrix acidic phosphoprotein 1, alkaline phosphatase, bone sialoprotein, osteopontin, type I collagen, and Runx2 were the most commonly expressed genes in that order of frequency. Biodentine (Septodont Ltd, Saint Maur des Faussés, France), Bioaggregate (Innovative Bioceramix, Vancouver, BC, Canada), and mineral trioxide aggregate stimulate the osteogenic/odontogenic capacity of DPCs by proliferation, angiogenesis, and biomineralization through the activation of the extracellular signal regulated kinase ½, nuclear factor E2 related factor 2, p38, c-Jun N-terminal kinase mitogen-activated protein kinase, p42/p44 mitogen-activated protein kinase, nuclear factor kappa B, and fibroblast growth factor receptor pathways. When DPCs are placed into direct contact with tricalcium silicate cements, they show higher levels of gene activation, which in turn could translate into more effective pulpal repair and faster and more predictable formation of reparative dentin. Copyright © 2015 American

  1. Aberrant Gene Expression in Acute Myeloid Leukaemia

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen

    Summary Acute Myeloid Leukaemia (AML) is an aggressive cancer of the bone marrow, affecting formation of blood cells during haematopoiesis. This thesis presents investigation of AML using mRNA gene expression profiles (GEP) of samples extracted from the bone marrow of healthy and diseased subjects...... model to investigate the role of telomerase in AML, we were able to translate the observed effect into human AML patients and identify specific genes involved, which also predict survival patterns in AML patients. During these studies we have applied methods for investigating differentially expressed...... genes and genetic signatures and for reducing dimensionally of gene expression data. Next, we have used machine-learning methods to predict survival and to assess important predictors based on these results. General application of a number of these methods has been implemented into two public query...

  2. Regulation of gene expression in human tendinopathy

    Directory of Open Access Journals (Sweden)

    Archambault Joanne M

    2011-05-01

    Full Text Available Abstract Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics.

  3. Noise minimization in eukaryotic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  4. Global gene expression in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Schembri, Mark; Kjærgaard, K.; Klemm, Per

    2003-01-01

    It is now apparent that microorganisms undergo significant changes during the transition from planktonic to biofilm growth. These changes result in phenotypic adaptations that allow the formation of highly organized and structured sessile communities, which possess enhanced resistance...... to antimicrobial treatments and host immune defence responses. Escherichia coli has been used as a model organism to study the mechanisms of growth within adhered communities. In this study, we use DNA microarray technology to examine the global gene expression profile of E. coli during sessile growth compared...... the transition to biofilm growth, and these included genes expressed under oxygen-limiting conditions, genes encoding (putative) transport proteins, putative oxidoreductases and genes associated with enhanced heavy metal resistance. Of particular interest was the observation that many of the genes altered...

  5. Soybean physiology and gene expression during drought.

    Science.gov (United States)

    Stolf-Moreira, R; Medri, M E; Neumaier, N; Lemos, N G; Pimenta, J A; Tobita, S; Brogin, R L; Marcelino-Guimarães, F C; Oliveira, M C N; Farias, J R B; Abdelnoor, R V; Nepomuceno, A L

    2010-10-05

    Soybean genotypes MG/BR46 (Conquista) and BR16, drought-tolerant and -sensitive, respectively, were compared in terms of morphophysiological and gene-expression responses to water stress during two stages of development. Gene-expression analysis showed differential responses in Gmdreb1a and Gmpip1b mRNA expression within 30 days of water-deficit initiation in MG/BR46 (Conquista) plants. Within 45 days of initiating stress, Gmp5cs and Gmpip1b had relatively higher expression. Initially, BR16 showed increased expression only for Gmdreb1a, and later (45 days) for Gmp5cs, Gmdefensin and Gmpip1b. Only BR16 presented down-regulated expression of genes, such as Gmp5cs and Gmpip1b, 30 days after the onset of moisture stress, and Gmgols after 45 days of stress. The faster perception of water stress in MG/BR46 (Conquista) and the better maintenance of up-regulated gene expression than in the sensitive BR16 genotype imply mechanisms by which the former is better adapted to tolerate moisture deficiency.

  6. Methylomics of gene expression in human monocytes

    Science.gov (United States)

    Liu, Yongmei; Ding, Jingzhong; Reynolds, Lindsay M.; Lohman, Kurt; Register, Thomas C.; De La Fuente, Alberto; Howard, Timothy D.; Hawkins, Greg A.; Cui, Wei; Morris, Jessica; Smith, Shelly G.; Barr, R. Graham; Kaufman, Joel D.; Burke, Gregory L.; Post, Wendy; Shea, Steven; Mccall, Charles E.; Siscovick, David; Jacobs, David R.; Tracy, Russell P.; Herrington, David M.; Hoeschele, Ina

    2013-01-01

    DNA methylation is one of several epigenetic mechanisms that contribute to the regulation of gene expression; however, the extent to which methylation of CpG dinucleotides correlates with gene expression at the genome-wide level is still largely unknown. Using purified primary monocytes from subjects in a large community-based cohort (n = 1264), we characterized methylation (>485 000 CpG sites) and mRNA expression (>48K transcripts) and carried out genome-wide association analyses of 8370 expression phenotypes. We identified 11 203 potential cis-acting CpG loci whose degree of methylation was associated with gene expression (eMS) at a false discovery rate threshold of 0.001. Most of the associations were consistent in effect size and direction of effect across sex and three ethnicities. Contrary to expectation, these eMS were not predominately enriched in promoter regions, or CpG islands, but rather in the 3′ UTR, gene bodies, CpG shores or ‘offshore’ sites, and both positive and negative correlations between methylation and expression were observed across all locations. eMS were enriched for regions predicted to be regulatory by ENCODE (Encyclopedia of DNA Elements) data in multiple cell types, particularly enhancers. One of the strongest association signals detected (P < 2.2 × 10−308) was a methylation probe (cg17005068) in the promoter/enhancer region of the glutathione S-transferase theta 1 gene (GSTT1, encoding the detoxification enzyme) with GSTT1 mRNA expression. Our study provides a detailed description of the epigenetic architecture in human monocytes and its relationship to gene expression. These data may help prioritize interrogation of biologically relevant methylation loci and provide new insights into the epigenetic basis of human health and diseases. PMID:23900078

  7. Activity-dependent expression of miR-132 regulates immediate-early gene induction during olfactory learning in the greater short-nosed fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Mukilan, Murugan; Ragu Varman, Durairaj; Sudhakar, Sivasubramaniam; Rajan, Koilmani Emmanuvel

    2015-04-01

    The activity-dependent expression of immediate-early genes (IEGs) and microRNA (miR)-132 has been implicated in synaptic plasticity and the formation of long-term memory (LTM). In the present study, we show that olfactory training induces the expression of IEGs (EGR-1, C-fos, C-jun) and miR-132 at similar time scale in olfactory bulb (OB) of Cynopterus sphinx. We examined the role of miR-132 in the OB using antisense oligodeoxynucleotide (AS-ODN) and demonstrated that a local infusion of AS-ODN in the OB 2h prior to training impaired olfactory memory formation in C. sphinx. However, the infusion of AS-ODN post-training did not cause a deficit in memory formation. Furthermore, the inhibition of miR-132 reduced the olfactory training-induced expression of IEGs and post synaptic density protein-95 (PSD-95) in the OB. Additionally, we show that miR-132 regulates the activation of calcium/calmodulin-dependent protein kinase-II (CaMKII) and cAMP response element binding protein (CREB), possibly through miR-148a. These data suggest that olfactory training induces the expression of miR-132 and IEGs, which in turn activates post-synaptic proteins that regulate olfactory memory formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Tyrosine-phosphorylated caveolin-1 (Tyr-14) increases sensitivity to paclitaxel by inhibiting BCL2 and BCLxL proteins via c-Jun N-terminal kinase (JNK).

    Science.gov (United States)

    Shajahan, Ayesha N; Dobbin, Zachary C; Hickman, F Edward; Dakshanamurthy, Sivanesan; Clarke, Robert

    2012-05-18

    Paclitaxel, an anti-microtubule agent, is an effective chemotherapeutic drug in breast cancer. Nonetheless, resistance to paclitaxel remains a major clinical challenge. The need to better understand the resistant phenotype and to find biomarkers that could predict tumor response to paclitaxel is evident. In estrogen receptor α-positive (ER(+)) breast cancer cells, phosphorylation of caveolin-1 (CAV1) on Tyr-14 facilitates mitochondrial apoptosis by increasing BCL2 phosphorylation in response to low dose paclitaxel (10 nM). However, two variants of CAV1 exist: the full-length form, CAV1α (wild-type CAV1 or wtCAV1), and a truncated form, CAV1β. Only wtCAV1 has the Tyr-14 region at the N terminus. The precise cellular functions of CAV1 variants are unknown. We now show that CAV1 variants play distinct roles in paclitaxel-mediated cell death/survival. CAV1β expression is increased in paclitaxel-resistant cells when compared with sensitive cells. Expression of CAV1β in sensitive cells significantly reduces their responsiveness to paclitaxel. These activities reflect an essential role for Tyr-14 phosphorylation because wtCAV1 expression, but not a phosphorylation-deficient mutant (Y14F), inactivates BCL2 and BCLxL through activation of c-Jun N-terminal kinase (JNK). MCF-7 cells that express Y14F are resistant to paclitaxel and are resensitized by co-treatment with ABT-737, a BH3-mimetic small molecule inhibitor. Using structural homology modeling, we propose that phosphorylation on Tyr-14 enables a favorable conformation for proteins to bind to the CAV1 scaffolding domain. Thus, we highlight novel roles for CAV1 variants in cell death; wtCAV1 promotes cell death, whereas CAV1β promotes cell survival by preventing inactivation of BCL2 and BCLxL via JNK in paclitaxel-mediated apoptosis.

  9. Exercise training protects against atherosclerotic risk factors through vascular NADPH oxidase, extracellular signal-regulated kinase 1/2 and stress-activated protein kinase/c-Jun N-terminal kinase downregulation in obese rats.

    Science.gov (United States)

    Touati, Sabeur; Montezano, Augusto C I; Meziri, Fayçal; Riva, Catherine; Touyz, Rhian M; Laurant, Pascal

    2015-02-01

    Exercise training reverses atherosclerotic risk factors associated with metabolic syndrome and obesity. The aim of the present study was to determine the molecular anti-inflammatory, anti-oxidative and anti-atherogenic effects in aorta from rats with high-fat diet-induced obesity. Male Sprague-Dawley rats were placed on a high-fat (HFD) or control (CD) diet for 12 weeks. The HFD rats were then divided into four groups: (i) sedentary HFD-fed rats (HFD-S); (ii) exercise trained (motor treadmill 5 days/week, 60 min/day, 12 weeks) HFD-fed rats (HFD-Ex); (iii) modified diet (HFD to CD) sedentary rats (HF/CD-S); and (iv) an exercise-trained modified diet group (HF/CD-Ex). Tissue levels of NADPH oxidase (activity and expression), NADPH oxidase (Nox) 1, Nox2, Nox4, p47(phox) , superoxide dismutase (SOD)-1, angiotensin AT1 and AT2 receptors, phosphorylated mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase (ERK) 1/2, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK)) and vascular cell adhesion molecule-1 (VCAM-1) were determined in the aorta. Plasma cytokines (tumour necrosis factor (TNF)-α and interleukin (IL)-6) levels were also measured. Obesity was accompanied by increases in NADPH oxidase activity, p47(phox) translocation, Nox4 and VCAM-1 protein expression, MAPK (ERK1/2, SAPK/JNK) phosphorylation and plasma TNF-α and IL-6 levels. Exercise training and switching from the HFD to CD reversed almost all these molecular changes. In addition, training increased aortic SOD-1 protein expression and decreased ERK1/2 phosphorylation. These findings suggest that protective effects of exercise training on atherosclerotic risk factors induced by obesity are associated with downregulation of NADPH oxidase, ERK1/2 and SAPK/JNK activity and increased SOD-1 expression. © 2014 Wiley Publishing Asia Pty Ltd.

  10. Expression of myriapod pair rule gene orthologs

    Directory of Open Access Journals (Sweden)

    Janssen Ralf

    2011-02-01

    Full Text Available Abstract Background Segmentation is a hallmark of the arthropods; most knowledge about the molecular basis of arthropod segmentation comes from work on the fly Drosophila melanogaster. In this species a hierarchic cascade of segmentation genes subdivides the blastoderm stepwise into single segment wide regions. However, segmentation in the fly is a derived feature since all segments form virtually simultaneously. Conversely, in the vast majority of arthropods the posterior segments form one at a time from a posterior pre-segmental zone. The pair rule genes (PRGs comprise an important level of the Drosophila segmentation gene cascade and are indeed the first genes that are expressed in typical transverse stripes in the early embryo. Information on expression and function of PRGs outside the insects, however, is scarce. Results Here we present the expression of the pair rule gene orthologs in the pill millipede Glomeris marginata (Myriapoda: Diplopoda. We find evidence that these genes are involved in segmentation and that components of the hierarchic interaction of the gene network as found in insects may be conserved. We further provide evidence that segments are formed in a single-segment periodicity rather than in pairs of two like in another myriapod, the centipede Strigamia maritima. Finally we show that decoupling of dorsal and ventral segmentation in Glomeris appears already at the level of the PRGs. Conclusions Although the pair rule gene network is partially conserved among insects and myriapods, some aspects of PRG interaction are, as suggested by expression pattern analysis, convergent, even within the Myriapoda. Conserved expression patterns of PRGs in insects and myriapods, however, may represent ancestral features involved in segmenting the arthropod ancestor.

  11. Rubisco gene expression in C4 plants.

    Science.gov (United States)

    Patel, Minesh; Berry, James O

    2008-01-01

    In leaves of most C(4) plants, ribulose 1,5 bisphosphate carboxylase (Rubisco) accumulates only in bundle sheath (bs) cells that surround the vascular centres, and not in mesophyll (mp) cells. It has been shown previously that in the C(4) dicots amaranth and Flaveria bidentis, post-transcriptional control of mRNA translation and stability mediate the C(4) expression patterns of genes encoding the large and small Rubisco subunits (chloroplast rbcL and nuclear RbcS, respectively). Translational control appears to regulate bs cell-specific Rubisco gene expression during early dicot leaf development, while control of mRNA stability appears to mediate bs-specific accumulation of RbcS and rbcL transcripts in mature leaves. Post-transcriptional control is also involved in the regulation of Rubisco gene expression by light, and in response to photosynthetic activity. Transgenic and transient expression studies in F. bidentis provide direct evidence for post-transcriptional control of bs cell-specific RbcS expression, which is mediated by the 5' and 3' untranslated regions (UTRs) of the mRNA. Comparisons of Rubisco gene expression in these dicots and in the monocot maize indicates possible commonalities in the regulation of RbcS and rbcL genes in these divergent C(4) species. Now that the role of post-transcriptional regulation in C(4) gene expression has been established, it is likely that future studies of mRNA-protein interactions will address long-standing questions about the establishment and maintenance of cell type-specificity in these plants. Some of these regulatory mechanisms may have ancestral origins in C(3) species, through modification of pre-existing factors, or by the acquisition of novel C(4) processes.

  12. Gene expression profiling for targeted cancer treatment.

    Science.gov (United States)

    Yuryev, Anton

    2015-01-01

    There is certain degree of frustration and discontent in the area of microarray gene expression data analysis of cancer datasets. It arises from the mathematical problem called 'curse of dimensionality,' which is due to the small number of samples available in training sets, used for calculating transcriptional signatures from the large number of differentially expressed (DE) genes, measured by microarrays. The new generation of causal reasoning algorithms can provide solutions to the curse of dimensionality by transforming microarray data into activity of a small number of cancer hallmark pathways. This new approach can make feature space dimensionality optimal for mathematical signature calculations. The author reviews the reasons behind the current frustration with transcriptional signatures derived from DE genes in cancer. He also provides an overview of the novel methods for signature calculations based on differentially variable genes and expression regulators. Furthermore, the authors provide perspectives on causal reasoning algorithms that use prior knowledge about regulatory events described in scientific literature to identify expression regulators responsible for the differential expression observed in cancer samples. The author advocates causal reasoning methods to calculate cancer pathway activity signatures. The current challenge for these algorithms is in ensuring quality of the knowledgebase. Indeed, the development of cancer hallmark pathway collections, together with statistical algorithms to transform activity of expression regulators into pathway activity, are necessary for causal reasoning to be used in cancer research.

  13. Hepatocyte specific expression of human cloned genes

    Energy Technology Data Exchange (ETDEWEB)

    Cortese, R.

    1986-01-01

    A large number of proteins are specifically synthesized in the hepatocyte. Only the adult liver expresses the complete repertoire of functions which are required at various stages during development. There is therefore a complex series of regulatory mechanisms responsible for the maintenance of the differentiated state and for the developmental and physiological variations in the pattern of gene expression. Human hepatoma cell lines HepG2 and Hep3B display a pattern of gene expression similar to adult and fetal liver, respectively; in contrast, cultured fibroblasts or HeLa cells do not express most of the liver specific genes. They have used these cell lines for transfection experiments with cloned human liver specific genes. DNA segments coding for alpha1-antitrypsin and retinol binding protein (two proteins synthesized both in fetal and adult liver) are expressed in the hepatoma cell lines HepG2 and Hep3B, but not in HeLa cells or fibroblasts. A DNA segment coding for haptoglobin (a protein synthesized only after birth) is only expressed in the hepatoma cell line HepG2 but not in Hep3B nor in non hepatic cell lines. The information for tissue specific expression is located in the 5' flanking region of all three genes. In vivo competition experiments show that these DNA segments bind to a common, apparently limiting, transacting factor. Conventional techniques (Bal deletions, site directed mutagenesis, etc.) have been used to precisely identify the DNA sequences responsible for these effects. The emerging picture is complex: they have identified multiple, separate transcriptional signals, essential for maximal promoter activation and tissue specific expression. Some of these signals show a negative effect on transcription in fibroblast cell lines.

  14. Gene expression analysis of flax seed development

    Directory of Open Access Journals (Sweden)

    Sharpe Andrew

    2011-04-01

    Full Text Available Abstract Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages seed coats (globular and torpedo stages and endosperm (pooled globular to torpedo stages and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST (GenBank accessions LIBEST_026995 to LIBEST_027011 were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152 had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid

  15. Gene expression analysis of flax seed development.

    Science.gov (United States)

    Venglat, Prakash; Xiang, Daoquan; Qiu, Shuqing; Stone, Sandra L; Tibiche, Chabane; Cram, Dustin; Alting-Mees, Michelle; Nowak, Jacek; Cloutier, Sylvie; Deyholos, Michael; Bekkaoui, Faouzi; Sharpe, Andrew; Wang, Edwin; Rowland, Gordon; Selvaraj, Gopalan; Datla, Raju

    2011-04-29

    Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise even low-expressed genes such as

  16. Visualizing Gene Expression In Situ

    Energy Technology Data Exchange (ETDEWEB)

    Burlage, R.S.

    1998-11-02

    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  17. Lithium ions induce prestalk-associated gene expression and inhibit prespore gene expression in Dictyostelium discoideum

    NARCIS (Netherlands)

    Peters, Dorien J.M.; Lookeren Campagne, Michiel M. van; Haastert, Peter J.M. van; Spek, Wouter; Schaap, Pauline

    1989-01-01

    We investigated the effect of Li+ on two types of cyclic AMP-regulated gene expression and on basal and cyclic AMP-stimulated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) levels. Li+ effectively inhibits cyclic AMP-induced prespore gene expression, half-maximal inhibition occurring at about 2mM-LiCl.

  18. Scaling of gene expression data allowing the comparison of different gene expression platforms

    NARCIS (Netherlands)

    van Ruissen, Fred; Schaaf, Gerben J.; Kool, Marcel; Baas, Frank; Ruijter, Jan M.

    2008-01-01

    Serial analysis of gene expression (SAGE) and microarrays have found a widespread application, but much ambiguity exists regarding the amalgamation of the data resulting from these technologies. Cross-platform utilization of gene expression data from the SAGE and microarray technology could reduce

  19. Extracting expression modules from perturbational gene expression compendia

    Directory of Open Access Journals (Sweden)

    Van Dijck Patrick

    2008-04-01

    Full Text Available Abstract Background Compendia of gene expression profiles under chemical and genetic perturbations constitute an invaluable resource from a systems biology perspective. However, the perturbational nature of such data imposes specific challenges on the computational methods used to analyze them. In particular, traditional clustering algorithms have difficulties in handling one of the prominent features of perturbational compendia, namely partial coexpression relationships between genes. Biclustering methods on the other hand are specifically designed to capture such partial coexpression patterns, but they show a variety of other drawbacks. For instance, some biclustering methods are less suited to identify overlapping biclusters, while others generate highly redundant biclusters. Also, none of the existing biclustering tools takes advantage of the staple of perturbational expression data analysis: the identification of differentially expressed genes. Results We introduce a novel method, called ENIGMA, that addresses some of these issues. ENIGMA leverages differential expression analysis results to extract expression modules from perturbational gene expression data. The core parameters of the ENIGMA clustering procedure are automatically optimized to reduce the redundancy between modules. In contrast to the biclusters produced by most other methods, ENIGMA modules may show internal substructure, i.e. subsets of genes with distinct but significantly related expression patterns. The grouping of these (often functionally related patterns in one module greatly aids in the biological interpretation of the data. We show that ENIGMA outperforms other methods on artificial datasets, using a quality criterion that, unlike other criteria, can be used for algorithms that generate overlapping clusters and that can be modified to take redundancy between clusters into account. Finally, we apply ENIGMA to the Rosetta compendium of expression profiles for

  20. DNA replication timing influences gene expression level.

    Science.gov (United States)

    Müller, Carolin A; Nieduszynski, Conrad A

    2017-07-03

    Eukaryotic genomes are replicated in a reproducible temporal order; however, the physiological significance is poorly understood. We compared replication timing in divergent yeast species and identified genomic features with conserved replication times. Histone genes were among the earliest replicating loci in all species. We specifically delayed the replication of HTA1 - HTB1 and discovered that this halved the expression of these histone genes. Finally, we showed that histone and cell cycle genes in general are exempt from Rtt109-dependent dosage compensation, suggesting the existence of pathways excluding specific loci from dosage compensation mechanisms. Thus, we have uncovered one of the first physiological requirements for regulated replication time and demonstrated a direct link between replication timing and gene expression. © 2017 Müller and Nieduszynski.

  1. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease

    Science.gov (United States)

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Availability and implementation: Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. Database URL: http://rged.wall-eva.net PMID:25252782

  2. Regulation of gene expression by retinoids.

    Science.gov (United States)

    Amann, P M; Eichmüller, S B; Schmidt, J; Bazhin, A V

    2011-01-01

    Vitamin A serves as substrate for the biosynthesis of several derivates (retinoids) which are important for cell growth and cell differentiation as well as for vision. Retinoic acid is the major physiologically active form of vitamin A regulating the expression of different genes. At present, hundreds of genes are known to be regulated by retinoic acid. This regulation is very complex and is, in turn, regulated on many levels. To date, two families of retinoid nuclear receptors have been identified: retinoic acid receptors and retinoid X receptors, which are members of the steroid hormone receptor superfamily of ligand-activated transcription factors. In order to regulate gene expression, all-trans retinal needs to be oxidized to retinoic acid. All-trans retinal, in turn, can be produced during oxidation of all-trans retinol or in a retinol-independent metabolic pathway through cleavage of β-carotene with all-trans retinal as an intermediate metabolite. Recently it has been shown that not only retinoic acid is an active form of vitamin A, but also that all-trans retinal can play an important role in gene regulation. In this review we comprehensively summarize recent literature on regulation of gene expression by retinoids, biochemistry of retinoid receptors, and molecular mechanisms of retinoid-mediated effects on gene regulation.

  3. [Imprinting genes and it's expression in Arabidopsis].

    Science.gov (United States)

    Zhang, Hong-Yu; Xu, Pei-Zhou; Yang, Hua; Wu, Xian-Jun

    2010-07-01

    Genomic imprinting refers to the phenomenon that the expression of a gene copy depends on its parent of origin. The Arabidopsis imprinted FIS (Fertilisation-independent seed) genes, mea, fis2, and fie, play essential roles in the repression of central cell and the regulation of early endosperm development. fis mutants display two phenotypes: autonomous diploid endosperm development when fertilization is absent and un-cellularised endosperm formation when fertilization occurs. The FIS Polycomb protein complex including the above three FIS proteins catalyzes histone H3 K27 tri-methylation on target loci. DME (DEMETER), a DNA glycosylase, and AtMET1 (Methyltransferase1), a DNA methyltransferase, are involved in the regulation of imprinted expression of both mea and fis2. This review summarizes the studies on the Arabidopsis imprinted FIS genes and other related genes. Recent works have shown that the insertion of transposons may affect nearby gene expression, which may be the main driving force behind the evolution of genomic imprinting. This summary covers the achievements on Arabidopsis imprinted genes will provide important information for studies on genomic imprinting in the important crops such as rice and maize.

  4. Nanomaterials Enhanced Gene Expression in Yeast Cells

    Directory of Open Access Journals (Sweden)

    Su-Fang Chien

    2008-01-01

    Full Text Available Metal nanomaterials are shown to enhance gene expression for rice -galactosidase gene (-Gal in yeast cells. Au and Ag nanoparticles and their nanocomposites, silica-Au and silica-Ag, were prepared and characterized by UV-vis spectroscopy and TEM technique. The rice -galactosidase gene was cloned into the yeast chromosome, where the cloned cells were precultured and induced into a medium containing each of the testing nanomaterials. The nanomaterials were observed to incorporate inside the cells, and no cell death has been detected during the course of gene expression. The enzyme activity was determined by a synthetic substrate, p-nitrophenyl--D-galctopyranoside, and the yellow product yield was recorded in a spectrophotometer at 400 nm. When Au and Ag nanoparticles were incorporated with the culture, a 3–5 fold enhancement in -galactosidase was observed for intracellular activity as well as the secreted activity into the medium. The secreted protein was analyzed to have a pure form and displayed as a single protein band in the SDS-gel electrophoresis. The effects of size and chemical nature of nanomaterials on gene expression for the rice -galactosidase gene in yeast cells are discussed.

  5. In plants, highly expressed genes are least compact

    NARCIS (Netherlands)

    Ren, X.Y.; Vorst, O.F.J.; Fiers, M.W.E.J.; Stiekema, W.J.; Nap, J.P.H.

    2006-01-01

    In both the monocot rice and the dicot Arabidopsis, highly expressed genes have more and longer introns and a larger primary transcript than genes expressed at a low level: higher expressed genes tend to be less compact than lower expressed genes. In animal genomes, it is the other way round.

  6. The Dietary Isoflavone Daidzein Reduces Expression of Pro-Inflammatory Genes through PPARα/γ and JNK Pathways in Adipocyte and Macrophage Co-Cultures.

    Directory of Open Access Journals (Sweden)

    Yuri Sakamoto

    Full Text Available Obesity-induced inflammation caused by adipocyte-macrophage interactions plays a critical role in developing insulin resistance, and peroxisome proliferator-activated receptors (PPARs regulate inflammatory gene expression in these cells. Recently, the soy isoflavone daidzein was reported to act as a PPAR activator. We examined whether daidzein affected adipocyte-macrophage crosstalk via the regulation of PPARs. Co-cultures of 3T3-L1 adipocytes and RAW264 macrophages, or palmitate-stimulated RAW264 macrophages were treated with daidzein in the presence or absence of specific inhibitors for PPARs: GW6471 (a PPARα antagonist, and GW9662 (a PPARγ antagonist. Inflammatory gene expression was then determined. Daidzein significantly decreased chemokine (C-C motif ligand 2 (Ccl2, known in humans as monocyte chemo-attractant protein 1 (MCP1 and interleukin 6 (Il6 mRNA levels induced by co-culture. In 3T3-L1 adipocytes, daidzein inversed the attenuation of adiponectin gene expression by co-culture, and these effects were inhibited by the PPAR-γ specific inhibitor. Daidzein also decreased Ccl2 and Il6 mRNA levels in RAW264 macrophages stimulated with palmitate or conditioned medium (CM from hypertrophied 3T3-L1 adipocytes. This inhibitory effect on Il6 expression was abrogated by a PPAR-α inhibitor. Additionally, we examined the activation of nuclear factor-kappa B (NF-κB and c-Jun N-terminal kinase (JNK pathways and found that daidzein significantly inhibited palmitate-induced phosphorylation of JNK. Our data suggest that daidzein regulates pro-inflammatory gene expression by activating PPAR-α and -γ and inhibiting the JNK pathway in adipocyte and macrophage co-cultures. These effects might be favorable in improving adipose inflammation, thus, treatment of daidzein may be a therapeutic strategy for chronic inflammation in obese adipose tissue.

  7. The Dietary Isoflavone Daidzein Reduces Expression of Pro-Inflammatory Genes through PPARα/γ and JNK Pathways in Adipocyte and Macrophage Co-Cultures

    Science.gov (United States)

    Sakamoto, Yuri; Kanatsu, Junko; Toh, Mariko; Naka, Ayano; Kondo, Kazuo; Iida, Kaoruko

    2016-01-01

    Obesity-induced inflammation caused by adipocyte-macrophage interactions plays a critical role in developing insulin resistance, and peroxisome proliferator-activated receptors (PPARs) regulate inflammatory gene expression in these cells. Recently, the soy isoflavone daidzein was reported to act as a PPAR activator. We examined whether daidzein affected adipocyte-macrophage crosstalk via the regulation of PPARs. Co-cultures of 3T3-L1 adipocytes and RAW264 macrophages, or palmitate-stimulated RAW264 macrophages were treated with daidzein in the presence or absence of specific inhibitors for PPARs: GW6471 (a PPARα antagonist), and GW9662 (a PPARγ antagonist). Inflammatory gene expression was then determined. Daidzein significantly decreased chemokine (C-C motif) ligand 2 (Ccl2, known in humans as monocyte chemo-attractant protein 1 (MCP1)) and interleukin 6 (Il6) mRNA levels induced by co-culture. In 3T3-L1 adipocytes, daidzein inversed the attenuation of adiponectin gene expression by co-culture, and these effects were inhibited by the PPAR-γ specific inhibitor. Daidzein also decreased Ccl2 and Il6 mRNA levels in RAW264 macrophages stimulated with palmitate or conditioned medium (CM) from hypertrophied 3T3-L1 adipocytes. This inhibitory effect on Il6 expression was abrogated by a PPAR-α inhibitor. Additionally, we examined the activation of nuclear factor-kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways and found that daidzein significantly inhibited palmitate-induced phosphorylation of JNK. Our data suggest that daidzein regulates pro-inflammatory gene expression by activating PPAR-α and -γ and inhibiting the JNK pathway in adipocyte and macrophage co-cultures. These effects might be favorable in improving adipose inflammation, thus, treatment of daidzein may be a therapeutic strategy for chronic inflammation in obese adipose tissue. PMID:26901838

  8. Gene Discovery Methods from Large-Scale Gene Expression Data

    Science.gov (United States)

    Shimizu, Akifumi; Yano, Kentaro

    2010-01-01

    Microarrays provide genome-wide gene expression changes. In current analyses, the majority of genes on the array are frequently eliminated for further analysis just in order for computational effort to be affordable. This strategy risks failure to discover whole sets of genes related to a quantitative trait of interest, which is generally controlled by several loci that might be eliminated in current approaches. Here, we describe a high-throughput gene discovery method based on correspondence analysis with a new index for expression ratios [arctan (1/ratio)] and three artificial marker genes. This method allows us to quickly analyze the whole microarray dataset without elimination and discover up/down-regulated genes related to a trait of interest. We employed an example dataset to show the theoretical advantage of this method. We then used the method to identify 88 cancer-related genes from a published microarray data from patients with breast cancer. This method can be easily performed and the result is also visible in three-dimensional viewing software that we have developed. Our method is useful for revaluating the wealth of microarray data available from web-sites.

