WorldWideScience

Sample records for c-jun gene expression

  1. Heterogeneity in c-jun gene expression in normal and malignant cells exposed to either ionizing radiation or hydrogen peroxide

    International Nuclear Information System (INIS)

    We investigated the role of reactive oxygen intermediates and protein kinase C (PKC) in induction of c-jun gene expression in human ML-2 leukemic cells and normal DET-551 fibroblasts by comparing the effects of either ionizing radiation or H2O2 exposure in the presence or absence of appropriate inhibitors. In these cell types, the radiation and H2O2-mediated increase in c-jun mRNA levels could be prevented by pretreatment of the cells with N-acetylcysteine, an antioxidant, or H7, an inhibitor of PKC and cAMP-dependent protein kinase (PKA), but not by HA1004, an inhibitor of PKA. These results suggest a role for PKC and reactive oxygen intermediates in the induction of c-jun gene expression in both normal and tumor cells. We also investigated potential differences in radiation- or H2O2-induced c-jun gene expression in normal and tumor cells by examining steady-state c-jun mRNA levels in a number of human fibroblast, leukemia, melanoma, sarcoma, and carcinoma cell types. We observed heterogeneity in the steady-state level of c-jun mRNA in both the untreated normal and tumor cells and in such cells exposed to ionizing radiation or to H2O2. Exposure to radiation or to hydrogen peroxide produced a varied response which ranged from little or no induction to a more than two orders of magnitude increase in the steady-state level of the c-jun mRNA

  2. The effects of vitamin E succinate on the expression of c-jun gene and protein in human gastric cancer SGC-7901 cells

    Institute of Scientific and Technical Information of China (English)

    Yan Zhao; Kun Wu; Wei Xia; Yu-Juan Shan; Li-Jie Wu; Wei-Ping Yu

    2002-01-01

    AIM: To investigate the effects of vitamin E succinate (VES) on the expression of c-jun gene and protein in human gastric cancer SGC-7901 cells.METHODS: After SGC-7901 cells were treated with VES at different doses (5,10,20 mg@L-1) at different time, reverse transcription-PCR technique was used to detect the level of c-jun mRNA; Western Blot was applied to measure the expression of c-jun protei n/RESULTS: After the cells were treated with VES at 20 mg@L-1 for 3 h, the expression rapidly reached its maximum that was 3.5 times of UT control (P<0.01). The level of c-jun mRNA was also increased following treatment of VES for 6 h.However, the expression after treatment of VES at 5 mg@L-1for 24 h was 1.6 times compared with UT control (P<0.01).Western blot analysis showed that the level of c-jun protein was obviously elevated in VES-treated SGC-7901 cells at 20 mg@L-1 for 3 h. The expression of c-jun protein was gradually increased after treatment of VES at 20 mg@L-1 for 3, 6, 12 and 24 h, respectively, with an evident time-effect relationship. CONCLUSION: The levels of c-jun mRNA and protein in VES-treated SGC-7901 cells were increased in a dose- and time-dependent manner; the expression of c-jun was prolonged by VES, indicating that c-jun is involved in VESinduced apoptosis in SGC-7901 cells.

  3. Regulation of hemeoxygenase-1 gene expression by Nrf2 and c-Jun in tertiary butylhydroquinone-stimulated rat primary astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Sun; Kim, Hee-Sun, E-mail: hskimp@ewha.ac.kr

    2014-05-16

    Highlights: • tBHQ increased HO-1 mRNA and protein levels in rat primary astrocytes. • tBHQ enhanced HO-1 gene transcription in an ARE-dependent manner. • tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. • Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. • Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction. - Abstract: Hemeoxygenase-1 (HO-1) is a phase II antioxidant enzyme that is primarily involved in detoxification and cytoprotection in a variety of tissues. However, the mechanism underlying HO-1 gene expression remains unclear. In the present study, we investigated the regulation of HO-1 expression in primary cultured astrocytes by using the natural antioxidant compound tertiary butylhydroquinone (tBHQ). We found that tBHQ increased HO-1 mRNA and protein levels. Promoter analysis revealed that tBHQ enhanced HO-1 gene transcription in an antioxidant response element (ARE)-dependent manner. In addition, tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. Small interfering RNA (siRNA) experiments demonstrated that Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. Thus, Nrf2 knockdown reduced the basal level of HO-1 expression but did not affect the fold induction by tBHQ. On the other hand, knockdown of c-Jun diminished tBHQ-mediated induction of HO-1 without affecting basal expression. The data suggest that Nrf2 generally modulates the basal expression of HO-1, while c-Jun mediates HO-1 induction in response to tBHQ. The results of co-immunoprecipitation assays demonstrated a physical interaction between Nrf2 and c-Jun in tBHQ-treated astrocytes. The results suggest that Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction in tBHQ-treated rat primary astrocytes.

  4. Regulation of hemeoxygenase-1 gene expression by Nrf2 and c-Jun in tertiary butylhydroquinone-stimulated rat primary astrocytes

    International Nuclear Information System (INIS)

    Highlights: • tBHQ increased HO-1 mRNA and protein levels in rat primary astrocytes. • tBHQ enhanced HO-1 gene transcription in an ARE-dependent manner. • tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. • Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. • Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction. - Abstract: Hemeoxygenase-1 (HO-1) is a phase II antioxidant enzyme that is primarily involved in detoxification and cytoprotection in a variety of tissues. However, the mechanism underlying HO-1 gene expression remains unclear. In the present study, we investigated the regulation of HO-1 expression in primary cultured astrocytes by using the natural antioxidant compound tertiary butylhydroquinone (tBHQ). We found that tBHQ increased HO-1 mRNA and protein levels. Promoter analysis revealed that tBHQ enhanced HO-1 gene transcription in an antioxidant response element (ARE)-dependent manner. In addition, tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. Small interfering RNA (siRNA) experiments demonstrated that Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. Thus, Nrf2 knockdown reduced the basal level of HO-1 expression but did not affect the fold induction by tBHQ. On the other hand, knockdown of c-Jun diminished tBHQ-mediated induction of HO-1 without affecting basal expression. The data suggest that Nrf2 generally modulates the basal expression of HO-1, while c-Jun mediates HO-1 induction in response to tBHQ. The results of co-immunoprecipitation assays demonstrated a physical interaction between Nrf2 and c-Jun in tBHQ-treated astrocytes. The results suggest that Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction in tBHQ-treated rat primary astrocytes

  5. Pregnane and Xenobiotic Receptor gene expression in liver cells is modulated by Ets-1 in synchrony with transcription factors Pax5, LEF-1 and c-jun

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Sangeeta; Saradhi, Mallampati; Rana, Manjul; Chatterjee, Swagata [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Aumercier, Marc [IRI, CNRS USR 3078, Université de Lille-Nord de France, Parc CNRS de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq Cedex (France); Mukhopadhyay, Gauranga [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Tyagi, Rakesh K., E-mail: rktyagi@yahoo.com [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India)

    2015-01-15

    Nuclear receptor PXR is predominantly expressed in liver and intestine. Expression of PXR is observed to be dysregulated in various metabolic disorders indicating its involvement in disease development. However, information available on mechanisms of PXR self-regulation is fragmentary. The present investigation identifies some of the regulatory elements responsible for its tight regulation and low cellular expression. Here, we report that the PXR-promoter is a target for some key transcription factors like PU.1/Ets-1, Pax5, LEF-1 and c-Jun. Interestingly, we observed that PXR-promoter responsiveness to Pax5, LEF-1 and c-Jun, is considerably enhanced by Ets transcription factors (PU.1 and Ets-1). Co-transfection of cells with Ets-1, LEF-1 and c-Jun increased PXR-promoter activity by 5-fold and also induced expression of endogenous human PXR. Site-directed mutagenesis and transfection studies revealed that two Ets binding sites and two of the three LEF binding sites in the PXR-promoter are functional and have a positive effect on PXR transcription. Results suggest that expression of Ets family members, in conjunction with Pax5, LEF-1 and c-Jun, lead to coordinated up-regulation of PXR gene transcription. Insights obtained on the regulation of PXR gene have relevance in offering important cues towards normal functioning as well as development of several metabolic disorders via PXR signaling. - Highlights: • The study identified cis-regulatory elements in the nuclear receptor PXR promoter. • Several trans-acting factors modulating the PXR-promoter have been identified. • PU.1/Ets-1, Pax5, LEF-1, c-Jun, LyF-VI and NF-1 act as modulators of the PXR-promoter. • Ets-1 in conjunction with LEF-1 and c-Jun exhibit 5-fold activation of the PXR-promoter. • Insights into PXR-regulation have relevance in normal and pathological conditions.

  6. Pregnane and Xenobiotic Receptor gene expression in liver cells is modulated by Ets-1 in synchrony with transcription factors Pax5, LEF-1 and c-Jun.

    Science.gov (United States)

    Kumari, Sangeeta; Saradhi, Mallampati; Rana, Manjul; Chatterjee, Swagata; Aumercier, Marc; Mukhopadhyay, Gauranga; Tyagi, Rakesh K

    2015-01-15

    Nuclear receptor PXR is predominantly expressed in liver and intestine. Expression of PXR is observed to be dysregulated in various metabolic disorders indicating its involvement in disease development. However, information available on mechanisms of PXR self-regulation is fragmentary. The present investigation identifies some of the regulatory elements responsible for its tight regulation and low cellular expression. Here, we report that the PXR-promoter is a target for some key transcription factors like PU.1/Ets-1, Pax5, LEF-1 and c-Jun. Interestingly, we observed that PXR-promoter responsiveness to Pax5, LEF-1 and c-Jun, is considerably enhanced by Ets transcription factors (PU.1 and Ets-1). Co-transfection of cells with Ets-1, LEF-1 and c-Jun increased PXR-promoter activity by 5-fold and also induced expression of endogenous human PXR. Site-directed mutagenesis and transfection studies revealed that two Ets binding sites and two of the three LEF binding sites in the PXR-promoter are functional and have a positive effect on PXR transcription. Results suggest that expression of Ets family members, in conjunction with Pax5, LEF-1 and c-Jun, lead to coordinated up-regulation of PXR gene transcription. Insights obtained on the regulation of PXR gene have relevance in offering important cues towards normal functioning as well as development of several metabolic disorders via PXR signaling.

  7. Effect of normothermic liver ischemic preconditioning on the expression of apoptosis-regulating genes C-jun and Bcl-XL in rats

    Institute of Scientific and Technical Information of China (English)

    Guo-Huang Hu; Xin-Sheng Lü

    2005-01-01

    AIM: To explore the expression of apoptosis-regulatinggenes C-jun and Bcl-XL after normothermic liver ischemic preconditioning and its protective effect on hepatocytes in the rat.METHODS: Wistar rats are randomly divided into sham operation group (S group, n = 10), ischemic reperfusion group (IR group, n = 10) and ischemic preconditioning group (IP group, n = 10). After dissection of the hepatoduodenal ligament in S group, and after 30-min reperfusion in IR group and in IP group, the samples of liver tissue were taken for studying the hepatocellular apoptosis, theexpressions of C-jun mRNA, Bcl-XL mRNA and their proteins, and morphologic changes at 0, 3, 6, 20 h. Meanwhile the venous blood samples were drawn at 3, 6 and 20 h for testing ALT, AST and LDH.RESULTS: The levels of ALT, AST and LDH in IR group and IP group were significantly higher than those in S group. Hepatocellular apoptosis was significantly increased in both IR group and IP group, especially in IR group.Expressions of C-jun mRNA and protein were significantly increased in IR group compared with those in both IP group and S group, but no significant difference between IP group and S group (P>0.05). Expressions of Bcl-XL mRNA and protein in IR group and S group were not significant (P>0.05), but were significantly increased in IP group compared with those in both S group and IR group. Patch necrosis of hepatocytes because of severe injury could be seen in IR group microscopically, and the ultrastructural changes were irreversible. Meanwhile in IP group, no hepatocellular necrosis occurred, and the ultrastructural changes were reversible because of mild injury. CONCLUSION: (1) IP can protect the rat liver from normothermic IR injury by modulation of the expressionof apoptosis-regulating genes C-jun and Bcl-XL; (2) IR injury may activate the apoptosis of hepatocytes by increasing the expression of apoptosis-inducing gene C-jun; (3) IP may prohibit the apoptosis of hepatocytes by increasing the

  8. Persistent induction of c-fos and c-jun expression by asbestos

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, N.H.; Mossman, B.T. (Univ. of Vermont College of Medicine, Burlington (United States)); Janssen, Y.M. (Univ. of Vermont College of Medicine, Burlington (United States) Univ. of Limburg, Maastricht (Netherlands))

    1993-04-15

    To investigate the mechanisms of asbestos-induced carcinogenesis, expression of c-fos and c-jun protooncogenes was examined in rat pleural mesothelial cells and hamster tracheal epithelial cells after exposure to crocidolite or chrysotile asbestos. In contrast to phorbol 12-myristate 13-acetate, which induces rapid and transient increases in c-fos and c-jun mRNA, asbestos causes 2- to 5-fold increases in c-fos and c-jun mRNA that persist for at least 24 hr in mesothelial cells. The induction of c-fos and c-jun mRNA by asbestos in mesothelial cells is dose-dependent and is most pronounced with crocidolite, the type of asbestos most pathogenic in the causation of pleural mesothelioma. Induction of c-jun gene expression by asbestos occurs in tracheal epithelial cells but is not accompanied by a corresponding induction of c-fos gene expression. In both cell types, asbestos induces increases in protein factors that bind specifically to the DNA sites that mediate gene expression by the AP-1 family of transcription factors. The persistent induction of AP-1 transcription factors by asbestos suggests a model of asbestos-induced carcinogenesis involving chronic stimulation of cell proliferation through activation of the early response gene pathway that includes c-jun and/or c-fos. 30 refs., 5 figs.

  9. The oncogenic transcription factor c-Jun regulates glutaminase expression and sensitizes cells to glutaminase-targeted therapy

    Science.gov (United States)

    Lukey, Michael J.; Greene, Kai Su; Erickson, Jon W.; Wilson, Kristin F.; Cerione, Richard A.

    2016-01-01

    Many transformed cells exhibit altered glucose metabolism and increased utilization of glutamine for anabolic and bioenergetic processes. These metabolic adaptations, which accompany tumorigenesis, are driven by oncogenic signals. Here we report that the transcription factor c-Jun, product of the proto-oncogene JUN, is a key regulator of mitochondrial glutaminase (GLS) levels. Activation of c-Jun downstream of oncogenic Rho GTPase signalling leads to elevated GLS gene expression and glutaminase activity. In human breast cancer cells, GLS protein levels and sensitivity to GLS inhibition correlate strongly with c-Jun levels. We show that c-Jun directly binds to the GLS promoter region, and is sufficient to increase gene expression. Furthermore, ectopic overexpression of c-Jun renders breast cancer cells dependent on GLS activity. These findings reveal a role for c-Jun as a driver of cancer cell metabolic reprogramming, and suggest that cancers overexpressing JUN may be especially sensitive to GLS-targeted therapies. PMID:27089238

  10. HP1a/KDM4A is involved in the autoregulatory loop of the oncogene gene c-Jun.

    Science.gov (United States)

    Liu, Yan; Zhang, Daoyong

    2015-01-01

    The proto-oncogene c-Jun plays crucial roles in tumorigenesis, and its aberrant expression has been implicated in many cancers. Previous studies have shown that the c-Jun gene is positively autoregulated by its product. Notably, it has also been reported that c-Jun proteins are enriched in its gene body region. However, the role of c-Jun proteins in its gene body region has yet to be uncovered. HP1a is an evolutionarily conserved heterochromatin-associated protein, which plays an essential role in heterochromatin-mediated gene silencing. Interestingly, accumulating evidence shows that HP1a is also localized to euchromatic regions to positively regulate gene transcription. However, the underlying mechanism has not been defined. In this study, we demonstrate that HP1a is involved in the positive autoregulatory loop of the Jra gene, the c-Jun homolog in Drosophila. Jra recruits the HP1a/KDM4A complex to its gene body region upon osmotic stress to reduce H3K36 methylation levels and disrupt H3K36 methylation-dependent histone deacetylation, resulting in high levels of histone acetylation in the Jra gene body region, thus promoting gene transcription. These results not only expand our knowledge toward the mechanism of c-Jun regulation, but also reveal the mechanism by which HP1a exerts its positive regulatory function in gene expression.

  11. Rice From Mercury Contaminated Areas in Guizhou Province Induces c-jun Expression in Rat Brain

    Institute of Scientific and Technical Information of China (English)

    JIN-PING CHENG; WEN-HUA WANG; LI-YA QU; JIN-PING JIA; MIN ZHENG; XIU-LING JI; TAO YUAN

    2005-01-01

    Objective Mercury (Hg), as one of the priority pollutants and also a hot topic of frontier environmental research in many countries, has been paid higher attention in the world since the middle of the last century. Guizhou Province (at N24°30′-29°13′, E103°1′-109°30′, 1 100 m above the sea level, with subtropical humid climate) in southwest China is an important mercury production center. It has been found that the mercury content in most media of aquatics, soil, atmosphere and in biomass of corns, plants and animals, is higher than the national standard.The present study aims to explore the influence of mercury pollution on the health of local citizens. Methods The effect of rice from two mercury polluted experimental plots of Guizhou Province on the expression of c-jun mRNA in rat brain and c-jun protein in cortex, hippocampus and ependyma was observed using reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemical methods. Results The results showed that the mercury polluted rice induced expression of c-jun mRNA and its protein significantly. Selenium can reduce Hg uptake, an antagonism between selenium and mercury on the expression of c-jun mRNA and c-jun protein. Conclusion c-jun participates in the toxicity process of brain injury by mercury polluted rice, the expression of c- jun mRNA in brain, and c-jun protein in rat cortex and hippocampus can predict neurotoxicity of mercury polluted rice. People should be advised to be cautious in eating any kind of Hg-polluted foods. To reveal the relationship between c-jun induction and apoptosis, further examinations are required.

  12. Expression of c-fos and c-jun protooncogenes in the uteri of immature mice neonatally exposed to diethylstilbestrol.

    Science.gov (United States)

    Yamashita, S; Takayanagi, A; Shimizu, N

    2003-01-01

    We studied the cell-type-specific and temporal expression of c-fos and c-jun protooncogenes after 17beta-estradiol (E2) stimulation in the uteri of immature 3-week-old mice neonatally exposed to diethylstilbestrol (DES), DES-mice, and the ontogenic expression of these genes in the uteri of DES-mice using immunohistochemistry and in situ hybridization. A single E2 injection induced the transient and rapid expression of c-fos mRNA and c-Fos protein in the endometrial epithelium and endothelial cells of the blood vessels in both 3-week-old vehicle-treated controls and DES-mice; a peak of mRNA expression was 2 hours after E2 injection and that of protein expression was 2 to 3 hours after the injection. The expression of c-fos mRNA and protein after E2 stimulation was lower in the DES-mice than in the control animals. There were no significant differences in the c-jun expression patterns in both experimental groups before and after the E2 injection. The E2 injection transiently down-regulated the c-jun expression in the epithelium and up-regulated it in the stroma and myometrium. The uterine epithelium of DES-mice showed much stronger c-Jun immunostaining on days 4 and 10, compared with those of controls. Neonatal DES treatment reduced c-Jun immunoreactivity in the uterine epithelium on days 4 and 10, and increased the reaction in the stroma on day 4. These results suggested that the neonatal DES treatment induces permanent changes in the c-fos expression pattern independent of the postpuberal secretion of ovarian steroids. The changes in the expression of c-fos and c-jun protooncogenes, particularly during postnatal development, are likely to play important roles in the production of uterine abnormalities in the DES-mice.

  13. Dentin bonding agents induce c-fos and c-jun protooncogenes expression in human gingival fibroblasts.

    Science.gov (United States)

    Huang, Fu-Mei; Chou, Ming-Yung; Chang, Yu-Chao

    2003-01-01

    An important requirement for a dentin bonding agent is biologic compatibility; the bonding agent usually remains in close contact with living dental tissues over a long period of time. Information on the genotoxicity/mutagenicity and cacinogenicity potentials of dentin bonding agents is rare. It has been shown that c-fos and c-jun are induced rapidly by a variety of chemical and physical stimuli. Little is known about the induction of cellular signaling events and specific gene expression after cell exposure to dentin bonding agents. Therefore, we used primary human gingival fibroblasts to examine the effect of six dentin bonding agents on the expression of c-fos and c-jun protooncogenes to evaluate the genotoxicity/mutagenicity and cacinogenicity potential of the dentin bonding agents. The levels of mRNA were measured by the quantitative RT-PCR analysis. c-fos and c-jun mRNA expression in dentin bonding agents-treated cells revealed a rapid accumulation of the transcript, a significant signal first was detectable after 1h of exposure. Persistent induction of c-jun and c-fos protooncogenes by dentine bonding agents may distribute systemically to cause some unexpected adverse effects on human beings. It would be necessary to identify the severely toxic compounds and replace these substances by better biocompatible components. Otherwise, leaching of those genotoxicity/mutagenicity and cacinogenicity components must be minimized or prevented.

  14. Puerarin reduces increased c-fos, c-jun, and type Ⅳ collagen expression caused by high glucose in glomerular mesangial cells

    Institute of Scientific and Technical Information of China (English)

    Cai-ping MAO; Zhen-lun GU

    2005-01-01

    Aim: Increased expression of c-fos, c-jun and type Ⅳ collagen (CoⅣ) in glomerular mesangial cells (GMC) are important characteristics of diabetic nephropathy.Both c-fos and c-jun regulate the gene expression of extracellular matrix components, and CoⅣ is the main component of the extracellular matrix. It has been reported that puerarin inhibits aggregation of the extracellular matrix in diabetic rats by an as yet unknown mechanism. The aim of this study is to investigate the effect of puerarin on c-fos, c-jun and CoⅣ expression in GMC cultured in medium containing 5.6 or 27.8 mmol/L glucose. Methods: The expressions ofc-fos and c-jun were measured at the protein level using flow cytometry. CoⅣ content was detected using radioimmunoassay. Protein kinase C (PKC) activity was measured using liquid scintillation counting. Results: Puerarin (10-5 mmol/L) significantly ameliorated the high-glucose effect on c-fos, c-jun and CoⅣ expression.This effect is accompanied by a reduced PKC activity in these cells. Conclusion:Our results suggest that reduced PKC activity and expression of c-fos and c-jun in GMC might participate in the mechanisms underlying the therapeutic effect of puerarin on diabetic nephropathy.

  15. Ketamine inhibits c-Jun protein expression in mouse hippocampus following cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Feng Xiao; Liangzhi Xiong; Qingxiu Wang; Long Zhou; Qingshan Zhou

    2012-01-01

    A model of cerebral ischemia and reperfusion was established in mice. Mice were treated with ketamine via intraperitoneal injection immediately following ischemia or ischemia/reperfusion. Ketamine did not remarkably change infarct volume in mice immediately following ischemia, but injection immediately following ischemia/reperfusion significantly decreased infarct volume. Ketamine injection immediately after ischemia or ischemia/reperfusion inhibited c-Jun protein expression in mouse hippocampus, but nuclear factor kappa B expression was unaltered. In addition, the Longa scale score for neural impairment was not reduced in mice following cerebral ischemia/reperfusion. These results indicate that ketamine can protect mice against cerebral ischemia and reperfusion injury by modulating c-Jun protein expression in mouse hippocampus.

  16. Voxel-based analysis of the immediate early gene, c-jun, in the honey bee brain after a sucrose stimulus.

    Science.gov (United States)

    McNeill, M S; Robinson, G E

    2015-06-01

    Immediate early genes (IEGs) have served as useful markers of brain neuronal activity in mammals, and more recently in insects. The mammalian canonical IEG, c-jun, is part of regulatory pathways conserved in insects and has been shown to be responsive to alarm pheromone in honey bees. We tested whether c-jun was responsive in honey bees to another behaviourally relevant stimulus, sucrose, in order to further identify the brain regions involved in sucrose processing. To identify responsive regions, we developed a new method of voxel-based analysis of c-jun mRNA expression. We found that c-jun is expressed in somata throughout the brain. It was rapidly induced in response to sucrose stimuli, and it responded in somata near the antennal and mechanosensory motor centre, mushroom body calices and lateral protocerebrum, which are known to be involved in sucrose processing. c-jun also responded to sucrose in somata near the lateral suboesophageal ganglion, dorsal optic lobe, ventral optic lobe and dorsal posterior protocerebrum, which had not been previously identified by other methods. These results demonstrate the utility of voxel-based analysis of mRNA expression in the insect brain.

  17. A study on the expression of c-jun mRNA after experimental rat brain concussion%实验性大鼠脑震荡后c-jun mRNA表达

    Institute of Scientific and Technical Information of China (English)

    汪枫; 李永宏

    2011-01-01

    Objective To evaluate changes of c-jun mRNA after brain concussion. Methods Fifty-five rats were randomly divided into brain concussion groups ( 0min, 15 min, 30min, 60min, 3 h, 6h, 12h, 24h, 48 h,96h) and control group. The expression of c-jun mRNA in cortex 、thalamus and brain stem was microscopically observed by In site hybridization method. Results There were weak positive expression of c-jun mRNA in some neutrons and neuroglia cells in control group. In brain concussion group, however,positive expression of c-jun mRNA in some neutrons was seen at 15min after brain concussion,and reach to the peak at 30min after brain concussion the level of expression of c-jun mRNA were as well as control group at 96h. Conclusion There findings suggest that detection of c-jun mRNA could be an index of diagnosis of brain concussion and a sensitive marker of timing of injury after brain concussion.%目的 观察实验性大鼠脑震荡后c-jun mRNA的表达变化规律.方法 55只实验大鼠随机分为脑震荡组(0min、15min、30min、60min、3h、6h、12h、24h、48h、96h)和对照组,用原位杂交法观察大鼠脑震荡后各时间点,大脑皮质、脑干和丘脑神经元c-jun mRNA表达的变化规律.结果 对照组大鼠神经元和胶质细胞均可见c-jun mRNA的弱阳性表达.脑震荡组大鼠损伤后15min神经细胞观察到c-jun mRNA阳性表达,随损伤后经过时间的延长阳性表达逐渐增强;30min时c-jun mRNA阳性反应达高峰,随后逐渐降低,至96h时回落至对照组水平.结论 c-jun mRNA表达水平可成为诊断脑震荡和推断伤后经过时间的一项敏感指标.

  18. Induction of c-fos and c-jun protooncogenes expression by formaldehyde-releasing and epoxy resin-based root-canal sealers in human osteoblastic cells.

    Science.gov (United States)

    Huang, Fu-Mei; Hsieh, Yih-Shou; Tai, Kuo-Wei; Chou, Ming-Yung; Chang, Yu-Chao

    2002-03-01

    An important requirement for a root-canal sealer is biologic compatibility; most evaluations have focused on general toxicological and local tissue irritating properties. There is only scant information about mutagenicity or carcinogenicity testing for root-canal sealer. It has been shown that c-fos and c-jun are induced rapidly by a variety of chemical and physical stimuli. Numerous works have extensively investigated the induction mechanisms of c-fos and c-jun protooncogenes by these agents; however, little is known about the induction of cellular signaling events and specific gene expression after cell exposure to root-canal sealers. Therefore, we used osteoblastic cell line U2-OS to examine the effect of zinc-oxide eugenol-based (N2 and Endomethasome), epoxy resin-based (AH Plus), and calcium hydroxide-based (Sealapex) root-canal sealers on the expression of c-fos and c-jun protooncogenes to understand in more detail the molecular mechanisms of root-canal sealer-induced genotoxicity. The cytotoxicity decreased in an order of N2 > Endomethasome > AH Plus > Sealapex. In addition, N2, Endomethasome, and AH Plus rapidly induced c-jun and c-fos mRNA levels in cells. However, Sealapex did not induce c-jun and c-fos mRNA expression at detectable levels all time points. Taken together, persistent induction of c-jun and c-fos protooncogenes by formaldehyde-releasing and epoxy resin-based root-canal sealers may be distributed systemically via apex to cause some unexpected adverse effects on human beings. These data should be taken into consideration when choosing a root-canal sealer.

  19. A novel function of B-cell translocation gene 1 (BTG1) in the regulation of hepatic insulin sensitivity in mice via c-Jun.

    Science.gov (United States)

    Xiao, Fei; Deng, Jiali; Yu, Junjie; Guo, Yajie; Chen, Shanghai; Guo, Feifan

    2016-01-01

    Insulin resistance is one of the major factors contributing to metabolic diseases, but the underlying mechanisms are still poorly understood. As an important cofactor, B-cell translocation gene 1 (BTG1) is involved in many physiologic processes; however, the direct effect of BTG1 on insulin sensitivity has not been described. In our study, BTG1 overexpression or knockdown improved or impaired insulin signaling in vitro, respectively. In addition, adenovirus-mediated BTG1 overexpression improved insulin sensitivity in wild-type (WT) and insulin-resistant leptin-receptor mutated (db/db) mice. In addition, transgenic BTG1-overexpressing mice were resistant to high-carbohydrate diet-induced insulin resistance. Adenovirus-mediated BTG1 knockdown consistently impaired insulin sensitivity in WT and insulin-sensitive leucine-deprived mice. Moreover, hepatic BTG1 expression was increased by leucine deprivation via the mammalian target of rapamycin/ribosomal protein S6 kinase 1 pathway. Furthermore, c-Jun expression was up-regulated by BTG1, and adenovirus-mediated c-Jun knockdown blocked BTG1-improved insulin signaling and insulin sensitivity in vitro and in vivo. Finally, BTG1 promoted c-Jun expression via stimulating c-Jun and retinoic acid receptor activities. Taken together, these results identify a novel function for BTG1 in the regulation of hepatic insulin sensitivity and provide important insights into the nutritional regulation of BTG1 expression.- Xiao, F., Deng, J., Yu, J., Guo, Y., Chen, S., Guo, F. A novel function of B-cell translocation gene 1 (BTG1) in the regulation of hepatic insulin sensitivity in mice via c-Jun.

  20. Expression of c-jun in brain stem following moderate lateral fluid percussion brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: To study the expression of c-jun in brain stem following moderate lateral fluid percussion brain injury in rats, and to observe the temporal patterns of its expressions following percussion.METHODS: Male Sprague-Dawley rats were divided into normal control, sham operation control and injury groups. The rats of injury group subjected to moderate lateral fluid percussion injury (0.2 mPa), and then were subdivided into 5 min, 15 min, 30 min, 1 h, 2 h, 4 h, 8 h and 12 h groups according to the time elapsed after injury. The expression of c-jun was studied by immunohistochemistry and in situ hybridization. RESULTS: After percussion for 15 min, Jun positive neurons increased in brain stem progressively, and peaked at 12h. At 5min after percussion, the induction of c-jun mRNA was increased, and remained elevated up to 1h-2h after brain injury. CONCLUSION: The induction and expression of the c-jun in brain stem after fluid percussion brain injury were increased rapidly and lasted for a long time.

  1. c-fos/c-jun expression and AP-1 activation in skin fibroblasts from centenarians.

    Science.gov (United States)

    Grassilli, E; Bellesia, E; Salomoni, P; Croce, M A; Sikora, E; Radziszewska, E; Tesco, G; Vergelli, M; Latorraca, S; Barbieri, D; Fagiolo, U; Santacaterina, S; Amaducci, L; Tiozzo, R; Sorbi, S; Franceschi, C

    1996-09-13

    In vitro replicative senescence is characterized by an irreversible growth arrest due to the inability of the cell to induce some key regulators of cell cycle progression, such as c-fos and AP-1, in response to mitogenic stimuli. In vitro replicative senescence and in vivo aging have been assumed to be two related phenomena, likely controlled by overlapping or interacting genes. As a corollary, fibroblasts from centenarians, which have undergone a long process of senescence in vivo should have very limited proliferative capability. On the contrary, in a previous work we found that fibroblasts from centenarians exhibited the same capacity to respond to different mitogenic stimuli as fibroblasts from young donors. Here we provide evidences that the well preserved proliferative response is likely due to the fact that some pivotal regulators- c-fos, c-jun and AP-1-are still fully inducible, despite a long process of in vivo senescence. Our data therefore suggest that in vivo and in vitro aging are separate phenomena whose possible relationships, if any, have to be ascertained very carefully. PMID:8806666

  2. β-glucan reduces exercise-induced stress through downregulation of c-Fos and c-Jun expression in the brains of exhausted rats.

    Science.gov (United States)

    Hong, Heeok; Kim, Chang-Ju; Kim, Jae-Deung; Seo, Jin-Hee

    2014-05-01

    Immediate-early genes are involved in acute stress responses in the central nervous system. β-glucan stimulates innate immune defenses, exerts an anti-tumor response and increases resistance to a wide variety of types of infection. To date, the effect of β-glucan on the expression of immediate-early genes under stressful conditions has not been elucidated. In the present study, the effects of β-glucan on the expression of the oncogenes c-Fos and c-Jun in the hypothalamus, dentate gyrus and dorsal raphe in rats following exhaustive treadmill running were investigated. Male Sprague Dawley rats were randomly divided into five groups (n=10 in each group) as follows: Control, exercise, exercise and 50 mg/kg β-glucan treatment, exercise and 100 mg/kg β-glucan treatment, and exercise and 200 mg/kg β-glucan treatment. Rats in the β-glucan‑treated groups were administered β-glucan at the respective dose once per day for seven days. Rats in the exercise groups performed treadmill running once per day for six days. On the seventh day of the experiment, the time to exhaustion in response to treadmill running was determined for the exercise groups. The expression of c-Fos and c-Jun in the hypothalamus, dorsal raphe and hippocampus was enhanced by exhaustive treadmill running. Administration of β-glucan resulted in an increase in the time to exhaustion and the suppression of the exercise-induced increment in c-Fos and c-Jun expression. In conclusion, β-glucan may exert an alleviating effect on exercise-induced stress through the suppression of c-Fos and c-Jun expression in the brains of exhausted rats. PMID:24604295

  3. Effect of growth hormone and serum on the expression of the proto-oncogenes c-jun and c-fos in insulin producing cells

    DEFF Research Database (Denmark)

    Petersen, Elisabeth D.; Billestrup, N; Nielsen, Jens Høiriis

    1990-01-01

    Expression of the proto-oncogenes c-fos and c-jun was analysed in the insulin producing rat tumor cell line, RIN 5AH. Addition of fetal calf serum (FCS) to serum-starved cells in the presence of cycloheximid induced a modest increase in c-fos and c-jun mRNA levels, whereas growth hormone (GH...

  4. Combined Expression of c-jun, c-fos, and p53 Improves Estimation of Prognosis in Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Wang, Shan; Xu, Xin; Xu, Fei; Meng, Yan; Sun, Changsheng; Shi, Lei; Zhao, Eryang

    2016-09-13

    To identify the prognostic value of c-jun, c-fos, and p53 in oral cancer, we examined the impact of immunohistochemical expression of these markers on tumor progression in 157 oral squamous cell carcinoma (OSCC). We found that c-jun or c-fos was significantly associated with lymph node metastasis, and coexpression of c-jun/c-fos, or c-jun/c-fos/p53 were significantly associated with lymph node metastasis, poor differentiation and clinical stage. The coexpression of c-jun/c-fos/p53 was identified as independent prognostic factors for overall survival. Simultaneous coexpression of these markers in OSCCs might prove to be a useful indicator for differentiation of low and high-risk patients.

  5. AP-1 Transcription Factors c-FOS and c-JUN Mediate GnRH-Induced Cadherin-11 Expression and Trophoblast Cell Invasion.

    Science.gov (United States)

    Peng, Bo; Zhu, Hua; Ma, Liyang; Wang, Yan-Ling; Klausen, Christian; Leung, Peter C K

    2015-06-01

    GnRH is expressed in first-trimester human placenta and increases cell invasion in extravillous cytotrophoblasts (EVTs). Invasive phenotypes have been reported to be regulated by transcription factor activator protein 1 (AP-1) and mesenchymal cadherin-11. The aim of our study was to investigate the roles of AP-1 components (c-FOS/c-JUN) and cadherin-11 in GnRH-induced cell invasion in human EVT cells. Phosphorylated c-FOS and phosphorylated c-JUN were detected in the cell column regions of human first-trimester placental villi by immunohistochemistry. GnRH treatment increased c-FOS, c-JUN, and cadherin-11 mRNA and protein levels in immortalized EVT (HTR-8/SVneo) cells. Moreover, GnRH treatment induced c-FOS and c-JUN protein phosphorylation and nuclear accumulation. Pretreatment with antide, a GnRH antagonist, attenuated GnRH-induced cadherin-11 expression. Importantly, basal and GnRH-induced cadherin-11 expression and cell invasion were reduced by small interfering RNA-mediated knockdown of c-FOS, c-JUN, and cadherin-11 in HTR-8/SVneo cells. Our results suggest that GnRH induces the expression and phosphorylation of the AP-1 transcription factors c-FOS and c-JUN in trophoblast cells, which contributes to GnRH-induced elevation of cadherin-11 expression and cell invasion. PMID:25794160

  6. Scorpion Venom Heat-Resistant Peptide Attenuates Glial Fibrillary Acidic Protein Expression via c-Jun/AP-1.

    Science.gov (United States)

    Cao, Zhen; Wu, Xue-Fei; Peng, Yan; Zhang, Rui; Li, Na; Yang, Jin-Yi; Zhang, Shu-Qin; Zhang, Wan-Qin; Zhao, Jie; Li, Shao

    2015-11-01

    Scorpion venom has been used in the Orient to treat central nervous system diseases for many years, and the protein/peptide toxins in Buthus martensii Karsch (BmK) venom are believed to be the effective components. Scorpion venom heat-resistant peptide (SVHRP) is an active component of the scorpion venom extracted from BmK. In a previous study, we found that SVHRP could inhibit the formation of a glial scar, which is characterized by enhanced glial fibrillary acidic protein (GFAP) expression, in the epileptic hippocampus. However, the cellular and molecular mechanisms underlying this process remain to be clarified. The results of the present study indicate that endogenous GFAP expression in primary rat astrocytes was attenuated by SVHRP. We further demonstrate that the suppression of GFAP was primarily mediated by inhibiting both c-Jun expression and its binding with AP-1 DNA binding site and other factors at the GFAP promoter. These results support that SVHRP contributes to reducing GFAP at least in part by decreasing the activity of the transcription factor AP-1. In conclusion, the effects of SVHRP on astrocytes with respect to the c-Jun/AP-1 signaling pathway in vitro provide a practical basis for studying astrocyte activation and inhibition and a scientific basis for further studies of traditional medicine.

  7. Expressão dos protooncogenes c-fos, c-myc e c-jun em miométrio normal e mioma humanos Expression of the protooncogenes c-fos, c-myc and c-jun in human normal miometrium and leiomyoma

    Directory of Open Access Journals (Sweden)

    Ana Luiza Ferrari

    2006-10-01

    Full Text Available OBJETIVO: Comparar a expressão gênica (mRNA e protéica dos protooncogenes c-fos, c-myc e c-jun em miométrio normal e mioma humanos. MÉTODOS: Foi realizado um estudo do tipo caso-controle. O material foi coletado de 12 pacientes submetidas a histerectomia no Hospital de Clínicas de Porto Alegre. A expressão do mRNA específico para c-myc, c-fos, c-jun e beta-microglobulina foi avaliada pela técnica de RT-PCR, utilizando primers específicos para cada gene. A expressão protéica destes protooncogenes foi avaliada através de Western blot com anticorpos específicos. RESULTADOS: Não houve diferença significativa para expressão gênica desses protooncogenes entre miométrio normal e mioma (c-myc: 0,87 ± 0,08 vs 0,87 ± 0,08, p = 0,952; c-fos: 1,10 ± 0,17 vs 1,01 ± 0,11, p = 0,21; c-jun: 1,03 ± 0,12 vs 0,96 ± 0,09, p = 0,168, respectivamente. Não houve diferença significativa para expressão protéica desses protooncogenes entre miométrio normal e mioma (c-myc: 1,36 ± 0,48 vs 1,53 ± 0,29, p = 0,569; c-fos: 8,85 ± 5,5 vs 6,56 ± 4,22, p = 0,434; e c-jun: 6,47 ± 3,04 vs 5,42 ± 2,03, p = 0,266, respectivamente. CONCLUSÃO: A expressão gênica (transcrição e a expressão protéica (tradução dos protooncogenes c-myc, c-fos e c-jun em mioma e miométrio normal são semelhantes.Uterine myomas are common benign tumors of the female genital tract. The expression of growth factor signal transduction cascade components including the protooncogenes c-myc, c-fos, and c-jun seem to be involved in the development of myomas. PURPOSE: To compare the gene (mRNA and protein expression of the protooncogenes c-fos, c-myc, and c-jun in human normal myometrium and leiomyoma. METHOD: A case-control study was performed. Samples were collected from 12 patients submitted to hysterectomy at the Hospital de Clínicas at Porto Alegre. The expression of the specific mRNA for c-myc, c-fos, c-jun, and beta-microglobulin was assessed through the RT

  8. Role of TGF-β-induced Claudin-4 expression through c-Jun signaling in non-small cell lung cancer.

    Science.gov (United States)

    Rachakonda, Girish; Vu, Trung; Jin, Lin; Samanta, Debangshu; Datta, Pran K

    2016-10-01

    Claudin-4 has been identified as an integral member of tight junctions and has been found to be upregulated in various types of cancers especially in metastatic cancers. However, the molecular mechanism of the upregulation of Claudin-4 and its role in lung tumorigenesis are unknown. The aim of the present study is to investigate the role of Claudin-4 on migration and tumorigenicity of lung cancer cells and to examine the regulatory effects of TGF-β on Claudin-4 expression. We have observed that TGF-β induces the expression of Claudin-4 dramatically in lung cell lines in a time dependent manner. TGF-β-induced Smad signaling is important for enhancing Claudin-4 mRNA level through inducing its promoter activity. Treatment with curcumin, a c-Jun inhibitor, or stable knockdown of c-Jun abrogates TGF-β-induced Claudin-4 expression suggesting an involvement of the c-Jun pathway. Notably, TGF-β-induced Claudin-4 expression through c-Jun pathway plays a role in TGF-β-mediated motility and tumorigenicity of these cells. In support of these observations, we have uncovered that Claudin-4 is upregulated in 14 of 24 (58%) lung tumors when compared with normal lung tissue. This is the first study to show how TGF-β regulates the expression of Claudin-4 through c-Jun signaling and how this pathway contributes to the migratory and tumorigenic phenotype of lung tumor cells. PMID:27424491

  9. Role of TGF-β-induced Claudin-4 expression through c-Jun signaling in non-small cell lung cancer.

    Science.gov (United States)

    Rachakonda, Girish; Vu, Trung; Jin, Lin; Samanta, Debangshu; Datta, Pran K

    2016-10-01

    Claudin-4 has been identified as an integral member of tight junctions and has been found to be upregulated in various types of cancers especially in metastatic cancers. However, the molecular mechanism of the upregulation of Claudin-4 and its role in lung tumorigenesis are unknown. The aim of the present study is to investigate the role of Claudin-4 on migration and tumorigenicity of lung cancer cells and to examine the regulatory effects of TGF-β on Claudin-4 expression. We have observed that TGF-β induces the expression of Claudin-4 dramatically in lung cell lines in a time dependent manner. TGF-β-induced Smad signaling is important for enhancing Claudin-4 mRNA level through inducing its promoter activity. Treatment with curcumin, a c-Jun inhibitor, or stable knockdown of c-Jun abrogates TGF-β-induced Claudin-4 expression suggesting an involvement of the c-Jun pathway. Notably, TGF-β-induced Claudin-4 expression through c-Jun pathway plays a role in TGF-β-mediated motility and tumorigenicity of these cells. In support of these observations, we have uncovered that Claudin-4 is upregulated in 14 of 24 (58%) lung tumors when compared with normal lung tissue. This is the first study to show how TGF-β regulates the expression of Claudin-4 through c-Jun signaling and how this pathway contributes to the migratory and tumorigenic phenotype of lung tumor cells.

  10. Characterization of c-Jun from orange-spotted grouper, Epinephelus coioides involved in SGIV infection.

    Science.gov (United States)

    Wei, Shina; Huang, Youhua; Huang, Xiaohong; Qin, Qiwei

    2015-03-01

    The nuclear phosphoprotein c-Jun is a member of the AP1 family of transcription activating complex, can be induced by various extracellular stimuli such as virus infection. In this study, the c-Jun gene (Ec-c-Jun) was cloned from orange-spotted grouper, Epinephelus coioides. The full-length Ec-c-Jun cDNA is composed of 2046 bp and encodes a polypeptide of 328 amino acids with 81% identity of zebrafish. Amino acid alignment analysis indicated that Ec-c-Jun contained three conserved domains including a transactivation domain (TAD), a DNA-binding domain (DBD) and leucine zipper domain (LZD). RT-PCR results showed that Ec-c-Jun transcript was most abundant in spleen, kidney, heart and gill. The expression of Ec-c-Jun was up-regulated after challenged with Singapore grouper iridovirus (SGIV). To investigate the roles of Ec-c-Jun during SGIV infection, we constructed its dominant-negative mutant (DN-Ec-c-Jun) by deleting the major TAD that lacks amino acids 3-122. Fluorescence microscopy observation revealed that Ec-c-Jun and DN-Ec-c-Jun were expressed predominantly in the nucleus in transfected cells. Interestingly, the green fluorescence of Ec-c-Jun was congregated and co-localized with virus assembly sites at the late stage of SGIV infection. However, in DN-Ec-c-Jun transfected cells, no virus assembly sites were observed, and the distribution of fluorescence remained unchanged. Moreover, overexpression of DN-Ec-c-Jun in vitro delayed the occurrence of CPE induced by SGIV infection and inhibited the virus gene transcription. In addition, ectopic expression of DN-Ec-c-Jun was able to inhibit SGIV induced c-Jun/AP1 promoter activity in GS cells. Thus, we proposed that c-Jun transcription factor was essential for SGIV replication in vitro. Our results will contribute to understanding the crucial roles of JNK signaling pathway in fish virus infection.

  11. Mammary gland selective excision of c-jun identifies its role in mRNA splicing

    OpenAIRE

    Katiyar, Sanjay; Jiao, Xuanmao; Addya, Sankar; Ertel, Adam; Rose, Vanessa; Casimiro, Mathew C.; Zhou, Jie; Lisanti, Michael P; Nasim, Talat; Fortina, Paolo; Pestell, Richard G.

    2011-01-01

    The c-jun gene regulates cellular proliferation and apoptosis via direct regulation of cellular gene expression. Alternative splicing of pre-mRNA increases the diversity of protein functions and alternate splicing events occur in tumors. Here, by targeting the excision of the endogenous c-jun gene within the mouse mammary epithelium, we have identified its selective role as an inhibitor of RNA splicing. Microarray-based assessment of gene expression, on laser capture micro-dissected c-jun−/− ...

  12. Effect of different therapies of Chinese medicine on the expressions of c-Fos and c-Jun proteins in hippocampus of rats with post-stroke depression

    Institute of Scientific and Technical Information of China (English)

    Hongyan Wang; Mei Chen; Binhui Zhang

    2006-01-01

    BACKGROUND: c-fos and c-jun, the important immediate early genes (IEG), are regarded as the markers for the location and function of neuronal activity, as well as the third signal messengers, they couple the stress stimulation and the gene expression in neuron, and hippocampus is involved in the process of signal transmission after stress stimulation induced depression.OBJECTIVE: To observe the therapeutic effects of Bushen Yiqi (tonifying kidney to benefit qi), Huoxue Huayu (promoting blood circulation to dissipate blood stasis) and Ditan Kaiqiao (eliminating phlegm for resuscitation) on the expressions of c-Fos and c-Jun proteins in hippocampus and spontaneous behaviors of rats with post-stroke depression (PSD), and compare the results with those of fluoxetine, which is known to have definite effect on depression.DESIGN: A randomized controlled trial.SETrING: Zhejiang College of Traditional Chinese Medicine.MATERIALS: The trial was completed in Zhejiang College of Traditional Chinese Medicine from January to July in 2003. Fifty-six healthy adult Wistar male rats of clean grade, weighing (250±50) g, were randomly divided into 7 groups with 8 rats in each group: control group, model group, forced swimming group,Bushen Yiqi group; Huoxue Huayu, Ditan Kaiqiao group and fluoxetine group. The Bushen Yiqi Tang con tained Renshen, Huangqi, Heshouwu, Gouqi, Shudi, etc., crude drugs 1 800 g/L. The Huoxue Huayu Tang contained Danshen, Chuanxiong, Chishao, Yujin, etc., crude drugs 3 600 g/L. The Dian Kaiqiao Tang contained Banxia, Danxing, Changpu, Yuanzhi, etc., crude drug 1 000 g/L.METHODS: ① Except the control group and forced swimming group, rats in the other groups were made into PSD models by deligating the bilateral common carotid arteries permanently. ② Rats in the control group, model group and forced swimming group were intragastrically perfused by saline (3 mL for each time); those in the Bushen Yiqi group, Huoxue Huayu, Ditan Kaiqiao group and fluoxetine

  13. Growth hormone induces expression of c-jun and jun B oncogenes and employs a protein kinase C signal transduction pathway for the induction of c-fos oncogene expression.

    Science.gov (United States)

    Slootweg, M C; de Groot, R P; Herrmann-Erlee, M P; Koornneef, I; Kruijer, W; Kramer, Y M

    1991-04-01

    Although the structure of several members of the GH receptor family has been defined, signal transduction following GH binding to its receptor has not been elucidated. Mouse osteoblasts were used to study the effect of GH on immediate early gene expression and, subsequently, the cellular signal(s) mediating this expression were analysed. GH rapidly and transiently induced the expression of c-jun and jun B in concert with the already reported expression of c-fos. The GH-induced expression of c-fos was completely blocked by the protein kinase inhibitors staurosporine and H7, indicating that the action of GH is mediated by one or several protein kinases. We next analysed the identity of the putative protein kinases in more detail by using a more specific protein kinase inhibitor, namely the ether-lipid 1-O-alkyl-2-O-methylglycerol, understood to be an inhibitor of protein kinase C (PKC). Data obtained from these studies revealed that GH-induced expression of c-fos is mediated by PKC. In addition, we observed a profound increase in formation of the PKC activator diacyglycerol upon addition of GH, a natural activator of PKC. In conclusion, upon binding of GH to mouse osteoblasts, the receptor-mediated cellular signal involves diacyglycerol formation and activation of PKC, leading to the induction of oncogene expression. Finally, the expression of c-fos, c-jun and jun B results in an increased binding of protein complexes to AP-1 binding sites.

  14. Effect of Qi-protecting powder (Huqi San) on expression of c-jun, c-fos and c-myc in diethylnitrosamine-mediated hepatocarcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Xia Li; Zheng-Ming Shi; Ping Feng; Zhao-Yang Wen; Xue-Jiang Wang

    2007-01-01

    AIM: To study the inhibitory effect of Huqi San (Qiprotecting powder) on rat prehepatocarcinoma induced by diethylinitrosamine (DEN) by analyzing the mutational activation of c-fos proto-oncogene and over-expression of c-jun and c-myc oncogenes.METHODS: A Solt-Farber two-step test model of prehepatocarcinoma was induced in rats by DEN and 2-acetylaminofluorene (AAF) to investigate the modifying effects of Huqi San on the expression of c-jun, c-fos and c-myc in DEN-mediated hepatocarcinogenesis. Huqi San was made of eight medicinal herbs containing glycoprival granules, in which each milliliter contains 0.38 g crude drugs. γ-glutamy-transpeptidase-isoenzyme (γ-GTase)was determined with histochemical methods. Level of 8-hydroxydeoxyguanosine (OHdG) formed in liver and c-jun, c-fos and c-myc proto-oncogenes were detected by immunohistochemical methods.RESULTS: The level of 8-OHdG, a mark of oxidative DNA damage, was significantly decreased in the liver of rats with prehepatocarcinoma induced by DEN who received 8 g/kg body weight or 4 g/kg body weight Huqi San before (1 wk) and after DEN exposure (4 wk). Huqi Santreated rats showed a significant decrease in number of γ-GT positive foci (P < 0.001, prevention group: 4.96 ±0.72 vs 29.46 ± 2.17; large dose therapeutic group: 7.53± 0.88 vs 29.46 ± 2.17). On the other hand, significant changes in expression of c-jun, c-fos and c-myc were found in Huqi San-treated rats.CONCLUSION: Activation of c-jun, c-fos and c-myc plays a crucial role in the pathogenesis of liver cancer.Huqi San can inhibit the over-expression of c-jun, c-fos and c-myc oncogenes and liver preneolastic lesionsinduced by DEN.

  15. Relations of transcription expression of IL-2 with nuclear factor of activated T cells as well as changes of C-Fos and C-Jun after trauma

    Institute of Scientific and Technical Information of China (English)

    罗艳; 梁华平; 胡承香; 徐祥; 王正国

    2002-01-01

    Objective: To observe the relations among expression of interleukin-2 (IL-2) in spleen lymphocytes, DNA binding activity of nuclear factor of activated T cells (NFAT) and expression of the partly family members C-Fos, C-Jun after trauma. Methods: A murine closed trauma model was used, animals were sacrificed 6, 12 hours and 1, 4, 7, 10, 14 days, respectively after injury. Spleen lymphocytes were isolated from injured mice and stimulated with concanavalin-A. The culture supernatants were harvested and assayed for IL-2 activity. Total RNA was extracted from spleen lymphocytes and assayed for IL-2 mRNA. Nuclear protein was extracted, and the DNA binding activity of NFAT was measured using an electrophoretic mobility shift assay (EMSA), the expressions of C-Fos, C-Jun protein determined by Western blot analysis. Results: The expressions of IL-2 activity and IL-2 mRNA in spleen lymphocytes were decreased in injured mice compared with those in control mice, and the most obvious decrease appeared on the 4th day after injury. The DNA binding activity of NFAT decreased gradually and reached the minimum that was only 41% of the control on the 4th day after injury, which was closely associated with the decline of IL-2 activity and IL-2 mRNA. An decrease in the expression of C-Fos on the 1st and 4th day after injury, trauma had no significant effect on the C-Jun expression.Conclusions: These results suggest that the inhibition of IL-2 expression is partly due to the impairment in the activation of NFAT in injured mice; and the decline in the DNA binding activity of NFAT is partly due to trauma block in the C-Fos expression.

  16. 大鼠脑挫裂伤后c-jun和c-fos基因快速反应的特点%Quick response of genes c-jun and c-fos after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    薄爱华; 薛贵平; 张辉; 董建峰; 邢立强; 米坤龙

    2004-01-01

    BACKGROUND: The importance of gene expressions of c-jun and c-fos has been widely recognized. However, there are very few reports on the characters of the expressions of these two genes after brain contusion.OBJECTIVE: To explore the characters of gene expressions of c-jun and c-fos.DESIGN: Randomized case control study.SETTING and MATERIALS: Experimental location: Experimental Centre of Zhangjiakou Medical College. Forty-five adult Wistar rats, with a boby mass about 200 g to 310 g.INTERVENTIONS: Forty-five rats were randomly divided into model group, sham operation group and normal control group. No treatment to normal group. The skulls were opened without strike for sham operation group. Free falling body method was used to make the brain injury model for model group. Rats were executed in 0. 5, 1, 2, 4, 8, 24 and 72 hours. Brain tissues were taken out to make paraffin sections and dyed by PV6000 immunohistochemistry.MAIN OUTCOME MEASURES: The similarities and differences of gene expressions of c-jun and c-fos.RESULTS: There was no positive expression of c-fos in the normal and sham group. However, there was weakly positive of c-jun. In the model group, the positive neurons distributed in the 1.0 - 2.0 mm cortex area surrounding the focus and the hippocampus of the same side. c-jun positive neurons were widely found in the cortex of injury side and hippocampus. The color of c-jun positive cells was dark, especially in hippocampus which c-jun positive cells concentrated. There was hardly expression of c-fos in 72 hours, but there were obvious positive neurons of c-jun existed.CONCLUSION: The gene expression of c-jun in the same side of brain injury is much stronger and more extensive than that of c-fos. The expressive time is much longer.%背景:目前关于c-jun和c-fos基因表达的重要性已逐渐被人们认识,而关于脑挫伤后两种基因表达的特点报道较少.目的:探讨脑挫裂伤后c-jun和c-fos基因表达的特点.设计:随机

  17. Parathyroid hormone induces c-fos and c-jun messenger RNA in rat osteoblastic cells

    Science.gov (United States)

    Clohisy, J. C.; Scott, D. K.; Brakenhoff, K. D.; Quinn, C. O.; Partridge, N. C.

    1992-01-01

    PTH is a potent regulator of osteoblast gene expression, yet the nuclear events that mediate PTH action are poorly understood. We were interested in identifying immediate early genes which may regulate PTH-altered gene expression in the osteoblast. Therefore, we examined the effects of PTH on c-fos and c-jun gene expression in a rat osteoblastic cell line (UMR 106-01). Under control conditions, c-fos and c-jun mRNAs were present at low basal levels. After PTH treatment, c-fos mRNA abundance dramatically increased, with a maximal and transient response at 30 min. PTH also stimulated an increase in c-jun mRNA, but in a biphasic manner, with maximal levels at 30 min and 2 h. These responses were dose dependent, not altered by cotreatment with the protein synthesis inhibitor cycloheximide, and preceded PTH-induced expression of matrix metallo-proteinase-1 mRNA. Nuclear run-on assays demonstrated an increased rate of c-fos and c-jun transcription after PTH exposure. To determine the signal transduction pathways involved, second messenger analogs were tested for their ability to mimic the effects of PTH. 8-Bromo-cAMP and phorbol 12-myristate 13-acetate (PMA) caused increases in the abundance of c-fos and c-jun transcripts. Ionomycin had no effect on the expression of these genes. Pretreatment of the cells with PMA resulted in a decrease in basal c-jun expression, but did not alter the PTH-mediated increase in c-fos, c-jun, or matrix metalloproteinase-1 mRNAs.(ABSTRACT TRUNCATED AT 250 WORDS).

  18. NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells

    Science.gov (United States)

    Galardi, Silvia; Mercatelli, Neri; Farace, Maria G.; Ciafrè, Silvia A.

    2011-01-01

    MicroRNAs (miRNAs) are potent negative regulators of gene expression involved in all aspects of cell biology. They finely modulate virtually all physiological pathways in metazoans, and are deeply implicated in all main pathologies, among which cancer. Mir-221 and miR-222, two closely related miRNAs encoded in cluster from a genomic region on chromosome X, are strongly upregulated in several forms of human tumours. In this work, we report that the ectopic modulation of NF-kB modifies miR-221/222 expression in prostate carcinoma and glioblastoma cell lines, where we had previously shown their oncogenic activity. We identify two separate distal regions upstream of miR-221/222 promoter which are bound by the NF-kB subunit p65 and drive efficient transcription in luciferase reporter assays; consistently, the site-directed mutagenesis disrupting p65 binding sites or the ectopical inhibition of NF-kB activity significantly reduce luciferase activity. In the most distal enhancer region, we also define a binding site for c-Jun, and we show that the binding of this factor cooperates with that of p65, fully accounting for the observed upregulation of miR-221/222. Thus our work uncovers an additional mechanism through which NF-kB and c-Jun, two transcription factors deeply involved in cancer onset and progression, contribute to oncogenesis, by inducing miR-221/222 transcription. PMID:21245048

  19. NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells.

    Science.gov (United States)

    Galardi, Silvia; Mercatelli, Neri; Farace, Maria G; Ciafrè, Silvia A

    2011-05-01

    MicroRNAs (miRNAs) are potent negative regulators of gene expression involved in all aspects of cell biology. They finely modulate virtually all physiological pathways in metazoans, and are deeply implicated in all main pathologies, among which cancer. Mir-221 and miR-222, two closely related miRNAs encoded in cluster from a genomic region on chromosome X, are strongly upregulated in several forms of human tumours. In this work, we report that the ectopic modulation of NF-kB modifies miR-221/222 expression in prostate carcinoma and glioblastoma cell lines, where we had previously shown their oncogenic activity. We identify two separate distal regions upstream of miR-221/222 promoter which are bound by the NF-kB subunit p65 and drive efficient transcription in luciferase reporter assays; consistently, the site-directed mutagenesis disrupting p65 binding sites or the ectopical inhibition of NF-kB activity significantly reduce luciferase activity. In the most distal enhancer region, we also define a binding site for c-Jun, and we show that the binding of this factor cooperates with that of p65, fully accounting for the observed upregulation of miR-221/222. Thus our work uncovers an additional mechanism through which NF-kB and c-Jun, two transcription factors deeply involved in cancer onset and progression, contribute to oncogenesis, by inducing miR-221/222 transcription. PMID:21245048

  20. c-Jun N-terminal kinase 3 expression in the retina of ocular hypertension mice: a possible target to reduce ganglion cell apoptosis

    Directory of Open Access Journals (Sweden)

    Yue He

    2015-01-01

    Full Text Available Glaucoma, a type of optic neuropathy, is characterized by the loss of retinal ganglion cells. It remains controversial whether c-Jun N-terminal kinase (JNK participates in the apoptosis of retinal ganglion cells in glaucoma. This study sought to explore a possible mechanism of action of JNK signaling pathway in glaucoma-induced retinal optic nerve damage. We established a mouse model of chronic ocular hypertension by reducing the aqueous humor followed by photocoagulation using the laser ignition method. Results showed significant pathological changes in the ocular tissues after the injury. Apoptosis of retinal ganglion cells increased with increased intraocular pressure, as did JNK3 mRNA expression in the retina. These data indicated that the increased expression of JNK3 mRNA was strongly associated with the increase in intraocular pressure in the retina, and correlated positively with the apoptosis of retinal ganglion cells.

  1. c-Jun N-terminal kinase 3 expression in the retina of ocular hypertension mice:a possible target to reduce ganglion cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Yue He; Jie Chen; Shu-guang Zhang; Yuan-sheng Yuan; Yan Li; Hong-bin Lv; Jin-hua Gan

    2015-01-01

    Glaucoma, a type of optic neuropathy, is characterized by the loss of retinal ganglion cells. It remains controversial whether c-Jun N-terminal kinase (JNK) participates in the apoptosis of retinal ganglion cells in glaucoma. This study sought to explore a possible mechanism of action of JNK signaling pathway in glaucoma-induced retinal optic nerve damage. We established a mouse model of chronic ocular hypertension by reducing the aqueous humor followed by pho-tocoagulation using the laser ignition method. Results showed signiifcant pathological changes in the ocular tissues after the injury. Apoptosis of retinal ganglion cells increased with increased intraocular pressure, as did JNK3 mRNA expression in the retina. These data indicated that the increased expression of JNK3 mRNA was strongly associated with the increase in intraocular pressure in the retina, and correlated positively with the apoptosis of retinal ganglion cells.

  2. The activation of p38 MAPK primarily contributes to UV-induced RhoB expression by recruiting the c-Jun and p300 to the distal CCAAT box of the RhoB promoter

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Jiwon [Genome Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of); Department of Microbiology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Choi, Jeong-Hae; Won, Misun [Genome Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of); Kang, Chang-Mo [Laboratory of Cytogenetics and Tissue Regeneration, KIRAMS, Seoul 139-706 (Korea, Republic of); Gyun, Mi-Rang [Genome Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of); Functional Genomics, Korea University of Science and Technology, Daejeon 305-350 (Korea, Republic of); Park, Hee-Moon [Department of Microbiology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Chun-Ho, E-mail: chkim@kirams.re.kr [Laboratory of Cytogenetics and Tissue Regeneration, KIRAMS, Seoul 139-706 (Korea, Republic of); Chung, Kyung-Sook, E-mail: kschung@kribb.re.kr [Genome Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of)

    2011-06-03

    Highlights: {yields} Regulation of transcriptional activation of RhoB is still unclear. {yields} We examine the effect of p38 MAPK inhibition, and c-Jun and RhoB depletion on UV-induced RhoB expression and apoptosis. {yields} We identify the regions of RhoB promoter necessary to confer UV responsiveness using pRhoB-luciferase reporter assays. {yields} c-Jun, ATF2 and p300 are dominantly associated with NF-Y on the distal CCAAT box. {yields} The activation of p38 MAPK primarily contribute to UV-induced RhoB expression by recruiting the c-Jun and p300 proteins on distal CCAAT box of RhoB promoter. -- Abstract: The Ras-related small GTP-binding protein RhoB is rapidly induced in response to genotoxic stresses caused by ionizing radiation. It is known that UV-induced RhoB expression results from the binding of activating transcription factor 2 (ATF2) via NF-Y to the inverted CCAAT box (-23) of the RhoB promoter. Here, we show that the association of c-Jun with the distal CCAAT box (-72) is primarily involved in UV-induced RhoB expression and p38 MAPK regulated RhoB induction through the distal CCAAT box. UV-induced RhoB expression and apoptosis were markedly attenuated by pretreatment with the p38 MAPK inhibitor. siRNA knockdown of RhoB, ATF2 and c-Jun resulted in decreased RhoB expression and eventually restored the growth of UV-irradiated Jurkat cells. In the reporter assay using luciferase under the RhoB promoter, inhibition of RhoB promoter activity by the p38 inhibitor and knockdown of c-Jun using siRNA occurred through the distal CCAAT box. Immunoprecipitation and DNA affinity protein binding assays revealed the association of c-Jun and p300 via NF-YA and the dissociation of histone deacetylase 1 (HDAC1) via c-Jun recruitment to the CCAAT boxes of the RhoB promoter. These results suggest that the activation of p38 MAPK primarily contributes to UV-induced RhoB expression by recruiting the c-Jun and p300 proteins to the distal CCAAT box of the RhoB promoter in

  3. Effect of ketamine anesthesia in early pregnancy on the c-fos mRNA and c-jun mRNA expression in offsprings of rats%孕早期氯胺酮麻醉对子代大鼠海马c-fos mRNA和c-jun mRNA表达的影响

    Institute of Scientific and Technical Information of China (English)

    李钢; 赵为禄; 罗佛全

    2010-01-01

    目的 探讨孕早期氯胺酮麻醉对子代大鼠海马c-fos mRNA和c-jun mRNA表达的影响.方法 孕5~13 d的SD大鼠30只,体重250~300 g,随机分为2组(n=15):对照组(C组)和氯胺酮组(K组).K组经尾静脉注射氯胺酮20 mg/kg,随后以130 mg·kg-1·h-1的速率静脉输注2 h;C组以等量生理盐水替代氯胺酮.子代大鼠于出生后20和30 d时测定认知功能,取海马组织,测定c-fosmRNA和c-jun mRNA表达水平并观察超微结构.结果 与C组比较,K组子代大鼠出生后30 d时认知功能测定第2天逃避潜伏期延长(P<0.05),海马c-fos mRNA和c-jun mRNA的表达水平差异无统计学意义,出生后20 d上述指标差异无统计学意义(P>0.05).K组海马神经元发生损伤.结论 孕早期氯胺酮麻醉抑制子代大鼠认知功能的机制与海马神经元受损有关,但与海马c-fos mRNA和c-jun mRNA表达无关.%Objective To investigate the effect of ketamine anesthesia in the early pregnancy on the c-fos mRNA and c-jun mRNA expression in the offsprings of rats. Methods Thirty pregnant SD rats at 5-13 days of gestation were randomly divided into control group and ketamine group (n = 15 each). Ketamine 20 mg/kg was injected intravenously through tail vein followed by 2 h infusion at a rate of 130 mg·kg-1 ·h-1 in ketmine group.While the equal volume of normal saline was given instead of ketamine in control group. The learning and memory function of the offsprings were tested by Morris water maze test on postnatal day 20 and 30. The hippocampal tissues were taken to detect the expression of c-fos mRNA and c-jun mRNA and to observe the ultrastructure. Results Compared with group C, the escape latency was significantly prolonged at 2 days during the test which was performed on postnatal day 30, but there was no significant difference in the expression of c-fos mRNA and c-jun mRNA on postnatal day 20 and 30 and in the indices mentioned above on postnatal day 20 in ketamine group (P >0.05). The

  4. (-)-Epigallocatechin-3-gallate decreases thrombin/paclitaxel-induced endothelial tissue factor expression via the inhibition of c-Jun terminal NH2 kinase phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huang-Joe [Institute of Biotechnology, National Tsing Hua University, No. 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan (China); Division of Cardiology, Department of Medicine, China Medical University Hospital, No. 2, Yuh-Der Road, Taichung 40447, Taiwan (China); Lo, Wan-Yu [Department of Medical Research, China Medical University Hospital, No. 2, Yuh-Der Road, Taichung 40447, Taiwan (China); Graduate Integration of Chinese and Western Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Lu, Te-Ling [School of Pharmacy, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Huang, Haimei, E-mail: hmhuang@life.nthu.edu.tw [Institute of Biotechnology, National Tsing Hua University, No. 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan (China)

    2010-01-01

    Patients with paclitaxel-eluting stents are concerned with stent thrombosis caused by premature discontinuation of dual antiplatelet therapy or clopidogrel resistance. This study investigates the effect of (-)-epigallocatechin-3-gallate (EGCG) on the expression of thrombin/paclitaxel-induced endothelial tissue factor (TF) expressions in human aortic endothelial cells (HAECs). EGCG was nontoxic to HAECs at 6 h up to a concentration of 25 {mu}mol/L. At a concentration of 25 {mu}mol/L, EGCG pretreatment potently inhibited both thrombin-stimulated and thrombin/paclitaxel-stimulated endothelial TF protein expression. Thrombin and thrombin/paclitaxel-induced 2.6-fold and 2.9-fold increases in TF activity compared with the control. EGCG pretreatment caused a 29% and 38% decrease in TF activity on thrombin and thrombin/paclitaxel treatment, respectively. Real-time polymerase chain reaction (PCR) showed that thrombin and thrombin/paclitaxel-induced 3.0-fold and 4.6-fold TF mRNA expressions compared with the control. EGCG pretreatment caused an 82% and 72% decrease in TF mRNA expression on thrombin and thrombin/paclitaxel treatment, respectively. The c-Jun terminal NH2 kinase (JNK) inhibitor SP600125 reduced thrombin/paclitaxel-induced TF expression. Furthermore, EGCG significantly inhibited the phosphorylation of JNK to 49% of thrombin/paclitaxel-stimulated HAECs at 60 min. Immunofluorescence assay did not show an inhibitory effect of EGCG on P65 NF-{kappa}B nuclear translocation in the thrombin/paclitaxel-stimulated endothelial cells. In conclusion, EGCG can inhibit TF expression in thrombin/paclitaxel-stimulated endothelial cells via the inhibition of JNK phosphorylation. The unique property of EGCG may be used to develop a new drug-eluting stent by co-coating EGCG and paclitaxel.

