WorldWideScience

Sample records for bwr fuel elements

  1. Analysis of high fidelity of a BWR fuel element with COBRA-TF/PARCS codes and TRACE; Analisis de Alta Fidelidad de un Elemento Combustible BWR con los codigos COBRA-TF/PARCS y TRACE

    Energy Technology Data Exchange (ETDEWEB)

    Abarca, A.; Miro, R.; Barrachina, T.; Verdu, G.; Solar, A.; Concejal, A.; Melara, J.; Albendea, M.

    2013-07-01

    It has been modeled a 10 x 10 BWR fuel element, containing 91 fuel rods (81 of 10 partial length and total length) and a great water bar of square section in the central part of it. Such fuel element has been modeled in detail: at the level of sub-channel code COBRA-TF and using parametric models for fuel elements BWR that owns the plant code TRACE. Has been an exercise in comparison of the results obtained by both codes in the simulation of a stationary and a small transient flow injection, highlighting the differences observed.

  2. Thermomechanical evaluation of BWR fuel elements for procedures of preconditioned with FEMAXI-V; Evaluacion termomecanica de elementos combustible BWR para procedimientos de preacondicionado con FEMAXI-V

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez L, H.; Lucatero, M.A.; Ortiz V, J. [ININ, Carretera Mexico-Toluca Km 36.5, La Marquesa, Estado de Mexico (Mexico)]. e-mail: hhl@nuclear.inin.mx

    2006-07-01

    The limitations in the burnt of the nuclear fuel usually are fixed by the one limit in the efforts to that undergo them the components of a nuclear fuel assembly. The limits defined its provide the direction to the fuel designer to reduce to the minimum the fuel failure during the operation, and they also prevent against some thermomechanical phenomena that could happen during the evolution of transitory events. Particularly, a limit value of LHGR is fixed to consider those physical phenomena that could lead to the interaction of the pellet-shirt (Pellet Cladding Interaction, PCI). This limit value it is related directly with an PCI limit that can be fixed based on experimental tests of power ramps. This way, to avoid to violate the PCI limit, the conditioning procedures of the fuel are still required for fuel elements with and without barrier. Those simulation procedures of the power ramp are carried out for the reactor operator during the starting maneuvers or of power increase like preventive measure of possible consequences in the thermomechanical behavior of the fuel. In this work, the thermomechanical behavior of two different types of fuel rods of the boiling water reactor is analyzed during the pursuit of the procedures of fuel preconditioning. Five diverse preconditioning calculations were carried out, each one with three diverse linear ramps of power increments. The starting point of the ramps was taken of the data of the cycle 8 of the unit 1 of the Laguna Verde Nucleo electric Central. The superior limit superior of the ramps it was the threshold of the lineal power in which a fuel failure could be presented by PCI, in function of the fuel burnt. The analysis was carried out with the FEMAXI-V code. (Author)

  3. Optimization of analysis best-estimate of a fuel element BWR with Code STAR-CCM+; Optimizacion del analisis best-estimate de un elemento combustible BWR con el codigo STAR-CCM+

    Energy Technology Data Exchange (ETDEWEB)

    Morgado Canada, E.; Concejal Barmejo, A.; Jimenez Varas, G.; Solar Martinez, A.

    2014-07-01

    The objective of the project is the evaluation of the code STAR-CCM +, as well as the establishment of guidelines and standardized procedures for the discretization of the area of study and the selection of physical models suitable for the simulation of BWR fuel. For this purpose several of BFBT experiments have simulated [1] provide a data base for the development of experiments for measuring distribution of fractions of holes to changes in power in order to find the most appropriate models for the simulation of the problem. (Author)

  4. Behaviour of the reactivity for BWR fuel cells; Comportamiento de la reactividad para celdas de combustible BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J. A.; Alonso, G.; Delfin, A.; Vargas, S. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E., E-mail: galonso@inin.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, U. P. Adolfo Lopez Mateos, Col. Lindavista, 07738 Mexico D. F. (Mexico)

    2011-11-15

    In this work the behaviour of the reactivity of a fuel assembly type BWR was studied, the objective is to obtain some expressions that consider the average enrichment of U-235 and the gadolinium concentration like a function of the fuel cells burnt. Also, the applicability of the lineal reactivity model was analyzed for fuel cells type BWR. The analysis was carried out with the CASMO-4 code. (Author)