  9. Gene expression model (invalidation by Fourier analysis

    Directory of Open Access Journals (Sweden)

    Konopka Tomasz

    2010-09-01

    Full Text Available Abstract Background The determination of the right model structure describing a gene regulation network and the identification of its parameters are major goals in systems biology. The task is often hampered by the lack of relevant experimental data with sufficiently low noise level, but the subset of genes whose concentration levels exhibit an oscillatory behavior in time can readily be analyzed on the basis of their Fourier spectrum, known to turn complex signals into few relatively noise-free parameters. Such genes therefore offer opportunities of understanding gene regulation quantitatively. Results Fourier analysis is applied to data on gene expression levels in mouse liver cells that oscillate according to the circadian rhythm. Several model structures in the form of linear and nonlinear differential equations are matched to the data and it is shown that although the considered models can reproduce many features of the oscillatory patterns, some can be excluded on the basis of Fourier analysis without appeal to prior knowledge of regulatory pathways. A systematic method for testing models is also proposed based on measuring the effects of variations in gene copy-number on the expression levels of coupled genes. Conclusions Fourier analysis is a technique that is well-adapted to the study of biological oscillators and can be used instead or in addition to conventional modeling techniques. Its usefulness will increase as more high-resolution data become available.

  10. Trigger finger, tendinosis, and intratendinous gene expression.

    Science.gov (United States)

    Lundin, A-C; Aspenberg, P; Eliasson, P

    2014-04-01

    The pathogenesis of trigger finger has generally been ascribed to primary changes in the first annular ligament. In contrast, we recently found histological changes in the tendons, similar to the findings in Achilles tendinosis or tendinopathy. We therefore hypothesized that trigger finger tendons would show differences in gene expression in comparison to normal tendons in a pattern similar to what is published for Achilles tendinosis. We performed quantitative real-time polymerase chain reaction on biopsies from finger flexor tendons, 13 trigger fingers and 13 apparently healthy control tendons, to assess the expression of 10 genes which have been described to be differently expressed in tendinosis (collagen type 1a1, collagen 3a1, MMP-2, MMP-3, ADAMTS-5, TIMP-3, aggrecan, biglycan, decorin, and versican). In trigger finger tendons, collagen types 1a1 and 3a1, aggrecan and biglycan were all up-regulated, and MMP-3and TIMP-3 were down-regulated. These changes were statistically significant and have been previously described for Achilles tendinosis. The remaining four genes were not significantly altered. The changes in gene expression support the hypothesis that trigger finger is a form of tendinosis. Because trigger finger is a common condition, often treated surgically, it could provide opportunities for clinical research on tendinosis. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Differential cellular gene expression in ganglioglioma

    NARCIS (Netherlands)

    Samadani, Uzma; Judkins, Alexander R.; Akpalu, Albert; Aronica, Eleonora; Crino, Peter B.

    2007-01-01

    PURPOSE: Gangliogliomas (GGs) are neuronal-glial tumors highly associated with epilepsy. We hypothesized that the expression of select gene families including neurotransmitter receptor subunits and growth factors would be distinct in neurons and astrocytes within GG compared with adjacent cortex and

  12. Gene expression analysis of zebrafish heart regeneration.

    Directory of Open Access Journals (Sweden)

    Ching-Ling Lien

    2006-08-01

    Full Text Available Mammalian hearts cannot regenerate. In contrast, zebrafish hearts regenerate even when up to 20% of the ventricle is amputated. The mechanism of zebrafish heart regeneration is not understood. To systematically characterize this process at the molecular level, we generated transcriptional profiles of zebrafish cardiac regeneration by microarray analyses. Distinct gene clusters were identified based on temporal expression patterns. Genes coding for wound response/inflammatory factors, secreted molecules, and matrix metalloproteinases are expressed in regenerating heart in sequential patterns. Comparisons of gene expression profiles between heart and fin regeneration revealed a set of regeneration core molecules as well as tissue-specific factors. The expression patterns of several secreted molecules around the wound suggest that they play important roles in heart regeneration. We found that both platelet-derived growth factor-a and -b (pdgf-a and pdgf-b are upregulated in regenerating zebrafish hearts. PDGF-B homodimers induce DNA synthesis in adult zebrafish cardiomyocytes. In addition, we demonstrate that a chemical inhibitor of PDGF receptor decreases DNA synthesis of cardiomyocytes both in vitro and in vivo during regeneration. Our data indicate that zebrafish heart regeneration is associated with sequentially upregulated wound healing genes and growth factors and suggest that PDGF signaling is required.

  13. Gene Expression and Microarray Investigation of Dendrobium ...

    African Journals Online (AJOL)

    Gene Expression and Microarray Investigation of Dendrobium Mixture as Progressive Therapy for the Treatment of Type 2 Diabetes Mellitus. ... Those with random blood glucose > 16.7 mmol/L were used as the model group and treated with Dendrobium mixture (DEN, containing Dendrobium, Astragalus, Schisandra, etc) in ...

  14. Stochastic gene expression conditioned on large deviations

    Science.gov (United States)

    Horowitz, Jordan M.; Kulkarni, Rahul V.

    2017-06-01

    The intrinsic stochasticity of gene expression can give rise to large fluctuations and rare events that drive phenotypic variation in a population of genetically identical cells. Characterizing the fluctuations that give rise to such rare events motivates the analysis of large deviations in stochastic models of gene expression. Recent developments in non-equilibrium statistical mechanics have led to a framework for analyzing Markovian processes conditioned on rare events and for representing such processes by conditioning-free driven Markovian processes. We use this framework, in combination with approaches based on queueing theory, to analyze a general class of stochastic models of gene expression. Modeling gene expression as a Batch Markovian Arrival Process (BMAP), we derive exact analytical results quantifying large deviations of time-integrated random variables such as promoter activity fluctuations. We find that the conditioning-free driven process can also be represented by a BMAP that has the same form as the original process, but with renormalized parameters. The results obtained can be used to quantify the likelihood of large deviations, to characterize system fluctuations conditional on rare events and to identify combinations of model parameters that can give rise to dynamical phase transitions in system dynamics.

  15. Development of gene expression assays measuring immune ...

    African Journals Online (AJOL)

    Whole blood from five Mycobacterium bovis-sensitised hyenas was incubated in Nil and TB antigen tubes of the QuantiFERON®-TB Gold (QFT) system. Using qPCR, the relative expression stability of the reference genes ACTB, GAPDH, YWHAZ and TBP in these samples was determined as well as the mean fold change in ...

  16. Identification of genes showing differential expression profile ...

    Indian Academy of Sciences (India)

    Suppression subtractive hybridization was used to identify genes showing differential expression profile associated withgrowth rate in skeletal muscle tissue of Landrace weanling pig. Two subtracted cDNA populations were generated from mus-culus longissimus muscle tissues of selected pigs with extreme expected ...

  17. Cadmium induces apoptosis in pancreatic β-cells through a mitochondria-dependent pathway: the role of oxidative stress-mediated c-Jun N-terminal kinase activation.

    Directory of Open Access Journals (Sweden)

    Kai-Chih Chang

    Full Text Available Cadmium (Cd, one of well-known highly toxic environmental and industrial pollutants, causes a number of adverse health effects and diseases in humans. The growing epidemiological studies have suggested a possible link between Cd exposure and diabetes mellitus (DM. However, the toxicological effects and underlying mechanisms of Cd-induced pancreatic β-cell injury are still unknown. In this study, we found that Cd significantly decreased cell viability, and increased sub-G1 hypodiploid cells and annexin V-Cy3 binding in pancreatic β-cell-derived RIN-m5F cells. Cd also increased intracellular reactive oxygen species (ROS generation and malondialdehyde (MDA production and induced mitochondrial dysfunction (the loss of mitochondrial membrane potential (MMP and the increase of cytosolic cytochrome c release, the decreased Bcl-2 expression, increased p53 expression, poly (ADP-ribose polymerase (PARP cleavage, and caspase cascades, which accompanied with intracellular Cd accumulation. Pretreatment with the antioxidant N-acetylcysteine (NAC effectively reversed these Cd-induced events. Furthermore, exposure to Cd induced the phosphorylations of c-jun N-terminal kinases (JNK, extracellular signal-regulated kinases (ERK1/2, and p38-mitogen-activated protein kinase (MAPK, which was prevented by NAC. Additionally, the specific JNK inhibitor SP600125 or JNK-specific small interference RNA (si-RNA transfection suppressed Cd-induced β-cell apoptosis and related signals, but not ERK1/2 and p38-MAPK inhibitors (PD98059 and SB203580 did not. However, the JNK inhibitor or JNK-specific si-RNA did not suppress ROS generation in Cd-treated cells. These results indicate that Cd induces pancreatic β-cell death via an oxidative stress downstream-mediated JNK activation-triggered mitochondria-regulated apoptotic pathway.

  18. Annotation of gene function in citrus using gene expression information and co-expression networks.

    Science.gov (United States)

    Wong, Darren C J; Sweetman, Crystal; Ford, Christopher M

    2014-07-15

    The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world's most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a "guilt-by-association" principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Integration of citrus gene co-expression networks, functional enrichment analysis and gene

  19. Annotation of gene function in citrus using gene expression information and co-expression networks

    Science.gov (United States)

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. Results We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Conclusions Integration of citrus gene co-expression networks

  20. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  1. Fluid Mechanics, Arterial Disease, and Gene Expression.

    Science.gov (United States)

    Tarbell, John M; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.

  2. Allele-specific gene expression in carcinogenesis

    Directory of Open Access Journals (Sweden)

    O. M. Krivtsova

    2016-01-01

    Full Text Available Recent large-scale genomic studies established the occurrence of multiple DNA sequence variants in genomes of healthy individuals that differ from the reference sequence. Among these variants mostly represented by germline single nucleotide polymorphisms disease-related alleles are detected including alleles which are associated with monogenic disorders, and putative deleterious genetic variants. Apart from functional significance of a particular variant and of a gene harboring it, the penetrance of these allelic variants depends on their expression level and can be determined by preferential expression of a particular allele, or allele-specific expression. It is estimated that 20–30 % of genes present in the human genome display allelic bias in a tissue-specific manner. Allele-specific expression is defined by a range of genetic and epigenetic mechanisms including cis-regulatory polymorphisms, allele-specific binding of transcription factors, allele-specific DNA methylation and regulation through non-coding RNA.Although the data on the issue are scarce, allele-specific expression has been reported to be implicated in several hereditary disorders including benign and malignant tumors of the large intestine. Recent studies that estimate allele-specific expression incidence in tumors and identify wide range of genes displaying allelic imbalance indicate that allele-specific expression might play a significant role in carcinogenesis. Eventually, estimation of transcriptional rate of allelic variants which cause dysfunction of oncogenes and tumor suppressors may prove to be essential for rational choice of antitumor therapeutic strategy. In this review, we outline the main concepts and mechanisms of allele-specific expression and the data on allelic imbalance in tumors.

  3. Molecular genetics and gene expression in atherosclerosis.

    Science.gov (United States)

    Doevendans, P A; Jukema, W; Spiering, W; Defesche, J C; Kastelein, J J

    2001-01-01

    is available. Recent studies suggest that such treatment should be genotype specific, as the genetic makeup can determine the outcome of a pharmacological intervention (pharmacogenetics). Once the trigger for atherosclerosis has initiated disease development, various genes are activated or silenced and contribute to lesion progression. Every stage of lesion development depends on a different gene expression programme (genomics). In this review paper an introduction is provided into genetics, pharmacogenetics and gene expression with respect to atherosclerotic disease.

  4. Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice.

    Directory of Open Access Journals (Sweden)

    Ravi S Akundi

    2011-01-01

    Full Text Available PTEN-induced kinase 1 (PINK1 is linked to recessive Parkinsonism (EOPD. Pink1 deletion results in impaired dopamine (DA release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca²+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson's disease (PD display altered activity in the nigrostriatal system of Pink1⁻/⁻ mice.Purified brain mitochondria of Pink1⁻/⁻ mice showed impaired Ca²+ storage capacity, resulting in increased Ca²+ induced mitochondrial permeability transition (mPT that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1⁻/⁻ mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK activity is increased. Pink1⁻/⁻ mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1⁻/⁻ mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS, and Pink1⁻/⁻ embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB activity. Quantitative transcriptional profiling in the striatum revealed that Pink1⁻/⁻ mice differentially express genes that (i are upregulated in animals with experimentally induced dopaminergic lesions, (ii regulate innate immune responses and/or apoptosis and (iii promote axonal regeneration and sprouting.Increased mitochondrial Ca²+ sensitivity and JNK activity are early defects in Pink1⁻/⁻ mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1⁻/⁻ mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate

  5. Gene expression profiling of laterally spreading tumors.

    Science.gov (United States)

    Minemura, Shoko; Tanaka, Takeshi; Arai, Makoto; Okimoto, Kenichiro; Oyamada, Arata; Saito, Keiko; Maruoka, Daisuke; Matsumura, Tomoaki; Nakagawa, Tomoo; Katsuno, Tatsuro; Kishimoto, Takashi; Yokosuka, Osamu

    2015-06-06

    Laterally spreading tumors (LSTs) are generally defined as lesions >10 mm in diameter, are characterized by lateral expansion along the luminal wall with a low vertical axis. In contrast to other forms of tumor, LSTs are generally considered to have a superficial growth pattern and the potential for malignancy. We focused on this morphological character of LSTs, and analyzed the gene expression profile of LSTs. The expression of 168 genes in 41 colorectal tumor samples (17 LST-adenoma, 12 LST-carcinoma, 12 Ip [pedunculated type of the Paris classification)-adenoma, all of which were 10 mm or more in diameter] was analyzed by PCR array. Based on the results, we investigated the expression levels of genes up-regulated in LST-adenoma, compared to Ip-adenoma, by hierarchical and K-means clustering. To confirm the results of the array analysis, using an additional 60 samples (38 LST-adenoma, 22 Ip-adenoma), we determined the localization of the gene product by immunohistochemical staining. The expression of 129 genes differed in colorectal tumors from normal mucosa by PCR array analysis. As a result of K-means clustering, the expression levels of five genes, AKT1, BCL2L1, ERBB2, MTA2 and TNFRSF25, were found to be significantly up-regulated (p < 0.05) in LST-adenoma, compared to Ip-adenoma. Immunohistochemical analysis showed that the BCL2L1 protein was significantly and meaningfully up-regulated in LST-adenoma compared to Ip-adenoma (p = 0.010). With respect to apoptosis status in LST-Adenoma, it assumes that BCL2L1 is anti-apoptotic protein, the samples such as BCL2L1 positive and TUNEL negative, or BCL2L1 negative and TUNEL positive are consistent with the assumption. 63.2 % LST-adenoma samples were consistent with the assumption. LSTs have an unusual profile of gene expression compared to other tumors and BCL2L1 might be concerned in the organization of LSTs.

  6. c-Jun NH2-terminal kinase activity in subcutaneous adipose tissue but not nuclear factor-kappaB activity in peripheral blood mononuclear cells is an independent determinant of insulin resistance in healthy individuals

    DEFF Research Database (Denmark)

    Sourris, Karly C; Lyons, Jasmine G; de Courten, Maximilian

    2009-01-01

    Chronic low-grade activation of the immune system (CLAIS) predicts type 2 diabetes via a decrease in insulin sensitivity. Our study investigated potential relationships between nuclear factor-kappaB (NF-kappaB) and c-Jun NH(2)-terminal kinase (JNK) pathways-two pathways proposed as the link between...

  7. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids.

    Science.gov (United States)

    Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping

    2015-01-27

    Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.

  8. Seasonal gene expression in a migratory songbird.

    Science.gov (United States)

    Johnston, Rachel A; Paxton, Kristina L; Moore, Frank R; Wayne, Robert K; Smith, Thomas B

    2016-11-01

    The annual migration of a bird can involve thousands of kilometres of nonstop flight, requiring accurately timed seasonal changes in physiology and behaviour. Understanding the molecular mechanisms controlling this endogenous programme can provide functional and evolutionary insights into the circannual biological clock and the potential of migratory species to adapt to changing environments. Under naturally timed photoperiod conditions, we maintained captive Swainson's thrushes (Catharus ustulatus) and performed RNA sequencing (RNA-Seq) of the ventral hypothalamus and optic chiasma to evaluate transcriptome-wide gene expression changes of individuals in migratory condition. We found that 188 genes were differentially expressed in relation to migratory state, 86% of which have not been previously linked to avian migration. Focal hub genes were identified that are candidate variables responsible for the occurrence of migration (e.g. CRABP1). Numerous genes involved in cell adhesion, proliferation and motility were differentially expressed (including RHOJ, PAK1 and TLN1), suggesting that migration-related changes are regulated by seasonal neural plasticity. © 2016 John Wiley & Sons Ltd.

  9. Gene expression regulation in roots under drought.

    Science.gov (United States)

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Reactive Oxygen Species-Dependent c-Fos/Activator Protein 1 Induction Upregulates Heme Oxygenase-1 Expression by Bradykinin in Brain Astrocytes.

    Science.gov (United States)

    Hsieh, Hsi-Lung; Wang, Hui-Hsin; Wu, Cheng-Ying; Yang, Chuen-Mao

    2010-12-15

    Heme oxygenase-1 (HO-1) plays a crucial role in tissue pathological changes such as brain injuries. Our previous studies have demonstrated that bradykinin (BK) induces the expression of several inflammatory proteins, including matrix metalloproteinase-9 and COX-2, via mitogen-activated protein kinases and nuclear factor-κB (NF-κB) in rat brain astrocytes (RBA-1). However, the molecular mechanisms underlying BK-induced HO-1 expression in RBA-1 cells remain poorly defined. Here we demonstrated that BK induced HO-1 expression and enzymatic activity via a B(2) BK receptor-activated reactive oxygen species (ROS)-dependent signaling pathway. NADPH oxidase (Nox)-dependent ROS generation led to activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun-N-terminal kinase (JNK) and then activated the downstream molecules NF-κB and c-Jun, respectively. The c-Fos, an activator protein 1 (AP-1) subunit, was upregulated by activation of NF-κB and c-Jun, which bound to HO-1 promoter and thereby turned on transcription of HO-1 gene. The rat HO-1 promoter containing a putative AP-1 cis-binding site was identified as a crucial domain linking to BK action. Taken together, these results suggested that in RBA-1 cells, activation of ERK/NF-κB and JNK/c-Jun cascades by a Nox/ROS-dependent event enhancing c-Fos/AP-1 activity is essential for HO-1 upregulation and activation induced by BK. Moreover, ROS-dependent NF-E2-related factor 2 activation also contributes to HO-1 induction by BK in astrocytes.

  11. The c-Jun N-terminal kinase pathway of a vector insect is activated by virus capsid protein and promotes viral replication

    Science.gov (United States)

    Wang, Wei; Zhao, Wan; Li, Jing; Luo, Lan; Kang, Le; Cui, Feng

    2017-01-01

    No evidence has shown whether insect-borne viruses manipulate the c-Jun N-terminal kinase (JNK) signaling pathway of vector insects. Using a system comprising the plant virus Rice stripe virus (RSV) and its vector insect, the small brown planthopper, we have studied the response of the vector insect’s JNK pathway to plant virus infection. We found that RSV increased the level of Tumor Necrosis Factor-α and decreased the level of G protein Pathway Suppressor 2 (GPS2) in the insect vector. The virus capsid protein competitively bound GPS2 to release it from inhibiting the JNK activation machinery. We confirmed that JNK activation promoted RSV replication in the vector, whereas JNK inhibition caused a significant reduction in virus production and thus delayed the disease incidence of plants. These findings suggest that inhibition of insect vector JNK may be a useful strategy for controling the transmission of plant viruses. DOI: http://dx.doi.org/10.7554/eLife.26591.001 PMID:28716183

  12. Activation of c-Jun NH(2)-terminal kinase is required for porcine reproductive and respiratory syndrome virus-induced apoptosis but not for virus replication.

    Science.gov (United States)

    Yin, Shutao; Huo, Yazhen; Dong, Yinhui; Fan, Lihong; Yang, Hanchun; Wang, Leyuan; Ning, Yibao; Hu, Hongbo

    2012-06-01

    Apoptosis of host cells plays a critical role in pathogenesis of virus infection. MAPK kinases especially stress-activated protein kinases c-Jun NH(2)-terminal kinase (SAPK/JNK) and p38 are often involved in virus-mediated apoptosis. It has been shown that porcine reproductive and respiratory syndrome virus (PRRSV) infection resulted in apoptosis of the host cells both in vitro and in vivo. The current investigation was initiated to determine whether stress-activated protein kinases JNK and p38 play a role in apoptosis induction by PRRSV infection. We examined phosphorylation of JNK and p38, and found that JNK but not p38 was activated in response to PRRSV infection. We then examined effects of this kinase on apoptosis induction and virus replication by using specific inhibitor. We found that JNK inhibition by its inhibitor SP600125 led to the abolishment of PRRSV-mediated apoptosis, but did not suppress virus replication. Further studies demonstrated that ROS generation was involved in JNK activation, and Bcl-2 family anti-apoptotic proteins Mcl-1 and Bcl-xl were downstream targets of JNK to mediate apoptosis. We conclude that activation of JNK signaling pathway is essential for PRRSV-mediated apoptosis but not for virus replication. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Gene expression profiling in sinonasal adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Sébille-Rivain Véronique

    2009-11-01

    Full Text Available Abstract Background Sinonasal adenocarcinomas are uncommon tumors which develop in the ethmoid sinus after exposure to wood dust. Although the etiology of these tumors is well defined, very little is known about their molecular basis and no diagnostic tool exists for their early detection in high-risk workers. Methods To identify genes involved in this disease, we performed gene expression profiling using cancer-dedicated microarrays, on nine matched samples of sinonasal adenocarcinomas and non-tumor sinusal tissue. Microarray results were validated by quantitative RT-PCR and immunohistochemistry on two additional sets of tumors. Results Among the genes with significant differential expression we selected LGALS4, ACS5, CLU, SRI and CCT5 for further exploration. The overexpression of LGALS4, ACS5, SRI, CCT5 and the downregulation of CLU were confirmed by quantitative RT-PCR. Immunohistochemistry was performed for LGALS4 (Galectin 4, ACS5 (Acyl-CoA synthetase and CLU (Clusterin proteins: LGALS4 was highly up-regulated, particularly in the most differentiated tumors, while CLU was lost in all tumors. The expression of ACS5, was more heterogeneous and no correlation was observed with the tumor type. Conclusion Within our microarray study in sinonasal adenocarcinoma we identified two proteins, LGALS4 and CLU, that were significantly differentially expressed in tumors compared to normal tissue. A further evaluation on a new set of tissues, including precancerous stages and low grade tumors, is necessary to evaluate the possibility of using them as diagnostic markers.

  14. Differentially expressed genes in pancreatic ductal adenocarcinomas identified through serial analysis of gene expression

    DEFF Research Database (Denmark)

    Hustinx, Steven R; Cao, Dengfeng; Maitra, Anirban

    2004-01-01

    Serial analysis of gene expression (SAGE) is a powerful tool for the discovery of novel tumor markers. The publicly available online SAGE libraries of normal and neoplastic tissues (http://www.ncbi.nlm.nih.gov/SAGE/) have recently been expanded; in addition, a more complete annotation of the human...... 16 additional differentially expressed genes. The differential expression of seven genes, involved in multiple cellular processes such as signal transduction (MIC-1), differentiation (DMBT1 and Neugrin), immune response (CD74), inflammation (CXCL2), cell cycle (CEB1) and enzymatic activity...... of this program. Novel differentially expressed genes in a cancer type can be identified by revisiting updated and expanded SAGE databases. TAGmapper should prove to be a powerful tool for the discovery of novel tumor markers through assignment of uncharacterized SAGE tags....

  15. Hydrogen gas attenuates embryonic gene expression and prevents left ventricular remodeling induced by intermittent hypoxia in cardiomyopathic hamsters.

    Science.gov (United States)

    Kato, Ryuji; Nomura, Atsuo; Sakamoto, Aiji; Yasuda, Yuki; Amatani, Koyuha; Nagai, Sayuri; Sen, Yoko; Ijiri, Yoshio; Okada, Yoshikatsu; Yamaguchi, Takehiro; Izumi, Yasukatsu; Yoshiyama, Minoru; Tanaka, Kazuhiko; Hayashi, Tetsuya

    2014-12-01

    The prevalence of sleep apnea is very high in patients with heart failure (HF). The aims of this study were to investigate the influence of intermittent hypoxia (IH) on the failing heart and to evaluate the antioxidant effect of hydrogen gas. Normal male Syrian hamsters (n = 22) and cardiomyopathic (CM) hamsters (n = 33) were exposed to IH (repeated cycles of 1.5 min of 5% oxygen and 5 min of 21% oxygen for 8 h during the daytime) or normoxia for 14 days. Hydrogen gas (3.05 vol/100 vol) was inhaled by some CM hamsters during hypoxia. IH increased the ratio of early diastolic mitral inflow velocity to mitral annulus velocity (E/e', 21.8 vs. 16.9) but did not affect the LV ejection fraction (EF) in normal Syrian hamsters. However, IH increased E/e' (29.4 vs. 21.5) and significantly decreased the EF (37.2 vs. 47.2%) in CM hamsters. IH also increased the cardiomyocyte cross-sectional area (672 vs. 443 μm(2)) and interstitial fibrosis (29.9 vs. 9.6%), along with elevation of oxidative stress and superoxide production in the left ventricular (LV) myocardium. Furthermore, IH significantly increased the expression of brain natriuretic peptide, β-myosin heavy chain, c-fos, and c-jun mRNA in CM hamsters. Hydrogen gas inhalation significantly decreased both oxidative stress and embryonic gene expression, thus preserving cardiac function in CM hamsters. In conclusion, IH accelerated LV remodeling in CM hamsters, at least partly by increasing oxidative stress in the failing heart. These findings might explain the poor prognosis of patients with HF and sleep apnea. Copyright © 2014 the American Physiological Society.

  16. Modulation of rhodopsin gene expression and signaling mechanisms evoked by endothelins in goldfish and murine pigment cell lines

    Directory of Open Access Journals (Sweden)

    G.J.D. Lopes

    2010-09-01

    Full Text Available Endothelins (ETs and sarafotoxins (SRTXs belong to a family of vasoconstrictor peptides, which regulate pigment migration and/or production in vertebrate pigment cells. The teleost Carassius auratus erythrophoroma cell line, GEM-81, and Mus musculus B16 melanocytes express rhodopsin, as well as the ET receptors, ETB and ETA, respectively. Both cell lines are photoresponsive, and respond to light with a decreased proliferation rate. For B16, the doubling time of cells kept in 14-h light (14L:10-h darkness (10D was higher compared to 10L:14D, or to DD. The doubling time of cells kept in 10L:14D was also higher compared to DD. Using real-time PCR, we demonstrated that SRTX S6c (12-h treatment, 100 pM and 1 nM; 24-h treatment, 1 nM and ET-1 (12-h treatment, 10 and 100 pM; 24- and 48-h treatments, 100 pM increased rhodopsin mRNA levels in GEM-81 and B16 cells, respectively. This modulation involves protein kinase C (PKC and the mitogen-activated protein kinase cascade in GEM-81 cells, and phospholipase C, Ca2+, calmodulin, a Ca2+/calmodulin-dependent kinase, and PKC in B16 cells. Cells were kept under constant darkness throughout the gene expression experiments. These results show that rhodopsin mRNA levels can be modulated by SRTXs/ETs in vertebrate pigment cells. It is possible that SRTX S6c binding to the ETB receptors in GEM-81 cells, and ET-1 binding to ETA receptors in B16 melanocytes, although activating diverse intracellular signaling mechanisms, mobilize transcription factors such as c-Fos, c-Jun, c-Myc, and neural retina leucine zipper protein. These activated transcription factors may be involved in the positive regulation of rhodopsin mRNA levels in these cell lines.

  17. Long-Term Reduction of Kappa Opioid Receptor Function by the Biased Ligand, Norbinaltorphimine, Requires c-Jun N-Terminal Kinase Activity and New Protein Synthesis in Peripheral Sensory Neurons.

    Science.gov (United States)

    Jamshidi, Raehannah J; Sullivan, Laura C; Jacobs, Blaine A; Chavera, Teresa A; Berg, Kelly A; Clarke, William P

    2016-11-01

    A single administration of the κ opioid receptor (KOR) antagonist, norbinaltorphimine (norBNI), produces long-term reduction in KOR function in heterologous expression systems and brain that is mediated by activation of c-Jun N-terminal kinase (JNK). In this study, we examined the long-term effects of norBNI on adult rat peripheral sensory neurons in vivo and ex vivo. Following a single intraplantar (i.pl.) injection of norBNI into the hind paw, peripheral KOR-mediated antinociception in the ipsilateral, but not the contralateral, hindpaw was abolished for at least 9 days. By contrast, the antinociceptive response to mu and delta opioid receptor agonists was unaltered. The long-term inhibitory effect on antinociception produced by pretreatment with norBNI required occupancy of peripheral KOR and was completely blocked by i.pl. injection of the JNK inhibitor, SP600125. In cultures of peripheral sensory neurons, norBNI activated JNK for at least 30 minutes. Furthermore, norBNI blocked KOR-mediated inhibition of adenylyl cyclase activity measured 24 hours later in a JNK-dependent manner, but did not block activation of extracellular signal-regulated kinase (ERK). The long-term inhibitory effect of norBNI on KOR function in vivo and ex vivo was blocked by inhibitors of mRNA translation, cycloheximide and rapamycin. These data suggest that in peripheral sensory neurons norBNI is a KOR-biased ligand for activation of JNK signaling, resulting in long-term blockade of some (antinociception, inhibition of adenylyl cyclase activity), but not all (ERK), KOR signaling. Importantly, norBNI elicits de novo protein synthesis in sensory neuron terminals that produces selective long-term regulation of KOR. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Enhanced gene expression from retroviral vectors

    Directory of Open Access Journals (Sweden)

    Micklem David R

    2008-02-01

    Full Text Available Abstract Background Retroviruses are widely used to transfer genes to mammalian cells efficiently and stably. However, genetic elements required for high-level gene expression are incompatible with standard systems. The retroviral RNA genome is produced by cellular transcription and post-transcriptional processing within packaging cells: Introns present in the retroviral genomic transcript are removed by splicing, while polyadenylation signals lead to the production of ineffective truncated genomes. Furthermore strong enhancer/promoters within the retroviral payload lead to detrimental competition with the retroviral enhancer/promoter. Results By exploiting a new method of producing the retroviral genome in vitro it is possible to produce infectious retroviral particles carrying a high-level expression cassette that completely prohibits production of infectious retroviral particles by conventional methods. We produced an expression cassette comprising a strong enhancer/promoter, an optimised intron, the GFP open reading frame and a strong polyadenylation signal. This cassette was cloned into both a conventional MMLV retroviral vector and a vector designed to allow in vitro transcription of the retroviral genome by T7 RNA polymerase. When the conventional retroviral vector was transfected into packaging cells, the expression cassette drove strong GFP expression, but no infectious retrovirus was produced. Introduction of the in vitro produced uncapped retroviral genomic transcript into the packaging cells did not lead to any detectable GFP expression. However, infectious retrovirus was easily recovered, and when used to infect target primary human cells led to very high GFP expression – up to 3.5 times greater than conventional retroviral LTR-driven expression. Conclusion Retroviral vectors carrying an optimized high-level expression cassette do not produce infectious virions when introduced into packaging cells by transfection of DNA

  19. Gene expression in Pseudomonas aeruginosa swarming motility

    Directory of Open Access Journals (Sweden)

    Déziel Eric

    2010-10-01

    Full Text Available Abstract Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14. Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center. Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to

  20. Unsupervised fuzzy pattern discovery in gene expression data

    OpenAIRE

    Wu, Gene PK; Chan, Keith CC; Wong, Andrew KC

    2011-01-01

    Background Discovering patterns from gene expression levels is regarded as a classification problem when tissue classes of the samples are given and solved as a discrete-data problem by discretizing the expression levels of each gene into intervals maximizing the interdependence between that gene and the class labels. However, when class information is unavailable, discovering gene expression patterns becomes difficult. Methods For a gene pool with large number of genes, we first cluster the ...