  5. c-Jun Promotes whereas JunB Inhibits Epidermal Neoplasia

    OpenAIRE

    Jin, Jane Yingai; Ke, Hengning; Hall, Russell P.; Zhang, Jennifer Y.

    2011-01-01

    Deregulation of the AP1 family gene regulators have been implicated in a wide range of diseases, including cancer. Here, we report that c-Jun was activated in human squamous cell carcinoma (SCC) and coexpression of c-Jun with oncogenic Ras was sufficient to transform primary human epidermal cells into malignancy in a regenerated human skin grafting model. In contrast, JunB was not induced in a majority of human SCC cells. Moreover, exogenous expression of JunB inhibited tumorigenesis driven b...

  6. In vivo study on the effects of microcystin extracts on the expression profiles of proto-oncogenes (c-fos, c-jun and c-myc) in liver, kidney and testis of male Wistar rats injected i.v. with toxins.

    Science.gov (United States)

    Li, Huiying; Xie, Ping; Li, Guangyu; Hao, Le; Xiong, Qian

    2009-01-01

    Microcystins (MCs) are a potent liver tumor promoter, possessing potent tumor-promoting activity and weak initiating activity. Proto-oncogenes are known to be involved in the tumor-promoting mechanisms of microcystin-LR. However, few data are available on the effects of MCs on proto-oncogenes in the whole animal. To investigate the effects of MCs on the expression profile of the proto-oncogenes in different organs, male Wistar rats were injected intravenously with microcystin extracts at a dose of 86.7 mug MC-LR eq/kg bw (MC-LR eq, MC-LR equivalents). mRNA levels of three proto-oncogenes c-fos, c-jun and c-myc in liver, kidney and testis were analyzed using quantitative real-time PCR at several time points post-injection. Significant induction of these genes at transcriptional level was observed in the three organs. In addition, the increase of mRNA expression of all three genes was much higher in liver than in kidney and testis. Meanwhile, the protein levels of c-Fos and c-Jun were investigated by western blotting. Both proteins were induced in the three organs. However, elevations of protein levels were much lower than those of mRNA levels. These findings suggest that the expression of c-fos, c-jun and c-myc might be one possible mechanism for the tumor-promoting activity and initiating activity of microcystins.

  7. c-Jun represses the human insulin promoter activity that depends on multiple cAMP response elements

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Nobuya; Seino, Yutaka; Imura, Hiroo (Kyoto Univ. (Japan)); Maekawa, Toshio; Sudo, Tatsuhiko; Ishii, Shunsuke (Inst. of Physical and Chemical Research (RIKEN), Tsukuba (Japan))

    1992-02-01

    Glucose is known to increase the cAMP concentration in pancreatic {beta} cells. To determine the mechanism by which cAMP augments insulin gene expression, the authors first identified the cAMP response elements (CREs) of human insulin gene. In DNase I footprint analysis, the bacterially synthesized CRE-binding protein, CRE-BP1, protected four sites: two sites in the region upstream from the insulin core promoter, one site in the first exon, and one site in the first intron. To examine the roles of those four sites, they constructed a series of DNA plasmids in which the wild-type and mutant insulin promoters were linked to the chloramphenicol acetyltransferase gene. Studies of the transcriptional activity of these plasmids after transfection into hamster insulinoma (HIT) cells showed that these four sites contributed additively to the cAMP inducibility of the insulin promoter. Surprisingly, the c-jun protooncogene product (c-Jun) repressed the cAMP-induced activity of the insulin promoter in a cotransfection assay with the c-Jun expression plasmic. Northern blot analysis demonstrated that the level of c-jun mRNA was dramatically increased by glucose deprivation in HIT cells. These results suggest that glucose deprivation in HIT cells. These results suggest that glucose may regulate expression of the human insulin gene through multiple CREs and c-Jun.

  8. A comparative study of fibrous dysplasia and osteofibrous dysplasia with regard to expressions of c-fos and c-jun products and bone matrix proteins: a clinicopathologic review and immunohistochemical study of c-fos, c-jun, type I collagen, osteonectin, osteopontin, and osteocalcin.

    Science.gov (United States)

    Sakamoto, A; Oda, Y; Iwamoto, Y; Tsuneyoshi, M

    1999-12-01

    Fibrous dysplasia and osteofibrous dysplasia are both benign fibro-osseous lesions of the bone and are generally seen during childhood or adolescence. Histologically, the features of these bone lesions sometimes look quite similar, but their precise nature remains controversial. We retrospectively studied clinicopathologic findings in 62 cases of fibrous dysplasia and 20 cases of osteofibrous dysplasia with regard to their anatomic location and histological appearance. From among these cases, the immunohistochemical expressions of c-fos and c-jun proto-oncogene products and bone matrix proteins of type I collagen, osteonectin, osteopontin, and osteocalcin were evaluated in 20 typical fibrous dysplasias and 17 osteofibrous dysplasias using paraffin sections, and these expressions were then assessed semiquantitatively. Microscopically, fibrous dysplasia showed various secondary changes, such as hyalinization, hemorrhage, xanthomatous reaction, and cystic change in 22 of the 62 cases (35%). This was a higher incidence than in osteofibrous dysplasia, in which only 2 of the 20 cases (10%) showed such changes. In the elderly fibrous dysplasia cases, the cellularity of fibroblast-like cells was rather low, and those cases were hyalinized. Almost all of the cases of fibrous dysplasia and osteofibrous dysplasia showed positive expressions of c-fos and c-jun products. The expressions of type I collagen and osteopontin showed no difference between fibrous dysplasia and osteofibrous dysplasia. Immunoreactivity for osteonectin in bone matrix was detected in only 1 case of fibrous dysplasia (1 of 20), whereas it was recognized in 14 of the 17 cases of osteofibrous dysplasia. Furthermore, the immunoreactivity for osteocalcin in bone matrix and fibroblast-like cells was higher in fibrous dysplasia than it was in osteofibrous dysplasia, semiquantitatively. Our immunohistochemical results regarding osteonectin and osteocalcin suggest that the bone matrix of fibrous dysplasia is

  9. Potentiation of the action of phorbol ester by heparin in human CNE2 cells: Association with enhanced expression of c-jun,p53 and p21%肝素增强佛波酯对人鼻咽癌CNE2细胞的作用:调c-jun,p5 3,p21的表达

    Institute of Scientific and Technical Information of China (English)

    李红良; 陈丹丹; 张海伟; 钟玲; 李小红; 罗英儒; 任先达; 司徒锐

    2002-01-01

    treatment compared to heparin or TPA alone. Western blot analysis revealed that TPA induced the increases in c-jun an d p53,p21 protein expression and the levels were remarkably increased following heparin in combination with TPA treatment,whereas no significant change in c-f os was detected. CONCLUSION: These results suggest that heparin synergistically potentiates the action of TPA in CNE2 cells,which may be associated with the in crease in c-jun protein level and the upregulation of p21,p53 protein expressio n.

  10. c-Jun promotes whereas JunB inhibits epidermal neoplasia.

    Science.gov (United States)

    Jin, Jane Y; Ke, Hengning; Hall, Russell P; Zhang, Jennifer Y

    2011-05-01

    Deregulation of the activator protein 1 (AP1) family gene regulators has been implicated in a wide range of diseases, including cancer. In this study we report that c-Jun was activated in human squamous cell carcinoma (SCC) and coexpression of c-Jun with oncogenic Ras was sufficient to transform primary human epidermal cells into malignancy in a regenerated human skin grafting model. In contrast, JunB was not induced in a majority of human SCC cells. Moreover, exogenous expression of JunB inhibited tumorigenesis driven by Ras or spontaneous human SCC cells. Conversely, the dominant-negative JunB mutant (DNJunB) promoted tumorigenesis, which is in contrast to the tumor-suppressor function of the corresponding c-Jun mutant. At the cellular level, JunB induced epidermal cell senescence and slowed cell growth in a cell-autonomous manner. Consistently, coexpression of JunB and Ras induced premature epidermal differentiation concomitant with upregulation of p16 and filaggrin and downregulation of cyclin D1 and cyclin-dependent kinase 4 (CDK4). These findings indicate that JunB and c-Jun differentially regulate cell growth and differentiation and induce opposite effects on epidermal neoplasia.JID JOURNAL CLUB ARTICLE: For questions, answers, and open discussion about this article, please go to http://www.nature.com/jid/journalclub. PMID:21289643

  11. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Changchien, Jung-Jung; Chen, Ying-Jung; Huang, Chia-Hui [Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Cheng, Tian-Lu [Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lin, Shinne-Ren [Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, Long-Sen, E-mail: lschang@mail.nsysu.edu.tw [Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)

    2015-04-01

    Although previous studies have revealed the anti-cancer activity of quinacrine, its effect on leukemia is not clearly resolved. We sought to explore the cytotoxic effect and mechanism of quinacrine action in human leukemia K562 cells. Quinacrine induced K562 cell apoptosis accompanied with ROS generation, mitochondrial depolarization, and down-regulation of BCL2L1 and BCL2. Upon exposure to quinacrine, ROS-mediated p38 MAPK activation and ERK inactivation were observed in K562 cells. Quinacrine-induced cell death and mitochondrial depolarization were suppressed by the p38MAPK inhibitor SB202190 and constitutively active MEK1 over-expression. Activation of p38 MAPK was shown to promote BCL2 degradation. Further, ERK inactivation suppressed c-Jun-mediated transcriptional expression of BCL2L1. Over-expression of BCL2L1 and BCL2 attenuated quinacrine-evoked mitochondrial depolarization and rescued the viability of quinacrine-treated cells. Taken together, our data indicate that quinacrine-induced K562 cell apoptosis is mediated through mitochondrial alterations triggered by p38 MAPK-mediated BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. - Highlights: • Quinacrine induces K562 cell apoptosis via down-regulation of BCL2 and BCL2L1. • Quinacrine induces p38 MAPK activation and ERK inactivation in K562 cells. • Quinacrine elicits p38 MAPK-mediated BCL2 down-regulation. • Quinacrine suppresses ERK/c-Jun-mediated BCL2L1 expression.

  12. The regulation of p53 up-regulated modulator of apoptosis by JNK/c-Jun pathway in β-amyloid-induced neuron death.

    Science.gov (United States)

    Akhter, Rumana; Sanphui, Priyankar; Das, Hrishita; Saha, Pampa; Biswas, Subhas Chandra

    2015-09-01

    Neuronal loss in selective areas of brain underlies the pathology of Alzheimer's disease (AD). Recent evidences place oligomeric β-amyloid (Aβ) central to the disease. However, mechanism of neuron death in response to Aβ remains elusive. Activation of the c-Jun N-terminal kinase (JNK) pathway and induction of the AP-1 transcription factor c-Jun are reported in AD. However, targets of JNK/c-Jun in Aβ-induced neuron death are mostly unknown. Our study shows that pro-apoptotic proteins, Bim (Bcl-2 interacting mediator of cell death) and Puma (p53 up-regulated modulator of apoptosis) are targets of c-Jun in Aβ-treated neurons. We demonstrate that the JNK/c-Jun pathway is activated, in cultures of cortical neurons following treatment with oligomeric Aβ and in AD transgenic mice, and that inhibition of this pathway by selective inhibitor blocks induction of Puma by Aβ. We also find that both JNK and p53 pathways co-operatively regulate Puma expression in Aβ-treated neurons. Moreover, we identified a novel AP1-binding site on rat puma gene which is necessary for direct binding of c-Jun with Puma promoter. Finally, we find that knocking down of c-Jun by siRNA provides significant protection from Aβ toxicity and that induction of Bim and Puma by Aβ in neurons requires c-Jun. Taken together, our results suggest that both Bim and Puma are target of c-Jun and elucidate the intricate regulation of Puma expression by JNK/c-Jun and p53 pathways in neurons upon Aβ toxicity. JNK/c-Jun pathway is shown to be activated in neurons of the Alzheimer's disease (AD) brain and plays a vital role in neuron death in AD models. However, downstream targets of c-Jun in this disease have not been thoroughly elucidated. Our study shows that two important pro-apoptotic proteins, Bim (Bcl-2 interacting mediator of cell death) and Puma (p53 up-regulated modulator of apoptosis) are targets of c-Jun in Aβ-treated neurons. We demonstrate that the JNK/c-jun pathway is activated, in cultures

  13. Heterodimer formation between c-Jun and Jun B proteins mediated by Epstein Barr virus encoded latent membrane protein 1

    Institute of Scientific and Technical Information of China (English)

    SONG; Xin; TAO; Yongguang; TAN; Yunnian; Leo; M.; Lee; DENG

    2005-01-01

    Epstein-Barr virus (EBV) encoded latent membrane protein 1 (LMP1) may trigger the transcription factor AP-1 including c-Jun and c-fos. In this report, using a Tet-on LMP1 HNE2 cell line which is a dual-stable LMP1 integrated nasopharyngeal carcinoma (NPC) cell line and the expression of LMP1 in which could be regulated by the Tet-on system, we show that Jun B can efficiently form a new heterodimeric complex with the c-Jun protein under the regulation of LMP1, phosphorylation of c-Jun (ser 63, ser 73) and Jun B is involved in the process of the new heterodimeric formation. We also find that this heterodimeric form can bind to the AP-1 consensus sequence. Transfection studies suggest that JNK interaction protein (JIP) could inhibit the heterodimer formation of c-Jun and Jun B through blocking the AP-1 signaling pathway triggered by LMP1. The interaction and function between c-Jun protein and Jun B protein increase the repertoire of possible regulatory complexes by LMP1 that could play an important role in the regulation of transcription of specific cellular genes in the process of genesis of nasopharyngeal carcinoma.

  14. Growth arrest- and DNA-damage-inducible 45beta gene inhibits c-Jun N-terminal kinase and extracellular signal-regulated kinase and decreases IL-1beta-induced apoptosis in insulin-producing INS-1E cells

    DEFF Research Database (Denmark)

    Larsen, Claus Morten; Døssing, M G; Papa, S;

    2006-01-01

    IL-1beta is a candidate mediator of apoptotic beta cell destruction, a process that leads to type 1 diabetes and progression of type 2 diabetes. IL-1beta activates beta cell c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38, all of which are members of the mitogen......-activated protein kinase (MAPK) family. Inhibition of JNK prevents IL-1beta-mediated beta cell destruction. In mouse embryo fibroblasts and 3DO T cells, overexpression of the gene encoding growth arrest and DNA-damage-inducible 45beta (Gadd45b) downregulates pro-apoptotic JNK signalling. The aim of this study...

  15. 高+Gx环境对猴咬肌肌细胞c-jun表达影响的研究%Effect of high +Gx on c-jun expression in masseter muscle cell of Rhesus macaque

    Institute of Scientific and Technical Information of China (English)

    施生根; 张建中; 汤楚华; 牛忠英; 张铭

    2008-01-01

    目的 观察高+Gx环境对猴咬肌组织病理学及c-jun表达的影响. 方法以9只雄性猕猴为对象,按受试猴暴露的+Gx环境及持续时间随机分4组,对照组为+1 Gx/300 s;实验组为3组,分别为+15 Gx/200 s、+18 Gx/165 s、+21 Gx/140 s.采用病理学和免疫组织化学方法,观察模拟高正加速度环境下猴咬肌肌细胞组织及c-jun表达的变化. 结果组织病理学观察:对照组猴咬肌肌细胞无明显变化;实验组肌细胞结构趋紊乱,偶见少量间质出血.免疫组织化学观察:对照组咬肌肌细胞c-jun呈阴性或弱阳性表达,主要位于肌细胞核,胞质着色不明显;实验组咬肌细胞核c-jun着色明显,呈强阳性表达,不同高+Gx暴露组之间无明显差别. 结论高于+15 Gx的模拟环境可引起猴咬肌肌细胞c-jun表达增强.%Objective To investigate the changes of c-jun expression in the monkey masseter muscles induced by stress reaction under +Gx loads. Methods Nine male Rhesus macaques were randomly divided in to four groups according to Gx loads and duration: control group was exposed to+1 Gx/300 s overloads, and experimental groups 1, 2 and 3 were exposed to +15 Gx/200 s,+18 Gx/165 s and + 21 Gx/140 s respectively. Masseter tissue was fixed with 10% buffered formaldehyde and embedded with paraffin, and histopathological changes were observed under microscope. The expression of c-jun was detected by immunohistochemical PicTureTM method on the masseters. Results Gross and histological analyses showed that no significant pathological changes were observed in the masseters in control group; there was structural disturbance of masseter with slight stromal hemorrhage in the different experimental groups. Immunohistochemical staining demonstrated that over-expression of c-jun was detected in the nuclei of the muscles in the experimental groups, and negative staining was also observed in the nuclei of muscles in controlanimals. There was no obvious difference in c-jun

  16. Effect of estrogen and tamoxifen on the expression pattern of AP-1 factors in MCF-7 cells: role of c-Jun, c-Fos, and Fra-1 in cell cycle regulation.

    Science.gov (United States)

    Babu, R L; Naveen Kumar, M; Patil, Rajeshwari H; Devaraju, K S; Ramesh, Govindarajan T; Sharma, S Chidananda

    2013-08-01

    The activated transcription factor ERα plays an important role in the breast development and progression of cancer. In a non-classical pathway ER interacts with other transcription factors AP-1, NFkB, SP1, etc. AP-1 transcription factors control rapid responses of mammalian cells to stimuli that impact proliferation, differentiation, and transformation. AP-1 factors are leucine zipper proteins belonging to members of the Jun family (c-Jun, JunB, and JunD) and Fos family (c-Fos, FosB, Fra-1, and Fra-2) proteins. Although AP-1 factors are well characterized, not much is known about the expression pattern of the AP-1 factors in breast cancer cells. Hence to determine which AP-1 factors are expressed and regulated by estrogen, we used human breast cancer MCF-7 cells as in vitro model system. The MCF-7 cells were treated with or without estradiol-17β (E2) or antiestrogen tamoxifen (TMX) and the cell proliferation and viability was assessed by MTT assay. The expression of different AP-1 factors was analyzed by semi-quantitative RT-PCR. The cells treated with E2 found to increase the cell proliferation by more than 35 % and TMX an antiestrogen decreased by 29 % compared to control. The E2 found to induce the expression of c-Jun, Fra-1, and c-Fos, while TMX decreased the expression. In addition TMX also decreased the mRNA levels of Jun-D and Fra-2. These results suggest that the AP-1 factors c-Jun, c-Fos, and Fra-1 may be involved in the proliferation and transformation of MCF-7 cells. E2 also found to induce cyclin D1 and cyclin E1 mRNA transcripts of cell cycle regulators while TMX significantly decreased compared to control. Further E2 induced the anti-apoptotic Bcl-2 and TMX decreased mRNA transcripts. The data presented here support the E2-ERα-mediated MCF-7 cell proliferation and confirms the role of AP-1 factors in cell cycle regulation. PMID:23625206

  17. Activation of Tax protein by c-Jun-N-terminal kinase is not dependent on the presence or absence of the early growth response-1 gene product.

    Science.gov (United States)

    Parra, Eduardo; Gutierréz, Luís; Ferreira, Jorge

    2016-02-01

    The Tax protein of human T cell leukemia virus type 1 plays a major role in the pathogenesis of adult T cell leukemia (ATL), an aggressive neoplasia of CD4+ T cells. In the present study, we investigated whether the EGR-1 pathway is involved in the regulation of Tax-induced JNK expression in human Jurkat T cells transfected to express the Tax protein in the presence or absence of PMA or ionomycin. Overexpression of EGR-1 in Jurkat cells transfected to express Tax, promoted the activation of several genes, with the most potent being those that contained AP-1 (Jun/c-Fos), whereas knockdown of endogenous EGR-1 by small interfering RNA (siRNA) somewhat reduced Tax-mediated JNK-1 transcription. Additionally, luciferase-based AP-1 and NF-κB reporter gene assays demonstrated that inhibition of EGR-1 expression by an siRNA did not affect the transcriptional activity of a consensus sequence of either AP-1 or NF-κB. On the other hand, the apoptosis assay, using all-trans retinoic acid (ATRA) as an inducer of apoptosis, confirmed that siRNA against EGR-1 failed to suppress ATRA-induced apoptosis in Jurkat and Jurkat-Tax cells, as noted by the low levels of both DEVDase activity and DNA fragmentation, indicating that the induction of apoptosis by ATRA was Egr-1-independent. Finally, our data showed that activation of Tax by JNK-1 was not dependent on the EGR-1 cascade of events, suggesting that EGR-1 is important but not a determinant for the activity for Tax-induced proliferation of Jurkat cells.

  18. Activation of Tax protein by c-Jun-N-terminal kinase is not dependent on the presence or absence of the early growth response-1 gene product.

    Science.gov (United States)

    Parra, Eduardo; Gutierréz, Luís; Ferreira, Jorge

    2016-02-01

    The Tax protein of human T cell leukemia virus type 1 plays a major role in the pathogenesis of adult T cell leukemia (ATL), an aggressive neoplasia of CD4+ T cells. In the present study, we investigated whether the EGR-1 pathway is involved in the regulation of Tax-induced JNK expression in human Jurkat T cells transfected to express the Tax protein in the presence or absence of PMA or ionomycin. Overexpression of EGR-1 in Jurkat cells transfected to express Tax, promoted the activation of several genes, with the most potent being those that contained AP-1 (Jun/c-Fos), whereas knockdown of endogenous EGR-1 by small interfering RNA (siRNA) somewhat reduced Tax-mediated JNK-1 transcription. Additionally, luciferase-based AP-1 and NF-κB reporter gene assays demonstrated that inhibition of EGR-1 expression by an siRNA did not affect the transcriptional activity of a consensus sequence of either AP-1 or NF-κB. On the other hand, the apoptosis assay, using all-trans retinoic acid (ATRA) as an inducer of apoptosis, confirmed that siRNA against EGR-1 failed to suppress ATRA-induced apoptosis in Jurkat and Jurkat-Tax cells, as noted by the low levels of both DEVDase activity and DNA fragmentation, indicating that the induction of apoptosis by ATRA was Egr-1-independent. Finally, our data showed that activation of Tax by JNK-1 was not dependent on the EGR-1 cascade of events, suggesting that EGR-1 is important but not a determinant for the activity for Tax-induced proliferation of Jurkat cells. PMID:26573109

  19. Roles of PI3K/Akt and c-Jun signaling pathways in human papillomavirus type 16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis in non-small cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Erying Zhang

    Full Text Available Human papillomavirus (HPV-16 infection may be related to non-smoking associated lung cancer. Our previous studies have found that HPV-16 oncoproteins promoted angiogenesis via enhancing hypoxia-inducible factor-1α (HIF-1α, vascular endothelial growth factor (VEGF, and interleukin-8 (IL-8 expression in non-small cell lung cancer (NSCLC cells. In this study, we further investigated the roles of PI3K/Akt and c-Jun signaling pathways in it.Human NSCLC cell lines, A549 and NCI-H460, were stably transfected with pEGFP-16 E6 or E7 plasmids. Western blotting was performed to analyze the expression of HIF-1α, p-Akt, p-P70S6K, p-P85S6K, p-mTOR, p-JNK, and p-c-Jun proteins. VEGF and IL-8 protein secretion and mRNA levels were determined by ELISA and Real-time PCR, respectively. The in vitro angiogenesis was observed by human umbilical vein endothelial cells (HUVECs tube formation assay. Co-immunoprecipitation was performed to analyze the interaction between c-Jun and HIF-1α.HPV-16 E6 and E7 oncoproteins promoted the activation of Akt, P70S6K, P85S6K, mTOR, JNK, and c-Jun. LY294002, a PI3K inhibitor, inhibited HPV-16 oncoprotein-induced activation of Akt, P70S6K, and P85S6K, expression of HIF-1α, VEGF, and IL-8, and in vitro angiogenesis. c-Jun knockdown by specific siRNA abolished HPV-16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis. Additionally, HPV-16 oncoproteins promoted HIF-1α protein stability via blocking proteasome degradation pathway, but c-Jun knockdown abrogated this effect. Furthermore, HPV-16 oncoproteins increased the quantity of c-Jun binding to HIF-1α.PI3K/Akt signaling pathway and c-Jun are involved in HPV-16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis. Moreover, HPV-16 oncoproteins promoted HIF-1α protein stability possibly through enhancing the interaction between c-Jun and HIF-1α, thus making a contribution to angiogenesis in NSCLC cells.

  20. P75 and phosphorylated c-Jun are differentially regulated in spinal motoneurons following axotomy in rats

    Institute of Scientific and Technical Information of China (English)

    Qiuju Yuan; Huanxing Su; Wutian Wu; Zhi-Xiu Lin

    2012-01-01

    The neurotrophin receptor (p75) activates the c-Jun N-terminal kinase (JNK) pathway. Activation of JNK and its substrate c-Jun can cause apoptosis. Here we evaluate the role of p75 in spinal motoneurons by comparing immunoreactivity for p75 and phosphorylated c-Jun (p-c-Jun), the production of JNK activation in axotomized motoneurons in postnatal day (PN)1, PN7, PN14 and adult rats. Intensive p-c-Jun was induced in axotomized motoneurons in PN1 and PN7. In PN14, p-c-Jun expression was sharply reduced after the same injury. The decreased expression of p-c-Jun at this age coincided with a developmental switch of re-expression of p75 in axotomized cells. In adult animals, no p-c-Jun but intensive p75 was detected in axotomized motoneurons. These results indicate differential expression or turnover of phosphorylation of c-Jun and p75 in immature versus mature spinal motoneurons in response to axonal injury. The non-co-occurrence of p75 and p-c-Jun in injured motoneurons indicated that p75 may not activate JNK pathway, suggesting that the p75 may not be involved in cell death in axotomized motoneurons.

  1. c-fos与c-jun癌蛋白在溃疡与增生性瘢痕创面联合表达的特征与意义%Expression of oncoproteins c-fos and c-jun in hypertrophic scars and chronic dermal ulcers and their regulation of basic fibroblast growth factor

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    目的探讨c-fos与c-jun两种原癌基因产物在溃疡与增生性瘢痕创面表达的特征与规律以及与不同组织修复结局发生的关系。 方法 16例标本均取自于外科手术患者,其中增生性瘢痕8例,溃疡创面8例,另有正常对照皮肤5例取自增生性瘢痕患者作为对照。用免疫组化法(ABC法)检测c-fos与c-jun两种癌蛋白以及bFGF在三种组织切片的分布特征。 结果在正常皮肤c-fos与c-jun的阳性表达主要见于表皮基底细胞和少量皮下成纤维细胞,但在相应部位c-jun的表达较c-fos为弱。在增生性瘢痕,c-fos与c-jun均出现强阳性表达,主要见于成纤维细胞。在溃疡组织,c-fos与c-jun的联合表达多见于毛细血管内皮细胞、部分炎症细胞以及成纤维细胞胞浆。 结论增生性瘢痕与溃疡创面c-fos与c-jun表达量与部位同正常皮肤存在显著差异,提示这两种原癌基因产物在影响和调控组织修复中有重要作用。%Objective To explore the characteristics of oncoprotein expression of c-fos and c-jun in hypertrophic scars and chronic dermal ulcers and their regulation of basic fibroblast growth factor (bFGF). Methods Tissues of hypertrophic scars (n=8), chronic dermal ulcers (n=8) and normal skin (n=5) were taken from 21 patients with burns and chronic dermal ulcers in operation. The ABC immunohistochemical method was used to characterize the gene product expression of c-fos, c-jun and bFGF in the above tissues. Results In normal skin, both c-fos and c-jun protein expression and bFGF protein expression were observed. The signals of both oncoproteins were localized mainly in subcutaneous fibroblasts, but, positive expression of the bFGF protein was mainly in keratinocytes. In hypertrophic scars, positive expression of both oncoproteins could be found mainly in fibroblasts, but bFGF was mainly in fibroblasts and endothelial cells. In chronic dermal ulcers, endothelial cells, some

  2. c-Jun N-terminal Kinase (JNK) signaling as a therapeutic target for Alzheimer’s disease

    OpenAIRE

    Yarza, Ramon; Vela, Silvia; Solas, Maite; Ramirez, Maria J

    2016-01-01

    c-Jun N-terminal kinases (JNKs) are a family of protein kinases that play a central role in stress signaling pathways implicated in gene expression, neuronal plasticity, regeneration, cell death, and regulation of cellular senescence. It has been shown that there is a JNK pathway activation after exposure to different stressing factors, including cytokines, growth factors, oxidative stress, unfolded protein response signals or Aβ peptides. Altogether, JNKs have become a focus of screening str...

  3. Cucurbitacin-I (JSI-124) activates the JNK/c-Jun signaling pathway independent of apoptosis and cell cycle arrest in B Leukemic Cells

    International Nuclear Information System (INIS)

    Cucurbitacin-I (JSI-124) is potent inhibitor of JAK/STAT3 signaling pathway and has anti-tumor activity in a variety of cancer including B cell leukemia. However, other molecular targets of JSI-124 beyond the JAK/STAT3 pathway are not fully understood. BJAB, I-83, NALM-6 and primary CLL cells were treated with JSI-124 as indicated. Apoptosis was measured using flow cytometry for accumulation of sub-G1 phase cells (indicator of apoptosis) and Annexin V/PI staining. Cell cycle was analyzed by FACS for DNA content of G1 and G2 phases. Changes in phosphorylation and protein expression of p38, Erk1/2, JNK, c-Jun, and XIAP were detected by Western blot analysis. STAT3 and c-Jun genes were knocked out using siRNA transfection. VEGF expression was determined by mRNA and protein levels by RT-PCR and western blotting. Streptavidin Pull-Down Assay was used to determine c-Jun binding to the AP-1 DNA binding site. Herein, we show that JSI-124 activates c-Jun N-terminal kinase (JNK) and increases both the expression and serine phosphorylation of c-Jun protein in the B leukemic cell lines BJAB, I-83 and NALM-6. JSI-124 also activated MAPK p38 and MAPK Erk1/2 albeit at lower levels than JNK activation. Inhibition of the JNK signaling pathway failed to effect cell cycle arrest or apoptosis induced by JSI-124 but repressed JSI-124 induced c-Jun expression in these leukemia cells. The JNK pathway activation c-Jun leads to transcriptional activation of many genes. Treatment of BJAB, I-83, and NALM-6 cells with JSI-124 lead to an increase of Vascular Endothelial Growth Factor (VEGF) at both the mRNA and protein level. Knockdown of c-Jun expression and inhibition of JNK activation significantly blocked JSI-124 induced VEGF expression. Pretreatment with recombinant VEGF reduced JSI-124 induced apoptosis. Taken together, our data demonstrates that JSI-124 activates the JNK signaling pathway independent of apoptosis and cell cycle arrest, leading to increased VEGF expression

  4. From reptilian phylogenomics to reptilian genomes: analyses of c-Jun and DJ-1 proto-oncogenes.

    Science.gov (United States)

    Katsu, Y; Braun, E L; Guillette, L J; Iguchi, T

    2009-01-01

    Genome projects have revolutionized our understanding of both molecular biology and evolution, but there has been a limited collection of genomic data from reptiles. This is surprising given the pivotal position of reptiles in vertebrate phylogeny and the potential utility of information from reptiles for understanding a number of biological phenomena, such as sex determination. Although there are many potential uses for genomic data, one important and useful approach is phylogenomics. Here we report cDNA sequences for the c-Jun(JUN) and DJ-1(PARK7) proto-oncogenes from 3 reptiles (the American alligator, Nile crocodile, and Florida red-belly turtle), show that both genes are expressed in the alligator, and integrate them into analyses of their homologs from other organisms. With these taxa it was possible to conduct analyses that include all major vertebrate lineages. Analyses of c-Jun revealed an unexpected but well-supported frog-turtle clade while analyses of DJ-1 revealed a topology largely congruent with expectation based upon other data. The conflict between the c-Jun topology and expectation appears to reflect the overlap between c-Jun and a CpG island in most taxa, including crocodilians. This CpG island is absent in the frog and turtle, and convergence in base composition appears to be at least partially responsible for the signal uniting these taxa. Noise reduction approaches can eliminate the unexpected frog-turtle clade, demonstrating that multiple signals are present in the c-Jun alignment. We used phylogenetic methods to visualize these signals; we suggest that examining both historical and non-historical signals will prove important for phylogenomic analyses.

  5. Contraction-induced Interleukin-6 Gene Transcription in Skeletal Muscle Is Regulated by c-Jun Terminal Kinase/Activator Protein-1*

    Science.gov (United States)

    Whitham, Martin; Chan, M. H. Stanley; Pal, Martin; Matthews, Vance B.; Prelovsek, Oja; Lunke, Sebastian; El-Osta, Assam; Broenneke, Hella; Alber, Jens; Brüning, Jens C.; Wunderlich, F. Thomas; Lancaster, Graeme I.; Febbraio, Mark A.

    2012-01-01

    Exercise increases the expression of the prototypical myokine IL-6, but the precise mechanism by which this occurs has yet to be identified. To mimic exercise conditions, C2C12 myotubes were mechanically stimulated via electrical pulse stimulation (EPS). We compared the responses of EPS with the pharmacological Ca2+ carrier calcimycin (A23187) because contraction induces marked increases in cytosolic Ca2+ levels or the classical IκB kinase/NFκB inflammatory response elicited by H2O2. We demonstrate that, unlike H2O2-stimulated increases in IL-6 mRNA, neither calcimycin- nor EPS-induced IL-6 mRNA expression is under the transcriptional control of NFκB. Rather, we show that EPS increased the phosphorylation of JNK and the reporter activity of the downstream transcription factor AP-1. Furthermore, JNK inhibition abolished the EPS-induced increase in IL-6 mRNA and protein expression. Finally, we observed an exercise-induced increase in both JNK phosphorylation and IL-6 mRNA expression in the skeletal muscles of mice after 30 min of treadmill running. Importantly, exercise did not increase IL-6 mRNA expression in skeletal muscle-specific JNK-deficient mice. These data identify a novel contraction-mediated transcriptional regulatory pathway for IL-6 in skeletal muscle. PMID:22351769

  6. Reciprocal regulation of transcription factors and PLC isozyme gene expression in adult cardiomyocytes.

    Science.gov (United States)

    Singal, Tushi; Dhalla, Naranjan S; Tappia, Paramjit S

    2010-06-01

    By employing a pharmacological approach, we have shown that phospholipase C (PLC) activity is involved in the regulation of gene expression of transcription factors such as c-Fos and c-Jun in cardiomyocytes in response to norepinephrine (NE). However, there is no information available regarding the identity of specific PLC isozymes involved in the regulation of c-Fos and c-Jun or on the involvement of these transcription factors in PLC isozyme gene expression in adult cardiomyocytes. In this study, transfection of cardiomyocytes with PLC isozyme specific siRNA was found to prevent the NE-mediated increases in the corresponding PLC isozyme gene expression, protein content and activity. Unlike PLC gamma(1) gene, silencing of PLC beta(1), beta(3) and delta(1) genes with si RNA prevented the increases in c-Fos and c-Jun gene expression in response to NE. On the other hand, transfection with c-Jun si RNA suppressed the NE-induced increase in c-Jun as well as PLC beta(1), beta(3) and delta(1) gene expression, but had no effect on PLC gamma(1) gene expression. Although transfection of cardiomyocytes with c-Fos si RNA prevented NE-induced expression of c-Fos, PLC beta(1) and PLC beta(3) genes, it did not affect the increases in PLC delta(1) and PLC gamma(1) gene expression. Silencing of either c-Fos or c-Jun also depressed the NE-mediated increases in PLC beta(1), beta(3) and gamma(1) protein content and activity in an isozyme specific manner. Furthermore, silencing of all PLC isozymes as well as of c-Fos and c-Jun resulted in prevention of the NE-mediated increase in atrial natriuretic factor gene expression. These findings, by employing gene silencing techniques, demonstrate that there occurs a reciprocal regulation of transcription factors and specific PLC isozyme gene expression in cardiomyocytes.

  7. Reduction in Bile Acid Pool Causes Delayed Liver Regeneration Accompanied by Down-regulated Expression of FXR and C-Jun mRNA in Rats

    Institute of Scientific and Technical Information of China (English)

    董秀山; 赵浩亮; 马晓明; 王世明

    2010-01-01

    The present study attempted to examine the effects of bile acid pool size on liver regeneration after hepatectomy.The rats were fed on 0.2% cholic acid(CA)or 2% cholestyramine for 7 days to induce a change in the bile acid size,and then a partial hepatectomy(PH)was performed.Rats fed on the normal diet served as the controls.Measurements were made on the rate of liver regeneration,the labeling indices of PCNA,the plasma total bile acids(TBA),and the mRNA expression of cholesterol 7alpha-hydroxylase(CYP7A1),...

  8. NPM-ALK oncogenic kinase promotes cell-cycle progression through activation of JNK/cJun signaling in anaplastic large-cell lymphoma.

    Science.gov (United States)

    Leventaki, Vasiliki; Drakos, Elias; Medeiros, L Jeffrey; Lim, Megan S; Elenitoba-Johnson, Kojo S; Claret, Francois X; Rassidakis, George Z

    2007-09-01

    Anaplastic large-cell lymphoma (ALCL) frequently carries the t(2;5)(p23;q35), resulting in aberrant expression of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK). We show that in 293T and Jurkat cells, forced expression of active NPM-ALK, but not kinase-dead mutant NPM-ALK (210K>R), induced JNK and cJun phosphorylation, and this was linked to a dramatic increase in AP-1 transcriptional activity. Conversely, inhibition of ALK activity in NPM-ALK(+) ALCL cells resulted in a concentration-dependent dephosphorylation of JNK and cJun and decreased AP-1 DNA-binding. In addition, JNK physically binds NPM-ALK and is highly activated in cultured and primary NPM-ALK(+) ALCL cells. cJun phosphorylation in NPM-ALK(+) ALCL cells is mediated by JNKs, as shown by selective knocking down of JNK1 and JNK2 genes using siRNA. Inhibition of JNK activity using SP600125 decreased cJun phosphorylation and AP-1 transcriptional activity and this was associated with decreased cell proliferation and G2/M cell-cycle arrest in a dose-dependent manner. Silencing of the cJun gene by siRNA led to a decreased S-phase cell-cycle fraction associated with upregulation of p21 and downregulation of cyclin D3 and cyclin A. Taken together, these findings reveal a novel function of NPM-ALK, phosphorylation and activation of JNK and cJun, which may contribute to uncontrolled cell-cycle progression and oncogenesis.

  9. Drosophila endocytic neoplastic tumor suppressor genes regulate Sav/Wts/Hpo signaling and the c-Jun N-terminal kinase pathway.

    Science.gov (United States)

    Robinson, Brian S; Moberg, Kenneth H

    2011-12-01

    Genetic screens in the fruit fly Drosophila melanogaster have identified a class of neoplastic tumor suppressor genes (endocytic nTSGs), which encode proteins that localize to endosomes and facilitate the trafficking of membrane-bound receptors and adhesion molecules into the degradative lysosome. Loss of endocytic nTSGs transforms imaginal disc epithelia into highly proliferative, invasive tissues that fail to differentiate and display defects in cellular apicobasal polarity, adhesion and tissue architecture. As vertebrate homologs of some Drosophila nTSGs are linked to tumor formation, identifying molecular changes in signaling associated with nTSG loss could inform understanding of neoplastic transformation in vertebrates. Here we show that mutations in genes that act at multiple steps of the endolysosomal pathway lead to autonomous activation of the Sav/Wts/Hpo (SWH) transcriptional effector Yki (YAP/TAZ in vertebrates) and the Jun N-terminal kinase (JNK), which is known to promote Yki activity in cells with disrupted polarity. Yki and JNK activity are elevated by mutations at multiple steps in the endolysosomal pathway including mutations in the AP-2σ gene, which encodes a component of the AP-2 adaptor complex that recruits cargoes into clathrin-coated pits for subsequent internalization. Moreover, reduction of JNK activity can decrease elevated Yki-signaling caused by altered endocytosis. These studies reveal a broad requirement for components of the endocytic pathway in regulating SWH and JNK outputs, and place Drosophila endocytic nTSGs into a network that involving two major signaling pathways implicated in oncogenesis. PMID:22101275

  10. Selection and characterization of a DNA aptamer that can discriminate between cJun/cJun and cJun/cFos.

    Directory of Open Access Journals (Sweden)

    Ryan D Walters

    Full Text Available The AP-1 family of transcriptional activators plays pivotal roles in regulating a wide range of biological processes from the immune response to tumorigenesis. Determining the roles of specific AP-1 dimers in cells, however, has remained challenging because common molecular biology techniques are unable to distinguish between the role of, for example, cJun/cJun homodimers versus cJun/cFos heterodimers. Here we used SELEX (systematic evolution of ligands by exponential enrichment to identify and characterize DNA aptamers that are >100-fold more specific for binding cJun/cJun compared to cJun/cFos, setting the foundation to investigate the biological functions of different AP-1 dimer compositions.

  11. SUMOylation of the inducible (c-Fos:c-Jun)/AP-1 transcription complex occurs on target promoters to limit transcriptional activation.

    Science.gov (United States)

    Tempé, D; Vives, E; Brockly, F; Brooks, H; De Rossi, S; Piechaczyk, M; Bossis, G

    2014-02-13

    The inducible proto-oncogenic (c-Fos:c-Jun)/AP-1 transcription complex binds 12-O-tetradecanoylphorbol 13-acetate (TPA)-responsive elements (TRE) in its target genes. It is tightly controlled at multiple levels to avoid the deleterious effects of its inappropriate activation. In particular, SUMOylation represses its transactivation capacity in transient reporter assays using constitutively expressed proteins. This led to the presumption that (c-Fos:c-Jun)/AP-1 SUMOylation would be required to turn-off transcription of its target genes, as proposed for various transcription factors. Instead, thanks to the generation of an antibody specific for SUMO-modified c-Fos, we provide here direct evidence that SUMOylated c-Fos is present on a stably integrated reporter TPA-inducible promoter at the onset of transcriptional activation and colocalizes with RNA polymerase II within chromatin. Interestingly, (c-Fos:c-Jun)/AP-1 SUMOylation limits reporter gene induction, as well as the appearance of active transcription-specific histone marks on its promoter. Moreover, non-SUMOylatable mutant (c-Fos:c-Jun)/AP-1 dimers accumulate to higher levels on their target promoter, suggesting that SUMOylation might facilitate the release of (c-Fos:c-Jun)/AP-1 from promoters. Finally, activation of GADD153, an AP-1 target gene, is also associated with a rapid increase in SUMOylation at the level of its TRE and c-Fos SUMOylation dampens its induction by TPA. Taken together, our data suggest that SUMOylation could serve to buffer transcriptional activation of AP-1 target genes.

  12. Knockout of the c-Jun N-terminal Kinase 2 aggravates the development of mild chronic dextran sulfate sodium colitis independently of expression of intestinal cytokines TNFα, TGFB1, and IL-6

    Directory of Open Access Journals (Sweden)

    Kersting S

    2013-02-01

    Full Text Available Sabine Kersting,1 Kirstin Reinecke,2 Christoph Hilgert,1 Monika S Janot,1 Elisabeth Haarmann,1 Martin Albrecht,1 Annette M Müller,3 Thomas Herdegen,2 Ulrich Mittelkötter,1 Waldemar Uhl,1 Ansgar M Chromik11Department of General and Visceral Surgery, St Josef Hospital, Ruhr-University of Bochum, Bochum, Germany; 2Institute of Experimental and Clinical Pharmacology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany; 3Department of Pediatric Pathology, Rheinische Friedrich-Wilhems-University of Bonn, Bonn, GermanyIntroduction: The c-Jun N-terminal kinases (JNKs are involved in signal transduction of inflammatory bowel diseases. The aim of this study was to examine the function of JNKs by using a low-dose dextran sulfate sodium (DSS model in JNK1 knockout mice (Mapk8–/–, JNK2 knockout mice (Mapk9–/–, and wild-type controls (WT1, WT2.Methods: The animals were evaluated daily using a disease activity index. After 30 days, the intestine was evaluated histologically with a crypt damage score. CD4+ and CD8+ cells were quantified using immunofluorescence. Analysis of tumor necrosis factor-a (TNFα, interleukin-6 (IL-6, and transforming growth factor ß1 (TGFB1 expression was carried out using LightCycler® real-time polymerase chain reaction.Results: Cyclic administration of low-dose DSS (1% was not able to induce features of chronic colitis in Mapk8–/– WT2 mice. By contrast, DSS administration significantly increased the disease activity index in WT1 and Mapk9–/– mice. In Mapk9–/– mice, the crypt damage score and the number of CD4+ and CD8+ cells as features of chronic colitis/inflammation were also significantly elevated. Expression of TNFα, IL-6, and TGFB1 was not altered by the JNK knockout.Conclusion: Administering DSS at a defined low concentration that is unable to induce colitis in WT animals leads to clinically and histologically detectable chronic colitis in Mapk9–/– mice. The reason for this disease

  13. MORINGA TEA BLOCKS ACUTE LUNG INFLAMMATION INDUCED BY SWINE CONFINEMENT DUST THROUGH A MECHANISM INVOLVING TNF-α EXPRESSION, C-JUN N-TERMINAL KINASE ACTIVATION AND NEUTROPHIL REGULATION

    Directory of Open Access Journals (Sweden)

    Mykea Mcknight

    2014-01-01

    Full Text Available Plant based products represent a promising alternative to conventional treatments for inflammation. Moringa oleifera Lam is a tree rich in proteins, vitamins, minerals and a variety of phytochemcals with health benefits. Among the reported health benefits are antioxidant and anti-inflammatory properties. The purpose of this study was to investigate whether tea brewed from dried Moringa leaves would abrogate inflammation in a mouse model of acute lung inflammation induced by LPS or extracts prepared from dust collected from a swine confinement facility (DE. Mice were offered water or Moringa tea for seven days. Tea consumption was significantly greater than that of water consumption on days 1 and 6, but there were no significant differences in weight gain or food consumption. On day seven, mice from both groups were forced to inhale, via intranasal challenge, either Phosphate Buffered Saline (PBS, Lipopolysaccharide (LPS [10 µg mL-1] or DE [10%]. Compared to mice that drank water, mice that drank Moringa tea had significantly less protein (p<0.05 and cellular influx (p<0.0001 into the lung after inhalation of 10% DE. No difference in neutrophil migration into the lungs of water and M. tea groups after LPS or DE challenge was detected. But mice that drank tea had significantly (p<0.05 more neutrophils with apoptotic morphology after DE challenge. TNF-α expression 24 h after inhalation of 10% DE, was significantly higher (p<0.05 in lungs of M. tea mouse group as compared to water group. This increase in TNF-α was accompanied by higher levels of pro and anti-inflammatory cytokines. Finally, activation of c-Jun N-terminal Kinase (JNK in lungs of M. tea+DE group 24 h post inhalation was decreased. Taken together these results suggest that Moringa oleifera leaf tea exerts anti-inflammatory properties on acute lung inflammation induced by swine confinement dust through a mechanism involving neutrophil regulation and JNK

  14. G12 Signaling through c-Jun NH2-Terminal Kinase Promotes Breast Cancer Cell Invasion

    OpenAIRE

    Juhi Juneja; Ian Cushman; Casey, Patrick J.

    2011-01-01

    Signaling through the heterotrimeric G protein, G12, via Rho induces a striking increase in breast cancer cell invasion. In this study, evidence is provided that the c-Jun NH(2)-terminal kinase (JNK) is a key downstream effector of G12 on this pathway. Expression of constitutively-active Gα12 or activation of G12 signaling by thrombin leads to increased JNK and c-Jun phosphorylation. Pharmacologic inhibition of JNK or knockdown of JNK expression by siRNA significantly decreases G12-induced JN...

  15. The effect of hedgehog signaling pathway on c - jun, uPA expression of breast cancer cells MDA- MB - 231%Hedgehog通路对乳腺癌细胞MDA—MB-231c—jun、uPA表达的影响和机制

    Institute of Scientific and Technical Information of China (English)

    隆玲; 邓华瑜; 姜容; 陈黎

    2011-01-01

    目的:研究Hedgehog信号转导通路对人乳腺癌细胞MDA—MB-231c—jun、uPA表达的影响和作用机制,认识其在侵袭转移中的意义。方法:应用Hedgehog信号通路抑制剂Cyclopamine作用人乳腺癌细胞MDA—MB-231,Transwell小室进行侵袭迁移实验;Western blotting检测P—c—itin、uPA蛋白的水平:RT—PCR检测Gli1、c—jun和uPA的mRNA水平。结果:应用Cyclopamine后,细胞的侵袭迁移能力明显下降;P—c—Jun、uPA蛋白表达减少;Gli1、c—iun和uPAmRNA水平降低。结论:Hedgehog信号通路可通过活化c—jun上调uPA的表达,促进乳腺癌细胞MDA—MB-231细胞的侵袭转移。%Objective: To explore the effect and the possible mechanisms of Hedgehog singaling pathway on expression of c - jun, uPA in MDA - MB - 231 cells. Methods: Invasion and metastasis of MDA- MB- 231 cells were evaluated with transwell chamber.The expression of P- c- jun and uPA were detected by Western blot. The mRNA levels of Gli 1, c - jun and uPA were measured by reverse transcriplion - poly - merage chain reaction ( RT - PCR ). Results : When MDA - MB - 231 cells were treated with Cyclopamine, invasion and metastasis were depressed. The expression level of P- c- Jun and uPA were decreased. The mRNA levels of Ghl, c-jun and uPA were also reduced. Conclusion: invasion, metastasis and uPA level can be induced by activeled Hedgehog singnaling nathwav with activation of c - iun.

  16. c-Jun氨基末端激酶1反义真核表达载体及其蛋白缺陷细胞株的构建与鉴定%Construction and identification of antisense c-Jun N-terminal kinase 1 eukaryotic fluorescent expressing plasmids and JNK1+ human embryo lung fibroblasts cell line

    Institute of Scientific and Technical Information of China (English)

    徐辉; 何晓庆; 陈瑞; 尹仕伟; 彭雷; 王国强; 李爱萍; 周建伟; 刘起展

    2008-01-01

    目的 构建反义JNK1荧光真核细胞表达载体,建立JNK1蛋白缺陷人胚肺成纤维细胞(HELF)株.方法 用Trizol试剂抽提HELF细胞中总RNA,以反转录PCR扩增JNK1目的 片断,双酶切,纯化PCR产物后,反向插入pEGFP-C1绿色荧光质粒,构建反义pEGFP-C1-asJNK1真核表达载体;大量抽提质粒并转染至HELF细胞中.24 h后使用G418筛选,挑选单克隆细胞扩大培养,经荧光显微成像和蛋白免疫印迹鉴定.结果 pEGFP-C1-asJNK1表达载体DNA测序结果与预期目的 片断序列一致,且JNK1蛋白表达水平明显抑制.结论 反义pEGFP-C1-asJNK1真核表达载体构建成功,JNK1蛋白质缺陷HELF细胞株成功建立.%Objective To construct antisense c-Jun N-terminal kinase 1 (JNK1) eukaryotic fluorescent expressing vector and JNK1+ human embryo lung fibroblasts cell line. Methods Trizol reagent was used to extract total RNA in HELF. The proper primers of JNK1 were chosen and synthesized. RT-PCR and gene recombinant techniques were used to construct the fragment of JNK1. After purification, the PCR products were cut, and JNK1 were inserted reversely into eukaryotic fluorescent expressing vector pEGFP-C1. Enzyme-cutting and DNA auto-sequencing were used to prove the successful construction of JNK1 eukaryotic expressing vector. Then plasmids were extracted and transfected into HELF cells and screen by G418 24 h later. Monoclone was chosen and cultured. Fluorescent imaging and Western blot were used to identify the JNK+HELF cell line. Results Sequence analysis of pEGFP-C1-as JNK1 plasmids was same as expected. The expression level of JNK1 was inhibited markedly. Conclusion Construction of antisensc JNK1 eukaryotic fluorescent expressing vectors and JNK + HELF cell line is successful.

  17. 阿朴吗啡诱导黑质毁损大鼠腹侧被盖区c-jun表达%Apomorphine induce c-jun expression in ventral tagmental area of 6-OHDA-lesioned rats

    Institute of Scientific and Technical Information of China (English)

    陈晓宇; 姚玉芹; 沈韶辉; 韩卉

    2006-01-01

    目的:观察6-羟基多巴胺(6-hydroxydopamine,6-OHDA)毁损黑质DA能神经元后,不同时间点腹腔注射阿朴吗啡(Apomorphine,APO)大鼠行为学及中脑腹侧被盖区(ventraltagmental area,VTA)形态学、c-jun表达情况,探讨其可能机制.方法:6-OHDA单侧一点注射大鼠右黑质致密区(substantianigracompacta,SNc),特异性毁损DA能神经元;术后1、3、7、14、21d腹腔注射APO,观察旋转行为;利用电镜、尼氏染色、免疫组织化学ABC法,观察各时间点VTA DA能神经元形态学变化和酪氨酸羟化酶(TH)、c-jun表达情况.结果:毁损侧VTA DA能神经元逐渐减少,超微结构损伤逐渐加重;DA神经元丢失≥75%时,APO诱导的旋转实验≥7r/min,VTA毁损侧c-jun表达.结论:APO能诱导毁损侧VTA表达c-jun;c-jun表达与DA能神经元毁损程度有一定的关系.

  18. NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells

    OpenAIRE

    Galardi, Silvia; Mercatelli, Neri; Farace, Maria G.; Ciafrè, Silvia A.

    2011-01-01

    MicroRNAs (miRNAs) are potent negative regulators of gene expression involved in all aspects of cell biology. They finely modulate virtually all physiological pathways in metazoans, and are deeply implicated in all main pathologies, among which cancer. Mir-221 and miR-222, two closely related miRNAs encoded in cluster from a genomic region on chromosome X, are strongly upregulated in several forms of human tumours. In this work, we report that the ectopic modulation of NF-kB modifies miR-221/...

  19. Aryl hydrocarbon receptor pathway activation enhances gastric cancer cell invasiveness likely through a c-Jun-dependent induction of matrix metalloproteinase-9

    Directory of Open Access Journals (Sweden)

    Song Xin

    2009-04-01

    Full Text Available Abstract Background Abberant aryl hydrocarbon receptor (AhR expression and AhR pathway activation are involved in gastric carcinogenesis. However, the relationship between AhR pathway activation and gastric cancer progression is still unclear. In present study, we used 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD, a classic and most potent ligand of AhR, to activate AhR pathway and investigated the effect of AhR pathway activation on human gastric cancer AGS cell invasion and explored the corresponding mechanism. Results To determine whether AhR pathway can be activated in AGS cells, we examined the expression of CYP1A1, a classic target gene of AhR pathway, following TCDD exposure. RT-PCR and western blot analysis showed that both CYP1A1 mRNA and protein expression were increased in a dose-dependent manner following TCDD treatment and AhR antagonist resveratrol (RSV could reverse this TCDD-induced CYP1A1 expression. To determine whether TCDD treatment of AGS cells results in an induction of MMP-9 expression, we detected MMP-9 mRNA using RT-PCR and detected MMP-9 enzymatic activity using gelatin zymography. The results showed that both MMP-9 mRNA expression and enzymatic activity were gradually increased with the concentration increase of TCDD in media and these changes could be reversed by RSV treatment in a dose-dependent manner. To examine whether AhR activation-induced MMP-9 expression and activity in AGS cells results in increased migration and invasion, we performed wound healing migration assay and transwell migration and invasion assay. After TCDD treatment, the migration distance and the migration and invasion abilities of AGS cells were increased with a dose-dependent manner. To demonstrate AhR activation-induced MMP-9 expression is mediated by c-Jun, siRNA transfection was performed to silence c-Jun mRNA in AGS cells. The results showed that MMP-9 mRNA expression and activity in untreated control AGS cells were very weak; After TCDD

  20. miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway

    Energy Technology Data Exchange (ETDEWEB)

    He, Siyi; Liu, Peng; Jian, Zhao; Li, Jingwei; Zhu, Yun; Feng, Zezhou; Xiao, Yingbin, E-mail: xiaoyb@vip.sina.com

    2013-11-29

    Highlights: •First time to find miR-138 is up-regulated in hypoxic cardiomyocytes. •First time to find miR-138 targets MLK3 and regulates JNK/c-jun pathway. •Rare myocardial biopsy of patients with CHD were collected. •Both silence and overexpression of miR-138 were implemented. •Various methods were used to detect cell function. -- Abstract: Cardiomyocytes experience a series of complex endogenous regulatory mechanisms against apoptosis induced by chronic hypoxia. MicroRNAs are a class of endogenous small non-coding RNAs that regulate cellular pathophysiological processes. Recently, microRNA-138 (miR-138) has been found related to hypoxia, and beneficial for cell proliferation. Therefore, we intend to study the role of miR-138 in hypoxic cardiomyocytes and the main mechanism. Myocardial samples of patients with congenital heart disease (CHD) were collected to test miR-138 expression. Agomir or antagomir of miR-138 was transfected into H9C2 cells to investigate its effect on cell apoptosis. Higher miR-138 expression was observed in patients with cyanotic CHD, and its expression gradually increased with prolonged hypoxia time in H9C2 cells. Using MTT and LDH assays, cell growth was significantly greater in the agomir group than in the negative control (NC) group, while antagomir decreased cell survival. Dual luciferase reporter gene and Western-blot results confirmed MLK3 was a direct target of miR-138. It was found that miR-138 attenuated hypoxia-induced apoptosis using TUNEL, Hoechst staining and Annexin V-PE/7-AAD flow cytometry analysis. We further detected expression of apoptosis-related proteins. In the agomir group, the level of pro-apoptotic proteins such as cleaved-caspase-3, cleaved-PARP and Bad significantly reduced, while Bcl-2 and Bcl-2/Bax ratio increased. Opposite changes were observed in the antagomir group. Downstream targets of MLK3, JNK and c-jun, were also suppressed by miR-138. Our study demonstrates that up-regulation of miR-138 plays

  1. Modelling the mechanism of GR/c-Jun/Erg crosstalk in apoptosis of acute lymphoblastic leukaemia

    Directory of Open Access Journals (Sweden)

    Daphne eChen

    2012-11-01

    Full Text Available Acute lymphoblastic leukaemia (ALL is one of the most common forms of malignancy that occurs in lymphoid progenitor cells, particularly in children. Synthetic steroid hormones glucocorticoids (GCs are widely used as part of the ALL treatment regimens due to their apoptotic function, but their use also brings about various side effects and drug resistance. The identification of the molecular differences between the GCs responsive and resistant cells therefore are essential to decipher such complexity and can be used to improve therapy. However, the emerging picture is complicated as the activities of genes and proteins involved are controlled by multiple factors. By adapting the systems biology framework to address this issue, we here integrated the available knowledge together with experimental data via the building of a series of mathematical models. This rationale enabled us to unravel molecular interactions involving c-Jun in GC induced apoptosis and identify Erg as determinant for GC resistance. The results revealed an alternative potential mechanism where c-Jun may be an indirect GR target that is controlled via an upstream repressor protein. The models also highlight the importance of Erg for GR function, particularly in GC sensitive C7 cells where Erg directly regulates GR in agreement with our previous experimental results. Our models describe potential GR-controlled molecular mechanisms of c-Jun/Bim and Erg regulation. We also demonstrate the importance of using a systematic approach to translate human disease processes into computational models in order to derive information-driven new hypotheses.

  2. Nerve growth factor downregulates c-jun mRNA and Caspase-3 in striate cortex of rats after transient global cerebral ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Dacheng Jin; Tiemin Wang; Xiubin Fang

    2006-01-01

    BACKGROUND: Immediate early gene (LEG) c-jun is a sensitive marker for functional status of nerve cells.Caspase-3 is a cysteine protease,which is a critical regulator of apoptosis. The effect of exogenous nerve growth factor (NGF) on the expression of c-jun Mrna and Caspase-3 protein in striate cortex of rats with transient global cerebral ischemia/reperfusion (IR) is unclear.OBJECTIVE: To study the protective effect of exogenous NGF on the brain of rats with transient global cerebral IR and its effecting pathway by observing the expression of c-jun Mrna and Caspase-3 protein.DESIGN: Randomized controlled animal trial.SETTING: Department of Neural Anatomy, Institute of Brain,China Medical University.MATERTALS:Eighteen healthy male SD rats of clean grade, aged 1 to 3 months, with body mass of 250 to 300 g, were involved in this study. NGF was provided by Dalian Svate Pharmaceutical Co.,Ltd, c-jun in situ hybridization detection kit, Caspase-3 antibody and SABC kit were purchased from Boster Biotechnology Co. ,Ltd.METHODS: This trial was carried out in the Department of Neural Anatomy, Institute of Brain, China Medical University during September 2003 to April 2005. ①Experimental animals were randomized into three groups with 6 in each: sham-operation group,IR group and NGF group. ②After the rats were anesthetized,the bilateral common carotid arteries and right external carotid arteries of rats were bluntly dissected and bilateral common carotid arteries were clamped for 30 minutes with bulldog clamps. Reperfusion began after buldog clamps were removed. Normal saline of 1mL and NGF (1×106 U/L) of 1 Ml was injected into the common carotid artery of rats via right external carotid arteries in the IR group and NGF group respectively.The injection was conducted within 30 minutes, and then the right external carotid arteries were ligated. In the sham-operation group, occlusion of bilateral common carotid arteries and administration of drugs were phosphate buffer

  3. Correlation between spina bifida manifesta in fetal rats and c-Jun N-terminal kinase signaling

    Institute of Scientific and Technical Information of China (English)

    Yinghuan Ma; Yongxin Bao; Chenghao Li; Fubin Jiao; Hongjie Xin; Zhengwei Yuan

    2012-01-01

    Fetal rat models with neural tube defects were established by injection with retinoic acid at 10 days after conception. The immunofluorescence assay and western blot analysis showed that the number of caspase-3 positive cells in myeloid tissues for spina bifida manifesta was increased. There was also increased phosphorylation of c-Jun N-terminal kinase, a member of the mitogen activated protein kinase family. The c-Jun N-terminal kinase phosphorylation level was positively correlated with caspase-3 expression in myeloid tissues for spina bifida manifesta. Experimental findings indicate that abnormal apoptosis is involved in retinoic acid-induced dominant spina bifida formation in fetal rats, and may be associated with the c-Jun N-terminal kinase signal transduction pathway.

  4. Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase pathway

    International Nuclear Information System (INIS)

    Highlights: ► The expression levels of Bex2 markedly increased in glioma tissues. ► Bex2 over-expression promoted cell proliferation, while its down-regulation inhibited cell growth. ► Bex2 down-regulation promoted cell apoptosis via JNK/c-Jun signaling pathway. -- Abstract: The function of Bex2, a member of the Brain Expressed X-linked gene family, in glioma is controversial and its mechanism is largely unknown. We report here that Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase (JNK) pathway. The expression level of Bex2 is markedly increased in glioma tissues. We observed that Bex2 over-expression promotes cell proliferation, while down-regulation of Bex2 inhibits cell growth. Furthermore, Bex2 down-regulation promotes cell apoptosis and activates the JNK pathway; these effects were abolished by administration of the JNK specific inhibitor, (SP600125). Thus, Bex2 may be an important player during the development of glioma.

