WorldWideScience

Sample records for c reactor

  1. Graphite distortion ``C`` Reactor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, N.H.

    1962-02-08

    This report covers the efforts of the Laboratory in an investigation of the graphite distortion in the ``C`` reactor at Hanford. The particular aspects of the problem to be covered by the Laboratory were possible ``fixes`` to the control rod sticking problem caused by VSR channel distortion.

  2. Prometheus Reactor I&C Software Development Methodology, for Action

    Energy Technology Data Exchange (ETDEWEB)

    T. Hamilton

    2005-07-30

    The purpose of this letter is to submit the Reactor Instrumentation and Control (I&C) software life cycle, development methodology, and programming language selections and rationale for project Prometheus to NR for approval. This letter also provides the draft Reactor I&C Software Development Process Manual and Reactor Module Software Development Plan to NR for information.

  3. Chemical compatibility issues associated with use of SiC/SiC in advanced reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Silicon carbide/silicon carbide (SiC/SiC) composites are of interest for components that will experience high radiation fields in the High Temperature Gas Cooled Reactor (HTGR), the Very High Temperature Reactor (VHTR), the Sodium Fast Reactor (SFR), or the Fluoride-cooled High-temperature Reactor (FHR). In all of the reactor systems considered, reactions of SiC/SiC composites with the constituents of the coolant determine suitability of materials of construction. The material of interest is nuclear grade SiC/SiC composites, which consist of a SiC matrix [high-purity, chemical vapor deposition (CVD) SiC or liquid phase-sintered SiC that is crystalline beta-phase SiC containing small amounts of alumina-yttria impurity], a pyrolytic carbon interphase, and somewhat impure yet crystalline beta-phase SiC fibers. The interphase and fiber components may or may not be exposed, at least initially, to the reactor coolant. The chemical compatibility of SiC/SiC composites in the three reactor environments is highly dependent on thermodynamic stability with the pure coolant, and on reactions with impurities present in the environment including any ingress of oxygen and moisture. In general, there is a dearth of information on the performance of SiC in these environments. While there is little to no excess Si present in the new SiC/SiC composites, the reaction of Si with O2 cannot be ignored, especially for the FHR, in which environment the product, SiO2, can be readily removed by the fluoride salt. In all systems, reaction of the carbon interphase layer with oxygen is possible especially under abnormal conditions such as loss of coolant (resulting in increased temperature), and air and/ or steam ingress. A global outline of an approach to resolving SiC/SiC chemical compatibility concerns with the environments of the three reactors is presented along with ideas to quickly determine the baseline compatibility performance of SiC/SiC.

  4. Joining of SiC[sub f]/SiC composites for thermonuclear fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, M. (Dipartimento di Scienza dei Materiali e Ingegneria Chimica, Politecnico di Torino, C. Duca degli Abruzzi 24, I-10129 Torino (Italy)); Badini, C. (Dipartimento di Scienza dei Materiali e Ingegneria Chimica, Politecnico di Torino, C. Duca degli Abruzzi 24, I-10129 Torino (Italy)); Montorsi, M. (Dipartimento di Scienza dei Materiali e Ingegneria Chimica, Politecnico di Torino, C. Duca degli Abruzzi 24, I-10129 Torino (Italy)); Appendino, P. (Dipartimento di Scienza dei Materiali e Ingegneria Chimica, Politecnico di Torino, C. Duca degli Abruzzi 24, I-10129 Torino (Italy)); Scholz, H.W. (Institute for Advanced Materials, CEC Joint Research Centre, I-21020 Ispra (Vatican City State, Holy See) (Italy))

    1994-09-01

    Due to their favourable radiological behaviour, SiC[sub f]/SiC composites are promising structural materials for future use in fusion reactors. A problem to cope with is the joining of the ceramic composite material (CMC) to itself for more complex structures. Maintenance concepts for a reactor made of SiC[sub f]/SiC will demand a method of joining. The joining agents should comply with the low-activation approach of the base material. With the acceptable elements Si and Mg, sandwich structures of composite/metal/composite were prepared in Ar atmosphere at temperatures just above the melting points of the metals. Another promising route is the use of joining agents of boro-silicate glasses: their composition can be tailored to obtain softening temperatures of interest for fusion applications. The glassy joint can be easily ceramised to improve thermomechanical properties. The joining interfaces were investigated by SEM-EDS, XRD and mechanical tests. ((orig.))

  5. Neutronics and thermohydraulics of the reactor C.E.N.E. Part II; Analisis neutronico y termohidraulico del reactor C.E.N.E. Parte II

    Energy Technology Data Exchange (ETDEWEB)

    Caro, R.

    1976-07-01

    In this report the analysis of neutronics thermohydraulics and shielding of the 10 HWt swimming pool reactor C.E.N.E is included. In each of these chapters is given a short description of the theoretical model used, along with the theoretical versus experimental checking carried out, whenever possible, with the reactors JEN-I and JEN-II of Junta de Energia Nuclear. (Author) 11 refs.

  6. Neutronics and thermohydraulics of the reactor C.E.N.E.-Part I; Analisis neutronico y termohidraulico del reactor C.E.N.E. Parte I

    Energy Technology Data Exchange (ETDEWEB)

    Caro, R.; Ahnert, C.; Naudin, A. E.; Martinez Fanegas, R.; Minguez, E.; Rovira, A.

    1976-07-01

    In this report the analysis of neutronics (both statics and kinetics), of the 10 MWt swimming pool reactor C.E.N.E, is included. In each of these chapters is given a short description of the theoretical model used, along with the theoretical versus experimental checking, carried out, whenever possible, with the reactors JEN-I and JEN-II of Junta de Energia Nuclear. (Author) 11 refs.

  7. Production test PTA-002, increased graphite temperature limit -- B, C and D Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Russell, A.

    1965-12-17

    The fundamental objective of the graphite temperature limit is to prevent excessive oxidation of the graphite moderator blocks with carbon dioxide and water vapor in the reactor atmosphere. Laboratory tests have shown that 10% uniform oxidation of graphite results in a loss in strength of approximately 50%. Production Test IP-725 was conducted at F Reactor for a period of six months at graphite temperatures approximately 50 and 100 C higher than the present graphite temperature limit of 650 C. The results from the F Reactor test suggest that an increase in the graphite temperature limit from 650 C to 700 C is technically feasible from the standpoint of oxidation of the graphite moderator with CO{sub 2}. Any significant additional increase was shown to lead to excessively high oxidation rates and is therefore not considered feasible. The objective of this test, therefore, is to extend the higher temperature investigations to B, C, and D Reactors. For the duration of this test, the graphite temperature limit will be increased from 650 C and 700 C, corresponding to an increase in the graphite stringer temperature limit from 735 C to 790 C. The test is expected to last for approximately six months but may be terminated early on any or all the reactors.

  8. Hydrogeological and Groundwater Flow Model for C, K, L, and P Reactor Areas, Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G.P.

    1999-02-24

    A regional groundwater flow model encompassing approximately 100 mi{sup 2} surrounding the C, K. L. and P reactor areas has been developed. The Reactor flow model is designed to meet the planning objectives outlined in the General Groundwater Strategy for Reactor Area Projects by providing a common framework for analyzing groundwater flow, contaminant migration and remedial alternatives within the Reactor Projects team of the Environmental Restoration Department.

  9. 78 FR 15747 - Charlissa C. Smith (Denial of Senior Reactor Operator License)

    Science.gov (United States)

    2013-03-12

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Charlissa C. Smith (Denial of Senior Reactor Operator License) Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR 2.313(c) and 2.321(b), the Atomic Safety and Licensing...

  10. Advanced Reactor Licensing: Experience with Digital I&C Technology in Evolutionary Plants

    Energy Technology Data Exchange (ETDEWEB)

    Wood, RT

    2004-09-27

    This report presents the findings from a study of experience with digital instrumentation and controls (I&C) technology in evolutionary nuclear power plants. In particular, this study evaluated regulatory approaches employed by the international nuclear power community for licensing advanced l&C systems and identified lessons learned. The report (1) gives an overview of the modern l&C technologies employed at numerous evolutionary nuclear power plants, (2) identifies performance experience derived from those applications, (3) discusses regulatory processes employed and issues that have arisen, (4) captures lessons learned from performance and regulatory experience, (5) suggests anticipated issues that may arise from international near-term deployment of reactor concepts, and (6) offers conclusions and recommendations for potential activities to support advanced reactor licensing in the United States.

  11. Creep crack growth in a reactor pressure vessel steel at 360 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Rui Wu; Seitisleam, F.; Sandstroem, R. [Swedish Institute for Metals Research, Stockholm (Sweden)

    1998-12-31

    Plain creep (PC) and creep crack growth (CCG) tests at 360 deg C and post metallography were carried out on a low alloy reactor pressure vessel steel (ASTM A508 class 2) with different microstructures. Lives for the CCG tests were shorter than those for the PC tests and this is more pronounced for simulated heat affected zone microstructure than for the parent metal at longer lives. For the CCG tests, after initiation, the cracks grew constantly and intergranularly before they accelerated to approach rupture. The creep crack growth rate is well described by C*. The relations between reference stress, failure time and steady crack growth rate are presented for the CCG tests. It is demonstrated that the failure stress due to CCG is considerably lower than the yield stress at 360 deg C. Consequently, the CCG will control the static strength of a reactor vessel. (orig.) 17 refs.

  12. Regional groundwater flow model for C, K. L. and P reactor areas, Savannah River Site, Aiken, SC

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G.P.

    2000-02-11

    A regional groundwater flow model encompassing approximately 100 mi2 surrounding the C, K, L, and P reactor areas has been developed. The reactor flow model is designed to meet the planning objectives outlined in the General Groundwater Strategy for Reactor Area Projects by providing a common framework for analyzing groundwater flow, contaminant migration and remedial alternatives within the Reactor Projects team of the Environmental Restoration Department. The model provides a quantitative understanding of groundwater flow on a regional scale within the near surface aquifers and deeper semi-confined to confined aquifers. The model incorporates historical and current field characterization data up through Spring 1999. Model preprocessing is automated so that future updates and modifications can be performed quickly and efficiently. The CKLP regional reactor model can be used to guide characterization, perform scoping analyses of contaminant transport, and serve as a common base for subsequent finer-scale transport and remedial/feasibility models for each reactor area.

  13. A simulation of a pebble bed reactor core by the MCNP-4C computer code

    Directory of Open Access Journals (Sweden)

    Bakhshayesh Moshkbar Khalil

    2009-01-01

    Full Text Available Lack of energy is a major crisis of our century; the irregular increase of fossil fuel costs has forced us to search for novel, cheaper, and safer sources of energy. Pebble bed reactors - an advanced new generation of reactors with specific advantages in safety and cost - might turn out to be the desired candidate for the role. The calculation of the critical height of a pebble bed reactor at room temperature, while using the MCNP-4C computer code, is the main goal of this paper. In order to reduce the MCNP computing time compared to the previously proposed schemes, we have devised a new simulation scheme. Different arrangements of kernels in fuel pebble simulations were investigated and the best arrangement to decrease the MCNP execution time (while keeping the accuracy of the results, chosen. The neutron flux distribution and control rods worth, as well as their shadowing effects, have also been considered in this paper. All calculations done for the HTR-10 reactor core are in good agreement with experimental results.

  14. Effect of sulfate on methanol degradation in thermophilic (55 oC) methanogenic UASB reactors

    NARCIS (Netherlands)

    Vallero, M.V.G.; Lens, P.N.L.; Paulo, P.L.; Trevino, R.H.M.; Lettinga, G.

    2003-01-01

    A thermophilic (55 degreesC) lab-scale (0.921) methanol-fed upflow anaerobic sludge bed (UASB) reactor (pH 7.0 and hydraulic retention time (HRT) of 7.5 h) was operated at chemical oxygen demand (COD) to sulfate (SO42-) ratios of 10, 5 and 0.5 during 155 days to evaluate the effects of the presence

  15. ASSESSMENT OF THE POTENTIAL FOR HYDROGEN GENERATION DURING GROUTING OPERATIONS IN C-REACTOR DISASSEMBLY BASIN

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2011-07-12

    C-reactor disassembly basin is being prepared for deactivation and decommissioning (D and D). D and D activities will consist primarily of immobilizing contaminated scrap components and structures in a grout-like formulation. The disassembly basin will be the first area of the C-reactor building that will be immobilized. The scrap components contain aluminum alloy materials. Any aluminum will corrode very rapidly when it comes in contact with the very alkaline grout (pH > 13), and as a result would produce hydrogen gas. To address this potential deflagration/explosion hazard, Savannah River National Laboratory (SRNL) reviewed and evaluated existing experimental and analytical studies of this issue to determine if any process constraints are necessary. The risk of accumulation of a flammable mixture of hydrogen above the surface of the water during the injection of grout into the C-reactor disassembly area is low if the assessment of the aluminum surface area is reliable. Conservative calculations estimate that there is insufficient aluminum present in the basin areas to result in significant hydrogen accumulation in this local region. The minimum safety margin (or factor) on a 60% LFL criterion for a local region of the basin (i.e., Horizontal Tube Storage) was greater than 3. Calculations also demonstrated that a flammable situation in the vapor space above the basin is unlikely. Although these calculations are conservative, there are some measures that may be taken to further minimize the risk of developing a flammable condition during grouting operations.

  16. Phospholipase C-catalyzed sphingomyelin hydrolysis in a membrane reactor for ceramide production

    DEFF Research Database (Denmark)

    Zhang, Long; Liang, Shanshan; Hellgren, Lars

    2008-01-01

    A membrane reactor for the production of ceramide through sphingomyelin hydrolysis with phospholipase C from Clostridium perfringens was studied for the first time. Ceramide has raised a large interest as an active component in both pharmaceutical and cosmetic industry. The enzymatic hydrolysis...... of sphingomyelin has been proven to be a feasible method to produce ceramide. In the membrane reactor constructed, the aqueous phase and the organic phase were separated by a membrane containing the immobilized enzyme, while the organic phasewas continuously circulated. Among the 10 selected membranes, the enzyme...... the low fixation level (9.4%). The optimal flow rate of the organic phase was 5 ml/min. High initial enzyme amount in the immobilization led to the decrease in the fixation level. Both the initial reaction rate and the specific activity of the enzyme increased with increasing enzyme loading, and slightly...

  17. ELECTRICAL RESISTANCE HEATING OF SOILS AT C-REACTOR AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Blundy, R; Michael Morgenstern, M; Joseph Amari, J; Annamarie MacMurray, A; Mark Farrar, M; Terry Killeen, T

    2007-09-10

    Chlorinated solvent contamination of soils and groundwater is an endemic problem at the Savannah River Site (SRS), and originated as by-products from the nuclear materials manufacturing process. Five nuclear reactors at the SRS produced special nuclear materials for the nation's defense program throughout the cold war era. An important step in the process was thorough degreasing of the fuel and target assemblies prior to irradiation. Discharges from this degreasing process resulted in significant groundwater contamination that would continue well into the future unless a soil remediation action was performed. The largest reactor contamination plume originated from C-Reactor and an interim action was selected in 2004 to remove the residual trichloroethylene (TCE) source material by electrical resistance heating (ERH) technology. This would be followed by monitoring to determine the rate of decrease in concentration in the contaminant plume. Because of the existence of numerous chlorinated solvent sources around SRS, it was elected to generate in-house expertise in the design and operation of ERH, together with the construction of a portable ERH/SVE system that could be deployed at multiple locations around the site. This paper describes the waste unit characteristics, the ERH system design and operation, together with extensive data accumulated from the first deployment adjacent to the C-Reactor building. The installation heated the vadose zone down to 62 feet bgs over a 60 day period during the summer of 2006 and raised soil temperatures to over 200 F. A total of 730 lbs of trichloroethylene (TCE) were removed over this period, and subsequent sampling indicated a removal efficiency of 99.4%.

  18. 10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...

  19. Design issues on using FPGA-based I and C systems in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Marcos S.; Carvalho, Paulo Victor R. de; Santos, Isaac Jose A.L. dos; Lacerda, Fabio de, E-mail: msantana@ien.gov.br, E-mail: paulov@ien.gov.br, E-mail: luquetti@ien.gov.br, E-mail: acerda@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Engenharia Nuclear

    2015-07-01

    The FPGA (field programmable gate array) is widely used in various fields of industry. FPGAs can be used to perform functions that are safety critical and require high reliability, like in automobiles, aircraft control and assistance and mission-critical applications in the aerospace industry. With these merits, FPGAs are receiving increased attention worldwide for application in nuclear plant instrumentation and control (I and C) systems, mainly for Reactor Protection System (RPS). Reasons for this include the fact that conventional analog electronics technologies are become obsolete. I and C systems of new Reactors have been designed to adopt the digital equipment such as PLC (Programmable Logic Controller) and DCS (Distributed Control System). But microprocessors-based systems may not be simply qualified because of its complex characteristics. For example, microprocessor cores execute one instruction at a time, and an operating system is needed to manage the execution of programs. In turn, FPGAs can run without an operating system and the design architecture is inherently parallel. In this paper we aim to assess these and other advantages, and the limitations, on FPGA-based solutions, considering the design guidelines and regulations on the use of FPGAs in Nuclear Plant I and C Systems. We will also examine some circuit design techniques in FPGA to help mitigate failures and provide redundancy. The objective is to show how FPGA-based systems can provide cost-effective options for I and C systems in modernization projects and to the RMB (Brazilian Multipurpose Reactor), ensuring safe and reliable operation, meeting licensing requirements, such as separation, redundancy and diversity. (author)

  20. Nitrifying-denitrifying filters and UV-C disinfection reactor: a combined system for wastewater treatment.

    Science.gov (United States)

    Ben Rajeb, Asma; Mehri, Inès; Nasr, Houda; Najjari, Afef; Saidi, Neila; Hassen, Abdennaceur

    2017-03-01

    Biological treatment systems use the natural processes of ubiquitous organisms to remove pollutants and improve the water quality before discharge to the environment. In this paper, the nitrification/denitrification reactor allowed a reduction in organic load, but offered a weak efficiency in nitrate reduction. However, the additions of the activated sludge in the reactor improve this efficiency. A decrease of [Formula: see text] values from 13.3 to 8 mg/l was noted. Nevertheless, sludge inoculation led to a net increase of the number of pathogenic bacteria. For this reason, a UV-C pilot reactor was installed at the exit of the biological nitrification-denitrification device. Thus, a fluence of 50 mJ.cm(-2) was sufficient to achieve values of 20 MPN/100 ml for fecal coliform and 6 MPN/100 ml for fecal streptococci, conforms to Tunisian Standards of Rejection. On the other hand, the DGGE approach has allowed a direct assessment of the bacterial community changes upon the treated wastewater.

  1. Biohydrogen production from glucose in upflow biofilm reactors with plastic carriers under extreme thermophilic conditions (70(degree)C)

    DEFF Research Database (Denmark)

    Zheng, H.; Zeng, Raymond Jianxiong; Angelidaki, Irini

    2008-01-01

    Biohydrogen could efficiently be produced in glucose-fed biofilm reactors filled with plastic carriers and operated at 70°C. Batch experiments were, in addition, conducted to enrich and cultivate glucose-fed extremethermophilic hydrogen producing microorganisms from a biohydrogen CSTR reactor fed...... with synthetic medium with glucose as the only carbon and energy source. A biofilm reactor, started up with plastic carriers, that were previously inoculated with the enrichment cultures, resulted in higher hydrogen yield (2.21 mol H2/mol glucose consumed) but required longer start up time (1 month), while...... with household solid waste. Kinetic analysis of the biohydrogen enrichment cultures show that substrate (glucose) likely inhibited hydrogen production when its concentration was higher than 1 g/L. Different start up strategies were applied for biohydrogen production in biofilm reactors operated at 70°C, and fed...

  2. Rapid analysis of 14C and 3H in graphite and concrete for decommissioning of nuclear reactor

    DEFF Research Database (Denmark)

    Hou, Xiaolin

    2005-01-01

    A rapid oxidizing combustion method using a commercial Sample Oxidizer has been investigated to determine separately the C-14 and H-3 activities in graphite and concrete. By this method the sample preparation time can be reduced to 2-3min. The detection limits for H-3 and C-14 are 0.96 and 0.58Bq...... the Danish Reactors DR-2 and DR-3, in addition to two concrete cores drilled in the Danish reactor DR-2; these were analysed for H-3 and C-14 using the method that has been developed. (c) 2005 Elsevier Ltd. All rights reserved....

  3. Sulfate Reduction at pH 4 During the Thermophilic (55 degrees C) Acidification of Sucrose in UASB Reactors

    NARCIS (Netherlands)

    Lopes, S.I.C.; Capela, M.I.; Dar, S.A.; Muyzer, G.; Lens, P.N.L.

    2008-01-01

    Continuous sulfate reduction at pH 4.0 was demonstrated in a pH controlled thermophilic (55 degrees C) upflow anaerobic sludge bed reactor fed with sucrose at a COD/SO42- ratio of 0.9 and an organic loading rate of 0.8 and 1.9 gCOD (l(reactor) d)(-1) for a period of 78 days. A near v complete

  4. Software development methodology for computer based I&C systems of prototype fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Manimaran, M., E-mail: maran@igcar.gov.in; Shanmugam, A.; Parimalam, P.; Murali, N.; Satya Murty, S.A.V.

    2015-10-15

    Highlights: • Software development methodology adopted for computer based I&C systems of PFBR is detailed. • Constraints imposed as part of software requirements and coding phase are elaborated. • Compliance to safety and security requirements are described. • Usage of CASE (Computer Aided Software Engineering) tools during software design, analysis and testing phase are explained. - Abstract: Prototype Fast Breeder Reactor (PFBR) is sodium cooled reactor which is in the advanced stage of construction in Kalpakkam, India. Versa Module Europa bus based Real Time Computer (RTC) systems are deployed for Instrumentation & Control of PFBR. RTC systems have to perform safety functions within the stipulated time which calls for highly dependable software. Hence, well defined software development methodology is adopted for RTC systems starting from the requirement capture phase till the final validation of the software product. V-model is used for software development. IEC 60880 standard and AERB SG D-25 guideline are followed at each phase of software development. Requirements documents and design documents are prepared as per IEEE standards. Defensive programming strategies are followed for software development using C language. Verification and validation (V&V) of documents and software are carried out at each phase by independent V&V committee. Computer aided software engineering tools are used for software modelling, checking for MISRA C compliance and to carry out static and dynamic analysis. Various software metrics such as cyclomatic complexity, nesting depth and comment to code are checked. Test cases are generated using equivalence class partitioning, boundary value analysis and cause and effect graphing techniques. System integration testing is carried out wherein functional and performance requirements of the system are monitored.

  5. Examination of Surface Deposits on Oldbury Reactor Core Graphite to Determine the Concentration and Distribution of 14C.

    Directory of Open Access Journals (Sweden)

    Liam Payne

    Full Text Available Pile Grade A graphite was used as a moderator and reflector material in the first generation of UK Magnox nuclear power reactors. As all of these reactors are now shut down there is a need to examine the concentration and distribution of long lived radioisotopes, such as 14C, to aid in understanding their behaviour in a geological disposal facility. A selection of irradiated graphite samples from Oldbury reactor one were examined where it was observed that Raman spectroscopy can distinguish between underlying graphite and a surface deposit found on exposed channel wall surfaces. The concentration of 14C in this deposit was examined by sequentially oxidising the graphite samples in air at low temperatures (450°C and 600°C to remove the deposit and then the underlying graphite. The gases produced were captured in a series of bubbler solutions that were analysed using liquid scintillation counting. It was observed that the surface deposit was relatively enriched with 14C, with samples originating lower in the reactor exhibiting a higher concentration of 14C. Oxidation at 600°C showed that the remaining graphite material consisted of two fractions of 14C, a surface associated fraction and a graphite lattice associated fraction. The results presented correlate well with previous studies on irradiated graphite that suggest there are up to three fractions of 14C; a readily releasable fraction (corresponding to that removed by oxidation at 450°C in this study, a slowly releasable fraction (removed early at 600°C in this study, and an unreleasable fraction (removed later at 600°C in this study.

  6. Diversion assumptions for high-powered research reactors. ISPO C-50 Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Binford, F.T.

    1984-01-01

    This study deals with diversion assumptions for high-powered research reactors -- specifically, MTR fuel; pool- or tank-type research reactors with light-water moderator; and water, beryllium, or graphite reflectors, and which have a power level of 25 MW(t) or more. The objective is to provide assistance to the IAEA in documentation of criteria and inspection observables related to undeclared plutonium production in the reactors described above, including: criteria for undeclared plutonium production, necessary design information for implementation of these criteria, verification guidelines including neutron physics and heat transfer, and safeguards measures to facilitate the detection of undeclared plutonium production at large research reactors.

  7. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  8. Continuous flowing micro-reactor for aqueous reaction at temperature higher than 100 °C

    OpenAIRE

    Xie, Fei; Wang, Baojun; Wang, Wei; Dong, Tian; Tong, Jianhua; Xia, Shanhong; Wu, Wengang; Li, Zhihong

    2013-01-01

    Some aqueous reactions in biological or chemical fields are accomplished at a high temperature. When the reaction temperature is higher than 100 °C, an autoclave reactor is usually required to elevate the boiling point of the water by creating a high-pressure environment in a closed system. This work presented an alternative continuous flowing microfluidic solution for aqueous reaction with a reaction temperature higher than 100 °C. The pressure regulating function was successfully fulfilled ...

  9. Advanced I&C for Fault-Tolerant Supervisory Control of Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Daniel G.

    2018-01-30

    In this research, we have developed a supervisory control approach to enable automated control of SMRs. By design the supervisory control system has an hierarchical, interconnected, adaptive control architecture. A considerable advantage to this architecture is that it allows subsystems to communicate at different/finer granularity, facilitates monitoring of process at the modular and plant levels, and enables supervisory control. We have investigated the deployment of automation, monitoring, and data collection technologies to enable operation of multiple SMRs. Each unit's controller collects and transfers information from local loops and optimize that unit’s parameters. Information is passed from the each SMR unit controller to the supervisory controller, which supervises the actions of SMR units and manage plant processes. The information processed at the supervisory level will provide operators the necessary information needed for reactor, unit, and plant operation. In conjunction with the supervisory effort, we have investigated techniques for fault-tolerant networks, over which information is transmitted between local loops and the supervisory controller to maintain a safe level of operational normalcy in the presence of anomalies. The fault-tolerance of the supervisory control architecture, the network that supports it, and the impact of fault-tolerance on multi-unit SMR plant control has been a second focus of this research. To this end, we have investigated the deployment of advanced automation, monitoring, and data collection and communications technologies to enable operation of multiple SMRs. We have created a fault-tolerant multi-unit SMR supervisory controller that collects and transfers information from local loops, supervise their actions, and adaptively optimize the controller parameters. The goal of this research has been to develop the methodologies and procedures for fault-tolerant supervisory control of small modular reactors. To achieve

  10. Mechanical properties of SiC composites neutron irradiated under light water reactor relevant temperature and dose conditions

    Science.gov (United States)

    Koyanagi, Takaaki; Katoh, Yutai

    2017-10-01

    Silicon carbide (SiC) fiber-reinforced SiC matrix (SiC/SiC) composites are being actively investigated for use in accident-tolerant core structures of light water reactors (LWRs). Owing to the limited number of irradiation studies previously conducted at LWR-coolant temperature, this study examined SiC/SiC composites following neutron irradiation at 230-340 °C to 2.0 and 11.8 dpa in the High Flux Isotope Reactor. The investigated materials were chemical vapor infiltrated (CVI) SiC/SiC composites with three different reinforcement fibers. The fiber materials were monolayer pyrolytic carbon (PyC) -coated Hi-Nicalon™ Type-S (HNS), Tyranno™ SA3 (SA3), and SCS-Ultra™ (SCS) SiC fibers. The irradiation resistance of these composites was investigated based on flexural behavior, dynamic Young's modulus, swelling, and microstructures. There was no notable mechanical properties degradation of the irradiated HNS and SA3 SiC/SiC composites except for reduction of the Young's moduli by up to 18%. The microstructural stability of these composites supported the absence of degradation. In addition, no progressive swelling from 2.0 to 11.8 dpa was confirmed for these composites. On the other hand, the SCS composite showed significant mechanical degradation associated with cracking within the fiber. This study determined that SiC/SiC composites with HNS or SA3 SiC/SiC fibers, a PyC interphase, and a CVI SiC matrix retain their properties beyond the lifetime dose for LWR fuel cladding at the relevant temperature.

  11. Application of macro-cellular SiC reactor to diesel engine-like injection and combustion conditions

    Science.gov (United States)

    Cypris, Weclas, M.; Greil, P.; Schlier, L. M.; Travitzky, N.; Zhang, W.

    2012-05-01

    One of novel combustion technologies for low emissions and highly efficient internal combustion engines is combustion in porous reactors (PM). The heat release process inside combustion reactor is homogeneous and flameless resulting in a nearly zero emissions level. Such combustion process, however is non-stationary, is performed under high pressure with requirement of mixture formation directly inside the combustion reactor (high pressure fuel injection). Reactor heat capacity resulting in lowering of combustion temperature as well as internal heat recuperation during the engine cycle changes the thermodynamic conditions of the process as compared to conventional engine. For the present investigations a macro-cellular lattice structure based on silicon carbide (non-foam structure) with 600 vertical cylindrical struts was fabricated and applied to engine-like combustion conditions (combustion chamber). The lattice design with a high porosity > 80% was shaped by indirect three-dimensional printing of a SiC powder mixed with a dextrin binder which also serves as a carbon precursor. In order to perform detailed investigations on low-and high-temperature oxidation processes in porous reactors under engine-like conditions, a special combustion chamber has been built and equipped with a Diesel common-rail injection system. This system simulates the thermodynamic conditions at the time instance of injection onset (corresponding to the nearly TDC of compression in a real engine). Overall analysis of oxidation processes (for variable initial pressure, temperature and air excess ratio) for free Diesel spray combustion and for combustion in porous reactor allows selection of three regions representing different characteristics of the oxidation process represented by a single-step and multi-step reactions Another characteristic feature of investigated processes is reaction delay time. There are five characteristic regions to be selected according to the delay time (t) duration

  12. Study of Pu consumption in light water reactors: Evaluation of GE advanced boiling water reactor plants, compilation of Phase 1C task reports

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-15

    This report summarizes the evaluations conducted during Phase 1C of the Pu Disposition Study have provided further results which reinforce the conclusions reached during Phase 1A & 1B: These conclusions clearly establish the benefits of the fission option and the use of the ABWR as a reliable, proven, well-defined and cost-effective means available to disposition the weapons Pu. This project could be implemented in the near-term at a cost and on a schedule being validated by reactor plants currently under construction in Japan and by cost and schedule history and validated plans for MOX plants in Europe. Evaluations conducted during this phase have established that (1) the MOX fuel is licensable based on existing criteria for new fuel with limited lead fuel rod testing, (2) that the applicable requirements for transport, handling and repository storage can be met, and (3) that all the applicable safeguards criteria can be met.

  13. Effect of temperature increase from 55 to 65 degrees C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Ibrahim, Ashraf; Mladenovska, Zuzana

    2001-01-01

    The effect of a temperature increase from 55 to 65 degreesC on process performance and microbial population dynamics were investigated in thermophilic, lab-scale, continuously stirred tank reactors. The reactors had a working volume of 3 l and were fed with cattle manure at an organic loading rat...

  14. Thermophilic (55°C) conversion of methanol in methanogenic-UASB reactors: influence of sulphate on methanol degradation and competition

    NARCIS (Netherlands)

    Paulo, P.L.; Vallero, M.V.G.; Trevino, R.H.M.; Lettinga, G.; Lens, P.N.L.

    2004-01-01

    Two upflow sludge bed reactors (UASB) were operated for 80 days at 55 degreesC with methanol as the substrate with an organic loading rate (OLR) of about 20 g COD l(-1) per day and a hydraulic retention time (HRT) of 10 h. One UASB was operated without sulphate addition (control reactor-R1) whereas

  15. Design criteria -- Reactor plant modifications for increased production and 100-C Area Alterations (Sections A and B) CG-558. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Russ, M.H.

    1954-08-10

    This document defines the basic criteria to be used in the preparation of detailed design for Project CG-558, Reactor Plant Modification for Increased Production and for Project CG-600, 100-C Area Alterations. It has been determined that the most economical method of increasing plutonium production within the next five years is by the modernization and improvement of the 100-B, 100-C, 100-D, 100-DR, 100-F, and 100-H reactor plants. These reactors are currently incapable of operating at their maximum potential power levels because of a limited availability of process cooling water. As a result of this programs, it is estimated that 1650-2350 megawatts of total additional production will be achieved. The purpose of this document is to set forth the design for certain modifications and additions to Hanford reactors and their supporting facilities as required to obtain higher power levels and improve the safety of reactor operation.

  16. Effect of the C:N:P ratio on the denitrifying dephosphatation in a sequencing batch biofilm reactor (SBBR).

    Science.gov (United States)

    Mielcarek, Artur; Rodziewicz, Joanna; Janczukowicz, Wojciech; Thornton, Arthur J; Jóźwiak, Tomasz; Szymczyk, Paula

    2015-12-01

    A series of investigations were conducted using sequencing batch biofilm reactor (SBBR) to explore the influence of C:N:P ratio on biological dephosphatation including the denitrifying dephosphatation and the denitrification process. Biomass in the reactor occurred mainly in the form of a biofilm attached to completely submerged disks. Acetic acid was used as the source of organic carbon. C:N:P ratios have had a significant effect on the profiles of phosphate release and phosphate uptake and nitrogen removal. The highest rates of phosphate release and phosphate uptake were recorded at the C:N:P ratio of 140:70:7. The C:N ratio of 2.5:1 ensured complete denitrification. The highest rate of denitrification was achieved at the C:N:P ratio of 140:35:7. The increase of nitrogen load caused an increase in phosphates removal until a ratio C:N:P of 140:140:7. Bacteria of the biofilm exposed to alternate conditions of mixing and aeration exhibited enhanced intracellular accumulation of polyphosphates. Also, the structure of the biofilm encouraged anaerobic-aerobic as well as anoxic-anaerobic and absolutely anaerobic conditions in a SBBR. These heterogeneous conditions in the presence of nitrates may be a significant factor determining the promotion of denitrifying polyphosphate accumulating organism (DNPAO) development. Copyright © 2015. Published by Elsevier B.V.

  17. A scoping analysis of the neotronic design for a new South African research reactor / Vermaak J.I.C.

    OpenAIRE

    Vermaak, Jan Izak Cornelius

    2011-01-01

    Together with many other research reactors around the world, the SAFARI–1 reactor has been classified as an ageing research reactor. In order to continue the provision of the current irradiation services, the operator of the reactor, NECSA, needs to consider the replacement of SAFARI–1 with a new large neutron source, and therefore ultimately a new reactor. A replacement research reactor will have to provide irradiation services that primarily include: radio–isotope producti...

  18. Vacuum electrolysis reactor technique for quantitation of 13-carbon isotope enrichment at the C1-position of formic acid and acetic acid.

    Science.gov (United States)

    May, Michael; Kuo, John; Tan, C T

    2004-09-15

    A specialized vacuum electrolysis reactor was designed, constructed, and utilized for 13-carbon isotope analysis of formic acid-13C and acetic acid-13C, each highly enriched at the C1-position. This reusable reactor was equipped with two platinum wire electrodes, miniature stir bar, and sidearm reaction chamber. The associated technique developed for 13-carbon isotope analysis is based upon electrolytic generation of carbon dioxide into the preevacuated reactor followed by gas inlet mass spectrometry. It proved practical to degas and electrolyze 95% formic acid (without added electrolyte) due to adequate ionic conductivity. Formic acid-13C (nominally 99 at. % 13C) was measured by electrolytic CO2 generation to be 98.9 at. % 13C. To analyze various 13C-isotopic permutations of acetic acid, lithium and acid were separately added to reactor compartments, vacuum degassed, and stirred to produce an acidic solution. Thus, acetic acid-1-13C that was nominally 99 at. % 13C1 was determined by vacuum electrolysis to be 98.9 at. % 13C1. Further, acetic acid-2-13C that was isotope depleted at the C1-position (and known to be 99 at. % 13C at C2) gave 0.8 at. % 13C by mass spectrometry.

  19. Technical specifications, Hanford production reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, W.D. [comp.

    1962-06-25

    These technical specifications are applicable to the eight operating production reactor facilities, B, C, D, DR, F, H, KE, and KW. Covered are operating and performance restrictions and administrative procedures. Areas covered by the operating and performance restrictions are reactivity, reactor control and safety elements, power level, temperature and heat flux, reactor fuel loadings, reactor coolant systems, reactor confinement, test facilities, code compliance, and reactor scram set points. Administrative procedures include process control procedures, training programs, audits and inspections, and reports and records.

  20. Continuous flowing micro-reactor for aqueous reaction at temperature higher than 100 °C.

    Science.gov (United States)

    Xie, Fei; Wang, Baojun; Wang, Wei; Dong, Tian; Tong, Jianhua; Xia, Shanhong; Wu, Wengang; Li, Zhihong

    2013-01-01

    Some aqueous reactions in biological or chemical fields are accomplished at a high temperature. When the reaction temperature is higher than 100 °C, an autoclave reactor is usually required to elevate the boiling point of the water by creating a high-pressure environment in a closed system. This work presented an alternative continuous flowing microfluidic solution for aqueous reaction with a reaction temperature higher than 100 °C. The pressure regulating function was successfully fulfilled by a small microchannel based on a delicate hydrodynamic design. Combined with micro heater and temperature sensor that integrated in a single chip by utilizing silicon-based microfabrication techniques, this pressure regulating microchannel generated a high-pressure/high-temperature environment in the upstream reaction zone when the reagents continuously flow through the chip. As a preliminary demonstration, thermal digestion of aqueous total phosphorus sample was achieved in this continuous flowing micro-reactor at a working pressure of 990 kPa (under the working flow rate of 20 nl/s) along with a reaction temperature of 145 °C. This continuous flowing microfluidic solution for high-temperature reaction may find applications in various micro total analysis systems.

  1. Removal Site Evaluation Report to the C-Reactor Seepage Basins (904-066, -067 and -068G)

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E.R. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-07-01

    Removal Site Evaluation Reports are prepared in accordance with Section 300.410 of the National Contingency Plan (NCP) and Section X of the Federal Facility Agreement (FFA). The C-Reactor Seepage Basins (904-066G,-067G,-068G) are listed in Appendix C, Resource Conservation and Recovery Act (RCRA)/Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Units List, of the FFA. The purpose of this investigation is to report information concerning conditions at this unit sufficient to assess the threat (if any) posed to human health and the environment and to determine the need for additional CERCLA action. The scope of the investigation included a review of past survey and investigation data, the files, and a visit to the unit.Through this investigation unacceptable conditions of radioactive contaminant uptake in on-site vegetation were identified. This may have resulted in probable contaminant migration and become introduced into the local ecological food chain. As a result, the SRS will initiate a time critical removal action in accordance with Section 300.415 of the NCP and FFA Section XIV to remove, treat (if required), and dispose of contaminated vegetation from the C-Reactor Seepage Basins. Erosion in the affected areas will be managed by an approved erosion control plan. further remediation of this unit will be conducted in accordance with the FFA.

  2. Nanocrystalline SiC and Ti3SiC2 Alloys for Reactor Materials: Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H. [pnnl; Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Roosendaal, Timothy J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shin, Yongsoon [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nguyen, Ba Nghiep; Borlaug, Brennan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jiang, Weilin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arreguin, Shelly A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-15

    A new dual-phase nanocomposite of Ti₃SiC₂/SiC is being synthesized using preceramic polymers, ceramic powders, and carbon nanotubes (CNTs) designed to be suitable for advanced nuclear reactors and perhaps as fuel cladding. The material is being designed to have superior fracture toughness compared to SiC, adequate thermal conductivity, and higher density than SiC/SiC composites. This annual report summarizes the progress towards this goal and reports progress in understanding certain aspects of the material behavior but some shortcomings in achieving full density or in achieving adequate incorporation of CNTs. The measured thermal conductivity is adequate and falls into an expected range based on SiC and Ti₃SiC₂. Part of this study makes an initial assessment for Ti₃SiC₂ as a barrier to fission product transport. Ion implantation was used to introduce fission product surrogates (Ag and Cs) and a noble metal (Au) in Ti₃SiC₂, SiC, and a synthesized at PNNL. The experimental results indicate that the implanted Ag in SiC is immobile up to the highest temperature (1273 K) applied in this study; in contrast, significant out-diffusion of both Ag and Au in MAX phase Ti₃SiC₂ occurs during ion implantation at 873 K. Cs in Ti₃SiC₂ is found to diffuse during post-irradiation annealing at 973 K, and noticeable Cs release from the sample is observed. This study may suggest caution in using Ti₃SiC₂ as a fuel cladding material for advanced nuclear reactors operating at very high temperatures. Progress is reported in thermal conductivity modeling of SiC-based materials that is relevant to this research, as is progress in modeling the effects of CNTs on fracture strength of SiC-based materials.

  3. Cephalosporin C production by a highly productive Cephalosporium acremonium strain in an airlift tower loop reactor with static mixers.

    Science.gov (United States)

    Zhou, W; Holzhauer-Rieger, K; Bayer, T; Schügerl, K

    1993-04-01

    The production of cephalosporin C (CPC) and its precursors penicillin N (PEN N), deacetoxycephalosporin C (DAOC) and deacetylcephalosporin C (DAC), with a highly productive strain of Cephalosporin acremonium, was investigated in an 80-1 airlift tower loop reactor with four static mixer modules (Type SMV, Sulzer) (ATLRM) on a complex medium containing 50 g l-1 peanut flour (PF). The most important key parameters such as glucose concentration and cell mass concentration were monitored during a fed-batch cultivation process. The concentrations of products CPC, PEN N, DAOC an DAC were determined on line by HPLC. The influences of four motionless mixers on the dissolved oxygen concentration (DOC), oxygen transfer rate, the cell growth and the CPC production, as well as the reactor performance, were evaluated. The results were compared with the performance of an airlift tower loop reactor (ATLR) without static mixers as well as with a stirred tank reactor (STR). A comparison of cultivations in the ATLRM and ATLR with 50 g l-1 PF indicates that the obtained maximal CPC concentration and the (CPC + DAC + DAOC) concentration were 7% and 22% higher in the ATLRM (4.96 and 7.46 g l-1) than in the ATLR (4.63 and 6.13 g l-1) respectively. The maximal CPC volumetric productivity in the ATLRM (55.1 mg l-1 h-1) was also considerably higher than that in the ATLR (48.5 mg l-1 h-1). The specific power input was reduced from 2.36 to 1.5 kW m-3, the specific productivity pertaining to the power input was improved from 1.96 to 3.31 g W-1. On the other hand, cultivation in the ATLRM had a lower maximum CPC concentration and volumetric productivity than those in STR (7.2 g l-1 and 71.2 mg l-1 h-1) with the same medium due to the lower shear stress levels and the lower specific power input (1.5 vs. 3.0 kW m-3); but the specific power imput-based yield coefficient was in the ATLRM (3.31 g W-1) higher than in the STR (2.40 g W-1). By increasing the amount of PF, it was possible to enhance the

  4. Programa de cómputo para el cálculo del accidente de pérdida del refrigerante de un reactor nuclear del tipo piscina

    OpenAIRE

    Villanueva, Luis

    1982-01-01

    Se ha elaborado un programa de cómputo que calcula el accidente de perdida del refrigerante en la mitad superior de los elementos combustibles, producido por la rotura del tubo tangencial de irradiación de un reactor nuclear del tipo piscina. El programa esta diseñado para canales rectangulares de refrigeración, formados por placas combustibles. Los modos de transferencia de calor considerados son: 1) Convención forzada turbulenta, 2) Convención forzada en régimen de transición, 3) Convención...

  5. Simultaneous C and N removal from saline salmon effluents in filter reactors comprising anoxic-anaerobic-aerobic processes: effect of recycle ratio.