  1. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data

    DEFF Research Database (Denmark)

    Manijak, Mieszko P.; Nielsen, Henrik Bjørn

    2011-01-01

    BACKGROUND: Although, systematic analysis of gene annotation is a powerful tool for interpreting gene expression data, it sometimes is blurred by incomplete gene annotation, missing expression response of key genes and secondary gene expression responses. These shortcomings may be partially...... circumvented by instead matching gene expression signatures to signatures of other experiments. FINDINGS: To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700...... Arabidopsis microarray experiments. CONCLUSIONS: Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/....

  2. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data.

    Science.gov (United States)

    Manijak, Mieszko P; Nielsen, Henrik B

    2011-06-11

    Although, systematic analysis of gene annotation is a powerful tool for interpreting gene expression data, it sometimes is blurred by incomplete gene annotation, missing expression response of key genes and secondary gene expression responses. These shortcomings may be partially circumvented by instead matching gene expression signatures to signatures of other experiments. To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700 Arabidopsis microarray experiments. Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/.

  3. Epstein - Barr virus transforming protein LMP-1 alters B cells gene expression by promoting accumulation of the oncoprotein ΔNp73α.

    Directory of Open Access Journals (Sweden)

    Rosita Accardi

    2013-03-01

    Full Text Available Many studies have proved that oncogenic viruses develop redundant mechanisms to alter the functions of the tumor suppressor p53. Here we show that Epstein-Barr virus (EBV, via the oncoprotein LMP-1, induces the expression of ΔNp73α, a strong antagonist of p53. This phenomenon is mediated by the LMP-1 dependent activation of c-Jun NH2-terminal kinase 1 (JNK-1 which in turn favours the recruitment of p73 to ΔNp73α promoter. A specific chemical inhibitor of JNK-1 or silencing JNK-1 expression strongly down-regulated ΔNp73α mRNA levels in LMP-1-containing cells. Accordingly, LMP-1 mutants deficient to activate JNK-1 did not induce ΔNp73α accumulation. The recruitment of p73 to the ΔNp73α promoter correlated with the displacement of the histone-lysine N-methyltransferase EZH2 which is part of the transcriptional repressive polycomb 2 complex. Inhibition of ΔNp73α expression in lymphoblastoid cells (LCLs led to the stimulation of apoptosis and up-regulation of a large number of cellular genes as determined by whole transcriptome shotgun sequencing (RNA-seq. In particular, the expression of genes encoding products known to play anti-proliferative/pro-apoptotic functions, as well as genes known to be deregulated in different B cells malignancy, was altered by ΔNp73α down-regulation. Together, these findings reveal a novel EBV mechanism that appears to play an important role in the transformation of primary B cells.

  4. Blood Gene Expression Predicts Bronchiolitis Obliterans Syndrome

    Directory of Open Access Journals (Sweden)

    Richard Danger

    2018-01-01

    Full Text Available Bronchiolitis obliterans syndrome (BOS, the main manifestation of chronic lung allograft dysfunction, leads to poor long-term survival after lung transplantation. Identifying predictors of BOS is essential to prevent the progression of dysfunction before irreversible damage occurs. By using a large set of 107 samples from lung recipients, we performed microarray gene expression profiling of whole blood to identify early biomarkers of BOS, including samples from 49 patients with stable function for at least 3 years, 32 samples collected at least 6 months before BOS diagnosis (prediction group, and 26 samples at or after BOS diagnosis (diagnosis group. An independent set from 25 lung recipients was used for validation by quantitative PCR (13 stables, 11 in the prediction group, and 8 in the diagnosis group. We identified 50 transcripts differentially expressed between stable and BOS recipients. Three genes, namely POU class 2 associating factor 1 (POU2AF1, T-cell leukemia/lymphoma protein 1A (TCL1A, and B cell lymphocyte kinase, were validated as predictive biomarkers of BOS more than 6 months before diagnosis, with areas under the curve of 0.83, 0.77, and 0.78 respectively. These genes allow stratification based on BOS risk (log-rank test p < 0.01 and are not associated with time posttransplantation. This is the first published large-scale gene expression analysis of blood after lung transplantation. The three-gene blood signature could provide clinicians with new tools to improve follow-up and adapt treatment of patients likely to develop BOS.

  5. Proteomic and gene expression patterns of keratoconus

    Directory of Open Access Journals (Sweden)

    Arkasubhra Ghosh

    2013-01-01

    Full Text Available Keratoconus is a progressive corneal thinning disease associated with significant tissue remodeling activities and activation of a variety of signaling networks. However, it is not understood how differential gene and protein expression direct function in keratoconus corneas to drive the underlying pathology, ectasia. Research in the field has focused on discovering differentially expressed genes and proteins and quantifying their levels and activities in keratoconus patient samples. In this study, both microarray analysis of total ribonucleic acid (RNA and whole proteome analyses are carried out using corneal epithelium and tears from keratoconus patients and compared to healthy controls. A number of structural proteins, signaling molecules, cytokines, proteases, and enzymes have been found to be deregulated in keratoconus corneas. Together, the data provide clues to the complex process of corneal degradation which suggest novel ways to clinically diagnose and manage the disease. This review will focus on discussing these recent advances in the knowledge of keratoconus biology from a gene expression and function point-of-view.

  6. Differential expression of cell adhesion genes

    DEFF Research Database (Denmark)

    Stein, Wilfred D; Litman, Thomas; Fojo, Tito

    2005-01-01

    It is well known that tumors arising from tissues such as kidney, pancreas, liver and stomach are particularly refractory to treatment. Searching for new anticancer drugs using cells in culture has yielded some effective therapies, but these refractory tumors remain intractable. Studies that comp......It is well known that tumors arising from tissues such as kidney, pancreas, liver and stomach are particularly refractory to treatment. Searching for new anticancer drugs using cells in culture has yielded some effective therapies, but these refractory tumors remain intractable. Studies...... that compare cells grown in suspension to similar cells grown attached to one another as aggregates have suggested that it is adhesion to the extracellular matrix of the basal membrane that confers resistance to apoptosis and, hence, resistance to cytotoxins. The genes whose expression correlates with poor...... survival might, therefore, act through such a matrix-to-cell suppression of apoptosis. Indeed, correlative mining of gene expression and patient survival databases suggests that poor survival in patients with metastatic cancer correlates highly with tumor expression of a common theme: the genes involved...

  7. Engineering Vibrio fischeri for Inducible Gene Expression.

    Science.gov (United States)

    Ondrey, Jakob M; Visick, Karen L

    2014-01-01

    The marine bacterium Vibrio fischeri serves as a model organism for a variety of natural phenomena, including symbiotic host colonization. The ease with which the V. fischeri genome can be manipulated contributes greatly to our ability to identify the factors involved in these phenomena. Here, we have adapted genetic tools for use in V. fischeri to promote our ability to conditionally control the expression of genes of interest. Specifically, we modified the commonly used mini-Tn5 transposon to contain an outward-facing, LacI-repressible/IPTG-inducible promoter, and inserted the lacI gene into the V. fischeri chromosome. Used together, these tools permit the identification and induction of genes that control specific phenotypes. To validate this approach, we identified IPTG-controllable motility mutants. We anticipate that the ability to randomly insert an inducible promoter into the genome of V. fischeri will advance our understanding of various aspects of the physiology of this microbe.

  8. Analysis of gene expression in rabbit muscle

    Directory of Open Access Journals (Sweden)

    Alena Gálová

    2014-02-01

    Full Text Available Increasing consumer knowledge of the link between diet and health has raised the demand for high quality food. Meat and meat products may be considered as irreplaceable in human nutrition. Breeding livestock to higher content of lean meat and the use of modern hybrids entails problems with the quality of meat. Analysing of livestock genomes could get us a great deal of important information, which may significantly affect the improvement process. Domestic animals are invaluable resources for study of the molecular architecture of complex traits. Although the mapping of quantitative trait loci (QTL responsible for economically important traits in domestic animals has achieved remarkable results in recent decades, not all of the genetic variation in the complex traits has been captured because of the low density of markers used in QTL mapping studies. The genome wide association study (GWAS, which utilizes high-density single-nucleotide polymorphism (SNP, provides a new way to tackle this issue. New technologies now allow producing microarrays containing thousands of hybridization probes on a single membrane or other solid support. We used microarray analysis to study gene expression in rabbit muscle during different developmental age stages. The outputs from GeneSpring GX sotware are presented in this work. After the evaluation of gene expression in rabbits, will be selected genes of interest in relation to meat quality parameters and will be further analyzed by the available methods of molecular biology and genetics.

  9. Moving Toward Integrating Gene Expression Profiling into ...

    Science.gov (United States)

    Microarray profiling of chemical-induced effects is being increasingly used in medium and high-throughput formats. In this study, we describe computational methods to identify molecular targets from whole-genome microarray data using as an example the estrogen receptor α (ERα), often modulated by potential endocrine disrupting chemicals. ERα biomarker genes were identified by their consistent expression after exposure to 7 structurally-diverse ERα agonists and 3 ERα antagonists in ERα-positive MCF-7 cells. Most of the biomarker genes were shown to be directly regulated by ERα as determined by ESR1 gene knockdown using siRNA as well as through ChIP-Seq analysis of ERα-DNA interactions. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression data sets from experiments using MCF-7 cells, including those evaluating the transcriptional effects of hormones and chemicals. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% and 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) ER reference chemicals including “very weak” agonists. Importantly, the biomarker predictions accurately replicated predictions based on 18 in vitro high-throughput screening assays that queried different steps in ERα signaling. For 114 chemicals,

  10. MicroRNA-181a Regulates Apoptosis and Autophagy Process in Parkinson's Disease by Inhibiting p38 Mitogen-Activated Protein Kinase (MAPK)/c-Jun N-Terminal Kinases (JNK) Signaling Pathways.

    Science.gov (United States)

    Liu, Ying; Song, Yanfeng; Zhu, Xiaotun

    2017-04-02

    BACKGROUND microRNA (miR)-181a has been reported to be downregulated in Parkinson's disease (PD), but the regulatory mechanism of miR-181a on neuron apoptosis and autophagy is still poorly understood. We aimed to investigate the neuroprotective effects of miR-181a on PD in vitro. MATERIAL AND METHODS Human SK-N-SH neuroblastoma cells were incubated with different concentrations of 1-methyl-4-phenylpyridinium ion (MPP+) to induce the PD model. The expression of miR-181a was then analyzed. After transfection with miR-181a mimic or scramble following MPP+ treatment, the expression of autophagy protein markers (LC3II, LC3I, and Beclin 1) and p38 mitogen-activated protein kinase (MAPK)/c-Jun N-terminal kinases (JNK) signaling proteins (p-p38, p38, p-JNK, and JNK) and cell apoptosis were detected. Furthermore, the cells were transfected with miR-181a inhibitor and cultured in the presence or absence of p38 inhibitor SB203582 or JNK inhibitor SP600125, and the cell apoptosis was tested again. RESULTS The expression of miR-181a was gradually decreased with the increase of MPP+ concentration (P<0.05, P<0.01, or P<0.001). Overexpression of miR-181a significantly decreased the LC3II/LC3I ratio, Beclin 1 expression, cell apoptosis, and the expression of p-p38 and p-JNK compared to the MPP+ + miR-181a scramble group (all P<0.05). In addition, we observed that SB203582 or SP600125 showed no effects on cell apoptosis, but the effects of miR-181a inhibitor on cell apoptosis were reversed by administration of SB203582 or SP600125 compared to the scramble group (P<0.05). CONCLUSIONS Our results suggest that miR-181a regulates apoptosis and autophagy in PD by inhibiting the p38 MAPK/JNK pathway.

  11. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Tamer Z. [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbial Molecular Biology, AGERI, Agricultural Research Center, Giza 12619 (Egypt); Division of Biomedical Sciences, Zewail University, Zewail City of Science and Technology, Giza 12588 (Egypt); Zhang, Fengrui [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Thiem, Suzanne M., E-mail: smthiem@msu.edu [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States)

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  12. Gravity-Induced Gene Expression in Plants.

    Science.gov (United States)

    Sederoff, Heike; Heber, Steffen; Howard, Brian; Myburg-Nichols, Henrietta; Hammond, Rebecca; Salinas-Mondragon, Raul; Brown, Christopher S.

    Plants sense changes in their orientation towards the vector of gravity and respond with directional growth. Several metabolites in the signal transduction cascade have been identified. However, very little is known about the interaction between these sensing and signal transduction events and even less is known about their role in the differential growth response. Gravity induced changes in transcript abundance have been identified in Arabidopsis whole seedlings and root apices (Moseyko et al. 2002; Kimbrough et al. 2004). Gravity induced transcript abundance changes can be observed within less than 1 min after stimulation (Salinas-Mondragon et al. 2005). Gene expression however requires not only transcription but also translation of the mRNA. Translation can only occur when mRNA is associated with ribosomes, even though not all mRNA associated with ribosomes is actively translated. To approximate translational capacity we quantified whole genome transcript abundances in corn stem pulvini during the first hour after gravity stimulation in total and poly-ribosomal fractions. As in Arabidopsis root apices, transcript abundances of several clusters of genes responded to gravity stimulation. The vast majority of these transcripts were also found to associate with polyribosomes in the same temporal and quantitative pattern. These genes are transcriptionally regulated by gravity stimulation, but do not exhibit translational regulation. However, a small group of genes showed increased transcriptional regulation after gravity stimulation, but no association with polysomes. These transcripts likely are translationally repressed. The mechanism of translational repression for these transcripts is unknown. Based on the hypothesis that the genes essential for gravitropic responses should be expressed in most or all species, we compared the temporal gravity induced expression pattern of all orthologs identified between maize and Arabidopsis. A small group of genes showed high

  13. Gene Expression Profiling of Xeroderma Pigmentosum

    Directory of Open Access Journals (Sweden)

    Bowden Nikola A

    2006-05-01

    Full Text Available Abstract Xeroderma pigmentosum (XP is a rare recessive disorder that is characterized by extreme sensitivity to UV light. UV light exposure results in the formation of DNA damage such as cyclobutane dimers and (6-4 photoproducts. Nucleotide excision repair (NER orchestrates the removal of cyclobutane dimers and (6-4 photoproducts as well as some forms of bulky chemical DNA adducts. The disease XP is comprised of 7 complementation groups (XP-A to XP-G, which represent functional deficiencies in seven different genes, all of which are believed to be involved in NER. The main clinical feature of XP is various forms of skin cancers; however, neurological degeneration is present in XPA, XPB, XPD and XPG complementation groups. The relationship between NER and other types of DNA repair processes is now becoming evident but the exact relationships between the different complementation groups remains to be precisely determined. Using gene expression analysis we have identified similarities and differences after UV light exposure between the complementation groups XP-A, XP-C, XP-D, XP-E, XP-F, XP-G and an unaffected control. The results reveal that there is a graded change in gene expression patterns between the mildest, most similar to the control response (XP-E and the severest form (XP-A of the disease, with the exception of XP-D. Distinct differences between the complementation groups with neurological symptoms (XP-A, XP-D and XP-G and without (XP-C, XP-E and XP-F were also identified. Therefore, this analysis has revealed distinct gene expression profiles for the XP complementation groups and the first step towards understanding the neurological symptoms of XP.

  14. A Novel Dual NO-donating Oxime and c-Jun N-terminal Kinase Inhibitor Protects Against Cerebral Ischemia–Reperfusion Injury in Mice

    Science.gov (United States)

    Atochin, Dmitriy N.; Schepetkin, Igor A.; Khlebnikov, Andrei I.; Seledtsov, Victor I.; Swanson, Helen; Quinn, Mark T.; Huang, Paul L.

    2017-01-01

    The c-Jun N-terminal kinase (JNK) has been shown to be an important regulator of neuronal cell death. Previously, we synthesized the sodium salt of 11H-indeno[1,2-b]quinoxalin-11-one (IQ-1S) and demonstrated that it was a high-affinity inhibitor of the JNK family. In the present work, we found that IQ-1S could release nitric oxide (NO) during its enzymatic metabolism by liver microsomes. Moreover, serum nitrite/nitrate concentration in mice increased after intraperitoneal injection of IQ-1S. Because of these dual actions as JNK inhibitor and NO-donor, the therapeutic potential of IQ-1S was evaluated in an animal stroke model. We subjected wild-type C57BL6 mice to focal ischemia (30 minutes) with subsequent reperfusion (48 hours). Mice were treated with IQ-1S (25 mg/kg) suspended in 10% solutol or with vehicle alone 30 minutes before and 24 hours after middle cerebral artery MCA) occlusion (MCAO). Using laser-Doppler flowmetry, we monitored cerebral blood flow (CBF) above the MCA during 30 minutes of MCAO provoked by a filament and during the first 30 minutes of subsequent reperfusion. In mice treated with IQ-1S, ischemic and reperfusion values of CBF were not different from vehicle-treated mice. However, IQ-1S treated mice demonstrated markedly reduced neurological deficit and infarct volumes as compared with vehicle-treated mice after 48 hours of reperfusion. Our results indicate that the novel JNK inhibitor releases NO during its oxidoreductive bioconversion and improves stroke outcome in a mouse model of cerebral reperfusion. We conclude that IQ-1S is a promising dual functional agent for the treatment of cerebral ischemia and reperfusion injury. PMID:26923672

  15. Activation of c-Jun N-terminal kinase is essential for mitochondrial membrane potential change and apoptosis induced by doxycycline in melanoma cells

    Science.gov (United States)

    Shieh, Jiunn-Min; Huang, Tur-Fu; Hung, Chi-Feng; Chou, Kuan-Hsien; Tsai, Yih-Jeng; Wu, Wen-Bin

    2010-01-01

    Background and purpose: Tetracyclines were recently found to induce tumour cell death, but the early processes involved in this cytotoxic effect remain unclear. Experimental approach: Viability of human and mouse melanoma cells was determined by MTT assay and flow cytometry. Kinase/protein/caspase activation was measured by Western blotting and mitochondrial membrane potential (ΔΨm) was analyzed by fluorescence microscopy and flow cytometry. Key results: Human and mouse melanoma cells were treated with doxycycline or minocycline but only doxycycline was cytotoxic. This cell death (apoptosis) in A2058 cells involved activation of caspase-3, -7 and -9 and contributed to inhibition, by doxycycline, of matrix metalloproteinase (MMP) activity and migration of these cells. Doxycycline induced intra-cellular reactive oxygen species (ROS) production, apoptosis signal-regulated kinase 1 (ASK1), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) activation at an early stage of treatment and induced mitochondrial cytochrome c release into cytosol and ΔΨm change during apoptosis. The JNK inhibitor/small interference RNA inhibited doxycycline-induced JNK activation, ΔΨm change and apoptosis, but did not affect ASK1 activation, suggesting a role of ASK1 for JNK activation in melanoma cell apoptosis. Two ROS scavengers reduced doxycycline-induced JNK and caspase activation, and apoptosis. Taken together, the results suggest the involvement of a ROS-ASK1-JNK pathway in doxycycline-induced melanoma cell apoptosis. Conclusions and implications: We have shown a promising cytotoxic effect of doxycycline on melanoma cells, have identified ROS and ASK1 as the possible initiators and have demonstrated that JNK activation is necessary for doxycycline-induced melanoma cell apoptosis. PMID:20590610

  16. Antcin H Protects Against Acute Liver Injury Through Disruption of the Interaction of c-Jun-N-Terminal Kinase with Mitochondria.

    Science.gov (United States)

    Huo, Yazhen; Win, Sanda; Than, Tin Aung; Yin, Shutao; Ye, Min; Hu, Hongbo; Kaplowitz, Neil

    2017-02-10

    Antrodia Camphorate (AC) is a mushroom that is widely used in Asian countries to prevent and treat various diseases, including liver diseases. However, the active ingredients that contribute to the biological functions remain elusive. The purpose of the present study is to test the hepatoprotective effect of Antcin H, a major triterpenoid chemical isolated from AC, in murine models of acute liver injury. We found that Antcin H pretreatment protected against liver injury in both acetaminophen (APAP) and galactosamine/tumor necrosis factor (TNF)α models. More importantly, Antcin H also offered a significant protection against acetaminophen-induced liver injury when it was given 1 h after acetaminophen. The protection was verified in primary mouse hepatocytes. Antcin H prevented sustained c-Jun-N-terminal kinase (JNK) activation in both models. We excluded an effect of Antcin H on acetaminophen metabolism and TNF receptor signaling and excluded a direct effect as a free radical scavenger or JNK inhibitor. Since the sustained JNK activation through its interaction with mitochondrial Sab, leading to increased mitochondrial reactive oxygen species (ROS), is pivotal in both models, we examined the effect of Antcin H on p-JNK binding to mitochondria and impairment of mitochondrial respiration. Antcin H inhibited the direct effect of p-JNK on isolated mitochondrial function and binding to isolated mitochondria. Innovation and Conclusion: Our study has identified Antcin H as a novel active ingredient that contributes to the hepatoprotective effect of AC, and Antcin H protects against liver injury through disruption of the binding of p-JNK to Sab, which interferes with the ROS-dependent self-sustaining activation of MAPK cascade. Antioxid. Redox Signal. 26, 207-220.

  17. Cholinergic regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Kristensen, Bo; Georg, Birgitte; Fahrenkrug, Jan

    1997-01-01

    Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing......Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing...

  18. Switchable gene expression in Escherichia coli using a miniaturized photobioreactor

    National Research Council Canada - National Science Library

    Lee, Jae Myung; Lee, Junhyeong; Kim, Taesung; Lee, Sung Kuk

    2013-01-01

    We present a light-switchable gene expression system for both inducible and switchable control of gene expression at a single cell level in Escherichia coli using a previously constructed light-sensing system. The λ...

  19. The expression of a tumor suppressor gene JDP2 and its prognostic value in hepatocellular carcinoma patients.

    Science.gov (United States)

    Chen, Yao-Li; Chan, Shih-Hsuan; Lin, Ping-Yi; Chu, Pei-Yi

    2017-05-01

    The c-Jun dimerization protein 2 (JDP2) belongs to the activator protein-1 (AP-1) family and functions as a repressor of the AP-1 complex by dimerizing with other c-Jun proteins. Thus, JDP2 plays an important role in the repression of AP-1-driven biological processes, such as differentiation and proliferation. Recent studies have suggested that JDP2 may function as a tumor suppressor through its suppressive action against the AP-1 complex, which is known to drive oncogenic signals in several human malignancies. In this study, we used immunohistochemistry to examine the JDP2 expression in 211 cases of hepatocellular carcinoma (HCC) and analyzed the potential link of JDP2 expression to the clinicopathological features of HCC patients. Clinical parameter analysis showed that high expression of JDP2 was significantly correlated with smaller tumor size (P=.002) and early stage HCC (P=.039). Moreover, Kaplan-Meier survival analysis showed that high expression of JDP2 was significantly associated with better survival in HCC patients (P=.006). Taken together, our results showed that JDP2 may serve as a tumor suppressor in HCC and could therefore serve as a good prognostic marker for patients with HCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The gene expression fingerprint of human heart failure

    OpenAIRE

    Tan, Fen-Lai; Moravec, Christine S.; Li, Jianbo; Apperson-Hansen, Carolyn; McCarthy, Patrick M.; Young, James B.; Bond, Meredith

    2002-01-01

    Multiple pathways are responsible for transducing mechanical and hormonal stimuli into changes in gene expression during heart failure. In this study our goals were (i) to develop a sound statistical method to establish a comprehensive cutoff point for identification of differentially expressed genes, (ii) to identify a gene expression fingerprint for heart failure, (iii) to attempt to distinguish different etiologies of heart failure by their gene expression fingerprint, and (iv) to identify...

  1. Gene expression in developing watermelon fruit.

    Science.gov (United States)

    Wechter, W Patrick; Levi, Amnon; Harris, Karen R; Davis, Angela R; Fei, Zhangjun; Katzir, Nurit; Giovannoni, James J; Salman-Minkov, Ayelet; Hernandez, Alvaro; Thimmapuram, Jyothi; Tadmor, Yaakov; Portnoy, Vitaly; Trebitsh, Tova

    2008-06-05

    Cultivated watermelon form large fruits that are highly variable in size, shape, color, and content, yet have extremely narrow genetic diversity. Whereas a plethora of genes involved in cell wall metabolism, ethylene biosynthesis, fruit softening, and secondary metabolism during fruit development and ripening have been identified in other plant species, little is known of the genes involved in these processes in watermelon. A microarray and quantitative Real-Time PCR-based study was conducted in watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] in order to elucidate the flow of events associated with fruit development and ripening in this species. RNA from three different maturation stages of watermelon fruits, as well as leaf, were collected from field grown plants during three consecutive years, and analyzed for gene expression using high-density photolithography microarrays and quantitative PCR. High-density photolithography arrays, composed of probes of 832 EST-unigenes from a subtracted, fruit development, cDNA library of watermelon were utilized to examine gene expression at three distinct time-points in watermelon fruit development. Analysis was performed with field-grown fruits over three consecutive growing seasons. Microarray analysis identified three hundred and thirty-five unique ESTs that are differentially regulated by at least two-fold in watermelon fruits during the early, ripening, or mature stage when compared to leaf. Of the 335 ESTs identified, 211 share significant homology with known gene products and 96 had no significant matches with any database accession. Of the modulated watermelon ESTs related to annotated genes, a significant number were found to be associated with or involved in the vascular system, carotenoid biosynthesis, transcriptional regulation, pathogen and stress response, and ethylene biosynthesis. Ethylene bioassays, performed with a closely related watermelon genotype with a similar phenotype, i.e. seeded

  2. Gene expression in developing watermelon fruit

    Directory of Open Access Journals (Sweden)

    Hernandez Alvaro

    2008-06-01

    Full Text Available Abstract Background Cultivated watermelon form large fruits that are highly variable in size, shape, color, and content, yet have extremely narrow genetic diversity. Whereas a plethora of genes involved in cell wall metabolism, ethylene biosynthesis, fruit softening, and secondary metabolism during fruit development and ripening have been identified in other plant species, little is known of the genes involved in these processes in watermelon. A microarray and quantitative Real-Time PCR-based study was conducted in watermelon [Citrullus lanatus (Thunb. Matsum. & Nakai var. lanatus] in order to elucidate the flow of events associated with fruit development and ripening in this species. RNA from three different maturation stages of watermelon fruits, as well as leaf, were collected from field grown plants during three consecutive years, and analyzed for gene expression using high-density photolithography microarrays and quantitative PCR. Results High-density photolithography arrays, composed of probes of 832 EST-unigenes from a subtracted, fruit development, cDNA library of watermelon were utilized to examine gene expression at three distinct time-points in watermelon fruit development. Analysis was performed with field-grown fruits over three consecutive growing seasons. Microarray analysis identified three hundred and thirty-five unique ESTs that are differentially regulated by at least two-fold in watermelon fruits during the early, ripening, or mature stage when compared to leaf. Of the 335 ESTs identified, 211 share significant homology with known gene products and 96 had no significant matches with any database accession. Of the modulated watermelon ESTs related to annotated genes, a significant number were found to be associated with or involved in the vascular system, carotenoid biosynthesis, transcriptional regulation, pathogen and stress response, and ethylene biosynthesis. Ethylene bioassays, performed with a closely related watermelon

  3. Gene expression in first trimester preeclampsia placenta.

    Science.gov (United States)

    Founds, Sandra A; Terhorst, Lauren A; Conrad, Kirk P; Hogge, W Allen; Jeyabalan, Arun; Conley, Yvette P

    2011-04-01

    The goal of this study was to further validate eight candidate genes identified in a microarray analysis of first trimester placentas in preeclampsia. Surplus chorionic villus sampling (CVS) specimens of 4 women subsequently diagnosed with preeclampsia (PE) and 8 control women (C) without preeclampsia analyzed previously by microarray and 24 independent additional control samples (AS) were submitted for confirmatory studies by quantitative real-time polymerase chain reaction (qRT-PCR). Downregulation was significant in FSTL3 in PE as compared to C and AS (p = .04). PAEP was downregulated, but the difference was only significant between C and AS (p = .002) rather than between PE and either of the control groups. Expression levels for CFH, EPAS1, IGFBP1, MMP12, and SEMA3C were not statistically different among groups, but trends were consistent with microarray results; there was no anti-correlation. S100A8 was not measurable in all samples, probably because different probes and primers were needed. This study corroborates reduced FSTL3 expression in the first trimester of preeclampsia. Nonsignificant trends in the other genes may require follow-up in studies powered for medium or medium/large effect sizes. qRT-PCR verification of the prior microarray of CVS may support the placental origins of preeclampsia hypothesis. Replication is needed for the candidate genes as potential biomarkers of susceptibility, early detection, and/or individualized care of maternal-infant preeclampsia.

  4. Glimma: interactive graphics for gene expression analysis.

    Science.gov (United States)

    Su, Shian; Law, Charity W; Ah-Cann, Casey; Asselin-Labat, Marie-Liesse; Blewitt, Marnie E; Ritchie, Matthew E

    2017-07-01

    graphics for RNA-sequencing and microarray gene expression analyses may contain upwards of tens of thousands of points. Details about certain genes or samples of interest are easily obscured in such dense summary displays. Incorporating interactivity into summary plots would enable additional information to be displayed on demand and facilitate intuitive data exploration. The open-source Glimma package creates interactive graphics for exploring gene expression analysis with a few simple R commands. It extends popular plots found in the limma package, such as multi-dimensional scaling plots and mean-difference plots, to allow individual data points to be queried and additional annotation information to be displayed upon hovering or selecting particular points. It also offers links between plots so that more information can be revealed on demand. Glimma is widely applicable, supporting data analyses from a number of well-established Bioconductor workflows ( limma , edgeR and DESeq2 ) and uses D3/JavaScript to produce HTML pages with interactive displays that enable more effective data exploration by end-users. Results from Glimma can be easily shared between bioinformaticians and biologists, enhancing reporting capabilities while maintaining reproducibility. The Glimma R package is available from http://bioconductor.org/packages/Glimma/ . su.s@wehi.edu.au , law@wehi.edu.au or mritchie@wehi.edu.au.

  5. Differential expression of the ras gene family in mice.

    OpenAIRE

    Leon, J.; Guerrero, I; Pellicer, A

    1987-01-01

    We compared the expression of the ras gene family (H-ras, K-ras, and N-ras) in adult mouse tissues and during development. We found substantial variations in expression among different organs and in the amounts of the different transcripts originating from each gene, especially for the N-ras gene. The expression patterns were consistent with the reported preferential tissue activation of ras genes and suggested different cellular functions for each of the ras genes.

  6. Inducible gene expression systems and plant biotechnology.

    Science.gov (United States)

    Corrado, Giandomenico; Karali, Marianthi

    2009-01-01

    Plant biotechnology relies heavily on the genetic manipulation of crops. Almost invariantly, the gene of interest is expressed in a constitutive fashion, although this may not be strictly necessary for several applications. Currently, there are several regulatable expression systems for the temporal, spatial and quantitative control of transgene activity. These molecular switches are based on components derived from different organisms, which range from viruses to higher eukaryotes. Many inducible systems have been designed for fundamental and applied research and since their initial development, they have become increasingly popular in plant molecular biology. This review covers a broad number of inducible expression systems examining their properties and relevance for plant biotechnology in its various guises, from molecular breeding to pharmaceutical and industrial applications. For each system, we examine some advantages and limitations, also in relation to the strategy on which they rely. Besides being necessary to control useful genes that may negatively affect crop yield and quality, we discuss that inducible systems can be also used to increase public acceptance of GMOs, reducing some of the most common concerns. Finally, we suggest some directions and future developments for their further diffusion in agriculture and biotechnology.