  5. Gene expression

    International Nuclear Information System (INIS)

    We prepared probes for isolating functional pieces of the metallothionein locus. The probes enabled a variety of experiments, eventually revealing two mechanisms for metallothionein gene expression, the order of the DNA coding units at the locus, and the location of the gene site in its chromosome. Once the switch regulating metallothionein synthesis was located, it could be joined by recombinant DNA methods to other, unrelated genes, then reintroduced into cells by gene-transfer techniques. The expression of these recombinant genes could then be induced by exposing the cells to Zn2+ or Cd2+. We would thus take advantage of the clearly defined switching properties of the metallothionein gene to manipulate the expression of other, perhaps normally constitutive, genes. Already, despite an incomplete understanding of how the regulatory switch of the metallothionein locus operates, such experiments have been performed successfully

  6. The AP-1 Transcription Factor c-Jun Prevents Stress-Imposed Maladaptive Remodeling of the Heart

    Science.gov (United States)

    Windak, Renata; Müller, Julius; Felley, Allison; Akhmedov, Alexander; Wagner, Erwin F.; Pedrazzini, Thierry; Sumara, Grzegorz; Ricci, Romeo

    2013-01-01

    Systemic hypertension increases cardiac workload and subsequently induces signaling networks in heart that underlie myocyte growth (hypertrophic response) through expansion of sarcomeres with the aim to increase contractility. However, conditions of increased workload can induce both adaptive and maladaptive growth of heart muscle. Previous studies implicate two members of the AP-1 transcription factor family, junD and fra-1, in regulation of heart growth during hypertrophic response. In this study, we investigate the function of the AP-1 transcription factors, c-jun and c-fos, in heart growth. Using pressure overload-induced cardiac hypertrophy in mice and targeted deletion of Jun or Fos in cardiomyocytes, we show that c-jun is required for adaptive cardiac hypertrophy, while c-fos is dispensable in this context. c-jun promotes expression of sarcomere proteins and suppresses expression of extracellular matrix proteins. Capacity of cardiac muscle to contract depends on organization of principal thick and thin filaments, myosin and actin, within the sarcomere. In line with decreased expression of sarcomere-associated proteins, Jun-deficient cardiomyocytes present disarrangement of filaments in sarcomeres and actin cytoskeleton disorganization. Moreover, Jun-deficient hearts subjected to pressure overload display pronounced fibrosis and increased myocyte apoptosis finally resulting in dilated cardiomyopathy. In conclusion, c-jun but not c-fos is required to induce a transcriptional program aimed at adapting heart growth upon increased workload. PMID:24039904

  7. RhoA regulates invasion of glioma cells via the c-Jun NH2-terminal kinase pathway under hypoxia.

    Science.gov (United States)

    Tong, Jiao Jian; Yan, Zhang; Jian, Ren; Tao, Huang; Hui, Ouyang Tao; Jian, Chen

    2012-09-01

    The purpose of this study was to investigate the mechanism of glioma cell invasion in hypoxic conditions. We demonstrated that hypoxia increased cell invasion, matrix metalloproteinase-2 (MMP2) activity and time-dependent expression of hypoxia inducible factor-1α (HIF-1α) in human glioma cells. These data suggest that MMP2 may play a significant role in tumor invasion in hypoxic conditions. We investigated the mechanisms involved in the increased MMP2 activity and cell invasion in hypoxic conditions. Increased expression of phospho-Jun NH2-terminal kinase (p-JNK) and phospho-c-Jun (p-c-Jun) in glioma cells induced by hypoxia was detected. Furthermore, this effect may be reduced by inhibiting the JNK signaling pathway. We found that inhibition of RhoA geranylgeranylation by geranylgeranyltransferase inhibitor-2147 (GGTI-2147) or knockdown of RhoA by siRNA against RhoA reduced the expression of p-JNK and p-c-Jun, and decreased MMP2 activity and glioma cell invasion in hypoxic conditions. These data suggest a link among RhoA, JNK, c-Jun and MMP2 activity that is functionally involved in the increased glioma cell invasion induced by hypoxia. PMID:23741249

  8. The transcriptional repressor ZBP-89 and the lack of Sp1/Sp3, c-Jun, and Stat3 are important for the down-regulation of the vimentin gene during C2C12 myogenesis

    OpenAIRE

    Salmon, Morgan; Zehner, Zendra E.

    2009-01-01

    Currently, considerable information is available about how muscle-specific genes are activated during myogenesis, yet little is known about how non-muscle genes are down-regulated. The intermediate filament protein vimentin is known to be “turned off” during myogenesis to be replaced by desmin, the muscle-specific intermediate filament protein. Here, we demonstrate that vimentin down-regulation is the result of the combined effect of several transcription factors. Levels of the positive activ...

  9. Tumor suppressor BLU inhibits proliferation of nasopharyngeal carcinoma cells by regulation of cell cycle, c-Jun N-terminal kinase and the cyclin D1 promoter

    Directory of Open Access Journals (Sweden)

    Zhang Xiangning

    2012-06-01

    Full Text Available Abstract Background Tumor suppressor genes function to regulate and block tumor cell proliferation. To explore the mechanisms underlying the tumor suppression of BLU/ZMYND10 gene on a frequently lost human chromosomal region, an adenoviral vector with BLU cDNA insert was constructed. Methods BLU was re-expressed in nasopharyngeal carcinoma cells by transfection or viral infection. Clonogenic growth was assayed; cell cycle was analyzed by flow cytometry-based DNA content detection; c-Jun N-terminal kinase (JNK and cyclin D1 promoter activities were measured by reporter gene assay, and phosphorylation was measured by immunoblotting. The data for each pair of groups were compared with Student t tests. Results BLU inhibits clonogenic growth of nasopharyngeal carcinoma cells, arrests cell cycle at G1 phase, downregulates JNK and cyclin D1 promoter activities, and inhibits phosphorylation of c-Jun. Conclusions BLU inhibits growth of nasopharyngeal carcinoma cells by regulation of the JNK-cyclin D1 axis to exert tumor suppression.

  10. Function of c-Fos-like and c-Jun-like Proteins on Trichostatin A-induced G2/M Arrest in Physarum polycephalum

    Institute of Scientific and Technical Information of China (English)

    Xiao-Xue LI; Jun LU; Yan-Mei ZHAO; Bai-Qu HUANG

    2005-01-01

    The homologs of transcription factors c-Fos and c-Jun have been detected in slime mold Physarum polycephalum during progression of the synchronous cell cycle. Here we demonstrated that cFos-like and c-Jun-like proteins participated in G2/M transition by the regulation of the level of Cyclin B1 protein in P. polycephalum. The study of antibody neutralization revealed that interruption of the functions of c-Fos-like and c-Jun-like proteins resulted in G2/M transition arrest, implicating their functional roles in cell cycle control. When G2/M transition was blocked by histone deacetylase inhibitor trichostatin A, changes in c-Fos- and c-Jun-like protein levels, and hyperacetylation of c-Jun-like protein, were observed. The data suggest that in P. polycephalum, c-Fos- and c-Jun-like proteins may be the key factors in the regulation of histone acetylation-related G2/M transition, involving the coordinated expression and hyperacetylation of these proteins.

  11. Ginkgo biloba extract individually inhibits JNK activation and induces c-Jun degradation in human chondrocytes: potential therapeutics for osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Ling-Jun Ho

    Full Text Available Osteoarthritis (OA is a common joint disorder with varying degrees of inflammation. The ideal anti-OA drug should have immunomodulatory effects while at the same time having limited or no toxicity. We examined the anti-inflammatory effects of Ginkgo biloba extract (EGb in interleukin-1 (IL-1-stimulated human chondrocytes. Chondrocytes were prepared from cartilage specimens taken from patients with osteoarthritis who had received total hip or total knee replacement. The concentrations of chemokines and the degree of cell migration were determined by ELISA and chemotaxis assays, respectively. The activation of inducible nitric oxide synthase (iNOS, mitogen-activated protein kinases (MAPKs, activator protein-1 (AP-1, and nuclear factor-kappaB (NF-κB was determined by immunoblotting, immunohistochemistry, and electrophoretic mobility shift assay. We found that EGb inhibited IL-1-induced production of chemokines, which in turn resulted in attenuation of THP-1 cell migration toward EGb-treated cell culture medium. EGb also suppressed IL-1-stimulated iNOS expression and release of nitric oxide (NO. The EGb-mediated suppression of the iNOS-NO pathway correlated with the attenuation of activator protein-1 (AP-1 but not nuclear factor-kappaB (NF-κB DNA-binding activity. Of the mitogen-activated protein kinases (MAPKs, EGb inhibited only c-Jun N-terminal kinase (JNK. Unexpectedly, EGb selectively caused degradation of c-Jun protein. Further investigation revealed that EGb-mediated c-Jun degradation was preceded by ubiquitination of c-Jun and could be prevented by the proteosome inhibitor MG-132. The results imply that EGb protects against chondrocyte degeneration by inhibiting JNK activation and inducing ubiquitination-dependent c-Jun degradation. Although additional research is needed, our results suggest that EGb is a potential therapeutic agent for the treatment of OA.

  12. A feedback inhibition between miRNA-127 and TGFβ/c-Jun cascade in HCC cell migration via MMP13.

    Directory of Open Access Journals (Sweden)

    Zhihong Yang

    Full Text Available Hepatocellular carcinoma (HCC is the fifth most common cancer worldwide and is increasing in frequency in the U.S. The major reason for the low postoperative survival rate of HCC is widespread intrahepatic metastasis or invasion, and activation of TGFβ signaling is associated with the invasive phenotype. This study aims at determining the novel function of miR-127 in modulating HCC migration. Overexpression of miR-127 inhibits HCC cell migration, invasion and tumor growth in nude mice. MiR-127 directly represses matrix metalloproteinase 13 (MMP13 3'UTR activity and protein expression, and diminishes MMP13/TGFβ-induced HCC migration. In turn, TGFβ decreases miR-127 expression by enhancing c-Jun-mediated inhibition of miR-127 promoter activity. In contrast, p53 transactivates miR-127 promoter and induces miR-127 expression, which is antagonized by c-Jun. The inhibition of miR-127 by c-Jun is through TGFβ-mediated ERK and JNK pathways. The lower miR-127 expression shows a negative correlation with the higher MMP13 expression in a subset of human HCC specimens. This is the first report elucidating a feedback regulation between miR-127 and the TGFβ/c-Jun cascade in HCC migration via MMP13 that involves a crosstalk between the oncogene c-Jun and tumor suppressor p53.

  13. Tristetraprolin induces cell cycle arrest in breast tumor cells through targeting AP-1/c-Jun and NF-κB pathway.

    Science.gov (United States)

    Xu, Li; Ning, Huan; Gu, Ling; Wang, Qinghong; Lu, Wenbao; Peng, Hui; Cui, Weiguang; Ying, Baoling; Ross, Christina R; Wilson, Gerald M; Wei, Lin; Wold, William S M; Liu, Jianguo

    2015-12-01

    The main characteristic of cancers, including breast cancer, is the ability of cancer cells to proliferate uncontrollably. However, the underlying mechanisms of cancer cell proliferation, especially those regulated by the RNA binding protein tristetraprolin (TTP), are not completely understood. In this study, we found that TTP inhibits cell proliferation in vitro and suppresses tumor growth in vivo through inducing cell cycle arrest at the S phase. Our studies demonstrate that TTP inhibits c-Jun expression through the C-terminal Zn finger and therefore increases Wee1 expression, a regulatory molecule which controls cell cycle transition from the S to the G2 phase. In contrast to the well-known function of TTP in regulating mRNA stability, TTP inhibits c-Jun expression at the level of transcription by selectively blocking NF-κB p65 nuclear translocation. Reconstitution of NF-κB p65 completely abolishes the inhibition of c-Jun transcription by TTP. Moreover, reconstitution of c-Jun in TTP-expressing breast tumor cells diminishes Wee1 overexpression and promotes cell proliferation. Our results indicate that TTP suppresses c-Jun expression that results in Wee1 induction which causes cell cycle arrest at the S phase and inhibition of cell proliferation. Our study provides a new pathway for TTP function as a tumor suppressor which could be targeted in tumor treatment. PMID:26497679

  14. Influence of thermalization on A549 cells growth, c-Jun N-terminal kinase phosphorylation and expression of heat shock protein 70 in patients with lung cancer%热化联合对肺癌患者A549细胞生长、c-Jun N-末端激酶磷酸化及热休克蛋白70表达的影响

    Institute of Scientific and Technical Information of China (English)

    吴海乔; 田甜; 胡君程; 林蓁

    2015-01-01

    目的:观察热化联合对肺癌患者A549细胞生长的影响及机制探讨。方法对A549细胞分别进行单独热疗、单独化疗,热化联合干预及热化联合并SP600125干预,同时选取未做任何处理的A549细胞作为对照组。观察各组细胞增殖率、细胞侵袭力的变化。同时采用蛋白免疫印记法(Western Bolt)检测JNK磷酸化以及热休克蛋白70(HSP70)的表达。结果热化联合组的A549细胞增值率明显低于单独热疗、单独化疗和热化联合并SP600125组(P<0.05)。热化联合组JNK磷酸化表达明显高于对照组及单独化疗组(P<0.05),热化联合组HSP70表达明显低于单独热疗组(P<0.05)。热化联合干预下,p-JNK表达水平出现上升,与对照组、单独热疗组和单独化疗组相比,差异均具有统计学意义(P<0.05);热化联合并SP600125组的p-JNK的表达水平较热化联合组显著下降(P<0.05)。结论热化联合抑制A549细胞增殖的效果优于单独热疗或单独化疗,作用机制可能与激活JNK信号通路或抑制HSP70表达有关。%Objective To investigate the effect of thermalization on A549 cells growth in patients with lung cancer and its mechanism. Methods A549 cells were given thermotherapy alone (group A), chemotherapy alone (group B), and thermotherapy combined with chemotherapy (group C), thermotherapy combined with chemotherapy and SP600125 intervention (group D). Untreated A549 cells were selected as the control group. The changes of cell in-vasion, proliferation rate of the cells in each group were observed. Phosphorylated JNK and expression of heat shock protein 70 (HSP70) were detected by Western blot. Results A549 cell proliferation rate of group C was significantly lower than that of group A, group B and group D (P<0.05). The expression of group C was significantly higher than that of control group and group B (P<0.05), and the expression of HSP70 in group C was significantly lower than that in group A

  15. Rs6295 promoter variants of the serotonin type 1A receptor are differentially activated by c-Jun in vitro and correlate to transcript levels in human epileptic brain tissue.

    Science.gov (United States)

    Pernhorst, Katharina; van Loo, Karen M J; von Lehe, Marec; Priebe, Lutz; Cichon, Sven; Herms, Stefan; Hoffmann, Per; Helmstaedter, Christoph; Sander, Thomas; Schoch, Susanne; Becker, Albert J

    2013-03-01

    Many brain disorders, including epilepsy, migraine and depression, manifest with episodic symptoms that may last for various time intervals. Transient alterations of neuronal function such as related to serotonin homeostasis generally underlie this phenomenon. Several nucleotide polymorphisms (SNPs) in gene promoters associated with these diseases have been described. For obvious reasons, their regulatory roles on gene expression particularly in human brain tissue remain largely enigmatic. The rs6295 G-/C-allelic variant is located in the promoter region of the human HTR1a gene, encoding the G-protein-coupled receptor for 5-hydroxytryptamine (5HT1AR). In addition to reported transcriptional repressor binding, our bioinformatic analyses predicted a reduced binding affinity of the transcription factor (TF) c-Jun for the G-allele. In vitro luciferase transfection assays revealed c-Jun to (a) activate the rs6295 C- significantly stronger than the G-allelic variant and (b) antagonize efficiently the repressive effect of Hes5 on the promoter. The G-allele of rs6295 is known to be associated with aspects of major depression and migraine. In order to address a potential role of rs6295 variants in human brain tissue, we have isolated DNA and mRNA from fresh frozen hippocampal tissue of pharmacoresistant temporal lobe epilepsy (TLE) patients (n=140) after epilepsy surgery for seizure control. We carried out SNP genotyping studies and mRNA analyses in order to determine HTR1a mRNA expression in human hippocampal samples stratified according to the rs6295 allelic variant. The mRNA expression of HTR1a was significantly more abundant in hippocampal mRNA of TLE patients homozygous for the rs6295 C-allele as compared to those with the GG-genotype. These data may point to a novel, i.e., rs6295 allelic variant and c-Jun dependent transcriptional 5HT1AR 'receptoropathy'. PMID:23333373

  16. Epstein-Barr virus-encoded latent membrane protein 1 modulates cyclin D1 by c-Jun/Jun B heterodimers

    Institute of Scientific and Technical Information of China (English)

    SONG; Xin; TAO; Yongguang; ZENG; Liang; YANG; Jing; TANG; F

    2005-01-01

    In our recent studies, we found that LMP1 encoded by Epstein-Barr virus could accelerate the formation of active c-Jun/Jun B heterodimer. We studied the regulation of cyclinD1 by c-Jun/Jun B heterodimers by laser scanning confocal influorescence microscopy, Western blot, luciferase activity assay, super-EMSA and flow cytometry in the Tet-on-LMP1 HNE2 cell line, in which LMP1 expression was regulated by Tet-on system. c-Jun/Jun B heterodimers induced by LMP1 could up regulate cyclin D1 promoter activity and expression. Overexpression of cyclinD1 accelerated the progression of cell cycle.

  17. c-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer

    NARCIS (Netherlands)

    Vleugel, M.M.; Greijer, A.E.; Bos, R.; Wall, E. van der; Diest, P.J. van

    2006-01-01

    c-Jun is a component of the transcription factor activator protein 1 (AP-1), which binds and activates transcription at TRE/AP-1 elements. Extra- or intracellular signals, including growth factors, transforming oncoproteins, and UV irradiation, stimulate phosphorylation of c-Jun at serine 63/73 and

  18. Myocardial protective effects of a c-Jun N-terminal kinase inhibitor in rats with brain death.

    Science.gov (United States)

    Guo, Wenzhi; Cao, Shengli; Yan, Bing; Zhang, Gong; Li, Jie; Zhao, Yongfu; Zhang, Shuijun

    2016-07-01

    To investigate whether the mitochondrial apoptotic pathway mediates myocardial cell injuries in rats under brain death (BD), and observe the effects and mechanisms of the c-Jun N-terminal kinase (JNK) inhibitor SP600125 on cell death in the heart. Forty healthy male Sprague-Dawley (SD) rats were randomized into four groups: sham group (dural external catheter with no BD); BD group (maintain the induced BD state for 6 hrs); BD + SP600125 group (intraperitoneal injection of SP600125 10 mg/kg 1 hr before inducing BD, and maintain BD for 6 hrs); and BD + Dimethyl Sulphoxide (DMSO) group (intraperitoneal injection of DMSO 1 hr before inducing BD, and maintain BD for 6 hrs). Real-time quantitative PCR was used to evaluate mRNA levels of Cyt-c and caspase-3. Western blot analysis was performed to examine the levels of mitochondrial apoptosis-related proteins p-JNK, Bcl-2, Bax, Cyt-c and Caspase-3. TUNEL assay was employed to evaluate myocardial apoptosis. Compared with the sham group, the BD group exhibited increased mitochondrial apoptosis-related gene expression, accompanied by the elevation of p-JNK expression and myocardial apoptosis. As the vehicle control, DMSO had no treatment effects. The BD + SP600125 group had decreased p-JNK expression, and reduced mitochondrial apoptosis-related gene expression. Furthermore, the apoptosis rate of myocardial cells was reduced. The JNK inhibitor SP600125 could protect myocardial cells under BD through the inhibition of mitochondrial apoptosis-related pathways. PMID:27072084

  19. Influence of X-rays on early response gene expression in rat astrocytes and brain tumour cell lines

    International Nuclear Information System (INIS)

    The effects of ionizing radiation on c-fos, c-jun and jun-B mRNA levels were determined in cultures of rat perinatal type 1 astrocytes and two rat brain tumour cell lines, 175A and 9L. In astrocyte cultures X-ray doses as low as 1 Gy induced the expression of c-fos and jun-B but had essentially no effect on c-jun. The maximum increase in expression was found 1 h after irradiation, which then rapidly returned to control levels. These findings suggest that astrocytes may play a role in mediating the radiation response of the central nervous system via X-ray-induced changes in gene expression. In contrast, doses of up to 20 Gy had no effect on c-fos, c-jun and jun-B mRNA levels in the two brain tumour cell lines. In addition, whereas 12-0-tetradecanoylphorbol-13-acetate induced the expression of these genes in astrocytes, it had little or no effect on fos or jun expression in 9L or 175A cells. These results suggest that the signal transduction pathways mediating radiation-induced genes expression may be different in normal astrocytes and brain tumour cells. (author)

  20. Role of Muscle c-Jun NH2-Terminal Kinase 1 in Obesity-Induced Insulin Resistance▿

    OpenAIRE

    Sabio, Guadalupe; Kennedy, Norman J.; Cavanagh-Kyros, Julie; Jung, Dae Young; Ko, Hwi Jin; Ong, Helena; Barrett, Tamera; Kim, Jason K.; Davis, Roger J

    2009-01-01

    Obesity caused by feeding of a high-fat diet (HFD) is associated with an increased activation of c-Jun NH2-terminal kinase 1 (JNK1). Activated JNK1 is implicated in the mechanism of obesity-induced insulin resistance and the development of metabolic syndrome and type 2 diabetes. Significantly, Jnk1−/− mice are protected against HFD-induced obesity and insulin resistance. Here we show that an ablation of the Jnk1 gene in skeletal muscle does not influence HFD-induced obesity. However, muscle-s...

  1. Melanocortin-4 receptor activation inhibits c-Jun N-terminal kinase activity and promotes insulin signaling

    OpenAIRE

    Chai, Biaoxin; Li, Ji-Yao; Zhang, Weizhen; Wang, Hui; Mulholland, Michael W.

    2009-01-01

    The melanocortin system is crucial to regulation of energy homeostasis. The melanocortin receptor type 4 (MC4R) modulates insulin signaling via effects on c-Jun N-terminal kinase (JNK). The melanocortin agonist NDP-MSH dose-dependently inhibited JNK activity in HEK293 cells stably expressing the human MC4R; effects were reversed by melanocortin receptor antagonist. NDP-MSH time- and dose-dependently inhibited IRS-1ser307 phosphorylation, effects also reversed by a specific melanocortin recept...

  2. Bile acids-mediated overexpression of MUC4 via FAK-dependent c-Jun activation in pancreatic cancer.

    Science.gov (United States)

    Joshi, Suhasini; Cruz, Eric; Rachagani, Satyanarayana; Guha, Sushovan; Brand, Randall E; Ponnusamy, Moorthy P; Kumar, Sushil; Batra, Surinder K

    2016-08-01

    The majority of pancreatic cancer (PC) patients are clinically presented with obstructive jaundice with elevated levels of circulatory bilirubin and alkaline phosphatases. In the current study, we examined the implications of bile acids (BA), an important component of bile, on the pathophysiology of PC and investigated their mechanistic association in tumor-promoting functions. Integration of results from PC patient samples and autochthonous mouse models showed an elevated levels of BA (p < 0.05) in serum samples compared to healthy controls. Similarly, an elevated BA levels was observed in pancreatic juice derived from PC patients (p < 0.05) than non-pancreatic non-healthy (NPNH) controls, further establishing the clinical association of BA with the pathogenesis of PC. The tumor-promoting functions of BA were established by observed transcriptional upregulation of oncogenic MUC4 expression. Luciferase reporter assay revealed distal MUC4 promoter as the primary responsive site to BA. In silico analysis recognized two c-Jun binding sites at MUC4 distal promoter, which was biochemically established using ChIP assay. Interestingly, BA treatment led to an increased transcription and activation of c-Jun in a FAK-dependent manner. Additionally, BA receptor, namely FXR, which is also upregulated at transcriptional level in PC patient samples, was demonstrated as an upstream molecule in BA-mediated FAK activation, plausibly by regulating Src activation. Altogether, these results demonstrate that elevated levels of BA increase the tumorigenic potential of PC cells by inducing FXR/FAK/c-Jun axis to upregulate MUC4 expression, which is overexpressed in pancreatic tumors and is known to be associated with progression and metastasis of PC. PMID:27185392

  3. EGCG-targeted p57/KIP2 reduces tumorigenicity of oral carcinoma cells: Role of c-Jun N-terminal kinase

    International Nuclear Information System (INIS)

    The green tea polyphenol epigallocatechin-3-gallate (EGCG) regulates gene expression differentially in tumor and normal cells. In normal human primary epidermal keratinocytes (NHEK), one of the key mediators of EGCG action is p57/KIP2, a cyclin-dependent kinase (CDK) inhibitor. EGCG potently induces p57 in NHEK, but not in epithelial cancer cells. In humans, reduced expression of p57 often is associated with advanced tumors, and tumor cells with inactivated p57 undergo apoptosis when exposed to EGCG. The mechanism of p57 induction by EGCG is not well understood. Here, we show that in NHEK, EGCG-induces p57 via the p38 mitogen-activated protein kinase (MAPK) signaling pathway. In p57-negative tumor cells, JNK signaling mediates EGCG-induced apoptosis, and exogenous expression of p57 suppresses EGCG-induced apoptosis via inhibition of c-Jun N-terminal kinase (JNK). We also found that restoration of p57 expression in tumor cells significantly reduced tumorigenicity in athymic mice. These results suggest that p57 expression may be an useful indicator for the clinical course of cancers, and could be potentially useful as a target for cancer therapies

  4. The leucine zipper domains of the transcription factors GCN4 and c-Jun have ribonuclease activity.

    Directory of Open Access Journals (Sweden)

    Yaroslav Nikolaev

    Full Text Available Basic-region leucine zipper (bZIP proteins are one of the largest transcription factor families that regulate a wide range of cellular functions. Owing to the stability of their coiled coil structure leucine zipper (LZ domains of bZIP factors are widely employed as dimerization motifs in protein engineering studies. In the course of one such study, the X-ray structure of the retro-version of the LZ moiety of yeast transcriptional activator GCN4 suggested that this retro-LZ may have ribonuclease activity. Here we show that not only the retro-LZ but also the authentic LZ of GCN4 has weak but distinct ribonuclease activity. The observed cleavage of RNA is unspecific, it is not suppressed by the ribonuclease A inhibitor RNasin and involves the breakage of 3',5'-phosphodiester bonds with formation of 2',3'-cyclic phosphates as the final products as demonstrated by HPLC/electrospray ionization mass spectrometry. Several mutants of the GCN4 leucine zipper are catalytically inactive, providing important negative controls and unequivocally associating the enzymatic activity with the peptide under study. The leucine zipper moiety of the human factor c-Jun as well as the entire c-Jun protein are also shown to catalyze degradation of RNA. The presented data, which was obtained in the test-tube experiments, adds GCN4 and c-Jun to the pool of proteins with multiple functions (also known as moonlighting proteins. If expressed in vivo, the endoribonuclease activity of these bZIP-containing factors may represent a direct coupling between transcription activation and controlled RNA turnover. As an additional result of this work, the retro-leucine zipper of GCN4 can be added to the list of functional retro-peptides.

  5. Expression Changes of Early Response Genes in Lung Due to High Volume Ventilation

    Institute of Scientific and Technical Information of China (English)

    WANG Yuelan; YAO Shanglong; XIONG Ping

    2005-01-01

    Summary: The expression changes of early response genes due to ventilation with high volume in adult rats in vivo were observed. Forty SD male rats were randomly divided into control and 30, 60, 90 and 120 min ventilation groups, respectively (n=8 in each group). The animals were ventilated with tidal volume of 42 ml/kg and a PEEP level of 0 cmH2O at a rate of 40 breaths per minute in room air with a ventilator was given to the small animals. The expression of Egr-1, C-jun and IL-1β mRNA and proteins was detected by RT-PCR and immunohistochemical technique, respectively. The pathological changes in lung tissues were examined by HE staining. The results indicated that the expression of Egr-1, C-jun and IL-1β mRNA was detectable at 30th min after overventilation, but there was no significant difference in comparison with that in control group until overventilation for 60 min. However, at 90 and 120 min there was a significent increase as compared with 30 min or control group (P<0.05). The expression of Egr-1, C-jun and IL-1β deteced by immunohistochemical assay also showed a similar tendency of the gradual increase. In the 120 min ventilation group, the expression intensity of Egr-1, C-jun and IL-1β proteins in lung cells was the strongest and the nuclear translocation was increased markedly in comparison with any other groups (P<0.05). HE staining suggested that the degree of lung injury was aggravated gradually with the ventialtion going on and had a similar tendency to the expression of these early response genes and proteins. The current data suggested that overventilation activated and upregulated the expression of early response genes and the expression of these genes may be taken as the early signal to predict the onset and degree of lung injury. These results may demonstrated partially that the expression of early response genes induced by the mechanical stretch is associated with biochamic lung injury.

  6. Arsenic trioxide induces apoptosis in human platelets via C-Jun NH2-terminal kinase activation.

    Directory of Open Access Journals (Sweden)

    Yicun Wu

    Full Text Available Arsenic trioxide (ATO, one of the oldest drugs in both Western and traditional Chinese medicine, has become an effective anticancer drug, especially in the treatment of acute promyelocytic leukemia (APL. However, thrombocytopenia occurred in most of ATO-treated patients with APL or other malignant diseases, and the pathogenesis remains unclear. Here we show that ATO dose-dependently induces depolarization of mitochondrial inner transmembrane potential (ΔΨm, up-regulation of Bax and down-regulation of Bcl-2 and Bcl-XL, caspase-3 activation, and phosphotidylserine (PS exposure in platelets. ATO did not induce surface expression of P-selectin and PAC-1 binding, whereas, obviously reduced collagen, ADP, and thrombin induced platelet aggregation. ATO dose-dependently induced c-Jun NH2-terminal kinase (JNK activation, and JNK specific inhibitor dicumarol obviously reduced ATO-induced ΔΨm depolarization in platelets. Clinical therapeutic dosage of ATO was intraperitoneally injected into C57 mice, and the numbers of circulating platelets were significantly reduced after five days of continuous injection. The data demonstrate that ATO induces caspase-dependent apoptosis via JNK activation in platelets. ATO does not incur platelet activation, whereas, it not only impairs platelet function but also reduces circulating platelets in vivo, suggesting the possible pathogenesis of thrombocytopenia in patients treated with ATO.

  7. Arsenic trioxide induces apoptosis in human platelets via C-Jun NH2-terminal kinase activation.

    Science.gov (United States)

    Wu, Yicun; Dai, Jin; Zhang, Weilin; Yan, Rong; Zhang, Yiwen; Ruan, Changgeng; Dai, Kesheng

    2014-01-01

    Arsenic trioxide (ATO), one of the oldest drugs in both Western and traditional Chinese medicine, has become an effective anticancer drug, especially in the treatment of acute promyelocytic leukemia (APL). However, thrombocytopenia occurred in most of ATO-treated patients with APL or other malignant diseases, and the pathogenesis remains unclear. Here we show that ATO dose-dependently induces depolarization of mitochondrial inner transmembrane potential (ΔΨm), up-regulation of Bax and down-regulation of Bcl-2 and Bcl-XL, caspase-3 activation, and phosphotidylserine (PS) exposure in platelets. ATO did not induce surface expression of P-selectin and PAC-1 binding, whereas, obviously reduced collagen, ADP, and thrombin induced platelet aggregation. ATO dose-dependently induced c-Jun NH2-terminal kinase (JNK) activation, and JNK specific inhibitor dicumarol obviously reduced ATO-induced ΔΨm depolarization in platelets. Clinical therapeutic dosage of ATO was intraperitoneally injected into C57 mice, and the numbers of circulating platelets were significantly reduced after five days of continuous injection. The data demonstrate that ATO induces caspase-dependent apoptosis via JNK activation in platelets. ATO does not incur platelet activation, whereas, it not only impairs platelet function but also reduces circulating platelets in vivo, suggesting the possible pathogenesis of thrombocytopenia in patients treated with ATO. PMID:24466103

  8. Induction of heat shock protein 70 (Hsp70 prevents neuregulin-induced demyelination by enhancing the proteasomal clearance of c-Jun

    Directory of Open Access Journals (Sweden)

    Rick T Dobrowsky

    2012-12-01

    Full Text Available Modulating molecular chaperones is emerging as an attractive approach to treat neurodegenerative diseases associated with protein aggregation, DPN (diabetic peripheral neuropathy and possibly, demyelinating neuropathies. KU-32 [N-(7-((2R,3R,4S,5R-3,4-dihydroxy-5-methoxy-6,6-dimethyl-tetrahydro-2H-pyran-2-yloxy-8-methyl-2-oxo-2H-chromen-3-ylacetamide] is a small molecule inhibitor of Hsp90 (heat shock protein 90 and reverses sensory deficits associated with myelinated fibre dysfunction in DPN. Additionally, KU-32 prevented the loss of myelinated internodes induced by treating myelinated SC (Schwann cell-DRG (dorsal root ganglia sensory neuron co-cultures with NRG1 (neuregulin-1 Type 1. Since KU-32 decreased NRG1-induced demyelination in an Hsp70-dependent manner, the goal of the current study was to clarify how Hsp70 may be mechanistically linked to preventing demyelination. The activation of p42/p44 MAPK (mitogen-activated protein kinase and induction of the transcription factor c-Jun serve as negative regulators of myelination. NRG1 activated MAPK, induced c-Jun expression and promoted a loss of myelin segments in DRG explants isolated from both WT (wild-type and Hsp70 KO (knockout mice. Although KU-32 did not block the activation of MAPK, it blocked c-Jun induction and protected against a loss of myelinated segments in WT mice. In contrast, KU-32 did not prevent the NRG1-dependent induction of c-Jun and loss of myelin segments in explants from Hsp70 KO mice. Overexpression of Hsp70 in myelinated DRG explants prepared from WT or Hsp70 KO mice was sufficient to block the induction of c-Jun and the loss of myelin segments induced by NRG1. Lastly, inhibiting the proteasome prevented KU-32 from decreasing c-Jun levels. Collectively, these data support that Hsp70 induction is sufficient to prevent NRG1-induced demyelination by enhancing the proteasomal degradation of c-Jun.

  9. The role of mitogen-activated protein kinases and sterol receptor coactivator-1 in TGF-β-regulated expression of genes implicated in macrophage cholesterol uptake

    Science.gov (United States)

    Salter, Rebecca C.; Foka, Pelagia; Davies, Thomas S.; Gallagher, Hayley; Michael, Daryn R.; Ashlin, Tim G.; Ramji, Dipak P.

    2016-01-01

    The anti-atherogenic cytokine TGF-β inhibits macrophage foam cell formation by suppressing the expression of key genes implicated in the uptake of modified lipoproteins. We have previously shown a critical role for p38 MAPK and JNK in the TGF-β-mediated regulation of apolipoprotein E expression in human monocytes. However, the roles of these two MAPK pathways in the control of expression of key genes involved in the uptake of modified lipoproteins in human macrophages is poorly understood and formed the focus of this study. TGF-β activated both p38 MAPK and JNK, and knockdown of p38 MAPK or c-Jun, a key downstream target of JNK action, demonstrated their requirement in the TGF-β-inhibited expression of several key genes implicated in macrophage lipoprotein uptake. The potential role of c-Jun and specific co-activators in the action of TGF-β was investigated further by studies on the lipoprotein lipase gene. c-Jun did not directly interact with the minimal promoter region containing the TGF-β response elements and a combination of transient transfection and knock down assays revealed an important role for SRC-1. These studies provide novel insights into the mechanisms underlying the TGF-β-mediated inhibition of macrophage gene expression associated with the control of cholesterol homeostasis. PMID:27687241

  10. Cyclophosphamide alters the gene expression profile in patients treated with high doses prior to stem cell transplantation.

    Directory of Open Access Journals (Sweden)

    Ibrahim El-Serafi

    Full Text Available BACKGROUND: Hematopoietic stem cell transplantation is a curative treatment for several haematological malignancies. However, treatment related morbidity and mortality still is a limiting factor. Cyclophosphamide is widely used in condition regimens either in combination with other chemotherapy or with total body irradiation. METHODS: We present the gene expression profile during cyclophosphamide treatment in 11 patients conditioned with cyclophosphamide for 2 days followed by total body irradiation prior to hematopoietic stem cell transplantation. 299 genes were identified as specific for cyclophosphamide treatment and were arranged into 4 clusters highly down-regulated genes, highly up-regulated genes, early up-regulated but later normalized genes and moderately up-regulated genes. RESULTS: Cyclophosphamide treatment down-regulated expression of several genes mapped to immune/autoimmune activation and graft rejection including CD3, CD28, CTLA4, MHC II, PRF1, GZMB and IL-2R, and up-regulated immune-related receptor genes, e.g. IL1R2, IL18R1, and FLT3. Moreover, a high and significant expression of ANGPTL1 and c-JUN genes was observed independent of cyclophosphamide treatment. CONCLUSION: This is the first investigation to provide significant information about alterations in gene expression following cyclophosphamide treatment that may increase our understanding of the cyclophosphamide mechanism of action and hence, in part, avoid its toxicity. Furthermore, ANGPTL1 remained highly expressed throughout the treatment and, in contrast to several other alkylating agents, cyclophosphamide did not influence c-JUN expression.

  11. Constitutive hypophosphorylation of extracellular signal-regulated kinases-1/2 and down-regulation of c-Jun in human gastric adenocarcinoma

    International Nuclear Information System (INIS)

    Hyperphosphorylation of extracellular signal-regulated protein kinases-1/2 (ERK1/2) is known to promote cancer cell proliferation. We therefore investigated the constitutive phosphorylation levels of ERK1/2 and the expression of its downstream targets c-Fos, c-Jun, and cyclooxygenase-2 (COX-2) in biopsied human gastric cancer tissues. Results showed that ERK1/2 phosphorylation and c-Jun expression were significantly lowered in gastric cancer compared with the non-cancer adjacent tissues. The expression of c-Fos, however, was not altered while COX-2 was significantly up-regulated. To conclude, we demonstrate that hypophosphorylation of ERK1/2 may occur in gastric cancer. Such discovery may have implication in the application of pathway-directed therapy for this malignant disease

  12. c-Jun N-Terminal Phosphorylation: Biomarker for Cellular Stress Rather than Cell Death in the Injured Cochlea.

    Science.gov (United States)

    Anttonen, Tommi; Herranen, Anni; Virkkala, Jussi; Kirjavainen, Anna; Elomaa, Pinja; Laos, Maarja; Liang, Xingqun; Ylikoski, Jukka; Behrens, Axel; Pirvola, Ulla

    2016-01-01

    Prevention of auditory hair cell death offers therapeutic potential to rescue hearing. Pharmacological blockade of JNK/c-Jun signaling attenuates injury-induced hair cell loss, but with unsolved mechanisms. We have characterized the c-Jun stress response in the mouse cochlea challenged with acoustic overstimulation and ototoxins, by studying the dynamics of c-Jun N-terminal phosphorylation. It occurred acutely in glial-like supporting cells, inner hair cells, and the cells of the cochlear ion trafficking route, and was rapidly downregulated after exposures. Notably, death-prone outer hair cells lacked c-Jun phosphorylation. As phosphorylation was triggered also by nontraumatic noise levels and none of the cells showing this activation were lost, c-Jun phosphorylation is a biomarker for cochlear stress rather than an indicator of a death-prone fate of hair cells. Preconditioning with a mild noise exposure before a stronger traumatizing noise exposure attenuated the cochlear c-Jun stress response, suggesting that the known protective effect of sound preconditioning on hearing is linked to suppression of c-Jun activation. Finally, mice with mutations in the c-Jun N-terminal phosphoacceptor sites showed partial, but significant, hair cell protection. These data identify the c-Jun stress response as a paracrine mechanism that mediates outer hair cell death. PMID:27257624

  13. DNA Damage, Apoptosis and C-myc, C-fos, and C-jun Overexpression Induced by Selenium in Rat Hepatocytes

    Institute of Scientific and Technical Information of China (English)

    RI-AN YU; CHENG-FENG YANG; XUE-MIN CHEN

    2006-01-01

    Objective To study the effects of selenium on DNA damage, apoptosis and c-myc, c-fos, and c-jun expression in rat hepatocytes. Methods Sodium selenite at the doses of 5, 10, and 20 μmol/kg was given to rats by i.p. and there were 5 male SD rats in each group. Hepatocellular DNA damage was detected by single cell gel electrophoresis (or comet assay).Hepatocellular apoptosis was determined by TUNEL (TdT-mediated dUTP nick end labelling) and flow cytometry. C-myc,c-fos, and c-jun expression in rat hepatocytes were assayed by Northern dot hybridization. C-myc, c-fos, and c-jun protein were detected by immunohistochemical method. Results At the doses of 5, 10, and 20 μmol/kg, DNA damage was induced by sodium selenite in rat hepatocytes and the rates of comet cells were 34.40%, 74.80%, and 91.40% respectively. Results also showed an obvious dose-response relationship between the rates of comet cells and the doses of sodium selenite (r=0.9501,P<0.01). Sodium selenite at the doses of 5, 10, and 20 μmol/kg caused c-myc, c-fos, and c-jun overexpression obviously. The positive brown-yellow signal for proteins of c-myc, c-fos, and c-jun was mainly located in the cytoplasm of hepatocytes with immunohistochemical method. TUNEL-positive cells were detected in selenium-treated rat livers. Apoptotic rates (%) of selenium-treated liver cells at the doses of 5, 10, and 20 μmol/kg were (3.72±1.76), (5.82±1.42), and (11.76±1.87) respectively, being much higher than those in the control. Besides an obvious dose-response relationship between apoptotic rates and the doses of sodium selenite (r=0.9897, P<0.01), these results displayed a close relationship between DNA damage rates and apoptotic rates, and the relative coefficient was 0.9021, P<0.01. Conclusion Selenium at 5-20 μmol/kg can induce DNA damage, apoptosis, and overexpression of c-myc, c-fos, and c-jun in rat hepatocytes.

  14. TAp73-mediated the activation of c-Jun N-terminal kinase enhances cellular chemosensitivity to cisplatin in ovarian cancer cells.

    Directory of Open Access Journals (Sweden)

    Pingde Zhang

    Full Text Available P73, one member of the tumor suppressor p53 family, shares highly structural and functional similarity to p53. Like p53, the transcriptionally active TAp73 can mediate cellular response to chemotherapeutic agents in human cancer cells by up-regulating the expressions of its pro-apoptotic target genes such as PUMA, Bax, NOXA. Here, we demonstrated a novel molecular mechanism for TAp73-mediated apoptosis in response to cisplatin in ovarian cancer cells, and that was irrespective of p53 status. We found that TAp73 acted as an activator of the c-Jun N-terminal kinase (JNK signaling pathway by up-regulating the expression of its target growth arrest and DNA-damage-inducible protein GADD45 alpha (GADD45α and subsequently activating mitogen-activated protein kinase kinase-4 (MKK4. Inhibition of JNK activity by a specific inhibitor or small interfering RNA (siRNA significantly abrogated TAp73-mediated apoptosis induced by cisplatin. Furthermore, inhibition of GADD45α by siRNA inactivated MKK4/JNK activities and also blocked TAp73-mediated apoptosis induction by cisplatin. Our study has demonstrated that TAp73 activated the JNK apoptotic signaling pathway in response to cisplatin in ovarian cancer cells.

  15. c-Jun N-terminal kinase is required for vitamin E succinate-induced apoptosis in human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Kun Wu; Yan Zhao; Gui-Chang Li; Wei-Ping Yu

    2004-01-01

    AIM: To investigate the roles of c-Jun N-terminal kinase (JNK)signaling pathway in vitamin E succinate-induced apoptosis in human gastric cancer SGC-7901 cells.METHODS: Human gastric cancer cell lines (SGC-7901)were treated with vitamin E succinate (VES) at 5, 10, 20 mg/L.Succinic acid and vitamin E were used as vehicle controls and condition medium only as an untreated (UT) control.Apoptosis was observed by 4′, 6-diamidine-2′-phenylindole dihydrochloride (DAPI) staining for morphological changes and by DNA fragmentation for biochemical alterations.Western blot analysis was applied to measure the expression ofJNK and phosphorylated JNK. After the cells were transiently transfected with dominant negative mutant of JNK (DNJNK) followed by treatment of VES, the expression of JNK and c-Jun protein was determined.RESULTS: The apoptotic changes were observed after VES treatment by DNA fragmentation. DNA ladder in the 20 mg/L VES group was more clearly seen than that in 10 mg/L VES group and was not detected following treatment of UT control, succinate and vitamin E. VES at 5, 10 and 20 mg/L increased the expression of p-JNK by 2.5-, 2.8- and 4.2-fold, respectively. VES induced the phosphorylation of JNK beginning at 1.5 h and produced a sustained increase for 24 h with the peak level at 12 h. Transient transfection of DN-JNK blocked VES-triggered apoptosis by 52%. DN-JNK significantly increased the level of JNK, while decreasing the expression of VES-induced c-Jun protein.CONCLUSION: VES-induced apoptosis in human gastric cancer SGC-7901 cells involves JNK signaling pathway via c-Jun and its downstream transcription factor.

  16. c-Jun N-terminal kinase mediates constitutive human eosinophil apoptosis

    OpenAIRE

    Hasala, Hannele; Zhang, Xianzhi; Saarelainen, Seppo; Moilanen, Eeva; Kankaanranta, Hannu

    2007-01-01

    c-Jun N-terminal kinase mediates constitutive human eosinophil apoptosis correspondence: Corresponding author. Tel.: +358335517318; fax: +358335518082. (Kankaanranta, Hannu) (Kankaanranta, Hannu) The Immunopharmacology Research Group--> , Medical School--> , University of Tampere--> , Tampere--> - FINLAND (Hasala, Hannele) The Immunopharmacology Research Group--> , Medical School--...

  17. JNK通路在新生鼠坏死性小肠结肠炎模型中的表达及其意义%Expression and Significance of c-Jun N-terminal Kinase in Necrotizing Enterocolitis of Neonatal Rats

    Institute of Scientific and Technical Information of China (English)

    习隽丽; 刘先州

    2010-01-01

    目的 观察新生大鼠坏死性小肠结肠炎(necrotizing enterocolitis, NEC)中c-Jun氨基末端激酶(c-Jun N-terminal Kinase, JNK)的激化及胞内分布规律,探讨其在NEC发病机制中的作用.方法 新生鼠随机分为正常对照组和NEC动物模型组,每组10只,于母鼠喂养3d,第4d处死.取回盲部肠组织1~2cm,用10%的甲醛立即固定,常规石蜡包埋,分别作组织形态学检查和免疫组织化学检测JNK的表达.结果 新生大鼠NEC模型中JNK在肠道细胞的胞浆中黄棕色染色颗粒表达并伴有向核转移,其阳性表达明显高于正常对照组.结论 JNK信号通路可能参与了NEC发病过程,并起着信号传导作用.

  18. HEPATIC APOPTOSIS POST-BURN IS MEDIATED BY C-JUN N-TERMINAL KINASE-2

    Science.gov (United States)

    Marshall, Alexandra H.; Brooks, Natasha C.; Hiyama, Yaeko; Qa’aty, Nour; Al-mousawi, Ahmed; Finnerty, Celeste C.; Jeschke, Marc G.

    2013-01-01

    The trauma of a severe burn injury induces a hypermetabolic response that increases morbidity and mortality. Previously, our group showed that insulin resistance post-burn injury is associated with endoplasmic reticulum (ER) stress. Evidence suggests that c-jun N-terminal kinase (JNK) -2 may be involved in ER stress-induced apoptosis. Here, we hypothesized that JNK2 contributes to the apoptotic response after burn injury downstream of ER stress. To test this, we compared JNK2 knockout mice (−/−) to wildtype mice after inducing a 30% total body surface area thermal injury. Animals were sacrificed after 1, 3 and 5 days. Inflammatory cytokines in the blood were measured by multiplex analysis. Hepatic ER stress and insulin signaling were assessed by Western Blotting and insulin resistance was measured by a peritoneal glucose tolerance test. Apoptosis in the liver was quantified by TUNEL staining. Liver function was quantified by AST and ALT activity assays. ER stress increased after burn in both JNK2−/− and wildtype mice, indicating that JNK2 activation is downstream of ER stress. Knockout of JNK2 did not affect serum inflammatory cytokines; however, the increase in IL-6 mRNA expression was prevented in the knockouts. Serum insulin did not significantly increase in the JNK2−/− group. On the other hand, insulin signaling (PI3K/Akt pathway) and glucose tolerance tests did not improve in JNK2−/−. As expected, apoptosis in the liver increased after burn injury in wildtype mice but not in JNK2−/−. AST/ALT activity revealed that liver function recovered more quickly in JNK2−/−. This study indicates that JNK2 is a central mediator of hepatic apoptosis after a severe burn. PMID:23324888

  19. Clicinal significance of expression of c-JUN, E-selectin, VEGF-D protein in colorectal carcinoma%结直肠腺癌组织中c-JUN氨基末端激酶、E-选择素、血管内皮生长因子-D蛋白表达的临床意义

    Institute of Scientific and Technical Information of China (English)

    庆琳琳; 胡继春

    2015-01-01

    目的 探讨c-JUN氨基末端激酶(c-JUN)、E-选择素(E-selectin)、血管内皮生长因子-D蛋白(VEGF-D)蛋白在结直肠腺癌发展和转移中的作用.方法 收集2012年8月~2014年9月于北京市海淀医院手术切除的正常大肠黏膜组织标本(20例)和结直肠腺癌标本(50例),应用免疫组化法检测标本中c-JUN、E-selectin、VEGF-D蛋白的表达,观察c-JUN、E-selectin、VEGF-D与临床病理的联系及c-JUN与E-selectin、VEGF-D的相关性.结果 ①结直肠癌组织中,c-JUN、E-selectin、VEGF-D蛋白表达的阳性率(84%、78%、92%)显著高于正常大肠黏膜组织(5%、10%、10%),差异有高度统计学意义(P< 0.01);②c-JUN、E-selectin、VEGF-D蛋白的表达与Dukes分期及有无淋巴结转移有关(P< 0.05);③c-JUN与E-selectin呈正相关(r=0.6394,P<0.05),c-JUN与VEGF-D呈正相关(r=0.6592,P< 0.05).结论 E-selectin、VEGF-D蛋白与结直肠腺癌发展和转移有关,c-JUN可能调控E-selectin、VEGF-D的表达.

  20. Mesenchymal stem cells promote liver regeneration and prolong survival in small-for-size liver grafts: involvement of C-Jun N-terminal kinase, cyclin D1, and NF-κB.

    Directory of Open Access Journals (Sweden)

    Weijie Wang

    Full Text Available BACKGROUND: The therapeutic potential of mesenchymal stem cells (MSCs has been highlighted recently for treatment of acute or chronic liver injury, by possibly differentiating into hepatocyte-like cells, reducing inflammation, and enhancing tissue repair. Despite recent progress, exact mechanisms of action are not clearly elucidated. In this study, we attempted to explore whether and how MSCs protected hepatocytes and stimulated allograft regeneration in small-for-size liver transplantation (SFSLT. METHODS: SFSLT model was established with a 30% partial liver transplantation (30PLT in rats. The differentiation potential and characteristics of bone marrow derived MSCs were explored in vitro. MSCs were infused transvenously immediately after graft implantation in therapy group. Expressions of apoptosis-, inflammatory-, anti-inflammatory-, and growth factor-related genes were measured by RT-PCR, activities of transcription factors AP-1 and NF-κB were analyzed by EMSA, and proliferative responses of the hepatic graft were evaluated by immunohistochemistry and western blot. RESULTS: MSCs were successfully induced into hepatocyte-like cells, osteoblasts and adipocytes in vitro. MSCs therapy could not only alleviate ischemia reperfusion injury and acute inflammation to promote liver regeneration, but also profoundly improve one week survival rate. It markedly up-regulated the mRNA expressions of HGF, Bcl-2, Bcl-XL, IL-6, IL-10, IP-10, and CXCR2, however, down-regulated TNF-α. Increased activities of AP-1 and NF-κB, as well as elevated expressions of p-c-Jun, cyclin D1, and proliferating cell nuclear antigen (PCNA, were also found in MSCs therapy group. CONCLUSION: These data suggest that MSCs therapy promotes hepatocyte proliferation and prolongs survival in SFSLT by reducing ischemia reperfusion injury and acute inflammation, and sustaining early increased expressions of c-Jun N-terminal Kinase, Cyclin D1, and NF-κB.

  1. HEPATIC APOPTOSIS POST-BURN IS MEDIATED BY C-JUN N-TERMINAL KINASE-2

    OpenAIRE

    Marshall, Alexandra H; Brooks, Natasha C; Hiyama, Yaeko; Qa’aty, Nour; Al-mousawi, Ahmed; Finnerty, Celeste C.; Jeschke, Marc G.

    2013-01-01

    The trauma of a severe burn injury induces a hypermetabolic response that increases morbidity and mortality. Previously, our group showed that insulin resistance post-burn injury is associated with endoplasmic reticulum (ER) stress. Evidence suggests that c-jun N-terminal kinase (JNK) -2 may be involved in ER stress-induced apoptosis. Here, we hypothesized that JNK2 contributes to the apoptotic response after burn injury downstream of ER stress. To test this, we compared JNK2 knockout mice (−...

  2. Dynamic acetylation of all lysine 4-methylated histone H3 in the mouse nucleus: analysis at c-fos and c-jun.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available A major focus of current research into gene induction relates to chromatin and nucleosomal regulation, especially the significance of multiple histone modifications such as phosphorylation, acetylation, and methylation during this process. We have discovered a novel physiological characteristic of all lysine 4 (K4-methylated histone H3 in the mouse nucleus, distinguishing it from lysine 9-methylated H3. K4-methylated histone H3 is subject to continuous dynamic turnover of acetylation, whereas lysine 9-methylated H3 is not. We have previously reported dynamic histone H3 phosphorylation and acetylation as a key characteristic of the inducible proto-oncogenes c-fos and c-jun. We show here that dynamically acetylated histone H3 at these genes is also K4-methylated. Although all three modifications are proven to co-exist on the same nucleosome at these genes, phosphorylation and acetylation appear transiently during gene induction, whereas K4 methylation remains detectable throughout this process. Finally, we address the functional significance of the turnover of histone acetylation on the process of gene induction. We find that inhibition of turnover, despite causing enhanced histone acetylation at these genes, produces immediate inhibition of gene induction. These data show that all K4-methylated histone H3 is subject to the continuous action of HATs and HDACs, and indicates that at c-fos and c-jun, contrary to the predominant model, turnover and not stably enhanced acetylation is relevant for efficient gene induction.

  3. Hydrogen-Rich Saline Attenuates Lipopolysaccharide-Induced Heart Dysfunction by Restoring Fatty Acid Oxidation in Rats by Mitigating C-Jun N-Terminal Kinase Activation.

    Science.gov (United States)

    Tao, Bingdong; Liu, Lidan; Wang, Ni; Tong, Dongyi; Wang, Wei; Zhang, Jin

    2015-12-01

    Sepsis is common in intensive care units (ICU) and is associated with high mortality. Cardiac dysfunction complicating sepsis is one of the most important causes of this mortality. This dysfunction is due to myocardial inflammation and reduced production of energy by the heart. A number of studies have shown that hydrogen-rich saline (HRS) has a beneficial effect on sepsis. Therefore, we tested whether HRS prevents cardiac dysfunction by increasing cardiac energy. Four groups of rats received intraperitoneal injections of one of the following solutions: normal saline (NS), HRS, lipopolysaccharide (LPS), and LPS plus HRS. Cardiac function was measured by echocardiography 8 h after the injections. Gene and protein expression related to fatty acid oxidation (FAO) were measured by quantitative polymerase chain reaction (PCR) and Western blot analysis. The injection of LPS compromised heart function through decreased fractional shortening (FS) and increased left ventricular diameter (LVD). The addition of HRS increased FS, palmitate triphosphate, and the ratio of phosphocreatinine (PCr) to adenosine triphosphate (ATP) as well as decreasing LVD. The LPS challenge reduced the expression of genes related to FAO, including perioxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), perioxisome proliferator-activated receptor alpha (PPARα), Estrogen-related receptor alpha (ERRα), and their downstream targets, in mRNA and protein level, which were attenuated by HRS. However, HRS had little effect on glucose metabolism. Furthermore, HRS inhibited c-Jun N-terminal kinase (JNK) activation in the rat heart. Inhibition of JNK by HRS showed beneficial effects on LPS-challenged rats, at least in part, by restoring cardiac FAO.

  4. Mitogen-activated protein kinases (p38 and c-Jun NH2-terminal kinase) are differentially regulated during cardiac volume and pressure overload hypertrophy.

    Science.gov (United States)

    Sopontammarak, Somkiat; Aliharoob, Assad; Ocampo, Catherina; Arcilla, Rene A; Gupta, Mahesh P; Gupta, Madhu

    2005-01-01

    Chronic pressure overload (PO) and volume overload (VO) result in morphologically and functionally distinct forms of myocardial hypertrophy. However, the molecular mechanism initiating these two types of hypertrophy is not yet understood. Data obtained from different cell types have indicated that the mitogen-activated protein kinases (MAPKs) comprising c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 play an important role in transmitting signals of stress stimuli to elicit the cellular response. We tested the hypothesis that early induction of MAPKs differs in two types of overload on the heart and associates with distinct expression of hypertrophic marker genes, namely ANF, alpha-myosin heavy chain (alpha-MHC), and beta-MHC. In rats, VO was induced by aortocaval shunt and PO by constriction of the abdominal aorta. The PO animals were further divided into two groups depending on the severity of the constriction, mild (MPO) and severe pressure overload (SPO), having 35 and 85% aortic constriction, respectively. Early changes in MAPK activity (2-120 min and 1 to 2 d) were analyzed by the in vitro kinase assay using kinase-specific antibodies for p38, JNK, and ERK2. The change in expression of hypertrophy marker genes was examined by Northern blot analysis. In VO hypertrophy, the activity of p38 was markedly increased (10-fold), without changing the activity of ERK and JNK. However, during PO hypertrophy, the activity of JNK was significantly increased (two- to sixfold) and depended on the severity of the load. The activity of p38 was not changed in MPO hypertrophy, whereas it was slightly elevated (50%) in hearts with SPO. Similarly, ERK activity was not changed in hearts with MPO, but a transient rise in activity was observed in hearts with SPO. The expression of ANF and beta-MHC genes was elevated in both PO and VO hypertrophy; however, this change was much greater in hearts subjected to PO than VO hypertrophy. Alpha

  5. Amygdala kindling potentiates seizure-stimulated immediate-early gene expression in rat cerebral cortex.

    Science.gov (United States)

    Duman, R S; Craig, J S; Winston, S M; Deutch, A Y; Hernandez, T D

    1992-11-01

    Kindling induces long-term adaptations in neuronal function that lead to a decreased threshold for induction of seizures. In the present study, the influence of amygdala kindling on levels of mRNA for the immediate-early genes (IEGs) c-fos, c-jun, and NGF1-A were examined both before and after an acute electroconvulsive seizure (ECS). Although amygdala kindling did not significantly influence resting levels of c-fos mRNA in cerebral cortex, ECS-stimulated levels of c-fos mRNA (examined 45 min after ECS) were approximately twofold greater in the cerebral cortex of kindled rats relative to sham-treated controls. The influence of kindling on IEG expression was dependent on the time course of kindling, as ECS-stimulated levels of c-fos mRNA were not significantly increased in stage 2 kindled animals. ECS-stimulated levels of c-jun and NGF1-A mRNA were also significantly increased in cerebral cortex of kindled rats relative to sham-treated controls. The influence of kindling on IEG expression was long-lasting because an acute ECS stimulus significantly elevated levels of c-fos and c-jun mRNA in the cerebral cortex of animals that were kindled 5 months previously. In contrast to these effects in cerebral cortex, kindling did not influence ECS-stimulated levels of c-fos mRNA in hippocampus. Finally, immunohistochemical studies revealed lamina-specific changes in the cerebral cortex.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Activation of c-Jun N-terminal Kinases by Ribotoxic Stresses

    Institute of Scientific and Technical Information of China (English)

    Dong-Yun Ouyang; Yuan-Yuan Wang; Yong-Tang Zheng

    2005-01-01

    The c-Jun N-terminal kinases (JNKs) are classic stress-activated protein kinases. Many cellular stresses have been shown to stimulate JNK activation. In this review, we focus on ribotoxic stresses based on their multiple biological potencies including anti-HIV-1 activity. Some of the functions of ribotoxins and the signaling transduction pathway that mediated are mentioned. Different from other stimulators, ribotoxic stresses act on special motifs of 28S rRNA in translationally active mammal ribosomes. Binding and damaging on the motif leads to JNK activation and subsequently biological response to the signal initiator, which is named ribotoxic stress response.

  7. Inhibition of spinal c-Jun-NH2-terminal kinase (JNK) improves locomotor activity of spinal cord injured rats.

    Science.gov (United States)

    Martini, Alessandra C; Forner, Stefânia; Koepp, Janice; Rae, Giles Alexander

    2016-05-16

    Mitogen-activated protein kinases (MAPKs) have been implicated in central nervous system injuries, yet the roles within neurodegeneration following spinal cord injury (SCI) still remain partially elucidated. We aimed to investigate the changes in expression of the three MAPKs following SCI and the role of spinal c-jun-NH2-terminal kinase (JNK) in motor impairment following the lesion. SCI induced at the T9 level resulted in enhanced expression of phosphorylated MAPKs shortly after trauma. SCI increased spinal cord myeloperoxidase levels, indicating a local neutrophil infiltration, and elevated the number of spinal apoptotic cells. Intrathecal administration of a specific inhibitor of JNK phosphorylation, SP600125, given at 1 and 4h after SCI, reduced the p-JNK expression, the number of spinal apoptotic cells and many of the histological signs of spinal injury. Notably, restoration of locomotor performance was clearly ameliorated by SP600125 treatment. Altogether, the results demonstrate that SCI induces activation of spinal MAPKs and that JNK plays a major role in mediating the deleterious consequences of spinal injury, not only at the spinal level, but also those regarding locomotor function. Therefore, inhibition of JNK activation in the spinal cord shortly after trauma might constitute a feasible therapeutic strategy for the functional recovery from SCI. PMID:27080425

  8. c-Jun NH2-terminal kinase-dependent upregulation of DR5 mediates cooperative induction of apoptosis by perifosine and TRAIL

    Directory of Open Access Journals (Sweden)

    Chen Georgia Z

    2010-12-01

    Full Text Available Abstract Background Perifosine, an alkylphospholipid tested in phase II clinical trials, modulates the extrinsic apoptotic pathway and cooperates with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL to augment apoptosis. The current study focuses on revealing the mechanisms by which perifosine enhances TRAIL-induced apoptosis. Results The combination of perifosine and TRAIL was more active than each single agent alone in inducing apoptosis of head and neck squamous cell carcinoma cells and inhibiting the growth of xenografts. Interestingly, perifosine primarily increased cell surface levels of DR5 although it elevated the expression of both DR4 and DR5. Blockade of DR5, but not DR4 upregulation, via small interfering RNA (siRNA inhibited perifosine/TRAIL-induced apoptosis. Perifosine increased phosphorylated c-Jun NH2-terminal kinase (JNK and c-Jun levels, which were paralleled with DR4 and DR5 induction. However, only DR5 upregulaiton induced by perifosine could be abrogated by both the JNK inhibitor SP600125 and JNK siRNA. The antioxidants, N-acetylcysteine and glutathione, but not vitamin C or tiron, inhibited perifosine-induced elevation of p-c-Jun, DR4 and DR5. Moreover, no increased production of reactive oxygen species was detected in perifosine-treated cells although reduced levels of intracellular GSH were measured. Conclusions DR5 induction plays a critical role in mediating perifosine/TRAIL-induced apoptosis. Perifosine induces DR5 expression through a JNK-dependent mechanism independent of reactive oxygen species.

  9. Apoptosis induced by genipin in human leukemia K562 cells:involvement of C-Jun N-terminal kinase in G2/M arrest

    Institute of Scientific and Technical Information of China (English)

    Qian FENG; Hou-li CAO; Wei XU; Xiao-rong LI; Yan-qin REN; Lin-fang DU

    2011-01-01

    Aim:To investigate the effect of genipin on apoptosis in human leukemia K562 cells in vitro and elucidate the underlying mechanisms.Methods:The effect of genipin on K562 cell viability was measured using trypan blue dye exclusion and cell counting.Morphological changes were detected using phase-contrast microscopy.Apoptosis was analyzed using DNA ladder, propidium iodide(PI)-labeled flow cytometry(FCM)and Hoechst 33258 staining.The infiuence of genipin on cell cycle distribution was determined using Plstaining.Caspase 3 activity was analyzed to detect apoptosis at different time points.Protein levels of phospho-c-Jun,phosphor-C-Jun N-terminal kinase(p-JNK).phosphor-p38-Fas-L,p63,and Bax and the release of cytochrome c were detected using Western blot analysis.Results:Genipin reduced the viability of K562 cells with an IC50 value of approximately 250 μmol/L.Genipin 200-400 μmol/L induced formation of typicaI apoptotic bodies and DNA fragmentation.Additionally,genipin 400 μmol/L significantly increased the caspase 3activity from 8-24 h and arrested the cells in the G2/M phase.After stimulation with genipin 500 μmol/L, the levels of p-JNK, p-c-Jun.Fas-L,Bax.and cytochrome c were remarkably upregulated,but there were no obvious changes of p-p38.Genipin 200-500 μmol/Lsignificantly upregulated the Fas-L expression and downregulated p63 expression.Dicoumarol 100 μmol/L.a JNK1/2 inhibitor,markedly suppressed the formation of apoptotic bodies and JNK activation induced by genipin 400 μmol/L.Conclusion:These results suggest that genipin inhibits the proliferation of K562 cells and induces apoptosis through the activation of JNK and induction of the Fas ligand.

  10. Gene Expression Omnibus (GEO)

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene Expression Omnibus is a public functional genomics data repository supporting MIAME-compliant submissions of array- and sequence-based data. Tools are provided...