    Science.gov (United States)

    Giustinianovich, Elisa A; Aspé, Estrella R; Huiliñir, César E; Roeckel, Marlene D

    2014-01-01

    Salmon processing generates saline effluents with high protein load. To treat these effluents, three compact tubular filter reactors were installed and an integrated anoxic/anaerobic/aerobic process was developed with recycling flow from the reactor's exit to the inlet stream in order to save organic matter (OM) for denitrification. The reactors were aerated in the upper section with recycle ratios (RR) of 0, 2, and 10, respectively, at 30°C. A tubular reactor behave as a plug flow reactor when RR = 0, and as a mixed flow reactor when recycle increases, thus, different RR values were used to evaluate how it affects the product distribution and the global performance. Diluted salmon process effluent was prepared as substrate. Using loads of 1.0 kg COD m(-3)d(-1) and 0.15 kg total Kjeldahl nitrogen (TKN) m(-3)d(-1) at HRT of 2 d, 100% removal efficiencies for nitrite and nitrate were achieved in the anoxic-denitrifying section without effect of the dissolved oxygen in the recycled flow on denitrification. Removals >98% for total organic carbon (TOC) was achieved in the three reactors. The RR had no effect on the TOC removal; nevertheless a higher efficiency in total nitrogen removal in the reactor with the highest recycle ratio was observed: 94.3% for RR = 10 and 46.6% for RR = 2. Results showed that the proposed layout with an alternative distribution in a compact reactor can efficiently treat high organic carbon and nitrogen concentrations from a saline fish effluent with OM savings in denitrification.

  6. Synthesis of SiC from rice husk in a plasma reactor

    Indian Academy of Sciences (India)

    Abstract. A new route for production of SiC from rice husk is reported by employing thermal plasma technique. The formation of -SiC is observed in a short time of 5 min. The samples are characterized by XRD and SEM.

  7. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  8. Temperature increases from 55 to 75 C in a two-phase biogas reactor result in fundamental alterations within the bacterial and archaeal community structure

    Energy Technology Data Exchange (ETDEWEB)

    Rademacher, Antje [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), Potsdam (Germany). Abt. Bioverfahrenstechnik; Technische Univ. Berlin (Germany). Inst. fuer Technischen Umweltschutz; Nolte, Christine; Schoenberg, Mandy; Klocke, Michael [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), Potsdam (Germany). Abt. Bioverfahrenstechnik

    2012-10-15

    Agricultural biogas plants were operated in most cases below their optimal performance. An increase in the fermentation temperature and a spatial separation of hydrolysis/acetogenesis and methanogenesis are known strategies in improving and stabilizing biogas production. In this study, the dynamic variability of the bacterial and archaeal community was monitored within a two-phase leach bed biogas reactor supplied with rye silage and straw during a stepwise temperature increase from 55 to 75 C within the leach bed reactor (LBR), using TRFLP analyses. To identify the terminal restriction fragments that were obtained, bacterial and archaeal 16S rRNA gene libraries were constructed. Above 65 C, the bacterial community structure changed from being Clostridiales-dominated toward being dominated by members of the Bacteroidales, Clostridiales, and Thermotogales orders. Simultaneously, several changes occurred, including a decrease in the total cell count, degradation rate, and biogas yield along with alterations in the intermediate production. A bioaugmentation with compost at 70 C led to slight improvements in the reactor performance; these did not persist at 75 C. However, the archaeal community within the downstream anaerobic filter reactor (AF), operated constantly at 55 C, altered by the temperature increase in the LBR. At an LBR temperature of 55 C, members of the Methanobacteriales order were prevalent in the AF, whereas at higher LBR temperatures Methanosarcinales prevailed. Altogether, the best performance of this two-phase reactor was achieved at an LBR temperature of below 65 C, which indicates that this temperature range has a favorable effect on the microbial community responsible for the production of biogas. (orig.)

  9. Optimization of C/N and current density in a heterotrophic/biofilm-electrode autotrophic denitrification reactor (HAD-BER).

    Science.gov (United States)

    Tong, Shuang; Chen, Nan; Wang, Heng; Liu, Hengyuan; Tao, Chen; Feng, Chuanping; Zhang, Baogang; Hao, Chunbo; Pu, Jiaoyang; Zhao, Jiamin

    2014-11-01

    In this study, central composite design (CCD) and response surface methodology (RSM) were applied to optimize the C/N and current density in a heterotrophic/biofilm-electrode autotrophic denitrification reactor (HAD-BER). Results showed that nitrate could be effectively reduced over a wide range of C/Ns (0.84-1.3535) and current densities (96.8-370.0 mA/m(2)); however, an optimum C/N of 1.13 and optimum current density of 239.6 mA/m(2) were obtained by RSM. Moreover, the HAD-BER performance under the optimum conditions resulted in almost 100% nitrate-N removal efficiency and low nitrite-N and ammonia-N accumulation. Furthermore, under the optimum conditions, H2 generated from water electrolysis matched the CO2 produced by heterotrophic denitrification by stoichiometric calculation. Therefore, CCD and RSM could be used to acquire optimum operational conditions and improve the nitrate removal efficiency and energy consumption in the HAD-BER. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Immobilization of {sup 14}C from reactor graphite waste by use of combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bosc Rouessac, Florence; Marin-Ayral, Rose-Marie; Haidoux, Abel; Massoni, Nicolas [Institut Charles Gerhardt UMR 5253 UM II /CNRS / ENSCM- cc1504, Place Eugene Bataillon 34095 Montpellier Cedex 5 (France); Bart, Florence [CEA Marcoule, Nuclear Energy Division, DTCD/ SECM/LM2C, BP 17171 30200 Bagnols-sur-Ceze Cedex (France)

    2008-07-01

    Full text of publication follows: Among radio elements potentially present in future nuclear systems, exits long-lived radionuclide {sup 14}C. Thanks to their very interesting physico-chemical properties and more precisely their corrosion resistance, carbides (Ti,Si,C) are potential candidates for the preparation of ceramic matrices for immobilization of {sup 14}C. Several methods of synthesizing silicon carbide exist but this study deals with the utilization of combustion synthesis or SHS (Self propagating High temperature synthesis). Indeed, its rapidity and its low cost make this technique an excellent tool in conditioning {sup 14}C. The synthesis of SiC from elements by the SHS process can not be realized under normal conditions due to a low adiabatic combustion temperature of SiC system. It is calculated as 1600-1700 K which considerably lacks the empirically established minimum of 1800 K for SHS reaction. Hence, an additional energy source needs to be introduced into the system. In this work, our aim is to find experimental conditions to allow and to control ignition and propagation of the combustion wave along the sample. The reaction between silicon, titanium and graphite is optimized using two different ignition systems, with several nature and size of the carbon powders. Materials are characterized by X-ray diffraction and scanning electron microscopy. (authors)

  11. Effect of specific gas loading rate on thermophilic (55 degrees C) acidifying (pH 6) and sulfate reducing granular sludge reactors.

    Science.gov (United States)

    Lens, P N L; Klijn, R; van Lier, J B; Lettinga, G

    2003-03-01

    The effect of the specific gas loading rate on the acidifying, sulfate reducing and sulfur removal capacity of thermophilic (55 degrees C; pH 6.0) granular sludge bed reactors treating partly acidified wastewater was investigated. A comparison was made between a regular UASB reactor and a UASB reactor continuously sparged with N(2) at a specific gas loading rate of 30 m(3)m(-2)d(-1). Both UASB reactors (upflow velocity 1.0 mh(-1), hydraulic retention time about 5h) were fed a synthetic wastewater containing starch, sucrose, lactate, propionate and acetate and a low sulfate concentration (COD/SO(4)(2-) ratio of 10) at volumetric organic loading rates (OLR) ranging from 4.0 to 49.8 gCODl(-1) reactord(-1). Immediately after imposing an OLR of 25 gCODl(-1) reactord(-1), the acidification and sulfate reduction efficiency dropped to 80% and 30%, respectively, in the UASB reactor. Both efficiencies recovered slowly to 100% during the course of the experiment. In the N(2) sparged reactor, both the acidification and sulfate reduction efficiency remained 100% following the OLR increase to 25 gCODl(-1) reactord(-1). However, the sulfate reduction efficiency gradually decreased to about 20% at the end of the experiment. The biogas (CO(2) and CH(4)) production rate in the UASB was very low, i.e. UASB reactor effluent was always below 25 mgl(-1), but incomplete sulfate reduction kept the maximal H(2)S stripping efficiency below 70%.

  12. Microbial succession within an anaerobic sequencing batch biofilm reactor (ASBBR treating cane vinasse at 55ºC

    Directory of Open Access Journals (Sweden)

    Maria Magdalena Ferreira Ribas

    2009-08-01

    Full Text Available The aim of this work was to investigate the anaerobic biomass formation capable of treating vinasse from the production of sugar cane alcohol, which was evolved within an anaerobic sequencing batch biofilm reactor (ASBBR as immobilized biomass on cubes of polyurethane foam at the temperature of 55ºC. The reactor was inoculated with mesophilic granular sludge originally treating poultry slaughterhouse wastewater. The evolution of the biofilm in the polyurethane foam matrices was assessed during seven experimental phases which were thus characterized by the changes in the organic matter concentrations as COD (1.0 to 20.0 g/L. Biomass characterization proceeded with the examination of sludge samples under optical and scanning electron microscopy. The reactor showed high microbial morphological diversity along the trial. The predominance of Methanosaeta-like cells was observed up to the organic load of 2.5 gCOD/L.d. On the other hand, Methanosarcinalike microorganisms were the predominant archaeal population within the foam matrices at high organic loading ratios above 3.3 gCOD/L.d. This was suggested to be associated to a higher specific rate of acetate consumption by the later organisms.Este trabalho investigou a formação de um biofilme anaeróbio capaz de tratar vinhaça da produção de álcool de cana-de-açúcar, que evoluiu dentro de um reator operado em bateladas seqüenciais com biofilme (ASBBR tendo a biomassa imobilizada em cubos de espuma de poliuretano na temperatura de 55ºC. O reator foi inoculado com lodo granular mesofílico tratando água residuária de abatedouro de aves. A evolução do biofilme nas matrizes de espuma de poliuretano foi observada durante sete fases experimentais que foram caracterizadas por mudanças nas concentrações de matéria orgânica como DQO (1,0 a 20,0 g/L. A caracterização da biomassa foi feita por exames de amostras do lodo em microscopia ótica e eletrônica de varredura. O reator apresentou

  13. Nanocrystalline SiC and Ti3SiC2 Alloys for Reactor Materials: Diffusion of Fission Product Surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jiang, Weilin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-11-01

    MAX phases, such as titanium silicon carbide (Ti3SiC2), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti3SiC2 has been suggested in the literature as a possible fuel cladding material. Prior to the application, it is necessary to investigate diffusivities of fission products in the ternary compound at elevated temperatures. This study attempts to obtain relevant data and make an initial assessment for Ti3SiC2. Ion implantation was used to introduce fission product surrogates (Ag and Cs) and a noble metal (Au) in Ti3SiC2, SiC, and a dual-phase nanocomposite of Ti3SiC2/SiC synthesized at PNNL. Thermal annealing and in-situ Rutherford backscattering spectrometry (RBS) were employed to study the diffusivity of the various implanted species in the materials. In-situ RBS study of Ti3SiC2 implanted with Au ions at various temperatures was also performed. The experimental results indicate that the implanted Ag in SiC is immobile up to the highest temperature (1273 K) applied in this study; in contrast, significant out-diffusion of both Ag and Au in MAX phase Ti3SiC2 occurs during ion implantation at 873 K. Cs in Ti3SiC2 is found to diffuse during post-irradiation annealing at 973 K, and noticeable Cs release from the sample is observed. This study may suggest caution in using Ti3SiC2 as a fuel cladding material for advanced nuclear reactors operating at very high temperatures. Further studies of the related materials are recommended.

  14. Development of reactor graphite

    Science.gov (United States)

    Haag, G.; Mindermann, D.; Wilhelmi, G.; Persicke, H.; Ulsamer, W.

    1990-04-01

    The German graphite development programme for High Temperature Reactors has been based on the assumption that reactor graphite for core components with lifetime fluences of up to 4 × 10 22 neutrons per cm 2 (EDN) at 400°C can be manufactured from regular pitch coke. The use of secondary coke and vibrational moulding techniques have allowed production of materials with very small anisotropy, high strength, and high purity which are the most important properties of reactor graphite. A variety of graphite grades has been tested in fast neutron irradiation experiments. The results show that suitable graphites for modern High Temperature Reactors with spherical fuel elements are available.

  15. High density LHRF experiments in Alcator C-Mod and implications for reactor scale devices

    Science.gov (United States)

    Baek, S. G.; Parker, R. R.; Bonoli, P. T.; Shiraiwa, S.; Wallace, G. M.; LaBombard, B.; Faust, I. C.; Porkolab, M.; Whyte, D. G.

    2015-04-01

    Parametric decay instabilities (PDI) appear to be an ubiquitous feature of lower hybrid current drive (LHCD) experiments at high density. In density ramp experiments in Alcator C-Mod and other machines the onset of PDI activity has been well correlated with a decrease in current drive efficiency and production of fast electron bremsstrahlung. However whether PDI is the primary cause of the ‘density limit’, and if so by exactly what mechanism (beyond the obvious one of pump depletion) has not been clearly established. In order to further understand the connection, the frequency spectrum of PDI activity occurring during Alcator C-Mod LHCD experiments has been explored in detail by means of a number of RF probes distributed around the periphery of the C-Mod tokamak including a probe imbedded in the inner wall. The results show that (i) the excited spectra consists mainly of a few discrete ion cyclotron (IC) quasi-modes, which have higher growth than the ion sound branch; (ii) PDI activity can begin either at the inner or outer wall, depending on magnetic configuration; (iii) the frequencies of the IC quasi-modes correspond to the magnetic field strength close to the low-field side (LFS) or high-field side separatrix; and (iv) although PDI activity may initiate near the inner separatrix, the loss in fast electron bremsstrahlung is best correlated with the appearance of IC quasi-modes characteristic of the magnetic field strength near the LFS separatrix. These data, supported by growth rate calculations, point to the importance of the LFS scrape-off layer (SOL) density in determining PDI onset and degradation in current drive efficiency. By minimizing the SOL density it is possible to extend the core density regime over which PDI can be avoided, thus potentially maximizing the effectiveness of LHCD at high density. Increased current drive efficiency at high density has been achieved in FTU and EAST through lithium coating and special fuelling methods, and in recent

  16. Nanostructure evolution under irradiation of Fe(C)MnNi model alloys for reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Chiapetto, M., E-mail: mchiapet@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Becquart, C.S. [Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Laboratoire commun EDF-CNRS Etude et Modélisation des Microstructures pour le Vieillissement des Matériaux (EM2VM) (France); Domain, C. [EDF R& D, Département Matériaux et Mécanique des Composants, Les Renardières, F-77250 Moret sur Loing (France); Laboratoire commun EDF-CNRS Etude et Modélisation des Microstructures pour le Vieillissement des Matériaux (EM2VM) (France); Malerba, L. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium)

    2015-06-01

    Radiation-induced embrittlement of bainitic steels is one of the most important lifetime limiting factors of existing nuclear light water reactor pressure vessels. The primary mechanism of embrittlement is the obstruction of dislocation motion produced by nanometric defect structures that develop in the bulk of the material due to irradiation. The development of models that describe, based on physical mechanisms, the nanostructural changes in these types of materials due to neutron irradiation are expected to help to better understand which features are mainly responsible for embrittlement. The chemical elements that are thought to influence most the response under irradiation of low-Cu RPV steels, especially at high fluence, are Ni and Mn, hence there is an interest in modelling the nanostructure evolution in irradiated FeMnNi alloys. As a first step in this direction, we developed sets of parameters for object kinetic Monte Carlo (OKMC) simulations that allow this to be done, under simplifying assumptions, using a “grey alloy” approach that extends the already existing OKMC model for neutron irradiated Fe–C binary alloys [1]. Our model proved to be able to describe the trend in the buildup of irradiation defect populations at the operational temperature of LWR (∼300 °C), in terms of both density and size distribution of the defect cluster populations, in FeMnNi model alloys as compared to Fe–C. In particular, the reduction of the mobility of point-defect clusters as a consequence of the presence of solutes proves to be key to explain the experimentally observed disappearance of detectable point-defect clusters with increasing solute content.

  17. Update on ORNL TRANSFORM Tool: Simulating Multi-Module Advanced Reactor with End-to-End I&C

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Richard Edward [ORNL; Fugate, David L [ORNL; Cetiner, Sacit M [ORNL; Qualls, A L [ORNL

    2015-05-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the fourth year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled reactor) concepts, including the use of multiple coupled reactors at a single site. The focus of this report is the development of a steam generator and drum system model that includes the complex dynamics of typical steam drum systems, the development of instrumentation and controls for the steam generator with drum system model, and the development of multi-reactor module models that reflect the full power reactor innovative small module design concept. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor models; ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface technical area; and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the TRANSFORM tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the Advanced Reactors Technology program; (2) developing a library of baseline component modules that can be assembled into full plant models using available geometry, design, and thermal-hydraulic data; (3) defining modeling conventions for interconnecting component models; and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  18. Photocatalytic Membrane Reactor for the Removal of C.I. Disperse Red 73

    Science.gov (United States)

    Buscio, Valentina; Brosillon, Stephan; Mendret, Julie; Crespi, Martí; Gutiérrez-Bouzán, Carmen

    2015-01-01

    After the dyeing process, part of the dyes used to color textile materials are not fixed into the substrate and are discharged into wastewater as residual dyes. In this study, a heterogeneous photocatalytic process combined with microfiltration has been investigated for the removal of C.I. Disperse Red 73 from synthetic textile effluents. The titanium dioxide (TiO2) Aeroxide P25 was selected as photocatalyst. The photocatalytic treatment achieved between 60% and 90% of dye degradation and up to 98% chemical oxygen demand (COD) removal. The influence of different parameters on photocatalytic degradation was studied: pH, initial photocatalyst loading, and dye concentration. The best conditions for dye degradation were pH 4, an initial dye concentration of 50 mg·L−1, and a TiO2 loading of 2 g·L−1. The photocatalytic membrane treatment provided a high quality permeate, which can be reused.

  19. Photocatalytic Membrane Reactor for the Removal of C.I. Disperse Red 73

    Directory of Open Access Journals (Sweden)

    Valentina Buscio

    2015-06-01

    Full Text Available After the dyeing process, part of the dyes used to color textile materials are not fixed into the substrate and are discharged into wastewater as residual dyes. In this study, a heterogeneous photocatalytic process combined with microfiltration has been investigated for the removal of C.I. Disperse Red 73 from synthetic textile effluents. The titanium dioxide (TiO2 Aeroxide P25 was selected as photocatalyst. The photocatalytic treatment achieved between 60% and 90% of dye degradation and up to 98% chemical oxygen demand (COD removal. The influence of different parameters on photocatalytic degradation was studied: pH, initial photocatalyst loading, and dye concentration. The best conditions for dye degradation were pH 4, an initial dye concentration of 50 mg·L−1, and a TiO2 loading of 2 g·L−1. The photocatalytic membrane treatment provided a high quality permeate, which can be reused.

  20. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  1. A KINETIC MODEL FOR H2O2/UV PROCESS IN A COMPLETELY MIXED BATCH REACTOR. (R825370C076)

    Science.gov (United States)

    A dynamic kinetic model for the advanced oxidation process (AOP) using hydrogen peroxide and ultraviolet irradiation (H2O2/UV) in a completely mixed batch reactor (CMBR) is developed. The model includes the known elementary chemical and photochemical reac...

  2. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  3. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  4. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750–800°C Reactor Outlet Temperature

    Energy Technology Data Exchange (ETDEWEB)

    John Collins

    2009-08-01

    This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750–800°C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

  5. Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Frederick H. [Argonne National Laboratory; Jacobson, Norman H.

    1968-09-01

    This booklet discusses research reactors - reactors designed to provide a source of neutrons and/or gamma radiation for research, or to aid in the investigation of the effects of radiation on any type of material.

  6. CONVECTION REACTOR

    Science.gov (United States)

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  7. Selection of support structure materials for irradiation experiments in the HFIR (High Flux Isotope Reactor) at temperatures up to 500 degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, K.; Longest, A.W.

    1990-01-01

    The key factor in the design of capsules for irradiation of test specimens in the High Flux Isotope Reactor at preselected temperatures up to 500{degree}C utilizing nuclear heating is a narrow gas-filled gap which surrounds the specimens and controls the transfer of heat from the specimens through the wall of a containment tube to the reactor cooling water. Maintenance of this gap to close tolerances is dependent on the characteristics of the materials used to support the specimens and isolate them from the water. These support structure materials must have low nuclear heating rates, high thermal conductivities, and good dimensional stabilities under irradiation. These conditions are satisfied by certain aluminum alloys. One of these alloys, a powder metallurgy product containing a fine dispersion of aluminum oxide, is no longer manufactured. A new alloys of this type, with the trade name DISPAL, is determined to be a suitable substitute. 23 refs., 13 figs., 3 tabs.

  8. Analysis of gamma ray intensity on the S/C vent pipes area in the unit 2 reactor building of the Fukushima Daiichi Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Choi, Young Soo; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The robot is equipped with cameras, a dosimeter, and 2 DOF (degree of freedom) manipulation arms. It loads a small vehicle equipped with a camera that can access and inspect narrow areas. TEPCO is using the four-legged walking robot to inspect the suppression chamber (S/C) area of the unit 2 reactor building basement in the Fukushima Daiichi Nuclear Power Plant. The robot carried out 6 missions for about four months, from 11 December, 2012 to 15 March, 2013, where it examined an evidence of a leakage of radioactivity contaminated water in the S/C area of unit 2 reactor building. When a camera's signal processing unit, which is consist of ASIC and FPGA devices manufactured by a CMOS fabrication process, is exposed to a higher dose rate gamma ray, the speckle distribution in the camera image increase more. From the inspection videos, released by TEPCO, of the underground 8 vent pipes in the unit 2 reactor building, we analyzed the speckle distribution from the high dose-rate gamma rays. Based on the distribution of the speckle, we attempted to characterize the vent pipe with much radioactivity contaminated materials among the eight vent pipes connected to the PCV. The numbers of speckles viewed in the image of a CCD (or CMOS) camera are related to an intensity of the gamma ray energy emitted by a nuclear fission reaction from radioactivity materials. The numbers of speckles generated by gamma ray irradiation in the camera image are calculated by an image processing technique. Therefore, calculating the speckles counts, we can determine the vent pipe with relatively most radioactivity-contaminated materials among the other vent pipes. From the comparison of speckles counts calculated in the inspection image of the vent pipe with the speckles counts extracted by gamma ray irradiation experiment of the same small vehicle camera model loaded with the four-legged walking robot, we can qualitatively estimate the gamma ray dose-rate in the S/C vent pipe area of the

  9. Job/task analysis for I C (Instrumentation and Controls) instrument technicians at the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Duke, L.L.

    1989-09-01

    To comply with Department of Energy Order 5480.XX (Draft), a job/task analysis was initiated by the Maintenance Management Department at Oak Ridge National Laboratory (ORNL). The analysis was applicable to instrument technicians working at the ORNL High Flux Isotope Reactor (HFIR). This document presents the procedures and results of that analysis. 2 refs., 2 figs.

  10. Methanogenesis in Thermophilic Biogas Reactors

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1995-01-01

    Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process...... as indicated by a lower concentration of volatile fatty acids in the effluent from the reactors. The specific methanogenic activity in a thermophilic pilot-plant biogas reactor fed with a mixture of cow and pig manure reflected the stability of the reactor. The numbers of methanogens counted by the most...... against Methanothrix soehngenii or Methanothrix CALS-I in any of the thermophilic biogas reactors examined. Studies using 2-14C-labeled acetate showed that at high concentrations (more than approx. 1 mM) acetate was metabolized via the aceticlastic pathway, transforming the methyl-group of acetate...

  11. REACTOR COOLING

    Science.gov (United States)

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  12. Evaluación del comportamiento hidráulico en un reactor anaerobio de doble cámara (RADCA

    Directory of Open Access Journals (Sweden)

    Nancy Rincón

    2011-01-01

    tales como cortos circuitos, zonas muertas y recirculación interna afectan su desempeño. En esta investigación se evaluó el comportamiento hidráulico de un reactor anaerobio de doble cámara (RADCA de 534,5 L (cámara 1=305 L y cámara 2= 229,5 L como innovación tecnológica de los reactores UASB. El RADCA fue alimentado con agua residual municipal (ARM de la ciudad de Maracaibo, Venezuela; cada una de las cámaras fueron inoculadas con lodo granular (20% v/v proveniente de una cervecería local. La evaluación hidráulica se realizó en la fase líquida y en operación utilizando Li+ (LiCl como trazador aplicado de forma instantánea en el afluente a tiempo de retención hidráulico teórico (TRHt de 6 horas; 3,4 h en la cámara 1 y 2,6 para la cámara 2. El RADCA describió un flujo pistón en ambas cámaras y una eficiencia hidráulica cercana a la unidad (1 indicando una presencia casi nula de zonas muertas. La eficiencia de remoción de la DQO total (DQOT del RADCA se mantuvo en el rango de 59,77% a 74,64% con un promedio de 68,26%. Para las cámaras 1 y 2 la eficiencia promedio fue 60,4 y 20,94% con una producción de biogás (L/h de 2,768 y 0,541 respectivamente.

  13. Reactor for exothermic reactions

    Science.gov (United States)

    Smith, Jr., Lawrence A.; Hearn, Dennis; Jones, Jr., Edward M.

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  14. IRRADIATION CREEP AND SWELLING OF RUSSIAN FERRITIC-MARTENSITIC STEELS IRRADIATED TO VERY HIGH EXPOSURES IN THE BN-350 FAST REACTOR AT 305-335 DEGREES C

    Energy Technology Data Exchange (ETDEWEB)

    Konobeev, Yu V.; Dvoraishin, A. M.; Porollo, S. I.; Shulepin, S. V.; Budylkin, N. I.; Mironova, E. G.; Garner, Francis A.; Toloczko, Mychailo B.

    2003-09-03

    Russian ferritic martensitic (F(slash)M) steels EP(dash)450, EP(dash)852 and EP(dash)823 were irradiated in the BN(dash)350 fast reactor in the form of gas-pressurized creep tubes. The first steel is used in Russia for hexagonal wrappers in fast reactors. The other steels were developed for compatibility with Pb(dash)Bi coolants and serve to enhance our understanding of the general behavior of this class of steels. In an earlier paper we published data on irradiation creep of EP(dash)450 and EP(dash) 823 at temperatures between 390 and 520 degrees C, with dpa levels ranging from 20 to 60 dpa. In the current paper new data on the irradiation creep and swelling of EP(dash)450 and EP(dash)852 at temperatures between 305 and 335 degrees C and doses ranging from 61 to 89 dpa are presented. Where comparisons are possible, it appears that these steels exhibit behavior that is very consistent with that of Western steels. Swelling is relatively low at high neutron exposure and confined to temperatures less then 420 degrees C, but may be camouflaged somewhat by precipitation related densification. These irradiation creep studies confirm that the creep compliance of F(slash)M steels is about one half that of austenitic steels.

  15. Multifunctional reactors

    NARCIS (Netherlands)

    Westerterp, K.R.

    1992-01-01

    Multifunctional reactors are single pieces of equipment in which, besides the reaction, other functions are carried out simultaneously. The other functions can be a heat, mass or momentum transfer operation and even another reaction. Multifunctional reactors are not new, but they have received much

  16. Morphological study of SiC coating developed on 2D carbon composites using MTS precursor in a hot-wall vertical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Venugopalan, Ramani; Prakash, Jyoti; Dakshinamoorthy, Sathiyamoorthy [Bhabha Atomic Research Centre, Mumbai (India). Powder Metallurgy Div.; Nuwad, Jitendra; Sivan Pillai, Chirakarumpil Gopalan; Tyagi, Avesh Kumar [Bhabha Atomic Research Centre, Mumbai (India). Chemistry Div.

    2012-10-15

    Silicon carbide coating was developed using chemical vapor deposition on carbon substrate as a protective coating. The present studies were carried out with methyl trichlorosilane as the SiC precursor, at 1673K along with hydrogen and argon as carrier gas using a high-temperature vertical graphite reactor. The SiC coatings were characterized by means of X-ray diffraction for phase identification. Scanning electron microscopy analysis with energy dispersive X-ray spectrometer was also carried out for microstructure and elemental analysis. From the morphological study of different SiC deposits obtained at varying operating parameters it was observed that methyl trichlorosilane feed rate and hydrogen flow rate play a major role in deciding the nature of deposits and the argon percentage in the mixed gas also plays a vital role. (orig.)

  17. Bioaugmentation of strain Methylobacterium sp. C1 towards p-nitrophenol removal with broad spectrum coaggregating bacteria in sequencing batch biofilm reactors.

    Science.gov (United States)

    Yue, Wenlong; Chen, Mei; Cheng, Zhongqin; Xie, Liqun; Li, Mengying

    2018-02-15

    This work was conducted in order to evaluate an instance of bioaugmentation, namely, the addition of a novel p-nitrophenol (PNP)-degrading bacterium Methylobacterium sp. C1 coaggregated with two other broad-spectrum coaggregating strains (Bacillus megaterium T1 and Bacillus cereus G5) within sequence batch biofilm reactors (SBBRs). Results showed that biofilms consisting of C1 and coaggregating bacteria were resistant to shock loads and were more efficient at PNP removal. High-throughput sequencing data revealed that biofilms formed in the presence of the coaggregating bacteria demonstrated greater microbial diversity. These results suggest that broad-spectrum coaggregating bacteria may be capable of mediating the immobilization of exogenous degrading bacteria into biofilms, rendering them more resistant to toxic compounds and environmental stresses. This represents the first attempt to assess the bioaugmentation of PNP-contaminated wastewater treatment through the utilization of broad-spectrum coaggregating bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  19. NUCLEAR REACTOR

    Science.gov (United States)

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  20. Greater-than-Class C low-level radioactive waste characterization. Appendix A-3: Basis for greater-than-Class C low-level radioactive waste light water reactor projections

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, A.; Tuite, P.; Tuite, K.; Woodberry, S.

    1994-09-01

    This study characterizes low-level radioactive waste types that may exceed Class C limits at light water reactors, estimates the amounts of waste generated, and estimates radionuclide content and distribution within the waste. Waste types that may exceed Class C limits include metal components that become activated during operations, process wastes such as cartridge filters and decontamination resins, and activated metals from decommissioning activities. Operating parameters and current management practices at operating plants are reviewed and used to estimate the amounts of low-level waste exceeding Class C limits that is generated per fuel cycle, including amounts of routinely generated activated metal components and process waste. Radionuclide content is calculated for specific activated metals components. Empirical data from actual low-level radioactive waste are used to estimate radionuclide content for process wastes. Volumes and activities are also estimated for decommissioning activated metals that exceed Class C limits. To estimate activation levels of decommissioning waste, six typical light water reactors are modeled and analyzed. This study does not consider concentration averaging.

  1. Photocatalytic degradation of aniline using an autonomous rotating drum reactor with both solar and UV-C artificial radiation.

    Science.gov (United States)

    Durán, A; Monteagudo, J M; San Martín, I; Merino, S

    2018-03-15

    The aim of this work was to evaluate the performance of a novel self-autonomous reactor technology (capable of working with solar irradiation and artificial UV light) for water treatment using aniline as model compound. This new reactor design overcomes the problems of the external mass transfer effect and the accessibility to photons occurring in traditional reaction systems. The UV-light source is located inside the rotating quartz drums (where TiO 2 is immobilized), allowing light to easily reach the water and the TiO 2 surface. Several processes (UV, H 2 O 2 , Solar, TiO 2 , Solar/TiO 2 , Solar/TiO 2 /H 2 O 2 and UV/Solar/H 2 O 2 /TiO 2 ) were tested. The synergy between Solar/H 2 O 2 and Solar/TiO 2 processes was quantified to be 40.3% using the pseudo-first-order degradation rate. The apparent photonic efficiency, ζ, was also determined for evaluating light utilization. For the Solar/TiO 2 /H 2 O 2 process, the efficiency was found to be practically constant (0.638-0.681%) when the film thickness is in the range of 1.67-3.87 μm. However, the efficiency increases up to 2.67% when artificial UV light was used in combination, confirming the efficient design of this installation. Thus, if needed, lamps can be switched on during cloudy days to improve the degradation rate of aniline and its mineralization. Under the optimal conditions selected for the Solar/TiO 2 /H 2 O 2 process ([H 2 O 2 ] = 250 mg/L; pH = 4, [TiO 2 ] = 0.65-1.25 mg/cm 2 ), 89.6% of aniline is degraded in 120 min. If the lamps are switched on, aniline is completely degraded in 10 min, reaching 85% of mineralization in 120 min. TiO 2 was re-used during 5 reaction cycles without apparent loss in activity (Solar/TiO 2 /H 2 O 2 process was found to have lower operation costs than other systems described in literature (0.67 €/m 3 ). Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Operating limits Hanford Production Reactors. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Owsley, G.F. [comp.

    1963-05-20

    This report is applicable to the eight operating production reactors, B, C, D, DR, F, H, KE, and KW. It covers the following: operating parameter limitations; reactivity limitations; control and safety systems; reactor fuel loading; coolant requirements with irradiated fuel in reactor; reactor confinement; test facilities; code compliance; safety instrumentation and set points; and control criteria. Also discussed are administrative procedures for process control, training, audits and inspection, and reports and records.

  3. Nitrogen removal from slaughterhouse wastewater through partial nitrification followed by denitrification in intermittently aerated sequencing batch reactors at 11 degreeC.

    Science.gov (United States)

    Pan, Min; Henry, Liam Garry; Liu, Rui; Huang, Xiaoming

    2014-01-01

    This study is aimed to examine the removal of nitrogen from high strength slaughterhouse wastewater at 11 degreeC via partial nitrification followed by denitrification (PND), using the intermittently aerated sequencing batch reactor (IASBR) technology. The slaughterhouse wastewater contained chemical oxygen demand (COD) of 6068 mg/L, total nitrogen (TN) of 571 mg/L, total phosphorus (TP) of 51 mg/L and suspended solids of 1.8 g/L, on average. The laboratory-scale IASBR reactors had a working volume of 8 L and was operated at an average organic loading rate of 0.61 g COD/(L-d). At the cycle duration of 12 h, COD was efficiently removed under three aeration rates of 0.4, 0.6 and 0.8 L air/min. Among the three aeration rates, the optimum aeration rate was 0.6 L air/min with removals of COD, TN, and TP of 98%, 98%, and 96%, respectively. The treated wastewater met the Irish emission standards. The microbial community analysis by fluorescence in situ hybridization shows 12 +/- 0.4% of ammonium oxidizing bacteria, and 7.2 - 0.4% of nitrite oxidizing bacteria in the general bacteria (EUB) in the activated sludge at the aeration rate of 0.6 L air/min, leading to efficient partial nitrification. PND effectively removed nitrogen from slaughterhouse wastewater at 11degreeC, but PND efficiency was dependent on the aeration rate applied. PND efficiencies were up to 75.8%, 70.1% and only 25.4% at the aeration rates of 0.4, 0.6, and 0.8 L air/min.

  4. Reactor Neutrinos

    CERN Document Server

    Lasserre, T; Lasserre, Thierry; Sobel, Henry W.

    2005-01-01

    We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino spectrum, and are still searching for important phenomena such as the neutrino magnetic moment. They could open the door to the measurement of coherent neutrino scattering in a near future. Middle and long baseline oscillation experiments at Chooz and KamLAND have played a relevant role in neutrino oscillation physics in the last years. It is now widely accepted that a new middle baseline disappearance reactor neutrino experiment with multiple detectors could provide a clean measurement of the last undetermined neutrino mixing angle theta13. We conclude by opening on possible use of neutrinos for Society: NonProliferation of Nuclear materials and Geophysics.

  5. NEUTRONIC REACTORS

    Science.gov (United States)

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  6. Impact of radiolysis and radiolytic corrosion on the release of {sup 13}C and {sup 37}Cl implanted into nuclear graphite: Consequences for the behaviour of {sup 14}C and {sup 36}Cl in gas cooled graphite moderated reactors

    Energy Technology Data Exchange (ETDEWEB)

    Moncoffre, N., E-mail: nathalie.moncoffre@ipnl.in2p3.fr [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Toulhoat, N. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); CEA/DEN, Centre de Saclay (France); Bérerd, N.; Pipon, Y. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Université de Lyon, Université Lyon, IUT Lyon-1 département chimie (France); Silbermann, G. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); EDF – DPI - DIN – CIDEN, DIE - Division Environnement, Lyon (France); Blondel, A. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Andra, Châtenay-Malabry (France); Galy, N. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); EDF – DPI - DIN – CIDEN, DIE - Division Environnement, Lyon (France); and others

    2016-04-15

    Graphite finds widespread use in many areas of nuclear technology based on its excellent moderator and reflector qualities as well as its strength and high temperature stability. Thus, it has been used as moderator or reflector in CO{sub 2} cooled nuclear reactors such as UNGG, MAGNOX, and AGR. However, neutron irradiation of graphite results in the production of {sup 14}C (dose determining radionuclide) and {sup 36}Cl (long lived radionuclide), these radionuclides being a key issue regarding the management of the irradiated waste. Whatever the management option (purification, storage, and geological disposal), a previous assessment of the radioactive inventory and the radionuclide's location and speciation has to be made. During reactor operation, the effects of radiolysis are likely to promote the radionuclide release especially at the gas/graphite interface. Radiolysis of the coolant is mainly initiated through γ irradiation as well as through Compton electrons in the graphite pores. Radiolysis can be simulated in laboratory using γ irradiation or ion irradiation. In this paper, {sup 13}C, {sup 37}Cl and {sup 14}N are implanted into virgin nuclear graphite in order to simulate respectively the presence of {sup 14}C, {sup 36}Cl and nitrogen, a {sup 14}C precursor. Different irradiation experiments were carried out using different irradiation devices on implanted graphite brought into contact with a gas simulating the coolant. The aim was to assess the effects of gas radiolysis and radiolytic corrosion induced by γ or He{sup 2+} irradiation at the gas/graphite interface in order to evaluate their role on the radionuclide release. Our results allow inferring that radiolytic corrosion has clearly promoted the release of {sup 14}C, {sup 36}Cl and {sup 14}N located at the graphite brick/gas interfaces and open pores.

  7. High-effective denitrification of low C/N wastewater by combined constructed wetland and biofilm-electrode reactor (CW-BER).

    Science.gov (United States)

    He, Yuan; Wang, Yuhui; Song, Xinshan

    2016-03-01

    The low denitrification effect on constructed wetlands (CWs) treating low carbon to nitrogen ratio (C/N) wastewater was a problem. In this study, a novel coupled system by installing CW and biofilm-electrode reactor (CW-BER) was developed. In this system, the heterotrophic and autotrophic denitrifying bacteria all played their roles in denitrification process. The system was investigated systematically with simulated wastewater at different C/Ns, electric current intensities (I), hydraulic retention times (HRTs), and pH. Results showed that the optimum running conditions were C/N=0.75-1, I=15 mA, HRT=12 h, and pH=7.5. The highest removal efficiency of NO3-N and TN at the best conditions was respectively 63.03% and 98.11% for CW-BER. Also, the TN and NO3-N enhancive removal efficiency of CW-BER was 23.26% and 24.20%, respectively. No residual organic carbon source was detected in final effluent at the best parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Special Analysis: Atmospheric Dose Resulting from the Release of C14 from Reactor Moderator Deionizers in a Disposal Environment

    Energy Technology Data Exchange (ETDEWEB)

    Hiergesell, Robert A.; Swingle, Robert F.

    2005-08-18

    The proposed action of disposing of 52 moderator deionizer vessels within the ILV was evaluated in this SA. In particular, a detailed analysis of the release of {sup 14}C via the atmospheric pathway was conducted for these vessels since the major concern has been the nearly 20 Ci of {sup 14}C that is associated with each vessel. The more rigorous evaluation of the atmospheric pathway for {sup 14}C included incorporation of new information about the chemical availability of {sup 14}C when disposed in a grout/cement encapsulation environment, as will be the case in the ILV. This information was utilized to establish the source term for a 1-D numerical model to simulate the diffusion of {sup 14}CO{sub 2} from the ILV Waste Zone to the land surface. The results indicate a peak surface emanation rate from the entire ILV of 1.42E-08 Ci/yr with an associated dose of only 3.83E-05 mrem/yr to the Maximally Exposed Individual (MEI) at 100m. The fact that the atmospheric pathway exposure for {sup 14}C is controlled by chemical solubility limits for {sup 14}C between the solid waste, pore water and pore vapor within the disposal environment rather than the absolute inventory suggests that the establishment of specific facility limits is inappropriate. With the relaxation of the atmospheric pathway restriction, the groundwater pathway becomes the more restrictive in terms of disposing {sup 14}C or {sup 14}C{sub KB} within the ILV. Since the resin-based {sup 14}C of the 52 moderator deionizer vessels is highly similar to the {sup 14}C{sub KB} waste form, the inventory from the 52 deionizer vessels is compared against the groundwater limits for that waste form. The small groundwater pathway fraction (1.14E-05) calculated for the proposed inventory of the 52 moderator deionizer vessels indicates that the proposed action will have an insignificant impact with respect to possible exposures via the groundwater pathway. This investigation recommends that there be no ILV Atmospheric

  9. Neutronic reactor

    Science.gov (United States)

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  10. Neutronic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, D.F.; Menegus, R.L.; Wende, C.W.

    1983-01-04

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  11. 10 CFR 1.43 - Office of Nuclear Reactor Regulation.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Office of Nuclear Reactor Regulation. 1.43 Section 1.43... Program Offices § 1.43 Office of Nuclear Reactor Regulation. The Office of Nuclear Reactor Regulation— (a... health and safety, the environment, or the safeguarding of nuclear reactor facilities; (c) Assesses and...

  12. [Performance of nitrogen and phosphorus removal from municipal wastewater of different C/N ratios using intelligent controlled systems sequencing batch biofilm reactor ( SBBR)].

    Science.gov (United States)

    Jin, Yun-Xiao; Feng, Chuan-Ping; Ding, Da-Hu; Hao, Chun-Bo; Song, Lin

    2011-03-01

    The laboratory-scale experiments were conducted to treat synthetic municipal wastewater at different C/N ratios, using a developed intelligent controller sequencing batch biofilm reactor (SBBR), which formed alternative aerobic-anoxic environment. The performance of nitrogen and phosphorus removal was investigated under different conditions (T = 25 degrees C +/- 1 degrees C, V(aeration) = 150 L/h, COD = 300 mg/L, TP = 5 mg/L, TN = 30 mg/L, t(operation) = 15 d; TN = 60 mg/L, t(operation) = 20 d; TN = 90 mg/L, t(operation) = 20 d). The average removal efficiency of COD reaches 85.2%, 91.1% and 97.7%, the average removal efficiency of TP achieves 94.1%, 95.9%, 96.7% ,the average removal efficiency of NH4(+) -N reaches 95.8%, 99.2%, 80.0%, and the average removal efficiency of TN are 90.7%, 81.1%, 58.3%, respectively. With the decrease of C/N ratios, the removal efficiency of N decreases significantly, while the removal efficiency of COD and TP increase slightly. In intelligent controlled SBBR, simultaneous nitrification and denitrification and shortened simultaneous nitrification and denitrification occur, meanwhile, the denitrification of the system strengthens with the increasing of C/N ratios. After the influent finished, intelligent controlled SBBR starts to operate in aerobic-anoxic environment. The efficiency of phosphorus removal is high, moreover, the theory of phosphorus removal is different from the conventional theory of release anaerobic and uptake aerobic phosphorus.

  13. Graphene-modified Pd/C cathode and Pd/GAC particles for enhanced electrocatalytic removal of bromate in a continuous three-dimensional electrochemical reactor.