  7. Studying the Complex Expression Dependences between Sets of Coexpressed Genes

    Directory of Open Access Journals (Sweden)

    Mario Huerta

    2014-01-01

    Full Text Available Organisms simplify the orchestration of gene expression by coregulating genes whose products function together in the cell. The use of clustering methods to obtain sets of coexpressed genes from expression arrays is very common; nevertheless there are no appropriate tools to study the expression networks among these sets of coexpressed genes. The aim of the developed tools is to allow studying the complex expression dependences that exist between sets of coexpressed genes. For this purpose, we start detecting the nonlinear expression relationships between pairs of genes, plus the coexpressed genes. Next, we form networks among sets of coexpressed genes that maintain nonlinear expression dependences between all of them. The expression relationship between the sets of coexpressed genes is defined by the expression relationship between the skeletons of these sets, where this skeleton represents the coexpressed genes with a well-defined nonlinear expression relationship with the skeleton of the other sets. As a result, we can study the nonlinear expression relationships between a target gene and other sets of coexpressed genes, or start the study from the skeleton of the sets, to study the complex relationships of activation and deactivation between the sets of coexpressed genes that carry out the different cellular processes present in the expression experiments.

  8. Covariance Structure Models for Gene Expression Microarray Data

    Science.gov (United States)

    Xie, Jun; Bentler, Peter M.

    2003-01-01

    Covariance structure models are applied to gene expression data using a factor model, a path model, and their combination. The factor model is based on a few factors that capture most of the expression information. A common factor of a group of genes may represent a common protein factor for the transcript of the co-expressed genes, and hence, it…

  9. SVA retrotransposons as modulators of gene expression.

    Science.gov (United States)

    Quinn, John P; Bubb, Vivien J

    2014-01-01

    Endogenous mobile genetic elements can give rise to de novo germline or somatic mutations that can have dramatic consequences for genome regulation both local and possibly more globally based on the site of integration. However if we consider them as "normal genetic" components of the reference genome then they are likely to modify local chromatin structure which would have an effect on gene regulation irrelevant of their ability to further transpose. As such they can be treated as any other domain involved in a gene × environment interaction. Similarly their evolutionary appearance in the reference genome would supply a driver for species specific responses/traits. Our recent data would suggest the hominid specific subset of retrotransposons, SINE-VNTR-Alu (SVA), can function as transcriptional regulatory domains both in vivo and in vitro when analyzed in reporter gene constructs. Of particular interest in the SVA element, were the variable number tandem repeat (VNTR) domains which as their name suggests can be polymorphic. We and others have previously shown that VNTRs can be both differential regulators and biomarkers of disease based on the genotype of the repeat. Here, we provide an overview of why polymorphism in the SVA elements, in particular the VNTRs, could alter gene expression patterns that could be mechanistically associated with different traits in evolution or disease progression in humans.

  10. Effects of Emdogain on osteoblast gene expression.

    Science.gov (United States)

    Carinci, F; Piattelli, A; Guida, L; Perrotti, V; Laino, G; Oliva, A; Annunziata, M; Palmieri, A; Pezzetti, F

    2006-05-01

    Emdogain (EMD) is a protein extract purified from porcine enamel and has been introduced in clinical practice to obtain periodontal regeneration. EMD is composed mainly of amelogenins (90%), while the remaining 10% is composed of non-amelogenin enamel matrix proteins such as enamelins, tuftelin, amelin and ameloblastin. Enamel matrix proteins seem to be involved in root formation. EMD has been reported to promote proliferation, migration, adhesion and differentiation of cells associated with healing periodontal tissues in vivo. How this protein acts on osteoblasts is poorly understood. We therefore attempted to address this question by using a microarray technique to identify genes that are differently regulated in osteoblasts exposed to enamel matrix proteins. By using DNA microarrays containing 20,000 genes, we identified several upregulated and downregulated genes in the osteoblast-like cell line (MG-63) cultured with enamel matrix proteins (Emd). The differentially expressed genes cover a broad range of functional activities: (i) signaling transduction, (ii) transcription, (iii) translation, (iv) cell cycle regulation, proliferation and apoptosis, (v) immune system, (vi) vesicular transport and lysosome activity, and (vii) cytoskeleton, cell adhesion and extracellular matrix production. The data reported are the first genome-wide scan of the effect of enamel matrix proteins on osteoblast-like cells. These results can contribute to our understanding of the molecular mechanisms of bone regeneration and as a model for comparing other materials with similar clinical effects.

  11. Inhibition of gene expression by RNase P.

    Science.gov (United States)

    Lundblad, Eirik Wasmuth; Altman, Sidney

    2010-07-31

    The ability to interfere with gene expression is of crucial importance to unravel the function of genes and is also a promising therapeutic strategy. Here we discuss methodologies for inhibition of target RNAs based on the cleavage activity of the essential enzyme, Ribonuclease P (RNase P). RNase P-mediated cleavage of target RNAs can be directed by external guide sequences (EGSs) or by the use of the catalytic M1 RNA from E. coli linked to a guide sequence (M1GSs). These are not only basic tools for functional genetic studies in prokaryotic and eukaryotic cells but also promising antibacterial, anticancer and antiviral agents. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Aberrant Gene Expression in Acute Myeloid Leukaemia

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen

    Summary Acute Myeloid Leukaemia (AML) is an aggressive cancer of the bone marrow, affecting formation of blood cells during haematopoiesis. This thesis presents investigation of AML using mRNA gene expression profiles (GEP) of samples extracted from the bone marrow of healthy and diseased subjects......-based gene-lookup webservices, called HemaExplorer and BloodSpot. These web-services support the aim of making data and analysis of haematopoietic cells from mouse and human accessible for researchers without bioinformatics expertise. Finally, in order to aid the analysis of the very limited number...... of haematopoietic progenitor cells obtainable from bone marrow aspirations, this thesis presents a method developed to investigate transcription factor binding and histone modifications by ChIP-Seq using pico-scale amounts of DNA....

  13. Gene expression profiling of cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2007-02-01

    Full Text Available Abstract Background Although the sequence of events leading to wound repair has been described at the cellular and, to a limited extent, at the protein level this process has yet to be fully elucidated. Genome wide transcriptional analysis tools promise to further define the global picture of this complex progression of events. Study Design This study was part of a placebo-controlled double-blind clinical trial in which basal cell carcinomas were treated topically with an immunomodifier – toll-like receptor 7 agonist: imiquimod. The fourteen patients with basal cell carcinoma in the placebo arm of the trial received placebo treatment consisting solely of vehicle cream. A skin punch biopsy was obtained immediately before treatment and at the end of the placebo treatment (after 2, 4 or 8 days. 17.5K cDNA microarrays were utilized to profile the biopsy material. Results Four gene signatures whose expression changed relative to baseline (before wound induction by the pre-treatment biopsy were identified. The largest group was comprised predominantly of inflammatory genes whose expression was increased throughout the study. Two additional signatures were observed which included preferentially pro-inflammatory genes in the early post-treatment biopsies (2 days after pre-treatment biopsies and repair and angiogenesis genes in the later (4 to 8 days biopsies. The fourth and smallest set of genes was down-regulated throughout the study. Early in wound healing the expression of markers of both M1 and M2 macrophages were increased, but later M2 markers predominated. Conclusion The initial response to a cutaneous wound induces powerful transcriptional activation of pro-inflammatory stimuli which may alert the host defense. Subsequently and in the absence of infection, inflammation subsides and it is replaced by angiogenesis and remodeling. Understanding this transition which may be driven by a change from a mixed macrophage population to predominately M2

  14. Network Completion for Static Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Natsu Nakajima

    2014-01-01

    Full Text Available We tackle the problem of completing and inferring genetic networks under stationary conditions from static data, where network completion is to make the minimum amount of modifications to an initial network so that the completed network is most consistent with the expression data in which addition of edges and deletion of edges are basic modification operations. For this problem, we present a new method for network completion using dynamic programming and least-squares fitting. This method can find an optimal solution in polynomial time if the maximum indegree of the network is bounded by a constant. We evaluate the effectiveness of our method through computational experiments using synthetic data. Furthermore, we demonstrate that our proposed method can distinguish the differences between two types of genetic networks under stationary conditions from lung cancer and normal gene expression data.

  15. Gene Expression in the Human Endolymphatic Sac

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Kirkeby, Svend; Vikeså, Jonas

    2015-01-01

    OBJECTIVES/HYPOTHESIS: The purpose of the present study is to explore, demonstrate, and describe the expression of genes related to the solute carrier (SLC) molecules of ion transporters in the human endolymphatic sac. STUDY DESIGN: cDNA microarrays and immunohistochemistry were used for analyses......a1 sodium-bicarbonate transporter, SLC9a2 sodium-hydrogen transporter, SLC12a3 thiazide-sensitive Na-Cl transporter, and SLC34a2 sodium-phosphate transporter. CONCLUSIONS: Several important ion transporters of the SLC family are expressed in the human endolymphatic sac, including Pendrin......, the thiazide-sensitive Na-Cl transporter, and the Na-phosphate transporter SLC34a2. The data provide a new knowledge base considering the ion-dependent metabolic mechanisms maintaining inner ear homeostasis. More specifically, the results indicate a strong similarity with the ion transportation occurring...

  16. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  17. Gut microbiota, host gene expression, and aging.

    Science.gov (United States)

    Patrignani, Paola; Tacconelli, Stefania; Bruno, Annalisa

    2014-01-01

    Novel concepts of disease susceptibility and development suggest an important role of gastrointestinal microbiota and microbial pathogens. They can contribute to physiological systems and disease processes, even outside of the gastrointestinal tract. There is increasing evidence that genetics of the host influence and interact with gut microbiota. Moreover, aging-associated oxidative stress may cause morphologic alterations of bacterial cells, thus influencing the aggressive potential and virulence markers of an anaerobic bacterium and finally the type of interaction with the host. At the same time, microbiota may influence host gene expression and it is becoming apparent that it may occur through the regulation of microRNAs. They are short single-stranded noncoding RNAs that regulate posttranscriptional gene expression by affecting mRNA stability and/or translational repression of their target mRNAs. The introduction of -omics approaches (such as metagenomics, metaproteomics, and metatranscriptomics) in microbiota research will certainly advance our knowledge of this area. This will lead to greatly deepen our understanding of the molecular targets in the homeostatic interaction between the gut microbiota and the host and, thereby, promises to reveal new ways to treat diseases and maintain health.

  18. JNK1/2 Activation by an Extract from the Roots of Morus alba L. Reduces the Viability of Multidrug-Resistant MCF-7/Dox Cells by Inhibiting YB-1-Dependent MDR1 Expression

    Directory of Open Access Journals (Sweden)

    Youn Kyung Choi

    2013-01-01

    Full Text Available Cancer cells acquire anticancer drug resistance during chemotherapy, which aggravates cancer disease. MDR1 encoded from multidrug resistance gene 1 mainly causes multidrug resistance phenotypes of different cancer cells. In this study, we demonstrate that JNK1/2 activation by an extract from the root of Morus alba L. (White mulberry reduces doxorubicin-resistant MCF-7/Dox cell viability by inhibiting YB-1 regulation of MDR1 gene expression. When MCF-7 or MCF-7/Dox cells, where MDR1 is highly expressed were treated with an extract from roots or leaves of Morus alba L., respectively, the root extract from the mulberry (REM but not the leaf extract (LEM reduced cell viabilities of both MCF-7 and MCF-7/Dox cells, which was enhanced by cotreatment with doxorubicin. REM but not LEM further inhibited YB-1 nuclear translocation and its regulation of MDR1 gene expression. Moreover, REM promoted phosphorylation of c-Jun NH2-terminal kinase 1/2 (JNK1/2 and JNK1/2 inhibitor, SP600125 and rescued REM inhibition of both MDR1 expression and viabilities in MCF-7/Dox cells. Consistently, overexpression of JNK1, c-Jun, or c-Fos inhibited YB-1-dependent MDR1 expression and reduced viabilities in MCF-7/Dox cells. In conclusion, our data indicate that REM-activated JNK-cJun/c-Fos pathway decreases the viability of MCF-7/Dox cells by inhibiting YB-1-dependent MDR1 gene expression. Thus, we suggest that REM may be useful for treating multidrug-resistant cancer cells.

  19. Interactive visualization of gene regulatory networks with associated gene expression time series data

    NARCIS (Netherlands)

    Westenberg, Michel A.; Hijum, Sacha A.F.T. van; Lulko, Andrzej T.; Kuipers, Oscar P.; Roerdink, Jos B.T.M.; Linsen, L; Hagen, H; Hamann, B

    2008-01-01

    We present GENeVis, an application to visualize gene expression time series data in a gene regulatory network context. This is a network of regulator proteins that regulate the expression of their respective target genes. The networks are represented as graphs, in which the nodes represent genes,

  20. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes...

  1. Predicting cellular growth from gene expression signatures.

    Directory of Open Access Journals (Sweden)

    Edoardo M Airoldi

    2009-01-01

    Full Text Available Maintaining balanced growth in a changing environment is a fundamental systems-level challenge for cellular physiology, particularly in microorganisms. While the complete set of regulatory and functional pathways supporting growth and cellular proliferation are not yet known, portions of them are well understood. In particular, cellular proliferation is governed by mechanisms that are highly conserved from unicellular to multicellular organisms, and the disruption of these processes in metazoans is a major factor in the development of cancer. In this paper, we develop statistical methodology to identify quantitative aspects of the regulatory mechanisms underlying cellular proliferation in Saccharomyces cerevisiae. We find that the expression levels of a small set of genes can be exploited to predict the instantaneous growth rate of any cellular culture with high accuracy. The predictions obtained in this fashion are robust to changing biological conditions, experimental methods, and technological platforms. The proposed model is also effective in predicting growth rates for the related yeast Saccharomyces bayanus and the highly diverged yeast Schizosaccharomyces pombe, suggesting that the underlying regulatory signature is conserved across a wide range of unicellular evolution. We investigate the biological significance of the gene expression signature that the predictions are based upon from multiple perspectives: by perturbing the regulatory network through the Ras/PKA pathway, observing strong upregulation of growth rate even in the absence of appropriate nutrients, and discovering putative transcription factor binding sites, observing enrichment in growth-correlated genes. More broadly, the proposed methodology enables biological insights about growth at an instantaneous time scale, inaccessible by direct experimental methods. Data and tools enabling others to apply our methods are available at http://function.princeton.edu/growthrate.

  2. Lower susceptibility of female mice to acetaminophen hepatotoxicity: Role of mitochondrial glutathione, oxidant stress and c-jun N-terminal kinase

    Energy Technology Data Exchange (ETDEWEB)

    Du, Kuo; Williams, C. David; McGill, Mitchell R.; Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu

    2014-11-15

    Acetaminophen (APAP) overdose causes severe hepatotoxicity in animals and humans. However, the mechanisms underlying the gender differences in susceptibility to APAP overdose in mice have not been clarified. In our study, APAP (300 mg/kg) caused severe liver injury in male mice but 69–77% lower injury in females. No gender difference in metabolic activation of APAP was found. Hepatic glutathione (GSH) was rapidly depleted in both genders, while GSH recovery in female mice was 2.6 fold higher in the mitochondria at 4 h, and 2.5 and 3.3 fold higher in the total liver at 4 h and 6 h, respectively. This faster recovery of GSH, which correlated with greater induction of glutamate-cysteine ligase, attenuated mitochondrial oxidative stress in female mice, as suggested by a lower GSSG/GSH ratio at 6 h (3.8% in males vs. 1.4% in females) and minimal centrilobular nitrotyrosine staining. While c-jun N-terminal kinase (JNK) activation was similar at 2 and 4 h post-APAP, it was 3.1 fold lower at 6 h in female mice. However, female mice were still protected by the JNK inhibitor SP600125. 17β-Estradiol pretreatment moderately decreased liver injury and oxidative stress in male mice without affecting GSH recovery. Conclusion: The lower susceptibility of female mice is achieved by the improved detoxification of reactive oxygen due to accelerated recovery of mitochondrial GSH levels, which attenuates late JNK activation and liver injury. However, even the reduced injury in female mice was still dependent on JNK. While 17β-estradiol partially protects male mice, it does not affect hepatic GSH recovery. - Highlights: • Female mice are less susceptible to acetaminophen overdose than males. • GSH depletion and protein adduct formation are similar in both genders. • Recovery of hepatic GSH levels is faster in females and correlates with Gclc. • Reduced oxidant stress in females leads to reduced JNK activation. • JNK activation and mitochondrial translocation are critical

  3. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    Science.gov (United States)

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  4. Identification of human HK genes and gene expression regulation study in cancer from transcriptomics data analysis.

    Science.gov (United States)

    Chen, Meili; Xiao, Jingfa; Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer.

  5. Analysis of multiplex gene expression maps obtained by voxelation

    Directory of Open Access Journals (Sweden)

    Smith Desmond J

    2009-04-01

    Full Text Available Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. Results To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in

  6. Identifying gene expression modules that define human cell fates

    OpenAIRE

    Germanguz, I; Listgarten, J; Cinkornpumin, J.; Solomon, A; Gaeta, X.; Lowry, W. E.

    2016-01-01

    Using a compendium of cell-state-specific gene expression data, we identified genes that uniquely define cell states, including those thought to represent various developmental stages. Our analysis sheds light on human cell fate through the identification of core genes that are altered over several developmental milestones, and across regional specification. Here we present cell-type specific gene expression data for 17 distinct cell states and demonstrate that these modules of genes can in f...

  7. Unsupervised fuzzy pattern discovery in gene expression data.

    Science.gov (United States)

    Wu, Gene P K; Chan, Keith C C; Wong, Andrew K C

    2011-01-01

    Discovering patterns from gene expression levels is regarded as a classification problem when tissue classes of the samples are given and solved as a discrete-data problem by discretizing the expression levels of each gene into intervals maximizing the interdependence between that gene and the class labels. However, when class information is unavailable, discovering gene expression patterns becomes difficult. For a gene pool with large number of genes, we first cluster the genes into smaller groups. In each group, we use the representative gene, one with highest interdependence with others in the group, to drive the discretization of the gene expression levels of other genes. Treating intervals as discrete events, association patterns of events can be discovered. If the gene groups obtained are crisp gene clusters, significant patterns overlapping different gene clusters cannot be found. This paper presents a new method of "fuzzifying" the crisp gene clusters to overcome such problem. To evaluate the effectiveness of our approach, we first apply the above described procedure on a synthetic data set and then a gene expression data set with known class labels. The class labels are not being used in both analyses but used later as the ground truth in a classificatory problem for assessing the algorithm's effectiveness in fuzzy gene clustering and discretization. The results show the efficacy of the proposed method. The existence of correlation among continuous valued gene expression levels suggests that certain genes in the gene groups have high interdependence with other genes in the group. Fuzzification of a crisp gene cluster allows the cluster to take in genes from other clusters so that overlapping relationship among gene clusters could be uncovered. Hence, previously unknown hidden patterns resided in overlapping gene clusters are discovered. From the experimental results, the high order patterns discovered reveal multiple gene interaction patterns in cancerous

  8. Characterizing Gene Expressions Based on Their Temporal Observations

    Directory of Open Access Journals (Sweden)

    Jiuzhou Song

    2009-01-01

    Full Text Available Temporal gene expression data are of particular interest to researchers as they contain rich information in characterization of gene function and have been widely used in biomedical studies. However, extracting information and identifying efficient treatment effects without loss of temporal information are still in problem. In this paper, we propose a method of classifying temporal gene expression curves in which individual expression trajectory is modeled as longitudinal data with changeable variance and covariance structure. The method, mainly based on generalized mixed model, is illustrated by a dense temporal gene expression data in bacteria. We aimed at evaluating gene effects and treatments. The power and time points of measurements are also characterized via the longitudinal mixed model. The results indicated that the proposed methodology is promising for the analysis of temporal gene expression data, and that it could be generally applicable to other high-throughput temporal gene expression analyses.

  9. Codon usage and amino acid usage influence genes expression level.

    Science.gov (United States)

    Paul, Prosenjit; Malakar, Arup Kumar; Chakraborty, Supriyo

    2018-02-01

    Highly expressed genes in any species differ in the usage frequency of synonymous codons. The relative recurrence of an event of the favored codon pair (amino acid pairs) varies between gene and genomes due to varying gene expression and different base composition. Here we propose a new measure for predicting the gene expression level, i.e., codon plus amino bias index (CABI). Our approach is based on the relative bias of the favored codon pair inclination among the genes, illustrated by analyzing the CABI score of the Medicago truncatula genes. CABI showed strong correlation with all other widely used measures (CAI, RCBS, SCUO) for gene expression analysis. Surprisingly, CABI outperforms all other measures by showing better correlation with the wet-lab data. This emphasizes the importance of the neighboring codons of the favored codon in a synonymous group while estimating the expression level of a gene.

  10. ATF3 upregulation in glia during Wallerian degeneration: differential expression in peripheral nerves and CNS white matter

    Directory of Open Access Journals (Sweden)

    Coffin Robert S

    2004-03-01

    Full Text Available Abstract Background Many changes in gene expression occur in distal stumps of injured nerves but the transcriptional control of these events is poorly understood. We have examined the expression of the transcription factors ATF3 and c-Jun by non-neuronal cells during Wallerian degeneration following injury to sciatic nerves, dorsal roots and optic nerves of rats and mice, using immunohistochemistry and in situ hybridization. Results Following sciatic nerve injury – transection or transection and reanastomosis – ATF3 was strongly upregulated by endoneurial, but not perineurial cells, of the distal stumps of the nerves by 1 day post operation (dpo and remained strongly expressed in the endoneurium at 30 dpo when axonal regeneration was prevented. Most ATF3+ cells were immunoreactive for the Schwann cell marker, S100. When the nerve was transected and reanastomosed, allowing regeneration of axons, most ATF3 expression had been downregulated by 30 dpo. ATF3 expression was weaker in the proximal stumps of the injured nerves than in the distal stumps and present in fewer cells at all times after injury. ATF3 was upregulated by endoneurial cells in the distal stumps of injured neonatal rat sciatic nerves, but more weakly than in adult animals. ATF3 expression in transected sciatic nerves of mice was similar to that in rats. Following dorsal root injury in adult rats, ATF3 was upregulated in the part of the root between the lesion and the spinal cord (containing Schwann cells, beginning at 1 dpo, but not in the dorsal root entry zone or in the degenerating dorsal column of the spinal cord. Following optic nerve crush in adult rats, ATF3 was found in some cells at the injury site and small numbers of cells within the optic nerve displayed weak immunoreactivity. The pattern of expression of c-Jun in all types of nerve injury was similar to that of ATF3. Conclusion These findings raise the possibility that ATF3/c-Jun heterodimers may play a role in

  11. Aberrant Gene Expression in Acute Myeloid Leukaemia

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen

    Acute Myeloid Leukaemia (AML) is an aggressive cancer of the bone marrow, affecting formation of blood cells during haematopoiesis. This thesis presents investigation of AML using mRNA gene expression profiles (GEP) of samples extracted from the bone marrow of healthy and diseased subjects. Here......-lookup webservices, called HemaExplorer and BloodSpot. These web-services support the aim of making data and analysis of haematopoietic cells from mouse and human accessible for researchers without bioinformatics expertise. Finally, in order to aid the analysis of the very limited number of haematopoietic progenitor...... cells obtainable from bone marrow aspirations, this thesis presents a method developed to investigate transcription factor binding and histone modifications by ChIP-Seq using pico-scale amounts of DNA....

  12. Synonymous codons influencing gene expression in organisms

    Directory of Open Access Journals (Sweden)

    Mitra S

    2016-12-01

    Full Text Available Sutanuka Mitra,1 Suvendra Kumar Ray,2 Rajat Banerjee1 1Department of Biotechnology, University of Calcutta, Kolkata, West Bengal, 2Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam, India Abstract: Nowadays, it is beyond doubt that synonymous codons are not the same with respect to expression of a gene. In favor of this, ribosome profiling experiments in vivo and in vitro have suggested that ribosome occupancy time is not the same for different synonymous codons. Therefore, synonymous codons influence differently the speed of translation elongation, which guides further cotranslational folding kinetics of a protein. It is now realized that the position of each codon in a coding sequence is important. The effect of synonymous codons on protein structure is an exciting field of research nowadays. This review discusses the recent developments in this field. Keywords: codon usage bias, synonymous codons, ribosome profiling, cotranslational protein folding, protein structure

  13. Isolation and expression analysis of LEA genes in peanut

    Indian Academy of Sciences (India)

    In order to isolate peanut genes, an expressed sequence tag (EST) sequencing project was carried out using a peanut seed cDNA library. From 6258 ESTs, 19 LEA-encoding genes were identified and could be classified into eight distinct groups. Expression of these genes in seeds at different developmental stages and in ...

  14. Global analysis of patterns of gene expression during Drosophila embryogenesis.

    Science.gov (United States)

    Tomancak, Pavel; Berman, Benjamin P; Beaton, Amy; Weiszmann, Richard; Kwan, Elaine; Hartenstein, Volker; Celniker, Susan E; Rubin, Gerald M

    2007-01-01

    Cell and tissue specific gene expression is a defining feature of embryonic development in multi-cellular organisms. However, the range of gene expression patterns, the extent of the correlation of expression with function, and the classes of genes whose spatial expression are tightly regulated have been unclear due to the lack of an unbiased, genome-wide survey of gene expression patterns. We determined and documented embryonic expression patterns for 6,003 (44%) of the 13,659 protein-coding genes identified in the Drosophila melanogaster genome with over 70,000 images and controlled vocabulary annotations. Individual expression patterns are extraordinarily diverse, but by supplementing qualitative in situ hybridization data with quantitative microarray time-course data using a hybrid clustering strategy, we identify groups of genes with similar expression. Of 4,496 genes with detectable expression in the embryo, 2,549 (57%) fall into 10 clusters representing broad expression patterns. The remaining 1,947 (43%) genes fall into 29 clusters representing restricted expression, 20% patterned as early as blastoderm, with the majority restricted to differentiated cell types, such as epithelia, nervous system, or muscle. We investigate the relationship between expression clusters and known molecular and cellular-physiological functions. Nearly 60% of the genes with detectable expression exhibit broad patterns reflecting quantitative rather than qualitative differences between tissues. The other 40% show tissue-restricted expression; the expression patterns of over 1,500 of these genes are documented here for the first time. Within each of these categories, we identified clusters of genes associated with particular cellular and developmental functions.

  15. Dissecting specific and global transcriptional regulation of bacterial gene expression

    NARCIS (Netherlands)

    Gerosa, Luca; Kochanowski, Karl; Heinemann, Matthias; Sauer, Uwe

    Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional-but often neglected-layer of complexity in gene expression. Here, we develop an

  16. Expression regulation of design process gene in product design

    DEFF Research Database (Denmark)

    Li, Bo; Fang, Lusheng; Li, Bo

    2011-01-01

    is proposed and analyzed, as well as its three categories i.e., the operator gene, the structural gene and the regulator gene. Second, the trigger mechanism that design objectives and constraints trigger the operator gene is constructed. Third, the expression principle of structural gene is analyzed...... with the example of design management gene. Last, the regulation mode that the regulator gene regulates the expression of the structural gene is established and it is illustrated by taking the design process management gene as an example. © (2011) Trans Tech Publications.......To improve the design process efficiency, this paper proposes the principle and methodology that design process gene controls the characteristics of design process under the framework of design process reuse and optimization based on design process gene. First, the concept of design process gene...

  17. Conservation of regional gene expression in mouse and human brain.

    Directory of Open Access Journals (Sweden)

    Andrew D Strand

    2007-04-01

    Full Text Available Many neurodegenerative diseases have a hallmark regional and cellular pathology. Gene expression analysis of healthy tissues may provide clues to the differences that distinguish resistant and sensitive tissues and cell types. Comparative analysis of gene expression in healthy mouse and human brain provides a framework to explore the ability of mice to model diseases of the human brain. It may also aid in understanding brain evolution and the basis for higher order cognitive abilities. Here we compare gene expression profiles of human motor cortex, caudate nucleus, and cerebellum to one another and identify genes that are more highly expressed in one region relative to another. We separately perform identical analysis on corresponding brain regions from mice. Within each species, we find that the different brain regions have distinctly different expression profiles. Contrasting between the two species shows that regionally enriched genes in one species are generally regionally enriched genes in the other species. Thus, even when considering thousands of genes, the expression ratios in two regions from one species are significantly correlated with expression ratios in the other species. Finally, genes whose expression is higher in one area of the brain relative to the other areas, in other words genes with patterned expression, tend to have greater conservation of nucleotide sequence than more widely expressed genes. Together these observations suggest that region-specific genes have been conserved in the mammalian brain at both the sequence and gene expression levels. Given the general similarity between patterns of gene expression in healthy human and mouse brains, we believe it is reasonable to expect a high degree of concordance between microarray phenotypes of human neurodegenerative diseases and their mouse models. Finally, these data on very divergent species provide context for studies in more closely related species that address

  18. Validating internal controls for quantitative plant gene expression studies

    Directory of Open Access Journals (Sweden)

    Brunner Amy M

    2004-08-01

    Full Text Available Abstract Background Real-time reverse transcription PCR (RT-PCR has greatly improved the ease and sensitivity of quantitative gene expression studies. However, accurate measurement of gene expression with this method relies on the choice of a valid reference for data normalization. Studies rarely verify that gene expression levels for reference genes are adequately consistent among the samples used, nor compare alternative genes to assess which are most reliable for the experimental conditions analyzed. Results Using real-time RT-PCR to study the expression of 10 poplar (genus Populus housekeeping genes, we demonstrate a simple method for determining the degree of stability of gene expression over a set of experimental conditions. Based on a traditional method for analyzing the stability of varieties in plant breeding, it defines measures of gene expression stability from analysis of variance (ANOVA and linear regression. We found that the potential internal control genes differed widely in their expression stability over the different tissues, developmental stages and environmental conditions studied. Conclusion Our results support that quantitative comparisons of candidate reference genes are an important part of real-time RT-PCR studies that seek to precisely evaluate variation in gene expression. The method we demonstrated facilitates statistical and graphical evaluation of gene expression stability. Selection of the best reference gene for a given set of experimental conditions should enable detection of biologically significant changes in gene expression that are too small to be revealed by less precise methods, or when highly variable reference genes are unknowingly used in real-time RT-PCR experiments.

  19. Validating internal controls for quantitative plant gene expression studies.

    Science.gov (United States)

    Brunner, Amy M; Yakovlev, Igor A; Strauss, Steven H

    2004-08-18

    Real-time reverse transcription PCR (RT-PCR) has greatly improved the ease and sensitivity of quantitative gene expression studies. However, accurate measurement of gene expression with this method relies on the choice of a valid reference for data normalization. Studies rarely verify that gene expression levels for reference genes are adequately consistent among the samples used, nor compare alternative genes to assess which are most reliable for the experimental conditions analyzed. Using real-time RT-PCR to study the expression of 10 poplar (genus Populus) housekeeping genes, we demonstrate a simple method for determining the degree of stability of gene expression over a set of experimental conditions. Based on a traditional method for analyzing the stability of varieties in plant breeding, it defines measures of gene expression stability from analysis of variance (ANOVA) and linear regression. We found that the potential internal control genes differed widely in their expression stability over the different tissues, developmental stages and environmental conditions studied. Our results support that quantitative comparisons of candidate reference genes are an important part of real-time RT-PCR studies that seek to precisely evaluate variation in gene expression. The method we demonstrated facilitates statistical and graphical evaluation of gene expression stability. Selection of the best reference gene for a given set of experimental conditions should enable detection of biologically significant changes in gene expression that are too small to be revealed by less precise methods, or when highly variable reference genes are unknowingly used in real-time RT-PCR experiments.