  11. Streptococcus pneumoniae induced c-Jun-N-terminal kinase- and AP-1 -dependent IL-8 release by lung epithelial BEAS-2B cells

    Directory of Open Access Journals (Sweden)

    Rosseau Simone

    2006-07-01

    Full Text Available Abstract Background Although pneumococcal pneumonia is one of the most common causes of death due to infectious diseases, little is known about pneumococci-lung cell interaction. Herein we tested the hypothesis that pneumococci activated pulmonary epithelial cell cytokine release by c-Jun-NH2-terminal kinase (JNK Methods Human bronchial epithelial cells (BEAS-2B or epithelial HEK293 cells were infected with S. pneumoniae R6x and cytokine induction was measured by RT-PCR, ELISA and Bioplex assay. JNK-phosphorylation was detected by Western blot and nuclear signaling was assessed by electrophoretic mobility shift assay (EMSA and chromatin immunoprecipitation (ChIP. JNK was modulated by the small molecule inhibitor SP600125 and AP1 by transfection of a dominant negative mutant. Results S. pneumoniae induced the release of distinct CC and CXC, as well as Th1 and Th2 cytokines and growth factors by human lung epithelial cell line BEAS-2B. Furthermore, pneumococci infection resulted in JNK phosphorylation in BEAS-2B cells. Inhibition of JNK by small molecule inhibitor SP600125 reduced pneumococci-induced IL-8 mRNA expression and release of IL-8 and IL-6. One regulator of the il8 promoter is JNK-phosphorylated activator protein 1 (AP-1. We showed that S. pneumoniae time-dependently induced DNA binding of AP-1 and its phosphorylated subunit c-Jun with a maximum at 3 to 5 h after infection. Recruitment of Ser63/73-phosphorylated c-Jun and RNA polymerase II to the endogenous il8 promoter was found 2 h after S. pneumoniae infection by chromatin immunoprecipitation. AP-1 repressor A-Fos reduced IL-8 release by TLR2-overexpressing HEK293 cells induced by pneumococci but not by TNFα. Antisense-constructs targeting the AP-1 subunits Fra1 and Fra2 had no inhibitory effect on pneumococci-induced IL-8 release. Conclusion S. pneumoniae-induced IL-8 expression by human epithelial BEAS-2B cells depended on activation of JNK and recruitment of phosphorylated c-Jun

  12. Monosodium Urate in the Presence of RANKL Promotes Osteoclast Formation through Activation of c-Jun N-Terminal Kinase

    Directory of Open Access Journals (Sweden)

    Jung-Yoon Choe

    2015-01-01

    Full Text Available The aim of this study was to clarify the role of monosodium urate (MSU crystals in receptor activator of nuclear factor kB ligand- (RANKL- RANK-induced osteoclast formation. RAW 264.7 murine macrophage cells were incubated with MSU crystals or RANKL and differentiated into osteoclast-like cells as confirmed by staining for tartrate-resistant acid phosphatase (TRAP and actin ring, pit formation assay, and TRAP activity assay. MSU crystals in the presence of RANKL augmented osteoclast differentiation, with enhanced mRNA expression of NFATc1, cathepsin K, carbonic anhydrase II, and matrix metalloproteinase-9 (MMP-9, in comparison to RAW 264.7 macrophages incubated in the presence of RANKL alone. Treatment with both MSU crystals and RANKL induced osteoclast differentiation by activating downstream molecules in the RANKL-RANK pathway including tumor necrosis factor receptor-associated factor 6 (TRAF-6, JNK, c-Jun, and NFATc1. IL-1b produced in response to treatment with both MSU and RANKL is involved in osteoclast differentiation in part through the induction of TRAF-6 downstream of the IL-1b pathway. This study revealed that MSU crystals contribute to enhanced osteoclast formation through activation of RANKL-mediated pathways and recruitment of IL-1b. These findings suggest that MSU crystals might be a pathologic causative agent of bone destruction in gout.

  13. Speciifc effects of c-Jun NH2-terminal kinase-interacting protein 1 in neuronal axons

    Institute of Scientific and Technical Information of China (English)

    Shu Tang; Qiang Wen; Xiao-jian Zhang; Quan-cheng Kan

    2016-01-01

    c-Jun NH2-terminal kinase (JNK)-interacting protein 3 plays an important role in brain-derived neurotrophic factor/tropomyosin-related kinase B (TrkB) anterograde axonal transport. It remains unclear whether JNK-interacting protein 1 mediates similar effects, or whether JNK-interacting protein 1 affects the regulation of TrkB anterograde axonal transport. In this study, we isolated rat embryonic hippocampus and cultured hippocampal neuronsin vitro. Coimmunoprecipitation results demonstrated that JNK-interacting protein 1 formed TrkB com-plexesin vitro andin vivo. Immunocytochemistry results showed that when JNK-interacting protein 1 was highly expressed, the distribution of TrkB gradually increased in axon terminals. However, the distribution of TrkB reduced in axon terminals after knocking out JNK-interact-ing protein 1. In addition, there were differences in distribution of TrkB after JNK-interacting protein 1 was knocked out compared with not. However, knockout of JNK-interacting protein 1 did not affect the distribution of TrkB in dendrites. These ifndings conifrm that JNK-inter-acting protein 1 can interact with TrkB in neuronal cells, and can regulate the transport of TrkB in axons, but not in dendrites.

  14. C-jun N-terminal Kinase-mediated Signaling Is Essential for Staphylococcus Aureus-induced U937 Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Jia-he Wang; Bo Yu; Hui-yan Niu; Hui Li; Yi Zhang; Xin Wang; Ping He

    2009-01-01

    Objective To investigate the effect of SP600125, a specific c-jun N-terminal protein kinase (JNK) inhibitor, on Staphylococcus aureus (S. aureus)-induced U937 cell death and the underlying mechanism. Methods The human monocytic U937 cells were treated with S. aureus at different time with or without SP600125. Cell apoptosis was analyzed by flow cytometry. JNK, Bax, and caspase-3 activities were detected by Western blotting. Results S. aureus induced apoptosis in cultured U937 cells in a time-dependent manner. Expression of Bax and phospho-JNK significantly increased in S. aureus-treated U937 cells, and the level of activated caspase-3 also increased in a time-dependent manner. Inhibition of JNK with SP600125 significantly inhibited S. aureus-induced apoptosis in U937 cells. Conclusions S. aureus can induce apoptosis in U937 cells by phosphorylation of JNK and activation of Bax and caspase-3. SP600125 protects U937 cells from apoptosis induced by S. aureus via inhibiting the activity of JNK.

  15. The c-Jun N-terminal Kinase 2 Plays a Dominant Role in Human Epidermal Neoplasia

    Science.gov (United States)

    Ke, Hengning; Harris, Rebecca; Coloff, Jonathan; Jin, Jane Y.; Leshin, Benjamin; de Marval, Paula Miliani; Tao, Shiying; Rathmell, Jeffrey C; Hall, Russell P.; Zhang, Jennifer Y.

    2010-01-01

    The c-Jun N-terminal Kinase (JNK) signaling cascade has been implicated in a wide range of diseases, including cancer. It is unclear how different JNK proteins contribute to human cancer. Here, we report that JNK2 is activated in over 70% of human squamous cell carcinoma (SCC) samples and that inhibition of JNK2 pharmacologically or genetically impairs tumorigenesis of human SCC cells. Most importantly, JNK2, but not JNK1, is sufficient to couple with oncogenic Ras to transform primary human epidermal cells into malignancy with features of SCC. JNK2 prevents Ras-induced cell senescence and growth arrest by reducing the expression levels of the cell cycle inhibitor p16 and NF-κB activation. On the other hand, JNK, along with PI3K, is essential for Ras-induced glycolysis, an energy producing process known to benefit cancer growth. These data indicate that JNK2 collaborates with other oncogenes, such as Ras, at multiple molecular levels to promote tumorigenesis and hence represents a promising therapeutic target for cancer. PMID:20354187

  16. Stress-related gene expression in brain and adrenal gland of porcine fetuses and neonates.

    Science.gov (United States)

    Schwerin, Manfred; Kanitz, Ellen; Tuchscherer, Margret; Brüssow, Klaus-Peter; Nürnberg, Gerd; Otten, Winfried

    2005-03-01

    This study was conducted to examine stress-induced effects on gene expression of specific markers for HPA axis and neuronal activity in fetuses and neonatal pigs. Brain, pituitary gland, and adrenal gland were obtained to determine the mRNA levels for corticotropin-releasing hormone (CRH), CRH receptor 1 (CRHR1), pro-opiomelanocortin (POMC), ACTH receptor (MC2R), c-jun and c-fos. The suitability of these molecular markers was determined in neonatal pigs which were maternally deprived for two hours. It was found that maternal deprivation caused significantly higher transcript levels of c-fos and CRH in brain accompanied by a down-regulation of CRHR1 mRNA and an up-regulation of c-jun in the pituitary gland. To determine the effect of elevated maternal cortisol levels on gene expression of these molecular markers in fetuses, pregnant sows were treated with 100 IU ACTH (Synacthen Depot) s.c. every two days between Day 49 and Day 75 of gestation (normal gestation length 114 days). Animals were killed 48 hours after the last ACTH administration and fetuses of each sow were isolated. The ACTH treatment of sows significantly increased mRNA expression of c-fos but not of CRH in the fetal brain, and significantly decreased MC2R mRNA expression in the adrenal gland. However, HPA axis seems not to be fully developed in Day 77-fetuses because fetal pituitary CRHR1 and POMC mRNA expression was low in most of the fetuses. Although the expression of endocrine regulatory factors was partially incomplete in fetuses at the beginning of the third-trimester, ACTH dependent activation of c-fos mRNA in brain indicates a stress-related increase of neuronal activity. Based on these results it is assumed that prenatal stress in pigs may also have effects on the activity of the HPA axis in the offspring.

  17. Molecular clone and characterization of c-Jun N-terminal kinases 2 from orange-spotted grouper, Epinephelus coioides.

    Science.gov (United States)

    Guo, Minglan; Wei, Jingguang; Zhou, Yongcan; Qin, Qiwei

    2016-02-01

    c-Jun N-terminal kinase 2 (JNK2) is a multifunctional mitogen-activated protein kinases involving in cell differentiation and proliferation, apoptosis, immune response and inflammatory conditions. In this study, we reported a new JNK2 (Ec-JNK2) derived from orange-spotted grouper, Epinephelus coioides. The full-length cDNA of Ec-JNK2 was 1920 bp in size, containing a 174 bp 5'-untranslated region (UTR), 483 bp 3'-UTR, and a 1263 bp open reading frame (ORF), which encoded a putative protein of 420 amino acids. The deduced protein sequence of Ec-JNK2 contained a conserved Thr-Pro-Tyr (TPY) motif in the domain of serine/threonine protein kinase (S-TKc). Ec-JNK2 has been found to involve in the immune response to pathogen challenges in vivo, and the infection of Singapore grouper iridovirus (SGIV) in vitro. Immunofluorescence staining showed that Ec-JNK2 was localized in the cytoplasm of grouper spleen (GS) cells, and moved to the nucleus after infecting with SGIV. Ec-JNK2 distributed in all immune-related tissues examined. After challenging with lipopolysaccharide (LPS), SGIV and polyriboinosinic polyribocytidylic acid (poly I:C), the mRNA expression of Ec-JNK2 was significantly (P orange-spotted grouper. Over-expressing Ec-JNK2 in fathead minnow (FHM) cells increased the SGIV infection and replication, while over-expressing the dominant-negative Ec-JNK2Δ181-183 mutant decreased it. These results indicated that Ec-JNK2 could be an important molecule in the successful infection and evasion of SGIV.

  18. Effect of sulfur dioxide on expression of proto-oncogenes and tumor suppressor genes from rats.

    Science.gov (United States)

    Bai, Juli; Meng, Ziqiang

    2010-06-01

    Sulfur dioxide (SO(2)) is a ubiquitous air pollutant that is present in low concentrations in the urban air, and in higher concentrations in the working environment. In the present study, male Wistar rats were housed in exposure chambers and treated with 14.00 +/- 1.01, 28.00 +/- 1.77 and 56.00 +/- 3.44 mg m(-3) SO(2) for 6 h/day for 7 days, while control group was exposed to filtered air in the same condition. The mRNA and protein levels of proto-oncogenes (c-fos, c-jun, c-myc, and Ki-ras) and tumor suppressor genes (p53, Rb, and p16) were analyzed in lungs using a real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) assay and Western blot analysis. The results showed that mRNA and protein levels of c-fos, c-jun, c-myc, Ki-ras, and p53 in lungs were increased in a dose-dependent manner, while mRNA and protein levels of Rb and p16 were decreased in lungs of rats after SO(2) inhalation. These results lead to a conclusion that SO(2) exposure could activate expressions of proto-oncogenes and suppress expressions of tumor suppressor genes, which might relate to the molecular mechanism of cocarcinogenic properties and potential carcinogenic effects of SO(2). According to previous studies, the results also indicated that promoter genes of apoptosis and tumor suppressor genes could produce apoptotic signals to antagonize the growth signals that arise from oncogenes. Understanding its molecular controls will benefit development of treatments for many diseases.

  19. C-Jun N-terminal kinase controls TDP-43 accumulation in stress granules induced by oxidative stress

    Directory of Open Access Journals (Sweden)

    Masters Colin L

    2011-08-01

    Full Text Available Abstract Background TDP-43 proteinopathies are characterized by loss of nuclear TDP-43 expression and formation of C-terminal TDP-43 fragmentation and accumulation in the cytoplasm. Recent studies have shown that TDP-43 can accumulate in RNA stress granules (SGs in response to cell stresses and this could be associated with subsequent formation of TDP-43 ubiquinated protein aggregates. However, the initial mechanisms controlling endogenous TDP-43 accumulation in SGs during chronic disease are not understood. In this study we investigated the mechanism of TDP-43 processing and accumulation in SGs in SH-SY5Y neuronal-like cells exposed to chronic oxidative stress. Cell cultures were treated overnight with the mitochondrial inhibitor paraquat and examined for TDP-43 and SG processing. Results We found that mild stress induced by paraquat led to formation of TDP-43 and HuR-positive SGs, a proportion of which were ubiquitinated. The co-localization of TDP-43 with SGs could be fully prevented by inhibition of c-Jun N-terminal kinase (JNK. JNK inhibition did not prevent formation of HuR-positive SGs and did not prevent diffuse TDP-43 accumulation in the cytosol. In contrast, ERK or p38 inhibition prevented formation of both TDP-43 and HuR-positive SGs. JNK inhibition also inhibited TDP-43 SG localization in cells acutely treated with sodium arsenite and reduced the number of aggregates per cell in cultures transfected with C-terminal TDP-43 162-414 and 219-414 constructs. Conclusions Our studies are the first to demonstrate a critical role for kinase control of TDP-43 accumulation in SGs and may have important implications for development of treatments for FTD and ALS, targeting cell signal pathway control of TDP-43 aggregation.

  20. A reinvestigation of the multisite phosphorylation of the transcription factor c-Jun.

    Science.gov (United States)

    Morton, Simon; Davis, Roger J; McLaren, Ann; Cohen, Philip

    2003-08-01

    We have used phospho-specific antibodies to re-examine the multisite phosphorylation of c-Jun in murine RAW macrophages and embryonic fibroblasts. Our results indicate that JNK isoforms are required and sufficient for the phosphorylation of Thr91 and Thr93, as well as the phosphorylation of Ser63 and Ser73, in response to LPS or anisomycin in macrophages and TNFalpha or anisomycin in fibroblasts. However, the phorbol ester (TPA) and EGF-induced phosphorylation of Ser63 and Ser73 is mediated by ERK1/ERK2, as well as JNK1/JNK2, in fibroblasts from wild-type mice and by ERK1/ERK2 alone in fibroblasts from JNK-deficient mice. The phosphorylation of Thr239 is catalysed by GSK3 and the phosphorylation of Ser243 by an as yet unidentified protein kinase. The inhibition of GSK3 is not required for the dephosphorylation of Thr239 in response to LPS, and nor is the phosphorylation of Thr91 and Thr93 required for the TPA- or EGF-induced dephosphorylation of Thr239 in fibroblasts. The agonist-induced dephosphorylation of Thr239 may involve a conformational change that exposes Thr239 to dephosphorylation and/or the activation of a Thr239 phosphatase. PMID:12881422

  1. Gene expression profile of amyloid beta protein-injected mouse model for Alzheimer disease

    Institute of Scientific and Technical Information of China (English)

    Ling-na KONG; Ping-ping ZUO; Liang MU; Yan-yong LIU; Nan YANG

    2005-01-01

    Aim: To investigate the gene expression profile changes in the cerebral cortex of mice injected icv with amyloid beta-protein (Aβ) fragment 25-35 using cDNA microarray. Methods: Balb/c mice were randomly divided into a control group and Aβ-treated group. The Morris water maze test was performed to detect the effect of Aβ-injection on the learning and memory of mice. Atlas Mouse 1.2 Expression Arrays containing 1176 genes were used to investigate the gene expression pattern of each group. Results: The gene expression profiles showed that 19 genes including TBX1, NF-κB, AP-1/c-Jun, cadherin, integrin, erb-B2, and FGFR1 were up-regulated after 2 weeks oficv administration of Aβ; while 12 genes were downregulated, including NGF, glucose phosphate isomerase 1, AT motif binding factor 1, Na+/K+-ATPase, and Akt. Conclusions: The results provide important leads for pursuing a more complete understanding of the molecular events of Aβ-injection into mice with Alzheimer disease.

  2. Effects of sulfur dioxide derivatives on expression of oncogenes and tumor suppressor genes in human bronchial epithelial cells.

    Science.gov (United States)

    Qin, Guohua; Meng, Ziqiang

    2009-04-01

    Sulfur dioxide (SO(2)) is a major air pollutant suspected to act as a promoter or co-carcinogen. The present study was designed to investigate whether SO(2) derivatives (bisulfite and sulfite) had effects on the expression of several proto-oncogenes and tumor suppressor genes in cultured human bronchial epithelial (BEP2D) cells. The mRNA and protein levels were measured by real-time RT-PCR and western blotting, respectively, following exposure to differing SO(2)-derivative concentrations and exposure times. SO(2) derivatives caused mRNA and protein over-expression of c-fos, c-jun, and c-myc at all tested doses (0.001-2mM). Over-expression of H-ras and p53 were observed in cells receiving the highest concentration (0.1-2mM), as well as the under-expression of p16 and Rb. The over-expression of c-fos and c-jun was observed after 24h recovery. The expression of c-myc and H-ras decreased to base line levels while the p53 expression decreased compared with control after 24h recovery. The mRNA and protein expression of p16 and Rb remained at initial levels after 24h recovery. The data support the hypothesis that SO(2) derivatives could cause the activation of proto-oncogenes and inactivation of tumor suppressor genes and SO(2) derivatives may play a role in the pathogenesis of SO(2)-associated lung cancer.

  3. Tumor-specific gene expression patterns with gene expression profiles

    Institute of Scientific and Technical Information of China (English)

    RUAN Xiaogang; LI Yingxin; LI Jiangeng; GONG Daoxiong; WANG Jinlian

    2006-01-01

    Gene expression profiles of 14 common tumors and their counterpart normal tissues were analyzed with machine learning methods to address the problem of selection of tumor-specific genes and analysis of their differential expressions in tumor tissues. First, a variation of the Relief algorithm, "RFE_Relief algorithm" was proposed to learn the relations between genes and tissue types. Then, a support vector machine was employed to find the gene subset with the best classification performance for distinguishing cancerous tissues and their counterparts. After tissue-specific genes were removed, cross validation experiments were employed to demonstrate the common deregulated expressions of the selected gene in tumor tissues. The results indicate the existence of a specific expression fingerprint of these genes that is shared in different tumor tissues, and the hallmarks of the expression patterns of these genes in cancerous tissues are summarized at the end of this paper.

  4. Fibroin and sericin from Bombyx mori silk stimulate cell migration through upregulation and phosphorylation of c-Jun.

    Directory of Open Access Journals (Sweden)

    Celia Martínez-Mora

    Full Text Available Wound healing is a biological process directed to the restoration of tissue that has suffered an injury. An important phase of wound healing is the generation of a basal epithelium able to wholly replace the epidermis of the wound. A broad range of products derived from fibroin and sericin from Bombyx mori silk are used to stimulate wound healing. However, so far the molecular mechanism underlying this phenomenon has not been elucidated. The aim of this work was to determine the molecular basis underlying wound healing properties of silk proteins using a cell model. For this purpose, we assayed fibroin and sericin in a wound healing scratch assay using MDA-MB-231 and Mv1Lu cells. Both proteins stimulated cell migration. Furthermore, treatment with sericin and fibroin involved key factors of the wound healing process such as upregulation of c-Jun and c-Jun protein phosphorylation. Moreover, fibroin and sericin stimulated the phosphorylation of ERK 1/2 and JNK 1/2 kinases. All these experiments were done in the presence of specific inhibitors for some of the cell signalling pathways referred above. The obtained results revealed that MEK, JNK and PI3K pathways are involved in fibroin and sericin stimulated cells migration. Inhibition of these three kinases prevented c-Jun upregulation and phosphorylation by fibroin or sericin. Fibroin and sericin were tested in the human keratinocyte cell line, HaCaT, with similar results. Altogether, our results showed that fibroin and sericin initiate cell migration by activating the MEK, JNK and PI3K signalling pathways ending in c-Jun activation.

  5. Regulation of Apoptotic c-Jun N-Terminal Kinase Signaling by a Stabilization-Based Feed-Forward Loop†

    OpenAIRE

    Xu, Zhiheng; Kukekov, Nikolay V.; Greene, Lloyd A.

    2005-01-01

    A sequential kinase cascade culminating in activation of c-Jun N-terminal kinases (JNKs) plays a fundamental role in promoting apoptotic death in many cellular contexts. The mechanisms by which this pathway is engaged in response to apoptotic stimuli and suppressed in viable cells are largely unknown. Here, we show that apoptotic stimuli increase endogenous cellular levels of pathway components, including POSH, mixed lineage kinases (MLKs), and JNK interacting protein 1, and that this effect ...

  6. c-Jun N-terminal kinases 3 (JNK3) from orange-spotted grouper, Epinephelus coioides, inhibiting the replication of Singapore grouper iridovirus (SGIV) and SGIV-induced apoptosis.

    Science.gov (United States)

    Guo, Minglan; Wei, Jingguang; Zhou, Yongcan; Qin, Qiwei

    2016-12-01

    C-Jun N-terminal kinases (JNKs), a subgroup of serine-threonine protein kinases that activated by phosphorylation, are involve in physiological and pathophysiological processes. JNK3 is one of JNK proteins involved in JNK3 signaling transduction. In the present study, two JNK3 isoforms, Ec-JNK3 X1 and Ec-JNK3 X2, were cloned from orange-spotted grouper, Epinephelus coioides. Both Ec-JNK3 X1 and Ec-JNK3 X2 were mainly expressed in liver, gill, skin, brain and muscle of juvenile grouper. The relative expression of Ec-JNK3 X2 mRNA was much higher in muscle and gill than that of Ec-JNK3 X1. Isoform-specific immune response to challenges was revealed by the expression profiles in vivo. Immunofluorescence staining indicated that JNK3 was localized in the cytoplasm of grouper spleen (GS) cells and shown immune response to SGIV infection in vitro. Over-expressing Ec-JNK3 X1 and/or Ec-JNK3 X2 inhibited the SGIV infection and replication and the SGIV-induced apoptosis. To achieve the antiviral and anti-apoptosis activities, JNK3 promoted the activation of genes ISRE and type I IFN in the antiviral IFN signaling pathway, and inhibited the activation of transcription factors NF-κB and p53 relating to apoptosis, respectively. Ec-JNK3 X2 showed stronger activities in antivirus and anti-apoptosis than that of Ec-JNK3 X1. Our results not only define the characterization of JNK3 but also reveal new immune functions and the molecular mechanisms of JNK3 on iridoviruses infection and the virus-induced apoptosis.

  7. Imaging gene expression in gene therapy

    International Nuclear Information System (INIS)

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k+) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k+ gene expression where the H S V-1 t k+ gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([18 F]F H P G; [18 F]-A C V), and pyrimidine- ([123/131 I]I V R F U; [124/131I]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [123/131I]I V R F U imaging with the H S V-1 t k+ reporter gene will be presented

  8. Imaging gene expression in gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, Leonard I. [Alberta Univ., Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-12-31

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on `suicide gene therapy` of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k{sup +}) has been use for `suicide` in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k{sup +} gene expression where the H S V-1 t k{sup +} gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([{sup 18} F]F H P G; [{sup 18} F]-A C V), and pyrimidine- ([{sup 123}/{sup 131} I]I V R F U; [{sup 124}/{sup 131I}]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [{sup 123}/{sup 131I}]I V R F U imaging with the H S V-1 t k{sup +} reporter gene will be presented

  9. Type-2 diabetes-induced changes in vascular extracellular matrix gene expression: Relation to vessel size

    Directory of Open Access Journals (Sweden)

    Ergul Adviye

    2006-02-01

    Full Text Available Abstract Background Hyperglycemia-induced changes in vascular wall structure contribute to the pathogenesis of diabetic microvascular and macrovascular complications. Matrix metalloproteinases (MMP, a family of proteolytic enzymes that degrade extracellular matrix (ECM proteins, are essential for vascular remodeling. We have shown that endothelin-1 (ET-1 mediates increased MMP activity and associated vascular remodeling in Type 2 diabetes. However, the effect of Type 2 diabetes and/or ET-1 on the regulation of ECM and MMP gene expression in different vascular beds remains unknown. Methods Aorta and mesenteric artery samples were isolated from control, Type 2 diabetic Goto-Kakizaki (GK rats and GK rats treated with ETA antagonist ABT-627. Gene expression profile of MMP-2, MMP-9, MT1-MMP, fibronectin, procollagen type 1, c-fos and c-jun, were determined by quantitative real-time (qRT PCR. In addition, aortic gene expression profile was evaluated by an ECM & Adhesion Molecules pathway specific microarray approach. Results Analysis of the qRT-PCR data demonstrated a significant increase in mRNA levels of MMPs and ECM proteins as compared to control animals after 6 weeks of mild diabetes. Futhermore, these changes were comparable in aorta and mesentery samples. In contrast, treatment with ETA antagonist prevented diabetes-induced changes in expression of MMPs and procollagen type 1 in mesenteric arteries but not in aorta. Microaarray analysis provided evidence that 27 extracellular matrix genes were differentially regulated in diabetes. Further qRT-PCR with selected 7 genes confirmed the microarray data. Conclusion These results suggest that the expression of both matrix scaffold protein and matrix degrading MMP genes are altered in macro and microvascular beds in Type 2 diabetes. ETA antagonism restores the changes in gene expression in the mesenteric bed but not in aorta suggesting that ET-1 differentially regulates microvascular gene expression in

  10. Molecular mechanism of anticancer effect of Sclerotium rolfsii lectin in HT29 cells involves differential expression of genes associated with multiple signaling pathways: A microarray analysis.

    Science.gov (United States)

    Barkeer, Srikanth; Guha, Nilanjan; Hothpet, Vishwanathreddy; Saligrama Adavigowda, Deepak; Hegde, Prajna; Padmanaban, Arunkumar; Yu, Lu-Gang; Swamy, Bale M; Inamdar, Shashikala R

    2015-12-01

    Sclerotium rolfsii lectin (SRL) is a lectin isolated from fungus S. rolfsii and has high binding specificity toward the oncofetal Thomsen-Friedenreich carbohydrate antigen (Galβ1-3GalNAc-α-O-Ser/Thr, T or TF), which is expressed in more than 90% of human cancers. Our previous studies have shown that binding of SRL to human colon, breast and ovarian cancer cells induces cell apoptosis in vitro and suppresses tumor growth in vivo. This study investigated the SRL-mediated cell signaling in human colon cancer HT29 cells by mRNA and miRNA microarrays. It was found that SRL treatment results in altered expression of several hundred molecules including mitogen-activated protein kinase (MAPK) and c-JUN-associated, apoptosis-associated and cell cycle and DNA replication-associated signaling molecules. Pathway analysis using GeneSpring 12.6.1 revealed that SRL treatment induces changes of MAPK and c-JUN-associated signaling pathways as early as 2 h while changes of cell cycle, DNA replication and apoptosis pathways were significantly affected only after 24 h. A significant change of cell miRNA expression was also observed after 12 h treatment of the cells with SRL. These changes were further validated by quantitative real time polymerase chain reaction and immunoblotting. This study thus suggests that the presence of SRL affects multiple signaling pathways in cancer cells with early effects on cell proliferation pathways associated with MAPK and c-JUN, followed by miRNA-associated cell activity and apoptosis. This provides insight information into the molecular mechanism of the anticancer activity of this fungal lectin. PMID:26347523

  11. Effects of alpha-mangostin on the expression of anti-inflammatory genes in U937 cells

    Directory of Open Access Journals (Sweden)

    Liu Szu-Hsiu

    2012-08-01

    Full Text Available Abstract Background α-Mangostin (α-MG is a main constituent of the fruit hull of the mangosteen. Previous studies have shown that α-MG has pharmacological activities such as antioxidant, antitumor, anti-inflammatory, antiallergic, antibacterial, antifungal and antiviral effects. This study aims to investigate the anti-inflammatory molecular action of α-MG on gene expression profiles. Methods U937 and EL4 cells were treated with different concentrations of α-MG in the presence of 0.1 ng/mL lipopolysaccharide (LPS for 4 h. The anti-inflammatory effects of α-MG were measured by the levels of tumor necrosis factor (TNF-α and interleukin (IL-4 in cell culture media, which were determined with enzyme-linked immunosorbent assay kits. The gene expression profiles of all samples were analyzed with a whole human genome microarray, Illumina BeadChip WG-6 version 3, containing 48804 probes. The protein levels were determined by Western blotting analyses. Results α-MG decreased the LPS induction of the inflammatory cytokines TNF-α (P = 0.038 and IL-4 (P = 0.04. α-MG decreased the gene expressions in oncostatin M signaling via mitogen-activated protein kinase (MAPK pathways, including extracellular signal-regulated kinases (P = 0.016, c-Jun N-terminal kinase (P = 0.01 , and p38 (P = 0.008. α-MG treatment of U937 cells reduced the phosphorylation of MAPK kinase 3 / MAPK kinase 6 (P = 0.0441, MAPK-activated protein kinase-2 (P = 0.0453, signal transducers and activators of transcription-1 (STAT1 (P = 0.0012, c-Fos (P = 0.04, c-Jun (P = 0.019 and Ets-like molecule 1 (Elk-1 (P = 0.038. Conclusion This study demonstrates that α-MG attenuates LPS-mediated activation of MAPK, STAT1, c-Fos, c-Jun and EIK-1, inhibiting TNF-α and IL-4 production in U937 cells.

  12. Sodium arsenite accelerates TRAIL-mediated apoptosis in melanoma cells through upregulation of TRAIL-R1/R2 surface levels and downregulation of cFLIP expression

    OpenAIRE

    Ivanov, Vladimir N.; Hei, Tom K.

    2006-01-01

    AP-1/cJun, NF-κB and STAT3 transcription factors control expression of numerous genes, which regulate critical cell functions including proliferation, survival and apoptosis. Sodium arsenite is known to suppress both the IKK-NF-κB and JAK2-STAT3 signaling pathways and to activate the MAPK/JNK-cJun pathways, thereby committing some cancers to undergo apoptosis. Indeed, sodium arsenite is an effective drug for the treatment of acute promyelocytic leukemia with little nonspecific toxicity. Malig...

  13. c-Jun N-terminal kinase is required for thermotherapy-induced apoptosis in human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Feng Xiao; Bin Liu; Qing-Xian Zhu

    2012-01-01

    AIM:To investigate the role of c-Jun N-terminal kinase (JNK) in thermotherapy-induced apoptosis in human gastric cancer SGC-7901 cells.METHODS:Human gastric cancer SGC-7901 cells were cultured in vitro.Following thermotherapy at 43 ℃ for 0,0.5,1,2 or 3 h,the cells were cultured for a further 24 h with or without the JNK specific inhibitor,SP600125 for 2 h.Apoptosis was evaluated by immunohistochemistry [terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)] and flow cytometry (Annexin vs propidium iodide).Cell proliferation was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.The production of p-JNK,Bcl-2,Bax and caspase-3 proteins was evaluated by Western blotting.The expression of JNK at mRNA level was determined by reverse transcription polymerase chain reaction.RESULTS:The Proliferation of gastric carcinoma SGC-7901 cells was significantly inhibited following thermotherapy,and was 32.7%,30.6%,43.8% and 52.9% at 0.5,1,2 and 3 h post-thermotherapy,respectively.Flow cytometry analysis revealed an increased population of SGC-7901 cells in G0/G1 phase,but a reduced population in S phase following therrnotherapy for 1 or 2 h,compared to untreated cells (P < 0.05).The increased number of SGC-7901 cells in G0/G1 phase was consistent with induced apoptosis (flow cytometry) following thermotherapy for 0.5,1,2 or 3 h,compared to the untreated group (46.5% ± 0.23%,39.9% ± 0.53%,56.6% ±0.35% and 50.4% ± 0.29% vs 7.3% ± 0.10%,P < 0.01),respectively.This was supported by the TUNEL assay (48.2% ± 0.4%,40.1% ± 0.2%,61.2% ± 0.29% and 52.0% ± 0.42% vs 12.2% ± 0.22%,P < 0.01) respectively.More importantly,the expression of p-JNK protein and JNK mRNA levels were significantly higher at 0.5 h than at 0 h post-treatment (P < 0.01),and peaked at 2 h.A similar pattem was detected for Bax and caspase-3 proteins.Bcl-2 increased at 0.5 h,peaked at 1 h,and then decreased

  14. Differential gene expressions of the MAPK signaling pathway in enterovirus 71-infected rhabdomyosarcoma cells

    Directory of Open Access Journals (Sweden)

    Weifeng Shi

    2013-08-01

    Full Text Available BACKGROUND: Mitogen-activated protein kinase (MAPK signaling pathway plays an important role in response to viral infection. The aim of this study was to explore the function and mechanism of MAPK signaling pathway in enterovirus 71 (EV71 infection of human rhabdomyosarcoma (RD cells. METHODS: Apoptosis of RD cells was observed using annexin V-FITC/PI binding assay under a fluorescence microscope. Cellular RNA was extracted and transcribed to cDNA. The expressions of 56 genes of MAPK signaling pathway in EV71-infected RD cells at 8 h and 20 h after infection were analyzed by PCR array. The levels of IL-2, IL-4, IL-10, and TNF-α in the supernatant of RD cells infected with EV71 at different time points were measured by ELISA. RESULTS: The viability of RD cells decreased obviously within 48 h after EV71 infection. Compared with the control group, EV71 infection resulted in the significantly enhanced releases of IL-2, IL-4, IL-10 and TNF-α from infected RD cells (p < 0.05. At 8 h after infection, the expressions of c-Jun, c-Fos, IFN-i, MEKK1, MLK3 and NIK genes in EV71-infected RD cells were up-regulated by 2.08-6.12-fold, whereas other 19 genes (e.g. AKT1, AKT2, E2F1, IKK and NF-κB1 exhibited down-regulation. However, at 20 h after infection, those MAPK signaling molecules including MEKK1, ASK1, MLK2, MLK3, NIK, MEK1, MEK2, MEK4, MEK7, ERK1, JNK1 and JNK2 were up-regulated. In addition, the expressions of AKT2, ELK1, c-Jun, c-Fos, NF-κB p65, PI3K and STAT1 were also increased. CONCLUSION: EV71 infection induces the differential gene expressions of MAPK signaling pathway such as ERK, JNK and PI3K/AKT in RD cells, which may be associated with the secretions of inflammatory cytokines and host cell apoptosis.

  15. Ascidian gene-expression profiles

    OpenAIRE

    William R Jeffery

    2002-01-01

    With the advent of gene-expression profiling, a large number of genes can now be investigated simultaneously during critical stages of development. This approach will be particularly informative in studies of ascidians, basal chordates whose genomes and embryology are uniquely suited for mapping developmental gene networks.

  16. Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera.

    Science.gov (United States)

    Boncristiani, Humberto; Underwood, Robyn; Schwarz, Ryan; Evans, Jay D; Pettis, Jeffery; vanEngelsdorp, Dennis

    2012-05-01

    The effect of using acaricides to control varroa mites has long been a concern to the beekeeping industry due to unintended negative impacts on honey bee health. Irregular ontogenesis, suppression of immune defenses, and impairment of normal behavior have been linked to pesticide use. External stressors, including parasites and the pathogens they vector, can confound studies on the effects of pesticides on the metabolism of honey bees. This is the case of Varroa destructor, a mite that negatively affects honey bee health on many levels, from direct parasitism, which diminishes honey bee productivity, to vectoring and/or activating other pathogens, including many viruses. Here we present a gene expression profile comprising genes acting on diverse metabolic levels (detoxification, immunity, and development) in a honey bee population that lacks the influence of varroa mites. We present data for hives treated with five different acaricides; Apiguard (thymol), Apistan (tau-fluvalinate), Checkmite (coumaphos), Miteaway (formic acid) and ApiVar (amitraz). The results indicate that thymol, coumaphos and formic acid are able to alter some metabolic responses. These include detoxification gene expression pathways, components of the immune system responsible for cellular response and the c-Jun amino-terminal kinase (JNK) pathway, and developmental genes. These could potentially interfere with the health of individual honey bees and entire colonies. PMID:22212860

  17. c-Jun N-terminal kinase phosphorylates DCP1a to control formation of P bodies

    OpenAIRE

    Rzeczkowski, Katharina; Beuerlein, Knut; Müller, Helmut; Dittrich-Breiholz, Oliver; Schneider, Heike; Kettner-Buhrow, Daniela; Holtmann, Helmut; Kracht, Michael

    2011-01-01

    Cytokines and stress-inducing stimuli signal through c-Jun N-terminal kinase (JNK) using a diverse and only partially defined set of downstream effectors. In this paper, the decapping complex subunit DCP1a was identified as a novel JNK target. JNK phosphorylated DCP1a at residue S315 in vivo and in vitro and coimmunoprecipitated and colocalized with DCP1a in processing bodies (P bodies). Sustained JNK activation by several different inducers led to DCP1a dispersion from P bodies, whereas IL-1...

  18. Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation

    Science.gov (United States)

    D'Alonzo, Richard C.; Selvamurugan, Nagarajan; Karsenty, Gerard; Partridge, Nicola C.

    2002-01-01

    Previously, we determined that the activator protein-1 (AP-1)-binding site and the runt domain (RD)-binding site and their binding proteins, c-Fos.c-Jun and Cbfa, regulate the collagenase-3 promoter in parathyroid hormone-treated and differentiating osteoblasts. Here we show that Cbfa1 and c-Fos.c-Jun appear to cooperatively bind the RD- and AP-1-binding sites and form ternary structures in vitro. Both in vitro and in vivo co-immunoprecipitation and yeast two-hybrid studies further demonstrate interaction between Cbfa1 with c-Fos and c-Jun in the absence of phosphorylation and without binding to DNA. Additionally, only the runt domain of Cbfa1 was required for interaction with c-Jun and c-Fos. In mammalian cells, overexpression of Cbfa1 enhanced c-Jun activation of AP-1-binding site promoter activity, demonstrating functional interaction. Finally, insertion of base pairs that disrupted the helical phasing between the AP-1- and RD-binding sites also inhibited collagenase-3 promoter activation. Thus, we provide direct evidence that Cbfa1 and c-Fos.c-Jun physically interact and cooperatively bind the AP-1- and RD-binding sites in the collagenase-3 promoter. Moreover, the AP-1- and RD-binding sites appear to be organized in a specific required helical arrangement that facilitates transcription factor interaction and enables promoter activation.

  19. Homeobox gene expression in Brachiopoda

    DEFF Research Database (Denmark)

    Altenburger, Andreas; Martinez, Pedro; Wanninger, Andreas

    2011-01-01

    The molecular control that underlies brachiopod ontogeny is largely unknown. In order to contribute to this issue we analyzed the expression pattern of two homeobox containing genes, Not and Cdx, during development of the rhynchonelliform (i.e., articulate) brachiopod Terebratalia transversa....... Not is a homeobox containing gene that regulates the formation of the notochord in chordates, while Cdx (caudal) is a ParaHox gene involved in the formation of posterior tissues of various animal phyla. The T. transversa homolog, TtrNot, is expressed in the ectoderm from the beginning of gastrulation until...... formation. TtrNot expression is absent in unfertilized eggs, in embryos prior to gastrulation, and in settled individuals during and after metamorphosis. Comparison with the expression patterns of Not genes in other metazoan phyla suggests an ancestral role for this gene in gastrulation and germ layer...

  20. MKR转基因2型糖尿病小鼠脂肪组织p38丝裂原活化蛋白激酶、c-jun氨基末端激酶蛋白的表达及左归复方的保护作用%Research on p38 Mitogen-activated Protein Kinase and c-jun Amino-terminal Kinase Expression in Adipose Tissue of Transgenic Type 2 Diabetic MKR Mice and Protective Action of Zuogui Recipe

    Institute of Scientific and Technical Information of China (English)

    吴勇军; 喻嵘; 成细华; 夏金华; 吴慧

    2011-01-01

    目的 观察MKR转基因2型糖尿病小鼠脂肪组织磷酸化p38丝裂原活化蛋白激酶、c-jun氨基末端激酶蛋白表达的变化及左归复方(滋阴益气活血解毒组方)的保护作用.方法 40只MKR小鼠经鉴定后,随机分为MKR模型组、左归复方高、低剂量组、文迪雅组,每组10只.C57BL/6J(C57)野生鼠10只作为空白对照组.各药物组分别以相应剂量连续给药30天.于给药前、第15天及第30天,分别作空腹血糖测定.末次给药后0.5 h,心脏取血,放射免疫法测血清胰岛素,酶联免疫吸附测定法检测血清细胞间黏附分子、血管细胞黏附分子,Western blotting和免疫组织化学检测磷酸化p38丝裂原活化蛋白激酶、c-jun氨基末端激酶蛋白在脂肪组织中的表达.结果 ①左归复方干顸治疗后,其高剂量具有显著的降低MKR小鼠空腹血糖、改善高胰岛素血症的作用(P<0.05,P<0.01);②MKR鼠具有显著增高的炎症因子水平,而左归复方干预治疗后具有降低与炎症反应相关的细胞间黏附分子1和血管细胞黏附分子1水平的作用(P<0.01);③MKR小鼠脂肪组织中p38丝裂原活化蛋白激酶和c-jun 氨基末端激酶蛋白表达均上调,但与C57野生鼠比较差异无统计学意义(P>0.05);左归复方干预治疗后,MKR小鼠脂肪组织中p38丝裂原活化蛋白激酶和c-jun氨基末端激酶蛋白表达均显著下调(P<0.05,P<0.01),左归复方下调p38丝裂原活化蛋白激酶和c-jun氨基末端激酶蛋白表达与阳性对照药文迪雅作用相当.结论 左归复方能显著改善MKR小鼠糖代谢及其炎症损伤,其机制为下调脂肪组织中磷酸化p38丝裂原活化蛋白激酶和c-jun氨基末端激酶蛋白表达,增强脂肪组织对胰岛素的敏感性和炎症抑制作用.%Aim To observe the effect of of Zuogui recipe (ZR) on glucose metabolism and p38 mitogen-activated protein kinase (p38MAPK) and c-jun amino-terminal kinase (JNK) expression in the

  1. H-ras transfection of the rat kidney cell line NRK-52E results in increased induction of c-fos, c-jun and hsp70 following sulofenur treatment.

    Science.gov (United States)

    Gu, H; Smith, M W; Phelps, P C; Berezesky, I K; Merriman, R L; Boder, G B; Trump, B F

    1996-09-10

    The effect of the antineoplastic drug sulofenur on the induction of the immediate-early genes (IEG) c-fos and c-jun and the stress gene hsp70 was compared in the rat kidney epithelial-like cell line NRK-52E and a derivative H-ras-transfected (H/1.2NRK-52E) cell line. Fold induction for each gene after sulofenur (500 microM) treatment was greater in H/1.2NRK-52E. The maximum increases for NRK-2E and H/1.2NRK-52E were as follows: c-fos, approximately 10-fold and approximately 18-fold; c-jun, approximately 2.5-fold and approximately 3.6-fold; hsp70, approximately 13-fold and approximately 30-fold. In cells loaded with EGTA/AM or treated in low or no Ca2+ HBSS, c-fos induction was reduced similarly in both cell types. However, inhibition of protein kinases with staurosporin and calphostin C reduced c-fos by 80% in NRK-52E but by only 10-20% in H/1.2NRK.52E. These results indicate that sulofenur-induced IEG elevation is Ca(2+)-dependent and that the requirement for protein kinase C activation is bypassed in H-ras-transfected cells.

  2. Shuffling Yeast Gene Expression Data

    OpenAIRE

    Bilke, Sven

    2000-01-01

    A new method to sort gene expression patterns into functional groups is presented. The method is based on a sorting algorithm using a non-local similarity score, which takes all other patterns in the dataset into account. The method is therefore very robust with respect to noise. Using the expression data for yeast, we extract information about functional groups. Without prior knowledge of parameters the cell cycle regulated genes in yeast can be identified. Furthermore a second, independent ...

  3. Vascular gene expression: a hypothesis

    OpenAIRE

    Martínez-Navarro, Angélica C.; Galván-Gordillo, Santiago V.; Xoconostle-Cázares, Beatriz; Ruiz-Medrano, Roberto

    2013-01-01

    The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular ti...

  4. Tissue specific promoters improve the localization of radiation-inducible gene expression

    International Nuclear Information System (INIS)

    Purpose: Site-specific activation of gene expression can be achieved by the use of a promoter that is induced by physical agents such as x-rays. The purpose of the present study was to determine whether site-specific activation of gene therapy can also be achieved within the vascular endothelium by use of radiation-inducible promoters. We studied induction of promoter-reporter gene constructs using previously identified radiation-promoters from c-jun, c-fos, Egr-1, ICAM-1, ELAM-1 after transfection into in the vascular endothelium. Methods: The following radiation-inducible genetic constructs were created: The ELAM-1 promoter fragment was cloned into pOGH to obtain the pE-sel(-587 +35)GH reporter construct. The ICAM-1 promoter fragment (-1162/+1) was cloned upstream of the CAT coding region of the pCAT-plasmid (Promega) after removal of the SV40 promoter by Bgl2/Stu1 digestion to create the pBS-CAT plasmid. The 132 to +170 bp segment of the 5' untranslated region of the c-jun promoter was cloned to the CAT reporter gene to create the -132/+170 cjun-CAT. The Egr-1 promoter fragment (-425/+75) was cloned upstream of the CAT coding region to create the pE425-CAT plasmid. Tandem repeats of the AP-1 binding site were cloned upstream of the CAT coding region (3 xTRE-CAT). Tandem repeats of the Egr binding site (EBS) were cloned upstream of the CAT coding region (EBS-CAT). Human vascular endothelial cells from both large vessel and small vessel origin (HUVEC and HMEC), as well as human tumor cell lines were transfected with plasmids -132/+170 cjun-CAT, pE425-CAT, 3 xTRE-CAT, EBS-CAT, pE-sel-GH and pBS-CAT by use of liposomes. Humor tumor cell lines included SQ20B (squamous), RIT3 (sarcoma), and HL525 (leukemia). Each plasmid was cotransfected with a plasmid containing a CMV promoter linked to the LacZ gene (1 μg). Transfected cells were treated with mock irradiation or x-rays. Cell extracts were assayed for reporter gene expression. Results: Radiation-induced gene

  5. Correction of gene expression data

    DEFF Research Database (Denmark)

    Darbani Shirvanehdeh, Behrooz; Stewart, C. Neal, Jr.; Noeparvar, Shahin;

    2014-01-01

    This report investigates for the first time the potential inter-treatment bias source of cell number for gene expression studies. Cell-number bias can affect gene expression analysis when comparing samples with unequal total cellular RNA content or with different RNA extraction efficiencies....... For maximal reliability of analysis, therefore, comparisons should be performed at the cellular level. This could be accomplished using an appropriate correction method that can detect and remove the inter-treatment bias for cell-number. Based on inter-treatment variations of reference genes, we introduce...

  6. CHROMATIN LOOPS, GENE POSITIONING AND GENE EXPRESSION

    Directory of Open Access Journals (Sweden)

    Sjoerd eHolwerda

    2012-10-01

    Full Text Available Technological developments and intense research over the last years have led to a better understanding of the three-dimensional structure of the genome and its influence on genome function inside the cell nucleus. We will summarize topological studies performed on four model gene loci: the α- and β-globin gene loci, the antigen receptor loci, the imprinted H19-Igf2 locus and the Hox gene clusters. Collectively, these studies show that regulatory DNA sequences physically contact genes to control their transcription. Proteins set up the three-dimensional configuration of the genome and we will discuss the roles of the key structural organizers CTCF and cohesin, the nuclear lamina and the transcription machinery. Finally, genes adopt non-random positions in the nuclear interior. We will review studies on gene positioning and propose that cell-specific genome conformations can juxtapose a regulatory sequence on one chromosome to a responsive gene on another chromosome to cause altered gene expression in subpopulations of cells.

  7. Shuffling Yeast Gene Expression Data

    CERN Document Server

    Bilke, S

    2000-01-01

    A new method to sort gene expression patterns into functional groups is presented. The method is based on a sorting algorithm using a non-local similarity score, which takes all other patterns in the dataset into account. The method is therefore very robust with respect to noise. Using the expression data for yeast, we extract information about functional groups. Without prior knowledge of parameters the cell cycle regulated genes in yeast can be identified. Furthermore a second, independent cell clock is identified. The capability of the algorithm to extract information about signal flow in the regulatory network underlying the expression patterns is demonstrated.

  8. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder;

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each...... pool) of total RNA from left-sided sporadic colorectal carcinomas. We compared normal tissue to carcinoma tissue from Dukes' stages A-D (noninvasive to distant metastasis) and identified 908 known genes and 4,155 ESTs that changed remarkably from normal to tumor tissue. Based on intensive filtering 226...... known genes and 157 ESTs were found to be highly relevant for CRC. The alteration of known genes was confirmed in >70% of the cases by array analysis of 25 single samples. Two-way hierarchical average linkage cluster analysis clustered normal tissue together with Dukes' A, clustered Dukes' B with Dukes...

  9. Enediyne lidamycin induces apoptosis in human multiple myeloma cells through activation of p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase.

    Science.gov (United States)

    Zhen, Yong-Zhan; Lin, Ya-Jun; Shang, Bo-Yang; Zhen, Yong-Su

    2009-07-01

    In the present study, the effects of lidamycin (LDM), a member of the enediyne antibiotic family, on two human multiple myeloma (MM) cell lines, U266 and SKO-007, were evaluated. In MTS assay, LDM showed much more potent cytotoxicity than conventional anti-MM agents to both cell lines. The IC(50) values of LDM for the U266 and SKO-007 cells were 0.0575 +/- 0.0015 and 0.1585 +/- 0.0166 nM, respectively, much lower than those of adriamycin, dexamethasone, and vincristine. Mechanistically, LDM triggered MM cells apoptosis by increasing the levels of cleaved poly ADP-ribose polymerase (PARP) and caspase-3/7. In addition, activation of p38 mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK) was a critical mediator in LDM-induced cell death. Inhibition of the expression of p38 MAPK and JNK by pharmacological inhibitors reversed the LDM-induced apoptosis through decreasing the level of cleaved PARP and caspase-3/7. Interestingly, phosphorylation of extracellular signal-related kinase was increased by LDM; conversely, MEK inhibitor synergistically enhanced LDM-induced cytotoxicity and apoptosis in MM cells. The results demonstrated that LDM suppresses MM cell growth through the activation of p38 MAPK and JNK, with the potential to be developed as a chemotherapeutic agent for MM. PMID:19468799

  10. Plasticity in the rat prefrontal cortex: linking gene expression and an operant learning with a computational theory.

    Directory of Open Access Journals (Sweden)

    Maximiliano Rapanelli

    Full Text Available The plasticity in the medial Prefrontal Cortex (mPFC of rodents or lateral prefrontal cortex in non human primates (lPFC, plays a key role neural circuits involved in learning and memory. Several genes, like brain-derived neurotrophic factor (BDNF, cAMP response element binding (CREB, Synapsin I, Calcium/calmodulin-dependent protein kinase II (CamKII, activity-regulated cytoskeleton-associated protein (Arc, c-jun and c-fos have been related to plasticity processes. We analysed differential expression of related plasticity genes and immediate early genes in the mPFC of rats during learning an operant conditioning task. Incompletely and completely trained animals were studied because of the distinct events predicted by our computational model at different learning stages. During learning an operant conditioning task, we measured changes in the mRNA levels by Real-Time RT-PCR during learning; expression of these markers associated to plasticity was incremented while learning and such increments began to decline when the task was learned. The plasticity changes in the lPFC during learning predicted by the model matched up with those of the representative gene BDNF. Herein, we showed for the first time that plasticity in the mPFC in rats during learning of an operant conditioning is higher while learning than when the task is learned, using an integrative approach of a computational model and gene expression.

  11. Regulation of apoptotic c-Jun N-terminal kinase signaling by a stabilization-based feed-forward loop.

    Science.gov (United States)

    Xu, Zhiheng; Kukekov, Nikolay V; Greene, Lloyd A

    2005-11-01

    A sequential kinase cascade culminating in activation of c-Jun N-terminal kinases (JNKs) plays a fundamental role in promoting apoptotic death in many cellular contexts. The mechanisms by which this pathway is engaged in response to apoptotic stimuli and suppressed in viable cells are largely unknown. Here, we show that apoptotic stimuli increase endogenous cellular levels of pathway components, including POSH, mixed lineage kinases (MLKs), and JNK interacting protein 1, and that this effect occurs through protein stabilization and requires the presence of POSH as well as activation of MLKs and JNKs. Our findings suggest a self-amplifying, feed-forward loop mechanism by which apoptotic stimuli promote the stabilization of JNK pathway components, thereby contributing to cell death. PMID:16260609

  12. Regulation of Apoptotic c-Jun N-Terminal Kinase Signaling by a Stabilization-Based Feed-Forward Loop†

    Science.gov (United States)

    Xu, Zhiheng; Kukekov, Nikolay V.; Greene, Lloyd A.

    2005-01-01

    A sequential kinase cascade culminating in activation of c-Jun N-terminal kinases (JNKs) plays a fundamental role in promoting apoptotic death in many cellular contexts. The mechanisms by which this pathway is engaged in response to apoptotic stimuli and suppressed in viable cells are largely unknown. Here, we show that apoptotic stimuli increase endogenous cellular levels of pathway components, including POSH, mixed lineage kinases (MLKs), and JNK interacting protein 1, and that this effect occurs through protein stabilization and requires the presence of POSH as well as activation of MLKs and JNKs. Our findings suggest a self-amplifying, feed-forward loop mechanism by which apoptotic stimuli promote the stabilization of JNK pathway components, thereby contributing to cell death. PMID:16260609

  13. Activation of the KCa3.1 channel contributes to traumatic scratch injury-induced reactive astrogliosis through the JNK/c-Jun signaling pathway.

    Science.gov (United States)

    Yi, Mengni; Dou, Fangfang; Lu, Qin; Yu, Zhihua; Chen, Hongzhuan

    2016-06-15

    Reactive astrogliosis is widely considered to contribute to pathogenic responses to stress and brain injury and to diseases as diverse as ischemia and neurodegeneration. We previously found that expression of the intermediate-conductance calcium-activated potassium channel (KCa3.1) involved in TGF-β-activated astrogliosis. In the present study, we investigated whether migration of cortical astrocytes following mechanical scratch injury involves the KCa3.1 channel, which contributes to Ca(2+)-mediated migration in other cells. We found that scratch injury increased the expression of KCa3.1 protein in reactive astrocytes. Application of the KCa3.1 blocker TRAM-34 decreased glial fibrillary acidic protein (GFAP) expression and slowed migration in a concentration-dependent manner. Application of the Ca(2+) chelators, EGTA and BAPTA-AM, also slowed the migration of astrocytes. Blockade or genetic deletion of KCa3.1 both slowed and dramatically reduced the scratch injuries induced the sharp rise in astrocytes Ca(2+) concentrations. The scratch injury-induced phosphorylation of JNK and c-Jun proteins was also attenuated both by blockade of KCa3.1 with TRAM-34 and in KCa3.1(-/-) astrocytes. Using KCa3.1 knockout mice, we further confirmed that deletion of KCa3.1 reduced expression of GFAP in an in vivo stab wound model. Taken together, our findings highlight a novel role for KCa3.1 in phenotypic modulation of reactive astrocytes and in astrocyte mobilization in response to mechanical stress, providing a potential target for therapeutic intervention in brain injuries.

  14. Inhibition of spinal astrocytic c-Jun N-terminal kinase (JNK activation correlates with the analgesic effects of ketamine in neuropathic pain

    Directory of Open Access Journals (Sweden)

    Wang Wen

    2011-01-01

    Full Text Available Abstract Background We have previously reported that inhibition of astrocytic activation contributes to the analgesic effects of intrathecal ketamine on spinal nerve ligation (SNL-induced neuropathic pain. However, the underlying mechanisms are still unclear. c-Jun N-terminal kinase (JNK, a member of mitogen-activated protein kinase (MAPK family, has been reported to be critical for spinal astrocytic activation and neuropathic pain development after SNL. Ketamine can decrease lipopolysaccharide (LPS-induced phosphorylated JNK (pJNK expression and could thus exert its anti-inflammatory effect. We hypothesized that inhibition of astrocytic JNK activation might be involved in the suppressive effect of ketamine on SNL-induced spinal astrocytic activation. Methods Immunofluorescence histochemical staining was used to detect SNL-induced spinal pJNK expression and localization. The effects of ketamine on SNL-induced mechanical allodynia were confirmed by behavioral testing. Immunofluorescence histochemistry and Western blot were used to quantify the SNL-induced spinal pJNK expression after ketamine administration. Results The present study showed that SNL induced ipsilateral pJNK up-regulation in astrocytes but not microglia or neurons within the spinal dorsal horn. Intrathecal ketamine relieved SNL-induced mechanical allodynia without interfering with motor performance. Additionally, intrathecal administration of ketamine attenuated SNL-induced spinal astrocytic JNK activation in a dose-dependent manner, but not JNK protein expression. Conclusions The present results suggest that inhibition of JNK activation may be involved in the suppressive effects of ketamine on SNL-induced spinal astrocyte activation. Therefore, inhibition of spinal JNK activation may be involved in the analgesic effects of ketamine on SNL-induced neuropathic pain.

  15. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  16. Zipf's Law in Gene Expression

    CERN Document Server

    Furusawa, C; Furusawa, Chikara; Kaneko, Kunihiko

    2002-01-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1, i.e., they obey Zipf's law. Furthermore, by simulations of a simple model with an intra-cellular reaction network, we found that Zipf's law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  17. Early Gene Expression in Wounded Human Keratinocytes Revealed by DNA Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Pascal Barbry

    2006-04-01

    Full Text Available Wound healing involves several steps: spreading of the cells, migration and proliferation. We have profiled gene expression during the early events of wound healing in normal human keratinocytes with a home-made DNA microarray containing about 1000 relevant human probes. An original wounding machine was used, that allows the wounding of up to 40% of the surface of a confluent monolayer of cultured cells grown on a Petri dish (compared with 5% with a classical ‘scratch’ method. The two aims of the present study were: (a to validate a limited number of genes by comparing the expression levels obtained with this technique with those found in the literature; (b to combine the use of the wounding machine with DNA microarray analysis for large-scale detection of the molecular events triggered during the early stages of the wound-healing process. The time-courses of RNA expression observed at 0.5, 1.5, 3, 6 and 15 h after wounding for genes such as c-Fos, c-Jun, Egr1, the plasminogen activator PLAU (uPA and the signal transducer and transcription activator STAT3, were consistent with previously published data. This suggests that our methodologies are able to perform quantitative measurement of gene expression. Transcripts encoding two zinc finger proteins, ZFP36 and ZNF161, and the tumour necrosis factor α-induced protein TNFAIP3, were also overexpressed after wounding. The role of the p38 mitogen-activated protein kinase (p38MAPK in wound healing was shown after the inhibition of p38 by SB203580, but our results also suggest the existence of surrogate activating pathways.

  18. Human papillomavirus gene expression

    International Nuclear Information System (INIS)

    To determine the role of tissue differentiation on expression of each of the papillomavirus mRNA species identified by electron microscopy, the authors prepared exon-specific RNA probes that could distinguish the alternatively spliced mRNA species. Radioactively labeled single-stranded RNA probes were generated from a dual promoter vector system and individually hybridized to adjacent serial sections of formalin-fixed, paraffin-embedded biopsies of condylomata. Autoradiography showed that each of the message species had a characteristic tissue distribution and relative abundance. The authors have characterized a portion of the regulatory network of the HPVs by showing that the E2 ORF encodes a trans-acting enhancer-stimulating protein, as it does in BPV-1 (Spalholz et al. 1985). The HPV-11 enhancer was mapped to a 150-bp tract near the 3' end of the URR. Portions of this region are duplicated in some aggressive strains of HPV-6 (Boshart and zur Hausen 1986; Rando et al. 1986). To test the possible biological relevance of these duplications, they cloned tandem arrays of the enhancer and demonstrated, using a chloramphenicol acetyltransferase (CAT) assay, that they led to dramatically increased transcription proportional to copy number. Using the CAT assays, the authors found that the E2 proteins of several papillomavirus types can cross-stimulate the enhancers of most other types. This suggests that prior infection of a tissue with one papillomavirus type may provide a helper effect for superinfection and might account fo the HPV-6/HPV-16 coinfections in condylomata that they have observed

  19. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress

    Science.gov (United States)

    Go, Y. M.; Boo, Y. C.; Park, H.; Maland, M. C.; Patel, R.; Pritchard, K. A. Jr; Fujio, Y.; Walsh, K.; Darley-Usmar, V.; Jo, H.

    2001-01-01

    Laminar shear stress activates c-Jun NH(2)-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (Akt(AA)) and a constitutively active mutant (Akt(Myr)) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of Akt(AA) in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of Akt(Myr) by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O(2-), which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.

  20. Identifying Gene Interaction Enrichment for Gene Expression Data

    OpenAIRE

    Jigang Zhang; Jian Li; Hong-Wen Deng

    2009-01-01

    Gene set analysis allows the inclusion of knowledge from established gene sets, such as gene pathways, and potentially improves the power of detecting differentially expressed genes. However, conventional methods of gene set analysis focus on gene marginal effects in a gene set, and ignore gene interactions which may contribute to complex human diseases. In this study, we propose a method of gene interaction enrichment analysis, which incorporates knowledge of predefined gene sets (e.g. gene ...

  1. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  2. Colchicine induces apoptosis in HT‑29 human colon cancer cells via the AKT and c-Jun N-terminal kinase signaling pathways.

    Science.gov (United States)

    Huang, Zhen; Xu, Ye; Peng, Wei

    2015-10-01

    Colchicine is a natural compound, which belongs to the botanical family Colchicaceae and prevents growth of cancer cells via antimitotic activity by interacting with microtubules. Although numerous studies have demonstrated that the effect of colchicine on cell apoptosis is mediated by the activation of caspase‑3, the signaling pathways involved in the process remain unknown. In the current study, evidence is presented regarding the missing information using HT‑29 human colon cancer cells. The effect of colchicine on apoptosis in HT‑29 cells and the apoptosis‑associated signaling pathways were determined using various methods, including cell viability assay, Annexin V/propidium idodide (PI) binding, PI staining, Hoechst 33342 staining, mitochondrial membrane potential (Δψm) assay, reactive oxygen species (ROS) assay and western blot analysis. Colchicine was observed to induce a dose‑dependent reduction in cell viability in HT‑29 cells and early apoptosis occurred when the cells were treated with 1 µg/ml colchicine. Furthermore, colchicine treatment induced a loss of Δψm, increased ROS production, activated caspase‑3, upregulated BAX expression and downregulated Bcl‑2 expression, which evidenced the colchicine activity on apoptosis, potentially by acting via the intrinsic apoptotic signaling pathway. Colchicine increased phosphorylation of p38, although not phosphorylation of extracellular signal-regulated kinase and c-Jun N-terminal kinase, which indicates that colchicine activates the p38 signaling pathway in order to induce cell apoptosis. Therefore, colchicine exhibited significant growth inhibition of the HT‑29 colon cancer cell line and induced apoptosis in the cells via the mitochondrial pathway, which is regulated by p38 signaling pathways. PMID:26299305

  3. Gene expression profile of pulpitis.

    Science.gov (United States)

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  4. Gene Expression in Trypanosomatid Parasites

    Directory of Open Access Journals (Sweden)

    Santiago Martínez-Calvillo

    2010-01-01

    Full Text Available The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.

  5. Predicting Virulence of Aeromonas Isolates Based-on Changes in Transcription of c-jun and c-fos in Human Tissue Culture Cells

    Science.gov (United States)

    Aims: To assess virulence of Aeromonas isolates based on the change in regulation of c-jun and c-fos in the human intestinal tissue culture cell line Caco-2. Methods and Results: Aeromonas cells were added to Caco-2 cells at approximately a one to one ratio. After 1, 2 and 3 ...

  6. Zearalenone Mycotoxin Affects Immune Mediators, MAPK Signalling Molecules, Nuclear Receptors and Genome-Wide Gene Expression in Pig Spleen

    Science.gov (United States)

    Pistol, Gina Cecilia; Braicu, Cornelia; Motiu, Monica; Gras, Mihail Alexandru; Marin, Daniela Eliza; Stancu, Mariana; Calin, Loredana; Israel-Roming, Florentina; Berindan-Neagoe, Ioana; Taranu, Ionelia

    2015-01-01

    The toxicity of zearalenone (ZEA) was evaluated in swine spleen, a key organ for the innate and adaptative immune response. Weaned pigs were fed for 18 days with a control or a ZEA contaminated diet. The effect of ZEA was assessed on wide genome expression, pro- (TNF-α, IL-8, IL-6, IL-1β, IFN-γ) and anti-inflammatory (IL-10, IL-4) cytokines, other molecules involved in inflammatory processes (MMPs/TIMPs), as well as signaling molecules, (p38/JNK1/JNK2-MAPKs) and nuclear receptors (PPARγ/NFkB/AP-1/STAT3/c-JUN). Microarray analysis showed that 46% of total number of differentially expressed genes was involved in cellular signaling pathway, 13% in cytokine network and 10% in the inflammatory response. ZEA increased expression and synthesis of pro- inflammatory (TNF-α, IL-8, IL-6, IL-1β) and had no effect on IFN-γ, IL-4 and IL-10 cytokines in spleen. The inflammatory stimulation might be a consequence of JNK pathway activation rather than of p-38MAPK and NF-kB involvement whose gene and protein expression were suppressed by ZEA action. In summary, our findings indicated the role of ZEA as an immune disruptor at spleen level. PMID:26011631

  7. Zearalenone mycotoxin affects immune mediators, MAPK signalling molecules, nuclear receptors and genome-wide gene expression in pig spleen.