    Science.gov (United States)

    Mao, Ran; Zhao, Xu; Lan, Huachun; Liu, Huijuan; Qu, Jiuhui

    2015-06-15

    Bromate (BrO3(-)) is a carcinogenic and genotoxic contaminant commonly generated during ozonation of bromide-containing water. In this work, the reductive removal of BrO3(-) in a continuous three-dimensional electrochemical reactor with palladium-reduced graphene oxide modified carbon paper (Pd-rGO/C) cathode and Pd-rGO modified granular activated carbon (Pd-rGO/GAC) particles was investigated. The results indicated that the rGO sheets significantly promoted the electrochemical reduction of BrO3(-). With the enhanced electron transfer by rGO sheets, the electroreduction of H2O to atomic H* on the polarized Pd particles could be significantly accelerated, leading to a faster reaction rate of BrO3(-) with atomic H*. The synergistic effect of the Pd-rGO/C cathode and Pd-rGO/GAC particles were also exhibited. The atomic H* involved in various electroreduction processes was detected by electron spin resonance spectroscopy and its role for BrO3(-) reduction was determined. The performance of the reactor was evaluated in terms of the removal of BrO3(-) and the yield of Br(-) as a function of the GO concentration, Pd loading amount, current density, hydraulic residence time (HRT), and initial BrO3(-) concentration. Under the current density of 0.9 mA/cm(2), BrO3(-) with the initial concentration of 20 μg/L was reduced to be less than 6.6 μg/L at the HRT of 20 min. The BrO3(-) reduction was inhibited in the presence of dissolved organic matter. Although the precipitates generated from Ca(2+) and Mg(2+) in the tap water would cover the Pd catalysts, a long-lasting electrocatalytic activity could be maintained for the 30 d treatment. SEM and XPS analysis demonstrated that the precipitates were predominantly deposited onto the Pd-rGO/C cathode rather than the Pd-rGO/GAC particles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Nanocrystalline SiC and Ti3SiC2 Alloys for Reactor Materials: Thermal and Mechanical Properties

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Roosendaal, Timothy J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shin, Yongsoon [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nguyen, Ba Nghiep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Borlaug, Brennan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jiang, Weilin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-04-01

    SiC-polymers (pure polycarbosilane and polycarbosilane filled with SiC-particles) are being combined with Si and TiC powders to create a new class of polymer-derived ceramics for consideration as advanced nuclear materials in a variety of applications. Compared to pure SiC these materials have increased fracture toughness with only slightly reduced thermal conductivity. Future work with carbon nanotube (CNT) mats will be introduced with the potential to increase the thermal conductivity and the fracture toughness. At present, this report documents the fabrication of a new class of monolithic polymer derived ceramics, SiC + SiC/Ti3SiC2 dual phase materials. The fracture toughness of the dual phase material was measured to be significantly greater than Hexoloy SiC using indentation fracture toughness testing. However, thermal conductivity of the dual phase material was reduced compared to Hexoloy SiC, but was still appreciable, with conductivities in the range of 40 to 60 W/(m K). This report includes synthesis details, optical and scanning electron microscopy images, compositional data, fracture toughness, and thermal conductivity data.

  15. Optimization of C/N Ratio and Inducers for Wastewater Paper Industry Treatment Using Trametes versicolor Immobilized in Bubble Column Reactor

    Directory of Open Access Journals (Sweden)

    Aura M. Pedroza-Rodríguez

    2013-01-01

    Full Text Available C/N ratio and MnSO4 and CuSO4 concentrations were optimized for decolorization and chemical oxygen demand (COD removal of bleached Kraft pulp mill effluent by Trametes versicolor immobilized in polyurethane foam. Statistical differences (P<0.0001 at high C/N ratios (169, 2 mM CuSO4, and 0.071 mM MnSO4 were determined. Decolorization of 60.5%, COD removal of 55%, laccase (LAC 60 U/L, and manganese peroxidase (MnP 8.4 U/L were obtained. Maximum of decolorization (82%, COD removal (83%, LAC (443.5 U/L, and MnP (18 U/L activities at C/N ratio of 405 (6.75 mM CuSO4 and 0.22 mM MnSO4 was achieved in step 7 at 4 d. Positive correlation between the decolorization, COD removal, and enzymatic activity was found (P<0.0001. T. versicolor bioremediation capacity was evaluated in bubble column reactor during 8 d. Effluent was adjusted according to optimized parameters and treated at 25°C and air flow of 800 mL/min. Heterotrophic bacteria growth was not inhibited by fungus. After 4 d, 82% of COD reduction and 80% decolorization were recorded. Additionally, enzymatic activity of LAC (345 U/L and MnP (78 U/L was observed. The COD reduction and decolorization correlated positively (P<0.0001 with enzymatic activity. Chlorophenol removal was 98% of pentachlorophenol (PCP, 92% of 2,4,5-trichlorophenol (2,4,5-TCP, 90% of 3,4-dichlorophenol (3,4-DCP, and 99% of 4-chlorophenols (4CP.

  16. Study of the obtainment of Mo{sub 2}C by gas-solid reaction in a fixed and rotary bed reactor; Estudo da obtencao de Mo{sub 2}C por reacao gas-solido em reator de leito fixo e rotativo

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, C.P.B. de; Souza, C.P. de; Souto, M.V.M.; Barbosa, C.M.; Frota, A.V.V.M., E-mail: cpbaraujo@gmail.com [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2016-07-01

    Carbides' synthesis via gas-solid reaction overcomes many of the difficulties found in other processes, requiring lower temperatures and reaction times than traditional metallurgic routes, for example. In carbides' synthesis in fixed bed reactors (FB) the solid precursor is permeated by the reducing/carburizing gas stream forming a packed bed without mobility. The use of a rotary kiln reactor (RK) adds a mixing character to this process, changing its fluid-particle dynamics. In this work ammonium molybdate was subjected to carbo-reduction reaction (CH4 / H2) in both reactors under the same gas flow (15L / h) and temperature (660 ° C) for 180 minutes. Complete conversion was observed Mo2C (dp = 18.9nm modal particles sizes' distribution) in the fixed bed reactor. In the RK reactor this conversion was only partial (∼ 40%) and Mo2C and MoO3 (34nm dp = bimodal) could be observed on the produced XRD pattern. Partial conversion was attributed to the need to use higher solids loading in the reactor CR (50% higher) to avoid solids to centrifuge. (author)

  17. Determination of the fractions of syntrophically oxidized acetate in a mesophilic methanogenic reactor through an (12)C and (13)C isotope-based kinetic model.

    Science.gov (United States)

    Gehring, Tito; Niedermayr, Andrea; Berzio, Stephan; Immenhauser, Adrian; Wichern, Marc; Lübken, Manfred

    2016-10-01

    In order to accurately describe the carbon flow in anaerobic digestion processes, this work investigates the acetate degradation pathways through the use of stable carbon isotope analysis and a mathematical model. Batch assays using labeled (13)C acetate were employed to distinguish the acetate consumption through methanogenic Archaea and acetate-oxidizing Bacteria. Suspended and sessile biomass, with over 400 days of retention time, from a mesophilic (36.5 °C) upflow anaerobic filter was used as inocula in these assays. A three-process model for acetoclastic methanogenesis and syntrophic acetate oxidation (SAO) was developed to allow for a precise quantification of the SAO contribution. The model distinguishes carbon atoms in light and heavy isotopes, (12)C and (13)C, respectively, which permitted the simulation of the isotope ratios variation in addition to gas production, gas composition and acetate concentrations. The model indicated oxidized fractions of acetate between 7 and 18%. Due to the low free ammonia inhibition potential for the acetoclastic methanogens in these assays these findings point to the biomass retention times as a driven factor for the SAO pathway. The isotope-based kinetic model developed here also describes the δ(13)C variations in unlabeled assays accurately and has the potential to determine biological (13)C fractionation factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Evaluation of the neutrons spectrum near the Venus reactor: use of MCNPX-2.5C; Evaluation du spectre des neutrons pres du reacteur venus - utilisation de MCNPX-2.5C

    Energy Technology Data Exchange (ETDEWEB)

    Verboomen, B.; Coeck, M.; Baeten, P. [SCK.CEN, Centre d' Etude de l' Energie Nucleaire, Mol (Belgium)

    2003-07-01

    The present study has been justified by the choice of the Venus reactor (SCK-CEN) as a true work environment for the project of the fifth programme - frame E.V.I.D.O.S.. The objective of this programme is the evaluation, in neutron-photon combined field, and in true environment (nuclear industry), of the different methods of measurement used in neutron dosimetry. The project aims to the determination of abilities and limits of dosemeters and to establish methods to get doses equivalents from data gotten by spectrometry, personal and ambient dosimetry. For each environment, reference values have to be determined by spectrometry (energy and angle). The knowledge of the distribution in energy and in angle of neutrons allows then the calculation of the different doses equivalents. The determination of these references values by direct neutron calculation allows the validation of the Monte Carlo model. (N.C.)

  19. The changes of the structural, magnetic, and mechanical properties in a reactor pressure vessel steel neutron-irradiated at 70 .deg. C

    CERN Document Server

    Park, D G; Jang, K S; Jung, M M; Kim, G M

    1999-01-01

    The irradiation embrittlement of reactor-pressure-vessel steel has been one of the main safety concerns in nuclear power plants. In the present study, an SA508-3 RPV steel was irradiated by neutrons with various fluences up to 10 sup 1 sup 8 n/cm sup 2 (E>=1MeV) at a temperature of approximately 70 .deg. C. The irradiation responses of the structural, the magnetic, and the mechanical properties of the steel were investigated by means of X-ray diffraction, Moessbauer spectroscopy, magnetic Barkhausen noise, and micro-Vickers hardness measurements. The transitions of all of these parameters occurred above a neutron does of 10 sup 1 sup 6 n/cm sup 2. The results of the X-ray and the Moessbauer experiments revealed that neutron irradiation led to the possibility of partial amorphization in the investigated RPV steel. The changes of the physical and the mechanical properties were discussed in terms of irradiation-induced cascade damage of crystalline materials.

  20. Nuclear Reactors. Revised.

    Science.gov (United States)

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…

  1. Homogeneous catalytic ozonation of C.I. Reactive Red 2 by metallic ions in a bubble column reactor.

    Science.gov (United States)

    Wu, Chung-Hsin; Kuo, Chao-Yin; Chang, Chung-Liang

    2008-06-15

    This study elucidates the decolorization of C.I. Reactive Red 2 (RR2) by homogeneous catalytic ozonation. The effects of pH and catalyst dosage were evaluated in O3/Mn(II), O3/Fe(II), O3/Fe(III), O3/Zn(II), O3/Co(II) and O3/Ni(II) systems. In O3/Mn(II), O3/Fe(II) and O3/Fe(III) systems, increasing the catalyst concentration increased the rate of RR2 decolorization; however, further increasing the catalyst concentration caused no further significant increase. When 0.6 mM catalyst was added, the decolorization rates of O3/Mn(II), O3/Fe(II), O3/Fe(III), O3/Zn(II), O3/Co(II) and O3/Ni(II) systems at pH 2 were 3.295, 1.299, 1.278, 1.015, 0.843 and 0.822 min(-1), respectively. Under all of the experimental conditions, the decolorization efficiency of catalytic ozonation exceeded that of ozonation alone. The decolorization rate markedly exceeds the TOC removal rate in all tested systems. The effect of the radical scavenger on the catalytic ozonation processes suggests that the decolorization reaction in catalytic ozonation systems proceeds by mainly radical-type mechanisms, except in the O3/Mn(II) system.

  2. Photocatalytic reactor

    Science.gov (United States)

    Bischoff, Brian L.; Fain, Douglas E.; Stockdale, John A. D.

    1999-01-01

    A photocatalytic reactor for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane.

  3. M and c'99 : Mathematics and computation, reactor physics and environmental analysis in nuclear applications, Madrid, September 27-30, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Aragones, J. M.; Ahnert, C.; Cabellos, O.

    1999-07-01

    The international conference on mathematics and computation, reactor physics and environmental analysis in nuclear applications in the biennial topical meeting of the mathematics and computation division of the American Nuclear Society. (Author)

  4. Feeding schemes and C/N ratio of a laboratory-scale step-fed sequencing batch reactor for liquid swine manure treatment.

    Science.gov (United States)

    Wu, Sarah Xiao; Zhu, Jun; Chen, Lide

    2017-07-03

    This study was undertaken to investigate the effect of two split feeding schemes (600 mL/200 mL and 400 mL/400 mL, designated as FS1 and FS2, respectively) on the performance of a step-fed sequencing batch reactor (SBR) in treating liquid swine manure for nutrient removal. The SBR was run on an 8-h cycle with a repeated pattern of anaerobic/anoxic/aerobic phases in each cycle and the two feedings always occurred at the beginning of each anaerobic phase. A low-level aeration was used (1.0 L/m(3).sec) for the anoxic/aerobic phase to facilitate nitrification and phosphorus uptake while reducing the energy consumption. The results showed that FS1 reduced NH4(+)-N by 98.7% and FS2 by 98.3%. FS1 had 12.3 mg/L NO3-N left in the effluent, while FS2 had 4.51 mg/L. For soluble phosphorus removal, FS1 achieved 95.2%, while FS2 reached only 68.5%. Both feeding schemes achieved ≥ 95% removal of COD. A good power regression was observed between total nitrogen (sum of all three nitrogen species) and the carbon to nitrogen (C/N) ratio, with the correlation coefficients of 0.9729 and 0.9542 for FS1 and FS2, respectively, based on which it was concluded that higher C/N ratios were required to achieve higher nitrogen removal efficiencies.

  5. The dissolution kinetics and apparent solubility of natural apatite in closed reactors at temperatures from 5 to 50 degrees C and pH from 1 to 6

    Energy Technology Data Exchange (ETDEWEB)

    Harouiya, N.; Chairat, C.; Kohler, S.J.; Gout, R.; Oelkers, E.H. [Univ Toulouse 3, CNRS, UMR 5563, F-31400 Toulouse (France); Chairat, C. [CEA, LCLT SECM DTCD, Lab Etud Comportement Long Terme, F-30207 Bagnols Sur Ceze, (France)

    2007-07-01

    The apparent solubility and dissolution rates of natural apatite were measured in closed-system reactors as a function of temperature from 5 to 50 degrees C and pH from 1 to 6. The temporal release rates of Ca, P, and F during the experiments are approximately consistent with stoichiometric dissolution in all experiments. One advantage of closed-system experiments is that they allow determination of reactive fluid evolution and dissolution rates at far-from to near-to equilibrium conditions. Surface area normalized apatite dissolution rates, r, obtained in all experiments are consistent with r = A{sub A}a{sub H{sup +}}{sup n}exp(E{sub A}/RT)(1 -exp(-A/{sigma} RT)) where A{sub A} stands for a rate constant equal to 4 * 10{sup -3} mol/cm{sup 2}/s, a{sub H{sup +}}) denotes the activity of the aqueous H{sup +}, n designates a reaction order equal to 0.6, E{sub A} symbolizes an activation energy equal to 11.0 kcal/mol, A refers to the chemical affinity of the dissolving apatite, {sigma} stands for Temkin's average stoichiometric number equal to 5; R designates the gas constant, and T represents absolute temperature. Logarithms of apparent equilibrium constants obtained from experiments performed at 3 {<=} pH {<=} 5.6 for the apatite dissolution reaction: Ca{sub 5}(PO{sub 4}){sub 3}F + 3H{sup +} = 5Ca{sup 2+} + 3HPO{sub 4}{sup 2-} + F{sup -} are found to be - 29.5 {+-} 0.6, - 29.4 {+-} 0.9 and - 29.9 {+-} 1.3 at 5, 25, and 50 degrees C, respectively. (authors)

  6. Draft environmental impact statement for the siting, construction, and operation of New Production Reactor capacity. Volume 3, Sections 7-12, Appendices A-C

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site near Aiken, South Carolina. The EIS programmatic alternatives address Departmental decisions to be made on whether to build new production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public. This volume contains references; a list of preparers and recipients; acronyms, abbreviations, and units of measure; a glossary; an index and three appendices.

  7. Analysis of Adiabatic Batch Reactor

    Directory of Open Access Journals (Sweden)

    Erald Gjonaj

    2016-05-01

    Full Text Available A mixture of acetic anhydride is reacted with excess water in an adiabatic batch reactor to form an exothermic reaction. The concentration of acetic anhydride and the temperature inside the adiabatic batch reactor are calculated with an initial temperature of 20°C, an initial temperature of 30°C, and with a cooling jacket maintaining the temperature at a constant of 20°C. The graphs of the three different scenarios show that the highest temperatures will cause the reaction to occur faster.

  8. CFD coupled kinetic modeling and simulation of hot wall vertical tubular reactor for deposition of SiC crystal from MTS

    Science.gov (United States)

    Mollick, P. K.; Venugopalan, R.; Srivastava, D.

    2017-10-01

    Chemical Vapor Deposition (CVD) process is generally carried out in a hot wall reactor of vertical or horizontal type keeping the substrate inside the chamber on which deposition is targeted. Present study is focused to explain the role of hydrodynamics and temperature conditions on the overall coating rates inside a hot wall vertical tubular reactor. Deposition of β-Silicon Carbide crystals from Methytricholorosilane catalyzed by hydrogen is modeled here considering growth kinetics which can be successfully described - using only two steps. Finite Element Method based simulation is performed to obtain the flow and temperature profiles inside the hot wall reactor. Model equations for kinetics are derived in differential form based on mass balance considering transport of species. Kinetic parameters were approximated comparing the experimentally found coating rates as reported earlier. Present model is seen to fit reasonably well for the wide variation of gas flow rates as well as temperature. Apart from the flow rates of total fluid at inlet and initial wall temperature of reactor, sample position and the inlet diameter of the reactor are found to be key important parameters for the desired coating to take place. Model prediction thus can provide better knowledge in order to carefully choose process parameters in designing the reactor for achieving optimized deposition rates by CVD with desired properties.

  9. Hybrid adsorptive membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  10. D and DR Reactors

    Data.gov (United States)

    Federal Laboratory Consortium — The world's second full-scale nuclear reactor was the D Reactor at Hanford which was built in the early 1940's and went operational in December of 1944.D Reactor ran...

  11. Reactor transient

    Energy Technology Data Exchange (ETDEWEB)

    Menegus, R.L.

    1956-05-31

    The authors are planning a calculation to be done on the Univac at the Louviers Building to estimate the effect of xenon transients, a high reactor power. This memorandum outlines the reasons why they prefer to do the work at Louviers rather than at another location, such as N.Y.U. They are to calculate the response of the reactor to a sudden change in position of the half rods. Qualitatively, the response will be a change in the rooftop ratio of the neutron flux. The rooftop ratio may oscillate with high damping, or, instead, it may oscillate for many cycles. It has not been possible for them to determine this response by hand calculation because of the complexity of the problem, and yet it is important for them to be certain that high power operation will not lead us to inherently unstable operation. Therefore they have resorted to machine computation. The system of differential equations that describes the response has seven dependent variables; therefore there are seven equations, each coupled with one or more of the others. The authors have discussed the problem with R.R. Haefner at the plant, and it is his opinion that the IBM 650 cannot adequately handle the system of seven equations because the characteristic time constants vary over a range of about 10{sup 8}. The Univac located at the Louviers Building is said to be satisfactory for this computation.

  12. NEUTRONIC REACTOR CORE INSTRUMENT

    Science.gov (United States)

    Mims, L.S.

    1961-08-22

    A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)

  13. 75 FR 8154 - Advisory Committee on Reactor Safeguards

    Science.gov (United States)

    2010-02-23

    ... COMMISSION Advisory Committee on Reactor Safeguards In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor Safeguards (ACRS... NRC staff regarding Digital I&C DAC Inspection Methodology. 10:30 a.m.-12 p.m.: New Advanced Reactor...

  14. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  15. Modelling of HTR (High Temperature Reactor Pebble-Bed 10 MW to Determine Criticality as A Variations of Enrichment and Radius of the Fuel (Kernel With the Monte Carlo Code MCNP4C

    Directory of Open Access Journals (Sweden)

    Hammam Oktajianto

    2014-12-01

    Full Text Available Gas-cooled nuclear reactor is a Generation IV reactor which has been receiving significant attention due to many desired characteristics such as inherent safety, modularity, relatively low cost, short construction period, and easy financing. High temperature reactor (HTR pebble-bed as one of type of gas-cooled reactor concept is getting attention. In HTR pebble-bed design, radius and enrichment of the fuel kernel are the key parameter that can be chosen freely to determine the desired value of criticality. This paper models HTR pebble-bed 10 MW and determines an effective of enrichment and radius of the fuel (Kernel to get criticality value of reactor. The TRISO particle coated fuel particle which was modelled explicitly and distributed in the fuelled region of the fuel pebbles using a Simple-Cubic (SC lattice. The pebble-bed balls and moderator balls distributed in the core zone using a Body-Centred Cubic lattice with assumption of a fresh fuel by the fuel enrichment was 7-17% at 1% range and the size of the fuel radius was 175-300 µm at 25 µm ranges. The geometrical model of the full reactor is obtained by using lattice and universe facilities provided by MCNP4C. The details of model are discussed with necessary simplifications. Criticality calculations were conducted by Monte Carlo transport code MCNP4C and continuous energy nuclear data library ENDF/B-VI. From calculation results can be concluded that an effective of enrichment and radius of fuel (Kernel to achieve a critical condition was the enrichment of 15-17% at a radius of 200 µm, the enrichment of 13-17% at a radius of 225 µm, the enrichments of 12-15% at radius of 250 µm, the enrichments of 11-14% at a radius of 275 µm and the enrichment of 10-13% at a radius of 300 µm, so that the effective of enrichments and radii of fuel (Kernel can be considered in the HTR 10 MW. Keywords—MCNP4C, HTR, enrichment, radius, criticality 

  16. Advances in light water reactor technologies

    CERN Document Server

    Saito, Takehiko; Ishiwatari, Yuki; Oka, Yoshiaki

    2010-01-01

    ""Advances in Light Water Reactor Technologies"" focuses on the design and analysis of advanced nuclear power reactors. This volume provides readers with thorough descriptions of the general characteristics of various advanced light water reactors currently being developed worldwide. Safety, design, development and maintenance of these reactors is the main focus, with key technologies like full MOX core design, next-generation digital I&C systems and seismic design and evaluation described at length. This book is ideal for researchers and engineers working in nuclear power that are interested

  17. Accelerator based fusion reactor

    Science.gov (United States)

    Liu, Keh-Fei; Chao, Alexander Wu

    2017-08-01

    A feasibility study of fusion reactors based on accelerators is carried out. We consider a novel scheme where a beam from the accelerator hits the target plasma on the resonance of the fusion reaction and establish characteristic criteria for a workable reactor. We consider the reactions d+t\\to n+α,d+{{}3}{{H}\\text{e}}\\to p+α , and p+{{}11}B\\to 3α in this study. The critical temperature of the plasma is determined from overcoming the stopping power of the beam with the fusion energy gain. The needed plasma lifetime is determined from the width of the resonance, the beam velocity and the plasma density. We estimate the critical beam flux by balancing the energy of fusion production against the plasma thermo-energy and the loss due to stopping power for the case of an inert plasma. The product of critical flux and plasma lifetime is independent of plasma density and has a weak dependence on temperature. Even though the critical temperatures for these reactions are lower than those for the thermonuclear reactors, the critical flux is in the range of {{10}22}-{{10}24}~\\text{c}{{\\text{m}}-2}~{{\\text{s}}-1} for the plasma density {ρt}={{10}15}~\\text{c}{{\\text{m}}-3} in the case of an inert plasma. Several approaches to control the growth of the two-stream instability are discussed. We have also considered several scenarios for practical implementation which will require further studies. Finally, we consider the case where the injected beam at the resonance energy maintains the plasma temperature and prolongs its lifetime to reach a steady state. The equations for power balance and particle number conservation are given for this case.

  18. Instrumentation and control strategies for an integral pressurized water reactor

    Directory of Open Access Journals (Sweden)

    Belle R. Upadhyaya

    2015-03-01

    Full Text Available Several vendors have recently been actively pursuing the development of integral pressurized water reactors (iPWRs that range in power levels from small to large reactors. Integral reactors have the features of minimum vessel penetrations, passive heat removal after reactor shutdown, and modular construction that allow fast plant integration and a secure fuel cycle. The features of an integral reactor limit the options for placing control and safety system instruments. The development of instrumentation and control (I&C strategies for a large 1,000 MWe iPWR is described. Reactor system modeling—which includes reactor core dynamics, primary heat exchanger, and the steam flashing drum—is an important part of I&C development and validation, and thereby consolidates the overall implementation for a large iPWR. The results of simulation models, control development, and instrumentation features illustrate the systematic approach that is applicable to integral light water reactors.

  19. 76 FR 5218 - Advisory Committee on Reactor Safeguards

    Science.gov (United States)

    2011-01-28

    ... COMMISSION Advisory Committee on Reactor Safeguards In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor Safeguards (ACRS... Facilities and Probabilistic Risk Assessments (PRAs) for Reactors (Open)--The Committee will hear...

  20. 75 FR 57302 - Advisory Committee on Reactor Safeguards; Public Meeting

    Science.gov (United States)

    2010-09-20

    ... COMMISSION Advisory Committee on Reactor Safeguards; Public Meeting In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor... Associated with the Economic Simplified Boiling Water Reactor (ESBWR) Design Certification Application (Open...

  1. 75 FR 28074 - Advisory Committee on Reactor Safeguards

    Science.gov (United States)

    2010-05-19

    ... COMMISSION Advisory Committee on Reactor Safeguards In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor Safeguards (ACRS... Accidental Radionuclide Releases.'' 10:15 a.m.-12 p.m.: Status of Risk-Informing Guidance of New Reactors...

  2. 75 FR 21046 - Advisory Committee on Reactor Safeguards

    Science.gov (United States)

    2010-04-22

    ... COMMISSION Advisory Committee on Reactor Safeguards In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor Safeguards (ACRS... discussions with the NRC Chairman to discuss topics of mutual interest. 1 p.m.-4 p.m.: Boiling Water Reactor...

  3. Five Lectures on Nuclear Reactors Presented at Cal Tech

    Science.gov (United States)

    Weinberg, Alvin M.

    1956-02-10

    The basic issues involved in the physics and engineering of nuclear reactors are summarized. Topics discussed include theory of reactor design, technical problems in power reactors, physical problems in nuclear power production, and future developments in nuclear power. (C.H.)

  4. Hybrid plasmachemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lelevkin, V. M., E-mail: lelevkin44@mail.ru; Smirnova, Yu. G.; Tokarev, A. V. [Kyrgyz-Russian Slavic University (Kyrgyzstan)

    2015-04-15

    A hybrid plasmachemical reactor on the basis of a dielectric barrier discharge in a transformer is developed. The characteristics of the reactor as functions of the dielectric barrier discharge parameters are determined.

  5. Attrition reactor system

    Science.gov (United States)

    Scott, Charles D.; Davison, Brian H.

    1993-01-01

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  6. Guidebook to nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nero, A.V. Jr.

    1976-05-01

    A general introduction to reactor physics and theory is followed by descriptions of commercial nuclear reactor types. Future directions for nuclear power are also discussed. The technical level of the material is suitable for laymen.

  7. NUCLEAR REACTOR CONTROL SYSTEM

    Science.gov (United States)

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  8. TRIGA research reactors; Reacteurs de recherche Triga

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, D.M.; Razvi, J.; Whittemore, W.L. [Triga General Atomics, San Diego, CA (United States); Duban, B.; Harbonnier, G.; Du Limbert, P.; Durand, J.P. [AREVA/FRAMATOME ANP/CERCA, 92 - Paris-La-Defence (France)

    2004-02-01

    TRIGA (Training, Research, Isotope production, General-Atomic) has become the most used research reactor in the world with 65 units operating in 24 countries. The original patent for TRIGA reactors was registered in 1958. The success of this reactor is due to its inherent level of safety that results from a prompt negative temperature coefficient. Most of the neutron moderation occurs in the nuclear fuel (UZrH) because of the presence of hydrogen atoms, so in case of an increase of fuel temperature, the neutron spectrum becomes harder and neutrons are less likely to fission uranium nuclei and as a consequence the power released decreases. This inherent level of safety has made this reactor fit for training tool in university laboratories. Some recent versions of TRIGA reactors have been designed for medicine and industrial isotope production, for neutron therapy of cancers and for providing a neutron source. (A.C.)

  9. Nuclear propulsion apparatus with alternate reactor segments

    Science.gov (United States)

    Szekely, Thomas

    1979-04-03

    1. Nuclear propulsion apparatus comprising: A. means for compressing incoming air; B. nuclear fission reactor means for heating said air; C. means for expanding a portion of the heated air to drive said compressing means; D. said nuclear fission reactor means being divided into a plurality of radially extending segments; E. means for directing a portion of the compressed air for heating through alternate segments of said reactor means and another portion of the compressed air for heating through the remaining segments of said reactor means; and F. means for further expanding the heated air from said drive means and the remaining heated air from said reactor means through nozzle means to effect reactive thrust on said apparatus.

  10. Electroceramic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bagger, C. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    Production of Gd-doped and Y-doped ceria has been successfully accomplished using a continuous technique with industrial production potential. Production parameters for tape casting and low temperature sintering of Gd-doped ceria membranes have been established as well. Yttria doping has been found cheaper than gadolinia doping, but sintering to gastightness was difficult, because grain growth is suppressed. The volume stability at 600 deg. C of yttria doped ceria during reduction was high. (EHS)

  11. Nuclear reactor overflow line

    Science.gov (United States)

    Severson, Wayne J.

    1976-01-01

    The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.

  12. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  13. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  14. Surface heat flux feedback controlled impurity seeding experiments with Alcator C-Mod’s high-Z vertical target plate divertor: performance, limitations and implications for fusion power reactors

    Science.gov (United States)

    Brunner, D.; Wolfe, S. M.; LaBombard, B.; Kuang, A. Q.; Lipschultz, B.; Reinke, M. L.; Hubbard, A.; Hughes, J.; Mumgaard, R. T.; Terry, J. L.; Umansky, M. V.; The Alcator C-Mod Team

    2017-08-01

    The Alcator C-Mod team has recently developed a feedback system to measure and control surface heat flux in real-time. The system uses real-time measurements of surface heat flux from surface thermocouples and a pulse-width modulated piezo valve to inject low-Z impurities (typically N2) into the private flux region. It has been used in C-Mod to mitigate peak surface heat fluxes  >40 MW m-2 down to    1. While the system works quite well under relatively steady conditions, use of it during transients has revealed important limitations on feedback control of impurity seeding in conventional vertical target plate divertors. In some cases, the system is unable to avoid plasma reattachment to the divertor plate or the formation of a confinement-damaging x-point MARFE. This is due to the small operational window for mitigated heat flux in the parameters of incident plasma heat flux, plasma density, and impurity density as well as the relatively slow response of the impurity gas injection system compared to plasma transients. Given the severe consequences for failure of such a system to operate reliably in a reactor, there is substantial risk that the conventional vertical target plate divertor will not provide an adequately controllable system in reactor-class devices. These considerations motivate the need to develop passively stable, highly compliant divertor configurations and experimental facilities that can test such possible solutions.

  15. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  16. Packed-Bed Reactor Study of NETL Sample 196c for the Removal of Carbon Dioxide from Simulated Flue Gas Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, James S.; Hammache, Sonia; Gray, McMahan L.; Fauth Daniel J.; Pennline, Henry W.

    2012-04-24

    An amine-based solid sorbent process to remove CO2 from flue gas has been investigated. The sorbent consists of polyethylenimine (PEI) immobilized onto silica (SiO2) support. Experiments were conducted in a packed-bed reactor and exit gas composition was monitored using mass spectrometry. The effects of feed gas composition (CO2 and H2O), temperature, and simulated steam regeneration were examined for both the silica support as well as the PEI-based sorbent. The artifact of the empty reactor was also quantified. Sorbent CO2 capacity loading was compared to thermogravimetric (TGA) results to further characterize adsorption isotherms and better define CO2 working capacity. Sorbent stability was monitored by periodically repeating baseline conditions throughout the parametric testing and replacing with fresh sorbent as needed. The concept of the Basic Immobilized Amine Sorbent (BIAS) Process using this sorbent within a system where sorbent continuously flows between the absorber and regenerator was introduced. The basic tenet is to manipulate or control the level of moisture on the sorbent as it travels around the sorbent circulation path between absorption and regeneration stages to minimize its effect on regeneration heat duty.

  17. Neutron fluxes in test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  18. A high-temperature liquid chromatographic reactor approach for investigating the solvolytic stability of a pharmaceutical compound and an investigation of its retention behavior on a C18-modified zirconia stationary phase.

    Science.gov (United States)

    Skrdla, Peter J; Bopra, Angela; Chasse, Tyson; Wang, Tao

    2008-06-09

    The solvolysis kinetics of a developmental active pharmaceutical ingredient (API) were investigated using a high temperature (HT)-HPLC reactor approach to determine whether it might be possible to use the technique to efficiently screen the relative stabilities of typical APIs (particularly those that are stable at the column temperatures achievable on most HPLC systems and over durations of less than 60 min-a reasonable upper limit for typical method run time). It was discovered that the on-column API degradation kinetics better obeyed a second-order model than a first-order one. Employing a newly developed mathematical treatment, the apparent activation energy for the process was determined to be 85.7+/-1.6 kJ/mol; the apparent frequency factor was found to be (3.9+/-0.4)x10(4) s(-1). The retention mechanism of the API on the C18-modified zirconia column (ZirChrom) Diamondbond-C18) was investigated using a van't Hoff analysis. It was discovered that the logarithm of the retention factor (following correction for the gradient elution of the assay method) exhibited a quadratic dependence on the reciprocal of the absolute temperature. While the retention was found to be predominantly enthalpically driven over the majority of temperatures investigated in this study (ranging from 40 to 200 degrees C), a regression fit of the curve predicted a maximum at approximately 20 degrees C, indicative of a transition from predominantly enthalpically controlled retention to a mainly entropically driven mechanism. A table summarizing the thermodynamic retention parameters at each experimental column temperature is provided. Finally, the preliminary application of the HT-HPLC reactor approach to the study of degradation kinetics of other APIs is discussed in terms of some unexpected findings obtained using the zirconia column.

  19. REUSABLE ADSORBENTS FOR DILUTE SOLUTIONS SEPARATION. 6. BATCH AND CONTINUOUS REACTORS FOR ADSORPTION AND DEGRADATION OF 1,2-DICHLOROBENZENE FROM DILUTE WASTEWATER STREAMS USING TITANIA AS A PHOTOCATALYST. (R828598C753)

    Science.gov (United States)

    Two types of external lamp reactors were investigated for the titania catalyzed photodegradation of 1,2-dichlorobenzene (DCB) from a dilute water stream. The first one was a batch mixed slurry reactor and the second one was a semi-batch reactor with continuous feed recycle wit...

  20. HORIZONTAL BOILING REACTOR SYSTEM

    Science.gov (United States)

    Treshow, M.

    1958-11-18

    Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

  1. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  2. THERMAL NEUTRONIC REACTOR

    Science.gov (United States)

    Spinrad, B.I.

    1960-01-12

    A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

  3. Mass and energy balance: application to the sanitary sewage treatment with an upflow anaerobic sludge blanket (UASB) reactors to temperature of 20 deg C; Balanco de massa e energia: aplicacao ao tratamento de esgotos sanitarios com reatores anaerobicos de manta de lodo (UASB) a temperatura de 20 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, Katherine Ivonne Alcocer

    1992-07-01

    A feasibility study of an Upflow Anaerobic Sludge Blanket (UASB) reactor use as a sewage treatment plant component for areas with average temperature bellow 20 deg C was performed. The literature on UASB reactor indicates that a 70 % chemical oxygen demand (COD) removal al 20 and 6 to 17 hr hydraulic detention time is possible in sewage treatment plants. This study was developed for a Oruro (Bolivia) district and the plant was designed for a population of up to 10,000 inhabitants. This city presents average temperatures lower than 20 deg C being necessary to heat the sewage if is used the UASB reactor. Based on the performance simulation of mass and energy balances it was found that 84 % COD removal and 92 % total suspended solids removal are possible. The potential average energy production (61 kW due to methane combustion) is less than 10 % of the power consumption for heating, which indicates that the use of the methane may be expensive. The evaluated energy rate to be applied to the sewage for heating is 0.33 kW/m{sup 3} d{sup -1} which is significantly greater than the necessary energy to introduce oxygen in aerobic treatment systems. However total energy demand for aerobic systems must be evaluated for each particular case. (author)

  4. Remote Reactor Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dazeley, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dobie, Doug [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marleau, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brennan, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerling, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sumner, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sweany, Melinda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-21

    The overall goal of the WATCHMAN project is to experimentally demonstrate the potential of water Cerenkov antineutrino detectors as a tool for remote monitoring of nuclear reactors. In particular, the project seeks to field a large prototype gadolinium-doped, water-based antineutrino detector to demonstrate sensitivity to a power reactor at ~10 kilometer standoff using a kiloton scale detector. The technology under development, when fully realized at large scale, could provide remote near-real-time information about reactor existence and operational status for small operating nuclear reactors out to distances of many hundreds of kilometers.

  5. Oscillatory flow chemical reactors

    National Research Council Canada - National Science Library

    Slavnić Danijela S; Bugarski Branko M; Nikačević Nikola M

    2014-01-01

    .... However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat...

  6. Membrane reactors at Degussa.

    Science.gov (United States)

    Wöltinger, Jens; Karau, Andreas; Leuchtenberger, Wolfgang; Drauz, Karlheinz

    2005-01-01

    The review covers the development of membrane reactor technologies at Degussa for the synthesis of fine chemicals. The operation of fed-batch or continuous biocatalytic processes in the enzyme membrane reactor (EMR) is well established at Degussa. Degussa has experience of running EMRs from laboratory gram scale up to a production scale of several hundreds of tons per year. The transfer of the enzyme membrane reactor from biocatalysis to chemical catalysis in the chemzyme membrane reactor (CMR) is discussed. Various homogeneous catalysts have been investigated in the CMR, and the scope and limitation of this new technique is discussed.

  7. Pressurizing new reactors

    Energy Technology Data Exchange (ETDEWEB)

    Neill, J.S.

    1956-01-30

    The Technical Division was asked recently to consider designs for new reactors that would add 8000 MW capacity to the Savannah River Plant. One modification of the existing SRP design that would enable a higher power rating, and therefore require fewer new reactors, is an increase in the maximum pressure in the D{sub 2}O system. The existing reactors at SRP are designed for a maximum pressure in the gas plenum of only 5 psig. Higher pressures enable higher D{sub 2} temperatures and higher sheath temperatures without local boiling or burnout. The requirements in reactor cooling facilities at any given power level would therefore be reduced by pressurizing.

  8. HOMOGENEOUS NUCLEAR POWER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  9. Heterogeneous Recycling in Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  10. Medición de potencia en la configuración 7A2 del reactor RP-0 usando la técnica de ruido neutrónico acoplado a una cámara de ionización compensada

    OpenAIRE

    Bruna, Rubén; Paredes, P.; Oré, Julio

    2002-01-01

    Se presentan los resultados de las mediciones de ruido neutrónico realizadas en el reactor RP-0 en la configuración 7A2, utilizando la barra BC3 para alcanzar la criticidad. Estas mediciones se realizaron utilizando una cámara de ionización compensada (CIC) ubicada en la posición E2. Finalmente, se presenta la calibración en potencia de la cámara de marcha 4 de la instrumentación del reactor.

  11. Reactor Simulator Testing Overview

    Science.gov (United States)

    Schoenfeld, Michael P.

    2013-01-01

    Test Objectives Summary: a) Verify operation of the core simulator, the instrumentation & control system, and the ground support gas and vacuum test equipment. b) Examine cooling & heat regeneration performance of the cold trap purification. c) Test the ALIP pump at voltages beyond 120V to see if the targeted mass flow rate of 1.75 kg/s can be obtained in the RxSim. Testing Highlights: a) Gas and vacuum ground support test equipment performed effectively for operations (NaK fill, loop pressurization, and NaK drain). b) Instrumentation & Control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings and ramped within prescribed constraints. It effectively interacted with reactor simulator control model and defaulted back to temperature control mode if the transient fluctuations didn't dampen. c) Cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the minimum temperature indicating the design provided some heat regeneration. d) ALIP produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  12. Microbial degradation of MTBE in reactors

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2007-01-01

    , toluene, ethylbenzene and xylenes, may reduce the removal rates of MTBE, or prevent its removal in reactors. With mathematical modelling, the long startup time required for some MTBE degrading reactors could be predicted. Long startup times of up to 200 days were due to the low maximum growth rate...... findings were: membrane bioreactors and fluidized bed reactors had the highest volumetric removal rates of all reactors studied, in the order of 1 000 mg/(l d); competition for oxygen, nutrients and occupancy between MTBE degraders and oxidisers of co-contaminants such as, ammonium and the group of benzene...... of the MTBE degraders, in the order of 0.1 d−1 or less, at 25 °C. However, despite this, high volumetric MTBE removal rates were found to be possible after the startup period when the biomass concentration reached a steady state....

  13. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  14. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  15. REFLECTOR FOR NEUTRONIC REACTORS

    Science.gov (United States)

    Fraas, A.P.

    1963-08-01

    A reflector for nuclear reactors that comprises an assembly of closely packed graphite rods disposed with their major axes substantially perpendicular to the interface between the reactor core and the reflector is described. Each graphite rod is round in transverse cross section at (at least) its interface end and is provided, at that end, with a coaxial, inwardly tapering hole. (AEC)

  16. 77 FR 10785 - Advisory Committee on Reactor Safeguards; Notice of Meeting

    Science.gov (United States)

    2012-02-23

    ... proprietary, pursuant to 5 U.S.C. 552b(c)(4)] 10:45 a.m.-12:15 p.m.: Source Terms for Small Modular Reactors... Nuclear Energy Institute (NEI) regarding the development of source terms for small modular reactors. 1:15... COMMISSION Advisory Committee on Reactor Safeguards; Notice of Meeting In accordance with the purposes of...

  17. Mirror reactor surface study

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. L.; Damm, C. C.; Futch, A. H.; Hiskes, J. R.; Meisenheimer, R. G.; Moir, R. W.; Simonen, T. C.; Stallard, B. W.; Taylor, C. E.

    1976-09-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included.

  18. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  19. Status of French reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballagny, A. [Commissariat a l`Energie Atomique, Saclay (France)

    1997-08-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.

  20. Superheated Water-Cooled Small Modular Underwater Reactor Concept

    OpenAIRE

    Shirvan, Koroush; Kazimi, Mujid

    2016-01-01

    A novel fully passive small modular superheated water reactor (SWR) for underwater deployment is designed to produce 160 MWe with steam at 500ºC to increase the thermodynamic efficiency compared with standard light water reactors. The SWR design is based on a conceptual 400-MWe integral SWR using the internally and externally cooled annular fuel (IXAF). The coolant boils in the external channels throughout the core to approximately the same quality as a conventional boiling water reactor and ...

  1. Transients in reactors for power systems compensation

    Science.gov (United States)

    Abdul Hamid, Haziah

    This thesis describes new models and investigations into switching transient phenomena related to the shunt reactors and the Mechanically Switched Capacitor with Damping Network (MSCDN) operations used for reactive power control in the transmission system. Shunt reactors and MSCDN are similar in that they have reactors. A shunt reactor is connected parallel to the compensated lines to absorb the leading current, whereas the MSCDN is a version of a capacitor bank designed as a C-type filter for use in the harmonic-rich environment. In this work, models have been developed and transient overvoltages due to shunt reactor deenergisation were estimated analytically using MathCad, a mathematical program. Computer simulations used the ATP/EMTP program to reproduce both single-phase and three-phase shunt reactor switching at 275 kV operational substations. The effect of the reactor switching on the circuit breaker grading capacitor was also examined by considering various switching conditions.. The main original achievement of this thesis is the clarification of failure mechanisms occurring in the air-core filter reactor due to MSCDN switching operations. The simulation of the MSCDN energisation was conducted using the ATP/EMTP program in the presence of surge arresters. The outcome of this simulation shows that extremely fast transients were established across the air-core filter reactor. This identified transient event has led to the development of a detailed air-core reactor model, which accounts for the inter-turn RLC parameters as well as the stray capacitances-to-ground. These parameters are incorporated into the transient simulation circuit, from which the current and voltage distribution across the winding were derived using electric field and equivalent circuit modelling. Analysis of the results has revealed that there are substantial dielectric stresses imposed on the winding insulation that can be attributed to a combination of three factors. (i) First, the

  2. [Present conceptions of the C.E.A. concerning] the development of fast neutron reactors in France; [Les conceptions actuelles du C.E.A. concernant] la filiere des reacteurs a neutrons rapides en France

    Energy Technology Data Exchange (ETDEWEB)

    Vendryes, G.; Gaussens, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Pasquer, R. [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    1 - The position of fast neutron reactors in the French nuclear energy program. In developing a program based on natural uranium, France will have an important stock of plutonium rich in higher isotopes. The existence of this plutonium and of the depleted uranium arising from the same reactors, has, as a logical consequence, the use of both in fast neutron reactors. Justified by this short term interest, the achievement of fast neutron reactors does, moreover, provide for a future necessity. 2 - Description of a fast neutron central power station of 1000 MWe. We indicate the characteristics of a future fast neutron central power station, plutonium fuelled, and sodium cooled. However uncertain these characteristics may be, they constitute a necessary guide in the orientation of our work. 3 - Studies carried out up to the present time. We give an outline of those studies, often very preliminary, which have given the characteristics cited above. The principal technical areas taken up are the following: - Neutronics (critical masses, breeding ratios, enrichments, flattening of the neutron flux, coefficients of reactivity, reactivity changes as a function of irradiation). - Dynamics, control, and safety. - Technology (design of the core and vessel, of the sodium system, and of the fuel handling mechanisms). These technical studies are complemented by economic considerations. The choice of the optimum characteristics is related to the existence of power production programs, and, in these programs, to the existence of plutonium producing thermal reactors. It is shown how, in this context, the existence of plutonium should be taken into account, and, in addition which mechanisms relate the economics of this plutonium to the choice of the most important parameters of the breeder reactors. 4 - Prototype reactor. The interest in an intermediate stage consisting of a reactor of a power level of about 80 MWe is justified. Its essential characteristics are briefly presented

  3. Tritium resources available for fusion reactors

    Science.gov (United States)

    Kovari, M.; Coleman, M.; Cristescu, I.; Smith, R.