  20. Identification of context-specific gene regulatory networks with GEMULA--Gene Expression Modeling Using LAsso

    NARCIS (Netherlands)

    Geeven, G.; van Kesteren, R.E.; Smit, A.B.; de Gunst, M.C.M.

    2012-01-01

    Motivation: Gene regulatory networks, in which edges between nodes describe interactions between transcriptional regulators and their target genes, determine the coordinated spatiotemporal expression of genes. Especially in higher organisms, context-specific combinatorial regulation by transcription

  1. Classification of topological domains based on gene expression and regulation.

    Science.gov (United States)

    Zhao, Jingjing; Shi, Hongbo; Ahituv, Nadav

    2013-07-01

    Tissue-specific gene expression is thought to be one of the major forces shaping mammalian gene order. A recent study that used whole-genome chromosome conformation assays has shown that the mammalian genome is divided into specific topological domains that are shared between different tissues and organisms. Here, we wanted to assess whether gene expression and regulation are involved in shaping these domains and can be used to classify them. We analyzed gene expression and regulation levels in these domains by using RNA-seq and enhancer-associated ChIP-seq datasets for 17 different mouse tissues. We found 162 domains that are active (high gene expression and regulation) in all 17 tissues. These domains are significantly shorter, contain less repeats, and have more housekeeping genes. In contrast, we found 29 domains that are inactive (low gene expression and regulation) in all analyzed tissues and are significantly longer, have more repeats, and gene deserts. Tissue-specific active domains showed some correlation with tissue-type and gene ontology. Domain temporal gene regulation and expression differences also displayed some gene ontology terms fitting their temporal function. Combined, our results provide a catalog of shared and tissue-specific topological domains and suggest that gene expression and regulation could have a role in shaping them.

  2. Expression profiles for six zebrafish genes during gonadal sex differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Morthorst, Jane Ebsen; Andersen, Ole

    2008-01-01

    BACKGROUND: The mechanism of sex determination in zebrafish is largely unknown and neither sex chromosomes nor a sex-determining gene have been identified. This indicates that sex determination in zebrafish is mediated by genetic signals from autosomal genes. The aim of this study was to determine...... the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. RESULTS...... "female" genes (fig alpha and cyp19a1a). When comparing all five genes with expected sex related expression 56% show expression expected for either male or female. Furthermore, the expression of all genes was investigated in different tissue of adult male and female zebrafish. CONCLUSION: In zebrafish...

  3. Expression profiling identifies genes involved in emphysema severity

    Directory of Open Access Journals (Sweden)

    Bowman Rayleen V

    2009-09-01

    Full Text Available Abstract Chronic obstructive pulmonary disease (COPD is a major public health problem. The aim of this study was to identify genes involved in emphysema severity in COPD patients. Gene expression profiling was performed on total RNA extracted from non-tumor lung tissue from 30 smokers with emphysema. Class comparison analysis based on gas transfer measurement was performed to identify differentially expressed genes. Genes were then selected for technical validation by quantitative reverse transcriptase-PCR (qRT-PCR if also represented on microarray platforms used in previously published emphysema studies. Genes technically validated advanced to tests of biological replication by qRT-PCR using an independent test set of 62 lung samples. Class comparison identified 98 differentially expressed genes (p p Gene expression profiling of lung from emphysema patients identified seven candidate genes associated with emphysema severity including COL6A3, SERPINF1, ZNHIT6, NEDD4, CDKN2A, NRN1 and GSTM3.

  4. Automated discovery of functional generality of human gene expression programs.

    Directory of Open Access Journals (Sweden)

    Georg K Gerber

    2007-08-01

    Full Text Available An important research problem in computational biology is the identification of expression programs, sets of co-expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of these programs. The use of human expression data compendia for discovery of such programs presents several challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples, uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram, a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data, we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-kappaB transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to infection will be useful for guiding future biological experiments; genes from programs with low generality scores might serve as new drug targets that exhibit minimal

  5. Comparative gene expression analysis of murine retina and brain.

    Science.gov (United States)

    Hackam, Abigail S; Qian, Jiang; Liu, Dongmei; Gunatilaka, Tushara; Farkas, Ronald H; Chowers, Itay; Kageyama, Masaaki; Parmigiani, Giovanni; Zack, Donald J

    2004-08-31

    Several high-throughput studies have described gene expression in the central nervous system (CNS), and recently there has been increasing interest in analyzing how gene expression compares in different regions of the CNS. As the retina is often used as a model system to study CNS development and function, we compared retina and brain gene expression using microarray analyses. Mouse retina, brain and liver RNA was hybridized to a custom cDNA microarray containing 5,376 genes and ESTs, and the data from the quantified scanned images were analyzed using Bioconductor and SAM. Preferential retina expression was confirmed by real-time PCR. The cellular distribution of genes newly identified as retina enriched genes was determined by immunohistochemistry. Using stringent statistical analyses we identified 733 genes that were preferentially expressed in retina and 389 in brain. The retina-liver hybridizations identified an additional 837 retina enriched genes. The cellular distribution in the retina was determined for two genes that had not previously been reported to be expressed in the retina, the transcription regulatory proteins EWS and PCPB1. Both proteins were found primarily in the inner nuclear layer. Finally, a comparison of the microarray data to publicly available SAGE and EST library databases demonstrated only limited overlap of the sets of retina enriched genes identified by the different methodologies. The preferential retinal expression of a subset of genes from the microarray, which were not identified as differentially expressed by other methods, was confirmed by quantitative PCR. The finding of differences in the groups of identified retina enriched genes from the various profiling techniques supports the use of multiple approaches to obtain a more complete description of retinal gene expression. Characterization of gene expression profiles of retina and brain may facilitate the understanding of the processes that underlie differences between the retina

  6. [Construction of eucaryotic expression plasmid carrying the BMP7 gene and expression in mesenchymal stem cells].

    Science.gov (United States)

    Hou, Shu-xun; Sun, Da-ming; Du, Gui-xin; Tong, Yi-gang; Fu, Xiao-bing

    2003-06-01

    To construct an eucaryotic expression plasmid carrying the BMP7 gene and express in MSCs. The BMP7 gene was cloned into the eucaryotic expression vector pcDNA3.1. At the same time, mesenchymal stem cells (MSCs) were isolated and cultured in vitro. The plasmid carrying the BMP7 gene was transfected into MSCs. PCR and digesting demonstrated that the eucaryotic expression plasmid -pcDNA-BMP7 was obtained. RT-PCR and immunohistochemical methods showed that the BMP7 gene was expressed in MSCs. Construction of an eucaryotic expression plasmid carrying BMP7 gene and expression in MSCs provide a sound basis for gene therapy using the BMP7 gene and the ideal seeds for tissue engineering.

  7. Tethering of the conserved piggyBac transposase fusion protein CSB-PGBD3 to chromosomal AP-1 proteins regulates expression of nearby genes in humans.

    Directory of Open Access Journals (Sweden)

    Lucas T Gray

    2012-09-01

    Full Text Available The CSB-PGBD3 fusion protein arose more than 43 million years ago when a 2.5-kb piggyBac 3 (PGBD3 transposon inserted into intron 5 of the Cockayne syndrome Group B (CSB gene in the common ancestor of all higher primates. As a result, full-length CSB is now coexpressed with an abundant CSB-PGBD3 fusion protein by alternative splicing of CSB exons 1-5 to the PGBD3 transposase. An internal deletion of the piggyBac transposase ORF also gave rise to 889 dispersed, 140-bp MER85 elements that were mobilized in trans by PGBD3 transposase. The CSB-PGBD3 fusion protein binds MER85s in vitro and induces a strong interferon-like innate antiviral immune response when expressed in CSB-null UVSS1KO cells. To explore the connection between DNA binding and gene expression changes induced by CSB-PGBD3, we investigated the genome-wide DNA binding profile of the fusion protein. CSB-PGBD3 binds to 363 MER85 elements in vivo, but these sites do not correlate with gene expression changes induced by the fusion protein. Instead, CSB-PGBD3 is enriched at AP-1, TEAD1, and CTCF motifs, presumably through protein-protein interactions with the cognate transcription factors; moreover, recruitment of CSB-PGBD3 to AP-1 and TEAD1 motifs correlates with nearby genes regulated by CSB-PGBD3 expression in UVSS1KO cells and downregulated by CSB rescue of mutant CS1AN cells. Consistent with these data, the N-terminal CSB domain of the CSB-PGBD3 fusion protein interacts with the AP-1 transcription factor c-Jun and with RNA polymerase II, and a chimeric CSB-LacI construct containing only the N-terminus of CSB upregulates many of the genes induced by CSB-PGBD3. We conclude that the CSB-PGBD3 fusion protein substantially reshapes the transcriptome in CS patient CS1AN and that continued expression of the CSB-PGBD3 fusion protein in the absence of functional CSB may affect the clinical presentation of CS patients by directly altering the transcriptional program.

  8. Tethering of the Conserved piggyBac Transposase Fusion Protein CSB-PGBD3 to Chromosomal AP-1 Proteins Regulates Expression of Nearby Genes in Humans

    Science.gov (United States)

    Gray, Lucas T.; Fong, Kimberly K.; Pavelitz, Thomas; Weiner, Alan M.

    2012-01-01

    The CSB-PGBD3 fusion protein arose more than 43 million years ago when a 2.5-kb piggyBac 3 (PGBD3) transposon inserted into intron 5 of the Cockayne syndrome Group B (CSB) gene in the common ancestor of all higher primates. As a result, full-length CSB is now coexpressed with an abundant CSB-PGBD3 fusion protein by alternative splicing of CSB exons 1–5 to the PGBD3 transposase. An internal deletion of the piggyBac transposase ORF also gave rise to 889 dispersed, 140-bp MER85 elements that were mobilized in trans by PGBD3 transposase. The CSB-PGBD3 fusion protein binds MER85s in vitro and induces a strong interferon-like innate antiviral immune response when expressed in CSB-null UVSS1KO cells. To explore the connection between DNA binding and gene expression changes induced by CSB-PGBD3, we investigated the genome-wide DNA binding profile of the fusion protein. CSB-PGBD3 binds to 363 MER85 elements in vivo, but these sites do not correlate with gene expression changes induced by the fusion protein. Instead, CSB-PGBD3 is enriched at AP-1, TEAD1, and CTCF motifs, presumably through protein–protein interactions with the cognate transcription factors; moreover, recruitment of CSB-PGBD3 to AP-1 and TEAD1 motifs correlates with nearby genes regulated by CSB-PGBD3 expression in UVSS1KO cells and downregulated by CSB rescue of mutant CS1AN cells. Consistent with these data, the N-terminal CSB domain of the CSB-PGBD3 fusion protein interacts with the AP-1 transcription factor c-Jun and with RNA polymerase II, and a chimeric CSB-LacI construct containing only the N-terminus of CSB upregulates many of the genes induced by CSB-PGBD3. We conclude that the CSB-PGBD3 fusion protein substantially reshapes the transcriptome in CS patient CS1AN and that continued expression of the CSB-PGBD3 fusion protein in the absence of functional CSB may affect the clinical presentation of CS patients by directly altering the transcriptional program. PMID:23028371

  9. The claudin gene family: expression in normal and neoplastic tissues

    OpenAIRE

    Agarwal Rachana; Hewitt Kyle J; Morin Patrice J

    2006-01-01

    Abstract Background The claudin (CLDN) genes encode a family of proteins important in tight junction formation and function. Recently, it has become apparent that CLDN gene expression is frequently altered in several human cancers. However, the exact patterns of CLDN expression in various cancers is unknown, as only a limited number of CLDN genes have been investigated in a few tumors. Methods We identified all the human CLDN genes from Genbank and we used the large public SAGE database to as...

  10. Association of tissue lineage and gene expression: conservatively and differentially expressed genes define common and special functions of tissues.

    Science.gov (United States)

    Yu, Yao; Xu, Tao; Yu, Yongtao; Hao, Pei; Li, Xuan

    2010-12-14

    Embryogenesis is the process by which the embryo is formed, develops, and establishes developmental hierarchies of tissues. The recent advance in microarray technology made it possible to investigate the tissue specific patterns of gene expression and their relationship with tissue lineages. This study is focused on how tissue specific functions, tissue lineage, and cell differentiation are correlated, which is essential to understand embryonic development and organism complexity. We performed individual gene and gene set based analysis on multiple tissue expression data, in association with the classic topology of mammalian fate maps of embryogenesis. For each sub-group of tissues on the fate map, conservatively, differentially and correlatively expressed genes or gene sets were identified. Tissue distance was found to correlate with gene expression divergence. Tissues of the ectoderm or mesoderm origins from the same segments on the fate map shared more similar expression pattern than those from different origins. Conservatively expressed genes or gene sets define common functions in a tissue group and are related to tissue specific diseases, which is supported by results from Gene Ontology and KEGG pathway analysis. Gene expression divergence is larger in certain human tissues than in the mouse homologous tissues. The results from tissue lineage and gene expression analysis indicate that common function features of neighbor tissue groups were defined by the conservatively expressed genes and were related to tissue specific diseases, and differentially expressed genes contribute to the functional divergence of tissues. The difference of gene expression divergence in human and mouse homologous tissues reflected the organism complexity, i.e. distinct neural development levels and different body sizes.

  11. Gene expression profiling of breast tumours from New Zealand patients.

    Science.gov (United States)

    Muthukaruppan, Anita; Lasham, Annette; Blenkiron, Cherie; Woad, Kathryn J; Black, Michael A; Knowlton, Nicholas; McCarthy, Nicole; Findlay, Michael P; Print, Cristin G; Shelling, Andrew N

    2017-10-27

    New Zealand has one of the highest rates of breast cancer incidence in the world. We investigated the gene expression profiles of breast tumours from New Zealand patients, compared them to gene expression profiles of international breast cancer cohorts and identified any associations between altered gene expression and the clinicopathological features of the tumours. Affymetrix microarrays were used to measure the gene expression profiles of 106 breast tumours from New Zealand patients. Gene expression data from six international breast cancer cohorts were collated, and all the gene expression data were analysed using standard bioinformatic and statistical tools. Gene expression profiles associated with tumour ER and ERBB2 status, molecular subtype and selected gene expression signatures within the New Zealand cohort were consistent with those found in international cohorts. Significant differences in clinicopathological features such as tumour grade, tumour size and lymph node status were also observed between the New Zealand and international cohorts. Gene expression profiles, which are a sensitive indicator of tumour biology, showed no clear difference between breast tumours from New Zealand patients and those from non-New Zealand patients. This suggests that other factors may contribute to the high and increasing breast cancer incidence in New Zealand compared to international populations.

  12. Piracy of prostaglandin E2/EP receptor-mediated signaling by Kaposi's sarcoma-associated herpes virus (HHV-8) for latency gene expression: strategy of a successful pathogen.

    Science.gov (United States)

    George Paul, Arun; Sharma-Walia, Neelam; Kerur, Nagaraj; White, Carl; Chandran, Bala

    2010-05-01

    Kaposi's sarcoma-associated herpes virus (KSHV) is implicated in the pathogenesis of KS, a chronic inflammation-associated malignancy. Cyclooxygenase-2 (COX-2) and its metabolite prostaglandin E2 (PGE2), two pivotal proinflammatory/oncogeneic molecules, are proposed to play roles in the expression of major KSHV latency-associated nuclear antigen-1 (LANA-1). Microsomal PGE2 synthase, PGE2, and its receptors (EP1, EP2, EP3, and EP4) were detected in KS lesions with the distinct staining of EP2/EP4 in KS lesions. In latently infected endothelial TIVE-LTC cells, EP receptor antagonists downregulated LANA-1 expression as well as Ca(2+), p-Src, p-PI3K, p-PKCzeta/lambda, and p-NF-kappaB, which are also some of the signal molecules proposed to be important in KS pathogenesis. Exogenous PGE2 and EP receptor agonists induced the LANA-1 promoter in 293 cells, and YY1, Sp1, Oct-1, Oct-6, C/EBP, and c-Jun transcription factors seem to be involved in this induction. PGE2/EP receptor-induced LANA-1 promoter activity was downregulated significantly by the inhibition of Ca(2+), p-Src, p-PI3K, p-PKCzeta/lambda, and p-NF-kappaB. These findings implicate the inflammatory PGE2/EP receptors and the associated signal molecules in herpes virus latency and uncover a novel paradigm that shows the evolution of KSHV genome plasticity to use inflammatory response for its survival advantage of maintaining latent gene expression. These data also suggest that potential use of anti-COX-2 and anti-EP receptor therapy may not only ameliorate the chronic inflammation associated with KS but could also lead to elimination of the KSHV latent infection and the associated KS lesions. (c)2010 AACR.

  13. Switchable gene expression in Escherichia coli using a miniaturized photobioreactor

    National Research Council Canada - National Science Library

    Lee, Jae Myung; Lee, Junhyeong; Kim, Taesung; Lee, Sung Kuk

    2013-01-01

    .... This system also ensures homogenous expression across the entire cell population. We also report the design of a miniaturized photobioreactor to be used in combination with the light-switchable gene expression system...

  14. Enhancement of plasmid-mediated stable gene expression by ...

    African Journals Online (AJOL)

    ARL

    2012-06-12

    Jun 12, 2012 ... Key words: Mammalian cells, plasmid vector, stable gene expression, protein therapeutics, woodchuck hepatitis ... embryonic kidney (HEK293) cell expression system, have ..... Animal cell cultures: recent achievements and.

  15. Heterologous gene expression in filamentous fungi.

    Science.gov (United States)

    Su, Xiaoyun; Schmitz, George; Zhang, Meiling; Mackie, Roderick I; Cann, Isaac K O

    2012-01-01

    Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Growth hormone receptor gene expression in puberty.

    Science.gov (United States)

    Pagani, S; Meazza, C; Gertosio, C; Bozzola, E; Bozzola, M

    2015-07-01

    The mechanisms regulating the synergic effect of growth hormone and other hormones during pubertal spurt are not completely clarified. We enrolled 64 females of Caucasian origin and normal height including 22 prepubertal girls, 26 pubertal girls, and 16 adults to evaluate the role of Growth Hormone/Insulin-like growth factor-I axis (GH/IGF-I) during the pubertal period. In these subjects both serum IGF-I and growth hormone binding protein levels, as well as quantitative growth hormone receptor (GHR) gene expression were evaluated in peripheral lymphocytes of all individuals by real-time PCR. Our results showed significantly lower IGF-I levels in women (148±10 ng/ml) and prepubertal girls (166.34±18.85 ng/ml) compared to pubertal girls (441.95±29.42 ng/ml; p<0.0001). Serum GHBP levels were significantly higher in prepubertal (127.02±20.76 ng/ml) compared to pubertal girls (16.63±2.97 ng/ml; p=0.0001) and adult women (19.95±6.65 ng/ml; p=0.0003). We also found higher GHR gene expression levels in pubertal girls [174.73±80.22 ag (growth hormone receptor)/5×10(5) ag (glyceraldehyde 3-phosphate dehydrogenase)] compared with other groups of subjects [women: 42.52±7.66 ag (growth hormone receptor)/5×10(5) ag (glyceraldehyde 3-phosphate dehydrogenase); prepubertal girls: 58.45±0.18.12 ag (growth hormone receptor)/5×10(5) ag (glyceraldehyde 3-phosphate dehydrogenase)], but the difference did not reach statistical significance. These results suggest that sexual hormones could positively influence GHR action, during the pubertal period, in a dual mode, that is, increasing GHR mRNA production and reducing GHR cleavage leading to GHBP variations. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Rhythmic diel pattern of gene expression in juvenile maize leaf.

    Directory of Open Access Journals (Sweden)

    Maciej Jończyk

    Full Text Available BACKGROUND: Numerous biochemical and physiological parameters of living organisms follow a circadian rhythm. Although such rhythmic behavior is particularly pronounced in plants, which are strictly dependent on the daily photoperiod, data on the molecular aspects of the diurnal cycle in plants is scarce and mostly concerns the model species Arabidopsis thaliana. Here we studied the leaf transcriptome in seedlings of maize, an important C4 crop only distantly related to A. thaliana, throughout a cycle of 10 h darkness and 14 h light to look for rhythmic patterns of gene expression. RESULTS: Using DNA microarrays comprising ca. 43,000 maize-specific probes we found that ca. 12% of all genes showed clear-cut diel rhythms of expression. Cluster analysis identified 35 groups containing from four to ca. 1,000 genes, each comprising genes of similar expression patterns. Perhaps unexpectedly, the most pronounced and most common (concerning the highest number of genes expression maxima were observed towards and during the dark phase. Using Gene Ontology classification several meaningful functional associations were found among genes showing similar diel expression patterns, including massive induction of expression of genes related to gene expression, translation, protein modification and folding at dusk and night. Additionally, we found a clear-cut tendency among genes belonging to individual clusters to share defined transcription factor-binding sequences. CONCLUSIONS: Co-expressed genes belonging to individual clusters are likely to be regulated by common mechanisms. The nocturnal phase of the diurnal cycle involves gross induction of fundamental biochemical processes and should be studied more thoroughly than was appreciated in most earlier physiological studies. Although some general mechanisms responsible for the diel regulation of gene expression might be shared among plants, details of the diurnal regulation of gene expression seem to differ

  18. Quantitative modeling of a gene's expression from its intergenic sequence.

    Science.gov (United States)

    Samee, Md Abul Hassan; Sinha, Saurabh

    2014-03-01

    Modeling a gene's expression from its intergenic locus and trans-regulatory context is a fundamental goal in computational biology. Owing to the distributed nature of cis-regulatory information and the poorly understood mechanisms that integrate such information, gene locus modeling is a more challenging task than modeling individual enhancers. Here we report the first quantitative model of a gene's expression pattern as a function of its locus. We model the expression readout of a locus in two tiers: 1) combinatorial regulation by transcription factors bound to each enhancer is predicted by a thermodynamics-based model and 2) independent contributions from multiple enhancers are linearly combined to fit the gene expression pattern. The model does not require any prior knowledge about enhancers contributing toward a gene's expression. We demonstrate that the model captures the complex multi-domain expression patterns of anterior-posterior patterning genes in the early Drosophila embryo. Altogether, we model the expression patterns of 27 genes; these include several gap genes, pair-rule genes, and anterior, posterior, trunk, and terminal genes. We find that the model-selected enhancers for each gene overlap strongly with its experimentally characterized enhancers. Our findings also suggest the presence of sequence-segments in the locus that would contribute ectopic expression patterns and hence were "shut down" by the model. We applied our model to identify the transcription factors responsible for forming the stripe boundaries of the studied genes. The resulting network of regulatory interactions exhibits a high level of agreement with known regulatory influences on the target genes. Finally, we analyzed whether and why our assumption of enhancer independence was necessary for the genes we studied. We found a deterioration of expression when binding sites in one enhancer were allowed to influence the readout of another enhancer. Thus, interference between enhancer

  19. Global gene expression analysis for evaluation and design of biomaterials

    Directory of Open Access Journals (Sweden)

    Nobutaka Hanagata, Taro Takemura and Takashi Minowa

    2010-01-01

    Full Text Available Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data.

  20. Global gene expression analysis for evaluation and design of biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Hanagata, Nobutaka; Takemura, Taro; Minowa, Takashi, E-mail: HANAGATA.Nobutaka@nims.go.j [Nanotechnology Innovation Center and Biomaterials Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2010-02-15

    Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data. (topical review)

  1. Transcriptomic analysis of gene expression in mice treated with troxerutin.

    Directory of Open Access Journals (Sweden)

    Yuerong Wang

    Full Text Available Troxerutin, a semi-synthetic derivative of the natural bioflavanoid rutin, has been reported to possess many beneficial effects in human bodies, such as vasoprotection, immune support, anti-inflammation and anti-aging. However, the effects of troxerutin on genome-wide transcription in blood cells are still unknown. In order to find out effects of troxerutin on gene transcription, a high-throughput RNA sequencing was employed to analysis differential gene expression in blood cells consisting of leucocytes, erythrocytes and platelets isolated from the mice received subcutaneous injection of troxerutin. Transcriptome analysis demonstrated that the expression of only fifteen genes was significantly changed by the treatment with troxerutin, among which 5 genes were up-regulated and 10 genes were down-regulated. Bioinformatic analysis of the fifteen differentially expressed genes was made by utilizing the Gene Ontology (GO, and the differential expression induced by troxerutin was further evaluated by real-time quantitative PCR (Q-PCR.

  2. Heterogeneity of premetastatic niches gene expression in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Tashireva L. A.

    2015-12-01

    Full Text Available Aim. To investigate the expression of the genes TGFB1, TNF, CSF1, CSF2, VEGFA and HIF1A in the patients with invasive breast carcinoma of no special type considering the intratumoral morphological heterogeneity. Methods. The technology of laser capture microdissection PALM was used to isolate five types of morphological tumor structures from three patients with invasive carcinoma of no special type (IC NST, luminal A subtype, T1-2NxMx. The level of expression of the cytokine (TNF, growth factor genes (TGFB1, CSF1, CSF2, VEGFA and the HIF1A gene was assessed in the samples obtained using real-time PCR, TaqMan-probes and specific oligonucleotides. Results. The study demonstrated the absence of the expression of the growth factor gene CSF2 in tumor cells of IC NST, and the expression of the gene CSF1, independent from the metastasis status and tumor structure type. The prevalence of the expression of the genes VEGFA and TGFB1 was revealed in the alveolar and solid structures along with the rare expression of the gene TNF. Conclusions. The expression of pre-metastatic niche genes in the tumors of patients with IC NST is heterogeneous. The hypoxia-mediated change in the cytokine gene expression may be expected in the alveolar and solid structures, which ultimately results in the formation of microenvironment, facilitating tumor growth and the formation of tumor metastatic potential.

  3. Pathway level analysis of gene expression using singular value decomposition.

    Science.gov (United States)

    Tomfohr, John; Lu, Jun; Kepler, Thomas B

    2005-09-12

    A promising direction in the analysis of gene expression focuses on the changes in expression of specific predefined sets of genes that are known in advance to be related (e.g., genes coding for proteins involved in cellular pathways or complexes). Such an analysis can reveal features that are not easily visible from the variations in the individual genes and can lead to a picture of expression that is more biologically transparent and accessible to interpretation. In this article, we present a new method of this kind that operates by quantifying the level of 'activity' of each pathway in different samples. The activity levels, which are derived from singular value decompositions, form the basis for statistical comparisons and other applications. We demonstrate our approach using expression data from a study of type 2 diabetes and another of the influence of cigarette smoke on gene expression in airway epithelia. A number of interesting pathways are identified in comparisons between smokers and non-smokers including ones related to nicotine metabolism, mucus production, and glutathione metabolism. A comparison with results from the related approach, 'gene-set enrichment analysis', is also provided. Our method offers a flexible basis for identifying differentially expressed pathways from gene expression data. The results of a pathway-based analysis can be complementary to those obtained from one more focused on individual genes. A web program PLAGE (Pathway Level Analysis of Gene Expression) for performing the kinds of analyses described here is accessible at http://dulci.biostat.edu/pathways.

  4. Optimization of transient gene expression system in Gerbera jemosonii petals.

    Science.gov (United States)

    Hussein, Gihan M; Abu El-Heba, Ghada A; Abdou, Sara M; Abdallah, Naglaa A

    2013-01-01

    Low transformation efficiency and long generation time for production of transgenic Gerbera jemosonii plants leads to vulnerable gene function studies. Thus, transient expression of genes would be an efficient alternative. In this investigation, a transient expression system for gerbera petals based on the Agrobacterium infiltration protocol was developed using the reporter genes β-glucuronidase (gus) and green florescence protein (gfp). Results revealed the incapability of using the gfp gene as a reporter gene for transient expression study in gerbera flowers due to the detection of green fluorescent color in the non-infiltrated gerbera flower petals. However, the gus reporter gene was successfully utilized for optimizing and obtaining the suitable agroinfiltration system in gerbera flowers. The expression of GUS was detectable after three days of agroinfiltration in gerbera cultivars "Express" and "White Grizzly" with dark pink and white flower colors, respectively. The vacuum agroinfiltration protocol has been applied on the cultivar "Express" for evaluating the transient expression of the two genes involved in the anthocyanin pathway (iris-dfr and petunia-f3' 5'h), which is responsible for the color in flowers. In comparison to the control, transient expression results showed change in the anthocyanin pigment in all infiltrated flowers with color genes. Additionally, blue color was detected in the stigma and pollen grains in the infiltrated flowers. Moreover, blue colors with variant intensities were observed in produced calli during the routine work of stable transformation with f3' 5'h gene.

  5. Social Regulation of Gene Expression in Threespine Sticklebacks.

    Directory of Open Access Journals (Sweden)

    Anna K Greenwood

    Full Text Available Identifying genes that are differentially expressed in response to social interactions is informative for understanding the molecular basis of social behavior. To address this question, we described changes in gene expression as a result of differences in the extent of social interactions. We housed threespine stickleback (Gasterosteus aculeatus females in either group conditions or individually for one week, then measured levels of gene expression in three brain regions using RNA-sequencing. We found that numerous genes in the hindbrain/cerebellum had altered expression in response to group or individual housing. However, relatively few genes were differentially expressed in either the diencephalon or telencephalon. The list of genes upregulated in fish from social groups included many genes related to neural development and cell adhesion as well as genes with functions in sensory signaling, stress, and social and reproductive behavior. The list of genes expressed at higher levels in individually-housed fish included several genes previously identified as regulated by social interactions in other animals. The identified genes are interesting targets for future research on the molecular mechanisms of normal social interactions.

  6. Microarray gene expression profiling and analysis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Sadhukhan Provash

    2004-06-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the most common cancer in adult kidney. The accuracy of current diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC, we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays. Methods Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels. Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression alterations of selected genes in RCC. Results Selected genes were annotated based on biological processes and clustered into functional groups. The expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction (RT-PCR. Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant differences between the two types of samples, but many important expression patterns were preserved. Conclusions This is one of the initial studies that examine the functional ontology of a large number of genes in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional ontology revealed many interesting gene expression patterns in RCC. Most

  7. Expression Divergence of Tandemly Arrayed Genes in Human and Mouse

    Directory of Open Access Journals (Sweden)

    Valia Shoja

    2007-01-01

    Full Text Available Tandemly arrayed genes (TAGs account for about one third of the duplicated genes in eukaryotic genomes, yet there has not been any systematic study of their gene expression patterns. Taking advantage of recently published large-scale microarray data sets, we studied the expression divergence of 361 two-member TAGs in human and 212 two-member TAGs in mouse and examined the effect of sequence divergence, gene orientation, and chromosomal proximity on the divergence of TAG expression patterns. Our results show that there is a weak negative correlation between sequence divergence of TAG members and their expression similarity. There is also a weak negative correlation between chromosomal proximity of TAG members and their expression similarity. We did not detect any significant relationship between gene orientation and expression similarity. We also found that downstream TAG members do not show significantly narrower expression breadth than upstream members, contrary to what we predict based on TAG expression divergence hypothesis that we propose. Finally, we show that both chromosomal proximity and expression correlation in TAGs do not differ significantly from their neighboring non-TAG gene pairs, suggesting that tandem duplication is unlikely to be the cause for the higher-than-random expression association between neighboring genes on a chromosome in human and mouse.