    Directory of Open Access Journals (Sweden)

    Gina Cecilia Pistol

    Full Text Available The toxicity of zearalenone (ZEA was evaluated in swine spleen, a key organ for the innate and adaptative immune response. Weaned pigs were fed for 18 days with a control or a ZEA contaminated diet. The effect of ZEA was assessed on wide genome expression, pro- (TNF-α, IL-8, IL-6, IL-1β, IFN-γ and anti-inflammatory (IL-10, IL-4 cytokines, other molecules involved in inflammatory processes (MMPs/TIMPs, as well as signaling molecules, (p38/JNK1/JNK2-MAPKs and nuclear receptors (PPARγ/NFkB/AP-1/STAT3/c-JUN. Microarray analysis showed that 46% of total number of differentially expressed genes was involved in cellular signaling pathway, 13% in cytokine network and 10% in the inflammatory response. ZEA increased expression and synthesis of pro- inflammatory (TNF-α, IL-8, IL-6, IL-1β and had no effect on IFN-γ, IL-4 and IL-10 cytokines in spleen. The inflammatory stimulation might be a consequence of JNK pathway activation rather than of p-38MAPK and NF-kB involvement whose gene and protein expression were suppressed by ZEA action. In summary, our findings indicated the role of ZEA as an immune disruptor at spleen level.

  8. Zearalenone mycotoxin affects immune mediators, MAPK signalling molecules, nuclear receptors and genome-wide gene expression in pig spleen.

    Science.gov (United States)

    Pistol, Gina Cecilia; Braicu, Cornelia; Motiu, Monica; Gras, Mihail Alexandru; Marin, Daniela Eliza; Stancu, Mariana; Calin, Loredana; Israel-Roming, Florentina; Berindan-Neagoe, Ioana; Taranu, Ionelia

    2015-01-01

    The toxicity of zearalenone (ZEA) was evaluated in swine spleen, a key organ for the innate and adaptative immune response. Weaned pigs were fed for 18 days with a control or a ZEA contaminated diet. The effect of ZEA was assessed on wide genome expression, pro- (TNF-α, IL-8, IL-6, IL-1β, IFN-γ) and anti-inflammatory (IL-10, IL-4) cytokines, other molecules involved in inflammatory processes (MMPs/TIMPs), as well as signaling molecules, (p38/JNK1/JNK2-MAPKs) and nuclear receptors (PPARγ/NFkB/AP-1/STAT3/c-JUN). Microarray analysis showed that 46% of total number of differentially expressed genes was involved in cellular signaling pathway, 13% in cytokine network and 10% in the inflammatory response. ZEA increased expression and synthesis of pro- inflammatory (TNF-α, IL-8, IL-6, IL-1β) and had no effect on IFN-γ, IL-4 and IL-10 cytokines in spleen. The inflammatory stimulation might be a consequence of JNK pathway activation rather than of p-38MAPK and NF-kB involvement whose gene and protein expression were suppressed by ZEA action. In summary, our findings indicated the role of ZEA as an immune disruptor at spleen level. PMID:26011631

  9. Glycogen synthase kinase 3β sustains invasion of glioblastoma via the focal adhesion kinase, Rac1, and c-Jun N-terminal kinase-mediated pathway.

    Science.gov (United States)

    Chikano, Yuri; Domoto, Takahiro; Furuta, Takuya; Sabit, Hemragul; Kitano-Tamura, Ayako; Pyko, Ilya V; Takino, Takahisa; Sai, Yoshimichi; Hayashi, Yutaka; Sato, Hiroshi; Miyamoto, Ken-ichi; Nakada, Mitsutoshi; Minamoto, Toshinari

    2015-02-01

    The failure of current treatment options for glioblastoma stems from their inability to control tumor cell proliferation and invasion. Biologically targeted therapies offer great hope and one promising target is glycogen synthase kinase-3β (GSK3β), implicated in various diseases, including cancer. We previously reported that inhibition of GSK3β compromises the survival and proliferation of glioblastoma cells, induces their apoptosis, and sensitizes them to temozolomide and radiation. Here, we explore whether GSK3β also contributes to the highly invasive nature of glioblastoma. The effects of GSK3β inhibition on migration and invasion of glioblastoma cells were examined by wound-healing and Transwell assays, as well as in a mouse model of glioblastoma. We also investigated changes in cellular microarchitectures, cytoskeletal components, and proteins responsible for cell motility and invasion. Inhibition of GSK3β attenuated the migration and invasion of glioblastoma cells in vitro and that of tumor cells in a mouse model of glioblastoma. These effects were associated with suppression of the molecular axis involving focal adhesion kinase, guanine nucleotide exchange factors/Rac1 and c-Jun N-terminal kinase. Changes in cellular phenotypes responsible for cell motility and invasion were also observed, including decreased formation of lamellipodia and invadopodium-like microstructures and alterations in the subcellular localization, and activity of Rac1 and F-actin. These changes coincided with decreased expression of matrix metalloproteinases. Our results confirm the potential of GSK3β as an attractive therapeutic target against glioblastoma invasion, thus highlighting a second role in this tumor type in addition to its involvement in chemo- and radioresistance. PMID:25504636

  10. The Gene Expression Omnibus Database.

    Science.gov (United States)

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome-protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  11. The Gene Expression Omnibus database

    Science.gov (United States)

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome–protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  12. c-Jun-N-terminal kinase 1 is necessary for nicotine-induced enhancement of contextual fear conditioning.

    Science.gov (United States)

    Leach, Prescott T; Kenney, Justin W; Gould, Thomas J

    2016-08-01

    Acute nicotine enhances hippocampus-dependent learning. Identifying how acute nicotine improves learning will aid in understanding how nicotine facilitates the development of maladaptive memories that contribute to drug-seeking behaviors, help development of medications to treat disorders associated with cognitive decline, and advance understanding of the neurobiology of learning and memory. The effects of nicotine on learning may involve recruitment of signaling through the c-Jun N-terminal kinase family (JNK 1-3). Learning in the presence of acute nicotine increases the transcription of mitogen-activated protein kinase 8 (MAPK8, also known as JNK1), likely through a CREB-dependent mechanism. The functional significance of JNK1 in the effects of acute nicotine on learning, however, is unknown. The current studies undertook a backward genetic approach to determine the functional contribution JNK1 protein makes to nicotine-enhanced contextual fear conditioning. JNK1 wildtype (WT) and knockout (KO) mice were administered acute nicotine prior to contextual and cued fear conditioning. 24h later, mice were evaluated for hippocampus-dependent (contextual fear conditioning) and hippocampus-independent (cued fear conditioning) memory. Nicotine selectively enhanced contextual conditioning in WT mice, but not in KO mice. Nicotine had no effect on hippocampus-independent learning in either genotype. JNK1 KO and WT mice given saline showed similar levels of learning. These data suggest that JNK1 may be recruited by nicotine and is functionally necessary for the acute effects of nicotine on learning and memory. PMID:27235579

  13. Metformin prevents endoplasmic reticulum stress-induced apoptosis through AMPK-PI3K-c-Jun NH2 pathway

    Science.gov (United States)

    Jung, T.W.; Lee, M.W.; Lee, Y.-J.; Kim, S.M.

    2012-01-01

    Type 2 diabetes mellitus is thought to be partially associated with endoplasmic reticulum (ER) stress toxicity on pancreatic beta cells and the result of decreased insulin synthesis and secretion. In this study, we showed that a well-known insulin sensitizer, metformin, directly protects against dysfunction and death of ER stress-induced NIT-1 cells (a mouse pancreatic beta cell line) via AMP-activated protein kinase (AMPK) and phosphatidylinositol-3 (PI3) kinase activation. We also showed that exposure of NIT-1 cells to metformin (5mM) increases cellular resistance against ER stress-induced NIT-1 cell dysfunction and death. AMPK and PI3 kinase inhibitors abolished the effect of metformin on cell function and death. Metformin-mediated protective effects on ER stress-induced apoptosis were not a result of an unfolded protein response or the induced inhibitors of apoptotic proteins. In addition, we showed that exposure of ER stressed-induced NIT-1 cells to metformin decreases the phosphorylation of c-Jun NH(2) terminal kinase (JNK). These data suggest that metformin is an important determinant of ER stress-induced apoptosis in NIT-1 cells and may have implications for ER stress-mediated pancreatic beta cell destruction via regulation of the AMPK-PI3 kinase-JNK pathway.

  14. Organ culture of the trigeminal ganglion induces enhanced expression of calcitonin gene-related peptide via activation of extracellular signal-regulated protein kinase 1/2

    DEFF Research Database (Denmark)

    Tajti, János; Kuris, Anikó; Vécsei, László;

    2011-01-01

    , phosphorylated ERK1/2 (pERK1/2), total ERK1/2 (tERK1/2), phosphorylated p38 (pp38), phosphorylated C-Jun-N-terminal protein kinase (pJNK), pro-calcitonin (pro-CT), CGRP receptor activity modifying protein 1 (RAMP1), glutamine synthetase (GS) and pro-CT were used. To explore molecular mechanisms involved......BACKGROUND AND OBJECTIVE: Clinical and experimental studies have revealed a central role of calcitonin gene-related peptide (CGRP) in primary headaches. The role of extracellular signal-regulated kinase 1 and 2 (ERK1/2) in neuronal and glial cell expression of CGRP- immunoreactivity (-ir) in rat...

  15. Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression.

    Science.gov (United States)

    Jourdain, Alexis A; Boehm, Erik; Maundrell, Kinsey; Martinou, Jean-Claude

    2016-03-14

    In mitochondria, DNA replication, gene expression, and RNA degradation machineries coexist within a common nondelimited space, raising the question of how functional compartmentalization of gene expression is achieved. Here, we discuss the recently characterized "mitochondrial RNA granules," mitochondrial subdomains with an emerging role in the regulation of gene expression. PMID:26953349

  16. A constructive approach to gene expression dynamics

    International Nuclear Information System (INIS)

    Recently, experiments on mRNA abundance (gene expression) have revealed that gene expression shows a stationary organization described by a scale-free distribution. Here we propose a constructive approach to gene expression dynamics which restores the scale-free exponent and describes the intermediate state dynamics. This approach requires only one assumption: Markov property

  17. Hyperoside Downregulates the Receptor for Advanced Glycation End Products (RAGE and Promotes Proliferation in ECV304 Cells via the c-Jun N-Terminal Kinases (JNK Pathway Following Stimulation by Advanced Glycation End-Products In Vitro

    Directory of Open Access Journals (Sweden)

    Zhengyu Zhang

    2013-11-01

    Full Text Available Hyperoside is a major active constituent in many medicinal plants which are traditionally used in Chinese medicines for their neuroprotective, anti-inflammatory and antioxidative effects. The molecular mechanisms underlying these effects are unknown. In this study, quiescent ECV304 cells were treated in vitro with advanced glycation end products (AGEs in the presence or absence of hyperoside. The results demonstrated that AGEs induced c-Jun N-terminal kinases (JNK activation and apoptosis in ECV304 cells. Hyperoside inhibited these effects and promoted ECV304 cell proliferation. Furthermore, hyperoside significantly inhibited RAGE expression in AGE-stimulated ECV304 cells, whereas knockdown of RAGE inhibited AGE-induced JNK activation. These results suggested that AGEs may promote JNK activation, leading to viability inhibition of ECV304 cells via the RAGE signaling pathway. These effects could be inhibited by hyperoside. Our findings suggest a novel role for hyperoside in the treatment and prevention of diabetes.

  18. Effective Clustering Algorithms for Gene Expression Data

    CERN Document Server

    Chandrasekhar, T; Elayaraja, E

    2012-01-01

    Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. Identification of co-expressed genes and coherent patterns is the central goal in microarray or gene expression data analysis and is an important task in Bioinformatics research. In this paper, K-Means algorithm hybridised with Cluster Centre Initialization Algorithm (CCIA) is proposed Gene Expression Data. The proposed algorithm overcomes the drawbacks of specifying the number of clusters in the K-Means methods. Experimental analysis shows that the proposed method performs well on gene Expression Data when compare with the traditional K- Means clustering and Silhouette Coefficients cluster measure.

  19. Correlating Expression Data with Gene Function Using Gene Ontology

    Institute of Scientific and Technical Information of China (English)

    LIU,Qi; DENG,Yong; WANG,Chuan; SHI,Tie-Liu; LI,Yi-Xue

    2006-01-01

    Clustering is perhaps one of the most widely used tools for microarray data analysis. Proposed roles for genes of unknown function are inferred from clusters of genes similarity expressed across many biological conditions.However, whether function annotation by similarity metrics is reliable or not and to what extent the similarity in gene expression patterns is useful for annotation of gene functions, has not been evaluated. This paper made a comprehensive research on the correlation between the similarity of expression data and of gene functions using Gene Ontology. It has been found that although the similarity in expression patterns and the similarity in gene functions are significantly dependent on each other, this association is rather weak. In addition, among the three categories of Gene Ontology, the similarity of expression data is more useful for cellular component annotation than for biological process and molecular function. The results presented are interesting for the gene functions prediction research area.

  20. Gene expression analysis identifies global gene dosage sensitivity in cancer

    DEFF Research Database (Denmark)

    Fehrmann, Rudolf S. N.; Karjalainen, Juha M.; Krajewska, Malgorzata;

    2015-01-01

    Many cancer-associated somatic copy number alterations (SCNAs) are known. Currently, one of the challenges is to identify the molecular downstream effects of these variants. Although several SCNAs are known to change gene expression levels, it is not clear whether each individual SCNA affects gene...... expression. We reanalyzed 77,840 expression profiles and observed a limited set of 'transcriptional components' that describe well-known biology, explain the vast majority of variation in gene expression and enable us to predict the biological function of genes. On correcting expression profiles...... for these components, we observed that the residual expression levels (in 'functional genomic mRNA' profiling) correlated strongly with copy number. DNA copy number correlated positively with expression levels for 99% of all abundantly expressed human genes, indicating global gene dosage sensitivity. By applying...

  1. Quality Measures for Gene Expression Biclusters

    OpenAIRE

    Beatriz Pontes; Ral Girldez; Aguilar-Ruiz, Jess S.

    2015-01-01

    An noticeable number of biclustering approaches have been proposed proposed for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. In this context, recognizing groups of co-expressed or co-regulated genes, that is, genes which follow a similar expression pattern, is one of the main objectives. Due to the problem complexity, heuristic searches are usually used instead of exhaustive algorithms. Further...

  2. Case study on the utility of hepatic global gene expression profiling in the risk assessment of the carcinogen furan

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Anna Francina, E-mail: Francina.Jackson@hc-sc.gc.ca [Environmental Health Science and Research Bureau, Health Canada, Ottawa K1A 0K9 (Canada); Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6 (Canada); Williams, Andrew, E-mail: Andrew.Williams@hc-sc.gc.ca [Environmental Health Science and Research Bureau, Health Canada, Ottawa K1A 0K9 (Canada); Recio, Leslie, E-mail: lrecio@ils-inc.com [ILS, Inc., P.O. Box 13501, Research Triangle Park, NC 27709 (United States); Waters, Michael D., E-mail: mwaters@ils-inc.com [ILS, Inc., P.O. Box 13501, Research Triangle Park, NC 27709 (United States); Lambert, Iain B., E-mail: Iain.Lambert@carleton.ca [Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6 (Canada); Yauk, Carole L., E-mail: Carole.Yauk@hc-sc.gc.ca [Environmental Health Science and Research Bureau, Health Canada, Ottawa K1A 0K9 (Canada)

    2014-01-01

    Furan is a chemical hepatocarcinogen in mice and rats. Its previously postulated cancer mode of action (MOA) is chronic cytotoxicity followed by sustained regenerative proliferation; however, its molecular basis is unknown. To this end, we conducted toxicogenomic analysis of B3C6F1 mouse livers following three week exposures to non-carcinogenic (0, 1, 2 mg/kg bw) or carcinogenic (4 and 8 mg/kg bw) doses of furan. We saw enrichment for pathways responsible for cytotoxicity: stress-activated protein kinase (SAPK) and death receptor (DR5 and TNF-alpha) signaling, and proliferation: extracellular signal-regulated kinases (ERKs) and TNF-alpha. We also noted the involvement of NF-kappaB and c-Jun in response to furan, which are genes that are known to be required for liver regeneration. Furan metabolism by CYP2E1 produces cis-2-butene-1,4-dial (BDA), which is required for ensuing cytotoxicity and oxidative stress. NRF2 is a master regulator of gene expression during oxidative stress and we suggest that chronic NFR2 activity and chronic inflammation may represent critical transition events between the adaptive (regeneration) and adverse (cancer) outcomes. Another objective of this study was to demonstrate the applicability of toxicogenomics data in quantitative risk assessment. We modeled benchmark doses for our transcriptional data and previously published cancer data, and observed consistency between the two. Margin of exposure values for both transcriptional and cancer endpoints were also similar. In conclusion, using furan as a case study we have demonstrated the value of toxicogenomics data in elucidating dose-dependent MOA transitions and in quantitative risk assessment. - Highlights: • Global gene expression changes in furan-exposed mouse livers were analyzed. • A molecular mode of action for furan-induced hepatocarcinogenesis is proposed. • Key pathways include NRF2, SAPK, ERK and death receptor signaling. • Important roles for TNF-alpha, c-Jun, and NF

  3. Construction and identification of dominant-negative c-Jun N-terminal kinase(DN-JNK)recombinant adenovirus%DN-JNK基因重组腺病毒的构建和鉴定

    Institute of Scientific and Technical Information of China (English)

    张佳妮; 刘慧霞; 陈金虎; 郭敏; 全养雅; 谭莺

    2009-01-01

    Objective To construct and identify replication deficient recombinant adenovirus expressing human c-Jun N-terminal kinase(JNK)by homologous recombination adenovirus dominant-negative type JNK(Ad-DN-JNK).Methods The linearized recombinant shuttle vector pAdTrack-CMV-DN-JNK Was co-transformed with backbone vector pAdEasy-l into bacteria BJ5183 for recombinant adenoviral vector.The recombinant adenoviral vector was transfected into HEK293 packing cells tO construct replication deficient recombinant adenovirus,and then the recombinant edenovirns WaS detected by PCR and DNA sequencing.Western blot analysis was utilized to detect the Cxpression of Ad-DN-JNK and the level of insulin receptor substrate l Serine307 phosphorylation.Results JNK recombinant adenoviral vectorcould be effectively transfeeted into HEK 293 cell and successfully packed by intracellular enzyme.The expression of green fluorescent protein(GFP)Was observed on the 5th day after transfection.The fragment of JNK gene waS amplified by PCR and identified by sequencing.The titer of the prepared Ad-DN-JNK is 2.5×1010 pfu/ml.The animal experiment confirmed that constructed Ad-DN-JNK could be effectively expressed in liver tissue.Conclusion The research successfully constructed recombinant adenoviral vector and recombinant adenoviral particle.Animal experiment demonstrated the Ad-DN-JNK could effectively mediated the expression of DN-JNK gene and down-regulated the level of IRSlscfine307 phosphorylation.The achievement laid a foundation for further investigation of the function and application of JNK.%目的 制备表达人c-jun氨基末端激酶(JNK)复制缺陷型重组腺病毒(Ad-DN-JNK).并通过动物实验进行功能鉴定.方法 将重组穿梭载体pAdTraek-CMV-DN-JNK线性化后,与pAdEasy-1共转化大肠杆菌BJ5138,进行同源重组得到重组腺病毒载体.将重组腺病毒栽体转染入包装细胞HEK293内制备复制缺陷型重组腺病毒,并经PCR及DNA测序鉴定.Western blot检

  4. Modulation of gene expression made easy

    DEFF Research Database (Denmark)

    Solem, Christian; Jensen, Peter Ruhdal

    2002-01-01

    A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example...

  5. The gap junction inhibitor 2-aminoethoxy-diphenyl-borate protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes and c-jun N-terminal kinase activation

    Energy Technology Data Exchange (ETDEWEB)

    Du, Kuo; Williams, C. David; McGill, Mitchell R.; Xie, Yuchao [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Farhood, Anwar [Department of Pathology, St. David' s North Austin Medical Center, Austin, TX 78756 (United States); Vinken, Mathieu [Department of Toxicology, Center for Pharmaceutical Sciences, Vrije Universiteit Brussels, 1090 Brussels (Belgium); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2013-12-15

    Acetaminophen (APAP) hepatotoxicity is the leading cause of acute liver failure in the US. Although many aspects of the mechanism are known, recent publications suggest that gap junctions composed of connexin32 function as critical intercellular communication channels which transfer cytotoxic mediators into neighboring hepatocytes and aggravate liver injury. However, these studies did not consider off-target effects of reagents used in these experiments, especially the gap junction inhibitor 2-aminoethoxy-diphenyl-borate (2-APB). In order to assess the mechanisms of protection of 2-APB in vivo, male C56Bl/6 mice were treated with 400 mg/kg APAP to cause extensive liver injury. This injury was prevented when animals were co-treated with 20 mg/kg 2-APB and was attenuated when 2-APB was administered 1.5 h after APAP. However, the protection was completely lost when 2-APB was given 4–6 h after APAP. Measurement of protein adducts and c-jun-N-terminal kinase (JNK) activation indicated that 2-APB reduced both protein binding and JNK activation, which correlated with hepatoprotection. Although some of the protection was due to the solvent dimethyl sulfoxide (DMSO), in vitro experiments clearly demonstrated that 2-APB directly inhibits cytochrome P450 activities. In addition, JNK activation induced by phorone and tert-butylhydroperoxide in vivo was inhibited by 2-APB. The effects against APAP toxicity in vivo were reproduced in primary cultured hepatocytes without use of DMSO and in the absence of functional gap junctions. We conclude that the protective effect of 2-APB was caused by inhibition of metabolic activation of APAP and inhibition of the JNK signaling pathway and not by blocking connexin32-based gap junctions. - Highlights: • 2-APB protected against APAP-induced liver injury in mice in vivo and in vitro • 2-APB protected by inhibiting APAP metabolic activation and JNK signaling pathway • DMSO inhibited APAP metabolic activation as the solvent of 2-APB

  6. The gap junction inhibitor 2-aminoethoxy-diphenyl-borate protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes and c-jun N-terminal kinase activation

    International Nuclear Information System (INIS)

    Acetaminophen (APAP) hepatotoxicity is the leading cause of acute liver failure in the US. Although many aspects of the mechanism are known, recent publications suggest that gap junctions composed of connexin32 function as critical intercellular communication channels which transfer cytotoxic mediators into neighboring hepatocytes and aggravate liver injury. However, these studies did not consider off-target effects of reagents used in these experiments, especially the gap junction inhibitor 2-aminoethoxy-diphenyl-borate (2-APB). In order to assess the mechanisms of protection of 2-APB in vivo, male C56Bl/6 mice were treated with 400 mg/kg APAP to cause extensive liver injury. This injury was prevented when animals were co-treated with 20 mg/kg 2-APB and was attenuated when 2-APB was administered 1.5 h after APAP. However, the protection was completely lost when 2-APB was given 4–6 h after APAP. Measurement of protein adducts and c-jun-N-terminal kinase (JNK) activation indicated that 2-APB reduced both protein binding and JNK activation, which correlated with hepatoprotection. Although some of the protection was due to the solvent dimethyl sulfoxide (DMSO), in vitro experiments clearly demonstrated that 2-APB directly inhibits cytochrome P450 activities. In addition, JNK activation induced by phorone and tert-butylhydroperoxide in vivo was inhibited by 2-APB. The effects against APAP toxicity in vivo were reproduced in primary cultured hepatocytes without use of DMSO and in the absence of functional gap junctions. We conclude that the protective effect of 2-APB was caused by inhibition of metabolic activation of APAP and inhibition of the JNK signaling pathway and not by blocking connexin32-based gap junctions. - Highlights: • 2-APB protected against APAP-induced liver injury in mice in vivo and in vitro • 2-APB protected by inhibiting APAP metabolic activation and JNK signaling pathway • DMSO inhibited APAP metabolic activation as the solvent of 2-APB

  7. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy (Davis, CA); Bachkirova, Elena (Davis, CA); Rey, Michael (Davis, CA)

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  8. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  9. Bayesian biclustering of gene expression data

    OpenAIRE

    Liu Jun S; Gu Jiajun

    2008-01-01

    Abstract Background Biclustering of gene expression data searches for local patterns of gene expression. A bicluster (or a two-way cluster) is defined as a set of genes whose expression profiles are mutually similar within a subset of experimental conditions/samples. Although several biclustering algorithms have been studied, few are based on rigorous statistical models. Results We developed a Bayesian biclustering model (BBC), and implemented a Gibbs sampling procedure for its statistical in...

  10. Gene expression in the Parkinson's disease brain

    OpenAIRE

    Lewis, Patrick A.; Cookson, Mark R.

    2012-01-01

    The study of gene expression has undergone a transformation in the past decade as the benefits of the sequencing of the human genome have made themselves felt. Increasingly, genome wide approaches are being applied to the analysis of gene expression in human disease as a route to understanding the underlying pathogenic mechanisms. In this review, we will summarise current state of gene expression studies of the brain in Parkinson's disease, and examine how these techniques can be used to gain...

  11. cis sequence effects on gene expression

    Directory of Open Access Journals (Sweden)

    Jacobs Kevin

    2007-08-01

    Full Text Available Abstract Background Sequence and transcriptional variability within and between individuals are typically studied independently. The joint analysis of sequence and gene expression variation (genetical genomics provides insight into the role of linked sequence variation in the regulation of gene expression. We investigated the role of sequence variation in cis on gene expression (cis sequence effects in a group of genes commonly studied in cancer research in lymphoblastoid cell lines. We estimated the proportion of genes exhibiting cis sequence effects and the proportion of gene expression variation explained by cis sequence effects using three different analytical approaches, and compared our results to the literature. Results We generated gene expression profiling data at N = 697 candidate genes from N = 30 lymphoblastoid cell lines for this study and used available candidate gene resequencing data at N = 552 candidate genes to identify N = 30 candidate genes with sufficient variance in both datasets for the investigation of cis sequence effects. We used two additive models and the haplotype phylogeny scanning approach of Templeton (Tree Scanning to evaluate association between individual SNPs, all SNPs at a gene, and diplotypes, with log-transformed gene expression. SNPs and diplotypes at eight candidate genes exhibited statistically significant (p cis sequence effects in our study, respectively. Conclusion Based on analysis of our results and the extant literature, one in four genes exhibits significant cis sequence effects, and for these genes, about 30% of gene expression variation is accounted for by cis sequence variation. Despite diverse experimental approaches, the presence or absence of significant cis sequence effects is largely supported by previously published studies.

  12. Analysis of Gene Expression Patterns Using Biclustering.

    Science.gov (United States)

    Roy, Swarup; Bhattacharyya, Dhruba K; Kalita, Jugal K

    2016-01-01

    Mining microarray data to unearth interesting expression profile patterns for discovery of in silico biological knowledge is an emerging area of research in computational biology. A group of functionally related genes may have similar expression patterns under a set of conditions or at some time points. Biclustering is an important data mining tool that has been successfully used to analyze gene expression data for biologically significant cluster discovery. The purpose of this chapter is to introduce interesting patterns that may be observed in expression data and discuss the role of biclustering techniques in detecting interesting functional gene groups with similar expression patterns. PMID:26350227

  13. Synthetic promoter libraries- tuning of gene expression

    DEFF Research Database (Denmark)

    Hammer, Karin; Mijakovic, Ivan; Jensen, Peter Ruhdal

    2006-01-01

    be met by using promoter libraries. This approach generally consists of inserting a library of promoters in front of the gene to be studied, whereby the individual promoters might deviate either in their spacer sequences or bear slight deviations from the consensus sequence of a vegetative promoter. Here......The study of gene function often requires changing the expression of a gene and evaluating the consequences. In principle, the expression of any given gene can be modulated in a quasi-continuum of discrete expression levels but the traditional approaches are usually limited to two extremes: gene...... knockout and strong overexpression. However, applications such as metabolic optimization and control analysis necessitate a continuous set of expression levels with only slight increments in strength to cover a specific window around the wildtype expression level of the studied gene; this requirement can...

  14. Deriving Trading Rules Using Gene Expression Programming

    Directory of Open Access Journals (Sweden)

    Adrian VISOIU

    2011-01-01

    Full Text Available This paper presents how buy and sell trading rules are generated using gene expression programming with special setup. Market concepts are presented and market analysis is discussed with emphasis on technical analysis and quantitative methods. The use of genetic algorithms in deriving trading rules is presented. Gene expression programming is applied in a form where multiple types of operators and operands are used. This gives birth to multiple gene contexts and references between genes in order to keep the linear structure of the gene expression programming chromosome. The setup of multiple gene contexts is presented. The case study shows how to use the proposed gene setup to derive trading rules encoded by Boolean expressions, using a dataset with the reference exchange rates between the Euro and the Romanian leu. The conclusions highlight the positive results obtained in deriving useful trading rules.

  15. Gene expression of the endolymphatic sac

    DEFF Research Database (Denmark)

    Friis, Morten; Martin-Bertelsen, Tomas; Friis-Hansen, Lennart;

    2011-01-01

    that the endolymphatic sac has multiple and diverse functions in the inner ear. Objectives:The objective of this study was to provide a comprehensive review of the genes expressed in the endolymphatic sac in the rat and perform a functional characterization based on measured mRNA abundance. Methods:Microarray technology...... was used to investigate the gene expression of the endolymphatic sac with the surrounding dura. Characteristic and novel endolymphatic sac genes were determined by comparing with expressions in pure dura. Results: In all, 463 genes were identified specific for the endolymphatic sac. Functional annotation...

  16. Quality measures for gene expression biclusters.

    Science.gov (United States)

    Pontes, Beatriz; Girldez, Ral; Aguilar-Ruiz, Jess S

    2015-01-01

    An noticeable number of biclustering approaches have been proposed proposed for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. In this context, recognizing groups of co-expressed or co-regulated genes, that is, genes which follow a similar expression pattern, is one of the main objectives. Due to the problem complexity, heuristic searches are usually used instead of exhaustive algorithms. Furthermore, most of biclustering approaches use a measure or cost function that determines the quality of biclusters. Having a suitable quality metric for bicluster is a critical aspect, not only for guiding the search, but also for establishing a comparison criteria among the results obtained by different biclustering techniques. In this paper, we analyse a large number of existing approaches to quality measures for gene expression biclusters, as well as we present a comparative study of them based on their capability to recognize different expression patterns in biclusters. PMID:25763839

  17. Positron emission tomography imaging of gene expression

    International Nuclear Information System (INIS)

    The merging of molecular biology and nuclear medicine is developed into molecular nuclear medicine. Positron emission tomography (PET) of gene expression in molecular nuclear medicine has become an attractive area. Positron emission tomography imaging gene expression includes the antisense PET imaging and the reporter gene PET imaging. It is likely that the antisense PET imaging will lag behind the reporter gene PET imaging because of the numerous issues that have not yet to be resolved with this approach. The reporter gene PET imaging has wide application into animal experimental research and human applications of this approach will likely be reported soon

  18. S-adenosyl-methionine decreases ethanol-induced apoptosis in primary hepatocyte cultures by a c-Jun N-terminal kinase activity-independent mechanism

    Institute of Scientific and Technical Information of China (English)

    María del Pilar Cabrales-Romero; Lucrecia Márquez-Rosado; Samia Fattel-Fazenda; Cristina Trejo-Solís; Evelia Arce-Popoca; Leticia Alemén-Lazarini; Saúl Villa-Trevi(n)o

    2006-01-01

    AIM: To determine the role of c-Jun N-terminal kinase (JNK) activity in ethanol-induced apoptosis and the modulation of this signaling cascade by S-Adenosylmethionine (AdoMet).METHODS: Primary hepatocyte cultures were pretreated with 100 μmol/L SP600125, a selective JNK inhibitor, 1 mL/L DMSO or 4 mmol/L AdoMet and then exposed to 100 mmo/L ethanol. Hepatocyte apoptosis was determined by the TUNEL and DNA ladder assays.JNK activity and its inhibition by SP600125 and AdoMet were determined by Western blot analysis of c-jun phosphorylation and Bid fragmentation. SP600125 and AdoMet effects on the apoptotic signaling pathway were determined by Western blot analysis of cytochrome c release and pro-caspase 3 fragmentation. The AdoMet effect on glutathione levels was measured by Ellman's method and reactive oxygen species (ROS) generation by cell cytometry.RESULTS: The exposure of hepatocytes to ethanol induced JNK activation, c-jun phosphorylation, Bid fragmentation, cytochrome c release and pro-caspase 3 cleavage; these effects were diminished by SP600125, and caused a significant decreasein ethanol-induced apoptosis (P< 0.05). AdoMet exerted an antioxidant effect maintaining glutathione levels and decreasing ROS generation, without a significant effect on JNK activity,and prevented cytochrome c release and pro-caspase 3 cleavage.CONCLUSION: The JNK signaling cascade is a key component of the proapoptotic signaling pathway induced by ethanol. JNK activation may be independent from ROS generation, since AdoMet which exerted antioxidant properties did not have a significant effect on JNK activity. JNK pathway modulator agents and AdoMet may be components of promising therapies for alcoholic liver disease (ALD) treatment.

  19. Depletion of 4-hydroxynonenal in hGSTA4-transfected HLE B-3 cells results in profound changes in gene expression

    International Nuclear Information System (INIS)

    Previously, we have shown that overexpression of 4-hydroxy-2-nonenal (HNE)-detoxifying enzyme glutathione S-transferase A4-4 (hGSTA4-4) in human lens epithelial cells (HLE B-3) leads to pro-carcinogenic phenotypic transformation of these cells [R. Sharma, et al. Eur. J. Biochem. 271 (2004) 1960-1701]. We now demonstrate that hGSTA4-transfection also causes a profound change in the expression of genes involved in cell adhesion, cell cycle control, proliferation, cell growth, and apoptosis, which is consistent with phenotypic changes of the transformed cells. The expression of p53, p21, p16, fibronectin 1, laminin γ1, connexin 43, Fas, integrin α6, TGFα, and c-jun was down-regulated, while the expression of protein kinase C beta II (PKCβII), c-myc, cyclin-dependent kinase 2 (CDK2), and TGFβ was up-regulated in transfected cells. These results demonstrate that HNE serves as a crucial signaling molecule and, by modulating the expression of genes, can influence cellular functions

  20. Identification of a c-Jun N-terminal kinase-2-dependent signal amplification cascade that regulates c-Myc levels in ras transformation

    DEFF Research Database (Denmark)

    Mathiasen, D.P.; Egebjerg, C.; Andersen, S.H.;

    2012-01-01

    Ras is one of the most frequently activated oncogenes in cancer. Two mitogen-activated protein kinases (MAPKs) are important for ras transformation: extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase 2 (JNK2). Here we present a downstream signal amplification cascade that is...... essential for ras transformation. Previous studies show that ERK-mediated serine 62 phosphorylation protects c-Myc from proteasomal degradation. ERK is, however, not alone sufficient to stabilize c-Myc but requires the cooperation of cancerous inhibitor of protein phosphatase 2A (CIP2A), an oncogene that...

  1. The functional landscape of mouse gene expression

    Directory of Open Access Journals (Sweden)

    Zhang Wen

    2004-12-01

    Full Text Available Abstract Background Large-scale quantitative analysis of transcriptional co-expression has been used to dissect regulatory networks and to predict the functions of new genes discovered by genome sequencing in model organisms such as yeast. Although the idea that tissue-specific expression is indicative of gene function in mammals is widely accepted, it has not been objectively tested nor compared with the related but distinct strategy of correlating gene co-expression as a means to predict gene function. Results We generated microarray expression data for nearly 40,000 known and predicted mRNAs in 55 mouse tissues, using custom-built oligonucleotide arrays. We show that quantitative transcriptional co-expression is a powerful predictor of gene function. Hundreds of functional categories, as defined by Gene Ontology 'Biological Processes', are associated with characteristic expression patterns across all tissues, including categories that bear no overt relationship to the tissue of origin. In contrast, simple tissue-specific restriction of expression is a poor predictor of which genes are in which functional categories. As an example, the highly conserved mouse gene PWP1 is widely expressed across different tissues but is co-expressed with many RNA-processing genes; we show that the uncharacterized yeast homolog of PWP1 is required for rRNA biogenesis. Conclusions We conclude that 'functional genomics' strategies based on quantitative transcriptional co-expression will be as fruitful in mammals as they have been in simpler organisms, and that transcriptional control of mammalian physiology is more modular than is generally appreciated. Our data and analyses provide a public resource for mammalian functional genomics.

  2. Bimodal gene expression patterns in breast cancer

    OpenAIRE

    Nikolsky Yuri; Bugrim Andrej; Shi Weiwei; Kirillov Eugene; Bessarabova Marina; Nikolskaya Tatiana

    2010-01-01

    Abstract We identified a set of genes with an unexpected bimodal distribution among breast cancer patients in multiple studies. The property of bimodality seems to be common, as these genes were found on multiple microarray platforms and in studies with different end-points and patient cohorts. Bimodal genes tend to cluster into small groups of four to six genes with synchronised expression within the group (but not between the groups), which makes them good candidates for robust conditional ...

  3. Topological Features In Cancer Gene Expression Data

    OpenAIRE

    Lockwood, Svetlana; Krishnamoorthy, Bala

    2014-01-01

    We present a new method for exploring cancer gene expression data based on tools from algebraic topology. Our method selects a small relevant subset from tens of thousands of genes while simultaneously identifying nontrivial higher order topological features, i.e., holes, in the data. We first circumvent the problem of high dimensionality by dualizing the data, i.e., by studying genes as points in the sample space. Then we select a small subset of the genes as landmarks to construct topologic...

  4. Comparison of gene expression of mitogenic kinin path in adherent and non-adherent CD 34-stem cells using oligonucleotide microarrays.

    Directory of Open Access Journals (Sweden)

    Krzysztof Machaj

    2008-02-01

    Full Text Available One of the more interesting cells present in the umbilical cord blood - as far as their potential clinical use is concerned - are stem cells not presenting the CD34 antigen. These are the pluripotential cells with their biological properties similar to mesenchymal stem cells, with the ability to differentiate into such tissue types as bone, cartilage, nervous (to some extent, glia and muscle. The authors compared the activity of genes coding the proteins in mitogenic signal paths activated by kinin receptors using oligonucleotide microarrays in adherent and non-adherent CD 34- cells derived from umbilical cord blood. In the linear regression model with a 95% prognosis area for differentiating genes outside this area, the following genes were selected: c-jun (present in 3 isoforms and c-fos. The fos and jun genes create the AP-1 transcriptive factor which regulates the expression of genes taking part in numerous cellular processes, including the cell cycle and mitosis. The obtained results shed some light on the molecular processes behind the MSC proliferation and are a starting point for further studies on the mesenchymal stem cell biology.

  5. A comparative gene expression database for invertebrates

    Directory of Open Access Journals (Sweden)

    Ormestad Mattias

    2011-08-01

    Full Text Available Abstract Background As whole genome and transcriptome sequencing gets cheaper and faster, a great number of 'exotic' animal models are emerging, rapidly adding valuable data to the ever-expanding Evo-Devo field. All these new organisms serve as a fantastic resource for the research community, but the sheer amount of data, some published, some not, makes detailed comparison of gene expression patterns very difficult to summarize - a problem sometimes even noticeable within a single lab. The need to merge existing data with new information in an organized manner that is publicly available to the research community is now more necessary than ever. Description In order to offer a homogenous way of storing and handling gene expression patterns from a variety of organisms, we have developed the first web-based comparative gene expression database for invertebrates that allows species-specific as well as cross-species gene expression comparisons. The database can be queried by gene name, developmental stage and/or expression domains. Conclusions This database provides a unique tool for the Evo-Devo research community that allows the retrieval, analysis and comparison of gene expression patterns within or among species. In addition, this database enables a quick identification of putative syn-expression groups that can be used to initiate, among other things, gene regulatory network (GRN projects.

  6. Differential gene expression during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Krieger

    1999-09-01

    Full Text Available The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE. The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells, while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

  7. Multivariate search for differentially expressed gene combinations

    Directory of Open Access Journals (Sweden)

    Klebanov Lev

    2004-10-01

    Full Text Available Abstract Background To identify differentially expressed genes, it is standard practice to test a two-sample hypothesis for each gene with a proper adjustment for multiple testing. Such tests are essentially univariate and disregard the multidimensional structure of microarray data. A more general two-sample hypothesis is formulated in terms of the joint distribution of any sub-vector of expression signals. Results By building on an earlier proposed multivariate test statistic, we propose a new algorithm for identifying differentially expressed gene combinations. The algorithm includes an improved random search procedure designed to generate candidate gene combinations of a given size. Cross-validation is used to provide replication stability of the search procedure. A permutation two-sample test is used for significance testing. We design a multiple testing procedure to control the family-wise error rate (FWER when selecting significant combinations of genes that result from a successive selection procedure. A target set of genes is composed of all significant combinations selected via random search. Conclusions A new algorithm has been developed to identify differentially expressed gene combinations. The performance of the proposed search-and-testing procedure has been evaluated by computer simulations and analysis of replicated Affymetrix gene array data on age-related changes in gene expression in the inner ear of CBA mice.

  8. Gene Expression Profiling in Porcine Fetal Thymus

    Institute of Scientific and Technical Information of China (English)

    Yanjiong Chen; Shengbin Li; Lin Ye; Jianing Geng; Yajun Deng; Songnian Hu

    2003-01-01

    obtain an initial overview of gene diversity and expression pattern in porcinethymus, 11,712 ESTs (Expressed Sequence Tags) from 100-day-old porcine thymus(FTY) were sequenced and 7,071 cleaned ESTs were used for gene expressionanalysis. Clustered by the PHRAP program, 959 contigs and 3,074 singlets wereobtained. Blast search showed that 806 contigs and 1,669 singlets (totally 5,442ESTs) had homologues in GenBank and 1,629 ESTs were novel. According to theGene Ontology classification, 36.99% ESTs were cataloged into the gene expressiongroup, indicating that although the functional gene (18.78% in defense group) ofthymus is expressed in a certain degree, the 100-day-old porcine thymus still existsin a developmental stage. Comparative analysis showed that the gene expressionpattern of the 100-day-old porcine thymus is similar to that of the human infantthymus.

  9. Nucleosome repositioning underlies dynamic gene expression.

    Science.gov (United States)

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions.

  10. Phytochrome-regulated Gene Expression

    Institute of Scientific and Technical Information of China (English)

    Peter H. Quail

    2007-01-01

    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent comprehensive studies in Arabidopsis that have identified the genome-wide set of phy-regulated genes that respond rapidly to red-light signals upon first exposure of dark-grown seedlings, and have tested the functional relevance to normal seedling photomorphogenesis of an initial subset of these genes. The data: (a) reveal considerable complexity in the channeling of the light signals through the different phy-family members (phyA to phyE) to responsive genes; (b) identify a diversity of transcription-factor-encoding genes as major early, if not primary, targets of phy signaling, and, therefore, as potentially important regulators in the transcriptional-network hierarchy; and (c) identify auxin-related genes as the dominant class among rapidly-regulated, hormone-related genes. However, reverse-genetic functional profiling of a selected subset of these genes reveals that only a limited fraction are necessary for optimal phy-induced seedling deetiolation.

  11. Gene expression profile of sprinter's muscle.

    Science.gov (United States)

    Yoshioka, M; Tanaka, H; Shono, N; Shindo, M; St-Amand, J

    2007-12-01

    We have characterized the global gene expression profile in left vastus lateralis muscles of sprinters and sedentary men. The gene expression profile was analyzed by using serial analysis of gene expression (SAGE) method. The abundantly expressed transcripts in the sprinter's muscle were mainly involved in contraction and energy metabolism, whereas six transcripts were corresponding to potentially novel transcripts. Thirty-eight transcripts were differentially expressed between the sprinter and sedentary individuals. Moreover, sprinters showed higher expressions of both uncharacterized and potentially novel transcripts. Sprinters also highly expressed seven transcripts, such as glycine-rich protein, myosin heavy polypeptide (MYH) 2, expressed sequence tag similar to (EST) fructose-bisphosphate aldolase 1 isoform A (ALDOA), glyceraldehyde-3-phosphate dehydrogenase and ATP synthase F0 subunit 6. On the other hand, 20 transcripts such as MYH1, tropomyosin 2 and 3, troponin C slow, C2 fast, I slow, T1 slow and T3 fast, myoglobin, creatine kinase, ALDOA, glycogen phosphorylase, cytochrome c oxidase II and III, and NADH dehydrogenase 1 and 2 showed lower expression levels in the sprinters than the sedentary controls. The current study has characterized the global gene expressions in sprinters and identified a number of transcripts that can be subjected to further mechanistic analysis.

  12. Momordica charantia polysaccharides could protect against cerebral ischemia/reperfusion injury through inhibiting oxidative stress mediated c-Jun N-terminal kinase 3 signaling pathway.

    Science.gov (United States)

    Gong, Juanjuan; Sun, Fumou; Li, Yihang; Zhou, Xiaoling; Duan, Zhenzhen; Duan, Fugang; Zhao, Lei; Chen, Hansen; Qi, Suhua; Shen, Jiangang

    2015-04-01

    Momordica charantia (MC) is a medicinal plant for stroke treatment in Traditional Chinese Medicine, but its active compounds and molecular targets are unknown yet. M. charantia polysaccharide (MCP) is one of the important bioactive components in MC. In the present study, we tested the hypothesis that MCP has neuroprotective effects against cerebral ischemia/reperfusion injury through scavenging superoxide (O2(-)), nitric oxide (NO) and peroxynitrite (ONOO(-)) and inhibiting c-Jun N-terminal protein kinase (JNK3) signaling cascades. We conducted experiments with in vivo global and focal cerebral ischemia/reperfusion rat models and in vitro oxygen glucose deprivation (OGD) neural cells. The effects of MCP on apoptotic cell death and infarction volume, the bioactivities of scavenging O2(-), NO and ONOO(-), inhibiting lipid peroxidation and modulating JNK3 signaling pathway were investigated. Major results are summarized as below: (1) MCP dose-dependently attenuated apoptotic cell death in neural cells under OGD condition in vitro and reduced infarction volume in ischemic brains in vivo; (2) MCP had directing scavenging effects on NO, O2(-) and ONOO(-) and inhibited lipid peroxidation; (3) MCP inhibited the activations of JNK3/c-Jun/Fas-L and JNK3/cytochrome C/caspases-3 signaling cascades in ischemic brains in vivo. Taken together, we conclude that MCP could be a promising neuroprotective ingredient of M. charantia and its mechanisms could be at least in part attributed to its antioxidant activities and inhibiting JNK3 signaling cascades during cerebral ischemia/reperfusion injury. PMID:25510970

  13. Extracting expression modules from perturbational gene expression compendia

    OpenAIRE

    Van Dijck Patrick; Maere Steven; Kuiper Martin

    2008-01-01

    Abstract Background Compendia of gene expression profiles under chemical and genetic perturbations constitute an invaluable resource from a systems biology perspective. However, the perturbational nature of such data imposes specific challenges on the computational methods used to analyze them. In particular, traditional clustering algorithms have difficulties in handling one of the prominent features of perturbational compendia, namely partial coexpression relationships between genes. Biclus...

  14. Gene expression in periodontal tissues following treatment

    Directory of Open Access Journals (Sweden)

    Eisenacher Martin

    2008-07-01

    Full Text Available Abstract Background In periodontitis, treatment aimed at controlling the periodontal biofilm infection results in a resolution of the clinical and histological signs of inflammation. Although the cell types found in periodontal tissues following treatment have been well described, information on gene expression is limited to few candidate genes. Therefore, the aim of the study was to determine the expression profiles of immune and inflammatory genes in periodontal tissues from sites with severe chronic periodontitis following periodontal therapy in order to identify genes involved in tissue homeostasis. Gingival biopsies from 12 patients with severe chronic periodontitis were taken six to eight weeks following non-surgical periodontal therapy, and from 11 healthy controls. As internal standard, RNA of an immortalized human keratinocyte line (HaCaT was used. Total RNA was subjected to gene expression profiling using a commercially available microarray system focusing on inflammation-related genes. Post-hoc confirmation of selected genes was done by Realtime-PCR. Results Out of the 136 genes analyzed, the 5% most strongly expressed genes compared to healthy controls were Interleukin-12A (IL-12A, Versican (CSPG-2, Matrixmetalloproteinase-1 (MMP-1, Down syndrome critical region protein-1 (DSCR-1, Macrophage inflammatory protein-2β (Cxcl-3, Inhibitor of apoptosis protein-1 (BIRC-1, Cluster of differentiation antigen 38 (CD38, Regulator of G-protein signalling-1 (RGS-1, and Finkel-Biskis-Jinkins murine osteosarcoma virus oncogene (C-FOS; the 5% least strongly expressed genes were Receptor-interacting Serine/Threonine Kinase-2 (RIP-2, Complement component 3 (C3, Prostaglandin-endoperoxide synthase-2 (COX-2, Interleukin-8 (IL-8, Endothelin-1 (EDN-1, Plasminogen activator inhibitor type-2 (PAI-2, Matrix-metalloproteinase-14 (MMP-14, and Interferon regulating factor-7 (IRF-7. Conclusion Gene expression profiles found in periodontal tissues following

  15. Optogenetic Control of Gene Expression in Drosophila.

    Directory of Open Access Journals (Sweden)

    Yick-Bun Chan

    Full Text Available To study the molecular mechanism of complex biological systems, it is important to be able to artificially manipulate gene expression in desired target sites with high precision. Based on the light dependent binding of cryptochrome 2 and a cryptochrome interacting bHLH protein, we developed a split lexA transcriptional activation system for use in Drosophila that allows regulation of gene expression in vivo using blue light or two-photon excitation. We show that this system offers high spatiotemporal resolution by inducing gene expression in tissues at various developmental stages. In combination with two-photon excitation, gene expression can be manipulated at precise sites in embryos, potentially offering an important tool with which to examine developmental processes.

  16. Regulation of meiotic gene expression in plants

    Directory of Open Access Journals (Sweden)

    Adele eZhou

    2014-08-01

    Full Text Available With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been built. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa, wheat (Triticum aestivum, petunia (Petunia hybrida, sunflower (Helianthus annuus, and maize (Zea mays. Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs, that might be involved in the regulation of meiotic transcription patterns.

  17. Regulation of Gene Expression in Protozoa Parasites

    Directory of Open Access Journals (Sweden)

    Consuelo Gomez

    2010-01-01

    Full Text Available Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.

  18. Gene expression profiling in autoimmune diseases

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Brynskov, Jørn; Hegedüs, Laszlo;

    2007-01-01

    A central issue in autoimmune disease is whether the underlying inflammation is a repeated stereotypical process or whether disease specific gene expression is involved. To shed light on this, we analysed whether genes previously found to be differentially regulated in rheumatoid arthritis (RA...... differences in peripheral blood mononuclear cell (MNC) gene expression patterns between 15 newly diagnosed HT patients and 15 matched healthy controls. However, the MNC expression levels of five genes were significantly upregulated in 25 IBD patients, compared to 18 matched healthy controls (CD14, FACL2, FCN1...... immunoinflammatory diseases, but only if accompanied by pronounced systemic manifestations. This suggests that at least some of the genes activated in RA are predominantly or solely related to general and disease-nonspecific autoimmune processes...

  19. Energy intake and adiponectin gene expression

    OpenAIRE

    Qiao, Liping; Lee, Bonggi; Kinney, Brice; Yoo, Hyung sun; Shao, Jianhua

    2011-01-01

    Hypoadiponectinemia and decreased adiponectin gene expression in white adipose tissue (WAT) have been well observed in obese subjects and animal models. However, the mechanism for obesity-associated hypoadiponectinemia is still largely unknown. To investigate the regulatory role of energy intake, dietary fat, and adiposity in adiponectin gene expression and blood adiponectin level, a series of feeding regimens was employed to manipulate energy intake and dietary fat in obese-prone C57BL/6, ge...

  20. Facilitated diffusion buffers noise in gene expression

    OpenAIRE

    Schoech, Armin; Zabet, Nicolae Radu

    2014-01-01

    Transcription factors perform facilitated diffusion (3D diffusion in the cytosol and 1D diffusion on the DNA) when binding to their target sites to regulate gene expression. Here, we investigated the influence of this binding mechanism on the noise in gene expression. Our results showed that, for biologically relevant parameters, the binding process can be represented by a two-state Markov model and that the accelerated target finding due to facilitated diffusion leads to a reduction in both ...

  1. PRAME gene expression profile in medulloblastoma

    Directory of Open Access Journals (Sweden)

    Tânia Maria Vulcani-Freitas

    2011-02-01

    Full Text Available Medulloblastoma is the most common malignant tumors of central nervous system in the childhood. The treatment is severe, harmful and, thus, has a dismal prognosis. As PRAME is present in various cancers, including meduloblastoma, and has limited expression in normal tissues, this antigen can be an ideal vaccine target for tumor immunotherapy. In order to find a potential molecular target, we investigated PRAME expression in medulloblastoma fragments and we compare the results with the clinical features of each patient. Analysis of gene expression was performed by real-time quantitative PCR from 37 tumor samples. The Mann-Whitney test was used to analysis the relationship between gene expression and clinical characteristics. Kaplan-Meier curves were used to evaluate survival. PRAME was overexpressed in 84% samples. But no statistical association was found between clinical features and PRAME overexpression. Despite that PRAME gene could be a strong candidate for immunotherapy since it is highly expressed in medulloblastomas.

  2. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    Science.gov (United States)

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  3. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    Science.gov (United States)

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  4. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Odelta dos Santos

    Full Text Available Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR, one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  5. Inferring gene networks from discrete expression data

    KAUST Repository

    Zhang, L.

    2013-07-18

    The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.

  6. Translational control of gene expression and disease

    NARCIS (Netherlands)

    Calkhoven, Cornelis F; Müller, Christine; Leutz, Achim

    2002-01-01

    In the past decade, translational control has been shown to be crucial in the regulation of gene expression. Research in this field has progressed rapidly, revealing new control mechanisms and adding constantly to the list of translationally regulated genes. There is accumulating evidence that trans

  7. Perspectives: Gene Expression in Fisheries Management

    Science.gov (United States)

    Nielsen, Jennifer L.; Pavey, Scott A.

    2010-01-01

    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  8. NGF deprivation-induced gene expression: after ten years, where do we stand?

    Science.gov (United States)

    Freeman, Robert S; Burch, Robert L; Crowder, Robert J; Lomb, David J; Schoell, Matthew C; Straub, Jennifer A; Xie, Liang

    2004-01-01

    Nerve growth factor (NGF) is required for the survival of developing sympathetic and sensory neurons. In the absence of NGF, these neurons undergo protein synthesis-dependent apoptosis. Ten years have gone by since the first reports of specific genes being upregulated during NGF deprivation-induced cell death. Over the last decade, a few additional genes (DP5, Bim, SM-20) have been added to a list that began with cyclin D1 and c-jun. In this chapter, we discuss the evidence that these genes act as regulators of neuronal cell death. We also suggest a hypothesis for how one gene, SM-20, may function to suppress a self-protection mechanism in NGF-deprived neurons. PMID:14699960

  9. Application of multidisciplinary analysis to gene expression.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuefel (University of New Mexico, Albuquerque, NM); Kang, Huining (University of New Mexico, Albuquerque, NM); Fields, Chris (New Mexico State University, Las Cruces, NM); Cowie, Jim R. (New Mexico State University, Las Cruces, NM); Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy (New Mexico State University, Las Cruces, NM); Mosquera-Caro, Monica P. (University of New Mexico, Albuquerque, NM); Xu, Yuexian (University of New Mexico, Albuquerque, NM); Martin, Shawn Bryan; Helman, Paul (University of New Mexico, Albuquerque, NM); Andries, Erik (University of New Mexico, Albuquerque, NM); Ar, Kerem (University of New Mexico, Albuquerque, NM); Potter, Jeffrey (University of New Mexico, Albuquerque, NM); Willman, Cheryl L. (University of New Mexico, Albuquerque, NM); Murphy, Maurice H. (University of New Mexico, Albuquerque, NM)

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  10. Aberrant Gene Expression in Acute Myeloid Leukaemia

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen

    Summary Acute Myeloid Leukaemia (AML) is an aggressive cancer of the bone marrow, affecting formation of blood cells during haematopoiesis. This thesis presents investigation of AML using mRNA gene expression profiles (GEP) of samples extracted from the bone marrow of healthy and diseased subjects...... genes and genetic signatures and for reducing dimensionally of gene expression data. Next, we have used machine-learning methods to predict survival and to assess important predictors based on these results. General application of a number of these methods has been implemented into two public query...

  11. Gene expression profiling: can we identify the right target genes?

    Directory of Open Access Journals (Sweden)

    J. E. Loyd

    2008-12-01

    Full Text Available Gene expression profiling allows the simultaneous monitoring of the transcriptional behaviour of thousands of genes, which may potentially be involved in disease development. Several studies have been performed in idiopathic pulmonary fibrosis (IPF, which aim to define genetic links to the disease in an attempt to improve the current understanding of the underlying pathogenesis of the disease and target pathways for intervention. Expression profiling has shown a clear difference in gene expression between IPF and normal lung tissue, and has identified a wide range of candidate genes, including those known to encode for proteins involved in extracellular matrix formation and degradation, growth factors and chemokines. Recently, familial pulmonary fibrosis cohorts have been examined in an attempt to detect specific genetic mutations associated with IPF. To date, these studies have identified families in which IPF is associated with mutations in the gene encoding surfactant protein C, or with mutations in genes encoding components of telomerase. Although rare and clearly not responsible for the disease in all individuals, the nature of these mutations highlight the importance of the alveolar epithelium in disease pathogenesis and demonstrate the potential for gene expression profiling in helping to advance the current understanding of idiopathic pulmonary fibrosis.

  12. Introduction to the Gene Expression Analysis.

    Science.gov (United States)

    Segundo-Val, Ignacio San; Sanz-Lozano, Catalina S

    2016-01-01

    In 1941, Beadle and Tatum published experiments that would explain the basis of the central dogma of molecular biology, whereby the DNA through an intermediate molecule, called RNA, results proteins that perform the functions in cells. Currently, biomedical research attempts to explain the mechanisms by which develops a particular disease, for this reason, gene expression studies have proven to be a great resource. Strictly, the term "gene expression" comprises from the gene activation until the mature protein is located in its corresponding compartment to perform its function and contribute to the expression of the phenotype of cell.The expression studies are directed to detect and quantify messenger RNA (mRNA) levels of a specific gene. The development of the RNA-based gene expression studies began with the Northern Blot by Alwine et al. in 1977. In 1969, Gall and Pardue and John et al. independently developed the in situ hybridization, but this technique was not employed to detect mRNA until 1986 by Coghlan. Today, many of the techniques for quantification of RNA are deprecated because other new techniques provide more information. Currently the most widely used techniques are qPCR, expression microarrays, and RNAseq for the transcriptome analysis. In this chapter, these techniques will be reviewed. PMID:27300529

  13. Regulation of gene expression in human tendinopathy

    Directory of Open Access Journals (Sweden)

    Archambault Joanne M

    2011-05-01

    Full Text Available Abstract Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics.

  14. Antiepileptic Effect of Uncaria rhynchophylla and Rhynchophylline Involved in the Initiation of c-Jun N-Terminal Kinase Phosphorylation of MAPK Signal Pathways in Acute Seizures of Kainic Acid-Treated Rats

    Directory of Open Access Journals (Sweden)

    Hsin-Cheng Hsu

    2013-01-01

    Full Text Available Seizures cause inflammation of the central nervous system. The extent of the inflammation is related to the severity and recurrence of the seizures. Cell surface receptors are stimulated by stimulators such as kainic acid (KA, which causes intracellular mitogen-activated protein kinase (MAPK signal pathway transmission to coordinate a response. It is known that Uncaria rhynchophylla (UR and rhynchophylline (RP have anticonvulsive effects, although the mechanisms remain unclear. Therefore, the purpose of this study is to develop a novel strategy for treating epilepsy by investigating how UR and RP initiate their anticonvulsive mechanisms. Sprague-Dawley rats were administered KA (12 mg/kg, i.p. to induce seizure before being sacrificed. The brain was removed 3 h after KA administration. The results indicate that pretreatment with UR (1.0 g/kg, RP (0.25 mg/kg, and valproic acid (VA, 250 mg/kg for 3 d could reduce epileptic seizures and could also reduce the expression of c-Jun aminoterminal kinase phosphorylation (JNKp of MAPK signal pathways in the cerebral cortex and hippocampus brain tissues. Proinflammatory cytokines interleukin (IL-1β, IL-6, and tumor necrosis factor-α remain unchanged, indicating that the anticonvulsive effect of UR and RP is initially involved in the JNKp MAPK signal pathway during the KA-induced acute seizure period.

  15. Noise minimization in eukaryotic gene expression.

    Directory of Open Access Journals (Sweden)

    Hunter B Fraser

    2004-06-01

    Full Text Available All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or "noise." Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  16. Soybean physiology and gene expression during drought.

    Science.gov (United States)

    Stolf-Moreira, R; Medri, M E; Neumaier, N; Lemos, N G; Pimenta, J A; Tobita, S; Brogin, R L; Marcelino-Guimarães, F C; Oliveira, M C N; Farias, J R B; Abdelnoor, R V; Nepomuceno, A L

    2010-10-05

    Soybean genotypes MG/BR46 (Conquista) and BR16, drought-tolerant and -sensitive, respectively, were compared in terms of morphophysiological and gene-expression responses to water stress during two stages of development. Gene-expression analysis showed differential responses in Gmdreb1a and Gmpip1b mRNA expression within 30 days of water-deficit initiation in MG/BR46 (Conquista) plants. Within 45 days of initiating stress, Gmp5cs and Gmpip1b had relatively higher expression. Initially, BR16 showed increased expression only for Gmdreb1a, and later (45 days) for Gmp5cs, Gmdefensin and Gmpip1b. Only BR16 presented down-regulated expression of genes, such as Gmp5cs and Gmpip1b, 30 days after the onset of moisture stress, and Gmgols after 45 days of stress. The faster perception of water stress in MG/BR46 (Conquista) and the better maintenance of up-regulated gene expression than in the sensitive BR16 genotype imply mechanisms by which the former is better adapted to tolerate moisture deficiency.

  17. Quality measures for gene expression biclusters.

    Directory of Open Access Journals (Sweden)

    Beatriz Pontes

    Full Text Available An noticeable number of biclustering approaches have been proposed proposed for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. In this context, recognizing groups of co-expressed or co-regulated genes, that is, genes which follow a similar expression pattern, is one of the main objectives. Due to the problem complexity, heuristic searches are usually used instead of exhaustive algorithms. Furthermore, most of biclustering approaches use a measure or cost function that determines the quality of biclusters. Having a suitable quality metric for bicluster is a critical aspect, not only for guiding the search, but also for establishing a comparison criteria among the results obtained by different biclustering techniques. In this paper, we analyse a large number of existing approaches to quality measures for gene expression biclusters, as well as we present a comparative study of them based on their capability to recognize different expression patterns in biclusters.

  18. Stress-induced phosphorylation of c-Jun-N-terminal kinases and nuclear translocation of Hsp70 in the Wistar rat hippocampus

    Directory of Open Access Journals (Sweden)

    Adžić M.

    2009-01-01

    Full Text Available Glucocorticoids are key regulators of the neuroendocrine stress response in the hippocampus. Their action is partly mediated through the subfamily of MAPKs termed c-Jun-N-terminal kinases (JNKs,whose activation correlates with neurodegeneration. The stress response also involves activation of cell protective mechanisms through various heat shock proteins (HSPs that mediate neuroprotection. We followed both JNKs and Hsp70 signals in the cytoplasmic and nuclear compartments of the hippocampus of Wistar male rats exposed to acute, chronic, and combined stress. The activity of JNK1 was decreased in both compartments by all three types of stress, while the activity of cytoplasmic JNK2/3 was elevated in acute and unaltered or lowered in chronic and combined stress. Under all stress conditions, Hsp70 translocation to the nucleus was markedly increased. The results suggest that neurodegenerative signaling of JNKs may be counteracted by increase of nuclear Hsp70,especially under chronic stress.

  19. Resveratrol alleviates diabetes-induced testicular dysfunction by inhibiting oxidative stress and c-Jun N-terminal kinase signaling in rats.

    Science.gov (United States)

    Faid, Iman; Al-Hussaini, Heba; Kilarkaje, Narayana

    2015-12-15

    Diabetes adversely affects reproductive functions in humans and animals. The present study investigated the effects of Resveratrol on diabetes-induced alterations in oxidative stress, c-Jun N-terminal kinase (JNK) signaling and apoptosis in the testis. Adult male Wistar rats (13-15 weeks; n=6/group) were segregated into 1) normal control, 2) Resveratrol-treated (5mg/kg; ip; given during last 3 weeks), 3) Streptozotocin-induced diabetic and, 4) Resveratrol-treated diabetic groups, and euthanized on day 42 after the confirmation of diabetes. Resveratrol did not normalize blood glucose levels in diabetic rats. Resveratrol supplementation recovered diabetes-induced decreases in reproductive organ weights, sperm count and motility, intra-testicular levels of superoxide dismutase, catalase, and glutathione peroxidase and an increase in 4-hydroxynonenal activities (Prats. These results suggest that Resveratrol supplementation may be a useful strategy to treat diabetes-induced testicular dysfunction. PMID:26499206

  20. Calcium has a permissive role in interleukin-1beta-induced c-jun N-terminal kinase activation in insulin-secreting cells

    DEFF Research Database (Denmark)

    Størling, Joachim; Zaitsev, Sergei V; Kapelioukh, Iouri L;

    2005-01-01

    -acetoxymethyl], an inhibitor of calmodulin (W7), and inhibitors of Ca(2+)/calmodulin-dependent kinase (KN62 and KN93) partially reduced IL-1beta-stimulated c-jun phosphorylation in INS-1 or betaTC3 cells. Our data suggest that Ca(2+) plays a permissive role in IL-1beta activation of the JNK signaling pathway in insulin......-cells are largely unknown. In this study, we investigated whether Ca(2+) plays a role for IL-1beta-induced JNK activation. In insulin-secreting rat INS-1 cells cultured in the presence of 11 mm glucose, combined pharmacological blockade of L- and T-type Ca(2+) channels suppressed IL-1beta-induced in vitro...

  1. The Dietary Isoflavone Daidzein Reduces Expression of Pro-Inflammatory Genes through PPARα/γ and JNK Pathways in Adipocyte and Macrophage Co-Cultures.