    2018-02-01

    The tritium required for ITER will be supplied from the CANDU production in Ontario, but while Ontario may be able to supply 8 kg for a DEMO fusion reactor in the mid-2050s, it will not be able to provide 10 kg at any realistic starting time. The tritium required to start DEMO will depend on advances in plasma fuelling efficiency, burnup fraction, and tritium processing technology. It is in theory possible to start up a fusion reactor with little or no tritium, but at an estimated cost of 2 billion per kilogram of tritium saved, it is not economically sensible. Some heavy water reactor tritium production scenarios with varying degrees of optimism are presented, with the assumption that only Canada, the Republic of Korea, and Romania make tritium available to the fusion community. Results for the tritium available for DEMO in 2055 range from zero to 30 kg. CANDU and similar heavy water reactors could in theory generate additional tritium in a number of ways: (a) adjuster rods containing lithium could be used, giving 0.13 kg per year per reactor; (b) a fuel bundle with a burnable absorber has been designed for CANDU reactors, which might be adapted for tritium production; (c) tritium production could be increased by 0.05 kg per year per reactor by doping the moderator with lithium-6. If a fusion reactor is started up around 2055, governments in Canada, Argentina, China, India, South Korea and Romania will have the opportunity in the years leading up to that to take appropriate steps: (a) build, refurbish or upgrade tritium extraction facilities; (b) extend the lives of heavy water reactors, or build new ones; (c) reduce tritium sales; (d) boost tritium production in the remaining heavy water reactors. All of the alternative production methods considered have serious economic and regulatory drawbacks, and the risk of diversion of tritium or lithium-6 would also be a major concern. There are likely to be serious problems with supplying tritium for future

  4. Nuclear reactor control column

    Science.gov (United States)

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  5. Reactor Safety Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1981-07-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  6. Reactor power monitoring device

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Naotaka; Igawa, Shinji; Kitazono, Hideaki

    1998-02-13

    The present invention provides a reactor power monitoring device capable of ensuring circumstance resistance, high reliability and high speed transmission even if an APRM is disposed in a reactor building (R/B). Namely, signal processing sections (APRM) for transmitting data to a central control chamber are distributed in the reactor building at an area at the lowest temperature among areas where the temperature control in an emergency state is regulated, and a transmission processing section (APRM-I/F) for transmitting data to the other systems is disposed to the central control chamber. An LPRM signal transmission processing section is constituted such that LPRM signals can be transmitted at a high speed by DMA. Set values relevant to reactor tripping (neutron flux high, thermal output high and sudden reduction of a reactor core flow rate) are stored in the APRM-I/F, and reactor tripping calculation is conducted in the APRM-I/F. With such procedure, a reactor power monitoring device having enhanced control function can be attained. (N.H.)

  7. Reactor Lithium Heat Pipes for HP-STMCs Space Reactor Power System

    Science.gov (United States)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    2004-02-01

    Design and performance analysis of the nuclear reactor's lithium heat pipes for a 110-kWe Heat Pipes-Segmented Thermoelectric Module Converters (HP-STMCs) Space Reactor Power system (SRPS) are presented. The evaporator length of the heat pipes is the same as the active core height (0.45 m) and the C-C finned condenser is of the same length as the STMC panels (1.5 m). The C-C finned condenser section is radiatively coupled to the collector shoes of the STMCs placed on both sides. The lengths of the adiabatic section, the values of the power throughput and the evaporator wall temperature depend on the radial location of the heat pipe in the reactor core and the number and dimensions of the potassium heat pipes in the heat rejection radiator. The reactor heat pipes have a total length that varies from 7.57 to 7.73 m, and a 0.2 mm thick Mo-14%Re wick with an average pore radius of 12 μm. The wick is separated from the Mo-14%Re wall by a 0.5 mm annulus filled with liquid lithium, to raise the prevailing capillary limit. The nominal evaporator (or reactor) temperature varies from 1513 to 1591 K and the thermal power of the reactor is 1.6 MW, which averages 12.7 kW for each of the 126 reactor heat pipes. The power throughput per heat pipe increase to a nominal 15.24 kW at the location of the peak power in the core and to 20.31 kW when an adjacent heat pipe fails. The prevailing capillary limit of the reactor heat pipes is 28.3 kW, providing a design margin >= 28%.

  8. Nuclear reactor reflector

    Science.gov (United States)

    Hopkins, R.J.; Land, J.T.; Misvel, M.C.

    1994-06-07

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

  9. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  10. Reactor flux calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lhuillier, D. [Commissariat à l' Énergie Atomique et aux Énergies Alternatives, Centre de Saclay, IRFU/SPhN, 91191 Gif-sur-Yvette (France)

    2013-02-15

    The status of the prediction of reactor anti-neutrino spectra is presented. The most accurate method is still the conversion of total β spectra of fissionning isotopes as measured at research reactors. Recent re-evaluations of the conversion process led to an increased predicted flux by few percent and were at the origin of the so-called reactor anomaly. The up to date predictions are presented with their main sources of error. Perspectives are given on the complementary ab-initio predictions and upcoming experimental cross-checks of the predicted spectrum shape.

  11. NEUTRONIC REACTOR CONTROL

    Science.gov (United States)

    Metcalf, H.E.

    1958-10-14

    Methods of controlling reactors are presented. Specifically, a plurality of neutron absorber members are adjustably disposed in the reactor core at different distances from the center thereof. The absorber members extend into the core from opposite faces thereof and are operated by motive means coupled in a manner to simultaneously withdraw at least one of the absorber members while inserting one of the other absorber members. This feature effects fine control of the neutron reproduction ratio by varying the total volume of the reactor effective in developing the neutronic reaction.

  12. Nuclear reactor reflector

    Science.gov (United States)

    Hopkins, Ronald J.; Land, John T.; Misvel, Michael C.

    1994-01-01

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

  13. Microfluidic electrochemical reactors

    Science.gov (United States)

    Nuzzo, Ralph G [Champaign, IL; Mitrovski, Svetlana M [Urbana, IL

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  14. Reactor vessel lower head integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, A.M.

    1997-02-01

    On March 28, 1979, the Three Mile Island Unit 2 (TMI-2) nuclear power plant underwent a prolonged small break loss-of-coolant accident that resulted in severe damage to the reactor core. Post-accident examinations of the TMI-2 reactor core and lower plenum found that approximately 19,000 kg (19 metric tons) of molten material had relocated onto the lower head of the reactor vessel. Results of the OECD TMI-2 Vessel Investigation Project concluded that a localized hot spot of approximately 1 meter diameter had existed on the lower head. The maximum temperature on the inner surface of the reactor pressure vessel (RPV) in this region reached 1100{degrees}C and remained at that temperature for approximately 30 minutes before cooling occurred. Even under the combined loads of high temperature and high primary system pressure, the TMI-2 RPV did not fail. (i.e. The pressure varied from about 8.5 to 15 MPa during the four-hour period following the relocation of melt to the lower plenum.) Analyses of RPV failure under these conditions, using state-of-the-art computer codes, predicted that the RPV should have failed via local or global creep rupture. However, the vessel did not fail; and it has been hypothesized that rapid cooling of the debris and the vessel wall by water that was present in the lower plenum played an important role in maintaining RPV integrity during the accident. Although the exact mechanism(s) of how such cooling occurs is not known, it has been speculated that cooling in a small gap between the RPV wall and the crust, and/or in cracks within the debris itself, could result in sufficient cooling to maintain RPV integrity. Experimental data are needed to provide the basis to better understand these phenomena and improve models of RPV failure in severe accident codes.

  15. Removal of creosote from soil by bioslurry reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lauch, R.P.; Herrmann, J.G.; Mahaffey, W.R.; Jones, A.B.; Dosani, M.

    1992-04-01

    Biological slurry reactors were tested for removal of polynuclear aromatic hydrocarbons (PAHs) from creosote contaminated soil. Five bioslurry reactors, operated in parallel, kept the soil aerated, partially suspended and well mixed. The reactors were inoculated with indigenous microbes of the Genus Pseudomonas. Nutrients were added to maintain the optimum ratio of carbon, nitrogen, and phosphorus. Temperature within the reactors was approximately 25C. The slurry consisted of approximately 30% contaminated soil. Results of pilot studies showed that approximately 90% of the total PAHs were removed in the first two weeks. Total PAH concentration in the soil was reduced from approximately 10973 mg/kg to 1097 mg/kg.

  16. Induction of cobalt limitation in methanol fed UASB reactors

    NARCIS (Netherlands)

    Zandvoort, M.H.; Hullebusch, van E.D.; Golubnic, S.; Gieteling, J.; Lens, P.N.L.

    2006-01-01

    The effect of long-term deprivation of all trace elements or solely cobalt on methanol conversion in upflow anaerobic sludge bed (UASB) reactors inoculated with a nickel-limited sludge was investigated. Two UASB (30 ¿C, pH 7) reactors were operated at organic loading rates of up to 17.6 g chemical

  17. 75 FR 3501 - Advisory Committee on Reactor Safeguards

    Science.gov (United States)

    2010-01-21

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor Safeguards (ACRS...

  18. 76 FR 30404 - Advisory Committee On Reactor Safeguards; Meeting

    Science.gov (United States)

    2011-05-25

    ... [Federal Register Volume 76, Number 101 (Wednesday, May 25, 2011)] [Notices] [Pages 30404-30405] [FR Doc No: 2011-12954] NUCLEAR REGULATORY COMMISSION Advisory Committee On Reactor Safeguards... (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor Safeguards (ACRS) will hold a meeting on...

  19. 75 FR 64366 - Advisory Committee on Reactor Safeguards

    Science.gov (United States)

    2010-10-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor Safeguards (ACRS...

  20. Helminth Egg Removal Capacity of UASB Reactors under Subtropical Conditions

    NARCIS (Netherlands)

    Yaya Beas, R.E.; Ayala-Limaylla, C.; Kujawa-Roeleveld, K.; Lier, van J.B.; Zeeman, G.

    2015-01-01

    This research was conducted to study the anaerobic sludge filtration capacity regarding helminth egg removal in upflow anaerobic sludge blanket (UASB) reactors. Two 25 L lab-scale UASB reactors were operated at an ambient temperature which varied between 17.1 and 28.6 °C. Ascaris suum egg was

  1. New reactor type proposed

    CERN Multimedia

    2003-01-01

    "Russian scientists at the Research Institute of Nuclear Power Engineering in Moscow are hoping to develop a new reactor that will use lead and bismuth as fuel instead of uranium and plutonium" (1/2 page).

  2. RSMASS-D models: An improved method for estimating reactor and shield mass for space reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, A.C.

    1997-10-01

    Three relatively simple mathematical models have been developed to estimate minimum reactor and radiation shield masses for liquid-metal-cooled reactors (LMRs), in-core thermionic fuel element (TFE) reactors, and out-of-core thermionic reactors (OTRs). The approach was based on much of the methodology developed for the Reactor/Shield Mass (RSMASS) model. Like the original RSMASS models, the new RSMASS-derivative (RSMASS-D) models use a combination of simple equations derived from reactor physics and other fundamental considerations, along with tabulations of data from more detailed neutron and gamma transport theory computations. All three models vary basic design parameters within a range specified by the user to achieve a parameter choice that yields a minimum mass for the power level and operational time of interest. The impact of critical mass, fuel damage, and thermal limitations are accounted for to determine the required fuel mass. The effect of thermionic limitations are also taken into account for the thermionic reactor models. All major reactor component masses are estimated, as well as instrumentation and control (I&C), boom, and safety system masses. A new shield model was developed and incorporated into all three reactor concept models. The new shield model is more accurate and simpler to use than the approach used in the original RSMASS model. The estimated reactor and shield masses agree with the mass predictions from separate detailed calculations within 15 percent for all three models.

  3. Department of Reactor Technology

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included.......The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included....

  4. CHIMNEY FOR BOILING WATER REACTOR

    Science.gov (United States)

    Petrick, M.

    1961-08-01

    A boiling-water reactor is described which has vertical fuel-containing channels for forming steam from water. Risers above the channels increase the head of water radially outward, whereby water is moved upward through the channels with greater force. The risers are concentric and the radial width of the space between them is somewhat small. There is a relatively low rate of flow of water up through the radially outer fuel-containing channels, with which the space between the risers is in communication. (AE C)

  5. Natural convection reactor

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, D.F.; Bernath, L.; Menegus, R.L.; Ring, H.F.

    1956-05-01

    A previous report described the conceptual design of a plutonium producing reactor that may be characterized as follows: Power output (2000 MW); cooling - (natural convection of light water through the reactor, up through a draft tube to an evaporative cooling pond, then back to the reactor, and fuel (400 to 500 tons of uranium enriched to 1.2% U-235). Because this reactor would be cooled by the natural convection of light water, it is believed that the construction costs would be significantly less than for a Savannah or Hanford type reactor. Such expensive items as water treatment and water pumping facilities would be eliminated entirely. The inventory of 500 tons of slightly enriched uranium, however, is an unattractive feature. It represents not only a large dollar investment but also makes the reactor less attractive for construction during periods of national emergency because of the almost certain scarcity of even slightly enriched uranium at that time. The Atomic Energy Commission asked that the design be reviewed with the objective of reducing the inventory of uranium, The results of this review are given in this report.

  6. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor

    NARCIS (Netherlands)

    Tawfik, A.; El-Gohary, F.; Temmink, B.G.

    2010-01-01

    The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22-35 A degrees C) was evaluated. The entire treatment system was operated at different hydraulic retention times

  7. Avaliação hidrodinâmica de reator UASB submetido à variação cíclica de vazão Hydrodynamic evaluation of a UASB reactor submitted to cyclical flowrate variation

    Directory of Open Access Journals (Sweden)

    Karina Querne de Carvalho

    2008-06-01

    Full Text Available Um reator UASB em escala piloto (160 l foi usado com o objetivo de estudar seu comportamento hidrodinâmico quando submetido a variações cíclicas senoidais da vazão afluente. Os ensaios foram realizados com traçador eosina Y para as condições operacionais: vazão média afluente constante e igual a 16 l.h-1 e tempo de detenção hidráulica de 10 h (ensaios 1 e 2, e para vazão afluente submetida à variação senoidal de 40% (ensaios 3 e 4 e de 60% (ensaio 5. A variação da concentração do traçador no efluente foi ajustada pelos modelos teóricos de dispersão de fluxo e de reatores em série. O reator UASB apresentou comportamento similar ao de reator de mistura completa para vazão média afluente constante e similar ao reator de fluxo pistonado com a aplicação das variações senoidais cíclicas, sendo que o modelo de pequena dispersão apresentou melhor ajuste matemático.A bench scale UASB reactor (160 l was used in stimulus-response assays in order to evaluate its behaviour when submitted to cyclical sinusoidal variations of the influent flow rate. Assays were carried out with eosin Y as the tracer in different operational conditions: constant mean influent flow rate of 16 l.h-1 and hydraulic residence time of 10 h (assays 1 and 2, and influent flow rate submitted to sinusoidal variation of 40% (assays 3 and 4 and 60% (assay 5. The variation of tracer concentration in the effluent was adjusted by the theoretical models of dispersion (low and high and N-continuous stirred tank reactors in series. Complete mixture behaviour was noted to the application of the constant influent flow rate and a plug flow one to the application of the cyclical sinusoidal variations of the influent flow rate. The low dispersion model demonstrated the best mathematical adjustment in the RTD.

  8. The role of inoculum and reactor configuration for microbial community composition and dynamics in mainstream partial nitritation anammox reactors.

    Science.gov (United States)

    Agrawal, Shelesh; Karst, Søren M; Gilbert, Eva M; Horn, Harald; Nielsen, Per H; Lackner, Susanne

    2017-08-01

    Implementation of partial nitritation anammox (PNA) in the mainstream (municipal wastewater treatment) is still under investigation. Microbial community structure and reactor type can influence the performance of PNA reactor; yet, little is known about the role of the community composition of the inoculum and the reactor configuration under mainstream conditions. Therefore, this study investigated the community structure of inocula of different origin and their consecutive community dynamics in four different lab-scale PNA reactors with 16S rRNA gene amplicon sequencing. These reactors were operated for almost 1 year and subjected to realistic seasonal temperature fluctuations as in moderate climate regions, that is, from 20°C in summer to 10°C in winter. The sequencing analysis revealed that the bacterial community in the reactors comprised: (1) a nitrifying community (consisting of anaerobic ammonium-oxidizing bacteria (AnAOB), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (NOB)); (2) different heterotrophic denitrifying bacteria and other putative heterotrophic bacteria (HB). The nitrifying community was the same in all four reactors at the genus level, although the biomasses were of different origin. Community dynamics revealed a stable community in the moving bed biofilm reactors (MBBR) in contrast to the sequencing batch reactors (SBR) at the genus level. Moreover, the reactor design seemed to influence the community dynamics, and reactor operation significantly influenced the overall community composition. The MBBR seems to be the reactor type of choice for mainstream wastewater treatment. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  9. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    Energy Technology Data Exchange (ETDEWEB)

    P. Delmolino

    2005-05-06

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  10. Anaerobic sewage treatment in a one-stage UASB reactor and a combined UASB Digester system

    NARCIS (Netherlands)

    Mahmoud, N.A.; Zeeman, G.; Gijzen, H.J.; Lettinga, G.

    2004-01-01

    The treatment of sewage at 15°C was investigated in a one-stage upflow anaerobic sludge blanket (UASB) reactor and a UASB-Digester system. The latter consists of a UASB reactor complemented with a digester for mutual sewage treatment and sludge stabilisation. The UASB reactor was operated at a

  11. 78 FR 59075 - Advisory Committee On Reactor Safeguards; Notice of Meeting

    Science.gov (United States)

    2013-09-25

    ... COMMISSION Advisory Committee On Reactor Safeguards; Notice of Meeting In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor... Testing of Emergency Core Cooling Systems for Pressurized Water Reactors'' and Regulatory Guide 1.79.1...

  12. 77 FR 30029 - Advisory Committee on Reactor Safeguards; Notice of Meeting

    Science.gov (United States)

    2012-05-21

    ... COMMISSION Advisory Committee on Reactor Safeguards; Notice of Meeting In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor....: Significant Reactor Operating Experiences (Open)--The Committee will hear presentations by and hold...

  13. 78 FR 3473 - Advisory Committee on Reactor Safeguards; Notice of Meeting

    Science.gov (United States)

    2013-01-16

    ... COMMISSION Advisory Committee on Reactor Safeguards; Notice of Meeting In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor... inspection of a large Nuclear Steam Supply System (NSSS). 1:15 p.m.-3:15 p.m.: Revised Construction Reactor...

  14. 77 FR 69900 - Advisory Committee on Reactor Safeguards; Notice of Meeting

    Science.gov (United States)

    2012-11-21

    ... COMMISSION Advisory Committee on Reactor Safeguards; Notice of Meeting In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor...) Venting Systems for Boiling Water Reactors (BWRs) with Mark I and Mark II Containment Designs, and (4...

  15. 78 FR 18375 - Advisory Committee on Reactor Safeguards; Notice of Meeting

    Science.gov (United States)

    2013-03-26

    ... COMMISSION Advisory Committee on Reactor Safeguards; Notice of Meeting In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor... the Advanced Boiling Water Reactor (ABWR) Core Design. Note: A portion of this session may be closed...

  16. 76 FR 23340 - Advisory Committee on Reactor Safeguards; Notice of Meeting

    Science.gov (United States)

    2011-04-26

    ... COMMISSION Advisory Committee on Reactor Safeguards; Notice of Meeting In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor...:30 a.m.: Advanced Reactor Research Plan (Open/Closed)--The Committee will hear presentations by and...

  17. 76 FR 79229 - Advisory Committee on Reactor Safeguards; Notice of Meeting

    Science.gov (United States)

    2011-12-21

    ... COMMISSION Advisory Committee on Reactor Safeguards; Notice of Meeting In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor... Reactors'' (Open)--The Committee will hear presentations by and hold discussions with representatives of...

  18. Scaleable, High Efficiency Microchannel Sabatier Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Microchannel Sabatier Reactor System (MSRS) consisting of cross connected arrays of isothermal or graded temperature reactors is proposed. The reactor array...

  19. C

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schouten, S.; Volkman, J.K.

    2014-01-01

    A limited suite of C-27, C-29 and C-30 rearranged hopenes identified as neohop-13(18)-enes have been reported in immature Recent and ancient marine/lacustrine sediments and their presence has been explained by dehydration and isomerisation of ubiquitous hopanols or hopenes. Here we investigated the

  20. Solid-state Fermentation of Xylanase from Penicillium canescens 10-10c in a Multi-layer-packed Bed Reactor

    Science.gov (United States)

    Assamoi, Antoine A.; Destain, Jacqueline; Delvigne, Frank; Lognay, Georges; Thonart, Philippe

    Xylanase is produced by Penicillium canescens 10-10c from soya oil cake in static conditions using solid-state fermentation. The impact of several parameters such as the nature and the size of inoculum, bed-loading, and aeration is evaluated during the fermentation process. Mycelial inoculum gives more production than conidial inoculum. Increasing the quantity of inoculum enhances slightly xylanase production. Forced aeration induces more sporulation of strain and reduces xylanase production. However, forced moistened air improves the production compared to production obtained with forced dry air. In addition, increasing bed-loading reduces the specific xylanase production likely due to the incapacity of the Penicillium strain to grow deeply in the fermented soya oil cake mass. Thus, the best cultivation conditions involve mycelial inoculum form, a bed loading of 1-cm height and passive aeration. The maximum xylanase activity is obtained after 7 days of fermentation and attains 10,200 U/g of soya oil cake. These levels are higher than those presented in the literature and, therefore, show all the potentialities of this stock and this technique for the production of xylanase.

  1. Reactor Dosimetry State of the Art 2008

    Science.gov (United States)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    . Williams, A. P. Ribaric and T. Schnauber. Agile high-fidelity MCNP model development techniques for rapid mechanical design iteration / J. A. Kulesza.Extension of Raptor-M3G to r-8-z geometry for use in reactor dosimetry applications / M. A. Hunter, G. Longoni and S. L. Anderson. In vessel exposure distributions evaluated with MCNP5 for Atucha II / J. M. Longhino, H. Blaumann and G. Zamonsky. Atucha I nuclear power plant azimutal ex-vessel flux profile evaluation / J. M. Longhino ... [et al.]. UFTR thermal column characterization and redesign for maximized thermal flux / C. Polit and A. Haghighat. Activation counter using liquid light-guide for dosimetry of neutron burst / M. Hayashi ... [et al.]. Control rod reactivity curves for the annular core research reactor / K. R. DePriest ... [et al.]. Specification of irradiation conditions in VVER-440 surveillance positions / V. Kochkin ... [et al.]. Simulations of Mg-Ar ionisation and TE-TE ionisation chambers with MCNPX in a straightforward gamma and beta irradiation field / S. Nievaart ... [et al.]. The change of austenitic stainless steel elements content in the inner parts of VVER-440 reactor during operation / V. Smutný, J. Hep and P. Novosad. Fast neutron environmental spectrometry using disk activation / G. Lövestam ... [et al.]. Optimization of the neutron activation detector location scheme for VVER-lOOO ex-vessel dosimetry / V. N. Bukanov ... [et al.]. Irradiation conditions for surveillance specimens located into plane containers installed in the WWER-lOOO reactor of unit 2 of the South-Ukrainian NPP / O. V. Grytsenko. V. N. Bukanov and S. M. Pugach. Conformity between LRO mock-ups and VVERS NPP RPV neutron flux attenuation / S. Belousov. Kr. Ilieva and D. Kirilova. FLUOLE: a new relevant experiment for PWR pressure vessel surveillance / D. Beretz ... [et al.]. Transport of neutrons and photons through the iron and water layers / M. J. Kost'ál ... [et al.]. Condition evaluation of spent nuclear fuel assemblies

  2. MERCHANT MARINE SHIP REACTOR

    Science.gov (United States)

    Mumm, J.F.; North, D.C. Jr.; Rock, H.R.; Geston, D.K.

    1961-05-01

    A nuclear reactor is described for use in a merchant marine ship. The reactor is of pressurized light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The foregoing design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass.

  3. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  4. Nuclear reactor safety device

    Science.gov (United States)

    Hutter, Ernest

    1986-01-01

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  5. Heat dissipating nuclear reactor

    Science.gov (United States)

    Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extend from the metal base plate downwardly and outwardly into the earth.

  6. An Overview of Reactor Concepts, a Survey of Reactor Designs.

    Science.gov (United States)

    1985-02-01

    implies, this reactor uses gas as the primary coolant . The coolant has a higher exit temperature when leaving the core than the PWR water 6 AFWL-TN-84...nuclear reactors, coolants must be used to ensure material components are not subject to failure due to the temperature exceeding melting points...Reactors that use deu- terium (heavy water) as a coolant can use natural uranium as a fuel. The * Canadian reactor, CANDU , utilizes this concept

  7. Study Gives Good Odds on Nuclear Reactor Safety

    Science.gov (United States)

    Russell, Cristine

    1974-01-01

    Summarized is data from a recent study on nuclear reactor safety completed by Norman C. Rasmussen and others. Non-nuclear events are about 10,000 times more likely to produce large accidents than nuclear plants. (RH)

  8. SPRAY CALCINATION REACTOR

    Science.gov (United States)

    Johnson, B.M.

    1963-08-20

    A spray calcination reactor for calcining reprocessin- g waste solutions is described. Coaxial within the outer shell of the reactor is a shorter inner shell having heated walls and with open regions above and below. When the solution is sprayed into the irner shell droplets are entrained by a current of gas that moves downwardly within the inner shell and upwardly between it and the outer shell, and while thus being circulated the droplets are calcined to solids, whlch drop to the bottom without being deposited on the walls. (AEC) H03 H0233412 The average molecular weights of four diallyl phthalate polymer samples extruded from the experimental rheometer were redetermined using the vapor phase osmometer. An amine curing agent is required for obtaining suitable silver- filled epoxy-bonded conductive adhesives. When the curing agent was modified with a 47% polyurethane resin, its effectiveness was hampered. Neither silver nor nickel filler impart a high electrical conductivity to Adiprenebased adhesives. Silver filler was found to perform well in Dow-Corning A-4000 adhesive. Two cascaded hot-wire columns are being used to remove heavy gaseous impurities from methane. This purified gas is being enriched in the concentric tube unit to approximately 20% carbon-13. Studies to count low-level krypton-85 in xenon are continuing. The parameters of the counting technique are being determined. The bismuth isotopes produced in bismuth irradiated for polonium production are being determined. Preliminary data indicate the presence of bismuth207 and bismuth-210m. The light bismuth isotopes are probably produced by (n,xn) reactions bismuth-209. The separation of uranium-234 from plutonium-238 solutions was demonstrated. The bulk of the plutonium is removed by anion exchange, and the remainder is extracted from the uranium by solvent extraction techniques. About 99% of the plutonium can be removed in each thenoyltrifluoroacetone extraction. The viscosity, liquid density, and

  9. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.

    2014-01-01

    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  10. Perspectives of SiC-Based Ceramic Composites and Their Applications to Fusion Reactors 3.Status and Prospects of SiC-Based Ceramic Composites for Fusion and Advanced Fission Applications

    Science.gov (United States)

    Katoh, Yutai

    The present status and future prospects of silicon carbide (SiC) continuous fiber-reinforced SiC-matrix ceramic composites (SiC⁄SiC composites) is reviewed from the viewpoint of material development for applications to blanket ⁄ first wall structures in fusion power devices and other advanced nuclear systems. Emphases are placed on the directions of neutron-tolerant composite development. A rationalization of thermal conductivity limits for SiC⁄SiC composites is provided. It is concluded that, although today’s state-of-the-art SiC⁄SiC can contribute to ‘attractive’ fusion power, the expected emergence of novel composites shall further justify taking the risk of employing untraditional materials.

  11. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  12. Nuclear reactor apparatus

    Science.gov (United States)

    Wade, Elman E.

    1978-01-01

    A lifting, rotating and sealing apparatus for nuclear reactors utilizing rotating plugs above the nuclear reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a nuclear core. It also provides a means by which positive top core holddown can be utilized. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the nuclear core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.

  13. Perspectives on reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  14. Safe reactor power

    Energy Technology Data Exchange (ETDEWEB)

    Menegus, R.L.; Ring, H.F.; Bernath, L.

    1956-05-15

    The upper limit on reactor operating power is established not only by safety considerations during steady-state operation but also by the requirement that during an accident no permanent damage be inflicted upon the reactor or the fuel charge. Two general categories of accidents are recognized; they are the ``nuclear runaway`` and the ``loss of coolant flow`` incidents. In this memorandum an incident of the latter type is analyzed. It is assumed that the safety rods function normally, and a method is defined for establishing the highest operating power that may be permitted if the postulated accident is to do no damage.

  15. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  16. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  17. 77 FR 58420 - Advisory Committee On Reactor Safeguards; Notice of Meeting

    Science.gov (United States)

    2012-09-20

    ... COMMISSION Advisory Committee On Reactor Safeguards; Notice of Meeting In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor... proprietary, pursuant to 5 U.S.C. 552b(c)(4)] 1:15 p.m.-2:15 p.m.: Reactor Pressure Vessel Fabrication and...

  18. Reactor operation safety information document

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  19. Fast reactor programme in India

    Indian Academy of Sciences (India)

    2015-09-04

    Sep 4, 2015 ... criteria; passive shutdown and decay heat removal systems; fast breeder reactors in India. PACS No. 28.41.−i. 1. ... water reactors, mainly pressurized heavy water reactors (PHWRs) to extract ∼10 GWe capacity for ..... commissioning phase and most of the supporting systems have been commissioned and.

  20. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is ...

  1. REACTOR FUEL ELEMENTS TESTING CONTAINER

    Science.gov (United States)

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  2. Fast reactor programme in India

    Indian Academy of Sciences (India)

    2015-09-04

    Sep 4, 2015 ... Home; Journals; Pramana – Journal of Physics; Volume 85; Issue 3. Fast reactor programme in India. P Chellapandi P R ... Keywords. Sodium fast reactor; design challenges; construction challenges; emerging safety criteria; passive shutdown and decay heat removal systems; fast breeder reactors in India.

  3. Microstructured reactors for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Aartun, Ingrid

    2005-07-01

    Small scale hydrogen production by partial oxidation (POX) and oxidative steam reforming (OSR) have been studied over Rh-impregnated microchannel Fecralloy reactors and alumina foams. Trying to establish whether metallic microchannel reactors have special advantages for hydrogen production via catalytic POX or OSR with respect to activity, selectivity and stability was of special interest. The microchannel Fecralloy reactors were oxidised at 1000 deg C to form a {alpha}-Al2O3 layer in the channels in order to enhance the surface area prior to impregnation. Kr-BET measurements showed that the specific surface area after oxidation was approximately 10 times higher than the calculated geometric surface area. Approximately 1 mg Rh was deposited in the channels by impregnation with an aqueous solution of RhCl3. Annular pieces (15 mm o.d.,4 mm i.d., 14 mm length) of extruded {alpha}-Al2O3 foams were impregnated with aqueous solutions of Rh(NO3)3 to obtain 0.01, 0.05 and 0.1 wt.% loadings, as predicted by solution uptake. ICP-AES analyses showed that the actual Rh loadings probably were higher, 0.025, 0.077 and 0.169 wt.% respectively. One of the microchannel Fecralloy reactors and all Al2O3 foams were equipped with a channel to allow for temperature measurement inside the catalytic system. Temperature profiles obtained along the reactor axes show that the metallic microchannel reactor is able to minimize temperature gradients as compared to the alumina foams. At sufficiently high furnace temperature, the gas phase in front of the Rh/Al2O3/Frecralloy microchannel reactor and the 0.025 wt.% Rh/Al2O3 foams ignites. Gas phase ignition leads to lower syngas selectivity and higher selectivity to total oxidation products and hydrocarbon by-products. Before ignition of the gas phase the hydrogen selectivity is increased in OSR as compared to POX, the main contribution being the water-gas shift reaction. After gas phase ignition, increased formation of hydrocarbon by

  4. Stabilized Spheromak Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T

    2007-04-03

    The U.S. fusion energy program is focused on research with the potential for studying plasmas at thermonuclear temperatures, currently epitomized by the tokamak-based International Thermonuclear Experimental Reactor (ITER) but also continuing exploratory work on other plasma confinement concepts. Among the latter is the spheromak pursued on the SSPX facility at LLNL. Experiments in SSPX using electrostatic current drive by coaxial guns have now demonstrated stable spheromaks with good heat confinement, if the plasma is maintained near a Taylor state, but the anticipated high current amplification by gun injection has not yet been achieved. In future experiments and reactors, creating and maintaining a stable spheromak configuration at high magnetic field strength may require auxiliary current drive using neutral beams or RF power. Here we show that neutral beam current drive soon to be explored on SSPX could yield a compact spheromak reactor with current drive efficiency comparable to that of steady state tokamaks. Thus, while more will be learned about electrostatic current drive in coming months, results already achieved in SSPX could point to a productive parallel development path pursuing auxiliary current drive, consistent with plans to install neutral beams on SSPX in the near future. Among possible outcomes, spheromak research could also yield pulsed fusion reactors at lower capital cost than any fusion concept yet proposed.

  5. Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  6. Nuclear reactor building

    Science.gov (United States)

    Gou, P.F.; Townsend, H.E.; Barbanti, G.

    1994-04-05

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed there above. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define there between an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin. 4 figures.

  7. JACKETED REACTOR FUEL ELEMENT

    Science.gov (United States)

    Smith, K.F.; Van Thyne, R.J.

    1958-12-01

    A fuel element is described for fast reactors comprised of a core of uranium metal containing material and a jacket around the core, the jacket consisting of from 2.5 to 15 percent of titanium, from 1 to 5 percent of niobium, and from 80 to 96.5 percent of vanadium.

  8. Nuclear rocket engine reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, Anatoly

    2013-07-01

    Covers a new technology of nuclear reactors and the related materials aspects. Integrates physics, materials science and engineering Serves as a basic book for nuclear engineers and nuclear physicists. The development of a nuclear rocket engine reactor (NRER) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  9. WATER BOILER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1960-11-22

    As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

  10. Fossil fuel furnace reactor

    Science.gov (United States)

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  11. NEUTRONIC REACTOR SHIELD

    Science.gov (United States)

    Fermi, E.; Zinn, W.H.

    1957-09-24

    The reactor radiation shield material is comprised of alternate layers of iron-containing material and compressed cellulosic material, such as masonite. The shielding material may be prefabricated in the form of blocks, which can be stacked together in ary desired fashion to form an effective shield.

  12. Neutronic Reactor Structure

    Science.gov (United States)

    Vernon, H. C.; Weinberg, A. M.

    1961-05-30

    The neutronic reactor is comprised of a core consisting of natural uranium and heavy water with a K-factor greater than unity. The core is surrounded by a reflector consisting of natural uranium and ordinary water with a Kfactor less than unity. (AEC)

  13. NEUTRONIC REACTOR CONTROL ELEMENT

    Science.gov (United States)

    Beaver, R.J.; Leitten, C.F. Jr.

    1962-04-17

    A boron-10 containing reactor control element wherein the boron-10 is dispersed in a matrix material is describeri. The concentration of boron-10 in the matrix varies transversely across the element from a minimum at the surface to a maximum at the center of the element, prior to exposure to neutrons. (AEC)

  14. Thermal Reactor Safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  15. Research on the reactor physics and reactor safety of VVER reactors. AER Symposium 2016

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, S.

    2017-09-15

    The selected paperscan be attributed to the following main subjects: Reactor start-up tests and use of corresponding data for code validation, code development and application, approaches for safety analyses, closure of nuclear fuel cycle, prospective reactor concepts.

  16. Sequencing Bacth Reactors; Reactores biologicos secuenciados

    Energy Technology Data Exchange (ETDEWEB)

    Nolasco, D.; Manoharan, M.

    1999-06-01

    The application of sequencing batch reactors (SBR) for wastewater treatment is becoming increasingly popular. However, published information on process performance and construction costs for SBRs is scarce. For this reason. Environment Canada, the Ontario Ministry of the Environment (MOE), and the Water Environment Association of Ontario (WEAO) decided to sponsor a program to evaluate the performance of 75 municipal SBRs in Canada and the United States. Effluent quality, construction costs, and design and operating problems were investigated. Areas for optimization found as a result of this investigation were classified an prioritized based on their impact on operational costs, treatment capacity, effluent quality, and frequency of occurrence. A list of recommendations for process optimization was prepared. A construction cost comparison between activated sludge systems of continuous flow and SBRs was prepared. (Author) 12 refs.

  17. Oxidative coupling of methane using inorganic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.H.; Moser, W.R.; Dixon, A.G. [Worcester Polytechnic Institute, MA (United States)] [and others

    1995-12-31

    The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.

  18. CER. Research reactors in France

    Energy Technology Data Exchange (ETDEWEB)

    Estrade, Jerome [CEA, DEN, DER, Saint-Paul-lez-Durance (France). Jules Horowitz Reactor (JHR)

    2012-10-15

    Networking and the establishment of coalitions between research reactors are important to guarantee a high technical quality of the facility, to assure well educated and trained personnel, to harmonize the codes of standards and the know-ledge of the personnel as well as to enhance research reactor utilization. In addition to the European co-operation, country-specific working groups have been established for many years, such as the French research reactor Club d'Exploitants des Reacteurs (CER). It is the association of French research reactors representing all types of research reactors from zero power up to high flux reactors. CER was founded in 1990 and today a number of 14 research reactors meet twice a year for an exchange of experience. (orig.)

  19. Nuclear reactor construction with bottom supported reactor vessel

    Science.gov (United States)

    Sharbaugh, John E.

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment

  20. Reactor core stability monitoring method for BWR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Shigeru; Ebata, Shigeo.

    1992-09-01

    In an operation for a BWR type reactor, reactor power is usually increased or decreased by controlling both of control rods and reactor core flow rate. Under a certain condition, the reactor core is made unstable by the coupling of nuclear and thermohydrodynamic characteristics in the reactor. Therefore, the reactor power and the reactor core flow rate are changed within a range predetermined by a design calculation. However, if reactor core stability can be always measured and monitored, it is useful for safe operation, as well as an existent operation range can be extended to enable more effective operation. That is, autoregressive a coefficient is determined successively on real time based on fluctuation components of neutron flux signals. Based on the result, an amplification ratio, as a typical measure of the reactor core stability, is determined on a real time. A time constant of the successive calculation for the autoregressive coefficient can be made variable by the amplification ratio. Then, the amplification ratio is estimated at a constant accuracy. With such procedures, the reactor core stability can be monitored successively in an ON-line manner at a high accuracy, thereby enabling to improve the operation performance. (I.S.).

  1. Power reactor noise studies and applications

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, V

    2002-03-01

    The present thesis deals with the neutron noise arising in power reactor systems. Generally, it can be divided into two major parts: first, neutron noise diagnostics, or more specifically, novel methods and algorithms to monitor nuclear industrial reactors; and second, contributions to neutron noise theory as applied to power reactor systems. Neutron noise diagnostics is presented by two topics. The first one is a theoretical study on the possibility to use a newly proposed current-flux (C/F) detector in Pressurised Water Reactors (PWR) for the localisation of anomalies. The second topic concerns various methods to detect guide tube impacting in Boiling Water Reactors (BWR). The significance of these problems comes from the operational experience. The thesis describes a novel method to localise vibrating control rods in a PWR by using only one C/F detector. Another novel method, based on wavelet analysis, is put forward to detect impacting guide tubes in a BWR. Neutron noise theory is developed for both Accelerator Driven Systems (ADS) and traditional reactors. By design the accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and methods that have been developed for traditional reactors and also it poses a number of new problems. As for the latter, the thesis investigates the space-dependent neutron noise caused by a fluctuating source. It is shown that the frequency-dependent spatial behaviour exhibits some new properties that are different from those known in traditional critical systems. On the other hand, various reactor physics approximations (point kinetic, adiabatic etc.) have not been defined yet for the subcritical systems. In this respect the thesis presents a systematic formulation of the above mentioned approximations as well as investigations of their properties. Another important problem in neutron noise theory is the treatment of moving boundaries. In this case one

  2. Compact fusion reactors

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  3. HOMOGENEOUS NUCLEAR REACTOR

    Science.gov (United States)

    Hammond, R.P.; Busey, H.M.

    1959-02-17

    Nuclear reactors of the homogeneous liquid fuel type are discussed. The reactor is comprised of an elongated closed vessel, vertically oriented, having a critical region at the bottom, a lower chimney structure extending from the critical region vertically upwardly and surrounded by heat exchanger coils, to a baffle region above which is located an upper chimney structure containing a catalyst functioning to recombine radiolyticallydissociated moderator gages. In operation the liquid fuel circulates solely by convection from the critical region upwardly through the lower chimney and then downwardly through the heat exchanger to return to the critical region. The gases formed by radiolytic- dissociation of the moderator are carried upwardly with the circulating liquid fuel and past the baffle into the region of the upper chimney where they are recombined by the catalyst and condensed, thence returning through the heat exchanger to the critical region.

  4. AIR COOLED NEUTRONIC REACTOR

    Science.gov (United States)

    Fermi, E.; Szilard, L.

    1958-05-27

    A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

  5. Development of Digital MMIS for Research Reactors: Graded Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Khalil ur, Rahman; Shin, Jin Soo; Heo, Gyun Young [Kyunghee University, Yongin (Korea, Republic of); Son, Han Seong [Joongbu University, Geumsan (Korea, Republic of); Kim, Young Ki; Park, Jae Kwan; Seo, Sang Mun; Kim, Yong Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Though research reactors are small in size yet they are important in terms of industrial applications and R and D, educational purposes. Keeping the eye on its importance, Korean government has intention to upgrade and extend this industry. Presently, Korea is operating only HANARO at Korea Atomic Energy Research Institute (KAERI) and AGN-201K at Kyung Hee University (KHU), which are not sufficient to meet the current requirements of research and education. In addition, we need self-sufficiency in design and selfreliance in design and operation, as we are installing research reactors in domestic as well as foreign territories for instance Jordan. Based on these demands, KAERI and universities initiated a 5 year research project since December 2011 collaboratly, for the deep study of reactor core, thermal hydraulics, materials and instrumentation and control (I and C). This particular study is being carried out to develop highly reliable advanced digital I and C systems using a grading approach. It is worth mentioning that next generation research reactor should be equipped with advance state of the art digital I and C for safe and reliable operation and impermeable cyber security system that is needed to be devised. Moreover, human error is one of important area which should be linked with I and C in terms of Man Machine Interface System (MMIS) and development of I and C should cover human factor engineering. Presently, the digital I and C and MMIS are well developed for commercial power stations whereas such level of development does not exist for research reactors in Korea. Since the functional and safety requirements of research reactors are not so strict as commercial power plants, the design of digital I and C systems for research reactors seems to be graded based on the stringency of regulatory requirements. This paper was motivated for the introduction of those missions, so it is going to describe the general overview of digital I and C systems, the graded

  6. A COOLED NEUTRONIC REACTOR

    Science.gov (United States)

    Wigner, E.P.; Creutz, E.C.

    1960-03-15

    A nuclear reactor comprising a pair of graphite blocks separated by an air gap is described. Each of the blocks contains a plurality of channels extending from the gap through the block with a plurality of fuel elements being located in the channels. Means are provided for introducing air into the gap between the graphite blocks and for exhausting the air from the ends of the channels opposite the gap.