  8. Mining Association Rules among Gene Functions in Clusters of Similar Gene Expression Maps.

    Science.gov (United States)

    An, Li; Obradovic, Zoran; Smith, Desmond; Bodenreider, Olivier; Megalooikonomou, Vasileios

    2009-11-01

    Association rules mining methods have been recently applied to gene expression data analysis to reveal relationships between genes and different conditions and features. However, not much effort has focused on detecting the relation between gene expression maps and related gene functions. Here we describe such an approach to mine association rules among gene functions in clusters of similar gene expression maps on mouse brain. The experimental results show that the detected association rules make sense biologically. By inspecting the obtained clusters and the genes having the gene functions of frequent itemsets, interesting clues were discovered that provide valuable insight to biological scientists. Moreover, discovered association rules can be potentially used to predict gene functions based on similarity of gene expression maps.

  9. Unstable Expression of Commonly Used Reference Genes in Rat Pancreatic Islets Early after Isolation Affects Results of Gene Expression Studies.

    Directory of Open Access Journals (Sweden)

    Lucie Kosinová

    Full Text Available The use of RT-qPCR provides a powerful tool for gene expression studies; however, the proper interpretation of the obtained data is crucially dependent on accurate normalization based on stable reference genes. Recently, strong evidence has been shown indicating that the expression of many commonly used reference genes may vary significantly due to diverse experimental conditions. The isolation of pancreatic islets is a complicated procedure which creates severe mechanical and metabolic stress leading possibly to cellular damage and alteration of gene expression. Despite of this, freshly isolated islets frequently serve as a control in various gene expression and intervention studies. The aim of our study was to determine expression of 16 candidate reference genes and one gene of interest (F3 in isolated rat pancreatic islets during short-term cultivation in order to find a suitable endogenous control for gene expression studies. We compared the expression stability of the most commonly used reference genes and evaluated the reliability of relative and absolute quantification using RT-qPCR during 0-120 hrs after isolation. In freshly isolated islets, the expression of all tested genes was markedly depressed and it increased several times throughout the first 48 hrs of cultivation. We observed significant variability among samples at 0 and 24 hrs but substantial stabilization from 48 hrs onwards. During the first 48 hrs, relative quantification failed to reflect the real changes in respective mRNA concentrations while in the interval 48-120 hrs, the relative expression generally paralleled the results determined by absolute quantification. Thus, our data call into question the suitability of relative quantification for gene expression analysis in pancreatic islets during the first 48 hrs of cultivation, as the results may be significantly affected by unstable expression of reference genes. However, this method could provide reliable information

  10. Expression profiles for six zebrafish genes during gonadal sex differentiation

    Directory of Open Access Journals (Sweden)

    Rasmussen Lene J

    2008-06-01

    Full Text Available Abstract Background The mechanism of sex determination in zebrafish is largely unknown and neither sex chromosomes nor a sex-determining gene have been identified. This indicates that sex determination in zebrafish is mediated by genetic signals from autosomal genes. The aim of this study was to determine the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. Results In the present study, we have used quantitative real-time PCR to investigate the expression of ar, sox9a, dmrt1, fig alpha, cyp19a1a and cyp19a1b during the expected sex determination and gonadal sex differentiation period. The expression of the genes expected to be high in males (ar, sox9a and dmrt1a and high in females (fig alpha and cyp19a1a was segregated in two groups with more than 10 times difference in expression levels. All of the investigated genes showed peaks in expression levels during the time of sex determination and gonadal sex differentiation. Expression of all genes was investigated on cDNA from the same fish allowing comparison of the high and low expressers of genes that are expected to be highest expressed in either males or females. There were 78% high or low expressers of all three "male" genes (ar, sox9a and dmrt1 in the investigated period and 81% were high or low expressers of both "female" genes (fig alpha and cyp19a1a. When comparing all five genes with expected sex related expression 56% show expression expected for either male or female. Furthermore, the expression of all genes was investigated in different tissue of adult male and female zebrafish. Conclusion In zebrafish, the first significant peak in gene expression during the investigated period (2–40 dph was dmrt1 at 10 dph which indicates involvement of this gene

  11. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    Science.gov (United States)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  12. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  13. Tumor Necrosis Factor-α and Apoptosis Signal-Regulating Kinase 1 Control Reactive Oxygen Species Release, Mitochondrial Autophagy and C-Jun N-Terminal Kinase/P38 Phosphorylation During Necrotizing Enterocolitis

    Directory of Open Access Journals (Sweden)

    Naira Baregamian

    2009-01-01

    Full Text Available Background: Oxidative stress and inflammation may contribute to the disruption of the protective gut barrier through various mechanisms; mitochondrial dysfunction resulting from inflammatory and oxidative injury may potentially be a significant source of apoptosis during necrotizing enterocolitis (NEC. Tumor necrosis factor (TNFα is thought to generate reactive oxygen species (ROS and activate the apoptosis signal-regulating kinase 1 (ASK1-c-Jun N-terminal kinase (JNK/p38 pathway. Hence, the focus of our study was to examine the effects of TNFα/ROs on mitochondrial function, ASK1-JNK/p38 cascade activation in intestinal epithelial cells during NEC.

  14. Fundamental relationship between operon organization and gene expression

    Science.gov (United States)

    Lim, Han N.; Lee, Yeong; Hussein, Razika

    2011-01-01

    Half a century has passed since the discovery of operons (groups of genes that are transcribed together as a single mRNA). Despite the importance of operons in bacterial gene networks, the relationship between their organization and gene expression remains poorly understood. Here we show using synthetic operons in Escherichia coli that the expression of a given gene increases with the length of the operon and as its position moves farther from the end of the operon. These findings can be explained by a common mechanism; increasing the distance from the start of a gene to the end of the operon (termed the “transcription distance”) provides more time for translation to occur during transcription, resulting in increased expression. We confirmed experimentally that the increased expression is indeed due to increased translation. Furthermore our analysis indicates the translation initiation rate for an mRNA is sixfold greater during transcription than after its release, which amplifies the impact of the transcription distance on gene expression. As a result of these mechanisms, gene expression increases by ∼40% for each 1,000 nucleotides of transcription distance. In summary, we demonstrate that a fundamental relationship exists between gene expression and the number, length, and order of the genes in an operon. This relationship has important implications for understanding the functional basis of genome organization and practical applications for synthetic biology. PMID:21670266

  15. Gene expression profile data for mouse facial development.

    Science.gov (United States)

    Leach, Sonia M; Feng, Weiguo; Williams, Trevor

    2017-08-01

    This article contains data related to the research articles "Spatial and Temporal Analysis of Gene Expression during Growth and Fusion of the Mouse Facial Prominences" (Feng et al., 2009) [1] and "Systems Biology of facial development: contributions of ectoderm and mesenchyme" (Hooper et al., 2017 In press) [2]. Embryonic mammalian craniofacial development is a complex process involving the growth, morphogenesis, and fusion of distinct facial prominences into a functional whole. Aberrant gene regulation during this process can lead to severe craniofacial birth defects, including orofacial clefting. As a means to understand the genes involved in facial development, we had previously dissected the embryonic mouse face into distinct prominences: the mandibular, maxillary or nasal between E10.5 and E12.5. The prominences were then processed intact, or separated into ectoderm and mesenchyme layers, prior analysis of RNA expression using microarrays (Feng et al., 2009, Hooper et al., 2017 in press) [1], [2]. Here, individual gene expression profiles have been built from these datasets that illustrate the timing of gene expression in whole prominences or in the separated tissue layers. The data profiles are presented as an indexed and clickable list of the genes each linked to a graphical image of that gene׳s expression profile in the ectoderm, mesenchyme, or intact prominence. These data files will enable investigators to obtain a rapid assessment of the relative expression level of any gene on the array with respect to time, tissue, prominence, and expression trajectory.

  16. Gene expression profile data for mouse facial development

    Directory of Open Access Journals (Sweden)

    Sonia M. Leach

    2017-08-01

    Full Text Available This article contains data related to the research articles "Spatial and Temporal Analysis of Gene Expression during Growth and Fusion of the Mouse Facial Prominences" (Feng et al., 2009 [1] and “Systems Biology of facial development: contributions of ectoderm and mesenchyme” (Hooper et al., 2017 In press [2]. Embryonic mammalian craniofacial development is a complex process involving the growth, morphogenesis, and fusion of distinct facial prominences into a functional whole. Aberrant gene regulation during this process can lead to severe craniofacial birth defects, including orofacial clefting. As a means to understand the genes involved in facial development, we had previously dissected the embryonic mouse face into distinct prominences: the mandibular, maxillary or nasal between E10.5 and E12.5. The prominences were then processed intact, or separated into ectoderm and mesenchyme layers, prior analysis of RNA expression using microarrays (Feng et al., 2009, Hooper et al., 2017 in press [1,2]. Here, individual gene expression profiles have been built from these datasets that illustrate the timing of gene expression in whole prominences or in the separated tissue layers. The data profiles are presented as an indexed and clickable list of the genes each linked to a graphical image of that gene׳s expression profile in the ectoderm, mesenchyme, or intact prominence. These data files will enable investigators to obtain a rapid assessment of the relative expression level of any gene on the array with respect to time, tissue, prominence, and expression trajectory.

  17. Effects of heat stress on gene expression in eggplant ( Solanum ...

    African Journals Online (AJOL)

    In order to identify differentially expressed genes involved in heat shock response, cDNA amplified fragment length polymorphism (cDNA-AFLP) and quantitative real-time polymerase chain reaction (QPCR) were used to study gene expression of eggplant seedlings subjected to 0, 6 and 12 h at 43°C. A total of 53 of over ...

  18. Gene expression profiles in adenosine-treated human mast cells ...

    African Journals Online (AJOL)

    The role of mast cells in allergic diseases and innate immunity has been widely researched and much is known about the expression profiles of immune-related genes in mast cells after bacterial challenges. However, little is known about the gene expression profiles of mast cells in response to adenosine. Herein, we ...

  19. The prognostic value of autotaxin activity and gene expression ...

    African Journals Online (AJOL)

    The prognostic value of autotaxin activity and gene expression, matrix metalloproteinase-9 and p53 antibodies in breast cancer patients. ... included in this study and subjected to determination of ATX (both activity by colorimetric method and gene expression by RT-PCR) and both p53 Abs and MMP-9 by ELISA technique.

  20. Comparative genomics of the relationship between gene structure and expression

    NARCIS (Netherlands)

    Ren, X.

    2006-01-01

    The relationship between the structure of genes and their expression is a relatively new aspect of genome organization and regulation. With more genome sequences and expression data becoming available, bioinformatics approaches can help the further elucidation of the relationships between gene

  1. Global analysis of differential expressed genes in ECV304 ...

    African Journals Online (AJOL)

    EB

    Abstract. Background: Human cytomegalovirus (HCMV) is a virus which has the potential to alter cellular gene expression through multiple mechanisms. Objective: With the application of DNA microarrays, we could monitor the effects of pathogens on host-cell gene expression programmes in great depth and on a broad ...

  2. Gene ordering in partitive clustering using microarray expressions

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Although there is a rich literature on gene ordering in hierarchical clustering framework for gene expression analysis, there is no .... Step 1: Create the string representation (chromosome of. GA) for a .... The expression profiles are represented as lines of coloured boxes using Expander (Sharan et al 2003), each of which.

  3. Comparison of gene expression patterns between porcine cumulus ...

    African Journals Online (AJOL)

    UPuser

    1 Department of Gene and Cell Engineering, Institute of Animal Science, Chinese Academy of Agricultural Sciences,. Beijing 100094 ... quantitative RT-PCR methods, we compared the mRNA expression patterns in porcine oocytes from two ... Keywords: Differential gene expression, DD-RT-PCR, porcine oocytes, cumulus.

  4. Genome-wide gene expression analysis of anguillid herpesvirus 1

    NARCIS (Netherlands)

    Beurden, van S.J.; Peeters, B.P.H.; Rottier, P.J.M.; Davison, A.A.; Engelsma, M.Y.

    2013-01-01

    Background Whereas temporal gene expression in mammalian herpesviruses has been studied extensively, little is known about gene expression in fish herpesviruses. Here we report a genome-wide transcription analysis of a fish herpesvirus, anguillid herpesvirus 1, in cell culture, studied during the

  5. Differential expressed genes in ECV304 Endothelial-like Cells ...

    African Journals Online (AJOL)

    Background: Human cytomegalovirus (HCMV) is a virus which has the potential to alter cellular gene expression through multiple mechanisms. Objective: With the application of DNA microarrays, we could monitor the effects of pathogens on host-cell gene expression programmes in great depth and on a broad scale.

  6. Global analysis of differential expressed genes in ECV304 ...

    African Journals Online (AJOL)

    Background: Human cytomegalovirus (HCMV) is a virus which has the potential to alter cellular gene expression through multiple mechanisms. Objective: With the application of DNA microarrays, we could monitor the effects of pathogens on host-cell gene expression programmes in great depth and on a broad scale.

  7. Regulation of mitochondrial gene expression, the epigenetic enigma

    NARCIS (Netherlands)

    Mposhi, Archibold; van der Wijst, Monique G. P.; Faber, Klaas Nico; Rots, Marianne G.

    2017-01-01

    Epigenetics provides an important layer of information on top of the DNA sequence and is essential for establishing gene expression profiles. Extensive studies have shown that nuclear DNA methylation and histone modifications influence nuclear gene expression. However, it remains unclear whether

  8. Long SAGE analysis of genes differentially expressed in the midgut ...

    African Journals Online (AJOL)

    There are great differences in silk production efficiency and quality between the male and female domestic silkworm (Bombyx mori). Many genes act together but are differentially expressed between the sexes during silk biosynthesis. Two long serial analyses of gene expression (SAGE) libraries were constructed from the ...

  9. The gene expressions of DNA methylation/demethylation enzymes ...

    African Journals Online (AJOL)

    A decrease in mRNA levels for cytochrome c oxidase (COX) subunits was observed in skeletal muscle of hypothyroid rats. However, the precise expression mechanisms of the related genes in hypothyroid state still remain unclear. This study investigated gene expressions of DNA methyltransferases (Dnmts), DNA ...

  10. Induced gene expression in wheat seedlings treated with a crude ...

    African Journals Online (AJOL)

    This is also applied to a retrotransposon protein encoding gene whose expression was strongly induced following extract treatment. The induced expression of all these defence-related genes suggests that the crude A. africanus extract has the ability to prime the resistance response of wheat prior to leaf rust infection.

  11. Expression of KLK2 gene in prostate cancer

    Directory of Open Access Journals (Sweden)

    Sajad Shafai

    2018-01-01

    Conclusion: The expression of KLK2 gene in people with prostate cancer is the higher than the healthy person; finally, according to the results, it could be mentioned that the KLK2 gene considered as a useful factor in prostate cancer, whose expression is associated with progression and development of the prostate cancer.

  12. Expression and clinical significance of Pax6 gene in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Hai-Dong Huang

    2013-07-01

    Full Text Available AIM: To discuss the expression and clinical significance of Pax6 gene in retinoblastoma(Rb. METHODS: Totally 15 cases of fresh Rb organizations were selected as observation group and 15 normal retinal organizations as control group. Western-Blot and reverse transcriptase polymerase chain reaction(RT-PCRmethods were used to detect Pax6 protein and Pax6 mRNA expressions of the normal retina organizations and Rb organizations. At the same time, Western Blot method was used to detect the Pax6 gene downstream MATH5 and BRN3b differentiation gene protein level expression. After the comparison between two groups, the expression and clinical significance of Pax6 gene in Rb were discussed. RESULTS: In the observation group, average value of mRNA expression of Pax6 gene was 0.99±0.03; average value of Pax6 gene protein expression was 2.07±0.15; average value of BRN3b protein expression was 0.195±0.016; average value of MATH5 protein expression was 0.190±0.031. They were significantly higher than the control group, and the differences were statistically significant(PCONCLUSION: Abnormal expression of Pax6 gene is likely to accelerate the occurrence of Rb.

  13. Fungal and plant gene expression in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Balestrini, Raffaella; Lanfranco, Luisa

    2006-11-01

    Arbuscular mycorrhizas (AMs) are a unique example of symbiosis between two eukaryotes, soil fungi and plants. This association induces important physiological changes in each partner that lead to reciprocal benefits, mainly in nutrient supply. The symbiosis results from modifications in plant and fungal cell organization caused by specific changes in gene expression. Recently, much effort has gone into studying these gene expression patterns to identify a wider spectrum of genes involved. We aim in this review to describe AM symbiosis in terms of current knowledge on plant and fungal gene expression profiles.

  14. A riboswitch-based inducible gene expression system for mycobacteria.

    Directory of Open Access Journals (Sweden)

    Jessica C Seeliger

    Full Text Available Research on the human pathogen Mycobacterium tuberculosis (Mtb would benefit from novel tools for regulated gene expression. Here we describe the characterization and application of a synthetic riboswitch-based system, which comprises a mycobacterial promoter for transcriptional control and a riboswitch for translational control. The system was used to induce and repress heterologous protein overexpression reversibly, to create a conditional gene knockdown, and to control gene expression in a macrophage infection model. Unlike existing systems for controlling gene expression in Mtb, the riboswitch does not require the co-expression of any accessory proteins: all of the regulatory machinery is encoded by a short DNA segment directly upstream of the target gene. The inducible riboswitch platform has the potential to be a powerful general strategy for creating customized gene regulation systems in Mtb.

  15. Gene expression profiling of placentas affected by pre-eclampsia

    DEFF Research Database (Denmark)

    Hoegh, Anne Mette; Borup, Rehannah; Nielsen, Finn Cilius

    2010-01-01

    Several studies point to the placenta as the primary cause of pre-eclampsia. Our objective was to identify placental genes that may contribute to the development of pre-eclampsia. RNA was purified from tissue biopsies from eleven pre-eclamptic placentas and eighteen normal controls. Messenger RNA...... expression from pooled samples was analysed by microarrays. Verification of the expression of selected genes was performed using real-time PCR. A surprisingly low number of genes (21 out of 15,000) were identified as differentially expressed. Among these were genes not previously associated with pre-eclampsia...... as bradykinin B1 receptor and a 14-3-3 protein, but also genes that have already been connected with pre-eclampsia, for example, inhibin beta A subunit and leptin. A low number of genes were repeatedly identified as differentially expressed, because they may represent the endpoint of a cascade of events...

  16. Decoupling Linear and Nonlinear Associations of Gene Expression

    KAUST Repository

    Itakura, Alan

    2013-05-01

    The FANTOM consortium has generated a large gene expression dataset of different cell lines and tissue cultures using the single-molecule sequencing technology of HeliscopeCAGE. This provides a unique opportunity to investigate novel associations between gene expression over time and different cell types. Here, we create a MatLab wrapper for a powerful and computationally intensive set of statistics known as Maximal Information Coefficient, and then calculate this statistic for a large, comprehensive dataset containing gene expression of a variety of differentiating tissues. We then distinguish between linear and nonlinear associations, and then create gene association networks. Following this analysis, we are then able to identify clusters of linear gene associations that then associate nonlinearly with other clusters of linearity, providing insight to much more complex connections between gene expression patterns than previously anticipated.

  17. Gene expression in peripheral arterial chemoreceptors.

    Science.gov (United States)

    Gauda, Estelle B

    2002-11-01

    The peripheral arterial chemoreceptors of the carotid body participate in the ventilatory responses to hypoxia and hypercapnia, the arousal responses to asphyxial apnea, and the acclimatization to high altitude. In response to an excitatory stimuli, glomus cells in the carotid body depolarize, their intracellular calcium levels rise, and neurotransmitters are released from them. Neurotransmitters then bind to autoreceptors on glomus cells and postsynaptic receptors on chemoafferents of the carotid sinus nerve. Binding to inhibitory or excitatory receptors on chemoafferents control the electrical activity of the carotid sinus nerve, which provides the input to respiratory-related brainstem nuclei. We and others have used gene expression in the carotid body as a tool to determine what neurotransmitters mediate the response of peripheral arterial chemoreceptors to excitatory stimuli, specifically hypoxia. Data from physiological studies support the involvement of numerous putative neurotransmitters in hypoxic chemosensitivity. This article reviews how in situ hybridization histochemistry and other cellular localization techniques confirm, refute, or expand what is known about the role of dopamine, norepinephrine, substance P, acetylcholine, adenosine, and ATP in chemotransmission. In spite of some species differences, review of the available data support that 1). dopamine and norepinephrine are synthesized and released from glomus cells in all species and play an inhibitory role in hypoxic chemosensitivity; 2). substance P and acetylcholine are not synthesized in glomus cells of most species but may be made and released from nerve fibers innervating the carotid body in essentially all species; 3). adenosine and ATP are ubiquitous molecules that most likely play an excitatory role in hypoxic chemosensitivity. Copyright 2002 Wiley-Liss, Inc.

  18. Gene expression profiling in adipose tissue from growing broiler chickens

    Science.gov (United States)

    Hausman, Gary J; Barb, C Rick; Fairchild, Brian D; Gamble, John; Lee-Rutherford, Laura

    2014-01-01

    In this study, total RNA was collected from abdominal adipose tissue samples obtained from ten broiler chickens at 3, 4, 5, and 6 weeks of age and prepared for gene microarray analysis with Affymetrix GeneChip Chicken Genome Arrays (Affymetrix) and quantitative real-time PCR analysis. Studies of global gene expression in chicken adipose tissue were initiated since such studies in many animal species show that adipose tissue expresses and secretes many factors that can influence growth and physiology. Microarray results indicated 333 differentially expressed adipose tissue genes between 3 and 6 wk, 265 differentially expressed genes between 4 and 6 wk and 42 differentially expressed genes between 3 and 4 wk. Enrichment scores of Gene Ontology Biological Process categories indicated strong age upregulation of genes involved in the immune system response. In addition to microarray analysis, quantitative real-time PCR analysis was used to confirm the influence of age on the expression of adipose tissue CC chemokine ligands (CCL), toll-like receptor (TLR)-2, lipopolysaccharide-induced TNF factor (LITAF), chemokine (C-C motif) receptor 8 (CCR8), and several other genes. Between 3 and 6 wk of age CCL5, CCL1, and CCR8 expression increased (P = 0.0001) with age. Furthermore, TLR2, CCL19, and LITAF expression increased between 4 and 6 wk of age (P = 0.001). This is the first demonstration of age related changes in CCL, LITAF, and TLR2 gene expression in chicken adipose tissue. Future studies are needed to elucidate the role of these adipose tissue genes in growth and the immune system. PMID:26317054

  19. Gene expression profile study on osteoinductive effect of natural hydroxyapatite.

    Science.gov (United States)

    Lü, Xiaoying; Wang, Jiandan; Li, Bin; Zhang, Zhiwei; Zhao, Lifeng

    2014-08-01

    The aim of this study was to investigate the osteoinductive effect of natural hydroxyapatite (NHA). NHA was extracted from pig bones and prepared into disk-like samples. Then, proliferation of mouse bone mesenchymal stem cells (MSCs) cultured on NHA was assessed by the methylthiazoltetrazolium (MTT) assay. Furthermore, microarray technology was applied to obtain the gene expression profiles of MSCs cultured on NHA at 24, 48, and 72 h. The gene expression profile was then comprehensively analyzed by clustering, Gene Ontology (GO), Gene Microarray Pathway Profiler (GenMAPP) and Ingenuity Pathway Analysis (IPA). According to the results of microarray experiment, 8992 differentially expressed genes were obtained. 90 differential expressed genes related to HA osteogenic differentiation were determined by GO analysis. These genes included not only 6 genes related to HA osteogenic differentiation as mentioned in the literatures but also newly discovered 84 genes. Some important signaling pathways (TGF-β, MAPK, Wnt, etc.) were influenced by these genes. Gene interaction networks were obtained by IPA software, in which the scoring values of two networks were highest, and their main functions were related to cell development. The comprehensive analysis of these results indicate that NHA regulate some crucial genes (e.g., Bmp2, Spp1) and then activate some pathways such as TGF-β signaling pathway, and ultimately osteogenic differentiation was induced. © 2013 Wiley Periodicals, Inc.

  20. Expression of bgt gene in transgenic birch (Betula platyphylla Suk.)

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... contrary to most studies, this research showed no significant correlation was found between copy number and expression level of ... insecticidal toxin gene from the spider (Atrax robustus). *Corresponding author: ... of spider insecticidal peptide gene and the C peptide sequence of. Bt gene were used as ...

  1. Versatile epitope tagging vector for gene expression in mammalian cells.

    Science.gov (United States)

    Hosfield, T; Lu, Q

    1998-08-01

    We have constructed an epitope-tagging vector, pCMV-Tag1, for gene expression in mammalian cells. This vector, which allows for N-terminal, C-terminal and internal tagging of the gene product of interest with the FLAG and/or c-myc epitopes, enables researchers to rapidly and efficiently characterize gene products in vivo.

  2. DNA microarray analysis of genes differentially expressed in ...

    Indian Academy of Sciences (India)

    These genes may play a major role in promoting excessive proliferation and accumulation of lipid droplets, which contribute to the development of obesity. By using microarray-based technology, we examined differential gene expression in early differentiated adipocytes and late differentiated adipocytes. Validated genes ...

  3. Gene mining a marama bean expressed sequence tags (ESTs ...

    African Journals Online (AJOL)

    The authors reported the identification of genes associated with embryonic development and microsatellite sequences. The future direction will entail characterization of these genes using gene over-expression and mutant assays. Key words: Namibia, simple sequence repeats (SSR), data mining, homology searches, ...

  4. Isolation and identification of differentially expressed genes between ...

    African Journals Online (AJOL)

    user

    2011-01-17

    Jan 17, 2011 ... rapidly after switching from gluconeogenesis to glycolysis. (Regelmann et al., 2003). The identification of gene transcripts for RDM5 in G. arboreum and G. barbadense indicates that this gene might be involved in some specialized function in the two cotton species. M2 gene expression was detected in G.

  5. Expression profiles of genes involved in tanshinone biosynthesis of ...

    Indian Academy of Sciences (India)

    Expression profiles of genes involved in tanshinone biosynthesis of two. Salvia miltiorrhiza genotypes with different tanshinone contents. Zhenqiao Song, Jianhua Wang and Xingfeng Li. J. Genet. 95, 433–439. Table 1. S. miltiorrhiza genes and primer pairs used for qRT-PCR. Gene. GenBank accession. Primer name.

  6. Identifying gene expression modules that define human cell fates.

    Science.gov (United States)

    Germanguz, I; Listgarten, J; Cinkornpumin, J; Solomon, A; Gaeta, X; Lowry, W E

    2016-05-01

    Using a compendium of cell-state-specific gene expression data, we identified genes that uniquely define cell states, including those thought to represent various developmental stages. Our analysis sheds light on human cell fate through the identification of core genes that are altered over several developmental milestones, and across regional specification. Here we present cell-type specific gene expression data for 17 distinct cell states and demonstrate that these modules of genes can in fact define cell fate. Lastly, we introduce a web-based database to disseminate the results. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Divergent Wnt8a gene expression in teleosts.

    Directory of Open Access Journals (Sweden)

    Nesrin Mwafi

    Full Text Available The analysis of genes in evolutionarily distant but morphologically similar species is of major importance to unravel the changes in genomes over millions of years, which led to gene silencing and functional diversification. We report the analysis of Wnt8a gene expression in the medakafish and provide a detailed comparison to other vertebrates. In all teleosts analyzed there are two paralogous Wnt8a copies. These show largely overlapping expression in the early developing zebrafish embryo, an evolutionarily distant relative of medaka. In contrast to zebrafish, we find that both maternal and zygotic expression of particularly one Wnt8a paralog has diverged in medaka. While Wnt8a1 expression is mostly conserved at early embryonic stages, the expression of Wnt8a2 differs markedly. In addition, both genes are distinctly expressed during organogenesis unlike the zebrafish homologs, which may hint at the emergence of functional diversification of Wnt8a ligands during evolution.

  8. Rethinking cell-cycle-dependent gene expression in Schizosaccharomyces pombe.

    Science.gov (United States)

    Cooper, Stephen

    2017-11-01

    Three studies of gene expression during the division cycle of Schizosaccharomyces pombe led to the proposal that a large number of genes are expressed at particular times during the S. pombe cell cycle. Yet only a small fraction of genes proposed to be expressed in a cell-cycle-dependent manner are reproducible in all three published studies. In addition to reproducibility problems, questions about expression amplitudes, cell-cycle timing of expression, synchronization artifacts, and the problem with methods for synchronizing cells must be considered. These problems and complications prompt the idea that caution should be used before accepting the conclusion that there are a large number of genes expressed in a cell-cycle-dependent manner in S. pombe.

  9. Expression of protein-coding genes embedded in ribosomal DNA

    DEFF Research Database (Denmark)

    Johansen, Steinar D; Haugen, Peik; Nielsen, Henrik

    2007-01-01

    Ribosomal DNA (rDNA) is a specialised chromosomal location that is dedicated to high-level transcription of ribosomal RNA genes. Interestingly, rDNAs are frequently interrupted by parasitic elements, some of which carry protein genes. These are non-LTR retrotransposons and group II introns...... that encode reverse transcriptase-like genes, and group I introns and archaeal introns that encode homing endonuclease genes (HEGs). Although rDNA-embedded protein genes are widespread in nuclei, organelles and bacteria, there is surprisingly little information available on how these genes are expressed....... Exceptions include a handful of HEGs from group I introns. Recent studies have revealed unusual and essential roles of group I and group I-like ribozymes in the endogenous expression of HEGs. Here we discuss general aspects of rDNA-embedded protein genes and focus on HEG expression from group I introns...

  10. Gene Expression Profiles Differentiate Between Sterile SIRS and Early Sepsis

    Science.gov (United States)

    Johnson, Steven B.; Lissauer, Matthew; Bochicchio, Grant V.; Moore, Richard; Cross, Alan S.; Scalea, Thomas M.