    Directory of Open Access Journals (Sweden)

    Yuri Sakamoto

    Full Text Available Obesity-induced inflammation caused by adipocyte-macrophage interactions plays a critical role in developing insulin resistance, and peroxisome proliferator-activated receptors (PPARs regulate inflammatory gene expression in these cells. Recently, the soy isoflavone daidzein was reported to act as a PPAR activator. We examined whether daidzein affected adipocyte-macrophage crosstalk via the regulation of PPARs. Co-cultures of 3T3-L1 adipocytes and RAW264 macrophages, or palmitate-stimulated RAW264 macrophages were treated with daidzein in the presence or absence of specific inhibitors for PPARs: GW6471 (a PPARα antagonist, and GW9662 (a PPARγ antagonist. Inflammatory gene expression was then determined. Daidzein significantly decreased chemokine (C-C motif ligand 2 (Ccl2, known in humans as monocyte chemo-attractant protein 1 (MCP1 and interleukin 6 (Il6 mRNA levels induced by co-culture. In 3T3-L1 adipocytes, daidzein inversed the attenuation of adiponectin gene expression by co-culture, and these effects were inhibited by the PPAR-γ specific inhibitor. Daidzein also decreased Ccl2 and Il6 mRNA levels in RAW264 macrophages stimulated with palmitate or conditioned medium (CM from hypertrophied 3T3-L1 adipocytes. This inhibitory effect on Il6 expression was abrogated by a PPAR-α inhibitor. Additionally, we examined the activation of nuclear factor-kappa B (NF-κB and c-Jun N-terminal kinase (JNK pathways and found that daidzein significantly inhibited palmitate-induced phosphorylation of JNK. Our data suggest that daidzein regulates pro-inflammatory gene expression by activating PPAR-α and -γ and inhibiting the JNK pathway in adipocyte and macrophage co-cultures. These effects might be favorable in improving adipose inflammation, thus, treatment of daidzein may be a therapeutic strategy for chronic inflammation in obese adipose tissue.

  2. Alternative-splicing-mediated gene expression

    Science.gov (United States)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  3. Involvement of c-Jun N-terminal kinase in reversal of multidrug resistance of human leukemia cells in hypoxia by 5-bromotetrandrine.

    Science.gov (United States)

    Zhang, Wei; Chen, Bao-an; Jin, Jun-fei; He, You-ji; Niu, Yi-qi

    2013-11-01

    5-Bromotetrandrine (BrTet), a candidate multidrug resistance (MDR) modulator, is a potential compound for use in cancer therapy when combined with anticancer agents such as daunorubicin (DNR) and paclitaxel. The purposeof this study was to investigate the mechanism of reversal of P-glycoprotein (P-gp)-mediated MDR by BrTet and the involvement of the c-Jun N-terminal kinase (JNK)/c-Jun signaling pathway in both adriamycin-sensitive K562 and adriamycin-resistant K562 (KA) leukemia cells in hypoxia. The combination of BrTet and DNR decreased both phosphorylated JNK1/2 and MDR1/P-gp levels under hypoxic conditions. Furthermore, a pharmacological inhibitor of JNK, SP600125, or small interfering RNA (siRNA) oligonucleotides to both JNK1 and JNK2 reversed BrTet- or DNR-induced JNK phosphorylation and MDR1/P-gp levels. We further demonstrated that the decreased JNK phosphorylation and MDR1/P-gp levels were associated with a significant increase in intracellular accumulation of DNR, which dramatically enhanced the sensitivity of drug-resistant KA cells to DNR, and led to cellular apoptosis through activation of the caspase-3 pathway. It is concluded that using BrTet in combination with other chemotherapeutic agents and pharmacological inhibitors of JNK can abrogate the P-gp-induced MDR in adriamycin-resistant K562 cells, which has potential clinical relevance in cancer therapy for chemotherapeutic-resistant human leukemia. PMID:23418897

  4. Differential effects of histone deacetylase inhibitors on phorbol ester- and TGF-beta1 induced murine tissue inhibitor of metalloproteinases-1 gene expression.

    Science.gov (United States)

    Young, David A; Billingham, Olivia; Sampieri, Clara L; Edwards, Dylan R; Clark, Ian M

    2005-04-01

    Expression of the tissue inhibitor of metalloproteinases-1 (Timp-1) gene can be induced by either phorbol myristate acetate (PMA) or transforming growth factor beta1 (TGF-beta1), although the signalling pathways involved are not clearly defined. Canonically, histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA) or sodium butyrate (NaB) increase total cellular histone acetylation and activate expression of susceptible genes. Remarkably, PMA and TGF-beta1 stimulation of Timp-1 show a differential response to TSA or NaB. TSA or NaB potentiate PMA-induced Timp-1 expression but repress TGF-beta1-induced Timp-1 expression. The repression of TGF-beta1-induced Timp-1 by TSA was maximal at 5 ng.mL(-1), while for the superinduction of PMA-induced Timp-1 expression, the maximal dose is > 500 ng x mL(-1) TSA. A further HDACi, valproic acid, did not block TGF-beta1-induced Timp-1 expression, demonstrating that different HDACs impact on the induction of Timp-1. For either PMA or TGF-beta1 to induce Timp-1 expression, new protein synthesis is required, and the induction of AP-1 factors closely precedes that of Timp-1. The effects of the HDACi can be reiterated in transient transfection using Timp-1 promoter constructs. Mutation or deletion of the AP-1 motif (-59/-53) in the Timp-1 promoter diminishes PMA-induction of reporter constructs, however, the further addition of TSA still superinduces the reporter. In c-Jun-/- cells, PMA still stimulates Timp-1 expression, but TSA superinduction is lost. Transfection of a series of Timp-1 promoter constructs identified three regions through which TSA superinduces PMA-induced Timp-1 and we have demonstrated specific protein binding to two of these regions which contain either an avian erythroblastosis virus E26 (v-ets) oncogene homologue (Ets) or Sp1 binding motif.

  5. The expressions of protooncogenes and CYP1A in lungs of rats exposed to sulfur dioxide and benzo(a)pyrene.

    Science.gov (United States)

    Qin, Guohua; Meng, Ziqiang

    2006-06-01

    Sulfur dioxide (SO2) is a ubiquitous air pollutant, present in low concentrations in the urban air, and in higher concentrations in the working environment. Benzo(a)pyrene (B(a)P), a polycyclic aromatic hydrocarbon, is a ubiquitous environmental contaminant with diverse toxicological effects. To investigate the interactions between SO2 and B(a)P, male Wistar rats were exposed to intratracheally instilled with benzo(a)pyrene (B(a)P; 3 mg) or SO2 (20 ppm) inhalation alone or together. The mRNA of CYP1A1 and 1A2, c-fos, and c-jun and protein levels of c-fos and c-jun were analyzed in lungs using a real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) assay and Western blot analysis, respectively. And 7-ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-demethylase (MROD) activities were detected. In lungs of rats exposed to SO2 alone, the gene transcription of CYP1A1 and 1A2, the EROD and MROD activities were decreased. Meanwhile, the mRNA and protein levels of c-jun and c-fos were increased significantly. Exposure to B(a)P alone induced CYP1A1, CYP1A2 mRNA levels, the protein levels of c-jun, and the EROD and MROD activities in lungs. However, exposure to B(a)P plus inhaled SO2 neither increased nor decreased CYP1A1/2 mRNA expressions, EROD, and MROD activities in lungs, versus exposure to B(a)P alone. Nevertheless, exposure to B(a)P plus inhaled SO2 increased the mRNA and protein levels of c-jun and c-fos in lungs compared with lungs exposed to SO2 alone. Accordingly, the SO2-induced decreases of CYP1A1/2 might not influence the metabolic activation of B(a)P. However, when B(a)P and SO2 were given in the combinations, one might postulate that a synergistic effect on the expressions of c-fos and c-jun between SO2 and B(a)P, which might be one of the possible mechanisms of combination effects between B(a)P and the air pollutants.

  6. Gene expression analysis of flax seed development

    Directory of Open Access Journals (Sweden)

    Sharpe Andrew

    2011-04-01

    Full Text Available Abstract Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages seed coats (globular and torpedo stages and endosperm (pooled globular to torpedo stages and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST (GenBank accessions LIBEST_026995 to LIBEST_027011 were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152 had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid

  7. Ocular Surface Development and Gene Expression

    Directory of Open Access Journals (Sweden)

    Shivalingappa K. Swamynathan

    2013-01-01

    Full Text Available The ocular surface—a continuous epithelial surface with regional specializations including the surface and glandular epithelia of the cornea, conjunctiva, and lacrimal and meibomian glands connected by the overlying tear film—plays a central role in vision. Molecular and cellular events involved in embryonic development, postnatal maturation, and maintenance of the ocular surface are precisely regulated at the level of gene expression by a well-coordinated network of transcription factors. A thorough appreciation of the biological characteristics of the ocular surface in terms of its gene expression profiles and their regulation provides us with a valuable insight into the pathophysiology of various blinding disorders that disrupt the normal development, maturation, and/or maintenance of the ocular surface. This paper summarizes the current status of our knowledge related to the ocular surface development and gene expression and the contribution of different transcription factors to this process.

  8. Gene expression profiles in irradiated cancer cells

    Science.gov (United States)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  9. Gene expression profiles in irradiated cancer cells

    International Nuclear Information System (INIS)

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses

  10. Gene Expression in the Human Endolymphatic Sac

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Kirkeby, Svend; Vikeså, Jonas;

    2015-01-01

    OBJECTIVES/HYPOTHESIS: The purpose of the present study is to explore, demonstrate, and describe the expression of genes related to the solute carrier (SLC) molecules of ion transporters in the human endolymphatic sac. STUDY DESIGN: cDNA microarrays and immunohistochemistry were used for analyses...... of fresh human endolymphatic sac tissue samples. METHODS: Twelve tissue samples of the human endolymphatic sac were obtained during translabyrinthine surgery for vestibular schwannoma. Microarray technology was used to investigate tissue sample expression of solute carrier family genes, using adjacent dura...... mater as control. Immunohistochemistry was used for verification of translation of selected genes, as well as localization of the specific protein within the sac. RESULTS: An extensive representation of the SLC family genes were upregulated in the human endolymphatic sac, including SLC26a4 Pendrin, SLC4...

  11. Parsimonious selection of useful genes in microarray gene expression data

    OpenAIRE

    González Navarro, Félix Fernando; Belanche Muñoz, Luis Antonio

    2011-01-01

    Machine Learning methods have of late made significant efforts to solving multidisciplinary problems in the field of cancer classification in microarray gene expression data. These tasks are characterized by a large number of features and a few observations, making the modeling a non-trivial undertaking. In this work we apply entropic filter methods for gene selection, in combination with several off-the-shelf classifiers. The introduction of bootstrap resampling techniques permits the achiev...

  12. Sequencing and Gene Expression Analysis of Leishmania tropica LACK Gene.

    Directory of Open Access Journals (Sweden)

    Nour Hammoudeh

    2014-12-01

    Full Text Available Leishmania Homologue of receptors for Activated C Kinase (LACK antigen is a 36-kDa protein, which provokes a very early immune response against Leishmania infection. There are several reports on the expression of LACK through different life-cycle stages of genus Leishmania, but only a few of them have focused on L.tropica.The present study provides details of the cloning, DNA sequencing and gene expression of LACK in this parasite species. First, several local isolates of Leishmania parasites were typed in our laboratory using PCR technique to verify of Leishmania parasite species. After that, LACK gene was amplified and cloned into a vector for sequencing. Finally, the expression of this molecule in logarithmic and stationary growth phase promastigotes, as well as in amastigotes, was evaluated by Reverse Transcription-PCR (RT-PCR technique.The typing result confirmed that all our local isolates belong to L.tropica. LACK gene sequence was determined and high similarity was observed with the sequences of other Leishmania species. Furthermore, the expression of LACK gene in both promastigotes and amastigotes forms was confirmed.Overall, the data set the stage for future studies of the properties and immune role of LACK gene products.

  13. Extracting expression modules from perturbational gene expression compendia

    Directory of Open Access Journals (Sweden)

    Van Dijck Patrick

    2008-04-01

    Full Text Available Abstract Background Compendia of gene expression profiles under chemical and genetic perturbations constitute an invaluable resource from a systems biology perspective. However, the perturbational nature of such data imposes specific challenges on the computational methods used to analyze them. In particular, traditional clustering algorithms have difficulties in handling one of the prominent features of perturbational compendia, namely partial coexpression relationships between genes. Biclustering methods on the other hand are specifically designed to capture such partial coexpression patterns, but they show a variety of other drawbacks. For instance, some biclustering methods are less suited to identify overlapping biclusters, while others generate highly redundant biclusters. Also, none of the existing biclustering tools takes advantage of the staple of perturbational expression data analysis: the identification of differentially expressed genes. Results We introduce a novel method, called ENIGMA, that addresses some of these issues. ENIGMA leverages differential expression analysis results to extract expression modules from perturbational gene expression data. The core parameters of the ENIGMA clustering procedure are automatically optimized to reduce the redundancy between modules. In contrast to the biclusters produced by most other methods, ENIGMA modules may show internal substructure, i.e. subsets of genes with distinct but significantly related expression patterns. The grouping of these (often functionally related patterns in one module greatly aids in the biological interpretation of the data. We show that ENIGMA outperforms other methods on artificial datasets, using a quality criterion that, unlike other criteria, can be used for algorithms that generate overlapping clusters and that can be modified to take redundancy between clusters into account. Finally, we apply ENIGMA to the Rosetta compendium of expression profiles for

  14. Gene expression profiling in sinonasal adenocarcinoma.

    OpenAIRE

    Sébille-Rivain Véronique; Malard Olivier; Guisle-Marsollier Isabelle; Ferron Christophe; Renaudin Karine; Quéméner Sylvia; Tripodi Dominique; Verger Christian; Géraut Christian; Gratas-Rabbia-Ré Catherine

    2009-01-01

    Abstract Background Sinonasal adenocarcinomas are uncommon tumors which develop in the ethmoid sinus after exposure to wood dust. Although the etiology of these tumors is well defined, very little is known about their molecular basis and no diagnostic tool exists for their early detection in high-risk workers. Methods To identify genes involved in this disease, we performed gene expression profiling using cancer-dedicated microarrays, on nine matched samples of sinonasal adenocarcinomas and n...

  15. Visualizing Gene Expression In Situ

    Energy Technology Data Exchange (ETDEWEB)

    Burlage, R.S.

    1998-11-02

    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  16. Epigenetic control of antioxidant gene expression

    OpenAIRE

    Wild, Brigitte

    2015-01-01

    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 29-10-2015 To respond to exogenous and endogenous stimuli, organisms have developed a variety of mechanisms to modulate the quantity, duration and the type of response to these stimuli. Of these mechanisms, one of the most important is the regulation of gene expression. This regulation of gene expression occurs at various levels but especially by th...

  17. Optogenetics for gene expression in mammalian cells.

    Science.gov (United States)

    Müller, Konrad; Naumann, Sebastian; Weber, Wilfried; Zurbriggen, Matias D

    2015-02-01

    Molecular switches that are controlled by chemicals have evolved as central research instruments in mammalian cell biology. However, these tools are limited in terms of their spatiotemporal resolution due to freely diffusing inducers. These limitations have recently been addressed by the development of optogenetic, genetically encoded, and light-responsive tools that can be controlled with the unprecedented spatiotemporal precision of light. In this article, we first provide a brief overview of currently available optogenetic tools that have been designed to control diverse cellular processes. Then, we focus on recent developments in light-controlled gene expression technologies and provide the reader with a guideline for choosing the most suitable gene expression system.

  18. Genes Expressed in Human Tumor Endothelium

    Science.gov (United States)

    St. Croix, Brad; Rago, Carlo; Velculescu, Victor; Traverso, Giovanni; Romans, Katharine E.; Montgomery, Elizabeth; Lal, Anita; Riggins, Gregory J.; Lengauer, Christoph; Vogelstein, Bert; Kinzler, Kenneth W.

    2000-08-01

    To gain a molecular understanding of tumor angiogenesis, we compared gene expression patterns of endothelial cells derived from blood vessels of normal and malignant colorectal tissues. Of over 170 transcripts predominantly expressed in the endothelium, 79 were differentially expressed, including 46 that were specifically elevated in tumor-associated endothelium. Several of these genes encode extracellular matrix proteins, but most are of unknown function. Most of these tumor endothelial markers were expressed in a wide range of tumor types, as well as in normal vessels associated with wound healing and corpus luteum formation. These studies demonstrate that tumor and normal endothelium are distinct at the molecular level, a finding that may have significant implications for the development of anti-angiogenic therapies.

  19. Sequence and gene expression evolution of paralogous genes in willows.

    Science.gov (United States)

    Harikrishnan, Srilakshmy L; Pucholt, Pascal; Berlin, Sofia

    2015-12-22

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows.

  20. c-Jun N-terminal kinase inhibitor favors transforming growth factor-β to antagonize hepatitis B virus X protein-induced cell growth promotion in hepatocellular carcinoma.

    Science.gov (United States)

    Wu, Yan-Hui; Ai, Xi; Liu, Fu-Yao; Liang, Hui-Fang; Zhang, Bi-Xiang; Chen, Xiao-Ping

    2016-02-01

    Transforming growth factor (TGF)-β induces cell growth arrest in well-differentiated hepatocellular carcinoma (HCC) while hepatitis B virus X protein (HBx) minimizes the tumor suppression of TGF-β signaling in early chronic hepatitis B. However, how to reverse the oncogenic effect of HBx and sustain the tumor-suppressive action of TGF-β has yet to be investigated. The present study examined the effect of TGF-β and a c-Jun N-terminal kinase (JNK) inhibitor on cell growth in HCC cells with forced expression of HBx. It was found that HBx promoted cell growth via activation of the JNK/pSMAD3L pathway and inhibition of the transforming growth factor-beta type I receptor (TβRI)/pSMAD3C pathway. pSMAD3L/SMAD4 and pSMAD3C/SMAD4 complexes antagonized each other to regulate c-Myc expression. In the absence of HBx, TGF-β induced cell growth arrest through activation of the TβRI/pSMAD3C pathway in well-differentiated HCC cells. In the presence of HBx, TGF-β had no effect on cell growth. JNK inhibitor SP600125 significantly reversed the oncogenic action of HBx and favored TGF-β to regain the ability to inhibit the cell growth in HBx-expressing well-differentiated HCC cells. In conclusion, targeting JNK signaling favors TGF-β to block HBx-induced cell growth promotion in well-differentiated HCC cells. As an adjunct to anti-viral therapy, the combination of TGF-β and inhibition of JNK signaling is a potential therapy for HBV-infected HCC.

  1. Gene expression profiling of human erythroid progenitors by micro-serial analysis of gene expression.

    Science.gov (United States)

    Fujishima, Naohito; Hirokawa, Makoto; Aiba, Namiko; Ichikawa, Yoshikazu; Fujishima, Masumi; Komatsuda, Atsushi; Suzuki, Yoshiko; Kawabata, Yoshinari; Miura, Ikuo; Sawada, Ken-ichi

    2004-10-01

    We compared the expression profiles of highly purified human CD34+ cells and erythroid progenitor cells by micro-serial analysis of gene expression (microSAGE). Human CD34+ cells were purified from granulocyte colony-stimulating factor-mobilized blood stem cells, and erythroid progenitors were obtained by cultivating these cells in the presence of stem cell factor, interleukin 3, and erythropoietin. Our 10,202 SAGE tags allowed us to identify 1354 different transcripts appearing more than once. Erythroid progenitor cells showed increased expression of LRBA, EEF1A1, HSPCA, PILRB, RANBP1, NACA, and SMURF. Overexpression of HSPCA was confirmed by real-time polymerase chain reaction analysis. MicroSAGE revealed an unexpected preferential expression of several genes in erythroid progenitor cells in addition to the known functional genes, including hemoglobins. Our results provide reference data for future studies of gene expression in various hematopoietic disorders, including myelodysplastic syndrome and leukemia.

  2. Global gene expression in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Schembri, Mark; Kjærgaard, K.; Klemm, Per

    2003-01-01

    to antimicrobial treatments and host immune defence responses. Escherichia coli has been used as a model organism to study the mechanisms of growth within adhered communities. In this study, we use DNA microarray technology to examine the global gene expression profile of E. coli during sessile growth compared...

  3. Population-level control of gene expression

    Science.gov (United States)

    Nevozhay, Dmitry; Adams, Rhys; van Itallie, Elizabeth; Bennett, Matthew; Balazsi, Gabor

    2011-03-01

    Gene expression is the process that translates genetic information into proteins, that determine the way cells live, function and even die. It was demonstrated that cells with identical genomes exposed to the same environment can differ in their protein composition and therefore phenotypes. Protein levels can vary between cells due to the stochastic nature of intracellular biochemical events, indicating that the genotype-phenotype connection is not deterministic at the cellular level. We asked whether genomes could encode isogenic cell populations more reliably than single cells. To address this question, we built two gene circuits to control three cell population-level characteristics: gene expression mean, coefficient of variation and non-genetic memory of previous expression states. Indeed, we found that these population-level characteristics were more predictable than the gene expression of single cells in a well-controlled environment. This research was supported by the NIH Director's New Innovator Award 1DP2 OD006481-01 and Welch Foundation Grant C-1729.

  4. The Low Noise Limit in Gene Expression.

    Directory of Open Access Journals (Sweden)

    Roy D Dar

    Full Text Available Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. These results show the existence of two distinct expression noise patterns: (1 a global noise floor uniformly imposed on all genes by expression bursting; and (2 high noise distributed to only a select group of genes.

  5. Gene expression analysis of zebrafish heart regeneration.

    Directory of Open Access Journals (Sweden)

    Ching-Ling Lien

    2006-08-01

    Full Text Available Mammalian hearts cannot regenerate. In contrast, zebrafish hearts regenerate even when up to 20% of the ventricle is amputated. The mechanism of zebrafish heart regeneration is not understood. To systematically characterize this process at the molecular level, we generated transcriptional profiles of zebrafish cardiac regeneration by microarray analyses. Distinct gene clusters were identified based on temporal expression patterns. Genes coding for wound response/inflammatory factors, secreted molecules, and matrix metalloproteinases are expressed in regenerating heart in sequential patterns. Comparisons of gene expression profiles between heart and fin regeneration revealed a set of regeneration core molecules as well as tissue-specific factors. The expression patterns of several secreted molecules around the wound suggest that they play important roles in heart regeneration. We found that both platelet-derived growth factor-a and -b (pdgf-a and pdgf-b are upregulated in regenerating zebrafish hearts. PDGF-B homodimers induce DNA synthesis in adult zebrafish cardiomyocytes. In addition, we demonstrate that a chemical inhibitor of PDGF receptor decreases DNA synthesis of cardiomyocytes both in vitro and in vivo during regeneration. Our data indicate that zebrafish heart regeneration is associated with sequentially upregulated wound healing genes and growth factors and suggest that PDGF signaling is required.

  6. Cluster Analysis of Gene Expression Data

    CERN Document Server

    Domany, E

    2002-01-01

    The expression levels of many thousands of genes can be measured simultaneously by DNA microarrays (chips). This novel experimental tool has revolutionized research in molecular biology and generated considerable excitement. A typical experiment uses a few tens of such chips, each dedicated to a single sample - such as tissue extracted from a particular tumor. The results of such an experiment contain several hundred thousand numbers, that come in the form of a table, of several thousand rows (one for each gene) and 50 - 100 columns (one for each sample). We developed a clustering methodology to mine such data. In this review I provide a very basic introduction to the subject, aimed at a physics audience with no prior knowledge of either gene expression or clustering methods. I explain what genes are, what is gene expression and how it is measured by DNA chips. Next I explain what is meant by "clustering" and how we analyze the massive amounts of data from such experiments, and present results obtained from a...

  7. Gene Expression Commons: an open platform for absolute gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Jun Seita

    Full Text Available Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000 of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named "Gene Expression Commons" (https://gexc.stanford.edu/ which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples.

  8. Modulation of rhodopsin gene expression and signaling mechanisms evoked by endothelins in goldfish and murine pigment cell lines

    Directory of Open Access Journals (Sweden)

    G.J.D. Lopes

    2010-09-01

    Full Text Available Endothelins (ETs and sarafotoxins (SRTXs belong to a family of vasoconstrictor peptides, which regulate pigment migration and/or production in vertebrate pigment cells. The teleost Carassius auratus erythrophoroma cell line, GEM-81, and Mus musculus B16 melanocytes express rhodopsin, as well as the ET receptors, ETB and ETA, respectively. Both cell lines are photoresponsive, and respond to light with a decreased proliferation rate. For B16, the doubling time of cells kept in 14-h light (14L:10-h darkness (10D was higher compared to 10L:14D, or to DD. The doubling time of cells kept in 10L:14D was also higher compared to DD. Using real-time PCR, we demonstrated that SRTX S6c (12-h treatment, 100 pM and 1 nM; 24-h treatment, 1 nM and ET-1 (12-h treatment, 10 and 100 pM; 24- and 48-h treatments, 100 pM increased rhodopsin mRNA levels in GEM-81 and B16 cells, respectively. This modulation involves protein kinase C (PKC and the mitogen-activated protein kinase cascade in GEM-81 cells, and phospholipase C, Ca2+, calmodulin, a Ca2+/calmodulin-dependent kinase, and PKC in B16 cells. Cells were kept under constant darkness throughout the gene expression experiments. These results show that rhodopsin mRNA levels can be modulated by SRTXs/ETs in vertebrate pigment cells. It is possible that SRTX S6c binding to the ETB receptors in GEM-81 cells, and ET-1 binding to ETA receptors in B16 melanocytes, although activating diverse intracellular signaling mechanisms, mobilize transcription factors such as c-Fos, c-Jun, c-Myc, and neural retina leucine zipper protein. These activated transcription factors may be involved in the positive regulation of rhodopsin mRNA levels in these cell lines.

  9. Tumor necrosis factor alpha promotes the proliferation of human nucleus pulposus cells via nuclear factor-κB, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase.

    Science.gov (United States)

    Wang, Xiao-Hu; Hong, Xin; Zhu, Lei; Wang, Yun-Tao; Bao, Jun-Ping; Liu, Lei; Wang, Feng; Wu, Xiao-Tao

    2015-04-01

    Although tumor necrosis factor alpha (TNF-α) is known to play a critical role in intervertebral disc (IVD) degeneration, the effect of TNF-α on nucleus pulposus (NP) cells has not yet been elucidated. The aim of this study was to explore the effect of TNF-α on proliferation of human NP cells. NP cells were treated with different concentrations of TNF-α. Cell proliferation was determined by cell counting kit-8 (CCK-8) analysis and Ki67 immunofluorescence staining, and expression of cyclin B1 was studied by quantitative real-time RT-PCR. Cell cycle was measured by flow cytometry and cell apoptosis was analyzed using an Annexin V-fluorescein isothiocyanate (FITC) & propidium iodide (PI) apoptosis detection kit. To identify the mechanism by which TNF-α induced proliferation of NP cells, selective inhibitors of major signaling pathways were used and Western blotting was carried out. Treatment with TNF-α increased cell viability (as determined by CCK-8 analysis) and expression of cyclin B1 and the number of Ki67-positive and S-phase NP cells, indicating enhancement of proliferation. Consistent with this, NP cell apoptosis was suppressed by TNF-α treatment. Moreover, inhibition of NF-κB, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) blocked TNF-α-stimulated proliferation of NP cells. In conclusion, the current findings suggest that the effect of TNF-α on IVD degeneration involves promotion of the proliferation of human NP cells via the NF-κB, JNK, and p38 MAPK pathways.

  10. Cadmium induces apoptosis in pancreatic β-cells through a mitochondria-dependent pathway: the role of oxidative stress-mediated c-Jun N-terminal kinase activation.

    Directory of Open Access Journals (Sweden)

    Kai-Chih Chang

    Full Text Available Cadmium (Cd, one of well-known highly toxic environmental and industrial pollutants, causes a number of adverse health effects and diseases in humans. The growing epidemiological studies have suggested a possible link between Cd exposure and diabetes mellitus (DM. However, the toxicological effects and underlying mechanisms of Cd-induced pancreatic β-cell injury are still unknown. In this study, we found that Cd significantly decreased cell viability, and increased sub-G1 hypodiploid cells and annexin V-Cy3 binding in pancreatic β-cell-derived RIN-m5F cells. Cd also increased intracellular reactive oxygen species (ROS generation and malondialdehyde (MDA production and induced mitochondrial dysfunction (the loss of mitochondrial membrane potential (MMP and the increase of cytosolic cytochrome c release, the decreased Bcl-2 expression, increased p53 expression, poly (ADP-ribose polymerase (PARP cleavage, and caspase cascades, which accompanied with intracellular Cd accumulation. Pretreatment with the antioxidant N-acetylcysteine (NAC effectively reversed these Cd-induced events. Furthermore, exposure to Cd induced the phosphorylations of c-jun N-terminal kinases (JNK, extracellular signal-regulated kinases (ERK1/2, and p38-mitogen-activated protein kinase (MAPK, which was prevented by NAC. Additionally, the specific JNK inhibitor SP600125 or JNK-specific small interference RNA (si-RNA transfection suppressed Cd-induced β-cell apoptosis and related signals, but not ERK1/2 and p38-MAPK inhibitors (PD98059 and SB203580 did not. However, the JNK inhibitor or JNK-specific si-RNA did not suppress ROS generation in Cd-treated cells. These results indicate that Cd induces pancreatic β-cell death via an oxidative stress downstream-mediated JNK activation-triggered mitochondria-regulated apoptotic pathway.

  11. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  12. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data

    Science.gov (United States)

    Moignard, Victoria; Göttgens, Berthold; Adryan, Boris

    2016-01-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics. PMID:27551778

  13. Outlier Analysis for Gene Expression Data

    Institute of Scientific and Technical Information of China (English)

    Chao Yan; Guo-Liang Chen; Yi-Fei Shen

    2004-01-01

    The rapid developments of technologies that generate arrays of gene data enable a global view of the transcription levels of hundreds of thousands of genes simultaneously. The outlier detection problem for gene data has its importance but together with the difficulty of high dimensionality. The sparsity of data in high dimensional space makes each point a relatively good outlier in the view of traditional distance-based definitions. Thus, finding outliers in high dimensional data is more complex. In this paper, sme basic outlier analysis algorithms are discussed and a new genetic algorithm is presented. This algorithm is to find best dimension projections based on a revised cell-based algorithm and to give explanations to solutions. It can solve the outlier detection problem for gene expression data and for other high dimensional data as well.

  14. Coevolution of gene expression among interacting proteins

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  15. Epstein - Barr virus transforming protein LMP-1 alters B cells gene expression by promoting accumulation of the oncoprotein ΔNp73α.

    Directory of Open Access Journals (Sweden)

    Rosita Accardi

    2013-03-01

    Full Text Available Many studies have proved that oncogenic viruses develop redundant mechanisms to alter the functions of the tumor suppressor p53. Here we show that Epstein-Barr virus (EBV, via the oncoprotein LMP-1, induces the expression of ΔNp73α, a strong antagonist of p53. This phenomenon is mediated by the LMP-1 dependent activation of c-Jun NH2-terminal kinase 1 (JNK-1 which in turn favours the recruitment of p73 to ΔNp73α promoter. A specific chemical inhibitor of JNK-1 or silencing JNK-1 expression strongly down-regulated ΔNp73α mRNA levels in LMP-1-containing cells. Accordingly, LMP-1 mutants deficient to activate JNK-1 did not induce ΔNp73α accumulation. The recruitment of p73 to the ΔNp73α promoter correlated with the displacement of the histone-lysine N-methyltransferase EZH2 which is part of the transcriptional repressive polycomb 2 complex. Inhibition of ΔNp73α expression in lymphoblastoid cells (LCLs led to the stimulation of apoptosis and up-regulation of a large number of cellular genes as determined by whole transcriptome shotgun sequencing (RNA-seq. In particular, the expression of genes encoding products known to play anti-proliferative/pro-apoptotic functions, as well as genes known to be deregulated in different B cells malignancy, was altered by ΔNp73α down-regulation. Together, these findings reveal a novel EBV mechanism that appears to play an important role in the transformation of primary B cells.

  16. Gene expression profiling in sinonasal adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Sébille-Rivain Véronique

    2009-11-01

    Full Text Available Abstract Background Sinonasal adenocarcinomas are uncommon tumors which develop in the ethmoid sinus after exposure to wood dust. Although the etiology of these tumors is well defined, very little is known about their molecular basis and no diagnostic tool exists for their early detection in high-risk workers. Methods To identify genes involved in this disease, we performed gene expression profiling using cancer-dedicated microarrays, on nine matched samples of sinonasal adenocarcinomas and non-tumor sinusal tissue. Microarray results were validated by quantitative RT-PCR and immunohistochemistry on two additional sets of tumors. Results Among the genes with significant differential expression we selected LGALS4, ACS5, CLU, SRI and CCT5 for further exploration. The overexpression of LGALS4, ACS5, SRI, CCT5 and the downregulation of CLU were confirmed by quantitative RT-PCR. Immunohistochemistry was performed for LGALS4 (Galectin 4, ACS5 (Acyl-CoA synthetase and CLU (Clusterin proteins: LGALS4 was highly up-regulated, particularly in the most differentiated tumors, while CLU was lost in all tumors. The expression of ACS5, was more heterogeneous and no correlation was observed with the tumor type. Conclusion Within our microarray study in sinonasal adenocarcinoma we identified two proteins, LGALS4 and CLU, that were significantly differentially expressed in tumors compared to normal tissue. A further evaluation on a new set of tissues, including precancerous stages and low grade tumors, is necessary to evaluate the possibility of using them as diagnostic markers.

  17. Gene expression profiles in skeletal muscle after gene electrotransfer

    Directory of Open Access Journals (Sweden)

    Eriksen Jens

    2007-06-01

    Full Text Available Abstract Background Gene transfer by electroporation (DNA electrotransfer to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have therefore investigated transcriptional changes through gene expression profile analyses, morphological changes by histological analysis, and physiological changes by force generation measurements. DNA electrotransfer was obtained using a combination of a short high voltage pulse (HV, 1000 V/cm, 100 μs followed by a long low voltage pulse (LV, 100 V/cm, 400 ms; a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP and excised at 4 hours, 48 hours or 3 weeks after treatment. Results Differentially expressed genes were investigated by microarray analysis, and descriptive statistics were performed to evaluate the effects of 1 electroporation, 2 DNA injection, and 3 time after treatment. The biological significance of the results was assessed by gene annotation and supervised cluster analysis. Generally, electroporation caused down-regulation of structural proteins e.g. sarcospan and catalytic enzymes. Injection of DNA induced down-regulation of intracellular transport proteins e.g. sentrin. The effects on muscle fibres were transient as the expression profiles 3 weeks after treatment were closely related with the control muscles. Most interestingly, no changes in the expression of proteins involved in inflammatory responses or muscle regeneration was detected, indicating limited muscle damage and regeneration. Histological analysis revealed structural changes with loss of cell integrity and striation pattern in some fibres after DNA+HV+LV treatment, while HV+LV pulses alone showed preservation of cell integrity. No difference in the force generation capacity was observed in

  18. Gene expression profiles in skeletal muscle after gene electrotransfer

    DEFF Research Database (Denmark)

    Hojman, Pernille; Zibert, John R; Gissel, Hanne;

    2007-01-01

    BACKGROUND: Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have...... investigated by microarray analysis, and descriptive statistics were performed to evaluate the effects of 1) electroporation, 2) DNA injection, and 3) time after treatment. The biological significance of the results was assessed by gene annotation and supervised cluster analysis.Generally, electroporation...

  19. Conformation of the c-Fos/c-Jun Complex In Vivo: A Combined FRET, FCCS, and MD-Modeling Study

    Science.gov (United States)

    Vámosi, György; Baudendistel, Nina; von der Lieth, Claus-Wilhelm; Szalóki, Nikoletta; Mocsár, Gábor; Müller, Gabriele; Brázda, Péter; Waldeck, Waldemar; Damjanovich, Sándor; Langowski, Jörg; Tóth, Katalin

    2008-01-01

    The activator protein-1 transcription factor is a heterodimer containing one of each of the Fos and Jun subfamilies of basic-region leucine-zipper proteins. We have previously shown by fluorescence cross-correlation spectroscopy (FCCS) that the fluorescent fusion proteins Fos-EGFP and Jun-mRFP1, cotransfected in HeLa cells, formed stable complexes in situ. Here we studied the relative position of the C-terminal domains via fluorescence resonance energy transfer (FRET) measured by flow cytometry and confocal microscopy. To get a more detailed insight into the conformation of the C-terminal domains of the complex we constructed C-terminal labeled full-length and truncated forms of Fos. We developed a novel iterative evaluation method to determine accurate FRET efficiencies regardless of relative protein expression levels, using a spectral- or intensity-based approach. The full-length C-terminal-labeled Jun and Fos proteins displayed a FRET-measured average distance of 8 ± 1 nm. Deletion of the last 164 amino acids at the C-terminus of Fos resulted in a distance of 6.1 ± 1 nm between the labels. FCCS shows that Jun-mRFP1 and the truncated Fos-EGFP also interact stably in the nucleus, although they bind to nuclear components with lower affinity. Thus, the C-terminal end of Fos may play a role in the stabilization of the interaction between activator protein-1 and DNA. Molecular dynamics simulations predict a dye-to-dye distance of 6.7 ± 0.1 nm for the dimer between Jun-mRFP1 and the truncated Fos-EGFP, in good agreement with our FRET data. A wide variety of models could be developed for the full-length dimer, with possible dye-to-dye distances varying largely between 6 and 20 nm. However, from our FRET results we can conclude that more than half of the occurring dye-to-dye distances are between 6 and 10 nm. PMID:18065450

  20. c-Jun NH2-terminal kinase activity in subcutaneous adipose tissue but not nuclear factor-kappaB activity in peripheral blood mononuclear cells is an independent determinant of insulin resistance in healthy individuals

    DEFF Research Database (Denmark)

    Sourris, Karly C; Lyons, Jasmine G; de Courten, Maximilian;

    2009-01-01

    Chronic low-grade activation of the immune system (CLAIS) predicts type 2 diabetes via a decrease in insulin sensitivity. Our study investigated potential relationships between nuclear factor-kappaB (NF-kappaB) and c-Jun NH(2)-terminal kinase (JNK) pathways-two pathways proposed as the link between...

  1. A systematic screen for genes expressed in definitive endoderm by Serial Analysis of Gene Expression (SAGE

    Directory of Open Access Journals (Sweden)

    Jones Steven JM

    2007-08-01

    Full Text Available Abstract Background The embryonic definitive endoderm (DE gives rise to organs of the gastrointestinal and respiratory tract including the liver, pancreas and epithelia of the lung and colon. Understanding how DE progenitor cells generate these tissues is critical to understanding the cause of visceral organ disorders and cancers, and will ultimately lead to novel therapies including tissue and organ regeneration. However, investigation into the molecular mechanisms of DE differentiation has been hindered by the lack of early DE-specific markers. Results We describe the identification of novel as well as known genes that are expressed in DE using Serial Analysis of Gene Expression (SAGE. We generated and analyzed three longSAGE libraries from early DE of murine embryos: early whole definitive endoderm (0–6 somite stage, foregut (8–12 somite stage, and hindgut (8–12 somite stage. A list of candidate genes enriched for expression in endoderm was compiled through comparisons within these three endoderm libraries and against 133 mouse longSAGE libraries generated by the Mouse Atlas of Gene Expression Project encompassing multiple embryonic tissues and stages. Using whole mount in situ hybridization, we confirmed that 22/32 (69% genes showed previously uncharacterized expression in the DE. Importantly, two genes identified, Pyy and 5730521E12Rik, showed exclusive DE expression at early stages of endoderm patterning. Conclusion The high efficiency of this endoderm screen indicates that our approach can be successfully used to analyze and validate the vast amount of data obtained by the Mouse Atlas of Gene Expression Project. Importantly, these novel early endoderm-expressing genes will be valuable for further investigation into the molecular mechanisms that regulate endoderm development.

  2. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data

    DEFF Research Database (Denmark)

    Manijak, Mieszko P.; Nielsen, Henrik Bjørn

    2011-01-01

    circumvented by instead matching gene expression signatures to signatures of other experiments. FINDINGS: To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700......BACKGROUND: Although, systematic analysis of gene annotation is a powerful tool for interpreting gene expression data, it sometimes is blurred by incomplete gene annotation, missing expression response of key genes and secondary gene expression responses. These shortcomings may be partially...... Arabidopsis microarray experiments. CONCLUSIONS: Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/....

  3. Gene expression in Pseudomonas aeruginosa swarming motility

    Directory of Open Access Journals (Sweden)

    Déziel Eric

    2010-10-01

    Full Text Available Abstract Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14. Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center. Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to

  4. Annotation of gene function in citrus using gene expression information and co-expression networks

    OpenAIRE

    Wong, Darren CJ; Sweetman, Crystal; Ford, Christopher M

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related bi...

  5. Differential expression of cell adhesion genes

    DEFF Research Database (Denmark)

    Stein, Wilfred D; Litman, Thomas; Fojo, Tito;

    2005-01-01

    It is well known that tumors arising from tissues such as kidney, pancreas, liver and stomach are particularly refractory to treatment. Searching for new anticancer drugs using cells in culture has yielded some effective therapies, but these refractory tumors remain intractable. Studies that comp......It is well known that tumors arising from tissues such as kidney, pancreas, liver and stomach are particularly refractory to treatment. Searching for new anticancer drugs using cells in culture has yielded some effective therapies, but these refractory tumors remain intractable. Studies...... survival might, therefore, act through such a matrix-to-cell suppression of apoptosis. Indeed, correlative mining of gene expression and patient survival databases suggests that poor survival in patients with metastatic cancer correlates highly with tumor expression of a common theme: the genes involved...

  6. Identifying Driver Genes in Cancer by Triangulating Gene Expression, Gene Location, and Survival Data

    Science.gov (United States)

    Rouam, Sigrid; Miller, Lance D; Karuturi, R Krishna Murthy

    2014-01-01

    Driver genes are directly responsible for oncogenesis and identifying them is essential in order to fully understand the mechanisms of cancer. However, it is difficult to delineate them from the larger pool of genes that are deregulated in cancer (ie, passenger genes). In order to address this problem, we developed an approach called TRIAngulating Gene Expression (TRIAGE through clinico-genomic intersects). Here, we present a refinement of this approach incorporating a new scoring methodology to identify putative driver genes that are deregulated in cancer. TRIAGE triangulates – or integrates – three levels of information: gene expression, gene location, and patient survival. First, TRIAGE identifies regions of deregulated expression (ie, expression footprints) by deriving a newly established measure called the Local Singular Value Decomposition (LSVD) score for each locus. Driver genes are then distinguished from passenger genes using dual survival analyses. Incorporating measurements of gene expression and weighting them according to the LSVD weight of each tumor, these analyses are performed using the genes located in significant expression footprints. Here, we first use simulated data to characterize the newly established LSVD score. We then present the results of our application of this refined version of TRIAGE to gene expression data from five cancer types. This refined version of TRIAGE not only allowed us to identify known prominent driver genes, such as MMP1, IL8, and COL1A2, but it also led us to identify several novel ones. These results illustrate that TRIAGE complements existing tools, allows for the identification of genes that drive cancer and could perhaps elucidate potential future targets of novel anticancer therapeutics. PMID:25949096

  7. Systematic analysis of BRAF(V600E) melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis.

    Science.gov (United States)

    Fallahi-Sichani, Mohammad; Moerke, Nathan J; Niepel, Mario; Zhang, Tinghu; Gray, Nathanael S; Sorger, Peter K

    2015-03-26

    Drugs that inhibit RAF/MEK signaling, such as vemurafenib, elicit profound but often temporary anti-tumor responses in patients with BRAF(V) (600E) melanoma. Adaptive responses to RAF/MEK inhibition occur on a timescale of hours to days, involve homeostatic responses that reactivate MAP kinase signaling and compensatory mitogenic pathways, and attenuate the anti-tumor effects of RAF/MEK inhibitors. We profile adaptive responses across a panel of melanoma cell lines using multiplex biochemical measurement, single-cell assays, and statistical modeling and show that adaptation involves at least six signaling cascades that act to reduce drug potency (IC50) and maximal effect (i.e., Emax ≪ 1). Among these cascades, we identify a role for JNK/c-Jun signaling in vemurafenib adaptation and show that RAF and JNK inhibitors synergize in cell killing. This arises because JNK inhibition prevents a subset of cells in a cycling population from becoming quiescent upon vemurafenib treatment, thereby reducing drug Emax. Our findings demonstrate the breadth and diversity of adaptive responses to RAF/MEK inhibition and a means to identify which steps in a signaling cascade are most predictive of phenotypic response.

  8. The role of p38 MAP kinase and c-Jun N-terminal protein kinase signaling in the differentiation and apoptosis of immortalized neural stem cells

    International Nuclear Information System (INIS)

    The two distinct members of the mitogen-activated protein (MAP) kinase family c-Jun N-terminal protein kinase (JNK) and p38 MAP kinase, play an important role in central nervous system (CNS) development and differentiation. However, their role and functions are not completely understood in CNS. To facilitate in vitro study, we have established an immortal stem cell line using SV40 from fetal rat embryonic day 17. In these cells, MAP kinase inhibitors (SP600125, SB202190, and PD98059) were treated for 1, 24, 48, and 72 h to examine the roles of protein kinases. Early inhibition of JNK did not alter phenotypic or morphological changes of immortalized cells, however overexpression of Bax and decrease of phosphorylated AKT was observed. The prolonged inhibition of JNK induced polyploidization of immortalized cells, and resulted in differentiation and inhibition of cell proliferation. Moreover, JNK and p38 MAP kinase but not ERK1/2 was activated, and p21, p53, and Bax were overexpressed by prolonged inhibition of JNK. These results indicate that JNK and p38 MAP kinase could play dual roles on cell survival and apoptosis. Furthermore, this established cell line could facilitate study of the role of JNK and p38 MAP kinase on CNS development or differentiation/apoptosis

  9. Inhibition of Apoptosis in Prostate Cancer Cells by Androgens Is Mediated through Downregulation of c-Jun N-terminal Kinase Activation

    Directory of Open Access Journals (Sweden)

    Petra Isabel Lorenzo

    2008-05-01

    Full Text Available Androgen deprivation induces the regression of prostate tumors mainly due to an increase in the apoptosis rate; however, the molecular mechanisms underlying the antiapoptotic actions of androgens are not completely understood. We have studied the antiapoptotic effects of androgens in prostate cancer cells exposed to different proapoptotic stimuli. Terminal deoxynucleotidyl transferase-mediated nick-end labeling and nuclear fragmentation analyses demonstrated that androgens protect LNCaP prostate cancer cells from apoptosis induced by thapsigargin, the phorbol ester 12-O-tetradecanoyl-13-phorbol-acetate, or UV irradiation. These three stimuli require the activation of the c-Jun N-terminal kinase (JNK pathway to induce apoptosis and in all three cases, androgen treatment blocks JNK activation. Interestingly, okadaic acid, a phosphatase inhibitor that causes apoptosis in LNCaP cells, induces JNK activation that is also inhibited by androgens. Actinomycin D, the antiandrogen bicalutamide or specific androgen receptor (AR knockdown by small interfering RNA all blocked the inhibition of JNK activation mediated by androgens indicating that this activity requires AR-dependent transcriptional activation. These data suggest that the crosstalk between AR and JNK pathways may have important implications in prostate cancer progression and may provide targets for the development of new therapies.

  10. Naringin Mitigates Cardiac Hypertrophy by Reducing Oxidative Stress and Inactivating c-Jun Nuclear Kinase-1 Protein in Type I Diabetes.

    Science.gov (United States)

    Adebiyi, A Olubunmi; Adebiyi, Oluwafeysetan O; Owira, Peter M O

    2016-02-01

    Cardiac hypertrophy (CH) in type 1 diabetes mellitus is attributed to increased oxidative stress-associated activation of c-Jun Nuclear Kinase (JNK). We investigated the effects of naringin on hyperglycemia-associated oxidative stress, activation of JNK-1, and CH. Male Sprague-Dawley rats (225-250 g) (n = 7) were divided into 6 groups. Groups I and II were orally treated with distilled water [3.0 mL/kg body weight/day (BW)] and naringin (50 mg/kg BW), respectively. Groups III-VI were rendered diabetic by a single intraperitoneal injection of 65 mg/kg BW of streptozotocin. Groups III, IV, and V were further treated with insulin (4.0 I.U, s.c, twice daily), naringin (50 mg/kg BW), and ramipril (3.0 mg/kg BW), respectively. After 56 days, the animals were sacrificed and then plasma and cardiac tissues obtained for further analysis. Naringin treatment of diabetic rats significantly reversed oxidative stress, lipid peroxidation, proteins oxidation, CH indices, and JNK protein activation compared with untreated diabetic animals. Our results do suggest that naringin mitigates CH by inhibiting oxidative stress leading to inactivation of JNK-1. Naringin supplements could therefore ameliorate CH in diabetic patients. PMID:26421421

  11. Regulation of Gene Expression in Protozoa Parasites

    OpenAIRE

    Consuelo Gomez; Esther Ramirez, M.; Mercedes Calixto-Galvez; Olivia Medel; Rodríguez, Mario A

    2010-01-01

    Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or dru...

  12. Gene expression profiling: methods and protocols

    OpenAIRE

    Manuela Monti

    2012-01-01

    There must be some good reasons to last for a second edition on the very same topic: likely, the topic is crucial to basic and applied science, it is a very rapid evolving topic and there must occurred some breakthroughs meanwhile the two editions. Well, I think that all of these reasons are here to justify this very wellcome second edition of “Gene expression profiling”, a topic that is crucial....

  13. Proteomic and gene expression patterns of keratoconus

    Directory of Open Access Journals (Sweden)

    Arkasubhra Ghosh

    2013-01-01

    Full Text Available Keratoconus is a progressive corneal thinning disease associated with significant tissue remodeling activities and activation of a variety of signaling networks. However, it is not understood how differential gene and protein expression direct function in keratoconus corneas to drive the underlying pathology, ectasia. Research in the field has focused on discovering differentially expressed genes and proteins and quantifying their levels and activities in keratoconus patient samples. In this study, both microarray analysis of total ribonucleic acid (RNA and whole proteome analyses are carried out using corneal epithelium and tears from keratoconus patients and compared to healthy controls. A number of structural proteins, signaling molecules, cytokines, proteases, and enzymes have been found to be deregulated in keratoconus corneas. Together, the data provide clues to the complex process of corneal degradation which suggest novel ways to clinically diagnose and manage the disease. This review will focus on discussing these recent advances in the knowledge of keratoconus biology from a gene expression and function point-of-view.

  14. Carbon Nanomaterials Alter Global Gene Expression Profiles.

    Science.gov (United States)

    Woodman, Sara; Short, John C W; McDermott, Hyoeun; Linan, Alexander; Bartlett, Katelyn; Gadila, Shiva Kumar Goud; Schmelzle, Katie; Wanekaya, Adam; Kim, Kyoungtae

    2016-05-01

    Carbon nanomaterials (CNMs), which include carbon nanotubes (CNTs) and their derivatives, have diverse technological and biomedical applications. The potential toxicity of CNMs to cells and tissues has become an important emerging question in nanotechnology. To assess the toxicity of CNTs and fullerenol C60(OH)24, we in the present work used the budding yeast Saccharomyces cerevisiae, one of the simplest eukaryotic organisms that share fundamental aspects of eukaryotic cell biology. We found that treatment with CNMs, regardless of their physical shape, negatively affected the growth rates, end-point cell densities and doubling times of CNM-exposed yeast cells when compared to unexposed cells. To investigate potential mechanisms behind the CNMs-induced growth defects, we performed RNA-Seq dependent transcriptional analysis and constructed global gene expression profiles of fullerenol C60(OH)24- and CNT-treated cells. When compared to non-treated control cells, CNM-treated cells displayed differential expression of genes whose functions are implicated in membrane transporters and stress response, although differentially expressed genes were not consistent between CNT- and fullerenol C60(OH)24-treated groups, leading to our conclusion that CNMs could serve as environmental toxic factors to eukaryotic cells. PMID:27483901

  15. Analysis of gene expression in rabbit muscle

    Directory of Open Access Journals (Sweden)

    Alena Gálová

    2014-02-01

    Full Text Available Increasing consumer knowledge of the link between diet and health has raised the demand for high quality food. Meat and meat products may be considered as irreplaceable in human nutrition. Breeding livestock to higher content of lean meat and the use of modern hybrids entails problems with the quality of meat. Analysing of livestock genomes could get us a great deal of important information, which may significantly affect the improvement process. Domestic animals are invaluable resources for study of the molecular architecture of complex traits. Although the mapping of quantitative trait loci (QTL responsible for economically important traits in domestic animals has achieved remarkable results in recent decades, not all of the genetic variation in the complex traits has been captured because of the low density of markers used in QTL mapping studies. The genome wide association study (GWAS, which utilizes high-density single-nucleotide polymorphism (SNP, provides a new way to tackle this issue. New technologies now allow producing microarrays containing thousands of hybridization probes on a single membrane or other solid support. We used microarray analysis to study gene expression in rabbit muscle during different developmental age stages. The outputs from GeneSpring GX sotware are presented in this work. After the evaluation of gene expression in rabbits, will be selected genes of interest in relation to meat quality parameters and will be further analyzed by the available methods of molecular biology and genetics.

  16. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Tamer Z. [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbial Molecular Biology, AGERI, Agricultural Research Center, Giza 12619 (Egypt); Division of Biomedical Sciences, Zewail University, Zewail City of Science and Technology, Giza 12588 (Egypt); Zhang, Fengrui [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Thiem, Suzanne M., E-mail: smthiem@msu.edu [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States)

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  17. The transcriptional regulation of regucalcin gene expression.

    Science.gov (United States)

    Yamaguchi, Masayoshi

    2011-01-01

    Regucalcin, which is discovered as a calcium-binding protein in 1978, has been shown to play a multifunctional role in many tissues and cell types; regucalcin has been proposed to play a pivotal role in keeping cell homeostasis and function for cell response. Regucalcin and its gene are identified in over 15 species consisting of regucalcin family. Comparison of the nucleotide sequences of regucalcin from vertebrate species is highly conserved in their coding region with throughout evolution. The regucalcin gene is localized on the chromosome X in rat and human. The organization of rat regucalcin gene consists of seven exons and six introns and several consensus regulatory elements exist upstream of the 5'-flanking region. AP-1, NF1-A1, RGPR-p117, β-catenin, and other factors have been found to be a transcription factor in the enhancement of regucalcin gene promoter activity. The transcription activity of regucalcin gene is enhanced through intracellular signaling factors that are mediated through the phosphorylation and dephosphorylation of nuclear protein in vitro. Regucalcin mRNA and its protein are markedly expressed in the liver and kidney cortex of rats. The expression of regucalcin mRNA in the liver and kidney cortex has been shown to stimulate by hormonal factors (including calcium, calcitonin, parathyroid hormone, insulin, estrogen, and dexamethasone) in vivo. Regucalcin mRNA expression is enhanced in the regenerating liver after partial hepatectomy of rats in vivo. The expression of regucalcin mRNA in the liver and kidney with pathophysiological state has been shown to suppress, suggesting an involvement of regucalcin in disease. Liver regucalcin expression is down-regulated in tumor cells, suggesting a suppressive role in the development of carcinogenesis. Liver regucalcin is markedly released into the serum of rats with chemically induced liver injury in vivo. Serum regucalcin has a potential sensitivity as a specific biochemical marker of chronic

  18. Cholinergic regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Kristensen, Bo; Georg, Birgitte; Fahrenkrug, Jan

    1997-01-01

    Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing......Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing...

  19. The similarity of gene expression between human and mouse tissues

    OpenAIRE

    Dowell, Robin D.

    2011-01-01

    Meta-analysis of human and mouse microarray data reveals conservation of patterns of gene expression that will help to better characterize the evolution of gene expression. See research article: http://genomebiology.com/2010/11/12/R124

  20. Identification of common prognostic gene expression signatures with biological meanings from microarray gene expression datasets.

    Directory of Open Access Journals (Sweden)

    Jun Yao

    Full Text Available Numerous prognostic gene expression signatures for breast cancer were generated previously with few overlap and limited insight into the biology of the disease. Here we introduce a novel algorithm named SCoR (Survival analysis using Cox proportional hazard regression and Random resampling to apply random resampling and clustering methods in identifying gene features correlated with time to event data. This is shown to reduce overfitting noises involved in microarray data analysis and discover functional gene sets linked to patient survival. SCoR independently identified a common poor prognostic signature composed of cell proliferation genes from six out of eight breast cancer datasets. Furthermore, a sequential SCoR analysis on highly proliferative breast cancers repeatedly identified T/B cell markers as favorable prognosis factors. In glioblastoma, SCoR identified a common good prognostic signature of chromosome 10 genes from two gene expression datasets (TCGA and REMBRANDT, recapitulating the fact that loss of one copy of chromosome 10 (which harbors the tumor suppressor PTEN is linked to poor survival in glioblastoma patients. SCoR also identified prognostic genes on sex chromosomes in lung adenocarcinomas, suggesting patient gender might be used to predict outcome in this disease. These results demonstrate the power of SCoR to identify common and biologically meaningful prognostic gene expression signatures.

  1. Identification of common prognostic gene expression signatures with biological meanings from microarray gene expression datasets.

    Science.gov (United States)

    Yao, Jun; Zhao, Qi; Yuan, Ying; Zhang, Li; Liu, Xiaoming; Yung, W K Alfred; Weinstein, John N

    2012-01-01

    Numerous prognostic gene expression signatures for breast cancer were generated previously with few overlap and limited insight into the biology of the disease. Here we introduce a novel algorithm named SCoR (Survival analysis using Cox proportional hazard regression and Random resampling) to apply random resampling and clustering methods in identifying gene features correlated with time to event data. This is shown to reduce overfitting noises involved in microarray data analysis and discover functional gene sets linked to patient survival. SCoR independently identified a common poor prognostic signature composed of cell proliferation genes from six out of eight breast cancer datasets. Furthermore, a sequential SCoR analysis on highly proliferative breast cancers repeatedly identified T/B cell markers as favorable prognosis factors. In glioblastoma, SCoR identified a common good prognostic signature of chromosome 10 genes from two gene expression datasets (TCGA and REMBRANDT), recapitulating the fact that loss of one copy of chromosome 10 (which harbors the tumor suppressor PTEN) is linked to poor survival in glioblastoma patients. SCoR also identified prognostic genes on sex chromosomes in lung adenocarcinomas, suggesting patient gender might be used to predict outcome in this disease. These results demonstrate the power of SCoR to identify common and biologically meaningful prognostic gene expression signatures.

  2. JNK1/2 Activation by an Extract from the Roots of Morus alba L. Reduces the Viability of Multidrug-Resistant MCF-7/Dox Cells by Inhibiting YB-1-Dependent MDR1 Expression

    Directory of Open Access Journals (Sweden)

    Youn Kyung Choi

    2013-01-01

    Full Text Available Cancer cells acquire anticancer drug resistance during chemotherapy, which aggravates cancer disease. MDR1 encoded from multidrug resistance gene 1 mainly causes multidrug resistance phenotypes of different cancer cells. In this study, we demonstrate that JNK1/2 activation by an extract from the root of Morus alba L. (White mulberry reduces doxorubicin-resistant MCF-7/Dox cell viability by inhibiting YB-1 regulation of MDR1 gene expression. When MCF-7 or MCF-7/Dox cells, where MDR1 is highly expressed were treated with an extract from roots or leaves of Morus alba L., respectively, the root extract from the mulberry (REM but not the leaf extract (LEM reduced cell viabilities of both MCF-7 and MCF-7/Dox cells, which was enhanced by cotreatment with doxorubicin. REM but not LEM further inhibited YB-1 nuclear translocation and its regulation of MDR1 gene expression. Moreover, REM promoted phosphorylation of c-Jun NH2-terminal kinase 1/2 (JNK1/2 and JNK1/2 inhibitor, SP600125 and rescued REM inhibition of both MDR1 expression and viabilities in MCF-7/Dox cells. Consistently, overexpression of JNK1, c-Jun, or c-Fos inhibited YB-1-dependent MDR1 expression and reduced viabilities in MCF-7/Dox cells. In conclusion, our data indicate that REM-activated JNK-cJun/c-Fos pathway decreases the viability of MCF-7/Dox cells by inhibiting YB-1-dependent MDR1 gene expression. Thus, we suggest that REM may be useful for treating multidrug-resistant cancer cells.

  3. Gene expression regulators--MicroRNAs

    Institute of Scientific and Technical Information of China (English)

    CHEN Fang; YIN Q. James

    2005-01-01

    A large class of non-coding RNAs found in small molecule RNAs are closely associated with the regulation of gene expression, which are called microRNA (miRNA). MiRNAs are coded in intergenic or intronic regions and can be formed into foldback hairpin RNAs. These transcripts are cleaved by Dicer, generating mature miRNAs that can silence their target genes in different modes of action. Now, research on small molecule RNAs has gotten breakthrough advance in biology. To discover miRNA genes and their target genes has become hot topics in RNA research. This review attempts to look back the history of miRNA discovery, to introduce the methods of screening miRNAs, to localize miRNA loci in genome, to seek miRNA target genes and the biological function, and to discuss the working mechanisms of miRNAs. Finally, we will discuss the potential important roles of miRNAs in modulating the genesis, development, growth, and differentiation of organisms. Thus, it can be predicted that a complete understanding of miRNA functions will bring us some new concepts, approaches and strategies for the study of living beings.

  4. Gene Expression Profiling of Xeroderma Pigmentosum

    Directory of Open Access Journals (Sweden)

    Bowden Nikola A

    2006-05-01

    Full Text Available Abstract Xeroderma pigmentosum (XP is a rare recessive disorder that is characterized by extreme sensitivity to UV light. UV light exposure results in the formation of DNA damage such as cyclobutane dimers and (6-4 photoproducts. Nucleotide excision repair (NER orchestrates the removal of cyclobutane dimers and (6-4 photoproducts as well as some forms of bulky chemical DNA adducts. The disease XP is comprised of 7 complementation groups (XP-A to XP-G, which represent functional deficiencies in seven different genes, all of which are believed to be involved in NER. The main clinical feature of XP is various forms of skin cancers; however, neurological degeneration is present in XPA, XPB, XPD and XPG complementation groups. The relationship between NER and other types of DNA repair processes is now becoming evident but the exact relationships between the different complementation groups remains to be precisely determined. Using gene expression analysis we have identified similarities and differences after UV light exposure between the complementation groups XP-A, XP-C, XP-D, XP-E, XP-F, XP-G and an unaffected control. The results reveal that there is a graded change in gene expression patterns between the mildest, most similar to the control response (XP-E and the severest form (XP-A of the disease, with the exception of XP-D. Distinct differences between the complementation groups with neurological symptoms (XP-A, XP-D and XP-G and without (XP-C, XP-E and XP-F were also identified. Therefore, this analysis has revealed distinct gene expression profiles for the XP complementation groups and the first step towards understanding the neurological symptoms of XP.

  5. An anatomic gene expression atlas of the adult mouse brain

    OpenAIRE

    Ng, Lydia; Bernard, Amy; Lau, Chris; Overly, Caroline C.; Dong, Hong-Wei; Kuan, Chihchau; Pathak, Sayan; Sunkin, Susan M.; Dang, Chinh; Bohland, Jason W.; Bokil, Hemant; Mitra, Partha P.; Puelles, Luis; Hohmann, John; Anderson, David J.

    2009-01-01

    Studying gene expression provides a powerful means of understanding structure-function relationships in the nervous system. The availability of genome-scale in situ hybridization datasets enables new possibilities for understanding brain organization based on gene expression patterns. The Anatomic Gene Expression Atlas (AGEA) is a new relational atlas revealing the genetic architecture of the adult C57Bl/6J mouse brain based on spatial correlations across expression data for thousands of gene...

  6. Studying the Complex Expression Dependences between Sets of Coexpressed Genes

    Directory of Open Access Journals (Sweden)

    Mario Huerta

    2014-01-01

    Full Text Available Organisms simplify the orchestration of gene expression by coregulating genes whose products function together in the cell. The use of clustering methods to obtain sets of coexpressed genes from expression arrays is very common; nevertheless there are no appropriate tools to study the expression networks among these sets of coexpressed genes. The aim of the developed tools is to allow studying the complex expression dependences that exist between sets of coexpressed genes. For this purpose, we start detecting the nonlinear expression relationships between pairs of genes, plus the coexpressed genes. Next, we form networks among sets of coexpressed genes that maintain nonlinear expression dependences between all of them. The expression relationship between the sets of coexpressed genes is defined by the expression relationship between the skeletons of these sets, where this skeleton represents the coexpressed genes with a well-defined nonlinear expression relationship with the skeleton of the other sets. As a result, we can study the nonlinear expression relationships between a target gene and other sets of coexpressed genes, or start the study from the skeleton of the sets, to study the complex relationships of activation and deactivation between the sets of coexpressed genes that carry out the different cellular processes present in the expression experiments.

  7. Gene expression in developing watermelon fruit

    Directory of Open Access Journals (Sweden)

    Hernandez Alvaro

    2008-06-01

    Full Text Available Abstract Background Cultivated watermelon form large fruits that are highly variable in size, shape, color, and content, yet have extremely narrow genetic diversity. Whereas a plethora of genes involved in cell wall metabolism, ethylene biosynthesis, fruit softening, and secondary metabolism during fruit development and ripening have been identified in other plant species, little is known of the genes involved in these processes in watermelon. A microarray and quantitative Real-Time PCR-based study was conducted in watermelon [Citrullus lanatus (Thunb. Matsum. & Nakai var. lanatus] in order to elucidate the flow of events associated with fruit development and ripening in this species. RNA from three different maturation stages of watermelon fruits, as well as leaf, were collected from field grown plants during three consecutive years, and analyzed for gene expression using high-density photolithography microarrays and quantitative PCR. Results High-density photolithography arrays, composed of probes of 832 EST-unigenes from a subtracted, fruit development, cDNA library of watermelon were utilized to examine gene expression at three distinct time-points in watermelon fruit development. Analysis was performed with field-grown fruits over three consecutive growing seasons. Microarray analysis identified three hundred and thirty-five unique ESTs that are differentially regulated by at least two-fold in watermelon fruits during the early, ripening, or mature stage when compared to leaf. Of the 335 ESTs identified, 211 share significant homology with known gene products and 96 had no significant matches with any database accession. Of the modulated watermelon ESTs related to annotated genes, a significant number were found to be associated with or involved in the vascular system, carotenoid biosynthesis, transcriptional regulation, pathogen and stress response, and ethylene biosynthesis. Ethylene bioassays, performed with a closely related watermelon

  8. Gene Expression Profile Changes in Germinating Rice

    Institute of Scientific and Technical Information of China (English)

    Dongli He; Chao Han; Pingfang Yang

    2011-01-01

    Water absorption is a prerequisite for seed germination.During imbibition,water influx causes the resumption of many physiological and metabolic processes in growing seed.In order to obtain more complete knowledge about the mechanism of seed germination,two-dimensional gel electrophoresis was applied to investigate the protein profile changes of rice seed during the first 48 h of imbibition.Thirtynine differentially expressed proteins were identified,including 19 down-regulated and 20 up-regulated proteins.Storage proteins and some seed development- and desiccation-associated proteins were down regulated.The changed patterns of these proteins indicated extensive mobilization of seed reserves.By contrast,catabolism-associated proteins were up regulated upon imbibition.Semi-quantitative real time polymerase chain reaction analysis showed that most of the genes encoding the down- or upregulated proteins were also down or up regulated at mRNA level.The expression of these genes was largely consistent at mRNA and protein levels.In providing additional information concerning gene regulation in early plant life,this study will facilitate understanding of the molecular mechanisms of seed germination.