  7. Gaseous fuel reactor research

    Science.gov (United States)

    Thom, K.; Schneider, R. T.

    1977-01-01

    The paper reviews studies dealing with the concept of a gaseous fuel reactor and describes the structure and plans of the current NASA research program of experiments on uranium hexafluoride systems and uranium plasma systems. Results of research into the basic properties of uranium plasmas and fissioning gases are reported. The nuclear pumped laser is described, and the main results of experiments with these devices are summarized.

  8. Initial prediction of dust production in pebble bed reactors

    Directory of Open Access Journals (Sweden)

    M. Rostamian

    2011-09-01

    Full Text Available This paper describes the computational simulation of contact zones between pebbles in a pebble bed reactor. In this type of reactor, the potential for graphite dust generation from frictional contact of graphite pebbles and the subsequent transport of dust and fission products can cause significant safety issues at very high temperatures around 900 °C in HTRs. The present simulation is an initial attempt to quantify the amount of nuclear grade graphite dust produced within a very high temperature reactor.

  9. Tritium Formation and Mitigation in High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Carl Stoots

    2012-08-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. In order to prevent the tritium contamination of proposed reactor buildings and surrounding sites, this paper examines the root causes and potential solutions for the production of this radionuclide, including materials selection and inert gas sparging. A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750°C. Results of the diffusion model are presented for one steadystate value of tritium production in the reactor.

  10. BOILER-SUPERHEATED REACTOR

    Science.gov (United States)

    Heckman, T.P.

    1961-05-01

    A nuclear power reactor of the type in which a liquid moderator-coolant is transformed by nuclear heating into a vapor that may be used to drive a turbo- generator is described. The core of this reactor comprises a plurality of freely suspended tubular fuel elements, called fuel element trains, within which nonboiling pressurized liquid moderator-coolant is preheated and sprayed through orifices in the walls of the trains against the outer walls thereof to be converted into vapor. Passage of the vapor ovcr other unwetted portions of the outside of the fuel elements causes the steam to be superheated. The moderatorcoolant within the fuel elements remains in the liqUid state, and that between the fuel elements remains substantiaily in the vapor state. A unique liquid neutron-absorber control system is used. Advantages expected from the reactor design include reduced fuel element failure, increased stability of operation, direct response to power demand, and circulation of a minimum amount of liquid moderatorcoolant. (A.G.W.)

  11. NUCLEAR REACTOR CORE DESIGN

    Science.gov (United States)

    Mahlmeister, J.E.; Peck, W.S.; Haberer, W.V.; Williams, A.C.

    1960-03-22

    An improved core design for a sodium-cooled, graphitemoderated nuclear reactor is described. The improved reactor core comprises a number of blocks of moderator material, each block being in the shape of a regular prism. A number of channels, extending the length of each block, are disposed around the periphery. When several blocks are placed in contact to form the reactor core, the channels in adjacent blocks correspond with each other to form closed conduits extending the length of the core. Fuel element clusters are disposed in these closed conduits, and liquid coolant is forced through the annulus between the fuel cluster and the inner surface of the conduit. In a preferred embodiment of the invention, the moderator blocks are in the form of hexagonal prisms with longitudinal channels cut into the corners of the hexagon. The main advantage of an "edge-loaded" moderator block is that fewer thermal neutrons are absorbed by the moderator cladding, as compared with a conventional centrally loaded moderator block.

  12. Nuclear reactor sealing system

    Science.gov (United States)

    McEdwards, James A.

    1983-01-01

    A liquid metal-cooled nuclear reactor sealing system. The nuclear reactor includes a vessel sealed at its upper end by a closure head. The closure head comprises at least two components, one of which is rotatable; and the two components define an annulus therebetween. The sealing system includes at least a first and second inflatable seal disposed in series in an upper portion of the annulus. The system further includes a dip seal extending into a body of insulation located adjacent a bottom portion of the closure head. The dip seal comprises a trough formed by a lower portion of one of the components, and a seal blade pendently supported from the other component and extending downwardly into the trough. A body of liquid metal is contained in the trough which submerges a portion of the seal blade. The seal blade is provided with at least one aperture located above the body of liquid metal for providing fluid communication between the annulus intermediate the dip seal and the inflatable seals, and a body of cover gas located inside the vessel. There also is provided means for introducing a purge gas into the annulus intermediate the inflatable seals and the seal blade. The purge gas is introduced in an amount sufficient to substantially reduce diffusion of radioactive cover gas or sodium vapor up to the inflatable seals. The purge gas mixes with the cover gas in the reactor vessel where it can be withdrawn from the vessel for treatment and recycle to the vessel.

  13. Design optimization of metal getter reactors for removing tritium from flowing gas streams

    Energy Technology Data Exchange (ETDEWEB)

    Nobile, A.; Bieniewski, T.; Frame, K.; Little, R.; Fisher, K. [Los Alamos National Lab., NM (United States)

    1995-10-01

    A reaction engineering approach was used to design a SAES St 198 metal getter reactor for a glovebox detritiation system. The detritiation system will be used to decontaminate and decommission an Li(D, T)-contaminated glovebox previously used in the U.S. nuclear weapons program. The approach involved development of a model that calculates reactor breakthrough curves as a function of various reactor physical parameters. Experiments involving flow of deuterium in nitrogen through a small metal getter reactor validated the model. The model was then used to investigate the effects of temperature, getter pellet size, reactor diameter, and reactor volume on the reactor performance. The resulting design was a 7 cm diam. by 40 cm long cylindrical reactor that operates at 250 {degree}C, and is filled with 5 kg of as-received SAES St 198 getter pellets. The reactor handles a flow rate of 100 L/min. An St 909 getter reactor was used upstream of the St 198 reactor for impurity removal and water decomposition. The glovebox cleanup system design and getter reactor mechanical design are discussed. 14 refs., 6 figs.

  14. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  15. Assessment of the high performance light water reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Starflinger, J. [Univ. of Stuttgart, IKE, (Germany); Schulenberg, T. [Karlsruhe Inst. of Tech., Karlsruhe (Germany); Bittermann, D. [AREVA NP GmbH, Erlangen (Germany); Andreani, M. [Paul Scherrer Inst., Villigen (Switzerland); Maraczy, C. [AEKI-KFKI, Budapest (Hungary)

    2011-07-01

    From 2006-2010, the High Performance Light Water Reactor (HPLWR) was investigated within a European Funded project called HPLWR Phase 2. Operated at 25MPa with a heat-up rate in the core from 280{sup o}C to 500{sup o}C, this reactor concept provides a technological challenge in the fields of design, neutronics, thermal-hydraulics and heat transfer, materials, and safety. The assessment of the concept with respect to the goals of the technology roadmap for Generation IV Nuclear Reactors of the Generation IV International Forum shows that the HPLWR has a potential to fulfil the goals of economics, safety and proliferation resistance and physical protection. In terms of sustainability, the HPLWR with a thermal neutron spectrum investigated within this project, does not differ from existing Light Water Reactors in terms of usage of fuel and waste production. (author)

  16. Biodiesel production using a membrane reactor.

    Science.gov (United States)

    Dubé, M A; Tremblay, A Y; Liu, J

    2007-02-01

    The immiscibility of canola oil in methanol provides a mass-transfer challenge in the early stages of the transesterification of canola oil in the production of fatty acid methyl esters (FAME or biodiesel). To overcome or rather, exploit this situation, a two-phase membrane reactor was developed to produce FAME from canola oil and methanol. The transesterification of canola oil was performed via both acid- or base-catalysis. Runs were performed in the membrane reactor in semi-batch mode at 60, 65 and 70 degrees C and at different catalyst concentrations and feed flow rates. Increases in temperature, catalyst concentration and feedstock (methanol/oil) flow rate significantly increased the conversion of oil to biodiesel. The novel reactor enabled the separation of reaction products (FAME/glycerol in methanol) from the original canola oil feed. The two-phase membrane reactor was particularly useful in removing unreacted canola oil from the FAME product yielding high purity biodiesel and shifting the reaction equilibrium to the product side.

  17. MOX fuel assembly and reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Motoo; Shimada, Hidemitsu; Kaneto, Kunikazu; Koyama, Jun-ichi; Uchikawa, Sadao [Hitachi Ltd., Tokyo (Japan); Izutsu, Sadayuki; Fujita, Satoshi

    1998-03-10

    MOX fuel assemblies containing fuel rods of mixed oxide (MOX) of uranium and plutonium are loaded to a reactor core of a BWR type reactor. The fuel assembly comprises lattice like arranged fuel rods, one large diameter water rod disposed at the central portion and a channel box surrounding them. An average enrichment degree A of fission plutonium of fuel rods arranged at the outermost layer region and an average enrichment degree B of fission plutonium of fuel rods arranged at the inner layer region satisfy the relation of B/A {>=} 2.2. It is preferable that the average enrichment degree C of fission plutonium of fuel rods arranged at the outermost corner portions and the enrichment degree A satisfy the relation: C/A {<=} 0.5. With such a constitution, even in a case where the MOX fuel assemblies and uranium fuel assemblies are disposed together, thermal margin can be improved. (I.N.)

  18. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Science.gov (United States)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  19. Spiral-shaped disinfection reactors

    KAUST Repository

    Ghaffour, Noreddine

    2015-08-20

    This disclosure includes disinfection reactors and processes for the disinfection of water. Some disinfection reactors include a body that defines an inlet, an outlet, and a spiral flow path between the inlet and the outlet, in which the body is configured to receive water and a disinfectant at the inlet such that the water is exposed to the disinfectant as the water flows through the spiral flow path. Also disclosed are processes for disinfecting water in such disinfection reactors.

  20. Acceptability of reactors in space

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1981-04-01

    Reactors are the key to our future expansion into space. However, there has been some confusion in the public as to whether they are a safe and acceptable technology for use in space. The answer to these questions is explored. The US position is that when reactors are the preferred technical choice, that they can be used safely. In fact, it dies not appear that reactors add measurably to the risk associated with the Space Transportation System.

  1. Adaptation of Phytoplankton-Degrading Microbial Communities to Thermal Reactor Effluent in a New Cooling Reservoir

    Science.gov (United States)

    Schoenberg, Steven A.; Benner, Ronald; Sobecky, Patricia; Hodson, Robert E.

    1988-01-01

    In water column and sediment inocula from a nuclear reactor cooling reservoir, natural phytoplankton substrate labeled with 14C was used to determine aerobic and anaerobic mineralization rates for a range of temperatures (25, 40, 55, and 70°C) expected during reactor operation. For experiments that were begun during reactor shutdown, aerobic decomposition occurred at temperatures of <55°C. After 2 months of reactor operation, aerobic rates increased substantially at 55 and 70°C, although maximum rates were observed at temperatures of ≤40°C. The temperature range for which maximum anaerobic mineralization (i.e., the sum of CH4 and CO2) was observed was 25 to 40°C when the reactor was off, expanding to 25 to 55°C during reactor operation. Increased rates at 55°C, but not 70°C, correlated with an increase in the ratio of cumulative methane to carbon dioxide produced over 21 days. When reduced reactor power lowered the maximum temperature of the reservoir to 42°C, aerobic decomposition at 70°C was negligible, but remained substantial at 55°C. Selection for thermophilic decomposers occurred rapidly in this system in both aerobic and anaerobic communities and did not require prolonged exposure to elevated temperatures. PMID:16347659

  2. Nuclear energy. Which reactors for tomorrow?; Energie nucleaire quels reacteurs pour demain?

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, V

    2006-01-15

    Nuclear energy is making a strong come-back in energy strategies. However, to better manage the nuclear fuel resources, the future reactors will have to save it thanks to a higher burnup (more than 0.8% instead of 0.5% today) and recycling rate. Future reactors will be used also as heat generation sources (800-1000 deg. C) for the production of hydrogen, the gasification of coal, the steel-making industry, the petrochemistry etc.. Several technologies are under study: the main ones studied in France are the sodium-cooled FBR, the fast gas-cooled reactor and the very-high temperature reactor. Three other technologies are studied at the international scale: the fast lead-cooled reactor, the molten-salt reactor and the supercritical water reactor. This paper presents briefly the general principles of these technologies with their respective advantage and drawbacks. (J.S.)

  3. Development of a Robust Tri-Carbide Fueled Reactor for Multimegawatt Space Power and Propulsion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Samim Anghaie; Travis W. Knight; Johann Plancher; Reza Gouw

    2004-08-11

    An innovative reactor core design based on advanced, mixed carbide fuels was analyzed for nuclear space power applications. Solid solution, mixed carbide fuels such as (U,Zr,Nb)c and (U,Zr, Ta)C offer great promise as an advanced high temperature fuel for space power reactors.

  4. Neutrino Oscillation Studies with Reactors

    CERN Document Server

    Vogel, Petr; Zhang, Chao

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  5. Reactor Pressure Vessel (RPV) Acquisition Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, Ronald Eugene [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2008-04-01

    The Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. The purpose of this report is to address the acquisition strategy for the NGNP Reactor Pressure Vessel (RPV). This component will be larger than any nuclear reactor pressure vessel presently in service in the United States. The RPV will be taller, larger in diameter, thicker walled, heavier and most likely fabricated at the Idaho National Laboratory (INL) site of multiple subcomponent pieces. The pressure vessel steel can either be a conventional materials already used in the nuclear industry such as listed within ASME A508/A533 specifications or it will be fabricated from newer pressure vessel materials never before used for a nuclear reactor in the US. Each of these characteristics will present a

  6. Nuclear Reactor Safety; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    This publication announces on an monthly basis the current worldwide information available on all safety-related aspects of reactors, including: accident analysis, safety systems, radiation protection, decommissioning and dismantling, and security measures. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are other US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Technology Data Exchange, the International Atomic Energy Agency's International Nuclear Information System, or government-to-government agreements.

  7. Iris reactor development

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, D.V.; Carelli, M.D. [Westinghouse Electric Corp., Baltimore, MD (United States); Miller, K. [BNFL, Inc., (United Kingdom); Lombardi, C.V.; Ricotti, M.E. [Polytechnic of Milan, Polimi (Italy); Todreas, N.E. [Masachussets Institute of Technology, MIT (United States); Greenspan, E. [University of California at Berkeley, UCB (United States); Yamamoto, K. [JAPC Japan Atomic Power Co., Tokyo (Japan); Nagano, A. [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Ninokata, H. [Tokyo Institut of Technology, TIT (Japan); Robertson, J. [Westinghouse and bechtel (United States); Oriolo, F. [Pisa Univ. (Italy)

    2001-07-01

    The development progress of the IRIS (International Reactor Innovative and Secure) nuclear power system is presented. IRIS is currently being developed by an international consortium of industry, laboratory, university and utility establishments, led by Westinghouse. It is aimed at achieving the four major objectives of the Generation IV nuclear systems, i.e., proliferation resistance, enhanced safety, economic competitiveness and reduced waste. The project first year activities, which are summarized here, were focused on core neutronics, in-vessel configuration, steam generator and containment design, safety approach and economic performance. Details of these studies are provided in parallel papers in these proceedings. (author)

  8. NEUTRONIC REACTOR CONSTRUCTION

    Science.gov (United States)

    Vernon, H.C.; Goett, J.J.

    1958-09-01

    A cover device is described for the fuel element receiving tube of a neutronic reactor of the heterogeneous, water cooled type wherein said tubes are arranged in a moderator with their longitudinal axes vertical. The cover is provided with means to support a rod-type fuel element from the bottom thereof and means to lock the cover in place, the latter being adapted for remote operation. This cover device is easily removable and seals the opening in the upper end of the fuel tube against leakage of coolant.

  9. Reactor coolant pump flywheel

    Science.gov (United States)

    Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

    2013-11-26

    A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

  10. SODIUM DEUTERIUM REACTOR

    Science.gov (United States)

    Oppenheimer, E.D.; Weisberg, R.A.

    1963-02-26

    This patent relates to a barrier system for a sodium heavy water reactor capable of insuring absolute separation of the metal and water. Relatively cold D/sub 2/O moderator and reflector is contained in a calandria into which is immersed the fuel containing tubes. The fuel elements are cooled by the sodium which flows within the tubes and surrounds the fuel elements. The fuel containing tubes are surrounded by concentric barrier tubes forming annular spaces through which pass inert gases at substantially atmospheric pressure. Header rooms above and below the calandria are provided for supplying and withdrawing the sodium and inert gases in the calandria region. (AEC)

  11. An Idea of 20% test of the Initial Core Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Kyung Ho; Yang, Sung Tae; Jung, Ji Eun [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2012-05-15

    Many tests have been performed on the OPR1000 and APR1400 before commercial operation. Some of these tests were performed at reactor power levels of 20% and 50%. The CPC (Core Protection Calculator) power distribution test is one of these tests. It is performed to assure the reliability of the Core Protection Calculator System (CPCS). Through this test, SAM1 is calculated using the snapshots2. The test takes about nine hours at a reactor power level of 20% and about thirty hours at a reactor power level of 50%. SAM used at each reactor power level is as follows: 1. Reactor power of 0% {approx} 20%: Designed SAM (DSAM) 2. Reactor power of 20% {approx} 50%: SAM calculated (C-SAM) at a reactor power of 20% 3. Reactor power 50% {approx} End of Cycle : SAM calculated at a reactor power of 50% As mentioned earlier, SAM is calculated and punched into CPC to assure the reliability of CPCS. Therefore, CPC is operated having penalties with D-SAM until3 reaching a reactor power of 20%. That is, the penalty of CPC will be removed when SAM is calculated and punched into the CPC at a reactor power of 20%. But these penalties are considered to be removed after a reactor power of 50% test in order to maintain the conservatism of the CPC. This is done because the final values calculated using C-SAM, in contrast to those calculated using SAM, a reactor power of 50%, are not correct. This paper began from an idea, 'If so, what would happen if we removed the CPC power distribution test at a reactor power of 20%?'

  12. The reactor core TRIGA Mark-III with fuels type 30/20; El nucleo del reactor TRIGA Mark-III con combustible tipo 30/20

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F., E-mail: fortunato.aguilar@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    This work describes the calculation series carried out with the program MCNP5 in order to define the configuration of the reactor core with fuels 30/20 (fuels with 30% of uranium content in the Or-Zr-H mixture and a nominal enrichment of 20%). To select the configuration of the reactor core more appropriate to the necessities and future uses of the reactor, the following criterions were taken into account: a) the excess in the reactor reactivity, b) the switch out margin and c) to have new irradiation facilities inside the reactor core. Taking into account these criterions is proceeded to know the characteristics of the components that form the reactor core (dimensions, geometry, materials, densities and positions), was elaborated a base model of the reactor core, for the MCNP5 code, with a configuration composed by 85 fuel elements, 4 control bars and the corresponding structural elements. The high reactivity excess obtained with this model, gave the rule to realize other models of the reactor core in which the reactivity excess and the switch out margin were approximate to the values established in the technical specifications of the reactor operation. Several models were realized until finding the satisfactory model; this is composite for 74 fuels, 4 control bars and 6 additional experimental positions inside the reactor core. (Author)

  13. Power monitoring in space nuclear reactors using silicon carbide radiation detectors

    Science.gov (United States)

    Ruddy, Frank H.; Patel, Jagdish U.; Williams, John G.

    2005-01-01

    Space reactor power monitors based on silicon carbide (SiC) semiconductor neutron detectors are proposed. Detection of fast leakage neutrons using SiC detectors in ex-core locations could be used to determine reactor power: Neutron fluxes, gamma-ray dose rates and ambient temperatures have been calculated as a function of distance from the reactor core, and the feasibility of power monitoring with SiC detectors has been evaluated at several ex-core locations. Arrays of SiC diodes can be configured to provide the required count rates to monitor reactor power from startup to full power Due to their resistance to temperature and the effects of neutron and gamma-ray exposure, SiC detectors can be expected to provide power monitoring information for the fill mission of a space reactor.

  14. Fast Reactor Fuel Type and Reactor Safety Performance

    Energy Technology Data Exchange (ETDEWEB)

    R. Wigeland; J. Cahalan

    2009-09-01

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and

  15. Reactor Physics Analysis Models for a CANDU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok

    2007-10-15

    Canada deuterium uranium (CANDU) reactor physics analysis is typically performed in three steps. At first, macroscopic cross-sections of the reference lattice is produced by modeling the reference fuel channel. Secondly macroscopic cross-sections of reactivity devices in the reactor are generated. The macroscopic cross-sections of a reactivity device are calculated as incremental cross-sections by subtracting macroscopic cross-sections of a three-dimensional lattice without reactivity device from those of a three-dimensional lattice with a reactivity device. Using the macroscopic cross-sections of the reference lattice and incremental cross-sections of the reactivity devices, reactor physics calculations are performed. This report summarizes input data of typical CANDU reactor physics codes, which can be utilized for the future CANDU reactor physics analysis.

  16. Parameter analysis calculation on characteristics of portable FAST reactor

    Energy Technology Data Exchange (ETDEWEB)

    Otsubo, Akira; Kowata, Yasuki [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-06-01

    In this report, we performed a parameter survey analysis by using the analysis program code STEDFAST (Space, TErrestrial and Deep sea FAST reactor-gas turbine system). Concerning the deep sea fast reactor-gas turbine system, calculations with many variable parameters were performed on the base case of a NaK cooled reactor of 40 kWe. We aimed at total equipment weight and surface area necessary to remove heat from the system as important values of the characteristics of the system. Electric generation power and the material of a pressure hull were specially influential for the weight. The electric generation power, reactor outlet/inlet temperatures, a natural convection heat transfer coefficient of sea water were specially influential for the area. Concerning the space reactor-gas turbine system, the calculations with the variable parameters of compressor inlet temperature, reactor outlet/inlet temperatures and turbine inlet pressure were performed on the base case of a Na cooled reactor of 40 kWe. The first and the second variable parameters were influential for the total equipment weight of the important characteristic of the system. Concerning the terrestrial fast reactor-gas turbine system, the calculations with the variable parameters of heat transferred pipe number in a heat exchanger to produce hot water of 100degC for cogeneration, compressor stage number and the kind of primary coolant material were performed on the base case of a Pb cooled reactor of 100 MWt. In the comparison of calculational results for Pb and Na of primary coolant material, the primary coolant weight flow rate was naturally large for the former case compared with for the latter case because density is very different between them. (J.P.N.)

  17. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  18. Decommissioning of commercial reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yui, Kohei [Japan Atomic Power Co., Tokyo (Japan)

    1997-02-01

    In the case of nuclear reactors, the diversion is often difficult as they are highly purposive, the disassembling is not easy as they are robust, and attention is required to handle the equipment containing radioactive substances. Decommissioning is defined as all the measures taken from the state that facilities become unused to the state of becoming green field. In Japan, already 40 years have elapsed since the effort for nuclear power was begun, and in this paper, the present state and future subjects of the decommissioning of nuclear power stations are summarized at the opportunity that the stop of commercial operation of Tokai Nuclear Power Station was decided recently. In the Tokai Nuclear Power Station, 166 MWe graphite-moderated, carbon dioxide-cooled reactor called improved Calder Hall type is installed, which started the operation in 1966. The circumstances of the decision to stop its operation are explained. The basic policy of the decommissioning of commercial nuclear power stations has been already published by the Advisory Committee for Energy. The state of the decommissioning in various foreign countries is reported. In Japan, the state of green field was realized in 1996 in the decommissioning of the JPDR in Japan Atomic Energy Research institute, and the decommissioning of the atomic powered ship ``Mutsu`` was completed. (K.I.)

  19. Reactor surface contamination stabilization. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    Contaminated surfaces, such as the face of a nuclear reactor, need to be stabilized (fixed) to avoid airborne contamination during decontamination and decommissioning activities, and to prepare for interim safe storage. The traditional (baseline) method of fixing the contamination has been to spray a coating on the surfaces, but ensuring complete coverage over complex shapes, such as nozzles and hoses, is difficult. The Hanford Site C Reactor Technology Demonstration Group demonstrated innovative technologies to assess stabilization properties of various coatings and to achieve complete coverage of complex surfaces on the reactor face. This demonstration was conducted in two phases: the first phase consisted of a series of laboratory assessments of various stabilization coatings on metal coupons. For the second phase, coatings that passed the laboratory tests were applied to the front face of the C Reactor and evaluated. The baseline coating (Rust-Oleum No. 769) and one of the innovative technologies did not completely cover nozzle assemblies on the reactor face, the most critical of the second-phase evaluation criteria. However, one of the innovative coating systems, consisting of a base layer of foam covered by an outer layer of a polymeric film, was successful. The baseline technology would cost approximately 33% as much as the innovative technology cost of $64,000 to stabilize an entire reactor face (196 m{sup 2} or 2116 ft{sup 2}) with 2,004 nozzle assemblies, but the baseline system failed to provide complete surface coverage.

  20. Study of the hydrogen behavior in amorphous hydrogenated materials of type a - C:H and a - SiC:H facing fusion reactor plasma; Etude du comportament de l`hydrogene dans des materiaux amorphes hydrogenes de type a - C:H et a - SiC:H devant faire face au plasma des reacteurs a fusion

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, G. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire

    1997-04-10

    Plasma facing components of controlled fusion test devices (tokamaks) are submitted to several constraints (irradiation, high temperatures). The erosion (physical sputtering and chemical erosion) and the hydrogen recycling (retention and desorption) of these materials influence many plasma parameters and thus affect drastically the tokamak running. First, we will describe the different plasma-material interactions. It will be pointed out, how erosion and hydrogen recycling are strongly related to both chemical and physical properties of the material. In order to reduce these interactions, we have selected two amorphous hydrogenated materials (a-C:H and a-SiC:H), which are known for their good thermal and chemical qualities. Some samples have been then implanted with lithium ions at different fluences. Our materials have been then irradiated with deuterium ions at low energy. From our results, it is shown that both the lithium implantation and the use of an a - SiC:H substrate can be beneficial in enhancing the hydrogen retention. These results were completed with thermal desorption studies of these materials. It was evidenced that the hydrogen fixation was more efficient in a-SiC:H than in a-C:H substrate. Results in good agreement with those described above have been obtained by exposing a - C:H and a - SiC:H samples to the scrape off layer of the tokamak of Varennes (TdeV, Canada). A modelling of hydrogen diffusion under irradiation has been also proposed. (author) 176 refs.

  1. Assessment of Sensor Technologies for Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Korsah, Kofi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vlim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Britton, Jr, Charles L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wootan, D. W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anheier, Jr, N. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diaz, A. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, E. H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chien, H. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Sheen, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Bakhtiari, Sasan [Argonne National Lab. (ANL), Argonne, IL (United States); Gopalsami, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Heifetz, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Tam, S. W. [Argonne National Lab. (ANL), Argonne, IL (United States); Park, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Upadhyaya, B. R. [Univ. of Tennessee, Knoxville, TN (United States); Stanford, A. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-10-01

    Sensors and measurement technologies provide information on processes, support operations and provide indications of component health. They are therefore crucial to plant operations and to commercialization of advanced reactors (AdvRx). This report, developed by a three-laboratory team consisting of Argonne National Laboratory (ANL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL), provides an assessment of sensor technologies and a determination of measurement needs for AdvRx. It provides the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy’s (DOE’s) Advanced Reactor Technology (ART) program and contributes to the design and implementation of AdvRx concepts.

  2. Solvent refined coal reactor quench system

    Science.gov (United States)

    Thorogood, R.M.

    1983-11-08

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream. 1 fig.

  3. Brookhaven leak reactor to close

    CERN Multimedia

    MacIlwain, C

    1999-01-01

    The DOE has announced that the High Flux Beam Reactor at Brookhaven is to close for good. Though the news was not unexpected researchers were angry the decision had been taken before the review to assess the impact of reopening the reactor had been concluded (1 page).

  4. Rotary reactor and use thereof

    NARCIS (Netherlands)

    Bakker Wridzer, J.W.; Kapteijn, F.; Moulijn, J.A.

    1998-01-01

    The invention relates to a rotary reactor consisting of a number of tubular reaction compartments (A), each provided with a first end and a second end, a ceramic first reactor end plate (B) in which said first ends are received, and a second end plate (B) in which said second ends are received,

  5. Radiation Shielding for Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.T.

    1999-10-01

    Radiation shielding requirements for fusion reactors present different problems than those for fission reactors and accelerators. Fusion devices, particularly tokamak reactors, are complicated by geometry constraints that complicate disposition of fully effective shielding. This paper reviews some of these shielding issues and suggested solutions for optimizing the machine and biological shielding. Radiation transport calculations are essential for predicting and confirming the nuclear performance of the reactor and, as such, must be an essential part of the reactor design process. Development and optimization of reactor components from the first wall and primary shielding to the penetrations and containment shielding must be carried out in a sensible progression. Initial results from one-dimensional transport calculations are used for scoping studies and are followed by detailed two- and three-dimensional analyses to effectively characterize the overall radiation environment. These detail model calculations are essential for accounting for the radiation leakage through ports and other penetrations in the bulk shield. Careful analysis of component activation and radiation damage is cardinal for defining remote handling requirements, in-situ replacement of components, and personnel access at specific locations inside the reactor containment vessel. Radiation shielding requirements for fusion reactors present different problems than those for fission reactors and accelerators. Fusion devices, particularly tokamak reactors, are complicated by geometry constraints that complicate disposition of fully effective shielding. This paper reviews some of these shielding issues and suggested solutions for optimizing the machine and biological shielding. Radiation transport calculations are essential for predicting and confirming the nuclear performance of the reactor and, as such, must be an essential part of the reactor design process. Development and optimization of reactor

  6. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: II. Quantification of inhibition and suitability of membrane reactors.

    Science.gov (United States)

    Andrić, Pavle; Meyer, Anne S; Jensen, Peter A; Dam-Johansen, Kim

    2010-01-01

    Product inhibition of cellulolytic enzymes affects the efficiency of the biocatalytic conversion of lignocellulosic biomass to ethanol and other valuable products. New strategies that focus on reactor designs encompassing product removal, notably glucose removal, during enzymatic cellulose conversion are required for alleviation of glucose product inhibition. Supported by numerous calculations this review assesses the quantitative aspects of glucose product inhibition on enzyme-catalyzed cellulose degradation rates. The significance of glucose product inhibition on dimensioning of different ideal reactor types, i.e. batch, continuous stirred, and plug-flow, is illustrated quantitatively by modeling different extents of cellulose conversion at different reaction conditions. The main operational challenges of membrane reactors for lignocellulose conversion are highlighted. Key membrane reactor features, including system set-up, dilution rate, glucose output profile, and the problem of cellobiose are examined to illustrate the quantitative significance of the glucose product inhibition and the total glucose concentration on the cellulolytic conversion rate. Comprehensive overviews of the available literature data for glucose removal by membranes and for cellulose enzyme stability in membrane reactors are given. The treatise clearly shows that membrane reactors allowing continuous, complete, glucose removal during enzymatic cellulose hydrolysis, can provide for both higher cellulose hydrolysis rates and higher enzyme usage efficiency (kg(product)/kg(enzyme)). Current membrane reactor designs are however not feasible for large scale operations. The report emphasizes that the industrial realization of cellulosic ethanol requires more focus on the operational feasibility within the different hydrolysis reactor designs, notably for membrane reactors, to achieve efficient enzyme-catalyzed cellulose degradation. (c) 2010 Elsevier Inc. All rights reserved.

  7. Fischer-Tropsch Slurry Reactor modeling

    Energy Technology Data Exchange (ETDEWEB)

    Soong, Y.; Gamwo, I.K.; Harke, F.W. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    This paper reports experimental and theoretical results on hydrodynamic studies. The experiments were conducted in a hot-pressurized Slurry-Bubble Column Reactor (SBCR). It includes experimental results of Drakeol-10 oil/nitrogen/glass beads hydrodynamic study and the development of an ultrasonic technique for measuring solids concentration. A model to describe the flow behavior in reactors was developed. The hydrodynamic properties in a 10.16 cm diameter bubble column with a perforated-plate gas distributor were studied at pressures ranging from 0.1 to 1.36 MPa, and at temperatures from 20 to 200{degrees}C, using a dual hot-wire probe with nitrogen, glass beads, and Drakeol-10 oil as the gas, solid, and liquid phase, respectively. It was found that the addition of 20 oil wt% glass beads in the system has a slight effect on the average gas holdup and bubble size. A well-posed three-dimensional model for bed dynamics was developed from an ill-posed model. The new model has computed solid holdup distributions consistent with experimental observations with no artificial {open_quotes}fountain{close_quotes} as predicted by the earlier model. The model can be applied to a variety of multiphase flows of practical interest. An ultrasonic technique is being developed to measure solids concentration in a three-phase slurry reactor. Preliminary measurements have been made on slurries consisting of molten paraffin wax, glass beads, and nitrogen bubbles at 180 {degrees}C and 0.1 MPa. The data show that both the sound speed and attenuation are well-defined functions of both the solid and gas concentrations in the slurries. The results suggest possibilities to directly measure solids concentration during the operation of an autoclave reactor containing molten wax.

  8. Study on membrane reactors for biodiesel production by phase behaviors of canola oil methanolysis in batch reactors.

    Science.gov (United States)

    Cheng, Li-Hua; Yen, Shih-Yang; Su, Li-Sheng; Chen, Junghui

    2010-09-01

    In comparison with the general stirring batch reactor, the membrane reactor has been reported to have higher molar ratios of methanol to oil but ultralow catalyst concentration in the biodiesel production. In this research, the methanolysis of canola oil is conducted in a stirring batch reactor in the presence of NaOH as a catalyst. Based on the investigation of the effects of operating conditions, including methanol to oil molar ration, catalyst concentrations and temperatures, the time course of the reaction path for the reactant composition in the ternary phase diagram of oil-FAME-MeOH offers an effective way to understand the operation of membrane reactors in the biodiesel production. The results show that increasing the residence time of the whole reactant system within the two-phase zone is good for the separation operation through the membranes. (c) 2010 Elsevier Ltd. All rights reserved.

  9. Effect of post-digestion temperature on serial CSTR biogas reactor performance

    DEFF Research Database (Denmark)

    Boe, Kanokwan; Karakashev, Dimitar Borisov; Trably, Eric

    2009-01-01

    of 5.3 days. Three post-digestion temperatures (55 degrees C, 37 degrees C and 15 degrees C) were compared in terms of biogas production, process stability, microbial community and methanogenic activity, The results showed that the post-digesters operated at 55 degrees C, 37 degrees C and 15 degrees C...... gave extra biogas production of 11.7%, 8.4% and 1.2%, respectively. The post-digester operated at 55 degrees C had the highest biogas production and was the most stable in terms of low VFA concentrations. The specific methanogenic activity tests revealed that the main reactor and the post-digester......The effect of post-digestion temperature on a lab-scale serial continuous-flow stirred tank reactor (CSTR) system performance was investigated. The system consisted of a main reactor operated at 55 degrees C with hydraulic retention time (HRT) of 15 days followed by post-digestion reactors with HRT...

  10. Neutrino Experiments at Reactors

    Science.gov (United States)

    Reines, F.; Gurr, H. S.; Jenkins, T. L.; Munsee, J. H.

    1968-09-09

    A description is given of the electron-antineutrino program using a large fission reactor. A search has been made for a neutral weak interaction via the reaction (electron antineutrino + d .> p + n + electron antineutrino), the reaction (electron antineutrino + d .> n + n + e{sup +}) has now been detected, and an effort is underway to observe the elastic scattering reaction (electron antineutrino + e{sup -} .> electron antineutrino + e{sup -}) as well as to measure more precisely the reaction (electron antineutrino + p .> n + e{sup+}). The upper limit on the elastic scattering reaction which we have obtained with our large composite NaI, plastic, liquid scintillation detector is now about 50 times the predicted value.

  11. Licensed reactor nuclear safety criteria applicable to DOE reactors

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards.

  12. Flow Reactor Studies with Nanosecond Pulsed Discharges at Atmospheric Pressure and Higher

    Science.gov (United States)

    2013-10-01

    Reactor Experiments: • Experiments on the oxidation of C1-C7 alkanes with and without plasma assisted reaction performed for T = 300 – 1250 K and P = 1...online) and Gas Chromatography (offline) Inlet Outlet Experimental Facility – cont’d • FTIR (online) connected to exhaust stream of reactor...molecule/pulse Major Species + Minor Species Oxygen + Excited Species C1-C7 Alkanes Plasma Assisted Oxidation Fourth Annual Review Meeting of

  13. Advanced fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Yukihiro [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-04-01

    The main subjects on fusion research are now on D-T fueled fusion, mainly due to its high fusion reaction rate. However, many issues are still remained on the wall loading by the 14 MeV neutrons. In the case of D-D fueled fusion, the neutron wall loading is still remained, though the technology related to tritium breeding is not needed. The p-{sup 6}Li and p-{sup 11}B fueled fusions are not estimated to be the next generation candidate until the innovated plasma confinement technologies come in useful to achieve the high performance plasma parameters. The fusion reactor of D-{sup 3}He fuels has merits on the smaller neutron wall loading and tritium handling. However, there are difficulties on achieving the high temperature plasma more than 100 keV. Furthermore the high beta plasma is needed to decrease synchrotron radiation loss. In addition, the efficiency of the direct energy conversion from protons coming out from fusion reaction is one of the key parameters in keeping overall power balance. Therefore, open magnetic filed lines should surround the plasma column. In this paper, we outlined the design of the commercial base reactor (ARTEMIS) of 1 GW electric output power configured by D-{sup 3}He fueled FRC (Field Reversed Configuration). The ARTEMIS needs 64 kg of {sup 3}He per a year. On the other hand, 1 million tons of {sup 3}He is estimated to be in the moon. The {sup 3}He of about 10{sup 23} kg are to exist in gaseous planets such as Jupiter and Saturn. (Y. Tanaka)

  14. Heating device for nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shiratori, Yoshitake; Ijima, Takashi; Katano, Yoshiaki; Saito, Masaki

    1996-05-31

    The present invention provides a control system of a heating device which elevates the temperature of a reactor from a normal temperature to an operation temperature by using a nuclear heating. Namely, the device of the present invention comprises (1) means for detecting reactor temperature, (2) means for detecting reactor power, (3) means for memorizing the corresponding relation of each value of the means (1) and means (2) as standard data when temperature is elevated at a predetermined temperature elevation rate, (4) means for calculating the power corresponding to the current temperature based on the standard data upon elevation of the reactor temperature, and (5) means for controlling the progress or retraction of the power control material of the reactor core based on the power calculated by the means (4). With such a constitution, since the current reactor power elevation rate corresponding to the coolants is controlled based on the standard data upon actual start-up of the reactor, the control for the temperature of coolants can be facilitated. (I.S.)

  15. Solid oxide electrochemical reactor science.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  16. Random processes in nuclear reactors

    CERN Document Server

    Williams, M M R

    1974-01-01

    Random Processes in Nuclear Reactors describes the problems that a nuclear engineer may meet which involve random fluctuations and sets out in detail how they may be interpreted in terms of various models of the reactor system. Chapters set out to discuss topics on the origins of random processes and sources; the general technique to zero-power problems and bring out the basic effect of fission, and fluctuations in the lifetime of neutrons, on the measured response; the interpretation of power reactor noise; and associated problems connected with mechanical, hydraulic and thermal noise sources

  17. Nuclear reactor downcomer flow deflector

    Science.gov (United States)

    Gilmore, Charles B [Greensburg, PA; Altman, David A [Pittsburgh, PA; Singleton, Norman R [Murrysville, PA

    2011-02-15

    A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.

  18. Reactor neutrons in nuclear astrophysics

    Science.gov (United States)

    Reifarth, René; Glorius, Jan; Göbel, Kathrin; Heftrich, Tanja; Jentschel, Michael; Jurado, Beatriz; Käppeler, Franz; Köster, Ulli; Langer, Christoph; Litvinov, Yuri A.; Weigand, Mario

    2017-09-01

    The huge neutron fluxes offer the possibility to use research reactors to produce isotopes of interest, which can be investigated afterwards. An example is the half-lives of long-lived isotopes like 129I. A direct usage of reactor neutrons in the astrophysical energy regime is only possible, if the corresponding ions are not at rest in the laboratory frame. The combination of an ion storage ring with a reactor and a neutron guide could open the path to direct measurements of neutron-induced cross sections on short-lived radioactive isotopes in the astrophysically interesting energy regime.

  19. Safety of VVER-440 reactors

    CERN Document Server

    Slugen, Vladimir

    2011-01-01

    Safety of VVER-440 Reactors endeavours to promote an increase in the safety of VVER-440 nuclear reactors via the improvement of fission products limitation systems and the implementation of special non-destructive spectroscopic methods for materials testing. All theoretical and experimental studies performed the by author over the last 25 years have been undertaken with the aim of improving VVER-440 defence in depth, which is one of the most important principle for ensuring safety in nuclear power plants. Safety of VVER-440 Reactors is focused on the barrier system through which the safety pri

  20. Fuel Fabrication and Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF6. UF6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF6 is converted into UO2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  1. Superheated Water-Cooled Small Modular Underwater Reactor Concept

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-12-01

    Full Text Available A novel fully passive small modular superheated water reactor (SWR for underwater deployment is designed to produce 160 MWe with steam at 500ºC to increase the thermodynamic efficiency compared with standard light water reactors. The SWR design is based on a conceptual 400-MWe integral SWR using the internally and externally cooled annular fuel (IXAF. The coolant boils in the external channels throughout the core to approximately the same quality as a conventional boiling water reactor and then the steam, instead of exiting the reactor pressure vessel, turns around and flows downward in the central channel of some IXAF fuel rods within each assembly and then flows upward through the rest of the IXAF pins in the assembly and exits the reactor pressure vessel as superheated steam. In this study, new cladding material to withstand high temperature steam in addition to the fuel mechanical and safety behavior is investigated. The steam temperature was found to depend on the thermal and mechanical characteristics of the fuel. The SWR showed a very different transient behavior compared with a boiling water reactor. The inter-play between the inner and outer channels of the IXAF was mainly beneficial except in the case of sudden reactivity insertion transients where additional control consideration is required.

  2. Metabolic modeling of synthesis gas fermentation in bubble column reactors.

    Science.gov (United States)

    Chen, Jin; Gomez, Jose A; Höffner, Kai; Barton, Paul I; Henson, Michael A

    2015-01-01

    A promising route to renewable liquid fuels and chemicals is the fermentation of synthesis gas (syngas) streams to synthesize desired products such as ethanol and 2,3-butanediol. While commercial development of syngas fermentation technology is underway, an unmet need is the development of integrated metabolic and transport models for industrially relevant syngas bubble column reactors. We developed and evaluated a spatiotemporal metabolic model for bubble column reactors with the syngas fermenting bacterium Clostridium ljungdahlii as the microbial catalyst. Our modeling approach involved combining a genome-scale reconstruction of C. ljungdahlii metabolism with multiphase transport equations that govern convective and dispersive processes within the spatially varying column. The reactor model was spatially discretized to yield a large set of ordinary differential equations (ODEs) in time with embedded linear programs (LPs) and solved using the MATLAB based code DFBAlab. Simulations were performed to analyze the effects of important process and cellular parameters on key measures of reactor performance including ethanol titer, ethanol-to-acetate ratio, and CO and H2 conversions. Our computational study demonstrated that mathematical modeling provides a complementary tool to experimentation for understanding, predicting, and optimizing syngas fermentation reactors. These model predictions could guide future cellular and process engineering efforts aimed at alleviating bottlenecks to biochemical production in syngas bubble column reactors.

  3. DEGRADATION OF AROMATIC COMPOUNDS USING MOVING BED BIOFILM REACTORS

    Directory of Open Access Journals (Sweden)

    B. Ayati, H. Ganjidoust, M. Mir Fattah

    2007-04-01

    Full Text Available For biological treatment of water, there are many different biofilm systems in use. Examples of them are trickling filters, rotating biological contactors, fixed media submerged biofilters, granular media biofilters and fluidized bed reactors. They all have their advantages and disadvantages. Hence, the Moving Bed Biofilm Reactor process was developed in Norway in the late 1980s and early 1990s to adopt the best features of the activated sludge process as well as those of the biofilter processes, without including the worst. Two cylindrical moving bed biofilm reactors were used in this study working in upflow stream conditions. Experiments have been done in aerobic batch flow regime. Laboratory experiments were conducted at room temperature (23–28C and synthetic wastewater comprising a composition of phenol and hydroquinone in each reactor as the main organic constituents, plus balanced nutrients and alkalinity were used to feed the reactor. The ratio of influent to effluent COD was determined at different retention times. The results indicated that the removal efficiency of each selected compound is affected by the detention time. At low phenol and hydroquinone concentration (from 700 to 1000 mg/L maximum removal efficiency (over 80 % was obtained. By further increasing in COD loading rate up to 3000 mg/L, a decrease in COD removal rate was occurred. In the reactor containing pyrogallol in COD of 1500 mg/L, the removal rate decreased to 10 percent because of its toxicity for microorganisms.