  5. Fuel Thermal Expansion (FTHEXP). [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Reymann, G. A.

    1978-07-01

    A model is presented which deals with dimensional changes in LWR fuel pellets caused by changes in temperature. It is capable of dealing with any combination of UO/sub 2/ and PuO/sub 2/ in solid, liquid or mixed phase states, and includes expansion due to the solid-liquid phase change. The function FTHEXP models fuel thermal expansion as a function of temperature, fraction of PuO/sub 2/, and the fraction of fuel which is molten.

  6. Development of a scatter search optimization algorithm for BWR fuel lattice design

    Energy Technology Data Exchange (ETDEWEB)

    Francois, J.L.; Martin-del-Campo, C. [Mexico Univ. Nacional Autonoma, Facultad de Ingenieria (Mexico); Morales, L.B.; Palomera, M.A. [Mexico Univ. Nacional Autonoma, Instituto de Investigaciones en Matematicas Aplicadas y Sistemas, D.F. (Mexico)

    2005-07-01

    A basic Scatter Search (SS) method, applied to the optimization of radial enrichment and gadolinia distributions for BWR fuel lattices, is presented in this paper. Scatter search is considered as an evolutionary algorithm that constructs solutions by combining others. The goal of this methodology is to enable the implementation of solution procedures that can derive new solutions from combined elements. The main mechanism for combining solutions is such that a new solution is created from the strategic combination of two other solutions to explore the solutions' space. Results show that the Scatter Search method is an efficient optimization algorithm applied to the BWR design and optimization problem. Its main features are based on the use of heuristic rules since the beginning of the process, which allows directing the optimization process to the solution, and to use the diversity mechanism in the combination operator, which allows covering the search space in an efficient way. (authors)

  7. PWR and BWR spent fuel assembly gamma spectra measurements

    Science.gov (United States)

    Vaccaro, S.; Tobin, S. J.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Hu, J.; Schwalbach, P.; Sjöland, A.; Trellue, H.; Vo, D.

    2016-10-01

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative-Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  8. Minor Actinides Loading Optimization for Proliferation Resistant Fuel Design - BWR

    Energy Technology Data Exchange (ETDEWEB)

    G. S. Chang; Hongbin Zhang

    2009-09-01

    One approach to address the United States Nuclear Power (NP) 2010 program for the advanced light water reactor (LWR) (Gen-III+) intermediate-term spent fuel disposal need is to reduce spent fuel storage volume while enhancing proliferation resistance. One proposed solution includes increasing burnup of the discharged spent fuel and mixing minor actinide (MA) transuranic nuclides (237Np and 241Am) in the high burnup fuel. Thus, we can reduce the spent fuel volume while increasing the proliferation resistance by increasing the isotopic ratio of 238Pu/Pu. For future advanced nuclear systems, MAs are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. A typical boiling water reactor (BWR) fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of adding MAs (237Np and/or 241Am) to enhance proliferation resistance and improve fuel cycle performance for the intermediate-term goal of future nuclear energy systems. However, adding MAs will increase plutonium production in the discharged spent fuel. In this work, the Monte-Carlo coupling with ORIGEN-2.2 (MCWO) method was used to optimize the MA loading in the UO2 fuel such that the discharged spent fuel demonstrates enhanced proliferation resistance, while minimizing plutonium production. The axial averaged MA transmutation characteristics at different burnup were compared and their impact on neutronics criticality and the ratio of 238Pu/Pu discussed.