  9. Nuclear AXIN2 represses MYC gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  10. Performance Analysis of Enhanced Clustering Algorithm for Gene Expression Data

    CERN Document Server

    Chandrasekhar, T; Elayaraja, E

    2011-01-01

    Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this paper we applied K-Means with Automatic Generations of Merge Factor for ISODATA- AGMFI. Though AGMFI has been applied for clustering of Gene Expression Data, this proposed Enhanced Automatic Generations of Merge Factor for ISODATA- EAGMFI Algorithms overcome the drawbacks of AGMFI in terms of specifying the optimal number of clusters and initialization of good cluster centroids. Experimental results on Gene Expression Data show that the proposed EAGMFI algorithms could identify compact clus...

  11. Novel redox nanomedicine improves gene expression of polyion complex vector

    OpenAIRE

    Kazuko Toh, Toru Yoshitomi, Yutaka Ikeda and Yukio Nagasaki

    2011-01-01

    Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS) affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP) as an RO...

  12. A short pulse of mechanical force induces gene expression and growth in MC3T3-E1 osteoblasts via an ERK 1/2 pathway

    Science.gov (United States)

    Hatton, Jason P.; Pooran, Milad; Li, Chai-Fei; Luzzio, Chris; Hughes-Fulford, Millie

    2003-01-01

    Physiological mechanical loading is crucial for maintenance of bone integrity and architecture. We have calculated the strain caused by gravity stress on osteoblasts and found that 4-30g corresponds to physiological levels of 40-300 microstrain. Short-term gravity loading (15 minutes) induced a 15-fold increase in expression of growth-related immediate early gene c-fos, a 5-fold increase in egr-1, and a 3-fold increase in autocrine bFGF. The non-growth-related genes EP-1, TGF-beta, and 18s were unaffected by gravity loading. Short-term physiological loading induced extracellular signal-regulated kinase (ERK 1/2) phosphorylation in a dose-dependent manner with maximum phosphorylation saturating at mechanical loading levels of 12g (p < 0.001) with no effect on total ERK. The phosphorylation of focal adhesion kinase (FAK) was unaffected by mechanical force. g-Loading did not activate P38 MAPK or c-jun N-terminal kinase (JNK). Additionally, a gravity pulse resulted in the localization of phosphorylated ERK 1/2 to the nucleus; this did not occur in unloaded cells. The induction of c-fos was inhibited 74% by the MEK1/2 inhibitor U0126 (p < 0.001) but was not affected by MEK1 or p38 MAPK-specific inhibitors. The long-term consequence of a single 15-minute gravity pulse was a 64% increase in cell growth (p < 0.001). U0126 significantly inhibited gravity-induced growth by 50% (p < 0.001). These studies suggest that short periods of physiological mechanical stress induce immediate early gene expression and growth in MC3T3-E1 osteoblasts primarily through an ERK 1/2-mediated pathway.

  13. An apoptotic signaling pathway in the interferon antiviral response mediated by RNase L and c-Jun NH2-terminal kinase.

    Science.gov (United States)

    Li, Geqiang; Xiang, Ying; Sabapathy, Kanaga; Silverman, Robert H

    2004-01-01

    Cellular stress responses induced during viral infections are critical to the health and survival of organisms. In higher vertebrates, interferons (IFNs) mediate the innate antiviral response in part through the action of RNase L, a uniquely regulated enzyme. RNase L is activated by 5'-phosphorylated, 2'-5' oligoadenylates (2-5A) produced from IFN-inducible and double stranded RNA-dependent synthetases. We show that viral activation of the c-Jun NH2-terminal kinases (JNK) family of MAP kinases and viral induction of apoptosis are both deficient in mouse cells lacking RNase L. Also, JNK phosphorylation in response to 2-5A was greatly reduced in RNase L-/- mouse cells. In addition, 2-5A treatment of the human ovarian carcinoma cell line, Hey1b, resulted in specific ribosomal RNA cleavage products coinciding with JNK activation. Furthermore, suppression of JNK activity with the chemical inhibitor, SP600125, prevented apoptosis induced by 2-5A. In contrast, inhibition of alternative MAP kinases, p38 and ERK, failed to prevent 2-5A-mediated apoptosis. Short interfering RNA to JNK1/JNK2 mRNAs resulted in JNK ablation while also suppressing 2-5A-mediated apoptosis. Moreover, Jnk1-/- Jnk2-/- cells were highly resistant to the apoptotic effects of IFN and 2-5A. These findings suggest that JNK and RNase L function in an integrated signaling pathway during the IFN response that leads to elimination of virus-infected cells through apoptosis. PMID:14570908

  14. A novel human STE20-related protein kinase, HGK, that specifically activates the c-Jun N-terminal kinase signaling pathway.

    Science.gov (United States)

    Yao, Z; Zhou, G; Wang, X S; Brown, A; Diener, K; Gan, H; Tan, T H

    1999-01-22

    The yeast serine/threonine kinase STE20 activates a signaling cascade that includes STE11 (mitogen-activated protein kinase kinase kinase), STE7 (mitogen-activated protein kinase kinase), and FUS3/KSS1 (mitogen-activated protein kinase) in response to signals from both Cdc42 and the heterotrimeric G proteins associated with transmembrane pheromone receptors. Using degenerate polymerase chain reaction, we have isolated a human cDNA encoding a protein kinase homologous to STE20. This protein kinase, designated HPK/GCK-like kinase (HGK), has nucleotide sequences that encode an open reading frame of 1165 amino acids with 11 kinase subdomains. HGK was a serine/threonine protein kinase that specifically activated the c-Jun N-terminal kinase (JNK) signaling pathway when transfected into 293T cells, but it did not stimulate either the extracellular signal-regulated kinase or p38 kinase pathway. HGK also increased AP-1-mediated transcriptional activity in vivo. HGK-induced JNK activation was inhibited by the dominant-negative MKK4 and MKK7 mutants. The dominant-negative mutant of TAK1, but not MEKK1 or MAPK upstream kinase (MUK), strongly inhibited HGK-induced JNK activation. TNF-alpha activated HGK in 293T cells, as well as the dominant-negative HGK mutants, inhibited TNF-alpha-induced JNK activation. These results indicate that HGK, a novel activator of the JNK pathway, may function through TAK1, and that the HGK --> TAK1 --> MKK4, MKK7 --> JNK kinase cascade may mediate the TNF-alpha signaling pathway. PMID:9890973

  15. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  16. Gene expression profiling of cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2007-02-01

    Full Text Available Abstract Background Although the sequence of events leading to wound repair has been described at the cellular and, to a limited extent, at the protein level this process has yet to be fully elucidated. Genome wide transcriptional analysis tools promise to further define the global picture of this complex progression of events. Study Design This study was part of a placebo-controlled double-blind clinical trial in which basal cell carcinomas were treated topically with an immunomodifier – toll-like receptor 7 agonist: imiquimod. The fourteen patients with basal cell carcinoma in the placebo arm of the trial received placebo treatment consisting solely of vehicle cream. A skin punch biopsy was obtained immediately before treatment and at the end of the placebo treatment (after 2, 4 or 8 days. 17.5K cDNA microarrays were utilized to profile the biopsy material. Results Four gene signatures whose expression changed relative to baseline (before wound induction by the pre-treatment biopsy were identified. The largest group was comprised predominantly of inflammatory genes whose expression was increased throughout the study. Two additional signatures were observed which included preferentially pro-inflammatory genes in the early post-treatment biopsies (2 days after pre-treatment biopsies and repair and angiogenesis genes in the later (4 to 8 days biopsies. The fourth and smallest set of genes was down-regulated throughout the study. Early in wound healing the expression of markers of both M1 and M2 macrophages were increased, but later M2 markers predominated. Conclusion The initial response to a cutaneous wound induces powerful transcriptional activation of pro-inflammatory stimuli which may alert the host defense. Subsequently and in the absence of infection, inflammation subsides and it is replaced by angiogenesis and remodeling. Understanding this transition which may be driven by a change from a mixed macrophage population to predominately M2

  17. Network Completion for Static Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Natsu Nakajima

    2014-01-01

    Full Text Available We tackle the problem of completing and inferring genetic networks under stationary conditions from static data, where network completion is to make the minimum amount of modifications to an initial network so that the completed network is most consistent with the expression data in which addition of edges and deletion of edges are basic modification operations. For this problem, we present a new method for network completion using dynamic programming and least-squares fitting. This method can find an optimal solution in polynomial time if the maximum indegree of the network is bounded by a constant. We evaluate the effectiveness of our method through computational experiments using synthetic data. Furthermore, we demonstrate that our proposed method can distinguish the differences between two types of genetic networks under stationary conditions from lung cancer and normal gene expression data.

  18. ATF3 upregulation in glia during Wallerian degeneration: differential expression in peripheral nerves and CNS white matter

    Directory of Open Access Journals (Sweden)

    Coffin Robert S

    2004-03-01

    Full Text Available Abstract Background Many changes in gene expression occur in distal stumps of injured nerves but the transcriptional control of these events is poorly understood. We have examined the expression of the transcription factors ATF3 and c-Jun by non-neuronal cells during Wallerian degeneration following injury to sciatic nerves, dorsal roots and optic nerves of rats and mice, using immunohistochemistry and in situ hybridization. Results Following sciatic nerve injury – transection or transection and reanastomosis – ATF3 was strongly upregulated by endoneurial, but not perineurial cells, of the distal stumps of the nerves by 1 day post operation (dpo and remained strongly expressed in the endoneurium at 30 dpo when axonal regeneration was prevented. Most ATF3+ cells were immunoreactive for the Schwann cell marker, S100. When the nerve was transected and reanastomosed, allowing regeneration of axons, most ATF3 expression had been downregulated by 30 dpo. ATF3 expression was weaker in the proximal stumps of the injured nerves than in the distal stumps and present in fewer cells at all times after injury. ATF3 was upregulated by endoneurial cells in the distal stumps of injured neonatal rat sciatic nerves, but more weakly than in adult animals. ATF3 expression in transected sciatic nerves of mice was similar to that in rats. Following dorsal root injury in adult rats, ATF3 was upregulated in the part of the root between the lesion and the spinal cord (containing Schwann cells, beginning at 1 dpo, but not in the dorsal root entry zone or in the degenerating dorsal column of the spinal cord. Following optic nerve crush in adult rats, ATF3 was found in some cells at the injury site and small numbers of cells within the optic nerve displayed weak immunoreactivity. The pattern of expression of c-Jun in all types of nerve injury was similar to that of ATF3. Conclusion These findings raise the possibility that ATF3/c-Jun heterodimers may play a role in

  19. Differentially expressed genes in pancreatic ductal adenocarcinomas identified through serial analysis of gene expression

    DEFF Research Database (Denmark)

    Hustinx, Steven R; Cao, Dengfeng; Maitra, Anirban;

    2004-01-01

    Serial analysis of gene expression (SAGE) is a powerful tool for the discovery of novel tumor markers. The publicly available online SAGE libraries of normal and neoplastic tissues (http://www.ncbi.nlm.nih.gov/SAGE/) have recently been expanded; in addition, a more complete annotation of the human...... of this program. Novel differentially expressed genes in a cancer type can be identified by revisiting updated and expanded SAGE databases. TAGmapper should prove to be a powerful tool for the discovery of novel tumor markers through assignment of uncharacterized SAGE tags....

  20. Mining Association Rules among Gene Functions in Clusters of Similar Gene Expression Maps

    OpenAIRE

    An, Li; Obradovic, Zoran; Smith, Desmond; Bodenreider, Olivier; Megalooikonomou, Vasileios

    2009-01-01

    Association rules mining methods have been recently applied to gene expression data analysis to reveal relationships between genes and different conditions and features. However, not much effort has focused on detecting the relation between gene expression maps and related gene functions. Here we describe such an approach to mine association rules among gene functions in clusters of similar gene expression maps on mouse brain. The experimental results show that the detected association rules ...

  1. Ascorbic Acid and Gene Expression: Another Example of Regulation of Gene Expression by Small Molecules?

    OpenAIRE

    Belin, Sophie; Kaya, Ferdinand; Burtey, Stéphane; Fontes, Michel

    2010-01-01

    Ascorbic acid (vitamin C, AA) has long been considered a food supplement necessary for life and for preventing scurvy. However, it has been reported that other small molecules such as retinoic acid (vitamin A) and different forms of calciferol (vitamin D) are directly involved in regulating the expression of numerous genes. These molecules bind to receptors that are differentially expressed in the embryo and are therefore crucial signalling molecules in vertebrate development. The question is...

  2. Detection of gene expression pattern in the early stage after spinal cord injury by gene chip

    Institute of Scientific and Technical Information of China (English)

    刘成龙; 靳安民; 童斌辉

    2003-01-01

    Objective: To study the changes of the gene expression pattern of spinal cord tissues in the early stage after injury by DNA microarray (gene chip). Methods: The contusion model of rat spinal cord was established according to Allen's falling strike method and the gene expression patterns of normal and injured spinal cord tissues were studied by gene chip. Results: The expression of 45 genes was significantly changed in the early stage after spinal cord injury, in which 22 genes up-regulated and 23 genes down-regulated. Conclusions: The expression of some genes changes significantly in the early stage after spinal cord injury, which indicates the complexity of secondary spinal cord injury.

  3. 气虚证模型大鼠反义DNA阵列A区基因表达谱特征的初步研究%The Features of Gene Expression Profile on A Area of AtlasTM cDNA Array among Rats with Qi Deficient Syndrome

    Institute of Scientific and Technical Information of China (English)

    田道法; 唐发清; 周小军

    2001-01-01

    To investigate the features of gene expression profile on A area of AtlasTM cDNA array and their response to treatment among rats with qi deficient syndrome.Qi deficient syndrome was induced in rats with the method of herbal decoction perfused gastrically and supplemented by forced swimming. The expressive features of genes on A area were determined in nasopharyngeal tissues of tested rats on AtlasTM cDNA expression array.Results: The expressive activities of c-jun and c-kit proto-oncogenes were downwards regulated,and those of prothymosin α and calcium binding protein genes were upwards regulated among the rats of model group,while c-jun and c-kit were the only genes still remaining in an abnormal status of activity,which were downwards regulated,among the rats of the treatment group.Conclusion:The features of gene expression profile of rats with qi deficient syndrome were the abnormal expression activities of proto-oncogenes and those genes related with stress response.The implications of this pathological process lie in the maintenance of the balance of yin and yang within the diseased body to a most favorable degree.%探讨气虚证模型大鼠A区基因表达谱特征及其对治疗的反应。采用药物加疲劳法制造Wistar大鼠气虚模型,AtlasTM反义DNA(cDNA)阵列法检测造模动物鼻咽上皮细胞基因组A区基因表达谱。结果:模型组动物表现细胞核转录因子亚单位基因c-jun和c-kit原癌基因表达下调,前胸腺素α和钙结合蛋白2基因表达上调。治疗1周后,表达上调的2基因活性恢复正常,但表达下调的2基因活性仍维持低表达状态。结论:单纯气虚证动物出现原癌基因和应激反应相关基因表达活性异常,其变化趋势和病理生理意义在于尽力维持机体内环境的稳定,即阴阳平衡。

  4. MDR1 gene expression in primary colorectal carcinomas.

    OpenAIRE

    Pirker, R; Wallner, J.; Gsur, A; Götzl, M.; Zöchbauer, S; Scheithauer, W.; Depisch, D

    1993-01-01

    The expression of the MDR1 gene, a multidrug resistance gene, was prospectively determined in 113 primary colorectal carcinoma specimens and correlated with clinical data including survival durations of the patients. MDR1 RNA was detected in 65% of the carcinomas. No expression of the MDR2 gene was seen, MDR1 gene expression was independent of age and sex of the patients, size and histologic grading of the tumour, lymph node involvement and distant metastasis. Kaplan-Meier analysis revealed t...

  5. Prognostic Gene Expression Profiles in Breast Cancer

    DEFF Research Database (Denmark)

    Sørensen, Kristina Pilekær

    Each year approximately 4,800 Danish women are diagnosed with breast cancer. Several clinical and pathological factors are used as prognostic and predictive markers to categorize the patients into groups of high or low risk. Around 90% of all patients are allocated to the high risk group and offe......Each year approximately 4,800 Danish women are diagnosed with breast cancer. Several clinical and pathological factors are used as prognostic and predictive markers to categorize the patients into groups of high or low risk. Around 90% of all patients are allocated to the high risk group...... clinical courses, and they may be useful as novel prognostic biomarkers in breast cancer. The aim of the present project was to predict the development of metastasis in lymph node negative breast cancer patients by RNA profiling. We collected and analyzed 82 primary breast tumors from patients who...... developed metastasis and 82 primary breast tumors from patients who remained metastasis-free, by microarray gene expression profiling. We employed a nested case-control design, where samples were matched, in this study one-to-one, to exclude differences in gene expression based on tumor type, tumor size...

  6. Regulation of gene expression by hypoxia.

    Science.gov (United States)

    Millhorn, D E; Czyzyk-Krzeska, M; Bayliss, D A; Lawson, E E

    1993-12-01

    The present study was undertaken to determine if gene expression for tyrosine hydroxylase (TH), the rate limiting enzyme in the biosynthesis of catecholamines, is regulated in the carotid body, sympathetic ganglia and adrenal medulla by hypoxia. We found that a reduction in oxygen tension from 21% to 10% caused a substantial increase (200% at 1 hour and 500% at 6 hours exposure) in the concentration of TH mRNA in carotid body type I cells but not in either the sympathetic ganglia or adrenal gland. In addition, we found that hypercapnia, another natural stimulus of carotid body activity, failed to enhance TH mRNA in type I cells. Removal of the sensory and sympathetic innervation of the carotid body failed to prevent the induction of TH mRNA by hypoxia in type I cells. Our results show that TH gene expression is regulated by hypoxia in the carotid body but not in other peripheral catecholamine synthesizing tissue and that the regulatory mechanism is intrinsic to type I cells. PMID:7909954

  7. Peripheral blood gene expression profiles in COPD subjects

    OpenAIRE

    2011-01-01

    To identify non-invasive gene expression markers for chronic obstructive pulmonary disease (COPD), we performed genome-wide expression profiling of peripheral blood samples from 12 subjects with significant airflow obstruction and an equal number of non-obstructed controls. RNA was isolated from Peripheral Blood Mononuclear Cells (PBMCs) and gene expression was assessed using Affymetrix U133 Plus 2.0 arrays. Tests for gene expression changes that discriminate between COPD cases (FEV1< 70% pre...

  8. Real-time feedback control of gene expression

    OpenAIRE

    Uhlendorf, Jannis

    2013-01-01

    Gene expression is fundamental for the functioning of cellular processes and is tightly regulated. Inducible promoters allow one to perturb gene expression by changing the expression level of a protein from its physiological level. This is a common tool to decipher the functioning of biological processes: the expression level of a gene is changed and one observes how the perturbed cell behaves differently from an unperturbed cell. A shortcoming of inducible promoters is the difficulty to appl...

  9. Coactivators in PPAR-Regulated Gene Expression

    Directory of Open Access Journals (Sweden)

    Navin Viswakarma

    2010-01-01

    Full Text Available Peroxisome proliferator-activated receptor (PPARα, β (also known as δ, and γ function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as heterodimers with retinoid X receptor-α bound to DNA with corepressor molecules. Upon ligand activation, PPARs undergo conformational changes that facilitate the dissociation of corepressor molecules and invoke a spatiotemporally orchestrated recruitment of transcription cofactors including coactivators and coactivator-associated proteins. While a given nuclear receptor regulates the expression of a prescribed set of target genes, coactivators are likely to influence the functioning of many regulators and thus affect the transcription of many genes. Evidence suggests that some of the coactivators such as PPAR-binding protein (PBP/PPARBP/thyroid hormone receptor-associated protein 220 (TRAP220/mediator complex subunit 1 (MED1 may exert a broader influence on the functions of several nuclear receptors and their target genes. Investigations into the role of coactivators in the function of PPARs should strengthen our understanding of the complexities of metabolic diseases associated with energy metabolism.

  10. Analysis of multiplex gene expression maps obtained by voxelation

    Directory of Open Access Journals (Sweden)

    Smith Desmond J

    2009-04-01

    Full Text Available Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. Results To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in

  11. Seed-Based Biclustering of Gene Expression Data

    OpenAIRE

    Jiyuan An; Alan Wee-Chung Liew; Colleen C Nelson

    2012-01-01

    BACKGROUND: Accumulated biological research outcomes show that biological functions do not depend on individual genes, but on complex gene networks. Microarray data are widely used to cluster genes according to their expression levels across experimental conditions. However, functionally related genes generally do not show coherent expression across all conditions since any given cellular process is active only under a subset of conditions. Biclustering finds gene clusters that have similar e...

  12. C-Jun N-terminal kinase signal pathway and C-Jun N-terminal kinase inhibitor SP600125 in amygdala kindled rats%c-Jun氨基末端激酶信号通路及其抑制剂SP600125在大鼠杏仁核电刺激癫痫模型中的作用

    Institute of Scientific and Technical Information of China (English)

    吴俊; 陈旭; 舒凯; 肖铮铮; 雷霆; 李龄

    2012-01-01

    Objective By injecting SP600125 into ventricle of amygdale kindled rats,to observe the pathological changes of the hippocampus and the change of C-Jun N-terminal kinase (JNK) phosphorylation,and discuss the action mechanism of SP600125.Methods Forty rats were randomly divided into 4 groups (n =10 each):blank group,kindling group,SP600125 group,DMSO group.Whole-cell extracts of tissues were obtained from the right hippocampus,and Western blotting was used to detect the changes of JNK and phosphorylation of JNK.Pathological changes of the hippocampus and amygdla were observed by GFAP stain and Nissl stain.Results The level of JNK phosphorylation in the hippocampus was significantly higher in the kindling group (0.48 ± 0.04 ) than the blank group (0.38 ± 0.04 ) and the SP600125 group (0.37±0.03).Nissl stain positive cells in the hippocampus of the SP600125 group were significantly more than those in the the DMSO group (20.10 ±5.11 ).The expression of GFAP in the hippocampus of kindling group (65.45 ±4.53 ) and DMSO group (67.18 ± 3.52) was significantly stronger than that in the blank group (40.37 ± 3.82) and the SP600125 group (43.51 ± 1.83).Conclusion The role of repeated activation of JNK can be related to the hippocampal sclerosis in these rats.SP600125 had a protective effect on neurons during the kindling procedure.%目的 通过对杏仁核电刺激癫痫模型大鼠脑室内注射c-Jun氨基末端激酶(JNK)特异性抑制剂SP600125,观察海马区的病理变化和JNK水平的变化,探讨SP600125的作用.方法 将40只Wistar大鼠随机分为4组:空白组、点燃组、加药组和加药对照组各10只,10次癫痫发作后灌注取脑,Western blot法检测JNK的表达变化,进行尼氏和胶原纤维酸性蛋白(GFAP)染色,各组间进行比较.结果 Western blot显示点燃组海马区的JNK磷酸化水平(0.48±0.04)较空白组(0.38±0.04)和加药组(0.37±0.03)显著增高(P<0.05),总JNK水平各组之间差异无统计学意义(P>0

  13. TAp73-mediated the activation of C-jun N-terminal kinase enhances cellular chemosensitivity to cisplatin in ovarian cancer cells

    OpenAIRE

    Pingde Zhang; Stephanie Si Liu; Hextan Yuen Sheung Ngan

    2012-01-01

    P73, one member of the tumor suppressor p53 family, shares highly structural and functional similarity to p53. Like p53, the transcriptionally active TAp73 can mediate cellular response to chemotherapeutic agents in human cancer cells by up-regulating the expressions of its pro-apoptotic target genes such as PUMA, Bax, NOXA. Here, we demonstrated a novel molecular mechanism for TAp73-mediated apoptosis in response to cisplatin in ovarian cancer cells, and that was irrespective of p53 status. ...

  14. Regulatory mechanisms for abnormal expression of the human breast cancer specific gene 1 in breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    LU; Aiping; LI; Qing; LIU; Jingwen

    2006-01-01

    Breast cancer-specific gene 1 (BCSG1), also referred as synuclein γ, was originally isolated from a human breast cancer cDNA library and the protein is mainly localized to presynaptic terminals in the nervous system. BCSG1 is not expressed in normal or benign breast lesions, but expressed at an extremely high level in the vast majority of the advanced staged breast carcinomas and ovarian carcinomas. Overexpression of BCSG1 in cancer cells led to significant increase in cell proliferation, motility and invasiveness, and metastasis. To elucidate the molecular mechanism and regulation for abnormal transcription of BCSG1, a variety of BCSG1 promoter luciferase reporters were constructed including 3' end deleted sequences, Sp1 deleted, and activator protein-1 (AP1) domains mutated. Transient transfection assay was used to detect the transcriptional activation of BCSG1 promoters. Results showed that the Sp1 sequence in 5'-flanking region was involved in the basal transcriptional activities of BCSG1 without cell-type specificity. In comparison to pGL3-1249, the reporter activities of pGL3-1553 in BCSG1-negative MCF-7 cells and pGL3-1759 in HepG2 cells were notably decreased. Mutations at AP1 sites in BCSG1 intron 1 significantly reduced the promoter activity in all cell lines. Transcription factors, c-jun, c-fos and cyclin AMP-responsive element binding (CREB) protein, could markedly enhance the promoter activities. Thus, our results suggest that the abnormal expression of BCSG1 in breast cancer cells is likely regulated by multiple mechanisms. The 5' flanking region of BCSG1 provides the basal transcriptional activity without cell type specificity. A critical promoter element involved in abnormal expression of BCSG1 presents in the first exon. The cell type specificity of BCSG1 transcription is probably affected through intronic cis-regulatory sequences. AP1 domains in the first intron play an important role in control of BCSG1 transcription.

  15. Lipid-soluble cigarette smoking particles induce expression of inflammatory and extracellular-matrix-related genes in rat cerebral arteries

    Directory of Open Access Journals (Sweden)

    Petter Vikman

    2009-04-01

    Full Text Available Petter Vikman, Cang-Bao Xu, Lars EdvinssonDepartment of Clinical Sciences, Experimental Vascular Research, Lund, SwedenAims: Cigarette smoking is one of the strongest risk factors for stroke. However, the underlying molecular mechanisms that smoke leads to the pathogenesis of stroke are incompletely understood.Methods: Dimethyl sulfoxide (DMSO-soluble (lipid-soluble cigarette smoking particles (DSP were extracted from cigarette smoke (0.8 mg nicotine per cigarette; Marlboro®. Rat cerebral arteries were isolated and organ cultured in the presence of DSP (0.2 μl/ml, equivalent to the plasma level in smokers for 24 h. The expression of matrix metalloproteinase 9 and 13 (MMP9 and MMP13, angiotensin receptor 1 and 2 (AT1 and AT2, interleukin 6 and inducible nitric oxide synthase (iNOS were investigated at mRNA level by real-time PCR and/or at protein level by immunohistochemistry. In addition, the activity of three mitogen-activated protein kinases (p38, ERK 1/2 and SAPK/JNK and their downstream transcription factors (ATF-2, Elk-1 and c-Jun were examined.Results: We observed that compared with control (DMSO-treated cerebral arteries, the cerebral arteries treated by DSP exhibited enhanced expression of MMP13 and AT1 receptors, but not of AT2 receptors, at both mRNA and protein levels, suggesting that a transcriptional mechanism is most likely involved in the DSP effects. This is further supported by the findings that DSP induced phosphorylation of p38 mitogen-activated protein kinases inflammatory signal protein in parallel with activation of its downstream transcription factor ATF-2 and Elk-1. However, ERK 1/2 and SAPK/JNK activities were markedly expressed in the control (organ culture per se with DMSO, and DSP failed to further enhance the activation of ERK 1/2 and SAPK/JNK in the cerebral arteries.Conclusions: DSP induces cerebral vessel inflammation with activation of p38 MAPK inflammatory signal and the downstream transcriptional factors (ATF

  16. Effect of a Bone Graft Substitute β Tricalcium Phosphate on Osteoblastic Genes mRNA Exprssion

    Institute of Scientific and Technical Information of China (English)

    QIU Tong; WANG Youfa; HAN Yinchao; JIANG Xin; LI Shipu

    2012-01-01

    To investigate the molecular aspects of osteoblastic interactions with β tricalcium phosphate (β-TCP) particles,human osteoblast-like MG-63 cells were cultured with β-TCP particles at a density of 6 mg/mL culture medium for 48 h.Then,the mRNA expression of selected genes were quantified by realtime polymerase chain reaction (PCR),including the attachment-related genes (α integrin and actin),the proliferation-related gene (c-jun),and the osteoblastic markers genes (type Ⅰ collagen,osteonectin,alkaline phosphatase,RUNX2 and osteoclain).The results showed that β-TCP particles (the average size 809 nm)significantly promote the attachment and the proliferation of MG-63 cells,and slightly enhance the osteoblastic differentiation based on the analyses of the related genes expression.This study provided scientific evidences to better reveal the underlines of functions of β-TCP in bone repair.

  17. Expression profiles for six zebrafish genes during gonadal sex differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Morthorst, Jane E.; Andersen, Ole;

    2008-01-01

    the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. RESULTS: In...... investigated on cDNA from the same fish allowing comparison of the high and low expressers of genes that are expected to be highest expressed in either males or females. There were 78% high or low expressers of all three "male" genes (ar, sox9a and dmrt1) in the investigated period and 81% were high or low...

  18. Lower susceptibility of female mice to acetaminophen hepatotoxicity: Role of mitochondrial glutathione, oxidant stress and c-jun N-terminal kinase

    International Nuclear Information System (INIS)

    Acetaminophen (APAP) overdose causes severe hepatotoxicity in animals and humans. However, the mechanisms underlying the gender differences in susceptibility to APAP overdose in mice have not been clarified. In our study, APAP (300 mg/kg) caused severe liver injury in male mice but 69–77% lower injury in females. No gender difference in metabolic activation of APAP was found. Hepatic glutathione (GSH) was rapidly depleted in both genders, while GSH recovery in female mice was 2.6 fold higher in the mitochondria at 4 h, and 2.5 and 3.3 fold higher in the total liver at 4 h and 6 h, respectively. This faster recovery of GSH, which correlated with greater induction of glutamate-cysteine ligase, attenuated mitochondrial oxidative stress in female mice, as suggested by a lower GSSG/GSH ratio at 6 h (3.8% in males vs. 1.4% in females) and minimal centrilobular nitrotyrosine staining. While c-jun N-terminal kinase (JNK) activation was similar at 2 and 4 h post-APAP, it was 3.1 fold lower at 6 h in female mice. However, female mice were still protected by the JNK inhibitor SP600125. 17β-Estradiol pretreatment moderately decreased liver injury and oxidative stress in male mice without affecting GSH recovery. Conclusion: The lower susceptibility of female mice is achieved by the improved detoxification of reactive oxygen due to accelerated recovery of mitochondrial GSH levels, which attenuates late JNK activation and liver injury. However, even the reduced injury in female mice was still dependent on JNK. While 17β-estradiol partially protects male mice, it does not affect hepatic GSH recovery. - Highlights: • Female mice are less susceptible to acetaminophen overdose than males. • GSH depletion and protein adduct formation are similar in both genders. • Recovery of hepatic GSH levels is faster in females and correlates with Gclc. • Reduced oxidant stress in females leads to reduced JNK activation. • JNK activation and mitochondrial translocation are critical

  19. Lower susceptibility of female mice to acetaminophen hepatotoxicity: Role of mitochondrial glutathione, oxidant stress and c-jun N-terminal kinase

    Energy Technology Data Exchange (ETDEWEB)

    Du, Kuo; Williams, C. David; McGill, Mitchell R.; Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu

    2014-11-15

    Acetaminophen (APAP) overdose causes severe hepatotoxicity in animals and humans. However, the mechanisms underlying the gender differences in susceptibility to APAP overdose in mice have not been clarified. In our study, APAP (300 mg/kg) caused severe liver injury in male mice but 69–77% lower injury in females. No gender difference in metabolic activation of APAP was found. Hepatic glutathione (GSH) was rapidly depleted in both genders, while GSH recovery in female mice was 2.6 fold higher in the mitochondria at 4 h, and 2.5 and 3.3 fold higher in the total liver at 4 h and 6 h, respectively. This faster recovery of GSH, which correlated with greater induction of glutamate-cysteine ligase, attenuated mitochondrial oxidative stress in female mice, as suggested by a lower GSSG/GSH ratio at 6 h (3.8% in males vs. 1.4% in females) and minimal centrilobular nitrotyrosine staining. While c-jun N-terminal kinase (JNK) activation was similar at 2 and 4 h post-APAP, it was 3.1 fold lower at 6 h in female mice. However, female mice were still protected by the JNK inhibitor SP600125. 17β-Estradiol pretreatment moderately decreased liver injury and oxidative stress in male mice without affecting GSH recovery. Conclusion: The lower susceptibility of female mice is achieved by the improved detoxification of reactive oxygen due to accelerated recovery of mitochondrial GSH levels, which attenuates late JNK activation and liver injury. However, even the reduced injury in female mice was still dependent on JNK. While 17β-estradiol partially protects male mice, it does not affect hepatic GSH recovery. - Highlights: • Female mice are less susceptible to acetaminophen overdose than males. • GSH depletion and protein adduct formation are similar in both genders. • Recovery of hepatic GSH levels is faster in females and correlates with Gclc. • Reduced oxidant stress in females leads to reduced JNK activation. • JNK activation and mitochondrial translocation are critical

  20. Alcohol Induces RNA Polymerase III-dependent Transcription through c-Jun by Co-regulating TATA-binding Protein (TBP) and Brf1 Expression*

    OpenAIRE

    Zhong, Shuping; Machida, Keigo; Tsukamoto, Hide; Johnson, Deborah L.

    2010-01-01

    Chronic alcohol consumption is associated with steatohepatitis and cirrhosis, enhancing the risk for hepatocellular carcinoma. RNA polymerase (pol) III transcribes a variety of small, untranslated RNAs, including tRNAs and 5S rRNAs, which determine the biosynthetic capacity of cells. Increased RNA pol III-dependent transcription, observed in transformed cells and human tumors, is required for oncogenic transformation. Given that alcohol consumption increases risk for liver cancer, we examined...

  1. Tethering of the conserved piggyBac transposase fusion protein CSB-PGBD3 to chromosomal AP-1 proteins regulates expression of nearby genes in humans.

    Directory of Open Access Journals (Sweden)

    Lucas T Gray

    2012-09-01

    Full Text Available The CSB-PGBD3 fusion protein arose more than 43 million years ago when a 2.5-kb piggyBac 3 (PGBD3 transposon inserted into intron 5 of the Cockayne syndrome Group B (CSB gene in the common ancestor of all higher primates. As a result, full-length CSB is now coexpressed with an abundant CSB-PGBD3 fusion protein by alternative splicing of CSB exons 1-5 to the PGBD3 transposase. An internal deletion of the piggyBac transposase ORF also gave rise to 889 dispersed, 140-bp MER85 elements that were mobilized in trans by PGBD3 transposase. The CSB-PGBD3 fusion protein binds MER85s in vitro and induces a strong interferon-like innate antiviral immune response when expressed in CSB-null UVSS1KO cells. To explore the connection between DNA binding and gene expression changes induced by CSB-PGBD3, we investigated the genome-wide DNA binding profile of the fusion protein. CSB-PGBD3 binds to 363 MER85 elements in vivo, but these sites do not correlate with gene expression changes induced by the fusion protein. Instead, CSB-PGBD3 is enriched at AP-1, TEAD1, and CTCF motifs, presumably through protein-protein interactions with the cognate transcription factors; moreover, recruitment of CSB-PGBD3 to AP-1 and TEAD1 motifs correlates with nearby genes regulated by CSB-PGBD3 expression in UVSS1KO cells and downregulated by CSB rescue of mutant CS1AN cells. Consistent with these data, the N-terminal CSB domain of the CSB-PGBD3 fusion protein interacts with the AP-1 transcription factor c-Jun and with RNA polymerase II, and a chimeric CSB-LacI construct containing only the N-terminus of CSB upregulates many of the genes induced by CSB-PGBD3. We conclude that the CSB-PGBD3 fusion protein substantially reshapes the transcriptome in CS patient CS1AN and that continued expression of the CSB-PGBD3 fusion protein in the absence of functional CSB may affect the clinical presentation of CS patients by directly altering the transcriptional program.

  2. Gene expression during fruit ripening in avocado.

    Science.gov (United States)

    Christoffersen, R E; Warm, E; Laties, G G

    1982-06-01

    The poly(A) (+)RNA populations from avocado fruit (Persea americana Mill cv. Hass) at four stages of ripening were isolated by two cycles of oligo-dT-cellulose chromatography and examined by invitro translation, using the rabbit reticulocyte lysate system, followed by two-dimensional gel electrophoresis (isoelectric focusing followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis) of the resulting translation products. Three mRNAs increased dramatically with the climacteric rise in respiration and ethylene production. The molecular weights of the corresponding translation products from the ripening-related mRNAs are 80,000, 36,000, and 16,500. These results indicate that ripening may be linked to the expression of specific genes.

  3. Individual variation of adipose gene expression and identification of covariated genes by cDNA microarrays

    NARCIS (Netherlands)

    Boeuf, S.; Keijer, J.; Franssen-Hal, van N.L.W.; Klaus, S.

    2002-01-01

    Gene expression profiling through the application of microarrays provides comprehensive assessment of gene expression levels in a given tissue or cell population, as well as information on changes of gene expression in altered physiological or pathological situations. Microarrays are particularly su

  4. Modulation of R-gene expression across environments.

    Science.gov (United States)

    MacQueen, Alice; Bergelson, Joy

    2016-03-01

    Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription-PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment--be it a change in biotic or abiotic conditions--led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest that variation in R-gene expression across environments may be shaped by natural selection to reduce fitness costs of R-gene expression in permissive or predictable environments. PMID:26983577

  5. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR

    OpenAIRE

    Thein Swee; Jiang Jie; Best Steve; Silver Nicholas

    2006-01-01

    Abstract Background Control genes, which are often referred to as housekeeping genes, are frequently used to normalise mRNA levels between different samples. However, the expression level of these genes may vary among tissues or cells and may change under certain circumstances. Thus, the selection of housekeeping genes is critical for gene expression studies. To address this issue, 7 candidate housekeeping genes including several commonly used ones were investigated in isolated human reticulo...

  6. Expression profiles for six zebrafish genes during gonadal sex differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Morthorst, Jane E.; Andersen, Ole;

    2008-01-01

    BACKGROUND: The mechanism of sex determination in zebrafish is largely unknown and neither sex chromosomes nor a sex-determining gene have been identified. This indicates that sex determination in zebrafish is mediated by genetic signals from autosomal genes. The aim of this study was to determine...... the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. RESULTS...... "female" genes (fig alpha and cyp19a1a). When comparing all five genes with expected sex related expression 56% show expression expected for either male or female. Furthermore, the expression of all genes was investigated in different tissue of adult male and female zebrafish. CONCLUSION: In zebrafish...

  7. CDX2 gene expression in acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Hanaa H. Arnaoaut

    2014-06-01

    Full Text Available CDX genes are classically known as regulators of axial elongation during early embryogenesis. An unsuspected role for CDX genes has been revealed during hematopoietic development. The CDX gene family member CDX2 belongs to the most frequent aberrantly expressed proto-oncogenes in human acute leukemias and is highly leukemogenic in experimental models. We used reversed transcriptase polymerase chain reaction (RT-PCR to determine the expression level of CDX2 gene in 30 pediatric patients with acute lymphoblastic leukemia (ALL at diagnosis and 30 healthy volunteers. ALL patients were followed up to detect minimal residual disease (MRD on days 15 and 42 of induction. We found that CDX2 gene was expressed in 50% of patients and not expressed in controls. Associations between gene expression and different clinical and laboratory data of patients revealed no impact on different findings. With follow up, we could not confirm that CDX2 expression had a prognostic significance.

  8. Expression profiling identifies genes involved in emphysema severity

    Directory of Open Access Journals (Sweden)

    Bowman Rayleen V

    2009-09-01

    Full Text Available Abstract Chronic obstructive pulmonary disease (COPD is a major public health problem. The aim of this study was to identify genes involved in emphysema severity in COPD patients. Gene expression profiling was performed on total RNA extracted from non-tumor lung tissue from 30 smokers with emphysema. Class comparison analysis based on gas transfer measurement was performed to identify differentially expressed genes. Genes were then selected for technical validation by quantitative reverse transcriptase-PCR (qRT-PCR if also represented on microarray platforms used in previously published emphysema studies. Genes technically validated advanced to tests of biological replication by qRT-PCR using an independent test set of 62 lung samples. Class comparison identified 98 differentially expressed genes (p p Gene expression profiling of lung from emphysema patients identified seven candidate genes associated with emphysema severity including COL6A3, SERPINF1, ZNHIT6, NEDD4, CDKN2A, NRN1 and GSTM3.

  9. Serial Analysis of Gene Expression: Applications in Human Studies

    OpenAIRE

    Renu Tuteja; Narendra Tuteja

    2004-01-01

    Serial analysis of gene expression (SAGE) is a powerful tool, which provides quantitative and comprehensive expression profile of genes in a given cell population. It works by isolating short fragments of genetic information from the expressed genes that are present in the cell being studied. These short sequences, called SAGE tags, are linked together for efficient sequencing. The frequency of each SAGE tag in the cloned multimers directly reflects the transcript abundance. Therefore, SAGE r...

  10. Gene Expression Data Knowledge Discovery using Global and Local Clustering

    OpenAIRE

    H, Swathi.

    2010-01-01

    To understand complex biological systems, the research community has produced huge corpus of gene expression data. A large number of clustering approaches have been proposed for the analysis of gene expression data. However, extracting important biological knowledge is still harder. To address this task, clustering techniques are used. In this paper, hybrid Hierarchical k-Means algorithm is used for clustering and biclustering gene expression data is used. To discover both local and global cl...

  11. Regulated system for heterologous gene expression in Penicillium chrysogenum.

    OpenAIRE

    Graessle, S.; de Haas, H.; Friedlin, E; Kürnsteiner, H; Stöffler, G; Redl, B

    1997-01-01

    A system for regulated heterologous gene expression in the filamentous fungus Penicillium chrysogenum was established. This is the first heterologous expression system to be developed for this organism. Expression of a recombinant fungal xylanase gene (xylp) and the cDNA for the human tear lipocalin (LCNI) was achieved by placing the encoding sequences under the control of the repressible acid phosphatase gene (phoA) promoter of P. chrysogenum. Secreted recombinant proteins were detected in t...

  12. Links between core promoter and basic gene features influence gene expression

    Directory of Open Access Journals (Sweden)

    Sinvani Hadar

    2008-02-01

    Full Text Available Abstract Background Diversity in rates of gene expression is essential for basic cell functions and is controlled by a variety of intricate mechanisms. Revealing general mechanisms that control gene expression is important for understanding normal and pathological cell functions and for improving the design of expression systems. Here we analyzed the relationship between general features of genes and their contribution to expression levels. Results Genes were divided into four groups according to their core promoter type and their characteristics analyzed statistically. Surprisingly we found that small variations in the TATA box are linked to large differences in gene length. Genes containing canonical TATA are generally short whereas long genes are associated with either non-canonical TATA or TATA-less promoters. These differences in gene length are primarily determined by the size and number of introns. Generally, gene expression was found to be tightly correlated with the strength of the TATA-box. However significant reduction in gene expression levels were linked with long TATA-containing genes (canonical and non-canonical whereas intron length hardly affected the expression of TATA-less genes. Interestingly, features associated with high translation are prevalent in TATA-containing genes suggesting that their protein production is also more efficient. Conclusion Our results suggest that interplay between core promoter type and gene size can generate significant diversity in gene expression.

  13. Differential gene co-expression networks via Bayesian biclustering models

    OpenAIRE

    Gao, Chuan; Zhao, Shiwen; McDowell, Ian C.; Brown, Christopher D.; Barbara E Engelhardt

    2014-01-01

    Identifying latent structure in large data matrices is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are locally co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes whose covariation may be observed in only a subset of the samples. Our biclustering me...

  14. Biclustering of Linear Patterns In Gene Expression Data

    OpenAIRE

    Gao, Qinghui; Ho, Christine; Jia, Yingmin; Li, Jingyi Jessica; Huang, Haiyan

    2012-01-01

    Identifying a bicluster, or submatrix of a gene expression dataset wherein the genes express similar behavior over the columns, is useful for discovering novel functional gene interactions. In this article, we introduce a new algorithm for finding biClusters with Linear Patterns (CLiP). Instead of solely maximizing Pearson correlation, we introduce a fitness function that also considers the correlation of complementary genes and conditions. This eliminates the need for a priori determination ...

  15. Differential Expression of Salinity Resistance Gene on Cotton

    Institute of Scientific and Technical Information of China (English)

    YE Wu-wei; YU Shu-xun

    2008-01-01

    @@ Salinity resistance and differential gene expression associated with salinity in cotton germplasm were studied,because of the large scale area of salinity in China,and its significant negative effects on the cotton production.The salinityresisted genes and their differential expression were studied under the stress of NaCI on cotton.There were found,under the NaCI stress,1644 genes differentially expressed from the salinity-sensitive cotton and only 817 genes differentially expressed from the salinityresisted cotton.

  16. Noise in gene expression is coupled to growth rate

    OpenAIRE

    Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran

    2015-01-01

    Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four...

  17. Expression of UGA-Containing Mycoplasma Genes in Bacillus subtilis

    OpenAIRE

    Kannan, T. R.; Baseman, Joel B.

    2000-01-01

    We used Bacillus subtilis to express UGA-containing Mycoplasma genes encoding the P30 adhesin (one UGA) of Mycoplasma pneumoniae and methionine sulfoxide reductase (two UGAs) of Mycoplasma genitalium. Due to natural UGA suppression, these Mycoplasma genes were expressed as full-length protein products, but at relatively low efficiency, in recombinant wild-type Bacillus. The B. subtilis-expressed Mycoplasma proteins appeared as single bands and not as multiple bands compared to expression in r...

  18. Multiscale Embedded Gene Co-expression Network Analysis

    OpenAIRE

    Song, Won-Min; Zhang, Bin

    2015-01-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a...

  19. Expressed genes in regenerating rat liver after partial hepatectomy

    Institute of Scientific and Technical Information of China (English)

    Cun-Shuan Xu; Salman Rahrnan; Jing-Bo Zhang; Cui-Fang Chang; Jin-Yun Yuan; Wen-Qiang Li; Hong-Peng Han; Ke-Jin Yang; Li-Feng Zhao; Yu-Chang Li; Hui-Yong Zhang

    2005-01-01

    AIM: To reveal the liver regeneration (LR) and its controlas well as the occurrence of liver disease and to study the gene expression profiles of 551 genes after partial hepatectomy (PH) in regenerating rat livers.METHODS: Five hundred and fifty-one expressed sequence tags screened by suppression subtractive hybridization were made into an in-house cDNA microarray, and the expressive genes and their expressive profiles in regenerating rat livers were analyzed by microarray and bioinformatics. RESULTS: Three hundred of the analyzed 551 genes were up- or downregulated more than twofolds at one or more time points during LR. Most of the genes were up- or downregulated 2-5 folds, but the highest reached 90 folds of the control. One hundred and thirty-nine of themshowed upregulation, 135 displayed downregulation, and up or down expression of 26 genes revealed a dependence on regenerating livers. The genes expressedin 24-h regenerating livers were much more than those in the others. Cluster analysis and generalization analysis showed that there were at least six distinct temporal patterns of gene expression in the regenerating livers, that is, genes were expressed in the immediate early phase, early phase, intermediate phase, early-late phase, late phase, terminal phase. CONCLUSION: In LR, the number of down-regulated genes was almost similar to that of the upregulated genes; the successively altered genes were more than the rapidly transient genes. The temporal patterns of gene expression were similar 2 and 4 h, 12 and 16 h, 48 and 96 h, 72 and 144 h after PH. Microarray combined with suppressive subtractive hybridization can effectively identify the genes related to LR.

  20. Conserved co-expression for candidate disease gene prioritization

    Directory of Open Access Journals (Sweden)

    Huynen Martijn A

    2008-04-01

    Full Text Available Abstract Background Genes that are co-expressed tend to be involved in the same biological process. However, co-expression is not a very reliable predictor of functional links between genes. The evolutionary conservation of co-expression between species can be used to predict protein function more reliably than co-expression in a single species. Here we examine whether co-expression across multiple species is also a better prioritizer of disease genes than is co-expression between human genes alone. Results We use co-expression data from yeast (S. cerevisiae, nematode worm (C. elegans, fruit fly (D. melanogaster, mouse and human and find that the use of evolutionary conservation can indeed improve the predictive value of co-expression. The effect that genes causing the same disease have higher co-expression than do other genes from their associated disease loci, is significantly enhanced when co-expression data are combined across evolutionarily distant species. We also find that performance can vary significantly depending on the co-expression datasets used, and just using more data does not necessarily lead to better prioritization. Instead, we find that dataset quality is more important than quantity, and using a consistent microarray platform per species leads to better performance than using more inclusive datasets pooled from various platforms. Conclusion We find that evolutionarily conserved gene co-expression prioritizes disease candidate genes better than human gene co-expression alone, and provide the integrated data as a new resource for disease gene prioritization tools.

  1. Global gene expression analysis for evaluation and design of biomaterials

    Directory of Open Access Journals (Sweden)

    Nobutaka Hanagata, Taro Takemura and Takashi Minowa

    2010-01-01

    Full Text Available Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data.

  2. Gene Expression Pattern of Signal Transduction in Chronic Myeloid Leukemia

    Institute of Scientific and Technical Information of China (English)

    LI Huiyu; JIE Shenghua; GUO Tiannan; HUANG Shi'ang

    2006-01-01

    To explore the transcriptional gene expression profiles of signaling pathway in Chronic myeloid leukemia (CML), a series of cDNA microarray chips were tested. The results showed that differentially expressed genes related to singal transduction in CML were screened out and the genes involved in Phosphoinositide 3-kinases (PI3K), Ras-MAPK (mitogen-activated protein kinase) and other signaling pathway genes simultaneously. The results also showed that most of these genes were up-expression genes , which suggested that signal transduction be overactivated in CML. Further analysis of these differentially expressed signal transduction genes will be helpful to understand the molecular mechanism of CML and find new targets of treatment.

  3. Cross-platform prediction of gene expression signatures.

    Directory of Open Access Journals (Sweden)

    Shu-Hong Lin

    Full Text Available Gene expression signatures can predict the activation of oncogenic pathways and other phenotypes of interest via quantitative models that combine the expression levels of multiple genes. However, as the number of platforms to measure genome-wide gene expression proliferates, there is an increasing need to develop models that can be ported across diverse platforms. Because of the range of technologies that measure gene expression, the resulting signal values can vary greatly. To understand how this variation can affect the prediction of gene expression signatures, we have investigated the ability of gene expression signatures to predict pathway activation across Affymetrix and Illumina microarrays. We hybridized the same RNA samples to both platforms and compared the resultant gene expression readings, as well as the signature predictions. Using a new approach to map probes across platforms, we found that the genes in the signatures from the two platforms were highly similar, and that the predictions they generated were also strongly correlated. This demonstrates that our method can map probes from Affymetrix and Illumina microarrays, and that this mapping can be used to predict gene expression signatures across platforms.

  4. Dynamic covariation between gene expression and proteome characteristics

    Directory of Open Access Journals (Sweden)

    Lehtinen Tommi O

    2005-08-01

    Full Text Available Abstract Background Cells react to changing intra- and extracellular signals by dynamically modulating complex biochemical networks. Cellular responses to extracellular signals lead to changes in gene and protein expression. Since the majority of genes encode proteins, we investigated possible correlations between protein parameters and gene expression patterns to identify proteome-wide characteristics indicative of trends common to expressed proteins. Results Numerous bioinformatics methods were used to filter and merge information regarding gene and protein annotations. A new statistical time point-oriented analysis was developed for the study of dynamic correlations in large time series data. The method was applied to investigate microarray datasets for different cell types, organisms and processes, including human B and T cell stimulation, Drosophila melanogaster life span, and Saccharomyces cerevisiae cell cycle. Conclusion We show that the properties of proteins synthesized correlate dynamically with the gene expression profile, indicating that not only is the actual identity and function of expressed proteins important for cellular responses but that several physicochemical and other protein properties correlate with gene expression as well. Gene expression correlates strongly with amino acid composition, composition- and sequence-derived variables, functional, structural, localization and gene ontology parameters. Thus, our results suggest that a dynamic relationship exists between proteome properties and gene expression in many biological systems, and therefore this relationship is fundamental to understanding cellular mechanisms in health and disease.

  5. Benzoic Acid-Inducible Gene Expression in Mycobacteria.

    Directory of Open Access Journals (Sweden)

    Marte S Dragset

    Full Text Available Conditional expression is a powerful tool to investigate the role of bacterial genes. Here, we adapt the Pseudomonas putida-derived positively regulated XylS/Pm expression system to control inducible gene expression in Mycobacterium smegmatis and Mycobacterium tuberculosis, the causative agent of human tuberculosis. By making simple changes to a Gram-negative broad-host-range XylS/Pm-regulated gene expression vector, we prove that it is possible to adapt this well-studied expression system to non-Gram-negative species. With the benzoic acid-derived inducer m-toluate, we achieve a robust, time- and dose-dependent reversible induction of Pm-mediated expression in mycobacteria, with low background expression levels. XylS/Pm is thus an important addition to existing mycobacterial expression tools, especially when low basal expression is of particular importance.

  6. Large Scale Gene Expression Meta-Analysis Reveals Tissue-Specific, Sex-Biased Gene Expression in Humans

    Science.gov (United States)

    Mayne, Benjamin T.; Bianco-Miotto, Tina; Buckberry, Sam; Breen, James; Clifton, Vicki; Shoubridge, Cheryl; Roberts, Claire T.

    2016-01-01

    The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analyzed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes), followed by the heart (375 genes), kidney (224 genes), colon (218 genes), and thyroid (163 genes). More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs, and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  7. Microarray gene expression profiling and analysis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Sadhukhan Provash

    2004-06-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the most common cancer in adult kidney. The accuracy of current diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC, we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays. Methods Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels. Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression alterations of selected genes in RCC. Results Selected genes were annotated based on biological processes and clustered into functional groups. The expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction (RT-PCR. Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant differences between the two types of samples, but many important expression patterns were preserved. Conclusions This is one of the initial studies that examine the functional ontology of a large number of genes in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional ontology revealed many interesting gene expression patterns in RCC. Most

  8. Expression Divergence of Tandemly Arrayed Genes in Human and Mouse

    Directory of Open Access Journals (Sweden)

    Valia Shoja

    2007-01-01

    Full Text Available Tandemly arrayed genes (TAGs account for about one third of the duplicated genes in eukaryotic genomes, yet there has not been any systematic study of their gene expression patterns. Taking advantage of recently published large-scale microarray data sets, we studied the expression divergence of 361 two-member TAGs in human and 212 two-member TAGs in mouse and examined the effect of sequence divergence, gene orientation, and chromosomal proximity on the divergence of TAG expression patterns. Our results show that there is a weak negative correlation between sequence divergence of TAG members and their expression similarity. There is also a weak negative correlation between chromosomal proximity of TAG members and their expression similarity. We did not detect any significant relationship between gene orientation and expression similarity. We also found that downstream TAG members do not show significantly narrower expression breadth than upstream members, contrary to what we predict based on TAG expression divergence hypothesis that we propose. Finally, we show that both chromosomal proximity and expression correlation in TAGs do not differ significantly from their neighboring non-TAG gene pairs, suggesting that tandem duplication is unlikely to be the cause for the higher-than-random expression association between neighboring genes on a chromosome in human and mouse.

  9. c-Jun N-terminal kinase phosphorylation of MARCKSL1 determines actin stability and migration in neurons and in cancer cells.

    Science.gov (United States)

    Björkblom, Benny; Padzik, Artur; Mohammad, Hasan; Westerlund, Nina; Komulainen, Emilia; Hollos, Patrik; Parviainen, Lotta; Papageorgiou, Anastassios C; Iljin, Kristiina; Kallioniemi, Olli; Kallajoki, Markku; Courtney, Michael J; Mågård, Mats; James, Peter; Coffey, Eleanor T

    2012-09-01

    Cell migration is a fundamental biological function, critical during development and regeneration, whereas deregulated migration underlies neurological birth defects and cancer metastasis. MARCKS-like protein 1 (MARCKSL1) is widely expressed in nervous tissue, where, like Jun N-terminal protein kinase (JNK), it is required for neural tube formation, though the mechanism is unknown. Here we show that MARCKSL1 is directly phosphorylated by JNK on C-terminal residues (S120, T148, and T183). This phosphorylation enables MARCKSL1 to bundle and stabilize F-actin, increase filopodium numbers and dynamics, and retard migration in neurons. Conversely, when MARCKSL1 phosphorylation is inhibited, actin mobility increases and filopodium formation is compromised whereas lamellipodium formation is enhanced, as is cell migration. We find that MARCKSL1 mRNA is upregulated in a broad range of cancer types and that MARCKSL1 protein is strongly induced in primary prostate carcinomas. Gene knockdown in prostate cancer cells or in neurons reveals a critical role for MARCKSL1 in migration that is dependent on the phosphorylation state; phosphomimetic MARCKSL1 (MARCKSL1(S120D,T148D,T183D)) inhibits whereas dephospho-MARCKSL1(S120A,T148A,T183A) induces migration. In summary, these data show that JNK phosphorylation of MARCKSL1 regulates actin homeostasis, filopodium and lamellipodium formation, and neuronal migration under physiological conditions and that, when ectopically expressed in prostate cancer cells, MARCKSL1 again determines cell movement.

  10. Gene length and expression level shape genomic novelties

    OpenAIRE

    Grishkevich, Vladislav; YANAI, Itai

    2014-01-01

    Gene duplication and alternative splicing are important mechanisms in the production of genomic novelties. Previous work has shown that a gene’s family size and the number of splice variants it produces are inversely related, although the underlying reason is not well understood. Here, we report that gene length and expression level together explain this relationship. We found that gene lengths correlate with both gene duplication and alternative splicing: Longer genes are less likely to prod...

  11. A stochastic approach to multi-gene expression dynamics

    International Nuclear Information System (INIS)

    In the last years, tens of thousands gene expression profiles for cells of several organisms have been monitored. Gene expression is a complex transcriptional process where mRNA molecules are translated into proteins, which control most of the cell functions. In this process, the correlation among genes is crucial to determine the specific functions of genes. Here, we propose a novel multi-dimensional stochastic approach to deal with the gene correlation phenomena. Interestingly, our stochastic framework suggests that the study of the gene correlation requires only one theoretical assumption-Markov property-and the experimental transition probability, which characterizes the gene correlation system. Finally, a gene expression experiment is proposed for future applications of the model

  12. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  13. Cell cycle gene expression under clinorotation

    Science.gov (United States)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  14. Assembly and Expression of Shark Ig Genes.

    Science.gov (United States)

    Hsu, Ellen

    2016-05-01

    Sharks are modern descendants of the earliest vertebrates possessing Ig superfamily receptor-based adaptive immunity. They respond to immunogen with Abs that, upon boosting, appear more rapidly and show affinity maturation. Specific Abs and immunological memory imply that Ab diversification and clonal selection exist in cartilaginous fish. Shark Ag receptors are generated through V(D)J recombination, and because it is a mechanism known to generate autoreactive receptors, this implies that shark lymphocytes undergo selection. In the mouse, the ∼2.8-Mb IgH and IgL loci require long-range, differential activation of component parts for V(D)J recombination, allelic exclusion, and receptor editing. These processes, including class switching, evolved with and appear inseparable from the complex locus organization. In contrast, shark Igs are encoded by 100-200 autonomously rearranging miniloci. This review describes how the shark primary Ab repertoire is generated in the absence of structural features considered essential in mammalian Ig gene assembly and expression. PMID:27183649

  15. Transgenic zebrafish recapitulating tbx16 gene early developmental expression.

    Directory of Open Access Journals (Sweden)

    Simon Wells

    Full Text Available We describe the creation of a transgenic zebrafish expressing GFP driven by a 7.5 kb promoter region of the tbx16 gene. This promoter segment is sufficient to recapitulate early embryonic expression of endogenous tbx16 in the presomitic mesoderm, the polster and, subsequently, in the hatching gland. Expression of GFP in the transgenic lines later in development diverges to some extent from endogenous tbx16 expression with the serendipitous result that one line expresses GFP specifically in commissural primary ascending (CoPA interneurons of the developing spinal cord. Using this line we demonstrate that the gene mafba (valentino is expressed in CoPA interneurons.

  16. Gene ordering in partitive clustering using microarray expressions

    Indian Academy of Sciences (India)

    Shubhra Sankar Ray; Sanghamitra Bandyopadhyay; Sankar K Pal

    2007-08-01

    A central step in the analysis of gene expression data is the identification of groups of genes that exhibit similar expression patterns. Clustering and ordering the genes using gene expression data into homogeneous groups was shown to be useful in functional annotation, tissue classification, regulatory motif identification, and other applications. Although there is a rich literature on gene ordering in hierarchical clustering framework for gene expression analysis, there is no work addressing and evaluating the importance of gene ordering in partitive clustering framework, to the best knowledge of the authors. Outside the framework of hierarchical clustering, different gene ordering algorithms are applied on the whole data set, and the domain of partitive clustering is still unexplored with gene ordering approaches. A new hybrid method is proposed for ordering genes in each of the clusters obtained from partitive clustering solution, using microarray gene expressions. Two existing algorithms for optimally ordering cities in travelling salesman problem (TSP), namely, FRAG_GALK and Concorde, are hybridized individually with self organizing MAP to show the importance of gene ordering in partitive clustering framework. We validated our hybrid approach using yeast and fibroblast data and showed that our approach improves the result quality of partitive clustering solution, by identifying subclusters within big clusters, grouping functionally correlated genes within clusters, minimization of summation of gene expression distances, and the maximization of biological gene ordering using MIPS categorization. Moreover, the new hybrid approach, finds comparable or sometimes superior biological gene order in less computation time than those obtained by optimal leaf ordering in hierarchical clustering solution.

  17. Gene expression profiles of the developing human retina

    Institute of Scientific and Technical Information of China (English)

    WANG Feng; LI Huiming; LIU Wenwen; XU Ping; HU Gengxi; CHENG Yidong; JIA Libin; HUANG Qian

    2004-01-01

    Retina is a multilayer and highly specialized tissue important in converting light into neural signals. In humans, the critical period for the formation of complex multiplayer structure takes place during embryogenesis between 12 and 28 weeks. The morphologic changes during retinal development in humans have been studied but little is known about the molecular events essential for the formation of the retina. To gain further insights into this process, cDNA microarrays containing 16361 human gene probes were used to measure the gene expression levels in retinas. Of the 16361 genes, 68.7%, 71.4% and 69.7% showed positive hybridization with cDNAs made from 12-16 week fetal, 22-26 week fetal and adult retinas. A total of 814 genes showed a minimum of 3-fold changes between the lowest and highest expression levels among three time points and among them, 106 genes had expression levels with the hybridization intensity above 100 at one or more time points. The clustering analysis suggested that the majority of differentially expressed genes were down-regulated during the retinal development. The differentially expressed genes were further classified according to functions of known genes, and were ranked in decreasing order according to frequency: development, differentiation, signal transduction, protein synthesis and translation, metabolism, DNA binding and transcription, DNA synthesis-repair-recombination, immuno-response, ion channel- transport, cell receptor, cytoskeleton, cell cycle, pro-oncogene, stress and apoptosis related genes. Among these 106 differentially expressed genes, 60 are already present in NEI retina cDNA or EST Databank but the remaining 46 genes are absent and thus identified as "function unknown". To validate gene expression data from the microarray, real-time RT-PCR was performed for 46 "function unknown" genes and 6 known retina specific expression genes, and β-actin was used as internal control. Twenty-seven of these genes showed very similar

  18. Ranking differentially expressed genes from Affymetrix gene expression data: methods with reproducibility, sensitivity, and specificity

    Directory of Open Access Journals (Sweden)

    Shimizu Kentaro

    2009-04-01

    Full Text Available Abstract Background To identify differentially expressed genes (DEGs from microarray data, users of the Affymetrix GeneChip system need to select both a preprocessing algorithm to obtain expression-level measurements and a way of ranking genes to obtain the most plausible candidates. We recently recommended suitable combinations of a preprocessing algorithm and gene ranking method that can be used to identify DEGs with a higher level of sensitivity and specificity. However, in addition to these recommendations, researchers also want to know which combinations enhance reproducibility. Results We compared eight conventional methods for ranking genes: weighted average difference (WAD, average difference (AD, fold change (FC, rank products (RP, moderated t statistic (modT, significance analysis of microarrays (samT, shrinkage t statistic (shrinkT, and intensity-based moderated t statistic (ibmT with six preprocessing algorithms (PLIER, VSN, FARMS, multi-mgMOS (mmgMOS, MBEI, and GCRMA. A total of 36 real experimental datasets was evaluated on the basis of the area under the receiver operating characteristic curve (AUC as a measure for both sensitivity and specificity. We found that the RP method performed well for VSN-, FARMS-, MBEI-, and GCRMA-preprocessed data, and the WAD method performed well for mmgMOS-preprocessed data. Our analysis of the MicroArray Quality Control (MAQC project's datasets showed that the FC-based gene ranking methods (WAD, AD, FC, and RP had a higher level of reproducibility: The percentages of overlapping genes (POGs across different sites for the FC-based methods were higher overall than those for the t-statistic-based methods (modT, samT, shrinkT, and ibmT. In particular, POG values for WAD were the highest overall among the FC-based methods irrespective of the choice of preprocessing algorithm. Conclusion Our results demonstrate that to increase sensitivity, specificity, and reproducibility in microarray analyses, we need

  19. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of

  20. Microdissection of the gene expression codes driving nephrogenesis.

    Science.gov (United States)

    Potter, S Steven; Brunskill, Eric W; Patterson, Larry T

    2010-01-01

    The kidney represents an excellent model system for learning the principles of organogenesis. It is intermediate in complexity, and employs many commonly used developmental processes. As such, kidney development has been the subject of intensive study, using a variety of techniques, including in situ hybridization, organ culture and gene targeting, revealing many critical genes and pathways. Nevertheless, proper organogenesis requires precise patterns of cell type specific differential gene expression, involving very large numbers of genes. This review is focused on the use of global profiling technologies to create an atlas of gene expression codes driving development of different mammalian kidney compartments. Such an atlas allows one to select a gene of interest, and to determine its expression level in each element of the developing kidney, or to select a structure of interest, such as the renal vesicle, and to examine its complete gene expression state. Novel component specific molecular markers are identified, and the changing waves of gene expression that drive nephrogenesis are defined. As the tools continue to improve for the purification of specific cell types and expression profiling of even individual cells it is possible to predict an atlas of gene expression during kidney development that extends to single cell resolution. PMID:21220959

  1. Biasogram: visualization of confounding technical bias in gene expression data

    DEFF Research Database (Denmark)

    Krzystanek, Marcin; Szallasi, Zoltan Imre; Eklund, Aron Charles

    2013-01-01

    Gene expression profiles of clinical cohorts can be used to identify genes that are correlated with a clinical variable of interest such as patient outcome or response to a particular drug. However, expression measurements are susceptible to technical bias caused by variation in extraneous factor...