    2007-01-01

    Introduction: The systemic inflammatory response syndrome (SIRS) occurs frequently in critically ill patients and presents similar clinical appearances despite diverse infectious and noninfectious etiologies. Despite similar phenotypic expression, these diverse SIRS etiologies may induce divergent genotypic expressions. We hypothesized that gene expression differences are present between sepsis and uninfected SIRS prior to the clinical appearance of sepsis. Methods: Critically ill uninfected SIRS patients were followed longitudinally for the development of sepsis. All patients had whole blood collected daily for gene expression analysis by Affymetrix Hg_U133 2.0 Plus microarrays. SIRS patients developing sepsis were compared with those remaining uninfected for differences in gene expression at study entry and daily for 3 days prior to conversion to sepsis. Acceptance criteria for differentially expressed genes required: >1.2 median fold change between groups and significance on univariate and multivariate analysis. Differentially expressed genes were annotated to pathways using DAVID 2.0/EASE analysis. Results: A total of 12,782 (23.4%) gene probes were differentially expressed on univariate analysis 0 to 48 hours before clinical sepsis. 626 (1.1%) probes met acceptance criteria, corresponding to 459 unique genes, 65 (14.2%) down and 395 (85.8%) up expressed. These genes annotated to 10 pathways that functionally categorized to 4 themes involving innate immunity, cytokine receptors, T cell differentiation, and protein synthesis regulation. Conclusions: Sepsis has a unique gene expression profile that is different from uninfected inflammation and becomes apparent prior to expression of the clinical sepsis phenotype. PMID:17414611

  11. A functional profile of gene expression in ARPE-19 cells

    Directory of Open Access Journals (Sweden)

    Johnson Dianna A

    2005-11-01

    Full Text Available Abstract Background Retinal pigment epithelium cells play an important role in the pathogenesis of age related macular degeneration. Their morphological, molecular and functional phenotype changes in response to various stresses. Functional profiling of genes can provide useful information about the physiological state of cells and how this state changes in response to disease or treatment. In this study, we have constructed a functional profile of the genes expressed by the ARPE-19 cell line of retinal pigment epithelium. Methods Using Affymetrix MAS 5.0 microarray analysis, genes expressed by ARPE-19 cells were identified. Using GeneChip® annotations, these genes were classified according to their known functions to generate a functional gene expression profile. Results We have determined that of approximately 19,044 unique gene sequences represented on the HG-U133A GeneChip® , 6,438 were expressed in ARPE-19 cells irrespective of the substrate on which they were grown (plastic, fibronectin, collagen, or Matrigel. Rather than focus our subsequent analysis on the identity or level of expression of each individual gene in this large data set, we examined the number of genes expressed within 130 functional categories. These categories were selected from a library of HG-U133A GeneChip® annotations linked to the Affymetrix MAS 5.0 data sets. Using this functional classification scheme, we were able to categorize about 70% of the expressed genes and condense the original data set of over 6,000 data points into a format with 130 data points. The resulting ARPE-19 Functional Gene Expression Profile is displayed as a percentage of ARPE-19-expressed genes. Conclusion The Profile can readily be compared with equivalent microarray data from other appropriate samples in order to highlight cell-specific attributes or treatment-induced changes in gene expression. The usefulness of these analyses is based on the assumption that the numbers of genes

  12. Gene expression profiling in the type 1 diabetes rat diaphragm.

    Directory of Open Access Journals (Sweden)

    Erik van Lunteren

    Full Text Available BACKGROUND: Respiratory muscle contractile performance is impaired by diabetes, mechanisms of which included altered carbohydrate and lipid metabolism, oxidative stress and changes in membrane electrophysiology. The present study examined to what extent these cellular perturbations involve changes in gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Diaphragm muscle from streptozotocin-diabetic rats was analyzed with Affymetrix gene expression arrays. Diaphragm from diabetic rats had 105 genes with at least +/-2-fold significantly changed expression (55 increased, 50 decreased, and these were assigned to gene ontology groups based on over-representation analysis using DAVID software. There was increased expression of genes involved in palmitoyl-CoA hydrolase activity (a component of lipid metabolism (P = 0.037, n = 2 genes, fold change 4.2 to 27.5 and reduced expression of genes related to carbohydrate metabolism (P = 0.000061, n = 8 genes, fold change -2.0 to -8.5. Other gene ontology groups among upregulated genes were protein ubiquitination (P = 0.0053, n = 4, fold change 2.2 to 3.4, oxidoreductase activity (P = 0.024, n = 8, fold change 2.1 to 6.0, and morphogenesis (P = 0.012, n = 10, fold change 2.1 to 4.3. Other downregulated gene groups were extracellular region (including extracellular matrix and collagen (P = 0.00032, n = 13, fold change -2.2 to -3.7 and organogenesis (P = 0.032, n = 7, fold change -2.1 to -3.7. Real-time PCR confirmed the directionality of changes in gene expression for 30 of 31 genes tested. CONCLUSIONS/SIGNIFICANCE: These data indicate that in diaphragm muscle type 1 diabetes increases expression of genes involved in lipid energetics, oxidative stress and protein ubiquitination, decreases expression of genes involved in carbohydrate metabolism, and has little effect on expression of ion channel genes. Reciprocal changes in expression of genes involved in carbohydrate and lipid metabolism may change the availability

  13. Evaluating the consistency of gene sets used in the analysis of bacterial gene expression data

    Directory of Open Access Journals (Sweden)

    Tintle Nathan L

    2012-08-01

    Full Text Available Abstract Background Statistical analyses of whole genome expression data require functional information about genes in order to yield meaningful biological conclusions. The Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG are common sources of functionally grouped gene sets. For bacteria, the SEED and MicrobesOnline provide alternative, complementary sources of gene sets. To date, no comprehensive evaluation of the data obtained from these resources has been performed. Results We define a series of gene set consistency metrics directly related to the most common classes of statistical analyses for gene expression data, and then perform a comprehensive analysis of 3581 Affymetrix® gene expression arrays across 17 diverse bacteria. We find that gene sets obtained from GO and KEGG demonstrate lower consistency than those obtained from the SEED and MicrobesOnline, regardless of gene set size. Conclusions Despite the widespread use of GO and KEGG gene sets in bacterial gene expression data analysis, the SEED and MicrobesOnline provide more consistent sets for a wide variety of statistical analyses. Increased use of the SEED and MicrobesOnline gene sets in the analysis of bacterial gene expression data may improve statistical power and utility of expression data.

  14. A Gene Expression Classifier of Node-Positive Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Paul F. Meeh

    2009-10-01

    Full Text Available We used digital long serial analysis of gene expression to discover gene expression differences between node-negative and node-positive colorectal tumors and developed a multigene classifier able to discriminate between these two tumor types. We prepared and sequenced long serial analysis of gene expression libraries from one node-negative and one node-positive colorectal tumor, sequenced to a depth of 26,060 unique tags, and identified 262 tags significantly differentially expressed between these two tumors (P < 2 x 10-6. We confirmed the tag-to-gene assignments and differential expression of 31 genes by quantitative real-time polymerase chain reaction, 12 of which were elevated in the node-positive tumor. We analyzed the expression levels of these 12 upregulated genes in a validation panel of 23 additional tumors and developed an optimized seven-gene logistic regression classifier. The classifier discriminated between node-negative and node-positive tumors with 86% sensitivity and 80% specificity. Receiver operating characteristic analysis of the classifier revealed an area under the curve of 0.86. Experimental manipulation of the function of one classification gene, Fibronectin, caused profound effects on invasion and migration of colorectal cancer cells in vitro. These results suggest that the development of node-positive colorectal cancer occurs in part through elevated epithelial FN1 expression and suggest novel strategies for the diagnosis and treatment of advanced disease.

  15. Regulation of mitochondrial gene expression, the epigenetic enigma.

    Science.gov (United States)

    Mposhi, Archibold; Van der Wijst, Monique Gp; Faber, Klaas Nico; Rots, Marianne G

    2017-03-01

    Epigenetics provides an important layer of information on top of the DNA sequence and is essential for establishing gene expression profiles. Extensive studies have shown that nuclear DNA methylation and histone modifications influence nuclear gene expression. However, it remains unclear whether mitochondrial DNA (mtDNA) undergoes similar epigenetic changes to regulate mitochondrial gene expression. Recently, it has been shown that mtDNA is differentially methylated in various diseases such as diabetes and colorectal cancer. Interestingly, this differential methylation was often associated with altered mitochondrial gene expression. However, the direct role of mtDNA methylation on gene expression remains elusive. Alternatively, the activity of the mitochondrial transcription factor A (TFAM), a protein involved in mtDNA packaging, might also influence gene expression. This review discusses the role of mtDNA methylation and potential epigenetic-like modifications of TFAM with respect to mtDNA transcription and replication. We suggest three mechanisms: (1) methylation within the non-coding D-loop, (2) methylation at gene start sites (GSS) and (3) post-translational modifications (PTMs) of TFAM. Unraveling mitochondrial gene expression regulation could open new therapeutic avenues for mitochondrial diseases.

  16. Global Gene Expression Analysis Using Machine Learning Methods

    OpenAIRE

    Xu, Min

    2015-01-01

    Microarray is a technology to quantitatively monitor the expression of large number of genes in parallel. It has become one of the main tools for global gene expression analysis in molecular biology research in recent years. The large amount of expression data generated by this technology makes the study of certain complex biological problems possible and machine learning methods are playing a crucial role in the analysis process. At present, many machine learning methods have been or have th...

  17. Deoxyoligonucleotide microarrays for gene expression profiling in murine tooth germs.

    Science.gov (United States)

    Osmundsen, Harald; Jevnaker, Anne-Marthe; Landin, Maria A

    2012-01-01

    The use of deoxyoligonucleotide microarrays facilitates rapid expression profiling of gene expression using samples of about 1 μg of total RNA. Here are described practical aspects of the procedures involved, including essential reagents. Analysis of results is discussed from a practical, experimental, point of view together with software required to carry out the required statistical analysis to isolate populations of differentially expressed genes.

  18. Clustering Algorithms: Their Application to Gene Expression Data

    Science.gov (United States)

    Oyelade, Jelili; Isewon, Itunuoluwa; Oladipupo, Funke; Aromolaran, Olufemi; Uwoghiren, Efosa; Ameh, Faridah; Achas, Moses; Adebiyi, Ezekiel

    2016-01-01

    Gene expression data hide vital information required to understand the biological process that takes place in a particular organism in relation to its environment. Deciphering the hidden patterns in gene expression data proffers a prodigious preference to strengthen the understanding of functional genomics. The complexity of biological networks and the volume of genes present increase the challenges of comprehending and interpretation of the resulting mass of data, which consists of millions of measurements; these data also inhibit vagueness, imprecision, and noise. Therefore, the use of clustering techniques is a first step toward addressing these challenges, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and subtypes of cells, mining useful information from noisy data, and understanding gene regulation. The other benefit of clustering gene expression data is the identification of homology, which is very important in vaccine design. This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure. PMID:27932867

  19. Genome-wide patterns of Arabidopsis gene expression in nature.

    Directory of Open Access Journals (Sweden)

    Christina L Richards

    Full Text Available Organisms in the wild are subject to multiple, fluctuating environmental factors, and it is in complex natural environments that genetic regulatory networks actually function and evolve. We assessed genome-wide gene expression patterns in the wild in two natural accessions of the model plant Arabidopsis thaliana and examined the nature of transcriptional variation throughout its life cycle and gene expression correlations with natural environmental fluctuations. We grew plants in a natural field environment and measured genome-wide time-series gene expression from the plant shoot every three days, spanning the seedling to reproductive stages. We find that 15,352 genes were expressed in the A. thaliana shoot in the field, and accession and flowering status (vegetative versus flowering were strong components of transcriptional variation in this plant. We identified between ∼110 and 190 time-varying gene expression clusters in the field, many of which were significantly overrepresented by genes regulated by abiotic and biotic environmental stresses. The two main principal components of vegetative shoot gene expression (PC(veg correlate to temperature and precipitation occurrence in the field. The largest PC(veg axes included thermoregulatory genes while the second major PC(veg was associated with precipitation and contained drought-responsive genes. By exposing A. thaliana to natural environments in an open field, we provide a framework for further understanding the genetic networks that are deployed in natural environments, and we connect plant molecular genetics in the laboratory to plant organismal ecology in the wild.

  20. Validation of reference genes for quantifying changes in gene expression in virus-infected tobacco.

    Science.gov (United States)

    Baek, Eseul; Yoon, Ju-Yeon; Palukaitis, Peter

    2017-10-01

    To facilitate quantification of gene expression changes in virus-infected tobacco plants, eight housekeeping genes were evaluated for their stability of expression during infection by one of three systemically-infecting viruses (cucumber mosaic virus, potato virus X, potato virus Y) or a hypersensitive-response-inducing virus (tobacco mosaic virus; TMV) limited to the inoculated leaf. Five reference-gene validation programs were used to establish the order of the most stable genes for the systemically-infecting viruses as ribosomal protein L25 > β-Tubulin > Actin, and the least stable genes Ubiquitin-conjugating enzyme (UCE) genes were EF1α > Cysteine protease > Actin, and the least stable genes were GAPDH genes, three defense responsive genes were examined to compare their relative changes in gene expression caused by each virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies.

    Science.gov (United States)

    Chapman, Joanne R; Waldenström, Jonas

    2015-01-01

    The choice of reference genes that are stably expressed amongst treatment groups is a crucial step in real-time quantitative PCR gene expression studies. Recent guidelines have specified that a minimum of two validated reference genes should be used for normalisation. However, a quantitative review of the literature showed that the average number of reference genes used across all studies was 1.2. Thus, the vast majority of studies continue to use a single gene, with β-actin (ACTB) and/or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) being commonly selected in studies of vertebrate gene expression. Few studies (15%) tested a panel of potential reference genes for stability of expression before using them to normalise data. Amongst studies specifically testing reference gene stability, few found ACTB or GAPDH to be optimal, whereby these genes were significantly less likely to be chosen when larger panels of potential reference genes were screened. Fewer reference genes were tested for stability in non-model organisms, presumably owing to a dearth of available primers in less well characterised species. Furthermore, the experimental conditions under which real-time quantitative PCR analyses were conducted had a large influence on the choice of reference genes, whereby different studies of rat brain tissue showed different reference genes to be the most stable. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies.

  2. Dynamic association rules for gene expression data analysis.

    Science.gov (United States)

    Chen, Shu-Chuan; Tsai, Tsung-Hsien; Chung, Cheng-Han; Li, Wen-Hsiung

    2015-10-14

    The purpose of gene expression analysis is to look for the association between regulation of gene expression levels and phenotypic variations. This association based on gene expression profile has been used to determine whether the induction/repression of genes correspond to phenotypic variations including cell regulations, clinical diagnoses and drug development. Statistical analyses on microarray data have been developed to resolve gene selection issue. However, these methods do not inform us of causality between genes and phenotypes. In this paper, we propose the dynamic association rule algorithm (DAR algorithm) which helps ones to efficiently select a subset of significant genes for subsequent analysis. The DAR algorithm is based on association rules from market basket analysis in marketing. We first propose a statistical way, based on constructing a one-sided confidence interval and hypothesis testing, to determine if an association rule is meaningful. Based on the proposed statistical method, we then developed the DAR algorithm for gene expression data analysis. The method was applied to analyze four microarray datasets and one Next Generation Sequencing (NGS) dataset: the Mice Apo A1 dataset, the whole genome expression dataset of mouse embryonic stem cells, expression profiling of the bone marrow of Leukemia patients, Microarray Quality Control (MAQC) data set and the RNA-seq dataset of a mouse genomic imprinting study. A comparison of the proposed method with the t-test on the expression profiling of the bone marrow of Leukemia patients was conducted. We developed a statistical way, based on the concept of confidence interval, to determine the minimum support and minimum confidence for mining association relationships among items. With the minimum support and minimum confidence, one can find significant rules in one single step. The DAR algorithm was then developed for gene expression data analysis. Four gene expression datasets showed that the proposed

  3. Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression

    Science.gov (United States)

    MacNeil, Lesley T.; Walhout, Albertha J.M.

    2011-01-01

    In any given cell, thousands of genes are expressed and work in concert to ensure the cell's function, fitness, and survival. Each gene, in turn, must be expressed at the proper time and in the proper amounts to ensure the appropriate functional outcome. The regulation and expression of some genes are highly robust; their expression is controlled by invariable expression programs. For instance, developmental gene expression is extremely similar in a given cell type from one individual to another. The expression of other genes is more variable: Their levels are noisy and are different from cell to cell and from individual to individual. This can be highly beneficial in physiological responses to outside cues and stresses. Recent advances have enabled the analysis of differential gene expression at a systems level. Gene regulatory networks (GRNs) involving interactions between large numbers of genes and their regulators have been mapped onto graphic diagrams that are used to visualize the regulatory relationships. The further characterization of GRNs has already uncovered global principles of gene regulation. Together with synthetic network biology, such studies are starting to provide insights into the transcriptional mechanisms that cause robust versus stochastic gene expression and their relationships to phenotypic robustness and variability. Here, we discuss GRNs and their topological properties in relation to transcriptional and phenotypic outputs in development and organismal physiology. PMID:21324878

  4. An atlas of gene expression and gene co-regulation in the human retina.

    Science.gov (United States)

    Pinelli, Michele; Carissimo, Annamaria; Cutillo, Luisa; Lai, Ching-Hung; Mutarelli, Margherita; Moretti, Maria Nicoletta; Singh, Marwah Veer; Karali, Marianthi; Carrella, Diego; Pizzo, Mariateresa; Russo, Francesco; Ferrari, Stefano; Ponzin, Diego; Angelini, Claudia; Banfi, Sandro; di Bernardo, Diego

    2016-07-08

    The human retina is a specialized tissue involved in light stimulus transduction. Despite its unique biology, an accurate reference transcriptome is still missing. Here, we performed gene expression analysis (RNA-seq) of 50 retinal samples from non-visually impaired post-mortem donors. We identified novel transcripts with high confidence (Observed Transcriptome (ObsT)) and quantified the expression level of known transcripts (Reference Transcriptome (RefT)). The ObsT included 77 623 transcripts (23 960 genes) covering 137 Mb (35 Mb new transcribed genome). Most of the transcripts (92%) were multi-exonic: 81% with known isoforms, 16% with new isoforms and 3% belonging to new genes. The RefT included 13 792 genes across 94 521 known transcripts. Mitochondrial genes were among the most highly expressed, accounting for about 10% of the reads. Of all the protein-coding genes in Gencode, 65% are expressed in the retina. We exploited inter-individual variability in gene expression to infer a gene co-expression network and to identify genes specifically expressed in photoreceptor cells. We experimentally validated the photoreceptors localization of three genes in human retina that had not been previously reported. RNA-seq data and the gene co-expression network are available online (http://retina.tigem.it). © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Epigenetic regulation on the gene expression signature in esophagus adenocarcinoma.

    Science.gov (United States)

    Xi, Ting; Zhang, Guizhi

    2017-02-01

    Understanding the molecular mechanisms represents an important step in the development of diagnostic and therapeutic measures of esophagus adenocarcinoma (NOS). The objective of this study is to identify the epigenetic regulation on gene expression in NOS, shedding light on the molecular mechanisms of NOS. In this study, 78 patients with NOS were included and the data of mRNA, miRNA and DNA methylation of were downloaded from The Cancer Genome Atlas (TCGA). Differential analysis between NOS and controls was performed in terms of gene expression, miRNA expression, and DNA methylation. Bioinformatic analysis was followed to explore the regulation mechanisms of miRNA and DNA methylationon gene expression. Totally, up to 1320 differentially expressed genes (DEGs) and 32 differentially expressed miRNAs were identified. 240 DEGs that were not only the target genes but also negatively correlated with the screened differentially expressed miRNAs. 101 DEGs were found to be highlymethylated in CpG islands. Then, 8 differentially methylated genes (DMGs) were selected, which showed down-regulated expression in NOS. Among of these genes, 6 genes including ADHFE1, DPP6, GRIA4, CNKSR2, RPS6KA6 and ZNF135 were target genes of differentially expressed miRNAs (hsa-mir-335, hsa-mir-18a, hsa-mir-93, hsa-mir-106b and hsa-mir-21). The identified altered miRNA, genes and DNA methylation site may be applied as biomarkers for diagnosis and prognosis of NOS. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Selection of reference genes for gene expression studies in human neutrophils by real-time PCR

    Directory of Open Access Journals (Sweden)

    Sandford Andrew J

    2005-02-01

    Full Text Available Abstract Background Reference genes, which are often referred to housekeeping genes, are frequently used to normalize mRNA levels between different samples. However the expression level of these genes may vary among tissues or cells, and may change under certain circumstances. Thus the selection of reference gene(s is critical for gene expression studies. For this purpose, 10 commonly used housekeeping genes were investigated in isolated human neutrophils. Results Initial screening of the expression pattern demonstrated that 3 of the 10 genes were expressed at very low levels in neutrophils and were excluded from further analysis. The range of expression stability of the other 7 genes was (from most stable to least stable: GNB2L1 (Guanine nucleotide binding protein, beta polypeptide 2-like 1, HPRT1 (Hypoxanthine phosphoribosyl transferase 1, RPL32 (ribosomal protein L32, ACTB (beta-actin, B2M (beta-2-microglobulin, GAPD (glyceraldehyde-3-phosphate dehydrogenase and TBP (TATA-binding protein. Relative expression levels of the genes (from high to low were: B2M, ACTB, GAPD, RPL32, GNB2L1, TBP, and HPRT1. Conclusion Our data suggest that GNB2L1, HPRT1, RPL32, ACTB, and B2M may be suitable reference genes in gene expression studies of neutrophils.

  7. Enhanced gentamicin killing of Escherichia coli by tet gene expression.

    OpenAIRE

    Merlin, T L; Corvo, D L; Gill, J H; Griffith, J K

    1989-01-01

    Time-kill studies were performed to determine the effect of tetracycline resistance (tet) gene expression on gentamicin killing of Escherichia coli. Expression of tet increased gentamicin killing in laboratory strains and clinical isolates. A role for tetracycline in inducing tet expression and increasing the bactericidal activity of aminoglycosides is suggested.

  8. Cloning and expression of a small heat shock protein gene ...

    African Journals Online (AJOL)

    The gene was also expressed weakly under salinity, heavy metal, low temperature and oxidative stresses; the expression levels under these conditions were remarkably lower than those under heat stress. Cell viability experiments showed that the heterologous expression of CaHSP24 could enhance the viability of ...

  9. Gene Expression Profiling of Chemically Induced Rat Bladder Tumors

    Directory of Open Access Journals (Sweden)

    Ruisheng Yao

    2007-03-01

    Full Text Available A variety of genetic alterations and gene expression changes are involved in the pathogenesis of bladder tumors. To explore expression changes in 4-hydroxybutyl(butylnitrosamine-induced rat bladder tumors, microarray analysis was performed. Analysis yielded 1,138 known genes and 867 expressed sequence tags that were changed when comparing tumors to normal rat epithelia. Altered genes included cell cycle-related genes, EGFR-Ras signaling genes, apoptosis genes, growth factors, and oncogenes. Using the pathway visualization tool GenMAPP, we found that these genes can be grouped along several pathways that control apoptosis, cell cycle, and integrin-mediated cell adhesion. When comparing current data with previous mouse bladder tumor data, we found that>280 of the same known genes were differentially expressed in both mouse and rat bladder tumors, including cell cycle-related genes, small G proteins, apoptosis genes, oncogenes, tumor-suppressor genes, and growth factors. These results suggest that multiple pathways are involved in rat bladder tumorigenesis, and a common molecular mechanism was found in both rat and mouse bladder tumors.

  10. Identifying the optimal gene and gene set in hepatocellular carcinoma based on differential expression and differential co-expression algorithm.

    Science.gov (United States)

    Dong, Li-Yang; Zhou, Wei-Zhong; Ni, Jun-Wei; Xiang, Wei; Hu, Wen-Hao; Yu, Chang; Li, Hai-Yan

    2017-02-01

    The objective of this study was to identify the optimal gene and gene set for hepatocellular carcinoma (HCC) utilizing differential expression and differential co-expression (DEDC) algorithm. The DEDC algorithm consisted of four parts: calculating differential expression (DE) by absolute t-value in t-statistics; computing differential co-expression (DC) based on Z-test; determining optimal thresholds on the basis of Chi-squared (χ2) maximization and the corresponding gene was the optimal gene; and evaluating functional relevance of genes categorized into different partitions to determine the optimal gene set with highest mean minimum functional information (FI) gain (Δ*G). The optimal thresholds divided genes into four partitions, high DE and high DC (HDE-HDC), high DE and low DC (HDE-LDC), low DE and high DC (LDE‑HDC), and low DE and low DC (LDE-LDC). In addition, the optimal gene was validated by conducting reverse transcription-polymerase chain reaction (RT-PCR) assay. The optimal threshold for DC and DE were 1.032 and 1.911, respectively. Using the optimal gene, the genes were divided into four partitions including: HDE-HDC (2,053 genes), HED-LDC (2,822 genes), LDE-HDC (2,622 genes), and LDE-LDC (6,169 genes). The optimal gene was microtubule‑associated protein RP/EB family member 1 (MAPRE1), and RT-PCR assay validated the significant difference between the HCC and normal state. The optimal gene set was nucleoside metabolic process (GO\\GO:0009116) with Δ*G = 18.681 and 24 HDE-HDC partitions in total. In conclusion, we successfully investigated the optimal gene, MAPRE1, and gene set, nucleoside metabolic process, which may be potential biomarkers for targeted therapy and provide significant insight for revealing the pathological mechanism underlying HCC.

  11. Differential expression of granulopoiesis related genes in neutrophil subsets distinguished by membrane expression of CD177

    DEFF Research Database (Denmark)

    Hu, Nan; Mora-Jensen, Helena; Theilgaard-Mønch, Kim

    2014-01-01

    quantitative-PCR. CD177 expression on neutrophil precursors in bone marrow was analyzed using quantitative PCR and flowcytometry. RESULTS: The proportion of CD177+ cells increased during neutrophil maturation in bone marrow. Fold change analysis of gene expression profile of sorted CD177+ and CD177......-genes was increased, possibly due to activation. CONCLUSION: The neutrophil population can be distinguished by membrane expression of CD177 into subsets that are different in expression of GP mRNA but not in GP protein production. GP gene expression is also elevated in AAV patients, which is not explained by skewed...

  12. Noise in gene expression is coupled to growth rate.

    Science.gov (United States)

    Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran

    2015-12-01

    Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle-regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. © 2015 Keren et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Utilizing evolutionary information and gene expression data for estimating gene networks with bayesian network models.

    Science.gov (United States)

    Tamada, Yoshinori; Bannai, Hideo; Imoto, Seiya; Katayama, Toshiaki; Kanehisa, Minoru; Miyano, Satoru

    2005-12-01

    Since microarray gene expression data do not contain sufficient information for estimating accurate gene networks, other biological information has been considered to improve the estimated networks. Recent studies have revealed that highly conserved proteins that exhibit similar expression patterns in different organisms, have almost the same function in each organism. Such conserved proteins are also known to play similar roles in terms of the regulation of genes. Therefore, this evolutionary information can be used to refine regulatory relationships among genes, which are estimated from gene expression data. We propose a statistical method for estimating gene networks from gene expression data by utilizing evolutionarily conserved relationships between genes. Our method simultaneously estimates two gene networks of two distinct organisms, with a Bayesian network model utilizing the evolutionary information so that gene expression data of one organism helps to estimate the gene network of the other. We show the effectiveness of the method through the analysis on Saccharomyces cerevisiae and Homo sapiens cell cycle gene expression data. Our method was successful in estimating gene networks that capture many known relationships as well as several unknown relationships which are likely to be novel. Supplementary information is available at http://bonsai.ims.u-tokyo.ac.jp/~tamada/bayesnet/.

  14. Polymeric Immunoglobulin Receptor-mediated Invasion of Streptococcus pneumoniae into Host Cells Requires a Coordinate Signaling of SRC Family of Protein-tyrosine Kinases, ERK, and c-Jun N-terminal Kinase*

    Science.gov (United States)

    Agarwal, Vaibhav; Asmat, Tauseef M.; Dierdorf, Nina I.; Hauck, Christof R.; Hammerschmidt, Sven

    2010-01-01

    Streptococcus pneumoniae are commensals of the human nasopharynx with the capacity to invade mucosal respiratory cells. PspC, a pneumococcal surface protein, interacts with the human polymeric immunoglobulin receptor (pIgR) to promote bacterial adherence to and invasion into epithelial cells. Internalization of pneumococci requires the coordinated action of actin cytoskeleton rearrangements and the retrograde machinery of pIgR. Here, we demonstrate the involvement of Src protein-tyrosine kinases (PTKs), focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) but not p38 mitogen-activated protein kinases (MAPK) in pneumococcal invasion via pIgR. Pharmacological inhibitors of PTKs and MAPKs and genetic interference with Src PTK and FAK functions caused a significant reduction of pIgR-mediated pneumococcal invasion but did not influence bacterial adhesion to host cells. Furthermore, pneumococcal ingestion by host cells induces activation of ERK1/2 and JNK. In agreement with activated JNK, its target molecule and DNA-binding protein c-Jun was phosphorylated. We also show that functionally active Src PTK is essential for activation of ERK1/2 upon pneumococcal infections. In conclusion, these data illustrate the importance of a coordinated signaling between Src PTKs, ERK1/2, and JNK during PspC-pIgR-mediated uptake of pneumococci by host epithelial cells. PMID:20829350

  15. Polymeric immunoglobulin receptor-mediated invasion of Streptococcus pneumoniae into host cells requires a coordinate signaling of SRC family of protein-tyrosine kinases, ERK, and c-Jun N-terminal kinase.

    Science.gov (United States)

    Agarwal, Vaibhav; Asmat, Tauseef M; Dierdorf, Nina I; Hauck, Christof R; Hammerschmidt, Sven

    2010-11-12

    Streptococcus pneumoniae are commensals of the human nasopharynx with the capacity to invade mucosal respiratory cells. PspC, a pneumococcal surface protein, interacts with the human polymeric immunoglobulin receptor (pIgR) to promote bacterial adherence to and invasion into epithelial cells. Internalization of pneumococci requires the coordinated action of actin cytoskeleton rearrangements and the retrograde machinery of pIgR. Here, we demonstrate the involvement of Src protein-tyrosine kinases (PTKs), focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) but not p38 mitogen-activated protein kinases (MAPK) in pneumococcal invasion via pIgR. Pharmacological inhibitors of PTKs and MAPKs and genetic interference with Src PTK and FAK functions caused a significant reduction of pIgR-mediated pneumococcal invasion but did not influence bacterial adhesion to host cells. Furthermore, pneumococcal ingestion by host cells induces activation of ERK1/2 and JNK. In agreement with activated JNK, its target molecule and DNA-binding protein c-Jun was phosphorylated. We also show that functionally active Src PTK is essential for activation of ERK1/2 upon pneumococcal infections. In conclusion, these data illustrate the importance of a coordinated signaling between Src PTKs, ERK1/2, and JNK during PspC-pIgR-mediated uptake of pneumococci by host epithelial cells.

  16. Characterization of the global profile of genes expressed in cervical epithelium by Serial Analysis of Gene Expression (SAGE)

    OpenAIRE

    P?rez-Plasencia, Carlos; Riggins, Gregory; V?zquez-Ortiz, Guelaguetza; Moreno, Jos?; Arreola, Hugo; Hidalgo, Alfredo; Pi?a-Sanchez, Patricia; Salcedo, Mauricio

    2005-01-01

    Abstract Background Serial Analysis of Gene Expression (SAGE) is a new technique that allows a detailed and profound quantitative and qualitative knowledge of gene expression profile, without previous knowledge of sequence of analyzed genes. We carried out a modification of SAGE methodology (microSAGE), useful for the analysis of limited quantities of tissue samples, on normal human cervical tissue obtained from a donor without histopathological lesions. Cervical epithelium is constituted mai...

  17. Using RNA-seq data to select reference genes for normalizing gene expression in apple roots.

    Science.gov (United States)

    Zhou, Zhe; Cong, Peihua; Tian, Yi; Zhu, Yanmin

    2017-01-01

    Gene expression in apple roots in response to various stress conditions is a less-explored research subject. Reliable reference genes for normalizing quantitative gene expression data have not been carefully investigated. In this study, the suitability of a set of 15 apple genes were evaluated for their potential use as reliable reference genes. These genes were selected based on their low variance of gene expression in apple root tissues from a recent RNA-seq data set, and a few previously reported apple reference genes for other tissue types. Four methods, Delta Ct, geNorm, NormFinder and BestKeeper, were used to evaluate their stability in apple root tissues of various genotypes and under different experimental conditions. A small panel of stably expressed genes, MDP0000095375, MDP0000147424, MDP0000233640, MDP0000326399 and MDP0000173025 were recommended for normalizing quantitative gene expression data in apple roots under various abiotic or biotic stresses. When the most stable and least stable reference genes were used for data normalization, significant differences were observed on the expression patterns of two target genes, MdLecRLK5 (MDP0000228426, a gene encoding a lectin receptor like kinase) and MdMAPK3 (MDP0000187103, a gene encoding a mitogen-activated protein kinase). Our data also indicated that for those carefully validated reference genes, a single reference gene is sufficient for reliable normalization of the quantitative gene expression. Depending on the experimental conditions, the most suitable reference genes can be specific to the sample of interest for more reliable RT-qPCR data normalization.

  18. Computational gene expression profiling under salt stress reveals patterns of co-expression.

    Science.gov (United States)

    Sanchita; Sharma, Ashok

    2016-03-01

    Plants respond differently to environmental conditions. Among various abiotic stresses, salt stress is a condition where excess salt in soil causes inhibition of plant growth. To understand the response of plants to the stress conditions, identification of the responsible genes is required. Clustering is a data mining technique used to group the genes with similar expression. The genes of a cluster show similar expression and function. We applied clustering algorithms on gene expression data of Solanum tuberosum showing differential expression in Capsicum annuum under salt stress. The clusters, which were common in multiple algorithms were taken further for analysis. Principal component analysis (PCA) further validated the findings of other cluster algorithms by visualizing their clusters in three-dimensional space. Functional annotation results revealed that most of the genes were involved in stress related responses. Our findings suggest that these algorithms may be helpful in the prediction of the function of co-expressed genes.