  9. Development of advanced BWR fuel bundle with spectral shift rod - BWR core characteristics with SSR

    Energy Technology Data Exchange (ETDEWEB)

    Hino, T.; Kondo, T.; Chaki, M.; Ohga, Y. [Hitachi-GE Nuclear Energy, Ltd., 1-1, Saiwai-cho, 3-chome, Hitachi-shi, Ibaraki-ken, 317-0073 (Japan); Makigami, T. [Tokyo Electric Power Company Inc., 1-1-3, Uchisaiwai-cho, Chiyoda-ku, Tokyo, 100-0011 (Japan)

    2012-07-01

    The neutron energy spectrum can be varied during an operation cycle to generate and utilize more plutonium from the non-fissile {sup 238}U by changing the void fraction in the core through control of the core coolant flow rate. This operation method, which is called a spectral shift operation, is practiced in BWRs to save natural uranium. A new component called a spectral shift rod (SSR), which is utilized instead of a conventional water rod, has been introduced to amplify the void fraction change and increase the spectral shift effect. In this study, fuel bundle design with the SSR and core design were carried out for the ABWR and the next generation BWR, HP-ABWR (High-Performance ABWR).The core characteristics with the SSR were evaluated and compared with those when using the conventional water rod. Influences of uncertainty of the water level in the SSR on the safety limit minimum critical power ratio (SLMCPR) were considered for evaluation of the uranium saving effect attained by the SSR. As a result, it was found that the amount of natural uranium needed for an operation cycle could be reduced more than 3% with 20% core coolant flow change and more than 5% with 30% core coolant flow change, in the form of increased discharge exposure by using the SSR compared with the conventional water rod use. (authors)

  10. Nuclear reactor fuel element. Kernreaktorbrennelement

    Energy Technology Data Exchange (ETDEWEB)

    Lippert, H.J.

    1985-03-28

    The fuel element box for a BWR is situated with a corner bolt on the inside in one corner of its top on the top side of the top plate. This corner bolt is screwed down with a bolt with a corner part which is provided with leaf springs outside on two sides, where the bolt has a smaller diameter and an expansion shank. The bolt is held captive to the bolt head on the top and the holder on the bottom of the corner part. The holder is a locknut. If the expansion forces are too great, the bolt can only break at the expansion shank.

  11. Validation of SCALE (SAS2H) Isotopic Predictions for BWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, O.W.

    1998-01-01

    Thirty spent fuel samples obtained from boiling-water-reactor (BWR) fuel pins have been modeled at Oak Ridge National Laboratory using the SAS2H sequence of the SCALE code system. The SAS2H sequence uses transport methods combined with the depletion and decay capabilities of the ORIGEN-S code to estimate the isotopic composition of fuel as a function of its burnup history. Results of these calculations are compared with chemical assay measurements of spent fuel inventories for each sample. Results show reasonable agreement between measured and predicted isotopic concentrations for important actinides; however, little data are available for most fission products considered to be important for spent fuel concerns (e.g., burnup credit, shielding, source-term calculations, etc.). This work is a follow-up to earlier works that studied the ability to predict spent fuel compositions in pressurized-water-reactor (PWR) fuel pins. Biases and uncertainties associated with BWR isotopic predictions are found to be larger than those of PWR calculations. Such behavior is expected, as the operation of a BWR is significantly more complex than that of a PWR plant, and in general the design of a BWR has a more heterogeneous configuration than that of a PWR. Nevertheless, this work shows that the simple models employed using SAS2H to represent such complexities result in agreement to within 5% (and often less than 1%) or less for most nuclides important for spent fuel applications. On the other hand, however, the set of fuel samples analyzed represent a small subset of the BWR fuel population, and results reported herein may not be representative of the full population of BWR spent fuel.

  12. Validation of SCALE (SAS2H) isotopic predictions for BWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, O.W.; DeHart, M.D.

    1998-09-01

    Thirty spent fuel samples obtained from boiling-water-reactor (BWR) fuel pins have been modeled at Oak Ridge National Laboratory using the SAS2H sequence of the SCALE code system. The SAS2H sequence uses transport methods combined with the depletion and decay capabilities of the ORIGEN-S code to estimate the isotopic composition of fuel as a function of its burnup history. Results of these calculations are compared with chemical assay measurements of spent fuel inventories for each sample. Results show reasonable agreement between measured and predicted isotopic concentrations for important actinides; however, little data are available for most fission products considered to be important for spent fuel concerns (e.g., burnup credit, shielding, source-term calculations, etc.). This work is a follow-up to earlier works that studied the ability to predict spent fuel compositions in pressurized-water-reactor (PWR) fuel pins. Biases and uncertainties associated with BWR isotopic predictions are found to be larger than those of PWR calculations. Such behavior is expected, as the operation of a BWR is significantly more complex than that of a PWR plant, and in general the design of a BWR has a more heterogeneous configuration than that of a PWR. Nevertheless, this work shows that the simple models employed using SAS2H to represent such complexities result in agreement to within 5% (and often less than 1%) or less for most nuclides important for spent fuel applications. On the other hand, however, the set of fuel samples analyzed represent a small subset of the BWR fuel population, and results reported herein may not be representative of the full population of BWR spent fuel.