  2. MEPD: medaka expression pattern database, genes and more.

    Science.gov (United States)

    Alonso-Barba, Juan I; Rahman, Raza-Ur; Wittbrodt, Joachim; Mateo, Juan L

    2016-01-01

    The Medaka Expression Pattern Database (MEPD; http://mepd.cos.uni-heidelberg.de/) is designed as a repository of medaka expression data for the scientific community. In this update we present two main improvements. First, we have changed the previous clone-centric view for in situ data to a gene-centric view. This is possible because now we have linked all the data present in MEPD to the medaka gene annotation in ENSEMBL. In addition, we have also connected the medaka genes in MEPD to their corresponding orthologous gene in zebrafish, again using the ENSEMBL database. Based on this, we provide a link to the Zebrafish Model Organism Database (ZFIN) to allow researches to compare expression data between these two fish model organisms. As a second major improvement, we have modified the design of the database to enable it to host regulatory elements, promoters or enhancers, expression patterns in addition to gene expression. The combination of gene expression, by traditional in situ, and regulatory element expression, typically by fluorescence reporter gene, within the same platform assures consistency in terms of annotation. In our opinion, this will allow researchers to uncover new insights between the expression domain of genes and their regulatory landscape. PMID:26450962

  3. Comparative genomics of the relationship between gene structure and expression

    NARCIS (Netherlands)

    Ren, X.

    2006-01-01

    The relationship between the structure of genes and their expression is a relatively new aspect of genome organization and regulation. With more genome sequences and expression data becoming available, bioinformatics approaches can help the further elucidation of the relationships between gene struc

  4. FGX : a frequentist gene expression index for Affymetrix arrays

    NARCIS (Netherlands)

    Purutçuoğlu, Vilda; Wit, Ernst

    2007-01-01

    We consider a new frequentist gene expression index for Affymetrix oligonucleotide DNA arrays, using a similar probe intensity model as suggested previously, called the Bayesian gene expression index (BGX). According to this model, the perfect match and mismatch values are assumed to be correlated a

  5. RNA preparation and characterization for gene expression studies

    DEFF Research Database (Denmark)

    Stangegaard, Michael

    2009-01-01

    Much information can be obtained from knowledge of the relative expression level of each gene in the transcriptome. With the current advances in technology as little as a single cell is required as starting material for gene expression experiments. The mRNA from a single cell may be linearly ampl...

  6. Peripheral blood gene expression profiles in COPD subjects.

    Science.gov (United States)

    Bhattacharya, Soumyaroop; Tyagi, Shivraj; Srisuma, Sorachai; Demeo, Dawn L; Shapiro, Steven D; Bueno, Raphael; Silverman, Edwin K; Reilly, John J; Mariani, Thomas J

    2011-01-01

    To identify non-invasive gene expression markers for chronic obstructive pulmonary disease (COPD), we performed genome-wide expression profiling of peripheral blood samples from 12 subjects with significant airflow obstruction and an equal number of non-obstructed controls. RNA was isolated from Peripheral Blood Mononuclear Cells (PBMCs) and gene expression was assessed using Affymetrix U133 Plus 2.0 arrays.Tests for gene expression changes that discriminate between COPD cases (FEV1 80% predicted, FEV1/FVC > 0.7) were performed using Significance Analysis of Microarrays (SAM) and Bayesian Analysis of Differential Gene Expression (BADGE). Using either test at high stringency (SAM median FDR = 0 or BADGE p Pearson and Spearman correlation coefficients (p < 0.05), identified a set of 86 genes. A total of 16 markers showed evidence of significant correlation (p < 0.05) with quantitative traits and differential expression between cases and controls. We further compared our peripheral gene expression markers with those we previously identified from lung tissue of the same cohort. Two genes, RP9and NAPE-PLD, were identified as decreased in COPD cases compared to controls in both lung tissue and blood. These results contribute to our understanding of gene expression changes in the peripheral blood of patients with COPD and may provide insight into potential mechanisms involved in the disease. PMID:21884629

  7. Expression and mapping of anthocyanin biosynthesis genes in carrot

    Science.gov (United States)

    Anthocyanin gene expression has been extensively studied in leaves, fruits and flowers of numerous plants. Little, however, is known about anthocyanin accumulation in roots, or in carrots or other Apiaceae. We quantified expression of six anthocyanin biosynthetic genes (phenylalanine ammonia-lyase (...

  8. Digital gene expression tag profiling analysis of the gene expression patterns regulating the early stage of mouse spermatogenesis.

    Directory of Open Access Journals (Sweden)

    Xiujun Zhang

    Full Text Available Detailed characterization of the gene expression patterns in spermatogonia and primary spermatocytes is critical to understand the processes which occur prior to meiosis during normal spermatogenesis. The genome-wide expression profiles of mouse type B spermatogonia and primary spermatocytes were investigated using the Solexa/Illumina digital gene expression (DGE system, a tag based high-throughput transcriptome sequencing method, and the developmental processes which occur during early spermatogenesis were systematically analyzed. Gene expression patterns vary significantly between mouse type B spermatogonia and primary spermatocytes. The functional analysis revealed that genes related to junction assembly, regulation of the actin cytoskeleton and pluripotency were most significantly differently expressed. Pathway analysis indicated that the Wnt non-canonical signaling pathway played a central role and interacted with the actin filament organization pathway during the development of spermatogonia. This study provides a foundation for further analysis of the gene expression patterns and signaling pathways which regulate the molecular mechanisms of early spermatogenesis.

  9. ANALYSES ON DIFFERENTIALLY EXPRESSED GENES ASSOCIATED WITH HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    MENG Xu-li; DING Xiao-wen; XU Xiao-hong

    2006-01-01

    Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods: Two hundred and eighty-eight human tumor related genes were chosen for preparation of the oligochips probe. mRNA was extracted from 16 breast cancer tissues and the corresponding normal breast tissues, and cDNA probe was prepared through reverse-transcription and hybridized with the gene chip. A laser focused fluorescent scanner was used to scan the chip. The different gene expressions were thereafter automatically compared and analyzed between the two sample groups. Cy3/Cy5>3.5 meant significant up-regulation. Cy3/Cy5<0.25 meant significant down-regulation. Results: The comparison between the breast cancer tissues and their corresponding normal tissues showed that 84 genes had differential expression in the Chip. Among the differently expressed genes, there were 4 genes with significant down-regulation and 6 with significant up-regulation. Compared with normal breast tissues, differentially expressed genes did partially exist in the breast cancer tissues. Conclusion: Changes in multi-gene expression regulations take place during the occurrence and development of breast cancer; and the research on related genes can help understanding the mechanism of tumor occurrence.

  10. Gene Expression Profiling in the Hibernating Primate, Cheirogaleus Medius.

    Science.gov (United States)

    Faherty, Sheena L; Villanueva-Cañas, José Luis; Klopfer, Peter H; Albà, M Mar; Yoder, Anne D

    2016-01-01

    Hibernation is a complex physiological response that some mammalian species employ to evade energetic demands. Previous work in mammalian hibernators suggests that hibernation is activated not by a set of genes unique to hibernators, but by differential expression of genes that are present in all mammals. This question of universal genetic mechanisms requires further investigation and can only be tested through additional investigations of phylogenetically dispersed species. To explore this question, we use RNA-Seq to investigate gene expression dynamics as they relate to the varying physiological states experienced throughout the year in a group of primate hibernators-Madagascar's dwarf lemurs (genus Cheirogaleus). In a novel experimental approach, we use longitudinal sampling of biological tissues as a method for capturing gene expression profiles from the same individuals throughout their annual hibernation cycle. We identify 90 candidate genes that have variable expression patterns when comparing two active states (Active 1 and Active 2) with a torpor state. These include genes that are involved in metabolic pathways, feeding behavior, and circadian rhythms, as might be expected to correlate with seasonal physiological state changes. The identified genes appear to be critical for maintaining the health of an animal that undergoes prolonged periods of metabolic depression concurrent with the hibernation phenotype. By focusing on these differentially expressed genes in dwarf lemurs, we compare gene expression patterns in previously studied mammalian hibernators. Additionally, by employing evolutionary rate analysis, we find that hibernation-related genes do not evolve under positive selection in hibernating species relative to nonhibernators. PMID:27412611

  11. Differential endometrial gene expression in pregnant and nonpregnant sows

    DEFF Research Database (Denmark)

    Østrup, Esben; Bauersachs, Stefan; Blum, Helmut;

    2010-01-01

    obtained from the endometrium of pregnant sows and sows inseminated with inactivated semen. Analysis of the microarray data revealed 263 genes to be significantly differentially expressed between the pregnant and nonpregnant sows. Most gene ontology terms significantly enriched at pregnancy had allocated......In an attempt to unveil molecular processes controlling the porcine placentation, we have investigated the pregnancy-induced gene expression in the endometrium using the Affymetrix GeneChip Porcine Genome Array. At Day 14 after insemination, at the time of initial placentation, samples were...... the three terms oxidoreductase activity, lipid metabolic process, and organic acid metabolic process had an overrepresentation of down-regulated genes. A gene interaction network based on the genes identified in the gene ontology term developmental processes identified genes likely to be involved...

  12. The effect of negative autoregulation on eukaryotic gene expression

    Science.gov (United States)

    Nevozhay, Dmitry; Adams, Rhys; Murphy, Kevin; Josic, Kresimir; Balázsi, G. Ábor

    2009-03-01

    Negative autoregulation is a frequent motif in gene regulatory networks, which has been studied extensively in prokaryotes. Nevertheless, some effects of negative feedback on gene expression in eukaryotic transcriptional networks remain unknown. We studied how the strength of negative feedback regulation affects the characteristics of gene expression in yeast cells carrying synthetic transcriptional cascades. We observed a drastic reduction of gene expression noise and a change in the shape of the dose-response curve. We explained these experimentally observed effects by stochastic simulations and a simple set of algebraic equations.

  13. Expression regulation of design process gene in product design

    DEFF Research Database (Denmark)

    Fang, Lusheng; Li, Bo; Tong, Shurong;

    2011-01-01

    To improve the design process efficiency, this paper proposes the principle and methodology that design process gene controls the characteristics of design process under the framework of design process reuse and optimization based on design process gene. First, the concept of design process gene ...... with the example of design management gene. Last, the regulation mode that the regulator gene regulates the expression of the structural gene is established and it is illustrated by taking the design process management gene as an example. © (2011) Trans Tech Publications....

  14. Gene expression profiling of placentas affected by pre-eclampsia

    DEFF Research Database (Denmark)

    Hoegh, Anne Mette; Borup, Rehannah; Nielsen, Finn Cilius;

    2010-01-01

    Several studies point to the placenta as the primary cause of pre-eclampsia. Our objective was to identify placental genes that may contribute to the development of pre-eclampsia. RNA was purified from tissue biopsies from eleven pre-eclamptic placentas and eighteen normal controls. Messenger RNA...... expression from pooled samples was analysed by microarrays. Verification of the expression of selected genes was performed using real-time PCR. A surprisingly low number of genes (21 out of 15,000) were identified as differentially expressed. Among these were genes not previously associated with pre-eclampsia...... as bradykinin B1 receptor and a 14-3-3 protein, but also genes that have already been connected with pre-eclampsia, for example, inhibin beta A subunit and leptin. A low number of genes were repeatedly identified as differentially expressed, because they may represent the endpoint of a cascade of events...

  15. Decoupling Linear and Nonlinear Associations of Gene Expression

    KAUST Repository

    Itakura, Alan

    2013-05-01

    The FANTOM consortium has generated a large gene expression dataset of different cell lines and tissue cultures using the single-molecule sequencing technology of HeliscopeCAGE. This provides a unique opportunity to investigate novel associations between gene expression over time and different cell types. Here, we create a MatLab wrapper for a powerful and computationally intensive set of statistics known as Maximal Information Coefficient, and then calculate this statistic for a large, comprehensive dataset containing gene expression of a variety of differentiating tissues. We then distinguish between linear and nonlinear associations, and then create gene association networks. Following this analysis, we are then able to identify clusters of linear gene associations that then associate nonlinearly with other clusters of linearity, providing insight to much more complex connections between gene expression patterns than previously anticipated.

  16. Fundamental principles of energy consumption for gene expression

    Science.gov (United States)

    Huang, Lifang; Yuan, Zhanjiang; Yu, Jianshe; Zhou, Tianshou

    2015-12-01

    How energy is consumed in gene expression is largely unknown mainly due to complexity of non-equilibrium mechanisms affecting expression levels. Here, by analyzing a representative gene model that considers complexity of gene expression, we show that negative feedback increases energy consumption but positive feedback has an opposite effect; promoter leakage always reduces energy consumption; generating more bursts needs to consume more energy; and the speed of promoter switching is at the cost of energy consumption. We also find that the relationship between energy consumption and expression noise is multi-mode, depending on both the type of feedback and the speed of promoter switching. Altogether, these results constitute fundamental principles of energy consumption for gene expression, which lay a foundation for designing biologically reasonable gene modules. In addition, we discuss possible biological implications of these principles by combining experimental facts.

  17. Evaluating the consistency of gene sets used in the analysis of bacterial gene expression data

    Directory of Open Access Journals (Sweden)

    Tintle Nathan L

    2012-08-01

    Full Text Available Abstract Background Statistical analyses of whole genome expression data require functional information about genes in order to yield meaningful biological conclusions. The Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG are common sources of functionally grouped gene sets. For bacteria, the SEED and MicrobesOnline provide alternative, complementary sources of gene sets. To date, no comprehensive evaluation of the data obtained from these resources has been performed. Results We define a series of gene set consistency metrics directly related to the most common classes of statistical analyses for gene expression data, and then perform a comprehensive analysis of 3581 Affymetrix® gene expression arrays across 17 diverse bacteria. We find that gene sets obtained from GO and KEGG demonstrate lower consistency than those obtained from the SEED and MicrobesOnline, regardless of gene set size. Conclusions Despite the widespread use of GO and KEGG gene sets in bacterial gene expression data analysis, the SEED and MicrobesOnline provide more consistent sets for a wide variety of statistical analyses. Increased use of the SEED and MicrobesOnline gene sets in the analysis of bacterial gene expression data may improve statistical power and utility of expression data.

  18. Regulating gene expression : surprises still in store

    NARCIS (Netherlands)

    Jansen, Ritsert C.; Nap, Jan-Peter

    2004-01-01

    Understanding how genes constitute and contribute to the regulatory networks that result in phenotypic diversity is the major challenge of the post-genome era. Recently, it has been shown that major players in gene regulation can be identified by genome-wide linkage analysis of whole-genome gene exp

  19. Gene expression profiling in adipose tissue from growing broiler chickens

    Science.gov (United States)

    Hausman, Gary J; Barb, C Rick; Fairchild, Brian D; Gamble, John; Lee-Rutherford, Laura

    2014-01-01

    In this study, total RNA was collected from abdominal adipose tissue samples obtained from ten broiler chickens at 3, 4, 5, and 6 weeks of age and prepared for gene microarray analysis with Affymetrix GeneChip Chicken Genome Arrays (Affymetrix) and quantitative real-time PCR analysis. Studies of global gene expression in chicken adipose tissue were initiated since such studies in many animal species show that adipose tissue expresses and secretes many factors that can influence growth and physiology. Microarray results indicated 333 differentially expressed adipose tissue genes between 3 and 6 wk, 265 differentially expressed genes between 4 and 6 wk and 42 differentially expressed genes between 3 and 4 wk. Enrichment scores of Gene Ontology Biological Process categories indicated strong age upregulation of genes involved in the immune system response. In addition to microarray analysis, quantitative real-time PCR analysis was used to confirm the influence of age on the expression of adipose tissue CC chemokine ligands (CCL), toll-like receptor (TLR)-2, lipopolysaccharide-induced TNF factor (LITAF), chemokine (C-C motif) receptor 8 (CCR8), and several other genes. Between 3 and 6 wk of age CCL5, CCL1, and CCR8 expression increased (P = 0.0001) with age. Furthermore, TLR2, CCL19, and LITAF expression increased between 4 and 6 wk of age (P = 0.001). This is the first demonstration of age related changes in CCL, LITAF, and TLR2 gene expression in chicken adipose tissue. Future studies are needed to elucidate the role of these adipose tissue genes in growth and the immune system. PMID:26317054

  20. Gene expression profiles in stages II and III colon cancers

    DEFF Research Database (Denmark)

    Thorsteinsson, Morten; Kirkeby, Lene T; Hansen, Raino;

    2012-01-01

    PURPOSE: A 128-gene signature has been proposed to predict outcome in patients with stages II and III colorectal cancers. In the present study, we aimed to reproduce and validate the 128-gene signature in external and independent material. METHODS: Gene expression data from the original material ...

  1. Dimensionality of Data Matrices with Applications to Gene Expression Profiles

    Science.gov (United States)

    Feng, Xingdong

    2009-01-01

    Probe-level microarray data are usually stored in matrices. Take a given probe set (gene), for example, each row of the matrix corresponds to an array, and each column corresponds to a probe. Often, people summarize each array by the gene expression level. Is one number sufficient to summarize a whole probe set for a specific gene in an array?…

  2. Regulated expression of foreign genes in vivo after germline transfer.

    OpenAIRE

    Passman, R S; Fishman, G I

    1994-01-01

    Tight transcriptional control of foreign genes introduced into the germline of transgenic mice would be of great experimental value in studies of gene function. To develop a system in which the spatial and temporal expression of candidate genes implicated in cardiac development or function could be tightly controlled in vivo, we have generated transgenic mice expressing a tetracycline-controlled transactivator (tTA) under the control of a rat alpha myosin heavy chain promoter (MHC alpha-tTA m...

  3. Inducible gene expression system by 3-hydroxypropionic acid

    OpenAIRE

    Zhou, Shengfang; Ainala, Satish Kumar; Seol, Eunhee; Nguyen, Trinh Thi; Park, Sunghoon

    2015-01-01

    Background 3-Hydroxypropionic acid (3-HP) is an important platform chemical that boasts a variety of industrial applications. Gene expression systems inducible by 3-HP, if available, are of great utility for optimization of the pathways of 3-HP production and excretion. Results Here we report the presence of unique inducible gene expression systems in Pseudomonas denitrificans and other microorganisms. In P. denitrificans, transcription of three genes (hpdH, mmsA and hbdH-4) involved in 3-HP ...

  4. Pancreatic expression of human insulin gene in transgenic mice.

    OpenAIRE

    Bucchini, D; Ripoche, M A; Stinnakre, M G; Desbois, P; Lorès, P; Monthioux, E; Absil, J; Lepesant, J A; Pictet, R; Jami, J

    1986-01-01

    We have investigated the possibility of obtaining integration and expression of a native human gene in transgenic mice. An 11-kilobase (kb) human chromosomal DNA fragment including the insulin gene (1430 base pairs) was microinjected into fertilized mouse eggs. This fragment was present in the genomic DNA of several developing animals. One transgenic mouse and its progeny were analyzed for expression of the foreign gene. Synthesis and release of human insulin was revealed by detection of the ...

  5. Gene expression profiles of mouse spermatogenesis during recovery from irradiation

    DEFF Research Database (Denmark)

    Shah, Fozia J; Tanaka, Masami; Nielsen, John E;

    2009-01-01

    the cellular changes that happen during recovery from irradiation by means of histology. We have earlier generated gene expression profiles during induction of spermatogenesis in mouse postnatal developing testes and found a correlation between profiles and the expressing cell types. The aim of the present...... work was to utilize the link between expression profile and cell types to follow the cellular changes that occur during post-irradiation recovery of spermatogenesis in order to describe recovery by means of gene expression. METHODS: Adult mouse testes were subjected to irradiation with 1 Gy...... or a fractionated radiation of two times 1 Gy. Testes were sampled every third or fourth day to follow the recovery of spermatogenesis and gene expression profiles generated by means of differential display RT-PCR. In situ hybridization was in addition performed to verify cell-type specific gene expression patterns...

  6. Performance Analysis of Enhanced Clustering Algorithm for Gene Expression Data

    Directory of Open Access Journals (Sweden)

    T. Chandrasekhar

    2011-11-01

    Full Text Available Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this paper we applied K-Means with Automatic Generations of Merge Factor for ISODATA- AGMFI. Though AGMFI has been applied for clustering of Gene Expression Data, this proposed Enhanced Automatic Generations of Merge Factor for ISODATA- EAGMFI Algorithms overcome the drawbacks of AGMFI in terms of specifying the optimal number of clusters and initialization of good cluster centroids. Experimental results on Gene Expression Data show that the proposed EAGMFI algorithms could identify compact clusters with perform well in terms of the Silhouette Coefficients cluster measure.

  7. Effect of Serum from Overfatigue Rats on JNK/c-Jun/HO-1 Pathway in Human Umbilical Vein Endothelial Cells and the Intervening Effect of Tongxinluo(通心络)Superfine Powder

    Institute of Scientific and Technical Information of China (English)

    梁俊清; 徐海波; 吴以岭; 孙士然; 贾振华; 魏聪; 游佳华

    2009-01-01

    Objective:To cultivate human umbilical vein endothelial cells (HUVECs) in the serum of overfatigue rats with the intervention of Tongxinluo (通心络) superfine powder (TXLSP).By examining the variation of the activity of JNK/c-Jun/HO-1 pathway,the possible mechanisms of vascular endothelial dysfunction under overfatigue conditions and the intervening effect of TXLSP were explored.Methods:The HUVECs were randomly divided into the normal control group,the model group,the SP600125 (a specific antagonist of JNK)...

  8. Tumor Necrosis Factor-α and Apoptosis Signal-Regulating Kinase 1 Control Reactive Oxygen Species Release, Mitochondrial Autophagy and C-Jun N-Terminal Kinase/P38 Phosphorylation During Necrotizing Enterocolitis

    Directory of Open Access Journals (Sweden)

    Naira Baregamian

    2009-01-01

    Full Text Available Background: Oxidative stress and inflammation may contribute to the disruption of the protective gut barrier through various mechanisms; mitochondrial dysfunction resulting from inflammatory and oxidative injury may potentially be a significant source of apoptosis during necrotizing enterocolitis (NEC. Tumor necrosis factor (TNFα is thought to generate reactive oxygen species (ROS and activate the apoptosis signal-regulating kinase 1 (ASK1-c-Jun N-terminal kinase (JNK/p38 pathway. Hence, the focus of our study was to examine the effects of TNFα/ROs on mitochondrial function, ASK1-JNK/p38 cascade activation in intestinal epithelial cells during NEC.

  9. Biclustering of the Gene Expression Data by Coevolution Cuckoo Search

    OpenAIRE

    Lu Yin; Yongguo Liu

    2015-01-01

    Biclustering has a potential to discover the local expression patterns analyzing the gene expression data which provide clues about biological processes. However, since it is proven that the biclustering problem is NP-hard, it is necessary to seek more effective algorithm. Cuckoo Search (CS) models the brood parasitism behavior of cuckoo to solve the optimization problem and outperforms the other existing algorithms. In this paper, we introduce a new algorithm for biclustering gene expression...

  10. GEE: An Informatics Tool for Gene Expression Data Explore

    OpenAIRE

    Lee, Soo Youn; Park, Chan Hee; Yoon, Jun Hee; Yun, Sunmin; Kim, Ju Han

    2016-01-01

    Objectives Major public high-throughput functional genomic data repositories, including the Gene Expression Omnibus (GEO) and ArrayExpress have rapidly expanded. As a result, a large number of diverse high-throughput functional genomic data retrieval systems have been developed. However, high-throughput functional genomic data retrieval remains challenging. Methods We developed Gene Expression data Explore (GEE), the first powerful, flexible web and mobile search application for searching who...

  11. An atlas of gene expression and gene co-regulation in the human retina.

    Science.gov (United States)

    Pinelli, Michele; Carissimo, Annamaria; Cutillo, Luisa; Lai, Ching-Hung; Mutarelli, Margherita; Moretti, Maria Nicoletta; Singh, Marwah Veer; Karali, Marianthi; Carrella, Diego; Pizzo, Mariateresa; Russo, Francesco; Ferrari, Stefano; Ponzin, Diego; Angelini, Claudia; Banfi, Sandro; di Bernardo, Diego

    2016-07-01

    The human retina is a specialized tissue involved in light stimulus transduction. Despite its unique biology, an accurate reference transcriptome is still missing. Here, we performed gene expression analysis (RNA-seq) of 50 retinal samples from non-visually impaired post-mortem donors. We identified novel transcripts with high confidence (Observed Transcriptome (ObsT)) and quantified the expression level of known transcripts (Reference Transcriptome (RefT)). The ObsT included 77 623 transcripts (23 960 genes) covering 137 Mb (35 Mb new transcribed genome). Most of the transcripts (92%) were multi-exonic: 81% with known isoforms, 16% with new isoforms and 3% belonging to new genes. The RefT included 13 792 genes across 94 521 known transcripts. Mitochondrial genes were among the most highly expressed, accounting for about 10% of the reads. Of all the protein-coding genes in Gencode, 65% are expressed in the retina. We exploited inter-individual variability in gene expression to infer a gene co-expression network and to identify genes specifically expressed in photoreceptor cells. We experimentally validated the photoreceptors localization of three genes in human retina that had not been previously reported. RNA-seq data and the gene co-expression network are available online (http://retina.tigem.it). PMID:27235414

  12. DNA microarray analysis of genes differentially expressed in adipocyte differentiation

    Indian Academy of Sciences (India)

    Chunyan Yin; Yanfeng Xiao; Wei Zhang; Erdi Xu; Weihua Liu; Xiaoqing Yi; Ming Chang

    2014-06-01

    In the present study, the human liposarcoma cell line SW872 was used to identify global changes in gene expression profiles occurring during adipogenesis. We further explored some of the genes expressed during the late phase of adipocyte differentiation. These genes may play a major role in promoting excessive proliferation and accumulation of lipid droplets, which contribute to the development of obesity. By using microarray-based technology, we examined differential gene expression in early differentiated adipocytes and late differentiated adipocytes. Validated genes exhibited a ≥ 10-fold increase in the late phase of adipocyte differentiation by polymerase chain reaction (RT-PCR). Compared with undifferentiated preadipocytes, we found that 763 genes were increased in early differentiated adipocytes, and 667 genes were increased in later differentiated adipocytes. Furthermore, 21 genes were found being expressed 10-fold higher in the late phase of adipocyte differentiation. The results were in accordance with the RT-PCR test, which validated 11 genes, namely, CIDEC, PID1, LYRM1, ADD1, PPAR2, ANGPTL4, ADIPOQ, ACOX1, FIP1L1, MAP3K2 and PEX14. Most of these genes were found being expressed in the later phase of adipocyte differentiation involved in obesity-related diseases. The findings may help to better understand the mechanism of obesity and related diseases.

  13. Expression of HOX C homeobox genes in lymphoid cells.

    Science.gov (United States)

    Lawrence, H J; Stage, K M; Mathews, C H; Detmer, K; Scibienski, R; MacKenzie, M; Migliaccio, E; Boncinelli, E; Largman, C

    1993-08-01

    The class I homeobox genes located in four clusters in mammalian genomes (HOX A, HOX B, HOX C, and HOX D) appear to play a major role in fetal development. Previous surveys of homeobox gene expression in human leukemic cell lines have shown that certain HOX A genes are expressed only in myeloid cell lines, whereas HOX B gene expression is largely restricted to cells with erythroid potential. We now report a survey of the expression patterns of 9 homeobox genes from the HOX C locus in a panel of 24 human and 7 murine leukemic cell lines. The most striking observation is the lymphoid-specific pattern of expression of HOX C4, located at the 3' end of the locus. A major transcript of 1.9 kilobases is observed in both T-cell and B-cell lines. HOX C4 expression is also detected in normal human marrow and peripheral blood lymphocytes, but not in mature granulocytes or monocytes. HOX C8 is also expressed in human lymphoid cells but is expressed in other blood cell types as well. However, the HOX C8 transcript pattern is lineage specific. These data, in conjunction with earlier findings, suggest that homeobox gene expression influences lineage determination during hematopoiesis.

  14. Seed-based biclustering of gene expression data.

    Directory of Open Access Journals (Sweden)

    Jiyuan An

    Full Text Available BACKGROUND: Accumulated biological research outcomes show that biological functions do not depend on individual genes, but on complex gene networks. Microarray data are widely used to cluster genes according to their expression levels across experimental conditions. However, functionally related genes generally do not show coherent expression across all conditions since any given cellular process is active only under a subset of conditions. Biclustering finds gene clusters that have similar expression levels across a subset of conditions. This paper proposes a seed-based algorithm that identifies coherent genes in an exhaustive, but efficient manner. METHODS: In order to find the biclusters in a gene expression dataset, we exhaustively select combinations of genes and conditions as seeds to create candidate bicluster tables. The tables have two columns (a a gene set, and (b the conditions on which the gene set have dissimilar expression levels to the seed. First, the genes with less than the maximum number of dissimilar conditions are identified and a table of these genes is created. Second, the rows that have the same dissimilar conditions are grouped together. Third, the table is sorted in ascending order based on the number of dissimilar conditions. Finally, beginning with the first row of the table, a test is run repeatedly to determine whether the cardinality of the gene set in the row is greater than the minimum threshold number of genes in a bicluster. If so, a bicluster is outputted and the corresponding row is removed from the table. Repeating this process, all biclusters in the table are systematically identified until the table becomes empty. CONCLUSIONS: This paper presents a novel biclustering algorithm for the identification of additive biclusters. Since it involves exhaustively testing combinations of genes and conditions, the additive biclusters can be found more readily.

  15. Paralogous Genes as a Tool to Study the Regulation of Gene Expression

    DEFF Research Database (Denmark)

    Hoffmann, Robert D

    their duplicate were found to be under less purifying selection. A gene ontology (GO) term enrichment analysis showed that paralogs with similar expression levels were enriched in GO terms related to macromolecular complexes, whereas paralogs with different expression levels were enriched in terms associated...... new functions, or their gene products are in a dosage balance. Regulatory DNA elements - some of which are conserved across species and hence called conserved non-coding sequences (CNSs) - that control expression of duplicated genes are thus under similar purifying selection. In the present study, I...... have performed in-depth analyses of paralogous genes in Arabidopsis thaliana, their expression profile, their sequence conservation, and their functions, in order to investigate the relationship between gene expression and retention of paralogous genes. Paralogs with lower expression than...

  16. Gene expression module-based chemical function similarity search

    OpenAIRE

    Li, Yun; Hao, Pei; Zheng, Siyuan; Tu, Kang; Fan, Haiwei; Zhu, Ruixin; Ding, Guohui; Dong, Changzheng; Wang, Chuan; Li, Xuan; Thiesen, H.-J.; Chen, Y. Eugene; Jiang, HuaLiang; Liu, Lei; Li, Yixue

    2008-01-01

    Investigation of biological processes using selective chemical interventions is generally applied in biomedical research and drug discovery. Many studies of this kind make use of gene expression experiments to explore cellular responses to chemical interventions. Recently, some research groups constructed libraries of chemical related expression profiles, and introduced similarity comparison into chemical induced transcriptome analysis. Resembling sequence similarity alignment, expression pat...

  17. Gene Body Methylation can alter Gene Expression and is a Therapeutic Target in Cancer

    Science.gov (United States)

    Yang, Xiaojing; Han, Han; De Carvalho, Daniel D.; Lay, Fides D.; Jones, Peter A.; Liang, Gangning

    2014-01-01

    SUMMARY DNA methylation in promoters is well known to silence genes and is the presumed therapeutic target of methylation inhibitors. Gene body methylation is positively correlated with expression yet its function is unknown. We show that 5-aza-2'-deoxycytidine treatment not only reactivates genes but decreases the over-expression of genes, many of which are involved in metabolic processes regulated by c-MYC. Down-regulation is caused by DNA demethylation of the gene bodies and restoration of high levels of expression requires remethylation by DNMT3B. Gene body methylation may therefore be an unexpected therapeutic target for DNA methylation inhibitors, resulting in the normalization of gene over-expression induced during carcinogenesis. Our results provide direct evidence for a causal relationship between gene body methylation and transcription. PMID:25263941

  18. Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression.

    Science.gov (United States)

    Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression Exposure to many drugs and environmentally-relevant chemicals can cause adverse outcomes. These adverse outcomes, such as cancer, have been linked to mol...

  19. Noise in gene expression is coupled to growth rate.

    Science.gov (United States)

    Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran

    2015-12-01

    Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle-regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. PMID:26355006

  20. Gene Expression Prediction by Soft Integration and the Elastic Net—Best Performance of the DREAM3 Gene Expression Challenge

    OpenAIRE

    Mika Gustafsson; Michael Hörnquist

    2010-01-01

    Background: To predict gene expressions is an important endeavour within computational systems biology. It can both be a way to explore how drugs affect the system, as well as providing a framework for finding which genes are interrelated in a certain process. A practical problem, however, is how to assess and discriminate among the various algorithms which have been developed for this purpose. Therefore, the DREAM project invited the year 2008 to a challenge for predicting gene expression va...

  1. Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes

    Directory of Open Access Journals (Sweden)

    Paules Richard S

    2007-11-01

    Full Text Available Abstract Background A common observation in the analysis of gene expression data is that many genes display similarity in their expression patterns and therefore appear to be co-regulated. However, the variation associated with microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a challenge. We developed a novel method for Extracting microarray gene expression Patterns and Identifying co-expressed Genes, designated as EPIG. The approach utilizes the underlying structure of gene expression data to extract patterns and identify co-expressed genes that are responsive to experimental conditions. Results Through evaluation of the correlations among profiles, the magnitude of variation in gene expression profiles, and profile signal-to-noise ratio's, EPIG extracts a set of patterns representing co-expressed genes. The method is shown to work well with a simulated data set and microarray data obtained from time-series studies of dauer recovery and L1 starvation in C. elegans and after ultraviolet (UV or ionizing radiation (IR-induced DNA damage in diploid human fibroblasts. With the simulated data set, EPIG extracted the appropriate number of patterns which were more stable and homogeneous than the set of patterns that were determined using the CLICK or CAST clustering algorithms. However, CLICK performed better than EPIG and CAST with respect to the average correlation between clusters/patterns of the simulated data. With real biological data, EPIG extracted more dauer-specific patterns than CLICK. Furthermore, analysis of the IR/UV data revealed 18 unique patterns and 2661 genes out of approximately 17,000 that were identified as significantly expressed and categorized to the patterns by EPIG. The time-dependent patterns displayed similar and dissimilar responses between IR and UV treatments. Gene Ontology analysis applied to each pattern-related subset of co-expressed genes revealed underlying

  2. Flies selected for longevity retain a young gene expression profile

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Sørensen, Peter; Loeschcke, Volker

    2011-01-01

      We investigated correlated responses in the transcriptomes of longevity-selected lines of Drosophila melanogaster to identify pathways that affect life span in metazoan systems. We evaluated the gene expression profile in young, middle-aged, and old male flies, finding that 530 genes were...... differentially expressed between selected and control flies when measured at the same chronological age. The longevity-selected flies consistently showed expression profiles more similar to control flies one age class younger than control flies of the same age. This finding is in accordance with a younger gene...... expression profile in longevity-selected lines. Among the genes down-regulated in longevity-selected lines, we found a clear over-representation of genes involved in immune functions, supporting the hypothesis of a life-shortening effect of an overactive immune system, known as inflammaging. We judged...

  3. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette;

    2006-01-01

    shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes....... Unfortunately, current human genome-wide DNA sequence variation do not allow signatures of selective sweeps to be inferred using frequency-based approaches [4] and [5] . However, estimates of linkage disequilibrium (LD) - i.e. the extent of non-random association of alleles along chromosomes - are expected...

  4. Computational gene expression profiling under salt stress reveals patterns of co-expression.

    Science.gov (United States)

    Sanchita; Sharma, Ashok

    2016-03-01

    Plants respond differently to environmental conditions. Among various abiotic stresses, salt stress is a condition where excess salt in soil causes inhibition of plant growth. To understand the response of plants to the stress conditions, identification of the responsible genes is required. Clustering is a data mining technique used to group the genes with similar expression. The genes of a cluster show similar expression and function. We applied clustering algorithms on gene expression data of Solanum tuberosum showing differential expression in Capsicum annuum under salt stress. The clusters, which were common in multiple algorithms were taken further for analysis. Principal component analysis (PCA) further validated the findings of other cluster algorithms by visualizing their clusters in three-dimensional space. Functional annotation results revealed that most of the genes were involved in stress related responses. Our findings suggest that these algorithms may be helpful in the prediction of the function of co-expressed genes. PMID:26981411

  5. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Arp

    2005-05-25

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression: The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression: N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression: Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  6. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J Arp

    2005-06-15

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression. The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression. N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression. Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  7. Dysregulation of temperature and liver cytokine gene expression in immunodeficient wasted mice

    Energy Technology Data Exchange (ETDEWEB)

    Libertin, C.R. [Loyola Univ. Medical Center, Maywood, IL (United States); Ling-Indeck, L.; Weaver, P. [Loyola Univ. Medical Center, Maywood, IL (United States). Dept. of Pathology; Chang-Liu, Chin-Mei; Strezoska, V.; Heckert, B. [Argonne National Lab., IL (United States). Center for Mechanistic Biology and Biotechnology; Woloschak, G.E. [Loyola Univ. Medical Center, Maywood, IL (United States). Dept. of Pathology]|[Argonne National Lab., IL (United States). Center for Mechanistic Biology and Biotechnology

    1995-04-25

    Wasted mice bear the spontaneous autosomal recessive mutation wst/wst; this genotype is associated with weight loss beginning at 21 days of age, neurologic dysfunction, immunodeficiency at mucosal sites, and increased sensitivity to the killing effects of ionizing radiation. The pathology underlying the disease symptoms is unknown. Experiments reported here were designed to examine thermoregulation and liver expression of specific cytokines in wasted mice and in littermate and parental controls. Our experiments found that wasted mice begin to show a drop in body temperature at 21-23 days following birth, continuing until death at the age of 28 days. Concomitant with that, livers from wasted mice expressed increased amounts of mRNAs specific for cytokines IL,6 and IL-1, the acute phase reactant C-reactive protein, c-jun, and apoptosis-associated Rp-8 when compared to littermate and parental control animals. Levels of {beta}-transforming growth factor (TGF), c-fos, proliferating cell nuclear antigen (PCNA), and ornithine amino transferase (OAT) transcripts were the same in livers from wasted mice and controls. These results suggest a relationship between an acute phase reactant response in wasted mice and temperature dysregulation.

  8. Detecting microRNA activity from gene expression data.

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-01-01

    BACKGROUND: MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. RESULTS: Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. CONCLUSIONS: We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  9. Detecting microRNA activity from gene expression data

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-05-18

    Abstract Background MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. Results Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. Conclusions We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  10. An Interactive Database of Cocaine-Responsive Gene Expression

    Directory of Open Access Journals (Sweden)

    Willard M. Freeman

    2002-01-01

    Full Text Available The postgenomic era of large-scale gene expression studies is inundating drug abuse researchers and many other scientists with findings related to gene expression. This information is distributed across many different journals, and requires laborious literature searches. Here, we present an interactive database that combines existing information related to cocaine-mediated changes in gene expression in an easy-to-use format. The database is limited to statistically significant changes in mRNA or protein expression after cocaine administration. The Flash-based program is integrated into a Web page, and organizes changes in gene expression based on neuroanatomical region, general function, and gene name. Accompanying each gene is a description of the gene, links to the original publications, and a link to the appropriate OMIM (Online Mendelian Inheritance in Man entry. The nature of this review allows for timely modifications and rapid inclusion of new publications, and should help researchers build second-generation hypotheses on the role of gene expression changes in the physiology and behavior of cocaine abuse. Furthermore, this method of organizing large volumes of scientific information can easily be adapted to assist researchers in fields outside of drug abuse.

  11. Expression of homeobox genes in the mouse olfactory epithelium.

    Science.gov (United States)

    Parrilla, Marta; Chang, Isabelle; Degl'Innocenti, Andrea; Omura, Masayo

    2016-10-01

    Homeobox genes constitute a large family of genes widely studied because of their role in the establishment of the body pattern. However, they are also involved in many other events during development and adulthood. The main olfactory epithelium (MOE) is an excellent model to study neurogenesis in the adult nervous system. Analyses of homeobox genes during development show that some of these genes are involved in the formation and establishment of cell diversity in the MOE. Moreover, the mechanisms of expression of odorant receptors (ORs) constitute one of the biggest enigmas in the field. Analyses of OR promoters revealed the presence of homeodomain binding sites in their sequences. Here we characterize the expression patterns of a set of 49 homeobox genes in the MOE with in situ hybridization. We found that seven of them (Dlx3, Dlx5, Dlx6, Msx1, Meis1, Isl1, and Pitx1) are zonally expressed. The homeobox gene Emx1 is expressed in three guanylate cyclase(+) populations, two located in the MOE and the third one in an olfactory subsystem known as Grüneberg ganglion located at the entrance of the nasal cavity. The homeobox gene Tshz1 is expressed in a unique patchy pattern across the MOE. Our findings provide new insights to guide functional studies that aim to understand the complexity of transcription factor expression and gene regulation in the MOE. J. Comp. Neurol. 524:2713-2739, 2016. © 2016 Wiley Periodicals, Inc. PMID:27243442

  12. Cerebral ischemia induces transcription of inflammatory and extracellular-matrix-related genes in rat cerebral arteries

    DEFF Research Database (Denmark)

    Vikman, Petter; Ansar, Saema; Henriksson, Marie;

    2007-01-01

    cerebral arteries with quantitative real time PCR (mRNA expression) and immunohistochemistry (localization of protein expression). The gene promoters were investigated in silica with computer analysis. The mRNA analysis revealed that the ischemic models, SAH and MCAO, as well as organ culture of isolated...... cerebral arteries resulted in transcriptional upregulation of the abovementioned genes. The protein expression involved phosphorylation of three different MAPKs signalling pathways (p38, ERK 1/2 and SAPK/JNK) and the downstream transcription factors (ATF-2, Elk-1, c-Jun) shown by immunohistochemistry...... and quantified by image analysis. All three models revealed the same pattern of activation in the cerebrovascular smooth muscle cells. The in silica analysis demonstrated binding sites for said transcription factors. The results suggest that cerebral ischemia and organ culture induce activation of p38, ERK 1...

  13. A Marfan syndrome gene expression phenotype in cultured skin fibroblasts

    Directory of Open Access Journals (Sweden)

    Emond Mary

    2007-09-01

    Full Text Available Abstract Background Marfan syndrome (MFS is a heritable connective tissue disorder caused by mutations in the fibrillin-1 gene. This syndrome constitutes a significant identifiable subtype of aortic aneurysmal disease, accounting for over 5% of ascending and thoracic aortic aneurysms. Results We used spotted membrane DNA macroarrays to identify genes whose altered expression levels may contribute to the phenotype of the disease. Our analysis of 4132 genes identified a subset with significant expression differences between skin fibroblast cultures from unaffected controls versus cultures from affected individuals with known fibrillin-1 mutations. Subsequently, 10 genes were chosen for validation by quantitative RT-PCR. Conclusion Differential expression of many of the validated genes was associated with MFS samples when an additional group of unaffected and MFS affected subjects were analyzed (p-value -6 under the null hypothesis that expression levels in cultured fibroblasts are unaffected by MFS status. An unexpected observation was the range of individual gene expression. In unaffected control subjects, expression ranges exceeding 10 fold were seen in many of the genes selected for qRT-PCR validation. The variation in expression in the MFS affected subjects was even greater.

  14. Applications of Little's Law to stochastic models of gene expression

    CERN Document Server

    Elgart, Vlad; Kulkarni, Rahul V

    2010-01-01

    The intrinsic stochasticity of gene expression can lead to large variations in protein levels across a population of cells. To explain this variability, different sources of mRNA fluctuations ('Poisson' and 'Telegraph' processes) have been proposed in stochastic models of gene expression. Both Poisson and Telegraph scenario models explain experimental observations of noise in protein levels in terms of 'bursts' of protein expression. Correspondingly, there is considerable interest in establishing relations between burst and steady-state protein distributions for general stochastic models of gene expression. In this work, we address this issue by considering a mapping between stochastic models of gene expression and problems of interest in queueing theory. By applying a general theorem from queueing theory, Little's Law, we derive exact relations which connect burst and steady-state distribution means for models with arbitrary waiting-time distributions for arrival and degradation of mRNAs and proteins. The de...

  15. The gsdf gene locus harbors evolutionary conserved and clustered genes preferentially expressed in fish previtellogenic oocytes.

    Science.gov (United States)

    Gautier, Aude; Le Gac, Florence; Lareyre, Jean-Jacques

    2011-02-01

    The gonadal soma-derived factor (GSDF) belongs to the transforming growth factor-β superfamily and is conserved in teleostean fish species. Gsdf is specifically expressed in the gonads, and gene expression is restricted to the granulosa and Sertoli cells in trout and medaka. The gsdf gene expression is correlated to early testis differentiation in medaka and was shown to stimulate primordial germ cell and spermatogonia proliferation in trout. In the present study, we show that the gsdf gene localizes to a syntenic chromosomal fragment conserved among vertebrates although no gsdf-related gene is detected on the corresponding genomic region in tetrapods. We demonstrate using quantitative RT-PCR that most of the genes localized in the synteny are specifically expressed in medaka gonads. Gsdf is the only gene of the synteny with a much higher expression in the testis compared to the ovary. In contrast, gene expression pattern analysis of the gsdf surrounding genes (nup54, aff1, klhl8, sdad1, and ptpn13) indicates that these genes are preferentially expressed in the female gonads. The tissue distribution of these genes is highly similar in medaka and zebrafish, two teleostean species that have diverged more than 110 million years ago. The cellular localization of these genes was determined in medaka gonads using the whole-mount in situ hybridization technique. We confirm that gsdf gene expression is restricted to Sertoli and granulosa cells in contact with the premeiotic and meiotic cells. The nup54 gene is expressed in spermatocytes and previtellogenic oocytes. Transcripts corresponding to the ovary-specific genes (aff1, klhl8, and sdad1) are detected only in previtellogenic oocytes. No expression was detected in the gonocytes in 10 dpf embryos. In conclusion, we show that the gsdf gene localizes to a syntenic chromosomal fragment harboring evolutionary conserved genes in vertebrates. These genes are preferentially expressed in previtelloogenic oocytes, and thus, they

  16. Novel redox nanomedicine improves gene expression of polyion complex vector

    International Nuclear Information System (INIS)

    Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS) affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP) as an ROS scavenger. When polyethyleneimine (PEI)/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI)/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF)-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  17. Novel redox nanomedicine improves gene expression of polyion complex vector

    Science.gov (United States)

    Toh, Kazuko; Yoshitomi, Toru; Ikeda, Yutaka; Nagasaki, Yukio

    2011-12-01

    Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS) affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP) as an ROS scavenger. When polyethyleneimine (PEI)/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI)/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF)-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  18. Novel redox nanomedicine improves gene expression of polyion complex vector

    Directory of Open Access Journals (Sweden)

    Kazuko Toh, Toru Yoshitomi, Yutaka Ikeda and Yukio Nagasaki

    2011-01-01

    Full Text Available Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP as an ROS scavenger. When polyethyleneimine (PEI/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  19. Design and Implementation of Visual Dynamic Display Software of Gene Expression Based on GTK

    Institute of Scientific and Technical Information of China (English)

    JIANG Wei; MENG Fanjiang; LI Yong; YU Xiao

    2009-01-01

    The paper presented an implement method for a dynamic gene expression display software based on the GTK. This method established the dynamic presentation system of gene expression which according to gene expression data from gene chip hybridize at different time, adopted a linearity combination model and Pearson correlation coefficient algorithm. The system described the gene expression changes in graphic form, the gene expression changes with time and the changes in characteristics of the gene expression, also the changes in relations of the gene expression and regulation relationships among genes. The system also provided an integrated platform for analysis on gene chips data, especially for the research on the network of gene regulation.

  20. Integrated analysis of DNA methylation profiles and gene expression profiles to identify genes associated with pilocytic astrocytomas

    OpenAIRE

    Zhou, Ruigang; MAN, YIGANG

    2016-01-01

    The present study performed an integral analysis of the gene expression and DNA methylation profile of pilocytic astrocytomas (PAs). Weighted gene co-expression network analysis (WGCNA) was also performed to examine and identify the genes correlated to PAs, to identify candidate therapeutic targets for the treatment of PAs. The DNA methylation profile and gene expression profile were downloaded from the Gene Expression Omnibus database. Following screening of the differentially expressed gene...

  1. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants

    Energy Technology Data Exchange (ETDEWEB)

    Huang Qihong; Jin Xidong; Gaillard, Elias T.; Knight, Brian L.; Pack, Franklin D.; Stoltz, James H.; Jayadev, Supriya; Blanchard, Kerry T

    2004-05-18

    Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1 mg/kg per day for 1, 7 and 14 days), methapyrilene (100 mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and

  2. Molecular subsets in the gene expression signatures of scleroderma skin.

    Directory of Open Access Journals (Sweden)

    Ausra Milano

    Full Text Available BACKGROUND: Scleroderma is a clinically heterogeneous disease with a complex phenotype. The disease is characterized by vascular dysfunction, tissue fibrosis, internal organ dysfunction, and immune dysfunction resulting in autoantibody production. METHODOLOGY AND FINDINGS: We analyzed the genome-wide patterns of gene expression with DNA microarrays in skin biopsies from distinct scleroderma subsets including 17 patients with systemic sclerosis (SSc with diffuse scleroderma (dSSc, 7 patients with SSc with limited scleroderma (lSSc, 3 patients with morphea, and 6 healthy controls. 61 skin biopsies were analyzed in a total of 75 microarray hybridizations. Analysis by hierarchical clustering demonstrates nearly identical patterns of gene expression in 17 out of 22 of the forearm and back skin pairs of SSc patients. Using this property of the gene expression, we selected a set of 'intrinsic' genes and analyzed the inherent data-driven groupings. Distinct patterns of gene expression separate patients with dSSc from those with lSSc and both are easily distinguished from normal controls. Our data show three distinct patient groups among the patients with dSSc and two groups among patients with lSSc. Each group can be distinguished by unique gene expression signatures indicative of proliferating cells, immune infiltrates and a fibrotic program. The intrinsic groups are statistically significant (p<0.001 and each has been mapped to clinical covariates of modified Rodnan skin score, interstitial lung disease, gastrointestinal involvement, digital ulcers, Raynaud's phenomenon and disease duration. We report a 177-gene signature that is associated with severity of skin disease in dSSc. CONCLUSIONS AND SIGNIFICANCE: Genome-wide gene expression profiling of skin biopsies demonstrates that the heterogeneity in scleroderma can be measured quantitatively with DNA microarrays. The diversity in gene expression demonstrates multiple distinct gene expression programs

  3. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    Science.gov (United States)

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  4. Gene Expression Profiling Predicts Survival in Conventional Renal Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available BACKGROUND: Conventional renal cell carcinoma (cRCC accounts for most of the deaths due to kidney cancer. Tumor stage, grade, and patient performance status are used currently to predict survival after surgery. Our goal was to identify gene expression features, using comprehensive gene expression profiling, that correlate with survival. METHODS AND FINDINGS: Gene expression profiles were determined in 177 primary cRCCs using DNA microarrays. Unsupervised hierarchical clustering analysis segregated cRCC into five gene expression subgroups. Expression subgroup was correlated with survival in long-term follow-up and was independent of grade, stage, and performance status. The tumors were then divided evenly into training and test sets that were balanced for grade, stage, performance status, and length of follow-up. A semisupervised learning algorithm (supervised principal components analysis was applied to identify transcripts whose expression was associated with survival in the training set, and the performance of this gene expression-based survival predictor was assessed using the test set. With this method, we identified 259 genes that accurately predicted disease-specific survival among patients in the independent validation group (p < 0.001. In multivariate analysis, the gene expression predictor was a strong predictor of survival independent of tumor stage, grade, and performance status (p < 0.001. CONCLUSIONS: cRCC displays molecular heterogeneity and can be separated into gene expression subgroups that correlate with survival after surgery. We have identified a set of 259 genes that predict survival after surgery independent of clinical prognostic factors.

  5. Differential network analysis from cross-platform gene expression data

    Science.gov (United States)

    Zhang, Xiao-Fei; Ou-Yang, Le; Zhao, Xing-Ming; Yan, Hong

    2016-01-01

    Understanding how the structure of gene dependency network changes between two patient-specific groups is an important task for genomic research. Although many computational approaches have been proposed to undertake this task, most of them estimate correlation networks from group-specific gene expression data independently without considering the common structure shared between different groups. In addition, with the development of high-throughput technologies, we can collect gene expression profiles of same patients from multiple platforms. Therefore, inferring differential networks by considering cross-platform gene expression profiles will improve the reliability of network inference. We introduce a two dimensional joint graphical lasso (TDJGL) model to simultaneously estimate group-specific gene dependency networks from gene expression profiles collected from different platforms and infer differential networks. TDJGL can borrow strength across different patient groups and data platforms to improve the accuracy of estimated networks. Simulation studies demonstrate that TDJGL provides more accurate estimates of gene networks and differential networks than previous competing approaches. We apply TDJGL to the PI3K/AKT/mTOR pathway in ovarian tumors to build differential networks associated with platinum resistance. The hub genes of our inferred differential networks are significantly enriched with known platinum resistance-related genes and include potential platinum resistance-related genes. PMID:27677586

  6. Spatial gene expression quantification in changing morphologies

    NARCIS (Netherlands)

    D. Botman

    2016-01-01

    In systems biology, an organisms’ behavior is explained from the interactions among individual components such as genes and proteins. With few exceptions, interactions among genes and proteins are not measured directly and are therefore inferred from the observed output of a biological system. A net

  7. In plants, expression breadth and expression level distinctly and non-linearly correlate with gene structure

    Directory of Open Access Journals (Sweden)

    Yang Hangxing

    2009-11-01

    Full Text Available Abstract Background Compactness of highly/broadly expressed genes in human has been explained as selection for efficiency, regional mutation biases or genomic design. However, highly expressed genes in flowering plants were shown to be less compact than lowly expressed ones. On the other hand, opposite facts have also been documented that pollen-expressed Arabidopsis genes tend to contain shorter introns and highly expressed moss genes are compact. This issue is important because it provides a chance to compare the selectionism and the neutralism views about genome evolution. Furthermore, this issue also helps to understand the fates of introns, from the angle of gene expression. Results In this study, I used expression data covering more tissues and employ new analytical methods to reexamine the correlations between gene expression and gene structure for two flowering plants, Arabidopsis thaliana and Oryza sativa. It is shown that, different aspects of expression pattern correlate with different parts of gene sequences in distinct ways. In detail, expression level is significantly negatively correlated with gene size, especially the size of non-coding regions, whereas expression breadth correlates with non-coding structural parameters positively and with coding region parameters negatively. Furthermore, the relationships between expression level and structural parameters seem to be non-linear, with the extremes of structural parameters possibly scale as power-laws or logrithmic functions of expression levels. Conclusion In plants, highly expressed genes are compact, especially in the non-coding regions. Broadly expressed genes tend to contain longer non-coding sequences, which may be necessary for complex regulations. In combination with previous studies about other plants and about animals, some common scenarios about the correlation between gene expression and gene structure begin to emerge. Based on the functional relationships between

  8. State-related alterations of gene expression in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Vinberg, Maj; Berk, Michael;

    2012-01-01

    Munkholm K, Vinberg M, Berk M, Kessing LV. State-related alterations of gene expression in bipolar disorder: a systematic review. Bipolar Disord 2012: 14: 684-696. © 2012 The Authors. Journal compilation © 2012 John Wiley & Sons A/S. Objective:  Alterations in gene expression in bipolar disorder...... on comprehensive database searches for studies on gene expression in patients with bipolar disorder in specific mood states, was conducted. We searched Medline, Embase, PsycINFO, and The Cochrane Library, supplemented by manually searching reference lists from retrieved publications. Results:  A total of 17...

  9. Gene expression signatures for colorectal cancer microsatellite status and HNPCC

    DEFF Research Database (Denmark)

    Kruhøffer, M; Jensen, J L; Laiho, P;

    2005-01-01

    is correlated to prognosis and response to chemotherapy. Gene expression signatures as predictive markers are being developed for many cancers, and the identification of a signature for MMR deficiency would be of interest both clinically and biologically. To address this issue, we profiled the gene expression......-deficient tumours into sporadic MSI and HNPCC cases, and validated this by a mathematical cross-validation approach. The demonstration that this two-step classification approach can identify MSI as well as HNPCC cases merits further gene expression studies to identify prognostic signatures....

  10. Gene expression during testis development in Duroc boars

    DEFF Research Database (Denmark)

    Lervik, Siri; Kristoffersen, Anja Bråthen; Conley, Lene;

    2015-01-01

    . Nine clusters of genes with significant differential expression over time and 49 functional charts were found in the analysed testis samples. Prominent pathways in the prepubertal testis were associated with tissue renewal, cell respiration and increased endocytocis. E-cadherines may be associated...... with the onset of pubertal development. With elevated steroidogenesis (weeks 16 to 27), there was an increase in the expression of genes in the MAPK pathway, STAR and its analogue STARD6. A pubertal shift in genes coding for cellular cholesterol transport was observed. Increased expression of meiotic pathways...

  11. A longitudinal study of gene expression in healthy individuals

    Directory of Open Access Journals (Sweden)

    Tessier Michel

    2009-06-01

    Full Text Available Abstract Background The use of gene expression in venous blood either as a pharmacodynamic marker in clinical trials of drugs or as a diagnostic test requires knowledge of the variability in expression over time in healthy volunteers. Here we defined a normal range of gene expression over 6 months in the blood of four cohorts of healthy men and women who were stratified by age (22–55 years and > 55 years and gender. Methods Eleven immunomodulatory genes likely to play important roles in inflammatory conditions such as rheumatoid arthritis and infection in addition to four genes typically used as reference genes were examined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR, as well as the full genome as represented by Affymetrix HG U133 Plus 2.0 microarrays. Results Gene expression levels as assessed by qRT-PCR and microarray were relatively stable over time with ~2% of genes as measured by microarray showing intra-subject differences over time periods longer than one month. Fifteen genes varied by gender. The eleven genes examined by qRT-PCR remained within a limited dynamic range for all individuals. Specifically, for the seven most stably expressed genes (CXCL1, HMOX1, IL1RN, IL1B, IL6R, PTGS2, and TNF, 95% of all samples profiled fell within 1.5–2.5 Ct, the equivalent of a 4- to 6-fold dynamic range. Two subjects who experienced severe adverse events of cancer and anemia, had microarray gene expression profiles that were distinct from normal while subjects who experienced an infection had only slightly elevated levels of inflammatory markers. Conclusion This study defines the range and variability of gene expression in healthy men and women over a six-month period. These parameters can be used to estimate the number of subjects needed to observe significant differences from normal gene expression in clinical studies. A set of genes that varied by gender was also identified as were a set of genes with elevated

  12. Membrane channel gene expression in human costal and articular chondrocytes.

    Science.gov (United States)

    Asmar, A; Barrett-Jolley, R; Werner, A; Kelly, R; Stacey, M

    2016-04-01

    Chondrocytes are the uniquely resident cells found in all types of cartilage and key to their function is the ability to respond to mechanical loads with changes of metabolic activity. This mechanotransduction property is, in part, mediated through the activity of a range of expressed transmembrane channels; ion channels, gap junction proteins, and porins. Appropriate expression of ion channels has been shown essential for production of extracellular matrix and differential expression of transmembrane channels is correlated to musculoskeletal diseases such as osteoarthritis and Albers-Schönberg. In this study we analyzed the consistency of gene expression between channelomes of chondrocytes from human articular and costal (teenage and fetal origin) cartilages. Notably, we found 14 ion channel genes commonly expressed between articular and both types of costal cartilage chondrocytes. There were several other ion channel genes expressed only in articular (6 genes) or costal chondrocytes (5 genes). Significant differences in expression of BEST1 and KCNJ2 (Kir2.1) were observed between fetal and teenage costal cartilage. Interestingly, the large Ca(2+) activated potassium channel (BKα, or KCNMA1) was very highly expressed in all chondrocytes examined. Expression of the gap junction genes for Panx1, GJA1 (Cx43) and GJC1 (Cx45) was also observed in chondrocytes from all cartilage samples. Together, this data highlights similarities between chondrocyte membrane channel gene expressions in cells derived from different anatomical sites, and may imply that common electrophysiological signaling pathways underlie cellular control. The high expression of a range of mechanically and metabolically sensitive membrane channels suggest that chondrocyte mechanotransduction may be more complex than previously thought. PMID:27116676

  13. Integration of biological networks and gene expression data using Cytoscape

    DEFF Research Database (Denmark)

    Cline, M.S.; Smoot, M.; Cerami, E.;

    2007-01-01

    Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context...... of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules...... and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape....

  14. Prediction of Tumor Outcome Based on Gene Expression Data

    Institute of Scientific and Technical Information of China (English)

    Liu Juan; Hitoshi Iba

    2004-01-01

    Gene expression microarray data can be used to classify tumor types. We proposed a new procedure to classify human tumor samples based on microarray gene expressions by using a hybrid supervised learning method called MOEA+WV (Multi-Objective Evolutionary Algorithm+Weighted Voting). MOEA is used to search for a relatively few subsets of informative genes from the high-dimensional gene space, and WV is used as a classification tool. This new method has been applied to predicate the subtypes of lymphoma and outcomes of medulloblastoma. The results are relatively accurate and meaningful compared to those from other methods.

  15. Reference genes for gene expression studies in wheat flag leaves grown under different farming conditions

    Directory of Open Access Journals (Sweden)

    Cordeiro Raposo Fernando

    2011-09-01

    Full Text Available Abstract Background Internal control genes with highly uniform expression throughout the experimental conditions are required for accurate gene expression analysis as no universal reference genes exists. In this study, the expression stability of 24 candidate genes from Triticum aestivum cv. Cubus flag leaves grown under organic and conventional farming systems was evaluated in two locations in order to select suitable genes that can be used for normalization of real-time quantitative reverse-transcription PCR (RT-qPCR reactions. The genes were selected among the most common used reference genes as well as genes encoding proteins involved in several metabolic pathways. Findings Individual genes displayed different expression rates across all samples assayed. Applying geNorm, a set of three potential reference genes were suitable for normalization of RT-qPCR reactions in winter wheat flag leaves cv. Cubus: TaFNRII (ferredoxin-NADP(H oxidoreductase; AJ457980.1, ACT2 (actin 2; TC234027, and rrn26 (a putative homologue to RNA 26S gene; AL827977.1. In addition of these three genes that were also top-ranked by NormFinder, two extra genes: CYP18-2 (Cyclophilin A, AY456122.1 and TaWIN1 (14-3-3 like protein, AB042193 were most consistently stably expressed. Furthermore, we showed that TaFNRII, ACT2, and CYP18-2 are suitable for gene expression normalization in other two winter wheat varieties (Tommi and Centenaire grown under three treatments (organic, conventional and no nitrogen and a different environment than the one tested with cv. Cubus. Conclusions This study provides a new set of reference genes which should improve the accuracy of gene expression analyses when using wheat flag leaves as those related to the improvement of nitrogen use efficiency for cereal production.

  16. Simultaneous tracking of fly movement and gene expression using GFP

    Directory of Open Access Journals (Sweden)

    Tavaré Simon

    2008-12-01

    Full Text Available Abstract Background Green Fluorescent Protein (GFP is used extensively as a reporter for transgene expression in Drosophila and other organisms. However, GFP has not generally been used as a reporter for circadian patterns of gene expression, and it has not previously been possible to correlate patterns of reporter expression with 3D movement and behavior of transgenic animals. Results We present a video tracking system that allows tissue-specific GFP expression to be quantified and correlated with 3D animal movement in real time. eyeless/Pax6 reporter expression had a 12 hr period that correlated with fly activity levels. hsp70 and hsp22 gene reporters were induced during fly aging in circadian patterns (24 hr and 18 hr periods, respectively, and spiked in the hours preceding and overlapping the death of the animal. The phase of hsp gene reporter expression relative to fly activity levels was different for each fly, and remained the same throughout the life span. Conclusion These experiments demonstrate that GFP can readily be used to assay longitudinally fly movement and tissue-specific patterns of gene expression. The hsp22-GFP and hsp70-GFP expression patterns were found to reflect accurately the endogenous gene expression patterns, including induction during aging and circadian periodicity. The combination of these new tracking methods with the hsp-GFP reporters revealed additional information, including a spike in hsp22 and hsp70 reporter expression preceding death, and an intriguing fly-to-fly variability in the phase of hsp70 and hsp22 reporter expression patterns. These methods allow specific temporal patterns of gene expression to be correlated with temporal patterns of animal activity, behavior and mortality.

  17. Imputing Gene Expression in Uncollected Tissues Within and Beyond GTEx

    Science.gov (United States)

    Wang, Jiebiao; Gamazon, Eric R.; Pierce, Brandon L.; Stranger, Barbara E.; Im, Hae Kyung; Gibbons, Robert D.; Cox, Nancy J.; Nicolae, Dan L.; Chen, Lin S.

    2016-01-01

    Gene expression and its regulation can vary substantially across tissue types. In order to generate knowledge