  4. Nuclear reactor PBMR and cogeneration; Reactor nuclear PBMR y cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Alonso V, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  5. FASTER test reactor preconceptual design report summary

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, Steven [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-29

    The FASTER reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  6. FASTER Test Reactor Preconceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-31

    The FASTER test reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  7. ADAPTIVE CONTROL SYSTEM OF INDUSTRIAL REACTORS

    Directory of Open Access Journals (Sweden)

    Vyacheslav K. Mayevski

    2014-01-01

    Full Text Available This paper describes a mathematical model of an industrial chemical reactor for production of synthetic rubber. During reactor operation the model parameters vary considerably. To create a control algorithm performed transformation of mathematical model of the reactor in order to obtain a dependency that can be used to determine the model parameters are changing during reactor operation.

  8. Reactors with higher conversion ratios; Reacteurs a hauts facteurs de conversion

    Energy Technology Data Exchange (ETDEWEB)

    Damian, F.; Lenain, R. [CEA Saclay, 91 - Gif sur Yvette (France)

    2010-07-01

    The design of light water reactors is optimized for a use of slightly enriched uranium and a moderate use of the plutonium produced by the reactor itself. A better use of the uranium resource is achieved by hardening the neutron spectrum which implies changes in the core. This series of slides shows that in the framework of plutonium recycling, the reduction of the moderation ratio could give interesting results on the use of the fuel while maintaining the quality of plutonium for its recycling in light water reactors which fits well the policy of a progressive passage towards fast reactors. (A.C.)

  9. Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor

    NARCIS (Netherlands)

    Weijma, J.; Stams, A.J.M.; Hulshoff Pol, L.W.; Lettinga, G.

    2000-01-01

    Sulfate reduction outcompeted methanogenesis at 65°C and pH 7.5 in methanol and sulfate-fed expanded granular sludge bed reactors operated at hydraulic retention times (HRT) of 14 and 3.5 h, both under methanol-limiting and methanol-overloading conditions. After 100 and 50 days for the reactors

  10. Effect of Sulfur Source on the Performance and Metal Retention of Methanol-Fed UASB Reactors

    NARCIS (Netherlands)

    Zandvoort, M.H.; Hullebusch, van E.D.; Gieteling, J.; Lettinga, G.; Lens, P.N.L.

    2005-01-01

    The effect of a sulfur source on the performance and metal retention of methanol-fed upflow anaerobic sludge bed (UASB) reactors was investigated. For this purpose, two UASB reactors were operated with cobalt preloaded granular sludge (1 mM CoCl2; 30° C; 24 h) at an organic loading rate (OLR) of 5 g

  11. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  12. An evaluation of a mesophilic reactor for treating wastewater from a ...

    African Journals Online (AJOL)

    An evaluation of anaerobic treatment of potato-processing wastewater using an up flow Anaerobic Sludge Bed (UASB) reactor at 37°C was conducted. Wastewater from a potato-processing ... sewerage system of Harare. Key words: UASB reactor, potato wastewater, anaerobic digestion, methane yield, organic loading rate.

  13. 77 FR 38341 - Advisory Committee on Reactor Safeguards; Notice of Meeting

    Science.gov (United States)

    2012-06-27

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards; Notice of Meeting In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor...

  14. 78 FR 12801 - Advisory Committee on Reactor Safeguards; Notice of Meeting

    Science.gov (United States)

    2013-02-25

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards; Notice of Meeting In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor...

  15. 78 FR 32279 - Advisory Committee On Reactor Safeguards; Notice of Meeting

    Science.gov (United States)

    2013-05-29

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee On Reactor Safeguards; Notice of Meeting In accordance with the purposes of Sections 29 and 182b of the Atomic Energy Act (42 U.S.C. 2039, 2232b), the Advisory Committee on Reactor...

  16. Catalytic Pyrolysis of Oak via Pyroprobe and Bench Scale, Packed Bed Pyrolysis Reactors

    Science.gov (United States)

    The pyrolytic conversion of oak sawdust at 500°C in flowing He over eight proprietary catalysts is described and compared to the control bed material, quartz sand. The reactions were conducted and compared in two reactors, an analytical, ug-scale pyroprobe reactor and a bench, g-scale packed bed re...

  17. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, L.R.; Hayes, D.W.; Hunter, C.H.; Marter, W.L.; Moyer, R.A.

    1989-12-01

    This volume is a reactor operation environmental information document for the Savannah River Plant. Topics include meteorology, surface hydrology, transport, environmental impacts, and radiation effects. 48 figs., 56 tabs. (KD)

  18. Reactor containment research and development

    Energy Technology Data Exchange (ETDEWEB)

    Weil, N. A.

    1963-06-15

    An outline is given of containment concepts, sources and release rates of energy, responses of containment structures, effects of projectiles, and leakage rates of radioisotopes, with particular regard to major reactor accidents. (T.F.H.)

  19. Actinide transmutation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ganev, I.K.; Lopatkin, A.V.; Naumov, V.V.; Tocheny, L.V.

    1993-12-31

    Of some interest is the comparison between the actinide nuclide burning up (fission) rates such as americium 241, americium 242, curium 244, and neptunium 237, in the reactors with fast or thermal neutron spectra.

  20. Advanced Carbothermal Electric Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop the Advanced Carbothermal Electric (ACE) reactor to efficiently extract oxygen from lunar regolith. Unlike state-of-the-art carbothermal...

  1. Combustion synthesis continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, G.D.; Chick, L.A.; Kurosky, R.P.

    1998-01-06

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor. 10 figs.

  2. Combustion synthesis continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, Gary D. (Richland, WA); Chick, Lawrence A. (West Richland, WA); Kurosky, Randal P. (Maple Valley, WA)

    1998-01-01

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor.

  3. Advanced Carbothermal Electric Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the Phase 1 effort was to demonstrate the technical feasibility of the Advanced Carbothermal Electric (ACE) Reactor concept. Unlike...

  4. Advanced Catalytic Hydrogenation Retrofit Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reinaldo M. Machado

    2002-08-15

    Industrial hydrogenation is often performed using a slurry catalyst in large stirred-tank reactors. These systems are inherently problematic in a number of areas, including industrial hygiene, process safety, environmental contamination, waste production, process operability and productivity. This program proposed the development of a practical replacement for the slurry catalysts using a novel fixed-bed monolith catalyst reactor, which could be retrofitted onto an existing stirred-tank reactor and would mitigate many of the minitations and problems associated with slurry catalysts. The full retrofit monolith system, consisting of a recirculation pump, gas/liquid ejector and monolith catalyst, is described as a monolith loop reactor or MLR. The MLR technology can reduce waste and increase raw material efficiency, which reduces the overall energy required to produce specialty and fine chemicals.

  5. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory,. Pune 411 008, India ... Abstract. Catalytic reactions are ubiquitous in chemical and allied industries. ... strategies and recent advances in process intensification/ multifunctional reactors are discussed to illustrate the approach.

  6. Jules Horowitz Reactor, basic design

    Energy Technology Data Exchange (ETDEWEB)

    Bergamaschi, Y.; Bouilloux, Y.; Chantoin, P.; Guigon, B.; Bravo, X.; Germain, C.; Rommens, M.; Tremodeux, P

    2003-07-01

    Since the shutdown of the SILOE reactor in 1997, the OSIRIS reactor has ensured the needs regarding technological irradiation at CEA including those of its industrial partners and customers. The Jules Horowitz Reactor will replace it. It has the ambition to provide the necessary nuclear data and maintain a fission research capacity in Europe after 2010. This capacity should be service-oriented. It will be established in Cadarache. The Jules Horowitz reactor will also: - represent a significant step in term of performances and experimental capabilities, - be designed with a high flexibility, in order to satisfy the current demand from European industry, research and be able to accommodate future requirements, - reach a high level of safety, according to the best current practice. This paper will present the main functionalities and the design options resulting from the 'preliminary design' studies. (authors)

  7. Design of the HPLWR reactor core; Auslegung des HPLWR Reaktorkerns

    Energy Technology Data Exchange (ETDEWEB)

    Schulenberg, T. [Karlsruher Institut fuer Technologie, Karlsruhe (Germany). IKET; Maraczy, C. [KFKI Atomenergia Kutatointezet (AEKI), Budapest (Hungary); Heinecke, J. [AREVA NP GmbH, Erlangen (Germany); Bernnat, W. [Stuttgart Univ. (Germany). IKE

    2010-05-15

    The high performance light water reactor (HPLWR) is a LWR working with supercritical water as coolant medium and moderator. The operational pressure is 25 MPa and the fresh steam temperatures are above 500 C. In order to restrict the peak temperature in the reactor core to less than 630 C (upper limit of the corrosion resistance of stainless steel fuel cans) a three-step heating of the reactor core was proposed. The authors discuss the results of thermal hydraulic and neutronic calculations performed during the last three years. The coolant mixing is the key process of the concept. The design of the fuel and water cans is using double-walled constructions with ceramic insulations to avoid inadmissible heating o the moderator medium. Stress and deformation analysis of the core structures were performed. The calculated results still need experimental validation.

  8. Solid State Reactor Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mays, G.T.

    2004-03-10

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas

  9. Microchannel Reactors for ISRU Applications

    Science.gov (United States)

    Carranza, Susana; Makel, Darby B.; Blizman, Brandon; Ward, Benjamin J.

    2005-02-01

    Affordable planning and execution of prolonged manned space missions depend upon the utilization of local resources and the waste products which are formed in manned spacecraft and surface bases. Successful in-situ resources utilization (ISRU) will require component technologies which provide optimal size, weight, volume, and power efficiency. Microchannel reactors enable the efficient chemical processing of in situ resources. The reactors can be designed for the processes that generate the most benefit for each mission. For instance, propellants (methane) can be produced from carbon dioxide from the Mars atmosphere using the Sabatier reaction and ethylene can be produced from the partial oxidation of methane. A system that synthesizes ethylene could be the precursor for systems to synthesize ethanol and polyethylene. Ethanol can be used as a nutrient for Astrobiology experiments, as well as the production of nutrients for human crew (e.g. sugars). Polyethylene can be used in the construction of habitats, tools, and replacement parts. This paper will present recent developments in miniature chemical reactors using advanced Micro Electro Mechanical Systems (MEMS) and microchannel technology to support ISRU of Mars and lunar missions. Among other applications, the technology has been demonstrated for the Sabatier process and for the partial oxidation of methane. Microchannel reactors were developed based on ceramic substrates as well as metal substrates. In both types of reactors, multiple layers coated with catalytic material are bonded, forming a monolithic structure. Such reactors are readily scalable with the incorporation of extra layers. In addition, this reactor structure minimizes pressure drop and catalyst settling, which are common problems in conventional packed bed reactors.

  10. Reactor antineutrinos and nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Balantekin, A.B. [University of Wisconsin, Department of Physics, Madison, WI (United States)

    2016-11-15

    Short-baseline reactor neutrino experiments successfully measured the neutrino parameters they set out to measure, but they also identified a shape distortion in the 5-7 MeV range as well as a reduction from the predicted value of the flux. Nuclear physics input into the calculations of reactor antineutrino spectra needs to be better refined if this anomaly is to be interpreted as due to sterile neutrino states. (orig.)

  11. Calculation of reactor antineutrino spectra in TEXONO

    CERN Document Server

    Chen Dong Liang; Mao Ze Pu; Wong, T H

    2002-01-01

    In the low energy reactor antineutrino physics experiments, either for the researches of antineutrino oscillation and antineutrino reactions, or for the measurement of abnormal magnetic moment of antineutrino, the flux and the spectra of reactor antineutrino must be described accurately. The method of calculation of reactor antineutrino spectra was discussed in detail. Furthermore, based on the actual circumstances of NP2 reactors and the arrangement of detectors, the flux and the spectra of reactor antineutrino in TEXONO were worked out

  12. Propellant actuated nuclear reactor steam depressurization valve

    Science.gov (United States)

    Ehrke, Alan C.; Knepp, John B.; Skoda, George I.

    1992-01-01

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  13. Reactor Simulator Testing

    Science.gov (United States)

    Schoenfeld, Michael P.; Webster, Kenny L.; Pearson, Boise J.

    2013-01-01

    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator test loop (RxSim) was design & built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing was to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V since the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This paper summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration. The annular linear induction pump (ALIP) tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  14. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  15. REACTOR CONTROL MECHANISM

    Science.gov (United States)

    Lane, J.A.; Engberg, R.E.; Welch, J.M.

    1959-05-12

    A quick-releasing mechanism is described which may be used to rapidiy drop a device supported from beneath during normal use, such as a safety rod in a nuclear reactor. In accordance with this invention an electrical control signal, such as may be provided by radiation detection or other alarm condition sensing devices, is delivered to an electromagnetic solenoid, the armature of which is coupled to an actuating mechanism. The solenoid is energized when the mechanism is in its upper or cocked position. In such position, the mechanism engages a plurality of retaining balls, forcing them outward into engagement with a shoulder or recess in a corresponding section of a tubular extension on the upheld device. When the control signal to the solenoid suddenly ceases, the armature drops out, allowing the actuating mechanism to move slightly but rapidly under the force of a compressed spring. The weight of the device will urge the balls inward against a beveled portion of the actuating mechanism and away from the engaging section on the tubular extension, thus allowing the upheld device to fall freely under the influence of gravity.

  16. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  17. 78 FR 71675 - Update of the Office of Nuclear Reactor Regulation's Electronic Operating Reactor Correspondence

    Science.gov (United States)

    2013-11-29

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Update of the Office of Nuclear Reactor Regulation's Electronic Operating Reactor Correspondence... Regulatory Commission. Michele G. Evans, Director, Division of Operating Reactor Licensing, Office of Nuclear...

  18. Gas turbine modular helium reactor in cogeneration; Turbina de gas reactor modular con helio en cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Leon de los Santos, G. [UNAM, Facultad de Ingenieria, Division de Ingenieria Electrica, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico, D. F. (Mexico)], e-mail: tesgleon@gmail.com

    2009-10-15

    This work carries out the thermal evaluation from the conversion of nuclear energy to electric power and process heat, through to implement an outline gas turbine modular helium reactor in cogeneration. Modeling and simulating with software Thermo flex of Thermo flow the performance parameters, based on a nuclear power plant constituted by an helium cooled reactor and helium gas turbine with three compression stages, two of inter cooling and one regeneration stage; more four heat recovery process, generating two pressure levels of overheat vapor, a pressure level of saturated vapor and one of hot water, with energetic characteristics to be able to give supply to a very wide gamma of industrial processes. Obtaining a relationship heat electricity of 0.52 and efficiency of net cogeneration of 54.28%, 70.2 MW net electric, 36.6 MW net thermal with 35% of condensed return to 30 C; for a supplied power by reactor of 196.7 MW; and with conditions in advanced gas turbine of 850 C and 7.06 Mpa, assembly in a shaft, inter cooling and heat recovery in cogeneration. (Author)

  19. Nonlinear Ultrasonic Measurements in Nuclear Reactor Environments

    Science.gov (United States)

    Reinhardt, Brian T.

    Several Department of Energy Office of Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development (FCRD), Advanced Reactor Concepts (ARC), Light Water Reactor Sustainability, and Next Generation Nuclear Power Plants (NGNP), are investigating new fuels, materials, and inspection paradigms for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials during irradiation. In DOE-NE's FCRD program, ultrasonic based technology was identified as a key approach that should be pursued to obtain the high-fidelity, high-accuracy data required to characterize the behavior and performance of new candidate fuels and structural materials during irradiation testing. The radiation, high temperatures, and pressure can limit the available tools and characterization methods. In this thesis, two ultrasonic characterization techniques will be explored. The first, finite amplitude wave propagation has been demonstrated to be sensitive to microstructural material property changes. It is a strong candidate to determine fuel evolution; however, it has not been demonstrated for in-situ reactor applications. In this thesis, finite amplitude wave propagation will be used to measure the microstructural evolution in Al-6061. This is the first demonstration of finite amplitude wave propagation at temperatures in excess of 200 °C and during an irradiation test. Second, a method based on contact nonlinear acoustic theory will be developed to identify compressed cracks. Compressed cracks are typically transparent to ultrasonic wave propagation; however, by measuring harmonic content developed during finite amplitude wave propagation, it is shown that even compressed cracks can be characterized. Lastly, piezoelectric transducers capable of making these measurements are developed. Specifically, three piezoelectric sensors (Bismuth Titanate, Aluminum Nitride, and Zinc Oxide) are tested in the Massachusetts

  20. Repairing liner of the reactor; Reparacion del liner del reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-07-15

    Due to the corrosion problems of the aluminum coating of the reactor pool, a periodic inspections program by ultrasound to evaluate the advance grade and the corrosion speed was settled down. This inspections have shown the necessity to repair some areas, in those that the slimming is significant, of not making it can arrive to the water escape of the reactor pool. The objective of the repair is to place patches of plates of 1/4 inch aluminum thickness in the areas of the reactor 'liner', in those that it has been detected by ultrasound a smaller thickness or similar to 3 mm. To carry out this the fuels are move (of the core and those that are decaying) to a temporary storage, the structure of the core is confined in a tank that this placed inside the pool of the reactor, a shield is placed in the thermal column and it is completely extracted the water for to leave uncover the 'liner' of the reactor. (Author)

  1. Effect of specific gas loading rate on thermophilic (55°) acidifying (pH6) and sulfate reducing granular sludge reactors

    NARCIS (Netherlands)

    Lens, P.N.L.; Klijn, R.; Lier, van J.B.; Lettinga, G.

    2003-01-01

    The effect of the specific gas loading rate on the acidifying, sulfate reducing and sulfur removal capacity of thermophilic (55degreesC; pH 6.0) granular sludge bed reactors treating partly acidified wastewater was investigated. A comparison was made between a regular UASB reactor and a UASB reactor

  2. Comparative Study on Cyber Securities between Power Reactor and Research Reactor with Bayesian Update

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jinsoo; Heo, Gyunyoung [Kyung Hee University, Yongin (Korea, Republic of); Son, Han Seong [Joongbu Univiersity, Geumsan (Korea, Republic of)

    2016-10-15

    The Stuxnet has shown that nuclear facilities are no more safe from cyber-attack. Due to practical experiences and concerns on increasing of digital system application, cyber security has become the important issue in nuclear industry. Korea Institute of Nuclear Nonproliferation and control (KINAC) published a regulatory standard (KINAC/RS-015) to establish cyber security framework for nuclear facilities. However, it is difficult to research about cyber security. It is hard to quantify cyber-attack which has malicious activity which is different from existing design basis accidents (DBAs). We previously proposed a methodology on development of a cyber security risk model with BBN. However, the methodology had a limitation in which the input data as prior information was solely on expert opinions. In this study, we propose a cyber security risk model for instrumentation and control (I and C) system of nuclear facilities with some equation for quantification by using Bayesian Belief Network (BBN) in order to overcome the limitation of previous research. The proposed model has been used for comparative study on cyber securities between large-sized nuclear power plants (NPPs) and small-sized Research Reactors (RR). In this study, we proposed the cyber security risk evaluation model with BBN. It includes I and C architecture, which is a target system of cyber-attack, malicious activity, which causes cyber-attack from attacker, and mitigation measure, which mitigates the cyber-attack risk. Likelihood and consequence as prior information are evaluated by considering characteristics of I and C architecture and malicious activity. The BBN model provides posterior information with Bayesian update by adding any of assumed cyber-attack scenarios as evidence. Cyber security risk for nuclear facilities is analyzed by comparing between prior information and posterior information of each node. In this study, we conducted comparative study on cyber securities between power reactor

  3. Best Safety Practices for the Operation of Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Boeck, H.; Villa, M. [Atominstitute of the Austrian Universities, 1020 Vienna (Austria)

    2002-07-01

    A survey on administrative, organisational and technical aspects for the safe and efficient operation of a 250 kW TRIGA Mark II research reactor is given. The replacement of the I and C system is discussed, maintenance procedures are presented and the fuel management is described. (author)

  4. Modelling of a recycling sludge bed reactor using AQUASIM

    African Journals Online (AJOL)

    drinie

    the article, it is herewith pointed out that the term “falling sludge bed reactor” is replaced with “recycling sludge bed reactor”. Modelling of a recycling sludge bed reactor using AQUASIM. NE Ristow1*, K Whittington-Jones2, C Corbett2, P Rose2 and GS Hansford1. 1 Department of Chemical Engineering, University of Cape ...

  5. Bioscorodite Crystallization in an Airlift Reactor for Arsenic Removal

    NARCIS (Netherlands)

    Gonzalez-Contreras, P.A.; Weijma, J.; Buisman, C.J.N.

    2012-01-01

    Bioscorodite (FeAsO4·2H2O) crystals were crystallized in an airlift reactor fed at pH 1.2 and 72 °C. Arsenic removal was limited by the biological ferrous iron oxidation. In continuous operation, the iron oxidation initially was 30% and increased to 80% in few days when the iron and dissolved oxygen

  6. Methanol conversion in high-rate anaerobic reactors

    NARCIS (Netherlands)

    Weijma, J.; Stams, A.J.M.

    2001-01-01

    An overview on methanol conversion in high-rate anaerobic reactors is presented, with the focus on technological as well as microbiological aspects. The simple C1-compound methanol can be degraded anaerobically in a complex way, in which methanogens, sulfate reducing bacteria and homoacetogens

  7. Effect of flow characteristics on online sterilization of cheese whey in UV reactors.

    Science.gov (United States)

    Singh, J P; Ghaly, A E

    2007-07-01

    An ultraviolet (UV) coil reactor was designed and used for the online sterilization of cheese whey. Its microbial destruction efficiency was compared to that of the conventionally used UV reactor. Both reactors have the same geometry (840 ml volume and 17 mm gap size) and were tested at 11 flow rates of 5, 10, 15, 20, 25, 30, 35, 40, 50, 60, and 70 ml/min. The results obtained from this study showed that despite of its high turbidity, cheese whey could be sterilized using UV radiation if the proper reactor design and flow rate are used. The performances of the UV reactors were governed by the flow rate and the hydraulics of flow inside the reactor. The flow was laminar in both the reactors, as the Reynolds number was in the range of 1.39-20.10. The phenomenon of Dean Flow was observed in the coil reactor and the Dean number was in the range of 1.09-15.41. Dean vortices resulted in higher microbial destruction efficiency in the coil reactor in a shorter retention time. The rate of microbial destruction was found to be exponential in the conventional reactor and polynomial in the coil reactor. Increasing the flow rate from 5 ml/min to 70 ml/min decreased the microbial destruction efficiency of the conventional reactor from 99.40 to 31.58%, while the microbial destruction efficiency in the coil reactor increased from 60.77% at the flow rate of 5 ml/min to 99.98% at the flow rate of 30 ml/min and then decreased with further increases in flow rate reaching 46.2% at the flow rate of 70 ml/min. The maximum effluent temperatures in the conventional and coil reactors were 45.8 and 46.1 degrees C, respectively. Fouling in the coil reactor was significantly less compared to the conventional reactor. The extent of fouling was influenced by flow rate and reactor's hydraulics.

  8. Design of a Compact and Versatile Bench Scale Tubular Reactor

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2009-06-01

    Full Text Available A compact and versatile laboratory tubular reactor has been designed and fabricated keeping in view of reducing capital cost and minimising energy consumption for gas/vapor-phase heterogeneous catalytic reactions. The reactor is consisted of two coaxial corning glass tubes with a helical coil of glass tube in between the coaxial tubes serving as vaporiser and pre-heater, the catalyst bed is in the inner tube. A schematic diagram of the reactor with detailed dimensions and working principles are described. The attractive feature of the reactor is that the vaporiser, pre-heater and fixed bed reactor are merged in a single compact unit. Thus, the unit minimises separate vaporiser and pre-heater, also avoids separate furnaces used for them and eliminate auxiliary instrumentation such as temperature controller etc. To demonstrate the system operation and illustrate the key features, catalyst screening data and the efficient collection of complete, and accurate intrinsic kinetic data are provided for oxidation of CO over copper chromite catalyst. CO oxidation is an important reaction for auto-exhaust pollution control. The suitability of the versatile nature of the reactor has been ascertained for catalytic reactions where either volatile or vaporizable feeds can be introduced to the reaction zone, e.g. oxidation of iso-octane, reduction of nitric oxide, dehydrogenation of methanol, ethanol and iso-propanol, hydrogenation of nitrobenzene to aniline, etc. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 February 2009, Accepted: 9 May 2009][How to Cite: R. Prasad, G. Rattan. (2009. Design of a Compact and Versatile Bench Scale Tubular Reactor. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 5-9.  doi:10.9767/bcrec.4.1.1250.5-9][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.1250.5-9

  9. Plant Control of the High Performance Light Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Schlagenhaufer, Marc; Starflinger, J.; Schulenberg, T. [Institute for Nuclear and Energy Technologies, Forschungszentrum Karlsruhe GmbH, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Baden-Wuertemberg 76344 (Germany)

    2009-06-15

    The latest design concept of the High Performance Light Water Reactor (HPLWR) includes a thermal core in which supercritical water at 25 MPa inlet pressure is heated up from 280 deg. C reactor inlet temperature to 500 deg. C core exit temperature in three steps with intermediate coolant mixing to minimize peak cladding temperatures of the fuel rods. A direct supercritical steam cycle of the HPLWR has been designed with high, intermediate and low pressure turbines with a single reheat to 441 deg. C at 4.04 MPa pressure. Three low pressure pre-heaters and four high pressure pre-heaters are foreseen to achieve the envisaged reactor inlet temperature of 280 deg. C at full load. A feedwater tank of 603 m{sup 3} at 0.55 MPa pressure serves as an accumulator for normal and accidental conditions. The steam cycle has been modelled with APROS, developed by VTT Finland, to provide thermodynamic data and cycle efficiency values under full load and part load operation conditions as well as the transient response to load changes. A plant control system has been designed in which the reactor inlet pressure is controlled by the turbine valve, the reactor power is controlled by the feedwater pumps while the life steam temperature is controlled by control rods, and the reheat temperature is controlled by the reheater valve. Neglecting the reactivity control, the core power can also be treated as input parameter such that the life steam temperature is directly controlled by the feedwater mass flow. The plant control can handle all loading and de-loading cycles including complete shut down. A constant pressure at reactor inlet is foreseen for all load cases. Peak temperatures of the fuel pins are checked with a simplified core model. Two shut down procedures starting at 50% load are presented. A reactor scram with turbine states the safe shut down of the whole plant. To avoid hard material temperature changes, a controlled shut down procedure is designed. The rotational speed of the

  10. Tritium Formation and Mitigation in High-Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Carl Stoots

    2012-10-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  11. Tritium Formation and Mitigation in High-Temperature Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Carl Stoots; Hans A. Schmutz

    2013-03-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  12. Entropy Production in Chemical Reactors

    Science.gov (United States)

    Kingston, Diego; Razzitte, Adrián C.

    2017-06-01

    We have analyzed entropy production in chemically reacting systems and extended previous results to the two limiting cases of ideal reactors, namely continuous stirred tank reactor (CSTR) and plug flow reactor (PFR). We have found upper and lower bounds for the entropy production in isothermal systems and given expressions for non-isothermal operation and analyzed the influence of pressure and temperature in entropy generation minimization in reactors with a fixed volume and production. We also give a graphical picture of entropy production in chemical reactions subject to constant volume, which allows us to easily assess different options. We show that by dividing a reactor into two smaller ones, operating at different temperatures, the entropy production is lowered, going as near as 48 % less in the case of a CSTR and PFR in series, and reaching 58 % with two CSTR. Finally, we study the optimal pressure and temperature for a single isothermal PFR, taking into account the irreversibility introduced by a compressor and a heat exchanger, decreasing the entropy generation by as much as 30 %.

  13. Antineutrino monitoring of thorium reactors

    Science.gov (United States)

    Akindele, Oluwatomi A.; Bernstein, Adam; Norman, Eric B.

    2016-09-01

    Various groups have demonstrated that antineutrino monitoring can be successful in assessing the plutonium content in water-cooled nuclear reactors for nonproliferation applications. New reactor designs and concepts incorporate nontraditional fuel types and chemistry. Understanding how these properties affect the antineutrino emission from a reactor can extend the applicability of antineutrino monitoring. Thorium molten salt reactors breed 233U, that if diverted constitute a direct use material as defined by the International Atomic Energy Agency (IAEA). The antineutrino spectrum from the fission of 233U has been estimated for the first time, and the feasibility of detecting the diversion of 8 kg of 233U, within a 30 day timeliness goal has been evaluated. The antineutrino emission from a thorium reactor operating under normal conditions is compared to a diversion scenario by evaluating the daily antineutrino count rate and the energy spectrum of the detected antineutrinos at a 25 m standoff. It was found that the diversion of a significant quantity of 233U could not be detected within the current IAEA timeliness detection goal using either tests. A rate-time based analysis exceeded the timeliness goal by 23 days, while a spectral based analysis exceeds this goal by 31 days.

  14. Simplifying Microbial Electrosynthesis Reactor Design

    Directory of Open Access Journals (Sweden)

    Cloelle G.S. Giddings

    2015-05-01

    Full Text Available Microbial electrosynthesis, an artificial form of photosynthesis, can efficiently convert carbon dioxide into organic commodities; however, this process has only previously been demonstrated in reactors that have features likely to be a barrier to scale-up. Therefore, the possibility of simplifying reactor design by both eliminating potentiostatic control of the cathode and removing the membrane separating the anode and cathode was investigated with biofilms of Sporomusa ovata, which reduces carbon dioxide to acetate. In traditional ‘H-cell’ reactors, where the anode and cathode chambers were separated with a proton-selective membrane, the rates and columbic efficiencies of microbial electrosynthesis remained high when electron delivery at the cathode was powered with a direct current power source rather than with a poteniostat-poised cathode utilized in previous studies. A membrane-less reactor with a direct-current power source with the cathode and anode positioned to avoid oxygen exposure at the cathode, retained high rates of acetate production as well as high columbic and energetic efficiencies. The finding that microbial electrosynthesis is feasible without a membrane separating the anode from the cathode, coupled with a direct current power source supplying the energy for electron delivery, is expected to greatly simplify future reactor design and lower construction costs.

  15. Rapid starting methanol reactor system

    Science.gov (United States)

    Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  16. Realtime control of biogas reactors. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Allan K.

    2010-12-15

    In this project several online methods were connected to a biogas pilot plant designed and built by Xergi A/S (Foulum, Denmark). The pilot plant was composed of two stainless steel tanks used as substrate storage and as digester, respectively. The total volume of the reactor tank was 300 L, the working volume 200 L and the headspace volume 100 L. The process temperature in the biogas reactor was maintained at 52 {+-} 0.5 deg. C during normal operating conditions. The biogas production was measured with a flow meter and a controller was used for automatic control of temperature, effluent removal, feeding and for data logging. A NIRS (near infrared spectrometer) was connected to a recurrent loop measuring on the slurry while a {mu}-GC (micro gas chromatograph) and a MIMS (membrane inlet mass spectrometer) enabled online measurements of the gas phase composition. During the project period three monitoring campaigns were accomplished. The loading rate of the biogas reactor was increased stepwise during the periods while the process was monitored. In the first two campaigns the load was increased by increasing the mass of organic material added to the reactor each day. However, this increasing amount changed the retention time in the reactor and in order to keep the retention time constant an increasing amount of inhibitor of the microbial process was instead added in the third campaign and as such maintaining a constant organic load mass added to the reactor. The effect is similar to an increase in process load, while keeping the load of organic material and hence retention time constant. Methods have been developed for the following online technologies and each technology has been evaluated with regard to future use as a tool for biogas process monitoring: 1) {mu}-GC was able to quantitative monitor important gas phase parameters in a reliable, fast and low-maintenance way. 2) MIMS was able to quantitative monitor gas phase composition in a reliable and fast manner

  17. Materials for high performance light water reactors

    Science.gov (United States)

    Ehrlich, K.; Konys, J.; Heikinheimo, L.

    2004-05-01

    A state-of-the-art study was performed to investigate the operational conditions for in-core and out-of-core materials in a high performance light water reactor (HPLWR) and to evaluate the potential of existing structural materials for application in fuel elements, core structures and out-of-core components. In the conventional parts of a HPLWR-plant the approved materials of supercritical fossil power plants (SCFPP) can be used for given temperatures (⩽600 °C) and pressures (≈250 bar). These are either commercial ferritic/martensitic or austenitic stainless steels. Taking the conditions of existing light water reactors (LWR) into account an assessment of potential cladding materials was made, based on existing creep-rupture data, an extensive analysis of the corrosion in conventional steam power plants and available information on material behaviour under irradiation. As a major result it is shown that for an assumed maximum temperature of 650 °C not only Ni-alloys, but also austenitic stainless steels can be used as cladding materials.

  18. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.

    2012-06-24

    Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.

  19. Foundational development of an advanced nuclear reactor integrated safety code.

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  20. A probabilistic consequence assessment for a very high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joeun; Kim, Jintae; Jae, Moosung [Hanyang Univ., Seoul (Korea, Republic of). Dept. of Nuclear Engineering

    2017-02-15

    Currently, fossil fuel is globally running out. If current trends continue, crude oil will be depleted in 20 years and natural gas in 40 years. In addition, the use of fossil resource has increased emissions of green gas such as carbon dioxide. Therefore, there has been a strong demand in recent years for producing large amounts of hydrogen as an alternative energy [1]. To generate hydrogen energy, very high temperature more than 900 C is required but this level is not easy to reach. Because a Very High Temperature Reactor (VHTR), one of next generation reactor, is able to make the temperature, it is regarded as a solution of the problem. Also, VHTR has an excellent safety in comparison with existing and other next generation reactors. Especially, a passive system, Reactor Cavity Cooling System (RCCS), is adopted to get rid of radiant heat in case of accidents. To achieve variety requirements of new designed-reactors, however, it needs to develop new methodologies and definitions different with existing method. At the same time, an application of probability safety assessment (PSA) has been proposed to ensure the safety of next generation NPPs. For this, risk-informed designs of structures have to be developed and verified. Particularly, the passive system requires to be evaluated for its reliability. The objective of this study is to improve safety of VIITR by conducting risk profile.

  1. Numerical simulations of convection in the titanium reduction reactor

    Science.gov (United States)

    Teimurazov, A.; Frick, P.; Weber, N.; Stefani, F.

    2017-11-01

    We introduce a hydrodynamic model of convective flows in a titanium reduction reactor. The reactor retort is a cylindrical vessel with a radius of 0.75 m and a height up to 4 m, filled with liquid magnesium at a temperature of 850°C. The exothermic chemical reaction on the metal surface, cooling of the side wall and heating of the lower part of the retort cause strong temperature gradients in the reactor during the process. These temperature gradients cause intensive convective flows inside the reactor. As a result of the reaction, a block of titanium sponge grows at the retort bottom and the magnesium salt, whose density is close to the density of magnesium, settles down. The process of magnesium salt settling in a titanium reduction reactor was numerically studied in a two-dimensional (full size model) and three-dimensional (30% size of the real model) non-stationary formulation. A detailed analysis was performed for configurations with and without presence of convective flow due to work of furnace heaters. It has been established that magnesium salt is settling in drops with sizes from ≈ 3 cm to ≈ 10 cm. It was shown that convective flow can entrain the drop and carry it with the vortex.

  2. Flow Reactor for studying Physicochemical and aging properties of SOA

    Science.gov (United States)

    Babar, Z. B.

    2016-12-01

    Secondary organic aerosols (SOA) have importance in environmental processes such as affecting earth's radiative balance and cloud formation processes. For studying SOA formation large scale environmental batch reactors and laboratory scale flow reactors have been used. In this study application of flow reactor to study physicochemical properties of SOA is also investigated after its characterization. The flow reactor is of cylindrical design (ID 15 cm x L 70 cm) equipped with UV lamps. It is coupled with various instruments such as scanning mobility particle sizer, NOx analyzer, ozone analyzer, VOC analyzer, hygrometer, and temperature sensors for gas and particle phase measurements. OH radicals were generated by custom build ozone generator and relative humidity. The following characterizations were performed: (1) residence time distribution (RTD) measurements, (2) RH and temperature control, (3) OH radical exposure range (atmospheric aging time), (4) gas phase oxidation of SOA precursors such as α-pinene by OH radical. The flow reactor yielded narrow RTDs. In particular, RH and temperature can be controlled effectively between 0-60% and 22-43oC, respectively. OH radical exposure ranges from 6.49x1010 to 3.68x1011 molecules/cm3s (0.49 to 4.91 days). Our initial efforts on OH radical generation using hydrogen peroxide and its quantification by using flourescenet technique will be also be presented.

  3. Gaseous fuel nuclear reactor research

    Science.gov (United States)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  4. Investigation of KW reactor incident

    Energy Technology Data Exchange (ETDEWEB)

    Sturges, D G [USAEC Hanford Operations Office, Richland, WA (United States); Hauff, T W; Greager, O H [General Electric Co., Richland, WA (United States). Hanford Atomic Products Operation

    1955-02-11

    The new KW reactor was placed in operation on January 4, 1955, and had been running at relatively low power levels for only 17 hours when it was shut down because of a process tube water leak which appeared to be associated with a slug rupture. After several days of unrewarding effort to remove the slugs and tube by customary methods, it developed that considerable melting of the tube and slugs had taken place. It was then evident that removal of the stuck mass and repairs to the damaged tube channel would require unusual measures that were certain to extend the reactor outage for several weeks. This report documents the work and findings of the Committee which investigated the KW reactor incident. Its content represents unanimous agreement among the three Committee members.

  5. Effect of temperature on selenium removal from wastewater by UASB reactors.

    Science.gov (United States)

    Dessì, Paolo; Jain, Rohan; Singh, Satyendra; Seder-Colomina, Marina; van Hullebusch, Eric D; Rene, Eldon R; Ahammad, Shaikh Ziauddin; Carucci, Alessandra; Lens, Piet N L

    2016-05-01

    The effect of temperature on selenium (Se) removal by upflow anaerobic sludge blanket (UASB) reactors treating selenate and nitrate containing wastewater was investigated by comparing the performance of a thermophilic (55 °C) versus a mesophilic (30 °C) UASB reactor. When only selenate (50 μM) was fed to the UASB reactors (pH 7.3; hydraulic retention time 8 h) with excess electron donor (lactate at 1.38 mM corresponding to an organic loading rate of 0.5 g COD L(-1) d(-1)), the thermophilic UASB reactor achieved a higher total Se removal efficiency (94.4 ± 2.4%) than the mesophilic UASB reactor (82.0 ± 3.8%). When 5000 μM nitrate was further added to the influent, total Se removal was again better under thermophilic (70.1 ± 6.6%) when compared to mesophilic (43.6 ± 8.8%) conditions. The higher total effluent Se concentration in the mesophilic UASB reactor was due to the higher concentrations of biogenic elemental Se nanoparticles (BioSeNPs). The shape of the BioSeNPs observed in both UASB reactors was different: nanospheres and nanorods, respectively, in the mesophilic and thermophilic UASB reactors. Microbial community analysis showed the presence of selenate respirers as well as denitrifying microorganisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Advances in Process Intensification through Multifunctional Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    O' Hern, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center; Evans, Lindsay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Sciences and Engineering Center; Miller, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Sciences and Engineering Center; Cooper, Marcia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energetic Components Realization Center; Torczynski, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pena, Donovan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gill, Walt [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center

    2011-02-01

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in

  7. STARFIRE: a commercial tokamak reactor

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The purpose of this document is to provide an interim status report on the STARFIRE project for the period of May to September 1979. The basic objective of the STARFIRE project is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The key technical objective is to develop the best embodiment of the tokamak as a power reactor consistent with credible engineering solutions to design problems. Another key goal of the project is to give careful attention to the safety and environmental features of a commercial fusion reactor.

  8. Fundamentals of Nuclear Reactor Physics

    CERN Document Server

    Lewis, E E

    2008-01-01

    This new streamlined text offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation. The book includes numerous worked-out examples and end-of-chapter questions to help reinforce the knowledge presented. This textbook offers an engineering-oriented introduction to nuclear physics, with a particular focus on how those physics are put to work in the service of generating nuclear-based power, particularly the importance of neutron reactions and neutron behavior. Engin

  9. K-capture by Al-Si based Additives in an Entrained Flow Reactor

    DEFF Research Database (Denmark)

    Wang, Guoliang; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    A water slurry, consisting of KCl and Al-Si based additives (kaolin and coal fly ash) was fed into an entrained flow reactor (EFR) to study the K-capturing reaction of the additives at suspension-fired conditions. Solid products collected from the reactor were analysed with respect to total...... of KCl to K-aluminosilicate decreased. When reaction temperature increased from 1100 °C to 1450 °C, the conversion of KCl does not change significantly, which differs from the trend observed in fixed-bed reactor....

  10. Argon generation in fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Khripunov, Vladimir, E-mail: Khripunov_VI@NRCKI.ru

    2015-10-15

    Highlights: • A relatively long-lived Ar-39 (T{sub 1/2} = 269 yr) may appear in fusion reactor materials. • Ar-39 activities may become apparent after tritium removal. • Initial impurity control of K is definitely recommended. • A substantiation of the effective dose rates for exposure to inert argon is urgent. - Abstract: Different candidate plasma facing materials (as tungsten, beryllium), the low activation structure materials (as vanadium alloys, silicon carbides), liquid breeders (lithium and lithium-lead) and some others have been suggested for future fusion power reactor cores as corresponding to maintenance, recycling and for waste disposal acceptance after 50 and 100 years of cooling. It is shown by the neutron activation analysis that a relatively short-lived Ar-41 (T{sub 1/2} = 1.85 h), Ar-37 (T{sub 1/2} = 35 days) and rather long lived Ar-39 (T{sub 1/2} = 269 yr) may appear in these materials under the fusion neutron irradiation conditions. While argon production is essentially less than helium production in irradiated materials, at other times its impact, e.g., in the inhalation dose, becomes significant. In some cases the Ar-39 activity is comparable or even exceeds the C-14 activity and may become apparent after tritium removal from plasma exhaust and dust, from the liquid breeders, during plasma-facing and structural component recycling and waste management. The main source terms of argon-39 activity for these materials are identified and the specific production rates are evaluated relative to radiation conditions of a power or DEMO fusion reactor and to electric power production.

  11. Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    M. J. Appel and J. M. Capron

    2007-07-25

    This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.

  12. United States Domestic Research Reactor Infrastructure - TRIGA Reactor Fuel Support

    Energy Technology Data Exchange (ETDEWEB)

    Morrell, Douglas [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2008-10-29

    The purpose of the United State Domestic Research Reactor Infrastructure Program is to provide fresh nuclear reactor fuel to United States universities at no, or low, cost to the university. The title of the fuel remains with the United States government and when universities are finished with the fuel, the fuel is returned to the United States government. The program is funded by the United States Department of Energy - Nuclear Energy division, managed by Department of Energy - Idaho Field Office, and contracted to the Idaho National Laboratory's Management and Operations Contractor - Battelle Energy Alliance. Program has been at Idaho since 1977 and INL subcontracts with 26 United States domestic reactor facilities (13 TRIGA facilities, 9 plate fuel facilities, 2 AGN facilities, 1 Pulstar fuel facility, 1 Critical facility). University has not shipped fuel since 1968 and as such, we have no present procedures for shipping spent fuel. In addition: floor loading rate is unknown, many interferences must be removed to allow direct access to the reactor tank, floor space in the reactor cell is very limited, pavement ends inside our fence; some of the surface is not finished. The whole approach is narrow, curving and downhill. A truck large enough to transport the cask cannot pull into the lot and then back out (nearly impossible / refused by drivers); a large capacity (100 ton), long boom crane would have to be used due to loading dock obstructions. Access to the entrance door is on a sidewalk. The campus uses it as a road for construction equipment, deliveries and security response. Large trees are on both sides of sidewalk. Spent fuel shipments have never been done, no procedures approved or in place, no approved casks, no accident or safety analysis for spent fuel loading. Any cask assembly used in this facility will have to be removed from one crane, moved on the floor and then attached to another crane to get from the staging area to the reactor room

  13. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    Energy Technology Data Exchange (ETDEWEB)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.