  13. Optimization of fuel rod enrichment distribution for BWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Yasushi; Hida, Kazuki; Sakurada, Koichi; Yamamoto, Munenari [Toshiba Corp., Kawasaki, Kanagawa (Japan). Nuclear Engineering Lab.

    1996-09-01

    A practical method was developed for determining the optimum fuel enrichment distribution within a boiling water reactor fuel assembly. The method deals with two different optimization problems, i.e. the combinatorial optimization problem of grouping fuel rods into a given number of rod groups with the same enrichment, and the problem of determining an optimal enrichment for each fuel rod under the resultant rod-grouping pattern. In solving these problems, the primary goal is to minimize a predefined objective function over a given exposure period. The objective function used here is defined by the linear combination C{sub 1}X + C{sub 2}X{sub G}, where X and X{sub G} stand, respectively, for control variables giving constraint to the local power peaking factor and the gadolinium rod power. C{sub 1} and C{sub 2} are user-definable weighting factors to accommodate design preferences. The algorithm for solving this combinatorial optimization problem starts by finding the optimal enrichment vector without any rod-grouping, and promising candidates of rod-grouping patterns are found by exhaustive enumeration based on the resulting fuel enrichment ordering. This latter problem is solved using the method of approximation programming. A practical application is shown for a contemporary 8 x 8 Pu mixed-oxide fuel assembly with 10 gadolinium-poisoned rods. (author)

  14. BWR Spent Nuclear Fuel Interfacial Bonding Efficiency Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jiang, Hao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-30

    The objective of this project is to perform a systematic study of spent nuclear fuel (SNF, also known as “used nuclear fuel” [UNF]) integrity under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL) in August 2013. Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmark tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. The clad of the HBR fuels was made of Zircaloy-4. Testing was continued in fiscal year (FY) 2014 using Department of Energy (DOE) funds. Additional CIRFT testing was conducted on three HBR rods; two specimens failed, and one specimen was tested to over 2.23 × 107 cycles without failing. The data analysis on all the HBR SNF rods demonstrated that it is necessary to characterize the fatigue life of the SNF rods in terms of (1) the curvature amplitude and (2) the maximum absolute of curvature extremes. The maximum extremes are significant because they signify the maximum tensile stress for the outer fiber of the bending rod. CIRFT testing has also addressed a large variation in hydrogen content on the HBR rods. While the load amplitude is the dominant factor that controls the fatigue life of bending rods, the hydrogen content also has an important effect on the lifetime attained at each load range tested. In FY 15, eleven SNF rod segments from the Limerick BWR were tested using the ORNL CIRFT equipment; one test under static conditions and ten tests under dynamic loading conditions. Under static unidirectional loading, a moment of 85 N·m was obtained at a maximum curvature of 4.0 m-1. The specimen did not show any sign of failure during three repeated loading cycles to a similar maximum curvature. Ten cyclic tests were conducted with amplitudes varying from 15.2 to 7.1 N·m. Failure was observed in nine of

  15. Design and axial optimization of nuclear fuel for BWR reactors; Diseno y optimizacion axial de combustible nuclear para reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Garcia V, M.A