  19. Computational gene expression profiling under salt stress reveals patterns of co-expression

    Directory of Open Access Journals (Sweden)

    Sanchita

    2016-03-01

    Full Text Available Plants respond differently to environmental conditions. Among various abiotic stresses, salt stress is a condition where excess salt in soil causes inhibition of plant growth. To understand the response of plants to the stress conditions, identification of the responsible genes is required. Clustering is a data mining technique used to group the genes with similar expression. The genes of a cluster show similar expression and function. We applied clustering algorithms on gene expression data of Solanum tuberosum showing differential expression in Capsicum annuum under salt stress. The clusters, which were common in multiple algorithms were taken further for analysis. Principal component analysis (PCA further validated the findings of other cluster algorithms by visualizing their clusters in three-dimensional space. Functional annotation results revealed that most of the genes were involved in stress related responses. Our findings suggest that these algorithms may be helpful in the prediction of the function of co-expressed genes.

  20. Flies selected for longevity retain a young gene expression profile

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Sørensen, Peter; Loeschcke, Volker

    2011-01-01

      We investigated correlated responses in the transcriptomes of longevity-selected lines of Drosophila melanogaster to identify pathways that affect life span in metazoan systems. We evaluated the gene expression profile in young, middle-aged, and old male flies, finding that 530 genes were...... differentially expressed between selected and control flies when measured at the same chronological age. The longevity-selected flies consistently showed expression profiles more similar to control flies one age class younger than control flies of the same age. This finding is in accordance with a younger gene...... expression profile in longevity-selected lines. Among the genes down-regulated in longevity-selected lines, we found a clear over-representation of genes involved in immune functions, supporting the hypothesis of a life-shortening effect of an overactive immune system, known as inflammaging. We judged...

  1. Expression profiles for six zebrafish genes during gonadal sex differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Morthorst, Jane E.; Andersen, Ole

    2008-01-01

    the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. RESULTS......BACKGROUND: The mechanism of sex determination in zebrafish is largely unknown and neither sex chromosomes nor a sex-determining gene have been identified. This indicates that sex determination in zebrafish is mediated by genetic signals from autosomal genes. The aim of this study was to determine......: In the present study, we have used quantitative real-time PCR to investigate the expression of ar, sox9a, dmrt1, fig alpha, cyp19a1a and cyp19a1b during the expected sex determination and gonadal sex differentiation period. The expression of the genes expected to be high in males (ar, sox9a and dmrt1a) and high...

  2. Detecting microRNA activity from gene expression data.

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-01-01

    BACKGROUND: MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. RESULTS: Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. CONCLUSIONS: We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  3. Detecting microRNA activity from gene expression data

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-05-18

    Abstract Background MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. Results Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. Conclusions We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  4. A factor model to analyze heterogeneity in gene expression

    Directory of Open Access Journals (Sweden)

    Le Mignon Guillaume

    2010-07-01

    Full Text Available Abstract Background Microarray technology allows the simultaneous analysis of thousands of genes within a single experiment. Significance analyses of transcriptomic data ignore the gene dependence structure. This leads to correlation among test statistics which affects a strong control of the false discovery proportion. A recent method called FAMT allows capturing the gene dependence into factors in order to improve high-dimensional multiple testing procedures. In the subsequent analyses aiming at a functional characterization of the differentially expressed genes, our study shows how these factors can be used both to identify the components of expression heterogeneity and to give more insight into the underlying biological processes. Results The use of factors to characterize simple patterns of heterogeneity is first demonstrated on illustrative gene expression data sets. An expression data set primarily generated to map QTL for fatness in chickens is then analyzed. Contrarily to the analysis based on the raw data, a relevant functional information about a QTL region is revealed by factor-adjustment of the gene expressions. Additionally, the interpretation of the independent factors regarding known information about both experimental design and genes shows that some factors may have different and complex origins. Conclusions As biological information and technological biases are identified in what was before simply considered as statistical noise, analyzing heterogeneity in gene expression yields a new point of view on transcriptomic data.

  5. An Interactive Database of Cocaine-Responsive Gene Expression

    Directory of Open Access Journals (Sweden)

    Willard M. Freeman

    2002-01-01

    Full Text Available The postgenomic era of large-scale gene expression studies is inundating drug abuse researchers and many other scientists with findings related to gene expression. This information is distributed across many different journals, and requires laborious literature searches. Here, we present an interactive database that combines existing information related to cocaine-mediated changes in gene expression in an easy-to-use format. The database is limited to statistically significant changes in mRNA or protein expression after cocaine administration. The Flash-based program is integrated into a Web page, and organizes changes in gene expression based on neuroanatomical region, general function, and gene name. Accompanying each gene is a description of the gene, links to the original publications, and a link to the appropriate OMIM (Online Mendelian Inheritance in Man entry. The nature of this review allows for timely modifications and rapid inclusion of new publications, and should help researchers build second-generation hypotheses on the role of gene expression changes in the physiology and behavior of cocaine abuse. Furthermore, this method of organizing large volumes of scientific information can easily be adapted to assist researchers in fields outside of drug abuse.

  6. Gene expression results in lipopolysaccharide-stimulated monocytes depend significantly on the choice of reference genes

    Directory of Open Access Journals (Sweden)

    Øvstebø Reidun

    2010-05-01

    Full Text Available Abstract Background Gene expression in lipopolysaccharide (LPS-stimulated monocytes is mainly studied by quantitative real-time reverse transcription PCR (RT-qPCR using GAPDH (glyceraldehyde 3-phosphate dehydrogenase or ACTB (beta-actin as reference gene for normalization. Expression of traditional reference genes has been shown to vary substantially under certain conditions leading to invalid results. To investigate whether traditional reference genes are stably expressed in LPS-stimulated monocytes or if RT-qPCR results are dependent on the choice of reference genes, we have assessed and evaluated gene expression stability of twelve candidate reference genes in this model system. Results Twelve candidate reference genes were quantified by RT-qPCR in LPS-stimulated, human monocytes and evaluated using the programs geNorm, Normfinder and BestKeeper. geNorm ranked PPIB (cyclophilin B, B2M (beta-2-microglobulin and PPIA (cyclophilin A as the best combination for gene expression normalization in LPS-stimulated monocytes. Normfinder suggested TBP (TATA-box binding protein and B2M as the best combination. Compared to these combinations, normalization using GAPDH alone resulted in significantly higher changes of TNF-α (tumor necrosis factor-alpha and IL10 (interleukin 10 expression. Moreover, a significant difference in TNF-α expression between monocytes stimulated with equimolar concentrations of LPS from N. meningitides and E. coli, respectively, was identified when using the suggested combinations of reference genes for normalization, but stayed unrecognized when employing a single reference gene, ACTB or GAPDH. Conclusions Gene expression levels in LPS-stimulated monocytes based on RT-qPCR results differ significantly when normalized to a single gene or a combination of stably expressed reference genes. Proper evaluation of reference gene stabiliy is therefore mandatory before reporting RT-qPCR results in LPS-stimulated monocytes.

  7. A Marfan syndrome gene expression phenotype in cultured skin fibroblasts

    Directory of Open Access Journals (Sweden)

    Emond Mary

    2007-09-01

    Full Text Available Abstract Background Marfan syndrome (MFS is a heritable connective tissue disorder caused by mutations in the fibrillin-1 gene. This syndrome constitutes a significant identifiable subtype of aortic aneurysmal disease, accounting for over 5% of ascending and thoracic aortic aneurysms. Results We used spotted membrane DNA macroarrays to identify genes whose altered expression levels may contribute to the phenotype of the disease. Our analysis of 4132 genes identified a subset with significant expression differences between skin fibroblast cultures from unaffected controls versus cultures from affected individuals with known fibrillin-1 mutations. Subsequently, 10 genes were chosen for validation by quantitative RT-PCR. Conclusion Differential expression of many of the validated genes was associated with MFS samples when an additional group of unaffected and MFS affected subjects were analyzed (p-value -6 under the null hypothesis that expression levels in cultured fibroblasts are unaffected by MFS status. An unexpected observation was the range of individual gene expression. In unaffected control subjects, expression ranges exceeding 10 fold were seen in many of the genes selected for qRT-PCR validation. The variation in expression in the MFS affected subjects was even greater.

  8. Time course analysis of gene expression identifies multiple genes with differential expression in patients with in-stent restenosis

    Directory of Open Access Journals (Sweden)

    Gudnason Thorarinn

    2011-02-01

    Full Text Available Abstract Background The vascular disease in-stent restenosis (ISR is characterized by formation of neointima and adverse inward remodeling of the artery after injury by coronary stent implantation. We hypothesized that the analysis of gene expression in peripheral blood mononuclear cells (PBMCs would demonstrate differences in transcript expression between individuals who develop ISR and those who do not. Methods and Results We determined and investigated PBMC gene expression of 358 patients undergoing an index procedure to treat in de novo coronary artery lesions with bare metallic stents, using a novel time-varying intercept model to optimally assess the time course of gene expression across a time course of blood samples. Validation analyses were conducted in an independent sample of 97 patients with similar time-course blood sampling and gene expression data. We identified 47 probesets with differential expression, of which 36 were validated upon independent replication testing. The genes identified have varied functions, including some related to cellular growth and metabolism, such as the NAB2 and LAMP genes. Conclusions In a study of patients undergoing bare metallic stent implantation, we have identified and replicated differential gene expression in peripheral blood mononuclear cells, studied across a time series of blood samples. The genes identified suggest alterations in cellular growth and metabolism pathways, and these results provide the basis for further specific functional hypothesis generation and testing of the mechanisms of ISR.

  9. [Construction and expression of recombinant eucaryotic expression plasmid of amastin gene of Leishmania Donovani].

    Science.gov (United States)

    Li, Jin-Fu; Chen, Jian-Ping; Yang, Zhi-Wei; Tian, Yu; Ma, Ying; Hu, Xiao-Su

    2007-03-01

    To construct recombinant eukaryotic expression plasmid of amastin gene of Leishmania Donovani and detect expression of the gene in NIH3T3 cells. Amastin gene was amplified from nuclear DNA of Leishmania Donovani isolates and cloned into an eukaryotic expression vector pcDNA3.1(+). The recombinant plasmid was named pcDNA3.1-amastin. NIH3T3 cell was transfected by pcDNA3.1-amastin. Transient and stable expression of amastin gene were detected by immunofluoresence and RT-PCR. It was found that there was high green fluorescence on the cell membrane and inside the cell. It showed that NIH3T3 cell was transfected by pcDNA3.1-amastin successfully. A recombinant eukaryotic expression plasmid of amastin gene of Leishmania Donovani was successfully constructed, and can be expressed stably in the NIH3T3 cells.

  10. Identifying promoters for gene expression in Clostridium thermocellum

    Directory of Open Access Journals (Sweden)

    Daniel G. Olson

    2015-12-01

    Full Text Available A key tool for metabolic engineering is the ability to express heterologous genes. One obstacle to gene expression in non-model organisms, and especially in relatively uncharacterized bacteria, is the lack of well-characterized promoters. Here we test 17 promoter regions for their ability to drive expression of the reporter genes β-galactosidase (lacZ and NADPH-alcohol dehydrogenase (adhB in Clostridium thermocellum, an important bacterium for the production of cellulosic biofuels. Only three promoters have been commonly used for gene expression in C. thermocellum, gapDH, cbp and eno. Of the new promoters tested, 2638, 2926, 966 and 815 showed reliable expression. The 2638 promoter showed relatively higher activity when driving adhB (compared to lacZ, and the 815 promoter showed relatively higher activity when driving lacZ (compared to adhB.

  11. Applications of Little's Law to stochastic models of gene expression

    CERN Document Server

    Elgart, Vlad; Kulkarni, Rahul V

    2010-01-01

    The intrinsic stochasticity of gene expression can lead to large variations in protein levels across a population of cells. To explain this variability, different sources of mRNA fluctuations ('Poisson' and 'Telegraph' processes) have been proposed in stochastic models of gene expression. Both Poisson and Telegraph scenario models explain experimental observations of noise in protein levels in terms of 'bursts' of protein expression. Correspondingly, there is considerable interest in establishing relations between burst and steady-state protein distributions for general stochastic models of gene expression. In this work, we address this issue by considering a mapping between stochastic models of gene expression and problems of interest in queueing theory. By applying a general theorem from queueing theory, Little's Law, we derive exact relations which connect burst and steady-state distribution means for models with arbitrary waiting-time distributions for arrival and degradation of mRNAs and proteins. The de...

  12. Novel redox nanomedicine improves gene expression of polyion complex vector

    Directory of Open Access Journals (Sweden)

    Kazuko Toh, Toru Yoshitomi, Yutaka Ikeda and Yukio Nagasaki

    2011-01-01

    Full Text Available Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP as an ROS scavenger. When polyethyleneimine (PEI/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  13. Expression Sensitivity Analysis of Human Disease Related Genes

    Directory of Open Access Journals (Sweden)

    Liang-Xiao Ma

    2013-01-01

    Full Text Available Background. Genome-wide association studies (GWAS have shown its revolutionary power in seeking the influenced loci on complex diseases genetically. Thousands of replicated loci for common traits are helpful in diseases risk assessment. However it is still difficult to elucidate the variations in these loci that directly cause susceptibility to diseases by disrupting the expression or function of a protein currently. Results. We evaluate the expression features of disease related genes and find that different diseases related genes show different expression perturbation sensitivities in various conditions. It is worth noting that the expression of some robust disease-genes doesn’t show significant change in their corresponding diseases, these genes might be easily ignored in the expression profile analysis. Conclusion. Gene ontology enrichment analysis indicates that robust disease-genes execute essential function in comparison with sensitive disease-genes. The diseases associated with robust genes seem to be relatively lethal like cancer and aging. On the other hand, the diseases associated with sensitive genes are apparently nonlethal like psych and chemical dependency diseases.

  14. Biasogram: visualization of confounding technical bias in gene expression data

    DEFF Research Database (Denmark)

    Krzystanek, Marcin; Szallasi, Zoltan Imre; Eklund, Aron Charles

    2013-01-01

    Gene expression profiles of clinical cohorts can be used to identify genes that are correlated with a clinical variable of interest such as patient outcome or response to a particular drug. However, expression measurements are susceptible to technical bias caused by variation in extraneous factors...... such as RNA quality and array hybridization conditions. If such technical bias is correlated with the clinical variable of interest, the likelihood of identifying false positive genes is increased. Here we describe a method to visualize an expression matrix as a projection of all genes onto a plane defined...... by a clinical variable and a technical nuisance variable. The resulting plot indicates the extent to which each gene is correlated with the clinical variable or the technical variable. We demonstrate this method by applying it to three clinical trial microarray data sets, one of which identified genes that may...

  15. Activation of p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) during hypoxia in cerebral cortical nuclei of guinea pig fetus at term: role of nitric oxide.

    Science.gov (United States)

    Maulik, Dev; Ashraf, Qazi M; Mishra, Om P; Delivoria-Papadopoulos, Maria

    2008-07-04

    Previously we have shown that cerebral tissue hypoxia results in generation of nitric oxide (NO) free radicals as well as increased expression of mitogen-activated protein kinase like extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK). The present study tested the hypothesis that administration of l-nitro-l-arginine methyl ester (L-NAME), a NOS inhibitor, prior to hypoxia prevents the hypoxia-induced activation of p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) and in the cerebral cortex of the term guinea pig fetus. To test this hypothesis normoxic (Nx, n=6), hypoxic (Hx, n=7) and hypoxic pretreated with l-NAME (Hx+L-NAME, n=6) guinea pig fetuses at 60 days gestation were studied to determine the phosphorylated p38, ERK and JNK. Hypoxia was induced by exposing pregnant guinea pigs to FiO2 of 0.07 for 1h. l-NAME (30mg/kg i.p.) was administered to pregnant mothers 60min prior to hypoxia. Cerebral tissue hypoxia was documented biochemically by determining the tissue levels of ATP and phosphocreatine (PCr). Neuronal nuclei were isolated, purified and proteins separated using 12% SDS-PAGE, and then probed with specific phosphorylated ERK, JNK and p38 antibodies. Protein bands were detected by enhanced chemiluminescence, analyzed by imaging densitometry and expressed as absorbance (ODxmm2). The relative level of p-p38 was 51.41+/-9.80 (Nx), 173.67+/-3.63 (Hx), 58.56+/-3.40 (Hx+L-NAME), phypoxia decreased the relative level of phosphorylated p38, ERK and JNK at term gestation. Since a NOS inhibitor prevented the hypoxia-induced phosphorylation of p38, ERK and JNK, we conclude that the hypoxia-induced activation of p38, ERK and JNK in the cerebral cortical nuclei of guinea pig fetus at term is NO-mediated. We speculate that NO-mediated modification of cysteine residue leading to inhibition of MAP kinase phosphatases results in increased activation of p38, ERK and JNK

  16. Bioluminescence Imaging of Period1 Gene Expression in Utero

    Directory of Open Access Journals (Sweden)

    Meera T. Saxena

    2007-01-01

    Full Text Available The use of real-time reporters has accelerated our understanding of gene expression in vivo. This study examined the feasibility of a luciferase-based reporter to image spatiotemporal changes in fetal gene expression in utero. We chose to monitor Period1 (Per1 because it is expressed broadly in the body and plays a role in circadian rhythmicity. Using rats carrying a Per1::luc transgene, we repetitively imaged fetuses in utero throughout gestation. We found that bioluminescence was specific to transgenic pups, increased dramatically on embryonic day 10 (10 days after successful mating, and continued to increase logarithmically until birth. Diurnal fluctuations in Per1 expression were apparent several days prior to birth. These results demonstrate the feasibility of in utero imaging of mammalian gene expression, tracking of fetal gene expression from the same litter, and early detection of mammalian clock gene expression. We conclude that luciferase-based reporters can provide a sensitive, noninvasive measure of in utero gene expression.

  17. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants

    Energy Technology Data Exchange (ETDEWEB)

    Huang Qihong; Jin Xidong; Gaillard, Elias T.; Knight, Brian L.; Pack, Franklin D.; Stoltz, James H.; Jayadev, Supriya; Blanchard, Kerry T

    2004-05-18

    Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1 mg/kg per day for 1, 7 and 14 days), methapyrilene (100 mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and

  18. Plasticity-Related Gene Expression During Eszopiclone-Induced Sleep.

    Science.gov (United States)

    Gerashchenko, Dmitry; Pasumarthi, Ravi K; Kilduff, Thomas S

    2017-07-01

    Experimental evidence suggests that restorative processes depend on synaptic plasticity changes in the brain during sleep. We used the expression of plasticity-related genes to assess synaptic plasticity changes during drug-induced sleep. We first characterized sleep induced by eszopiclone in mice during baseline conditions and during the recovery from sleep deprivation. We then compared the expression of 18 genes and two miRNAs critically involved in synaptic plasticity in these mice. Gene expression was assessed in the cerebral cortex and hippocampus by the TaqMan reverse transcription polymerase chain reaction and correlated with sleep parameters. Eszopiclone reduced the latency to nonrapid eye movement (NREM) sleep and increased NREM sleep amounts. Eszopiclone had no effect on slow wave activity (SWA) during baseline conditions but reduced the SWA increase during recovery sleep (RS) after sleep deprivation. Gene expression analyses revealed three distinct patterns: (1) four genes had higher expression either in the cortex or hippocampus in the group of mice with increased amounts of wakefulness; (2) a large proportion of plasticity-related genes (7 out of 18 genes) had higher expression during RS in the cortex but not in the hippocampus; and (3) six genes and the two miRNAs showed no significant changes across conditions. Even at a relatively high dose (20 mg/kg), eszopiclone did not reduce the expression of plasticity-related genes during RS period in the cortex. These results indicate that gene expression associated with synaptic plasticity occurs in the cortex in the presence of a hypnotic medication.

  19. Molecular subsets in the gene expression signatures of scleroderma skin.

    Directory of Open Access Journals (Sweden)

    Ausra Milano

    Full Text Available BACKGROUND: Scleroderma is a clinically heterogeneous disease with a complex phenotype. The disease is characterized by vascular dysfunction, tissue fibrosis, internal organ dysfunction, and immune dysfunction resulting in autoantibody production. METHODOLOGY AND FINDINGS: We analyzed the genome-wide patterns of gene expression with DNA microarrays in skin biopsies from distinct scleroderma subsets including 17 patients with systemic sclerosis (SSc with diffuse scleroderma (dSSc, 7 patients with SSc with limited scleroderma (lSSc, 3 patients with morphea, and 6 healthy controls. 61 skin biopsies were analyzed in a total of 75 microarray hybridizations. Analysis by hierarchical clustering demonstrates nearly identical patterns of gene expression in 17 out of 22 of the forearm and back skin pairs of SSc patients. Using this property of the gene expression, we selected a set of 'intrinsic' genes and analyzed the inherent data-driven groupings. Distinct patterns of gene expression separate patients with dSSc from those with lSSc and both are easily distinguished from normal controls. Our data show three distinct patient groups among the patients with dSSc and two groups among patients with lSSc. Each group can be distinguished by unique gene expression signatures indicative of proliferating cells, immune infiltrates and a fibrotic program. The intrinsic groups are statistically significant (p<0.001 and each has been mapped to clinical covariates of modified Rodnan skin score, interstitial lung disease, gastrointestinal involvement, digital ulcers, Raynaud's phenomenon and disease duration. We report a 177-gene signature that is associated with severity of skin disease in dSSc. CONCLUSIONS AND SIGNIFICANCE: Genome-wide gene expression profiling of skin biopsies demonstrates that the heterogeneity in scleroderma can be measured quantitatively with DNA microarrays. The diversity in gene expression demonstrates multiple distinct gene expression programs

  20. A deep auto-encoder model for gene expression prediction.

    Science.gov (United States)

    Xie, Rui; Wen, Jia; Quitadamo, Andrew; Cheng, Jianlin; Shi, Xinghua

    2017-11-17

    Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance. To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns. We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes' contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.

  1. Gene Expression Profiling Predicts Survival in Conventional Renal Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available BACKGROUND: Conventional renal cell carcinoma (cRCC accounts for most of the deaths due to kidney cancer. Tumor stage, grade, and patient performance status are used currently to predict survival after surgery. Our goal was to identify gene expression features, using comprehensive gene expression profiling, that correlate with survival. METHODS AND FINDINGS: Gene expression profiles were determined in 177 primary cRCCs using DNA microarrays. Unsupervised hierarchical clustering analysis segregated cRCC into five gene expression subgroups. Expression subgroup was correlated with survival in long-term follow-up and was independent of grade, stage, and performance status. The tumors were then divided evenly into training and test sets that were balanced for grade, stage, performance status, and length of follow-up. A semisupervised learning algorithm (supervised principal components analysis was applied to identify transcripts whose expression was associated with survival in the training set, and the performance of this gene expression-based survival predictor was assessed using the test set. With this method, we identified 259 genes that accurately predicted disease-specific survival among patients in the independent validation group (p < 0.001. In multivariate analysis, the gene expression predictor was a strong predictor of survival independent of tumor stage, grade, and performance status (p < 0.001. CONCLUSIONS: cRCC displays molecular heterogeneity and can be separated into gene expression subgroups that correlate with survival after surgery. We have identified a set of 259 genes that predict survival after surgery independent of clinical prognostic factors.

  2. Gene expression profiling predicts survival in conventional renal cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Hongjuan Zhao

    2006-01-01

    Full Text Available BACKGROUND: Conventional renal cell carcinoma (cRCC accounts for most of the deaths due to kidney cancer. Tumor stage, grade, and patient performance status are used currently to predict survival after surgery. Our goal was to identify gene expression features, using comprehensive gene expression profiling, that correlate with survival. METHODS AND FINDINGS: Gene expression profiles were determined in 177 primary cRCCs using DNA microarrays. Unsupervised hierarchical clustering analysis segregated cRCC into five gene expression subgroups. Expression subgroup was correlated with survival in long-term follow-up and was independent of grade, stage, and performance status. The tumors were then divided evenly into training and test sets that were balanced for grade, stage, performance status, and length of follow-up. A semisupervised learning algorithm (supervised principal components analysis was applied to identify transcripts whose expression was associated with survival in the training set, and the performance of this gene expression-based survival predictor was assessed using the test set. With this method, we identified 259 genes that accurately predicted disease-specific survival among patients in the independent validation group (p < 0.001. In multivariate analysis, the gene expression predictor was a strong predictor of survival independent of tumor stage, grade, and performance status (p < 0.001. CONCLUSIONS: cRCC displays molecular heterogeneity and can be separated into gene expression subgroups that correlate with survival after surgery. We have identified a set of 259 genes that predict survival after surgery independent of clinical prognostic factors.

  3. Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity.

    Science.gov (United States)

    Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.

  4. Bovine Mammary Gene Expression Profiling during the Onset of Lactation

    Science.gov (United States)

    Gao, Yuanyuan; Lin, Xueyan; Shi, Kerong; Yan, Zhengui; Wang, Zhonghua

    2013-01-01

    Background Lactogenesis includes two stages. Stage I begins a few weeks before parturition. Stage II is initiated around the time of parturition and extends for several days afterwards. Methodology/Principal Findings To better understand the molecular events underlying these changes, genome-wide gene expression profiling was conducted using digital gene expression (DGE) on bovine mammary tissue at three time points (on approximately day 35 before parturition (−35 d), day 7 before parturition (−7 d) and day 3 after parturition (+3 d)). Approximately 6.2 million (M), 5.8 million (M) and 6.1 million (M) 21-nt cDNA tags were sequenced in the three cDNA libraries (−35 d, −7 d and +3 d), respectively. After aligning to the reference sequences, the three cDNA libraries included 8,662, 8,363 and 8,359 genes, respectively. With a fold change cutoff criteria of ≥2 or ≤−2 and a false discovery rate (FDR) of ≤0.001, a total of 812 genes were significantly differentially expressed at −7 d compared with −35 d (stage I). Gene ontology analysis showed that those significantly differentially expressed genes were mainly associated with cell cycle, lipid metabolism, immune response and biological adhesion. A total of 1,189 genes were significantly differentially expressed at +3 d compared with −7 d (stage II), and these genes were mainly associated with the immune response and cell cycle. Moreover, there were 1,672 genes significantly differentially expressed at +3 d compared with −35 d. Gene ontology analysis showed that the main differentially expressed genes were those associated with metabolic processes. Conclusions The results suggest that the mammary gland begins to lactate not only by a gain of function but also by a broad suppression of function to effectively push most of the cell's resources towards lactation. PMID:23990904

  5. Bovine mammary gene expression profiling during the onset of lactation.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Gao

    Full Text Available BACKGROUND: Lactogenesis includes two stages. Stage I begins a few weeks before parturition. Stage II is initiated around the time of parturition and extends for several days afterwards. METHODOLOGY/PRINCIPAL FINDINGS: To better understand the molecular events underlying these changes, genome-wide gene expression profiling was conducted using digital gene expression (DGE on bovine mammary tissue at three time points (on approximately day 35 before parturition (-35 d, day 7 before parturition (-7 d and day 3 after parturition (+3 d. Approximately 6.2 million (M, 5.8 million (M and 6.1 million (M 21-nt cDNA tags were sequenced in the three cDNA libraries (-35 d, -7 d and +3 d, respectively. After aligning to the reference sequences, the three cDNA libraries included 8,662, 8,363 and 8,359 genes, respectively. With a fold change cutoff criteria of ≥ 2 or ≤-2 and a false discovery rate (FDR of ≤ 0.001, a total of 812 genes were significantly differentially expressed at -7 d compared with -35 d (stage I. Gene ontology analysis showed that those significantly differentially expressed genes were mainly associated with cell cycle, lipid metabolism, immune response and biological adhesion. A total of 1,189 genes were significantly differentially expressed at +3 d compared with -7 d (stage II, and these genes were mainly associated with the immune response and cell cycle. Moreover, there were 1,672 genes significantly differentially expressed at +3 d compared with -35 d. Gene ontology analysis showed that the main differentially expressed genes were those associated with metabolic processes. CONCLUSIONS: The results suggest that the mammary gland begins to lactate not only by a gain of function but also by a broad suppression of function to effectively push most of the cell's resources towards lactation.

  6. Light induces Fos expression via extracellular signal-regulated kinases 1/2 in melanopsin-expressing PC12 cells

    DEFF Research Database (Denmark)

    Moldrup, Marie-Louise Bülow; Georg, Birgitte; Falktoft, Birgitte

    2010-01-01

    and the cells respond to light by a membrane depolarization and induction of the immediate early response gene Fos. Previous studies showed that the light activated melanopsin-induced signaling, the phototransduction, leading to depolarization of the membrane resembles the invertebrate opsins, which involves......-regulated protein kinase 1/2 (ERK1/2) was found as pharmacological blockage of this kinase suppressed the light-induced Fos expression. Illumination increased the inositol phosphate turnover and induced phosphorylation of ERK1/2 and p38 but not the c-Jun N-terminal kinase. The Galpha(q/11) protein inhibitor YM......254890 attenuated these intracellular light responses. Our data strongly indicate that Galpha(q/11)-mediated ERK1/2 activation is essential for expression of Fos upon illumination of melanopsin-expressing PC12 cells....

  7. The gsdf gene locus harbors evolutionary conserved and clustered genes preferentially expressed in fish previtellogenic oocytes.

    Science.gov (United States)

    Gautier, Aude; Le Gac, Florence; Lareyre, Jean-Jacques

    2011-02-01

    The gonadal soma-derived factor (GSDF) belongs to the transforming growth factor-β superfamily and is conserved in teleostean fish species. Gsdf is specifically expressed in the gonads, and gene expression is restricted to the granulosa and Sertoli cells in trout and medaka. The gsdf gene expression is correlated to early testis differentiation in medaka and was shown to stimulate primordial germ cell and spermatogonia proliferation in trout. In the present study, we show that the gsdf gene localizes to a syntenic chromosomal fragment conserved among vertebrates although no gsdf-related gene is detected on the corresponding genomic region in tetrapods. We demonstrate using quantitative RT-PCR that most of the genes localized in the synteny are specifically expressed in medaka gonads. Gsdf is the only gene of the synteny with a much higher expression in the testis compared to the ovary. In contrast, gene expression pattern analysis of the gsdf surrounding genes (nup54, aff1, klhl8, sdad1, and ptpn13) indicates that these genes are preferentially expressed in the female gonads. The tissue distribution of these genes is highly similar in medaka and zebrafish, two teleostean species that have diverged more than 110 million years ago. The cellular localization of these genes was determined in medaka gonads using the whole-mount in situ hybridization technique. We confirm that gsdf gene expression is restricted to Sertoli and granulosa cells in contact with the premeiotic and meiotic cells. The nup54 gene is expressed in spermatocytes and previtellogenic oocytes. Transcripts corresponding to the ovary-specific genes (aff1, klhl8, and sdad1) are detected only in previtellogenic oocytes. No expression was detected in the gonocytes in 10 dpf embryos. In conclusion, we show that the gsdf gene localizes to a syntenic chromosomal fragment harboring evolutionary conserved genes in vertebrates. These genes are preferentially expressed in previtelloogenic oocytes, and thus, they

  8. Differential network analysis from cross-platform gene expression data.

    Science.gov (United States)

    Zhang, Xiao-Fei; Ou-Yang, Le; Zhao, Xing-Ming; Yan, Hong

    2016-09-28

    Understanding how the structure of gene dependency network changes between two patient-specific groups is an important task for genomic research. Although many computational approaches have been proposed to undertake this task, most of them estimate correlation networks from group-specific gene expression data independently without considering the common structure shared between different groups. In addition, with the development of high-throughput technologies, we can collect gene