  14. Reactor Antineutrino Signals at Morton and Boulby

    CERN Document Server

    Dye, Steve

    2016-01-01

    Increasing the distance from which an antineutrino detector is capable of monitoring the operation of a registered reactor, or discovering a clandestine reactor, strengthens the Non-Proliferation of Nuclear Weapons Treaty. This report presents calculations of reactor antineutrino interactions, from quasi-elastic neutrino-proton scattering and elastic neutrino-electron scattering, in a water-based detector operated >10 km from a commercial power reactor. It separately calculates signal from the proximal reactor and background from all other registered reactors. The main results are interaction rates and kinetic energy distributions of charged leptons scattered from quasi-elastic and elastic processes. Comparing signal and background distributions evaluates reactor monitoring capability. Scaling the results to detectors of different sizes, target media, and standoff distances is straightforward. Calculations are for two examples of a commercial reactor (P_th~3 GW) operating nearby (L~20 km) an underground facil...

  15. Reactivity control assembly for nuclear reactor

    Science.gov (United States)

    Bollinger, Lawrence R.

    1984-01-01

    Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

  16. The Westinghouse Small Modular Reactor Design

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Garcia, F. J.; Memmott, M. J.

    2012-07-01

    Westinghouse has developed a small modular reactor (SMR) which incorporates an integral pressurized water reactor (PWR) design. The Westinghouse SMR design also utilizes many of the key features and innovative concepts from the AP1000 plant, including passive safety systems.

  17. What can Recycling in Thermal Reactors Accomplish?

    Energy Technology Data Exchange (ETDEWEB)

    Steven Piet; Gretchen E. Matthern; Jacob J. Jacobson

    2007-09-01

    Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives.

  18. An internally illuminated monolith reactor: Pros and cons relative to a slurry reactor

    NARCIS (Netherlands)

    Carneiro, Joana T.; Carneiro, J.T.; Berger, Rob; Moulijn, Jacob A.; Mul, Guido

    2009-01-01

    In the present study, kinetic models for the photo-oxidation of cyclohexane in two different photoreactor systems are discussed: a top illumination reactor (TIR) representative of a slurry reactor, and the so-called internally illuminated monolith reactor (IIMR) representing a reactor containing

  19. Digital computer operation of a nuclear reactor

    Science.gov (United States)

    Colley, R.W.

    1982-06-29

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  20. Monolithic reactor: higher yield, less energy

    OpenAIRE

    Mols, B.

    2004-01-01

    The production of margarine, the desulphurisation of crude oil, and the manufacture of synthetic diesel fuel, these are only three of the many industrial processes in which a three-phase reactor is used. Traditionally, this type of reactor is rather ill-defined. Success with a lab scale set-up is no guarantee that a large commercial reactor will work. Scalability is less than perfect, one might say. Researchers at the Reactor & Catalysis Engineering epartment of the Chemical Technology facult...

  1. Reference worldwide model for antineutrinos from reactors

    OpenAIRE

    Baldoncini, Marica; Callegari, Ivan; Fiorentini, Giovanni; Mantovani, Fabio; Ricci, Barbara; Strati, Virginia; Xhixha, Gerti

    2014-01-01

    Antineutrinos produced at nuclear reactors constitute a severe source of background for the detection of geoneutrinos, which bring to the Earth's surface information about natural radioactivity in the whole planet. In this framework we provide a reference worldwide model for antineutrinos from reactors, in view of reactors operational records yearly published by the International Atomic Energy Agency (IAEA). We evaluate the expected signal from commercial reactors for ongoing (KamLAND and Bor...

  2. Liquid metal cooled nuclear reactor plant system

    Science.gov (United States)

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  3. Stationary Liquid Fuel Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Grandy, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Boroski, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Krajtl, Lubomir [Argonne National Lab. (ANL), Argonne, IL (United States); Johnson, Terry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  4. Hydrodynamics of a Monolithic Stirrer Reactor

    NARCIS (Netherlands)

    Kritzinger, H.P.

    2011-01-01

    The Monolithic Stirrer Reactor (MSR) is a novel concept for heterogeneously catalyzed reactors and is presented as an alternative device to slurry reactors. It uses a modified stirrer on which structured catalyst supports (monoliths) are fixed to form permeable blades. The monoliths consist of small

  5. Heat-pipe thermionic reactor concept

    DEFF Research Database (Denmark)

    Storm Pedersen, E.

    1967-01-01

    Main components are reactor core, heat pipe, thermionic converter, secondary cooling system, and waste heat radiator; thermal power generated in reactor core is transported by heat pipes to thermionic converters located outside reactor core behind radiation shield; thermionic emitters are in direct...

  6. Laminar Entrained Flow Reactor (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-02-01

    The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

  7. New usage for old reactor

    NARCIS (Netherlands)

    Wassink, J.

    2015-01-01

    The latest measurement instrument of the TU Delft measures the crystal structures of many different materials and is unique within the Netherlands. The so-called Pearl neutron powder diffractometer was opened on 24 September at the RID reactor institute. “It is difficult to overestimate the

  8. Nuclear Reactors and Technology; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  9. REACTOR CONTROL ROD OPERATING SYSTEM

    Science.gov (United States)

    Miller, G.

    1961-12-12

    A nuclear reactor control rod mechanism is designed which mechanically moves the control rods into and out of the core under normal conditions but rapidly forces the control rods into the core by catapultic action in the event of an emergency. (AEC)

  10. CONTROLLED NUCLEAR FUSION REACTOR

    Science.gov (United States)

    Tuck, J.L.; Kruskal, M.; Colgate, S.A.; Rosenbluth, M.N.

    1962-01-01

    A plasma generating and heating device is described which comprises a ceramic torus with exterior layers of a thick metal membrane and a metallic coil. In operation, the coil generates a B/sub z/ field prior to the formation of an enclosing plasma sheath. Diffusion of the trapped magnetic field outward through the plasma sheath causes enhanced heating, particularly after the sheath has been pinched. (D.L.C.)

  11. The Development of an INL Capability for High Temperature Flow, Heat Transfer, and Thermal Energy Storage with Applications in Advanced Small Modular Reactors, High Temperature Heat Exchangers, Hybrid Energy Systems, and Dynamic Grid Energy Storage C

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Zhang, Xiaoqin [The Ohio State Univ., Columbus, OH (United States); Kim, Inhun [The Ohio State Univ., Columbus, OH (United States); O' Brien, James [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The overall goal of this project is to support Idaho National Laboratory in developing a new advanced high temperature multi fluid multi loop test facility that is aimed at investigating fluid flow and heat transfer, material corrosion, heat exchanger characteristics and instrumentation performance, among others, for nuclear applications. Specifically, preliminary research has been performed at The Ohio State University in the following areas: 1. A review of fluoride molten salts’ characteristics in thermal, corrosive, and compatibility performances. A recommendation for a salt selection is provided. Material candidates for both molten salt and helium flow loop have been identified. 2. A conceptual facility design that satisfies the multi loop (two coolant loops [i.e., fluoride molten salts and helium]) multi purpose (two operation modes [i.e., forced and natural circulation]) requirements. Schematic models are presented. The thermal hydraulic performances in a preliminary printed circuit heat exchanger (PCHE) design have been estimated. 3. An introduction of computational methods and models for pipe heat loss analysis and cases studies. Recommendations on insulation material selection have been provided. 4. An analysis of pipe pressure rating and sizing. Preliminary recommendations on pipe size selection have been provided. 5. A review of molten fluoride salt preparation and chemistry control. An introduction to the experience from the Molten Salt Reactor Experiment at Oak Ridge National Laboratory has been provided. 6. A review of some instruments and components to be used in the facility. Flowmeters and Grayloc connectors have been included. This report primarily presents the conclusions drawn from the extensive review of literatures in material selections and the facility design progress at the current stage. It provides some useful guidelines in insulation material and pipe size selection, as well as an introductory review of facility process and components.

  12. STEAM STIRRED HOMOGENEOUS NUCLEAR REACTOR

    Science.gov (United States)

    Busey, H.M.

    1958-06-01

    A homogeneous nuclear reactor utilizing a selfcirculating liquid fuel is described. The reactor vessel is in the form of a vertically disposed tubular member having the lower end closed by the tube walls and the upper end closed by a removal fianged assembly. A spherical reaction shell is located in the lower end of the vessel and spaced from the inside walls. The reaction shell is perforated on its lower surface and is provided with a bundle of small-diameter tubes extending vertically upward from its top central portion. The reactor vessel is surrounded in the region of the reaction shell by a neutron reflector. The liquid fuel, which may be a solution of enriched uranyl sulfate in ordinary or heavy water, is mainiained at a level within the reactor vessel of approximately the top of the tubes. The heat of the reaction which is created in the critical region within the spherical reaction shell forms steam bubbles which more upwardly through the tubes. The upward movement of these bubbles results in the forcing of the liquid fuel out of the top of these tubes, from where the fuel passes downwardly in the space between the tubes and the vessel wall where it is cooled by heat exchangers. The fuel then re-enters the critical region in the reaction shell through the perforations in the bottom. The upper portion of the reactor vessel is provided with baffles to prevent the liquid fuel from splashing into this region which is also provided with a recombiner apparatus for recombining the radiolytically dissociated moderator vapor and a control means.

  13. Small Modular Reactors: Institutional Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Perkowski, Ph.D.

    2012-06-01

    ? Objectives include, among others, a description of the basic development status of “small modular reactors” (SMRs) focused primarily on domestic activity; investigation of the domestic market appeal of modular reactors from the viewpoints of both key energy sector customers and also key stakeholders in the financial community; and consideration of how to proceed further with a pro-active "core group" of stakeholders substantially interested in modular nuclear deployment in order to provide the basis to expedite design/construction activity and regulatory approval. ? Information gathering was via available resources, both published and personal communications with key individual stakeholders; published information is limited to that already in public domain (no confidentiality); viewpoints from interviews are incorporated within. Discussions at both government-hosted and private-hosted SMR meetings are reflected herein. INL itself maintains a neutral view on all issues described. Note: as per prior discussion between INL and CAP, individual and highly knowledgeable senior-level stakeholders provided the bulk of insights herein, and the results of those interviews are the main source of the observations of this report. ? Attachment A is the list of individual stakeholders consulted to date, including some who provided significant earlier assessments of SMR institutional feasibility. ? Attachments B, C, and D are included to provide substantial context on the international status of SMR development; they are not intended to be comprehensive and are individualized due to the separate nature of the source materials. Attachment E is a summary of the DOE requirements for winning teams regarding the current SMR solicitation. Attachment F deserves separate consideration due to the relative maturity of the SMART SMR program underway in Korea. Attachment G provides illustrative SMR design features and is intended for background. Attachment H is included for overview

  14. Biological production of ethanol from coal. Task 4 report, Continuous reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    The production of ethanol from synthesis gas by the anaerobic bacterium C. ljungdahlii has been demonstrated in continuous stirred tank reactors (CSTRs), CSTRs with cell recycle and trickle bed reactors. Various liquid media were utilized in these studies including basal medium, basal media with 1/2 B-vitamins and no yeast extract and a medium specifically designed for the growth of C. ljungdahlii in the CSTR. Ethanol production was successful in each of the three reactor types, although trickle bed operation with C. ljungdahlii was not as good as with the stirred tank reactors. Operation in the CSTR with cell recycle was particularly promising, producing 47 g/L ethanol with only minor concentrations of the by-product acetate.

  15. Alcohol synthesis in a high-temperature slurry reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, G.W.; Marquez, M.A.; McCutchen, M.S. [North Carolina State Univ., Raleigh, NC (United States)

    1995-12-31

    The overall objective of this contract is to develop improved process and catalyst technology for producing higher alcohols from synthesis gas or its derivatives. Recent research has been focused on developing a slurry reactor that can operate at temperatures up to about 400{degrees}C and on evaluating the so-called {open_quotes}high pressure{close_quotes} methanol synthesis catalyst using this reactor. A laboratory stirred autoclave reactor has been developed that is capable of operating at temperatures up to 400{degrees}C and pressures of at least 170 atm. The overhead system on the reactor is designed so that the temperature of the gas leaving the system can be closely controlled. An external liquid-level detector is installed on the gas/liquid separator and a pump is used to return condensed slurry liquid from the separator to the reactor. In order to ensure that gas/liquid mass transfer does not influence the observed reaction rate, it was necessary to feed the synthesis gas below the level of the agitator. The performance of a commercial {open_quotes}high pressure {close_quotes} methanol synthesis catalyst, the so-called {open_quotes}zinc chromite{close_quotes} catalyst, has been characterized over a range of temperature from 275 to 400{degrees}C, a range of pressure from 70 to 170 atm., a range of H{sub 2}/CO ratios from 0.5 to 2.0 and a range of space velocities from 2500 to 10,000 sL/kg.(catalyst),hr. Towards the lower end of the temperature range, methanol was the only significant product.

  16. Optimized Design and Discussion on Middle and Large CANDLE Reactors

    Directory of Open Access Journals (Sweden)

    Xiaoming Chai

    2012-08-01

    Full Text Available CANDLE (Constant Axial shape of Neutron flux, nuclide number densities and power shape During Life of Energy producing reactor reactors have been intensively researched in the last decades [1–6]. Research shows that this kind of reactor is highly economical, safe and efficiently saves resources, thus extending large scale fission nuclear energy utilization for thousands of years, benefitting the whole of society. For many developing countries with a large population and high energy demands, such as China and India, middle (1000 MWth and large (2000 MWth CANDLE fast reactors are obviously more suitable than small reactors [2]. In this paper, the middle and large CANDLE reactors are investigated with U-Pu and combined ThU-UPu fuel cycles, aiming to utilize the abundant thorium resources and optimize the radial power distribution. To achieve these design purposes, the present designs were utilized, simply dividing the core into two fuel regions in the radial direction. The less active fuel, such as thorium or natural uranium, was loaded in the inner core region and the fuel with low-level enrichment, e.g. 2.0% enriched uranium, was loaded in the outer core region. By this simple core configuration and fuel setting, rather than using a complicated method, we can obtain the desired middle and large CANDLE fast cores with reasonable core geometry and thermal hydraulic parameters that perform safely and economically; as is to be expected from CANDLE. To assist in understanding the CANDLE reactor’s attributes, analysis and discussion of the calculation results achieved are provided.

  17. Helminth Egg Removal Capacity of UASB Reactors under Subtropical Conditions

    Directory of Open Access Journals (Sweden)

    Rosa-Elena Yaya-Beas

    2015-05-01

    Full Text Available This research was conducted to study the anaerobic sludge filtration capacity regarding helminth egg removal in upflow anaerobic sludge blanket (UASB reactors. Two 25 L lab-scale UASB reactors were operated at an ambient temperature which varied between 17.1 and 28.6 °C. Ascaris suum egg was selected as the model egg considering its similarity in terms of size and morphology to Ascaris lumbricoides, a human pathogen. Ascaris suum eggs were obtained from female parasites of infected pigs. The anaerobic sludge filtration capacity was performed applying upflow velocities between 0.09 and 0.68 m·h−1. Three sludge bed heights in the range of 0.30–0.40 m, 0.50–0.60 m and 0.60–0.70 m were applied. These sludge bed heights corresponded to 19%–25%, 31%–38% and 38%–44% of the total reactor height, respectively. Under the mentioned conditions, the average helminth egg removal efficiency was reciprocally correlated to the imposed upflow velocity. The studied lab-scale reactors reported an average helminth egg removal between 34%–100%, 30%–91% and 34%–56%, when the sludge bed in the UASB reactor was 19%–25%, 31%–38% and 38%–44% of the total reactor height, respectively. The decreased filtration capacity at increasing sludge bed heights might be likely related to biogas production and channeling formation. The average helminth egg removal efficiency in the control experiments performed without any sludge bed, by plain sedimentation, varied between 44% and 66%.

  18. Advanced reactor instrumentation and control reliability and risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Fullwood, R.; Gunther, W.; Valente, J.; Azarm, M.A.

    1991-12-31

    Advanced nuclear power reactors will used different approaches to achieving a higher level of safety than the first generation. One approach used the technological developments in computation and electronics in the form of digital instrumentation and control (I&C) to enhance the reliability, and accuracy of information for plant control, responding to the information, and controlling the plant and its systems under normal and upset environments in various states of degradation. Evaluating the reliability and safety of advanced I&C systems requires determining the reliability of the I&C used in the advanced reactors which involves distributed processing, data pile-up, interactive systems, the man-machine interface, various forms of automatic control, and systems interactions. From these analyses will come an understanding of the potential of the new I&C, and protection from its vulnerabilities to enhance the safe operation of the new plants. Technological, safety, reliability, and regulatory issues associated with advanced I&C for the new reactors are discussed herein. The issues are presented followed by suggested approaches to their resolution.

  19. Advanced reactor instrumentation and control reliability and risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Fullwood, R.; Gunther, W.; Valente, J.; Azarm, M.A.

    1991-01-01

    Advanced nuclear power reactors will used different approaches to achieving a higher level of safety than the first generation. One approach used the technological developments in computation and electronics in the form of digital instrumentation and control (I C) to enhance the reliability, and accuracy of information for plant control, responding to the information, and controlling the plant and its systems under normal and upset environments in various states of degradation. Evaluating the reliability and safety of advanced I C systems requires determining the reliability of the I C used in the advanced reactors which involves distributed processing, data pile-up, interactive systems, the man-machine interface, various forms of automatic control, and systems interactions. From these analyses will come an understanding of the potential of the new I C, and protection from its vulnerabilities to enhance the safe operation of the new plants. Technological, safety, reliability, and regulatory issues associated with advanced I C for the new reactors are discussed herein. The issues are presented followed by suggested approaches to their resolution.

  20. Shutdown system for a nuclear reactor

    Science.gov (United States)

    Groh, E.F.; Olson, A.P.; Wade, D.C.; Robinson, B.W.

    1984-06-05

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion. 8 figs.

  1. Fast-acting nuclear reactor control device

    Science.gov (United States)

    Kotlyar, Oleg M.; West, Phillip B.

    1993-01-01

    A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.

  2. Tandem Mirror Reactor Systems Code (Version I)

    Energy Technology Data Exchange (ETDEWEB)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  3. Reactor monitoring and safeguards using antineutrino detectors

    CERN Document Server

    Bowden, N S

    2008-01-01

    Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactors, as part of International Atomic Energy Agency (IAEA) and other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway across the globe.

  4. Joining and fabrication techniques for high temperature structures including the first wall in fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jin; Lee, B. S.; Kim, K. B

    2003-09-01

    The materials for PFC's (Plasma Facing Components) in a fusion reactor are severely irradiated with fusion products in facing the high temperature plasma during the operation. The refractory materials can be maintained their excellent properties in severe operating condition by lowering surface temperature by bonding them to the high thermal conducting materials of heat sink. Hence, the joining and bonding techniques between dissimilar materials is considered to be important in case of the fusion reactor or nuclear reactor which is operated at high temperature. The first wall in the fusion reactor is heated to approximately 1000 .deg. C and irradiated severely by the plasma. In ITER, beryllium is expected as the primary armour candidate for the PFC's; other candidates including W, Mo, SiC, B4C, C/C and Si{sub 3}N{sub 4}. Since the heat affected zones in the PFC's processed by conventional welding are reported to have embrittlement and degradation in the sever operation condition, both brazing and diffusion bonding are being considered as prime candidates for the joining technique. In this report, both the materials including ceramics and the fabrication techniques including joining technique between dissimilar materials for PFC's are described. The described joining technique between the refractory materials and the dissimilar materials may be applicable for the fusion reactor and Generation-4 future nuclear reactor which are operated at high temperature and high irradiation.

  5. Design, Operation, and Modeling of a Vertical APCVD Reactor for Silicon Carbide Film Growth

    Science.gov (United States)

    DeAnna, Russell G.; Fleischman, Aaron J.; Zorman, Christian A.; Mehregany, Mehran

    1998-01-01

    An atmospheric pressure chemical vapor deposition (APCVD) reactor utilizing a unique vertical geometry which enables 3C-SiC films to be grown on two, 4-inch diameter Si wafers has been constructed. Contrary to expectations, 3C-SiC films grown in this reactor are thickest at the downstream end of the substrates. To better understand the reason for the thickness distribution on the wafers, an axisymmetric finite-element model of the gas flow in the reactor was constructed. The model uses the ANSYS53 Flowtran package and includes compressible and temperature-dependent fluid properties in laminar or turbulent flow. It does not include reaction chemistry or unsteady flow. The ANSYS53 results predict that the cool, inlet fluid falls through the inlet pipe and the warm, diffuser region like a jet. This jet impinges on top of the susceptor and gets diverted to the reactor side walls, where it flows to the bottom of the reactor, turns, and slowly rises along the face of the susceptor. This may explain why the SiC films are thickest at the downstream side of the wafers, as gas containing fresh reactants first passes over this region. Modeling results are presented for both one atmosphere and one half atmosphere reactor pressure.

  6. Introduction to reactor internal materials for pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Suk; Hong, Joon Hwa; Jee, Se Hwan; Lee, Bong Sang; Kuk, Il Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    This report reviewed the R and D states of reactor internal materials in order to be a reference for researches and engineers who are concerning on localization of the materials in the field or laboratory. General structure of PWR internals and material specification for YGN 3 and 4 were reviewed. States-of-arts on R and D of stainless steel and Alloy X-750 were reviewed, and degradation mechanisms of the components were analyzed. In order to develop the good domestic materials for reactor internal, following studies would be carried out: microstructure, sensitization behavior, fatigue property, irradiation-induced stress corrosion cracking/radiation-induced segregation, radiation embrittlement. (Author) 7 refs., 14 figs., 5 tabs.,.

  7. Savannah River Site production reactor technical specifications. K Production Reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    These technical specifications are explicit restrictions on the operation of the Savannah River Site K Production Reactor. They are designed to preserve the validity of the plant safety analysis by ensuring that the plant is operated within the required conditions bounded by the analysis, and with the operable equipment that is assumed to mitigate the consequences of an accident. Technical specifications preserve the primary success path relied upon to detect and respond to accidents. This report describes requirements on thermal-hydraulic limits; limiting conditions for operation and surveillance for the reactor, power distribution control, instrumentation, process water system, emergency cooling and emergency shutdown systems, confinement systems, plant systems, electrical systems, components handling, and special test exceptions; design features; and administrative controls.

  8. Nuclear reactor vessel fuel thermal insulating barrier

    Science.gov (United States)

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  9. Neutronics of a mixed-flow gas-core reactor

    Energy Technology Data Exchange (ETDEWEB)

    Soran, P.D.; Hansen, G.E.

    1977-11-01

    The study was made to investigate the neutronic feasibility of a mixed-flow gas-core reactor. Three reactor concepts were studied: four- and seven-cell radial reactors and a seven-cell scallop reactor. The reactors were fueled with UF/sub 6/ (either U-233 or U-235) and various parameters were varied. A four-cell reactor is not practical nor is the U-235 fueled seven-cell radial reactor; however, the 7-cell U-233 radial and scallop reactors can satisfy all design criteria. The mixed flow gas core reactor is a very attractive reactor concept and warrants further investigation.

  10. Advanced reactor physics methods for heterogeneous reactor cores

    Science.gov (United States)

    Thompson, Steven A.

    To maintain the economic viability of nuclear power the industry has begun to emphasize maximizing the efficiency and output of existing nuclear power plants by using longer fuel cycles, stretch power uprates, shorter outage lengths, mixed-oxide (MOX) fuel and more aggressive operating strategies. In order to accommodate these changes, while still satisfying the peaking factor and power envelope requirements necessary to maintain safe operation, more complexity in commercial core designs have been implemented, such as an increase in the number of sub-batches and an increase in the use of both discrete and integral burnable poisons. A consequence of the increased complexity of core designs, as well as the use of MOX fuel, is an increase in the neutronic heterogeneity of the core. Such heterogeneous cores introduce challenges for the current methods that are used for reactor analysis. New methods must be developed to address these deficiencies while still maintaining the computational efficiency of existing reactor analysis methods. In this thesis, advanced core design methodologies are developed to be able to adequately analyze the highly heterogeneous core designs which are currently in use in commercial power reactors. These methodological improvements are being pursued with the goal of not sacrificing the computational efficiency which core designers require. More specifically, the PSU nodal code NEM is being updated to include an SP3 solution option, an advanced transverse leakage option, and a semi-analytical NEM solution option.

  11. Biogas potential of high strength municipal wastewater treatment in laboratory scale up-flow anaerobic slugde blanket (UASB) reactors

    OpenAIRE

    Safitri, Anissa Sukma

    2016-01-01

    The main focus of this study is investigating the effectiveness of anaerobic treatment of municipal wastewater for converting organic matter to methane production in anaerobic granular sludge reactors. In-house designed laboratory scale, up-flow anaerobic sludge blanket (UASB) reactor systems were set up for treating of high strength municipal wastewater treatment i.e. below 1200 mg COD/l under mesophilic condition (20 – 25 °C). Three UASB reactors were set up in the study; one reactor (React...

  12. 850/sup 0/C VHTR plant technical description

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This report describes the conceptual design of an 842-MW(t) process heat very high temperature reactor (VHTR) plant having a core outlet temperature of 850/sup 0/C (1562/sup 0/F). The reactor is a variation of the high-temperature gas-cooled reactor (HTGR) power plant concept. The report includes a description of the nuclear heat source (NHS) and of the balance of reactor plant (BORP) requirements. The design of the associated chemical process plant is not covered in this report. The reactor design is similar to a previously reported VHTR design having a 950/sup 0/C (1742/sup 0/F) core outlet temperature.

  13. Integrated systems analysis of the PIUS reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fullwood, F.; Kroeger, P.; Higgins, J. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1993-11-01

    Results are presented of a systems failure analysis of the PIUS plant systems that are used during normal reactor operation and postulated accidents. This study was performed to provide the NRC with an understanding of the behavior of the plant. The study applied two diverse failure identification methods, Failure Modes Effects & Criticality Analysis (FMECA) and Hazards & Operability (HAZOP) to the plant systems, supported by several deterministic analyses. Conventional PRA methods were also used along with a scheme for classifying events by initiator frequency and combinations of failures. Principal results of this study are: (a) an extensive listing of potential event sequences, grouped in categories that can be used by the NRC, (b) identification of support systems that are important to safety, and (c) identification of key operator actions.

  14. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of

  15. Effect of the sludge retention time on H2 utilization in a sulfate reducing gas-lift reactor

    NARCIS (Netherlands)

    Esposito, G.; Weijma, J.; Pirozzi, F.; Lens, P.N.L.

    2003-01-01

    A continuous laboratory-scale gas-lift reactor was used to investigate the influence of sludge retention time (SRT) on the competition for hydrogen between sulphate reducing bacteria (SRB), methanogenic archaea (MA) and homoacetogenic bacteria (HB). The reactor (30 degreesC; pH 7) was inoculated

  16. Automatically scramming nuclear reactor system

    Science.gov (United States)

    Ougouag, Abderrafi M.; Schultz, Richard R.; Terry, William K.

    2004-10-12

    An automatically scramming nuclear reactor system. One embodiment comprises a core having a coolant inlet end and a coolant outlet end. A cooling system operatively associated with the core provides coolant to the coolant inlet end and removes heated coolant from the coolant outlet end, thus maintaining a pressure differential therebetween during a normal operating condition of the nuclear reactor system. A guide tube is positioned within the core with a first end of the guide tube in fluid communication with the coolant inlet end of the core, and a second end of the guide tube in fluid communication with the coolant outlet end of the core. A control element is positioned within the guide tube and is movable therein between upper and lower positions, and automatically falls under the action of gravity to the lower position when the pressure differential drops below a safe pressure differential.

  17. HEAVY WATER MODERATED NEUTRONIC REACTOR

    Science.gov (United States)

    Szilard, L.

    1958-04-29

    A nuclear reactor of the type which utilizes uranium fuel elements and a liquid coolant is described. The fuel elements are in the form of elongated tubes and are disposed within outer tubes extending through a tank containing heavy water, which acts as a moderator. The ends of the fuel tubes are connected by inlet and discharge headers, and liquid bismuth is circulated between the headers and through the fuel tubes for cooling. Helium is circulated through the annular space between the outer tubes in the tank and the fuel tubes to cool the water moderator to prevent boiling. The fuel tubes are covered with a steel lining, and suitable control means, heat exchange means, and pumping means for the coolants are provided to complete the reactor assembly.

  18. CONTROL MEANS FOR NEUTRONIC REACTORS

    Science.gov (United States)

    Tonks, L.

    1962-08-01

    A control device surrounding the active portion of a nuclear reactor is described. The control device consists of a plurality of contiguous cylinders partly filled with a neutron absorbing material and partly filled with a neutron reflecting material, each cylinder having a longitudinal reentrant surface into which a portion of an adjacent cylinder extends, one of the cylinders having two re-entrant surfaces, and means for rotating the cylinders one at a time. (AEC)

  19. APPARATUS FOR CONTROLLING NEUTRONIC REACTORS

    Science.gov (United States)

    Dietrich, J.R.; Harrer, J.M.

    1958-09-16

    A device is described for rapidly cortrolling the reactivity of an active portion of a reactor. The inveniion consists of coaxially disposed members each having circumferenital sections of material having dlfferent neutron absorbing characteristics and means fur moving the members rotatably and translatably relative to each other within the active portion to vary the neutron flux therein. The angular and translational movements of any member change the neutron flux shadowing effect of that member upon the other member.

  20. Reactor safeguards against insider sabotage

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, H.A.

    1982-03-01

    A conceptual safeguards system is structured to show how both reactor operations and physical protection resources could be integrated to prevent release of radioactive material caused by insider sabotage. Operational recovery capabilities are addressed from the viewpoint of both detection of and response to disabled components. Physical protection capabilities for preventing insider sabotage through the application of work rules are analyzed. Recommendations for further development of safeguards system structures, operational recovery, and sabotage prevention are suggested.

  1. Licensing assessment of the Candu Pressurized Heavy Water Reactor. Preliminary safety information document. Volume II. [USA

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    ERDA has requested United Engineers and Constructors (UE and C) to evaluate the design of the Canadian natural uranium fueled, heavy water moderated (CANDU) nuclear reactor power plant to assess its conformance with the licensing criteria and guidelines of the U.S. Nuclear Regulatory Commission (USNRC) for light water reactors. This assessment was used to identify cost significant items of nonconformance and to provide a basis for developing a detailed cost estimate for a 1140 MWe, 3-loop Pressurized Heavy Water Reactor (PHWR) located at the Middletown, USA Site.

  2. Materials technology for an advanced space power nuclear reactor concept: Program summary

    Science.gov (United States)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  3. Nuclear reactor power monitoring device

    Energy Technology Data Exchange (ETDEWEB)

    Tarumi, Teruji; Oda, Naotaka; Goto, Yasushi; Ito, Toshiaki [Toshiba Corp., Kawasaki, Kanagawa (Japan); Mitsubori, Minehisa

    1997-07-11

    The present invention provides a nuclear power monitoring device which does not lose a safety protection function even upon occurrence of a single failure in an APRM system of a BWR type reactor. Namely, an APRM for inputting signals of local power region monitors (LPRM) has four channels. Each of the channels is constituted so as to be bypassed. With such a constitution, LPRM detector signals can be inputted one by one to each of the four channels of the APRM from each of the LPRM detector assembly. Accordingly, a common channel for LPRM detectors can be eliminated in a small-sized reactor. The number of signals of the LPRM detectors inputted to each of the channels of the APRM is increased in a large-scaled reactor. Since each of the APRM can be bypassed, even if a single failure of one APRM is caused during a predetermined maintenance, the monitoring can be conducted smoothly by bypassing other channel. As a result, a multiple safe-protection function can be ensured. (I.S.)

  4. Actinide transmutation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bultman, J.H.

    1995-01-17

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP).

  5. The ARIES tokamak reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D{sup 3}He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions.

  6. Prospects for Tokamak Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Galambos, J.

    1995-04-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

  7. Reference worldwide model for antineutrinos from reactors

    Science.gov (United States)

    Baldoncini, Marica; Callegari, Ivan; Fiorentini, Giovanni; Mantovani, Fabio; Ricci, Barbara; Strati, Virginia; Xhixha, Gerti

    2015-03-01

    Antineutrinos produced at nuclear reactors constitute a severe source of background for the detection of geoneutrinos, which bring to the Earth's surface information about natural radioactivity in the whole planet. In this framework, we provide a reference worldwide model for antineutrinos from reactors, in view of reactors operational records yearly published by the International Atomic Energy Agency. We evaluate the expected signal from commercial reactors for ongoing (KamLAND and Borexino), planned (SNO +), and proposed (Juno, RENO-50, LENA, and Hanohano) experimental sites. Uncertainties related to reactor antineutrino production, propagation, and detection processes are estimated using a Monte Carlo-based approach, which provides an overall site-dependent uncertainty on the signal in the geoneutrino energy window on the order of 3%. We also implement the off-equilibrium correction to the reference reactor spectra associated with the long-lived isotopes, and we estimate a 2.4% increase of the unoscillated event rate in the geoneutrino energy window due to the storage of spent nuclear fuels in the cooling pools. We predict that the research reactors contribute to less than 0.2% to the commercial reactor signal in the investigated 14 sites. We perform a multitemporal analysis of the expected reactor signal over a time lapse of ten years using reactor operational records collected in a comprehensive database published at www.fe.infn.it/antineutrino.

  8. Advanced Safeguards Approaches for New Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  9. Split-core heat-pipe reactors for out-of-pile thermionic power systems.

    Science.gov (United States)

    Niederauer, G.; Lantz, E.; Breitweiser, R.

    1971-01-01

    Description of the concept of splitting a heat-pipe reactor for out-of-core thermionics into two identical halves and using the resulting center gap for reactivity control. Short Li-W reactor heat pipes penetrate the axial reflectors and form a heat exchanger with long heat pipes which wind through the shield to the thermionic diodes. With one reactor half anchored to the shield, the other is attached to a long arm with a pivot behind the shield and swings through a small arc for reactivity control. A safety shim prevents large reactivity inputs, and a fueled control arm drive shaft acts as a power stabilizer. Reactors fueled with U-235C and with U-233C have been studied.-

  10. The effect of cover use on plastic pyrolysis reactor heating process

    Science.gov (United States)

    Armadi, Benny H.; Rangkuti, Chalilullah; Fauzi, M. D.; Permatasari, R.

    2017-03-01

    Plastic pyrolysis process to produce liquid fuel is an endothermic process that uses heat from the combustion of fuel as heat source. The reactor used is usually a vertical cylindrical in shape, with LPG fuel combustion under the flat bottom of the reactor, and the combustion gases is dispersed into the surrounding environment, so that heat transferred to the plastic inside the reactor is not effective, causing high LPG consumption. In this study, the reactor is made of stainless steel plate, with a vertical cylindrical shape, with a basic cylindrical conical truncated by a pit pass hot flue gas in the middle that serves to deliver flue gas into the chimney. The contact area between the hot combusted LPG gases to the processed plastic inside the reactor becomes bigger and gets better heat transfer, and required less LPG consumption. For more effective heat transfer process, an outer cover of this reactor was made and the relatively hot combustion gases are used to heat the outside of the reactor by directing the flow of the flue gas from the chimney down along the outer wall of the reactor and out the bottom lid. This construction makes the heating process to be faster and the LPG fuel is used more efficiently. From the measurements, it was found to raise 1°C of temperature inside the covered reactor, the LPG consumed is 0.59 gram, and if the reactor cover is removed, the gas demand will rise nearly threefold to 1.43 grams. With this method, in addition to reducing the rate of heat loss will also help reduce LPG consumption significantly.

  11. Modification of the Core Cooling System of TRIGA 2000 Reactor

    Science.gov (United States)

    Umar, Efrizon; Fiantini, Rosalina

    2010-06-01

    To accomplish safety requirements, a set of actions has to be performed following the recommendations of the IAEA safety series 35 applied to research reactor. Such actions are considered in modernization of the old system, improving the core cooling system and safety evaluations. Due to the complexity of the process and the difficulty in putting the apparatus in the reactor core, analytical and experimental study on the determination of flow and temperature distribution in the whole coolant channel are difficult to be done. In the present work, a numerical study of flow and temperature distribution in the coolant channel of TRIGA 2000 has been carried out using CFD package. For this study, simulations were carried out on 3-D tested model. The model consists of the reactor tank, thermal and thermalizing column, reflector, rotary specimen rack, chimney, fuel element, primary pipe, diffuser, beam tube and a part of the core are constructed by 1.50 million unstructured tetrahedral cell elements. The results show that for the initial condition (116 fuel elements in the core) and for the inlet temperature of 24°C and the primary velocity of 5.6 m/s, there no boiling phenomena occur in the coolant channel. Due to this result, it is now possible to improve the core cooling system of TRIGA 2000 reactor. Meanwhile, forced flow from the diffuser system only affected the flow pattern in the outside of chimney and put on a small effect to the fluid flow's velocity in the inside of chimney.

  12. Off-design temperature effects on nuclear fuel pins for an advanced space-power-reactor concept

    Science.gov (United States)

    Bowles, K. J.

    1974-01-01

    An exploratory out-of-reactor investigation was made of the effects of short-time temperature excursions above the nominal operating temperature of 990 C on the compatibility of advanced nuclear space-power reactor fuel pin materials. This information is required for formulating a reliable reactor safety analysis and designing an emergency core cooling system. Simulated uranium mononitride (UN) fuel pins, clad with tungsten-lined T-111 (Ta-8W-2Hf) showed no compatibility problems after heating for 8 hours at 2400 C. At 2520 C and above, reactions occurred in 1 hour or less. Under these conditions free uranium formed, redistributed, and attacked the cladding.

  13. Microstructure alterations in the base material, heat affected zone and weld metal of a 440-VVER-reactor pressure vessel caused by high fluence irradiation during long term operation: material: 15 Ch2MFA {approx} 0, 15 C-2,5 Cr-0, 7Mo-0,3 V; Veraenderungen der Mikrostruktur in Grundwerkstoff, WEZ und Schweissgut eines 440-VVER-Reaktordruckbehaelters, verursacht durch Neutronenbestrahlung im langzeitigen Betrieb; Werkstoff: 15 Ch2MFA {approx} 0,15 C-2,5 Cr-0, 7Mo-0,3 V

    Energy Technology Data Exchange (ETDEWEB)

    Maussner, G.; Scharf, L.; Langer, R. [Siemens AG Energieerzeugung KWU, Erlangen (Germany); Gurovich, B. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    1998-11-01

    Within the scope of the Tacis `91/1.1 project of the European Community, ``Reactor Vessel Embrittlement``, specimens were taken from the heavily irradiated circumferential welds of a VVER pressure vessel. The cumulated fast neutron fluence in the specimens amounts to up to 6.5 x 10{sup 19} cm{sup -}2 (E > 0.5 MeV). For the multi-laboratory, coordinated study, the specimens were cutted for mechanical testing as well as analytical, microstructural and microanalytical examinations in the base metal, HAZ and weld metal with respect to the effects of reactor operatio and post-irradiation annealing as well as thermal treatment (475 C, 560 C). The analytical transmission electron microscopy (200 kV) revealed the alterations found in the mechanical properties to be due to the formation of black dots and irradiation-induced segregations and accumulations of copper and carbides. These effects, caused by operation, (neutron radiation, temperature), are much more significant in the HAZ than in the base metal. (orig./CB) [Deutsch] Im Rahmen des von der Europaeischen Union beauftragten Tacis `91/1.1 Programms `Reactor Vessel Embrittlement` wurden Bohrkerne aus dem hochbestrahlten Rundnahtbereich eines VVER-Reaktordruckbehaelters entnommen. Die kumulierte schnelle Neutronenfluenz in diesen Proben betraegt bis zu 6,5 x 10{sup 19} cm{sup -2} (E>0,5 MeV). In einer gemeinschaftlichen Untersuchung wurden mechanisch-technologische, chemische sowie mirkostrukturelle Untersuchungen an Grundwerkstoff-, WEZ- und Schweissgutproben im vergleichbaren Ausgangs-, bestrahlten und anschliessend waermebehandelten (475 C, 560 C) Werkstoffzustand durchgefuehrt. Die analytische Durchstrahlelektronenmikroskopie (200 kV) laesst als Ursache fuer die festgestellten Veraenderungen der mechanischen Eigenschaften die Bildung von Versetzungsringen (black dots) sowie von bestrahlungsinduzierten Ausscheidungen und Anreicherungen von Kupfer in den Karbiden erkennen. Diese Effekte, als Folge der betrieblichen

  14. A simple model of reactor cores for reactor neutrino flux calculations for the KamLAND experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, K. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan)]. E-mail: kyo@awa.tohoku.ac.jp; Inoue, K. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Owada, K. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Suekane, F. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Suzuki, A. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Hirano, G. [TEPCO Systems Corporation, Tokyo 135-0034 (Japan); Kosaka, S. [TEPCO Systems Corporation, Tokyo 135-0034 (Japan); Ohta, T. [Tokyo Electric Power Company, Tokyo 100-8560 (Japan); Tanaka, H. [Tokyo Electric Power Company, Tokyo 100-8560 (Japan)

    2006-12-21

    KamLAND is a reactor neutrino oscillation experiment with a very long baseline. This experiment successfully measured oscillation phenomena of reactor antineutrinos coming mainly from 53 reactors in Japan. In order to extract the results, it is necessary to accurately calculate time-dependent antineutrino spectra from all the reactors. A simple model of reactor cores and code implementing it were developed for this purpose. This paper describes the model of the reactor cores used in the KamLAND reactor analysis.

  15. Adaptive Controller Design for Continuous Stirred Tank Reactor

    OpenAIRE

    K. Prabhu; V. Murali Bhaskaran

    2014-01-01

    Continues Stirred Tank Reactor (CSTR) is an important issue in chemical process and a wide range of research in the area of chemical engineering. Temperature Control of CSTR has been an issue in the chemical control engineering since it has highly non-linear complex equations. This study presents problem of temperature control of CSTR with the adaptive Controller. The Simulation is done in MATLAB and result shows that adaptive controller is an efficient controller for temperature control of C...

  16. Report on Reactor Physics Assessment of Candidate Accident Tolerant Fuel Cladding Materials in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, Nathan [Univ. of Tennessee, Knoxville, TN (United States); Maldonado, G. Ivan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-28

    This work focuses on ATF concepts being researched at Oak Ridge National Laboratory (ORNL), expanding on previous studies of using alternate cladding materials in pressurized water reactors (PWRs). The neutronic performance of two leading alternate cladding materials were assessed in boiling water reactors (BWRs): iron-chromium-aluminum (FeCrAl) cladding, and silicon carbide (SiC)-based composite cladding. This report fulfills ORNL Milestone M3FT-15OR0202332 within the fiscal year 2015 (FY15)

  17. Candidate materials performance under Supercritical Water Reactor (SCWR) conditions

    Energy Technology Data Exchange (ETDEWEB)

    Toivonen, A.; Penttilae, S.; Rissanen, L. (VTT Technical Research Centre of Finland, Espoo (Finland))

    2010-05-15

    The High Performance Light Water Reactor (HPLWR) is working at super-critical pressure (25 MPa) and a core coolant temperature up to 500 deg C. As an evolutionary step this reactor type follows the development path of modern supercritical coal-fired plants. This paper reviews the results on performance of commercial candidate materials for in-core applications focusing on corrosion, stress corrosion cracking (SCC) and creep issues. General corrosion (oxidation) tests with an inlet oxygen concentration of 125-150 ppb have been performed on several iron and nickel alloys at 300 to 650 deg C and 25 MPa in supercritical water. Stress corrosion cracking (SCC) susceptibility of selected austenitic stainless steels and a high chromium ODS (Oxide Dispersion Strengthened) alloy were also studied in slow strain rate tests (SSRT) in supercritical water at 500 deg C and 650 deg C. Furthermore, constant load creep tests have been performed on selected austenitic steels at 500 deg C and 650 deg C in supercritical water (25 MPa, 1 ppm O{sub 2}) and in an inert atmosphere (He, pressure 1 atm). Based on the materials studies, the current candidate materials for the core internals are austenitic steels with sufficient oxidation and creep resistance up to 500-550 deg C. High chromium austenitic steels and ODS alloys steels are considered for the fuel rod cladding due to their oxidation resistance up to 650 deg C. However, problems with manufacturing and joining of ODS alloys need to be solved. Alloys with high nickel content were not considered for the SCC or creep studies because of the strong effect of Ni on neutronics of the reactor core (orig.)

  18. Mechanical systems development of integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keun Bae; Chang, M. H.; Kim, J. I.; Choi, S.; Kim, K. S.; Kim, T. W.; Jeong, K. H.; Kim, J. H.; Kim, Y. W.; Lee, G. M.

    1997-07-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose applications such as small capacity power generation, co-generation and sea water desalination. This in mind, survey has been made on the worldwide small and medium integral reactors under development. Reviewed are their technical characteristics, development status, design features, application plans, etc. For the mechanical design scope of work, the structural concept compatible with the characteristics and requirements of integral reactor has been established. Types of major components were evaluated and selected. Functional and structural concept, equipment layout and supporting concept within the reactor pressure vessel have also been established. Preliminary mechanical design requirements were developed considering the reactor lifetime, operation conditions, and the expected loading combinations. To embody the concurrent design approach, recent CAD technology and team engineering concept were evaluated. (author). 31 refs.,16 tabs., 35 figs.

  19. Profiling a reactor component using ultrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, L.; Seshadri, V.R.; Kumaravadivelu, C.; Sreenivasan, G.; Raghunathan, V.S. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1995-04-01

    Nuclear reactors have many components within the reactor vessel. During the life of a reactor it is possible for these components to be displaced or deformed because of the thermal cycles to which they are subject. Also, these components in situ therefore becomes important for the upkeep of the reactor. However, high radiation levels make it difficult to monitor using optical methods. This paper describes an ultrasonic method which was successfully employed in profiling a deformed guide tube of a reactor. The method uses the well-known ultrasonic ranging technique. However, the specialty of the method is the use of air transducers at 40 kHz to overcome the inherent divergence problems and the difficulties associated with high temperatures inherent in a sodium cooled reactor.

  20. Performance of a multipurpose research electrochemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Henquin, E.R. [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina); Bisang, J.M., E-mail: jbisang@fiq.unl.edu.ar [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2011-07-01

    Highlights: > For this reactor configuration the current distribution is uniform. > For this reactor configuration with bipolar connection the leakage current is small. > The mass-transfer conditions are closely uniform along the electrode. > The fluidodynamic behaviour can be represented by the dispersion model. > This reactor represents a suitable device for laboratory trials. - Abstract: This paper reports on a multipurpose research electrochemical reactor with an innovative design feature, which is based on a filter press arrangement with inclined segmented electrodes and under a modular assembly. Under bipolar connection, the fraction of leakage current is lower than 4%, depending on the bipolar Wagner number, and the current distribution is closely uniform. When a turbulence promoter is used, the local mass-transfer coefficient shows a variation of {+-}10% with respect to its mean value. The fluidodynamics of the reactor responds to the dispersion model with a Peclet number higher than 10. It is concluded that this reactor is convenient for laboratory research.

  1. Introduction to the neutron kinetics of nuclear power reactors

    CERN Document Server

    Tyror, J G; Grant, P J

    2013-01-01

    An Introduction to the Neutron Kinetics of Nuclear Power Reactors introduces the reader to the neutron kinetics of nuclear power reactors. Topics covered include the neutron physics of reactor kinetics, feedback effects, water-moderated reactors, fast reactors, and methods of plant control. The reactor transients following faults are also discussed, along with the use of computers in the study of power reactor kinetics. This book is comprised of eight chapters and begins with an overview of the reactor physics characteristics of a nuclear power reactor and their influence on system design and

  2. Structures and Materials of Reactor Internals for PWR in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. W.; Kim, W. S.; Kwon, S. C.; Kwon, J. H.; Kim, Y. S.; Kim, H. P.; Yoo, C. S.; Lee, S. R.; Jung, M. K.; Hwang, S. S

    2007-10-15

    Nuclear reactor types in Korea are PWR type reactor (Westinghouse, Combustion Engineering, Farmatome type) and CANDU type reactor. Structures and Materials for reactor internal of PWR type were investigated. Reactor internal was composed of lower core support structure, upper core support assembly, incore instrumentation support structure. Lower core support structure of these structures is the most important. The major material for the reactor internal is type 304 and 316 stainless steel and radial support clevis bolts are made of Inconel. The main damage mechanism for reactor internal was IASCC and the effect of IASCC on reactor internal was investigated. The accident for reactor internal was also investigate.

  3. Contribution of reactor physics in past and future. Is reactor physics useful?

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Toshikazu [Osaka Univ. (Japan); Kosaka, Shinya [TEPCO Systems Co. (Japan); Tatsumi, Masahiro [Nuclear Fuel Industries Ltd., Tokyo (Japan)] (and others)

    2003-02-01

    Reactor Physics is a science to create rector and to play an important role in application to calculation science and safety evaluation. This feature articles contains topics, interested problems and development problems in the following field of reactor physics such as theory and experiment of reactor physics, core control, safety evaluation, criticality safety, accelerator driven subcritical reactor (ADS), new type reactor and evaluation of reactor physics. An original nuclear calculation method developed in Japan has been applied to design and analysis of fast breeder reactor. Interested problems are a proposal of fundamental principles of progressive reactor, development of calculation science, new knowledge by application of best estimate method to safety evaluation and investigation of complicated phenomena of criticality safety. (S.Y.)

  4. Fission control system for nuclear reactor

    Science.gov (United States)

    Conley, G.H.; Estes, G.P.

    Control system for nuclear reactor comprises a first set of reactivity modifying rods fixed in a reactor core with their upper ends stepped in height across the core, and a second set of reactivity modifying rods movable vertically within the reactor core and having their lower ends stepped to correspond with the stepped arrangement of the first set of rods, pairs of the rods of the first and second sets being in coaxial alignment.

  5. Nuclear reactor shield including magnesium oxide

    Science.gov (United States)

    Rouse, Carl A.; Simnad, Massoud T.

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  6. Fuel handling apparatus for a nuclear reactor

    Science.gov (United States)

    Hawke, Basil C.

    1987-01-01

    Fuel handling apparatus for transporting fuel elements into and out of a nuclear reactor and transporting them within the reactor vessel extends through a penetration in the side of the reactor vessel. A lateral transport device carries the fuel elements laterally within the vessel and through the opening in the side of the vessel, and a reversible lifting device raises and lowers the fuel elements. In the preferred embodiment, the lifting device is supported by a pair of pivot arms.

  7. SUPERHEATING IN A BOILING WATER REACTOR

    Science.gov (United States)

    Treshow, M.

    1960-05-31

    A boiling-water reactor is described in which the steam developed in the reactor is superheated in the reactor. This is accomplished by providing means for separating the steam from the water and passing the steam over a surface of the fissionable material which is not in contact with the water. Specifically water is boiled on the outside of tubular fuel elements and the steam is superheated on the inside of the fuel elements.

  8. Experimental Breeder Reactor I Preservation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun

    2006-10-01

    Experimental Breeder Reactor I (EBR I) is a National Historic Landmark located at the Idaho National Laboratory, a Department of Energy laboratory in southeastern Idaho. The facility is significant for its association and contributions to the development of nuclear reactor testing and development. This Plan includes a structural assessment of the interior and exterior of the EBR I Reactor Building from a preservation, rather than an engineering stand point and recommendations for maintenance to ensure its continued protection.

  9. Reactors are indispensable for radioisotope production.

    Science.gov (United States)

    Mushtaq, Ahmad

    2010-12-01

    Radioisotopes can be produced by reactors and accelerators. For certain isotopes there could be an advantage to a certain production method. However, nowadays many reports suggest, that useful isotopes needed in medicine, industry and research could be produced efficiently and dependence on reactors using enriched U-235 may be eliminated. In my view reactors and accelerators will continue to play their role side by side in the supply of suitable and economical sources of isotopes.

  10. Education and Training on ISIS Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Foulon, F.; Badeau, G.; Lescop, B.; Wohleber, X. [French Atomic Energy and Alternative Energies Commission, Paris (France)

    2013-07-01

    In the frame of academic and vocational programs the National Institute for Nuclear Science and Technology uses the ISIS research reactor as a major tool to ensure a practical and comprehensive understanding of the nuclear reactor physics, principles and operation. A large set of training courses have been developed on ISIS, optimising both the content of the courses and the pedagogical approach. Programs with duration ranging from 3 hours (introduction to reactor operation) to 24 hours (full program for the future operators of research reactors) are carried out on ISIS reactor. The reactor is operated about 350 hours/year for education and training, about 40 % of the courses being carried out in English. Thus, every year about 400 trainees attend training courses on ISIS reactor. We present here the ISIS research reactor and the practical courses that have been developed on ISIS reactor. Emphasis is given to the pedagogical method which is used to focus on the operational and safety aspects, both in normal and incidental operation. We will present the curricula of the academic and vocational courses in which the practical courses are integrated, the courses being targeted to a wide public, including operators of research reactors, engineers involved in the design and operation of nuclear reactors as well as staff of the regulatory body. We address the very positive impact of the courses on the development of the competences and skills of participants. Finally, we describe the Internet Reactor Laboratories (IRL) that are under development and will consist in broadcasting the training courses via internet to remote facilities or institutions.

  11. Initiating Events for Multi-Reactor Plant Sites

    Energy Technology Data Exchange (ETDEWEB)

    Muhlheim, Michael David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poore, III, Willis P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    Inherent in the design of modular reactors is the increased likelihood of events that initiate at a single reactor affecting another reactor. Because of the increased level of interactions between reactors, it is apparent that the Probabilistic Risk Assessments (PRAs) for modular reactor designs need to specifically address the increased interactions and dependencies.

  12. Neutron imaging on the VR-1 reactor

    Science.gov (United States)

    Crha, J.; Sklenka, L.; Soltes, J.

    2016-09-01

    Training reactor VR-1 is a low power research reactor with maximal thermal power of 1 kW. The reactor is operated by the Faculty of Nuclear Science and Physical Engineering of the Czech Technical University in Prague. Due to its low power it suits as a tool for education of university students and training of professionals. In 2015, as part of student research project, neutron imaging was introduced as another type of reactor utilization. The low available neutron flux and the limiting spatial and construction capabilities of the reactor's radial channel led to the development of a special filter/collimator insertion inside the channel and choosing a nonstandard approach by placing a neutron imaging plate inside the channel. The paper describes preliminary experiments carried out on the VR-1 reactor which led to first radiographic images. It seems, that due to the reactor construction and low reactor power, the neutron imaging technique on the VR-1 reactor is feasible mainly for demonstration or educational and training purposes.

  13. Biofilm carrier migration model describes reactor performance.

    Science.gov (United States)

    Boltz, Joshua P; Johnson, Bruce R; Takács, Imre; Daigger, Glen T; Morgenroth, Eberhard; Brockmann, Doris; Kovács, Róbert; Calhoun, Jason M; Choubert, Jean-Marc; Derlon, Nicolas

    2017-06-01

    The accuracy of a biofilm reactor model depends on the extent to which physical system conditions (particularly bulk-liquid hydrodynamics and their influence on biofilm dynamics) deviate from the ideal conditions upon which the model is based. It follows that an improved capacity to model a biofilm reactor does not necessarily rely on an improved biofilm model, but does rely on an improved mathematical description of the biofilm reactor and its components. Existing biofilm reactor models typically include a one-dimensional biofilm model, a process (biokinetic and stoichiometric) model, and a continuous flow stirred tank reactor (CFSTR) mass balance that [when organizing CFSTRs in series] creates a pseudo two-dimensional (2-D) model of bulk-liquid hydrodynamics approaching plug flow. In such a biofilm reactor model, the user-defined biofilm area is specified for each CFSTR; thereby, Xcarrier does not exit the boundaries of the CFSTR to which they are assigned or exchange boundaries with other CFSTRs in the series. The error introduced by this pseudo 2-D biofilm reactor modeling approach may adversely affect model results and limit model-user capacity to accurately calibrate a model. This paper presents a new sub-model that describes the migration of Xcarrier and associated biofilms, and evaluates the impact that Xcarrier migration and axial dispersion has on simulated system performance. Relevance of the new biofilm reactor model to engineering situations is discussed by applying it to known biofilm reactor types and operational conditions.

  14. Autonomous Control of Space Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation....

  15. Non-equilibrium radiation nuclear reactor

    Science.gov (United States)

    Thom, K.; Schneider, R. T. (Inventor)

    1978-01-01

    An externally moderated thermal nuclear reactor is disclosed which is designed to provide output power in the form of electromagnetic radiation. The reactor is a gaseous fueled nuclear cavity reactor device which can operate over wide ranges of temperature and pressure, and which includes the capability of processing and recycling waste products such as long-lived transuranium actinides. The primary output of the device may be in the form of coherent radiation, so that the reactor may be utilized as a self-critical nuclear pumped laser.

  16. Advanced nuclear reactor types and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V. [ed.; Feinberg, O.; Morozov, A. [Russian Research Centre `Kurchatov Institute`, Moscow (Russian Federation); Devell, L. [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1995-07-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary.

  17. Phosphorus removal in aerated stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghigliazza, R.; Lodi, A.; Rovatti, M. [Inst. of Chemical and Process Engineering ``G.B. Bonino``, Univ. of Genoa (Italy)

    1999-03-01

    The possibility to obtain biological phosphorus removal in strictly aerobic conditions has been investigated. Experiments, carried out in a continuous stirred tank reactor (CSTR), show the feasibility to obtain phosphorus removal without the anaerobic phase. Reactor performance in terms of phosphorus abatement kept always higher then 65% depending on adopted sludge retention time (SRT). In fact increasing SRT from 5 days to 8 days phosphorus removal and reactor performance increase but overcoming this SRT value a decreasing in reactor efficiency was recorded. (orig.) With 6 figs., 3 tabs., 18 refs.

  18. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  19. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  20. Microchannel Methanation Reactors Using Nanofabricated Catalysts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and the Pennsylvania State University (Penn State) propose to develop and demonstrate a microchannel methanation reactor based on...

  1. High Performance Photocatalytic Oxidation Reactor System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Pioneer Astronautics proposes a technology program for the development of an innovative photocatalytic oxidation reactor for the removal and mineralization of...

  2. Supercritical-pressure light water cooled reactors

    CERN Document Server

    Oka, Yoshiaki

    2014-01-01

    This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water

  3. NEUTRON DENSITY CONTROL IN A NEUTRONIC REACTOR

    Science.gov (United States)

    Young, G.J.

    1959-06-30

    The method and means for controlling the neutron density in a nuclear reactor is described. It describes the method and means for flattening the neutron density distribution curve across the reactor by spacing the absorbing control members to varying depths in the central region closer to the center than to the periphery of the active portion of the reactor to provide a smaller neutron reproduction ratio in the region wherein the members are inserted, than in the remainder of the reactor thereby increasing the over-all potential power output.

  4. Sodium fast reactors with closed fuel cycle

    CERN Document Server

    Raj, Baldev; Vasudeva Rao, PR 0

    2015-01-01

    Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, safety analysis, validations, engineering, construction, and commissioning aspectsFeatures a special chapter on allied sciences to highlight advanced reactor core materials, specialized manufacturing technologies, chemical sensors, in-service inspecti

  5. Heat dissipating nuclear reactor with metal liner

    Science.gov (United States)

    Gluekler, E.L.; Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    A nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel is described in this disclosure. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.

  6. Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration.

    Science.gov (United States)

    Kongjan, Prawit; Angelidaki, Irini

    2010-10-01

    Hydrogen production from hemicellulose-rich wheat straw hydrolysate was investigated in continuously-stirred tank reactor (CSTR), up-flow anaerobic sludge bed (UASB) reactor, and anaerobic filter (AF) reactor. The CSTR was operated at an hydraulic retention time (HRT) of 3 days, and the UASB and AF reactors were operated at 1 day HRT, using mixed extreme thermophiles at 70 °C. The highest hydrogen production yield of 212.0±6.6 mL-H₂/g-sugars, corresponding to a hydrogen production rate of 821.4±25.5 mL-H₂/dL was achieved with the UASB reactor. Lowering the HRT to 2.5 days caused cell mass washout in the CSTR, while the UASB and AF reactors gave fluctuating and reducing hydrogen production at a 0.5-day HRT. The original rate and yield were recovered when the HRT was increased back to 1 day. These results demonstrate that reactor configuration is an important factor for enhancing and stabilizing H₂ production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Peptidolytic microbial community of methanogenic reactors from two modified UASBs of brewery industries

    Directory of Open Access Journals (Sweden)

    C. Díaz

    2010-10-01

    Full Text Available We studied the peptide-degrading anaerobic communities of methanogenic reactors from two mesophilic full-scale modified upflow anaerobic sludge blanket (UASB reactors treating brewery wastewater in Colombia. Most probable number (MPN counts varied between 7.1 x 10(8 and 6.6 x 10(9 bacteria/g volatile suspended solids VSS (Methanogenic Reactor 1 and 7.2 x 10(6 and 6.4 x 10(7 bacteria/g (VSS (Methanogenic Reactor 2. Metabolites detected in the highest positive MPN dilutions in both reactors were mostly acetate, propionate, isovalerate and, in some cases, negligible concentrations of butyrate. Using the highest positive dilutions of MPN counts, 50 dominant strains were isolated from both reactors, and 12 strains were selected for sequencing their 16S rRNA gene based on their phenotypic characteristics. The small-subunit rRNA gene sequences indicated that these strains were affiliated to the families Propionibacteriaceae, Clostridiaceae and Syntrophomonadaceae in the low G + C gram-positive group and Desulfovibrio spp. in the class d-Proteobacteria. The main metabolites detected in the highest positive dilutions of MPN and the presence of Syntrophomonadaceae indicate the effect of the syntrophic associations on the bioconversion of these substrates in methanogenic reactors. Additionally, the potential utilization of external electron acceptors for the complete degradation of amino acids by Clostridium strains confirms the relevance of these acceptors in the transformation of peptides and amino acids in these systems.

  8. Anaerobic biogranulation in a hybrid reactor treating phenolic waste

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Anushyaa [Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Gupta, S.K. [Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)]. E-mail: skgupta@cc.iitb.ac.in

    2006-10-11

    Granulation was examined in four similar anaerobic hybrid reactors 15.5 L volume (with an effective volume of 13.5 L) during the treatment of synthetic coal wastewater at the mesophilic temperature of 27 {+-} 5 deg. C. The hybrid reactors are a combination of UASB unit at the lower part and an anaerobic filter at the upper end. Synthetic wastewater with an average chemical oxygen demand (COD) of 2240 mg/L, phenolics concentration of 752 mg/L and a mixture of volatile fatty acids was fed to three hybrid reactors. The fourth reactor, control system, was fed with a wastewater containing sodium acetate and mineral nutrients. Coal waste water contained phenol (490 mg/L); m-, o-, p-cresols (123.0, 58.6, 42 mg/L); 2,4-, 2,5-, 3,4- and 3,5-dimethyl phenols (6.3, 6.3, 4.4 and 21.3 mg/L) as major phenolic compounds. A mixture of anaerobic digester sludge and partially granulated sludge (3:1) were used as seed materials for the start up of the reactors. Granules were observed after 45 days of operation of the systems. The granules ranged from 0.4 to 1.2 mm in diameter with good settling characteristics with an SVI of 12 mL/g SS. After granulation, the hybrid reactor performed steadily with phenolics and COD removal efficiencies of 93% and 88%, respectively at volumetric loading rate of 2.24 g COD/L d and hydraulic retention time of 24 h. The removal efficiencies for phenol and m/p-cresols reached 92% and 93% (corresponding to 450.8 and 153 mg/L), while o-cresol was degraded to 88% (corresponding to 51.04 mg/L). Dimethyl phenols could be removed completely at all the organic loadings and did not contribute much to the residual organics. Biodegradation of o-cresol was obtained in the hybrid-UASB reactors.

  9. Catalytic-Dielectric Barrier Discharge Plasma Reactor For Methane and Carbon Dioxide Conversion

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2007-10-01

    Full Text Available A catalytic - DBD plasma reactor was designed and developed for co-generation of synthesis gas and C2+ hydrocarbons from methane. A hybrid Artificial Neural Network - Genetic Algorithm (ANN-GA was developed to model, simulate and optimize the reactor. Effects of CH4/CO2 feed ratio, total feed flow rate, discharge voltage and reactor wall temperature on the performance of catalytic DBD plasma reactor was explored. The Pareto optimal solutions and corresponding optimal operating parameters ranges based on multi-objectives can be suggested for catalytic DBD plasma reactor owing to two cases, i.e. simultaneous maximization of CH4 conversion and C2+ selectivity, and H2 selectivity and H2/CO ratio. It can be concluded that the hybrid catalytic DBD plasma reactor is potential for co-generation of synthesis gas and higher hydrocarbons from methane and carbon dioxide and showed better than the conventional fixed bed reactor with respect to CH4 conversion, C2+ yield and H2 selectivity for CO2 OCM process. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: I. Istadi, N.A.S. Amin. (2007. Catalytic-Dielectric Barrier Discharge Plasma Reactor For Methane and Carbon Dioxide Conversion. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 37-44.  doi:10.9767/bcrec.2.2-3.8.37-44][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.8.37-44 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/8][Cited by: Scopus 1 |

  10. DISTRIBUTION OF THE MIXTURE THROUGH THE REACTORS CASCADE IN THE PRODUCTION OF LOW MOLECULAR COPOLYMERS OF BUTADIENE WITH STYRENE

    Directory of Open Access Journals (Sweden)

    V. F. Lebedev

    2014-01-01

    Full Text Available Summary. In the polymerization of butadiene with styrene heat removal is the main factor limiting the output of the cascade reactor. Thus the residence time of the monomers in the reactor exceeds significantly the time necessary to complete the process on the basis of kinetic regularities. To increase the output of the mixture the distribution in the reactor cascade is made. It is necessary to distribute the flow of mixture through the reactor of the cascade to have the resulting polymer of the same viscosity at the outlet of each reactor. The algorithm of distribution of the mixture in the reactor cascade with regard to the synthesis parameters (temperature in the reactor and the feed rate of the mixture, the ratio of the modifier and the initiator in the complex, the number of reactors and a determined dynamic viscosity is developed. In accordance with the developed algorithm the calculation of the velocity of the mixture feed in each reactor of the cascade is made. It is shown that the flow of mixture in each polymerization unit depends on the overall output of the installation and the number of reactors in the cascade. The algorithm for the distribution of the initial mixture in the reactor cascade is developed to provide maximum output of the installation and set the quality of the obtained polymer. To determine the degree of conversion of monomers and temperature conditions of the process of polymerization under the calculated speed of the feed mixture in the first polymerization cascade the basic technological parameters of the polymerization process in real time mode, the calculation using a mathematical model is made. The analysis of the simulation results shows that during the first hour, the concentration of monomers does not exceed of 0.085 mol/l, which corresponds to the degree of conversion of monomer to 99 %, while the temperature in the reactor corresponds to the optimal mode - from 65 to 85 0C.

  11. Reactors for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  12. Synfuel production in nuclear reactors

    Science.gov (United States)

    Henning, C.D.

    Apparatus and method for producing synthetic fuels and synthetic fuel components by using a neutron source as the energy source, such as a fusion reactor. Neutron absorbers are disposed inside a reaction pipe and are heated by capturing neutrons from the neutron source. Synthetic fuel feedstock is then placed into contact with the heated neutron absorbers. The feedstock is heated and dissociates into its constituent synfuel components, or alternatively is at least preheated sufficiently to use in a subsequent electrolysis process to produce synthetic fuels and synthetic fuel components.

  13. Baseline Concept Description of a Small Modular High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hans Gougar

    2014-05-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the

  14. Baseline Concept Description of a Small Modular High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gougar, Hans D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the

  15. The Development of the Advanced Light Water Reactor in Korea - The Korean Next Generation Reactor -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.G.; Park, Y.S.; Kim, B.S.; Cho, S.J. [Korea Electric Power Research Institute, Taejon (Korea)

    1999-07-01

    Korean next generation reactor (KNGR), which is to be designed as a standard evolutionary advanced light water reactor (ALWR) in Korea, has been developed from 1992 as one of long-term government projects. The major characteristics of the KNGR are as follows; KNGR is 2-loop PWR and its design lift time is 60 years. The CDF and the CFF will be much lower than 10{sup -5}/RY and 10{sup -6}/RY, respectively. For the design improvement, KNGR adopted inconel-690 as a steam generator tube material, four train ECCS, refueling water storage tank inside containment, and double cylindrical concrete containment. For more reliable and easier control, compact workstations have been adopted in the design of main control complex and digital I and C technology is used for protection, control, and monitoring. In addition, KNGR has some passive design features such as fluidic device in safety injection tank, passive secondary condensing system, and passive auto-catalytic hydrogen recombiner to enhance safety. (author). 4 refs., 4 figs.

  16. Performance of pressure tubes in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, D.; Griffiths, M.; Bickel, G.; Buyers, A.; Coleman, C.; Nordin, H.; St Lawrence, S. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    The pressure tubes in CANDU reactors typically operate for times up to about 30 years prior to refurbishment. The in-reactor performance of Zr-2.5Nb pressure tubes has been evaluated by sampling and periodic inspection. This paper describes the behavior and discusses the factors controlling the behaviour of these components. The Zr–2.5Nb pressure tubes are nominally extruded at 815{sup o}C, cold worked nominally 27%, and stress relieved at 400 {sup o}C for 24 hours, resulting in a structure consisting of elongated grains of hexagonal close-packed alpha-Zr, partially surrounded by a thin network of filaments of body-centred-cubic beta-Zr. These beta-Zr filaments are meta-stable and contain about 20% Nb after extrusion. The stress-relief treatment results in partial decomposition of the beta-Zr filaments with the formation of hexagonal close-packed alpha-phase particles that are low in Nb, surrounded by a Nb-enriched beta-Zr matrix. The material properties of pressure tubes are determined by variations in alpha-phase texture, alpha-phase grain structure, network dislocation density, beta-phase decomposition, and impurity concentration that are a function of manufacturing variables. The pressure tubes operate at temperatures between 250 {sup o}C and 310 {sup o}C with coolant pressures up to about 11 MPa in fast neutron fluxes up to 4 x 10{sup 17} n·m{sup -2}·s{sup -1} (E > 1 MeV) and the properties are modified by these conditions. The properties of the pressure tubes in an operating reactor are therefore a function of both manufacturing and operating condition variables. The ultimate tensile strength, fracture toughness, and delayed hydride-cracking properties (velocity (V) and threshold stress intensity factor (K{sub IH})) change with irradiation, but all reach a nearly limiting value at a fluence of less than 10{sup 25} n·m{sup -2} (E > 1 MeV). At this point the ultimate tensile strength is raised about 200 MPa, toughness is reduced by about 50%, V increases

  17. Autonomous Control of Space Nuclear Reactors

    Science.gov (United States)

    Merk, John

    2013-01-01

    Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation. Long-duration surface missions necessitate reliable autonomous operation, and manned missions impose added requirements for failsafe reactor protection. There is a need for an advanced instrumentation and control system for space-nuclear reactors that addresses both aspects of autonomous operation and safety. The Reactor Instrumentation and Control System (RICS) consists of two functionally independent systems: the Reactor Protection System (RPS) and the Supervision and Control System (SCS). Through these two systems, the RICS both supervises and controls a nuclear reactor during normal operational states, as well as monitors the operation of the reactor and, upon sensing a system anomaly, automatically takes the appropriate actions to prevent an unsafe or potentially unsafe condition from occurring. The RPS encompasses all electrical and mechanical devices and circuitry, from sensors to actuation device output terminals. The SCS contains a comprehensive data acquisition system to measure continuously different groups of variables consisting of primary measurement elements, transmitters, or conditioning modules. These reactor control variables can be categorized into two groups: those directly related to the behavior of the core (known as nuclear variables) and those related to secondary systems (known as process variables). Reliable closed-loop reactor control is achieved by processing the acquired variables and actuating the appropriate device drivers to maintain the reactor in a safe operating state. The SCS must prevent a deviation from the reactor nominal conditions by managing limitation functions in order to avoid RPS actions. The RICS has four identical redundancies that comply with physical separation, electrical isolation, and functional independence. This architecture complies with the

  18. Investigation of molten salt fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Kenichi; Enuma, Yasuhiro; Tanaka, Yoshihiko; Konomura, Mamoru; Ichimiya, Masakazu [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2000-06-01

    Phase I of Feasibility Studies on Commercialized Fast Reactor System is being performed for two years from Japanese Fiscal Year 1999. In this report, results of the study on fluid fuel reactors (especially a molten salt fast breeder reactor concept) are described from the viewpoint of technical and economical concerns of the plant system design. In JFY1999, we have started to investigate the fluid fuel reactors as alternative concepts of sodium cooled FBR systems with MOX fuel, and selected the unique concept of a molten chloride fast breeder reactor, whose U-Pu fuel cycle can be related to both light water reactors and fast breeder reactors on the basis of present technical data and design experiences. We selected a preliminary composition of molten fuel and conceptual plant design through evaluation of technical and economical issues essential for the molten salt reactors and then compared them with reference design concepts of sodium cooled FBR systems under limited information on the molten chloride fast breeder reactors. The following results were obtained. (1) The molten chloride fast breeder reactors have inherent safety features in the core and plant performances, ad the fluid fuel is quite promising for cost reduction of the fuel fabrication and reprocessing. (2) On the other hand, the inventory of the molten chloride fuel becomes high and thermal conductivity of the coolant is inferior compared to those of sodium cooled FBR systems, then, the size of main components such as IHX's becomes larger and the amount of construction materials is seems to be increased. (3) Furthermore economical vessel and piping materials which contact with the molten chloride salts are required to be developed. From the results, it is concluded that further steps to investigate the molten chloride fast breeder reactor concepts are too early to be conducted. (author)

  19. K-East and K-West Reactors

    Data.gov (United States)

    Federal Laboratory Consortium — Hanford's "sister reactors", the K-East and the K-West Reactors, were built side-by-side in the early 1950's. The two reactors went operational within four months of...

  20. Closed Brayton cycle power conversion systems for nuclear reactors :

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sanchez, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  1. Simulated nuclear reactor fuel assembly

    Science.gov (United States)

    Berta, Victor T.

    1993-01-01

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  2. Dissecting Reactor Antineutrino Flux Calculations

    Science.gov (United States)

    Sonzogni, A. A.; McCutchan, E. A.; Hayes, A. C.

    2017-09-01

    Current predictions for the antineutrino yield and spectra from a nuclear reactor rely on the experimental electron spectra from 235U, 239Pu, 241Pu and a numerical method to convert these aggregate electron spectra into their corresponding antineutrino ones. In the present work we investigate quantitatively some of the basic assumptions and approximations used in the conversion method, studying first the compatibility between two recent approaches for calculating electron and antineutrino spectra. We then explore different possibilities for the disagreement between the measured Daya Bay and the Huber-Mueller antineutrino spectra, including the 238U contribution as well as the effective charge and the allowed shape assumption used in the conversion method. We observe that including a shape correction of about +6 % MeV-1 in conversion calculations can better describe the Daya Bay spectrum. Because of a lack of experimental data, this correction cannot be ruled out, concluding that in order to confirm the existence of the reactor neutrino anomaly, or even quantify it, precisely measured electron spectra for about 50 relevant fission products are needed. With the advent of new rare ion facilities, the measurement of shape factors for these nuclides, for many of which precise beta intensity data from TAGS experiments already exist, would be highly desirable.

  3. New Production Reactors Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    Part I of this New Production Reactors (NPR) Program Plan: describes the policy basis of the NPR Program; describes the mission and objectives of the NPR Program; identifies the requirements that must be met in order to achieve the mission and objectives; and describes and assesses the technology and siting options that were considered, the Program's preferred strategy, and its rationale. The implementation strategy for the New Production Reactors Program has three functions: Linking the design, construction, operation, and maintenance of facilities to policies requirements, and the process for selecting options. The development of an implementation strategy ensures that activities and procedures are consistent with the rationale and analysis underlying the Program. Organization of the Program. The strategy establishes plans, organizational structure, procedures, a budget, and a schedule for carrying out the Program. By doing so, the strategy ensures the clear assignment of responsibility and accountability. Management and monitoring of the Program. Finally, the strategy provides a basis for monitoring the Program so that technological, cost, and scheduling issues can be addressed when they arise as the Program proceeds. Like the rest of the Program Plan, the Implementation Strategy is a living document and will be periodically revised to reflect both progress made in the Program and adjustments in plans and policies as they are made. 21 figs., 5 tabs.

  4. Research on plasma core reactors

    Science.gov (United States)

    Jarvis, G. A.; Barton, D. M.; Helmick, H. H.; Bernard, W.; White, R. H.

    1976-01-01

    Experiments and theoretical studies are being conducted for NASA on critical assemblies with one-meter diameter by one-meter long low-density cores surrounded by a thick beryllium reflector. These assemblies make extensive use of existing nuclear propulsion reactor components, facilities, and instrumentation. Due to excessive porosity in the reflector, the initial critical mass was 19 kg U(93.2). Addition of a 17 cm thick by 89 cm diameter beryllium flux trap in the cavity reduced the critical mass to 7 kg when all the uranium was in the zone just outside the flux trap. A mockup aluminum UF6 container was placed inside the flux trap and fueled with uranium-graphite elements. Fission distributions and reactivity worths of fuel and structural materials were measured. Finally, an 85,000 cu cm aluminum canister in the central region was fueled with UF6 gas and fission density distributions determined. These results are to be used to guide the design of a prototype plasma core reactor which will test energy removal by optical radiation.

  5. Gas tagging and cover gas combination for nuclear reactor

    Science.gov (United States)

    Gross, Kenny C.; Laug, Matthew T.

    1985-01-01

    The invention discloses the use of stable isotopes of neon and argon, that are grouped in preselected different ratios one to the other and are then sealed as tags in different cladded nuclear fuel elements to be used in a liquid metal fast breeder reactor. Failure of the cladding of any fuel element allows fission gases generated in the reaction and these tag isotopes to escape and to combine with the cover gas held in the reactor over the fuel elements. The isotopes specifically are Ne.sup.20, Ne.sup.21 and Ne.sup.22 of neon and Ar.sup.36, Ar.sup.38 and Ar.sup.40 of argon, and the cover gas is helium. Serially connected cryogenically operated charcoal beds are used to clean the cover gas and to separate out the tags. The first or cover gas cleanup bed is held between approximately 0.degree. and -25.degree. C. operable to remove the fission gases from the cover gas and tags and the second or tag recovery system bed is held between approximately -170.degree. and -185.degree. C. operable to isolate the tags from the cover gas. Spectrometric analysis further is used to identify the specific tags that are recovered, and thus the specific leaking fuel element. By cataloging the fuel element tags to the location of the fuel elements in the reactor, the location of the leaking fuel element can then be specifically determined.

  6. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  7. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-07-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  8. A new MTR fuel for a new MTR reactor: UMo for the Jules Horowitz reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guigon, B. [CEA Cadarache, Dir. de l' Energie Nucleaire DEN, Reacteur Jules Horowitz, 13 - Saint-Paul-lez-Durance (France); Vacelet, H. [Compagnie pour l' Etude et la Realisation de Combustibles Atomiques, CERCA, Etablissement de Romans, 26 (France); Dornbusch, D. [Technicatome, Service d' Architecture Generale, 13 - Aix-en-Provence (France)

    2003-07-01

    Within some years, the Jules Horowitz Reactor will be the only working experimental reactor (material and fuel testing reactor) in France. It will have to provide facilities for a wide range of needs: from activation analysis to power reactor fuel qualification. In this paper will be presented the main characteristics of the Jules Horowitz Reactor: its total power, neutron flux, fuel element... Safety criteria will be explained. Finally merits and disadvantages of UMo compared to the standard U{sub 3}Si{sub 2} fuel will be discussed. (authors)

  9. Annual report on JEN-1 reactor; Informe periodico del Reactor JEN-1 correspondiente al ano 1971

    Energy Technology Data Exchange (ETDEWEB)

    Montes, J.

    1972-07-01

    In the annual report on the JEN-1 reactor the main features of the reactor operations and maintenance are described. The reactor has been critical for 1831 hours, what means 65,8% of the total working time. Maintenance and pool water contamination have occupied the rest of the time. The maintenance schedule is shown in detail according to three subjects. The main failures and reactor scrams are also described. The daily maximum values of the water activity are given so as the activity of the air in the reactor hall. (Author)

  10. Anaerobic digestion and methane generation potential of rose residue in batch reactors.

    Science.gov (United States)

    Tosun, Ismail; Gönüllü, M Talha; Günay, Ahmet

    2004-01-01

    In the study, anaerobic digestion of residues from rose oil industry was investigated by using a laboratory scale completely mixed batch reactor in volume of 10 L and 4 small reactors in volume of 400 mL. Ten liters reactor isolated with a water jacket and 0.4 L reactors settled into a water bath were operated at 35 +/- 1 degrees C. The study supplies biochemical methane potential of hydrolyzed and original residues. Experimental results showed that hydrolyzed rose residue produced a bit more methane than original residue. Methane production results were analyzed with first-order and Chen&Hashimoto's models, and Chen&-Hashimoto's model was found to be more suitable than first-order kinetic model.

  11. TRIGA Mark II nuclear reactor facility. Final report, 1 July 1980--30 June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, B.C.

    1997-05-01

    This report is a final culmination of activities funded through the Department of Energy`s (DOE) University Reactor Sharing Program, Grant DE-FG02-80ER10273, during the period 1 July 1980 through 30 June 1995. Progress reports have been periodically issued to the DOE, namely the Reactor Facility Annual Reports C00-2082/2219-7 through C00-2082/10723-21, which are contained as an appendix to this report. Due to the extent of time covered by this grant, summary tables are presented. Table 1 lists the fiscal year financial obligations of the grant. As listed in the original grant proposals, the DOE grant financed 70% of project costs, namely the total amount spent of these projects minus materials costs and technical support. Thus the bulk of funds was spent directly on reactor operations. With the exception of a few years, spending was in excess of the grant amount. As shown in Tables 2 and 3, the Reactor Sharing grant funded a immense number of research projects in nuclear engineering, geology, animal science, chemistry, anthropology, veterinary medicine, and many other fields. A list of these users is provided. Out of the average 3000 visitors per year, some groups participated in classes involving the reactor such as Boy Scout Merit Badge classes, teacher`s workshops, and summer internships. A large number of these projects met the requirements for the Reactor Sharing grant, but were funded by the University instead.

  12. Effects of irradiation at lower temperature on the microstructure of Cr-Mo-V-alloyed reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, M.; Boehmert, J.; Gilles, R. [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1998-10-01

    The microstructural damage process due to neutron irradiation [1] proceeds in two stages: - formation of displacement cascades - evolution of the microstructure by defect reactions. Continuing our systematic investigation about the microstructural changes of Russian reactor pressure vessel steel due to neutron irradiation the microstructure of two laboratory heats of the VVER 440-type reactor pressure vessel steel after irradiation at 60 C was studied by small angle neutron scattering (SANS). 60 C-irradiation differently changes the irradiation-induced microstructure in comparison with irradiation at reactor operation temperature and can, thus, provide new insights into the mechanisms of the irradiation damage. (orig.)

  13. In-reactor creep behavior of selected ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Puigh, R.J.; Wire, G.L.

    1983-01-01

    An experiment was conducted in the Experimental Breeder Reactor-II (EBR-II) to investigate the in-reactor creep behavior of selected ferritic alloys. Pressurized tube creep specimens fabricated from the following ferritic alloys: HT-9, 9Cr-2Mo, and 2-1/4Cr-1Mo, were irradiated in EBR-II to a peak fluence of 2.8 x 10/sup 22/ n/cm/sup 2/ (E > 0.1 MeV) and at irradiation temperatures of 443, 505 and 572/sup 0/C. Each alloy had four specimens with midwall hoop stresses of 0, 50, 75 and 100 MPa at each irradiation temperature. Measurements of the zero-stressed specimens indicate that none of the ferritic alloys are exhibiting evidence for swelling or phase transformations at these irradiation temperatures and at a fluence of 2.8 x 10/sup 22/ n/cm/sup 2/ (E > 0.1 MeV).

  14. Systems and methods for dismantling a nuclear reactor

    Science.gov (United States)

    Heim, Robert R; Adams, Scott Ryan; Cole, Matthew Denver; Kirby, William E; Linnebur, Paul Damon

    2014-10-28

    Systems and methods for dismantling a nuclear reactor are described. In one aspect the system includes a remotely controlled heavy manipulator ("manipulator") operatively coupled to a support structure, and a control station in a non-contaminated portion of a workspace. The support structure provides the manipulator with top down access into a bioshield of a nuclear reactor. At least one computing device in the control station provides remote control to perform operations including: (a) dismantling, using the manipulator, a graphite moderator, concrete walls, and a ceiling of the bioshield, the manipulator being provided with automated access to all internal portions of the bioshield; (b) loading, using the manipulator, contaminated graphite blocks from the graphite core and other components from the bioshield into one or more waste containers; and (c) dispersing, using the manipulator, dust suppression and contamination fixing spray to contaminated matter.

  15. Frederic Joliot-Curie and the first French atomic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Radvanyi, P. [Paris-11 Univ., IN2P3, 91 - Orsay (France). Inst. de Physique Nucleaire

    2009-07-01

    Frederic Joliot with his wife Irene Joliot-Curie discovered artificial radioactivity in 1934, for which they were awarded the Nobel prize in chemistry in 1935. In February 1939, Lise Meitner with her nephew Otto Frisch provided an explanation to the experimental results involving uranium bombarded with neutrons and in which much lighter elements than uranium were found: the uranium nuclei would have burst into lighter elements under the action of the bombarding neutrons, the phenomena of fission was discovered. Joliot realized like a few of his colleagues in other countries, that fission must release a considerable amount of energy. Different patents were registered. The war interrupted the works but they could resume at the Liberation when the Cea organization was established and they led to the inauguration of the Zoe reactor (Zero power,uranium Oxide and heavy Water), the first French reactor, in December 1948. (A.C.)

  16. Space reactors. Progress report, April-June 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ranken, W.A.

    1982-01-01

    Significant progress has been made in the Space Reactors design and experimental programs. Further analysis of the space reactor reactivity has shown that 2 to 3 kg of B/sub 4/C must be evenly distributed throughout the core to prevent criticality in the case of water immersion. A new core heat pipe processing, filling, and confirmatory testing system has significantly reduced the time required for these operations. The first dual-artery molybdenum/sodium heat pipe has been fabricated successfully. Fabrication of the in-pile test capsules and fuel tiles has begun. Experiments to develop methods of strengthening wicks and reducing wick pore size through chemical vapor deposition have yielded good results using tungsten. Thermoelectric couple redesign for fabrication and assembly methods prove-in has been completed, as has the test facility for these units.

  17. Design of an Organic Simplified Nuclear Reactor

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-08-01

    Full Text Available Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attractive alternative to advanced reactor designs being considered. The advent of high temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept even more viable today. We present a simple, cost-effective, and safe small modular nuclear reactor for offshore underwater deployment. The core is moderated by graphite, zirconium hydride, and organic fluid while cooled by the organic fluid. The organic coolant enables operation near atmospheric pressure and use of plain carbon steel for the reactor tank and primary coolant piping system. The core is designed to mitigate the coolant degradation seen in early organic reactors. Overall, the design provides a power density of 40 kW/L, while reducing the reactor hull size by 40% compared with a pressurized water reactor while significantly reducing capital plant costs.

  18. Monolithic reactor : Higher yield, less energy

    NARCIS (Netherlands)

    Kreutzer, M.T.; Moulijn, J.A.; Kapteijn, F.; Mols, B.

    2004-01-01

    The production of margarine, the desulphurisation of crude oil, and the manufacture of synthetic diesel fuel, these are only three of the many industrial processes in which a three-phase reactor is used. Traditionally, this type of reactor is rather ill-defined. Success with a lab scale set-up is no

  19. MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR

    Science.gov (United States)

    Balent, R.

    1963-03-12

    This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

  20. Reactor antineutrino spectra and forbidden beta decays

    Science.gov (United States)

    Štefánik, Dušan; Dvornický, Rastislav; Šimkovic, Fedor

    2017-10-01

    The exact relativistic shape factors, associated with the nuclear matrix elements governing the first forbidden beta decays, are presented. It is expected that their consideration can allow a more accurate theoretical description of antineutrino fluxes from the power reactor. A qualitative analysis of the uncertainty of reactor antineutrino flux from 235U within the electron spectrum conversion method is performed.