    2006-07-01

    In the present thesis, the modifications made to the axial optimization system based on Tabu Search (BT) for the axial design of BWR fuel type are presented, developed previously in the Nuclear Engineering Group of the UNAM Engineering Faculty. With the modifications what is mainly looked is to consider the particular characteristics of the mechanical design of the GE12 fuel type, used at the moment in the Laguna Verde Nucleo electric Central (CNLV) and that it considers the fuel bars of partial longitude. The information obtained in this thesis will allow to plan nuclear fuel reloads with the best conditions to operate in a certain cycle guaranteeing a better yield and use in the fuel burnt, additionally people in charge in the reload planning will be favored with the changes carried out to the system for the design and axial optimization of nuclear fuel, which facilitate their handling and it reduces their execution time. This thesis this developed in five chapters that are understood in the following way in general: Chapter 1: It approaches the basic concepts of the nuclear energy, it describes the physical and chemical composition of the atoms as well as that of the uranium isotopes, the handling of the uranium isotope by means of the nuclear fission until arriving to the operation of the nuclear reactors. Chapter 2: The nuclear fuel cycle is described, the methods for its extraction, its conversion and its enrichment to arrive to the stages of the nuclear fuel management used in the reactors are described. Beginning by the radial design, the axial design and the core design of the nuclear reactor related with the fuel assemblies design. Chapter 3: the optimization methods of nuclear fuel previously used are exposed among those that are: the genetic algorithms method, the search methods based on heuristic rules and the application of the tabu search method, which was used for the development of this thesis. Chapter 4: In this part the used methodology to the

  16. Estimation of the coolant flow through a natural circulation BWR fuel channel applying and equivalent electrical model

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J.; Morales S, J. B. [UNAM, DEPFI, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, Campus Morelos en IMTA, Jiutepec, Morelos (Mexico); Espinosa P, G., E-mail: julfi_ig@yahoo.com.m [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2010-10-15

    This work presents the design and implementation of an advanced controller for a reduced order model of a BWR reactor core cooled by natural circulating water, which allows real time estimates of coolant flows through fuel assemblies about standard neutron flux strings. Nuclear power plants with boiling water reactors control individual fuel assembly coolant flows by forced circulation using external or internal water pumps and different core support plate orifices. These two elements reduce flow dependency on local channel pressure drops. In BWR reactors using only natural circulation coolant flows, these two elements are not available and therefore individual channel coolant flows are highly dependent in local conditions, such as power distributions and local pressure drops. Therefore it is expected that grater uncertainties in these variables be used during safety, fuel management and other analysis, which in turns may lead to increased operation penalties, such as tighter operating limits. The objective of this work is to asses by computer simulations means to reduce uncertainties in the measurement of fuel assembly coolant flows and eventually the associated penalties. During coolant phase transitions, pressure drops and local power may alter local natural circulation through fuel assemblies and flow estimates can be helped or not by control rod moves. This work presents the construction of an optimal controller for a core flow estimator based on a reduced order model of the coolant going though the reactor vessel components and nuclear core. This model is to be driven by plant signals from standard BWR instrumentation in order to estimate the coolant flows in selected fuel assemblies about a LPRM string. For this purpose an equivalent electrical model has been mathematically developed and numerically tested. The power-flow maps of typical BRW are used as steady state references for this equivalent model. Once these were fully reproduced for steady state

  17. Behavior of irradiated BWR fuel under reactivity-initiated-accident conditions; Results of tests FK-1, -2 and -3

    OpenAIRE

    2004-01-01

    Boiling water reactor (BWR) fuels with burnups of 41 to 45 GWd/tU were pulse-irradiated in the Nuclear Safety Research Reactor (NSRR) to investigate fuel behavior under cold startup reactivity-initiated-accident (RIA) conditions. BWR fuel segment rods of 8times8BJ (STEP I) type from Fukushima-Daiichi Unit 3 nuclear power plant were refabricated into short test rods, and they were subjected to prompt enthalpy insertion from 293 to 607 J/g (70 to 145 cal/g) within about 20 ms. The fuel cladding...

  18. MELCOR 1.8.2 assessment: The DF-4 BWR Damaged Fuel experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tautges, T.J.

    1993-10-01

    MELCOR is a fully integrated, engineering-level computer code being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As a part of an ongoing assessment, program, MELCOR has been used to model the ACRR in-pile DF-4 Damaged Fuel experiment. DF-4 provided data for early phase melt progression in BWR fuel assemblies, particularly for phenomena associated with eutectic interactions in the BWR control blade and zircaloy oxidation in the canister and cladding. MELCOR provided good agreement with experimental data in the key areas of eutectic material behavior and canister and cladding oxidation. Several shortcomings associated with the MELCOR modeling of BWR geometries were found and corrected. Twenty-five sensitivity studies were performed on COR, HS and CVH parameters. These studies showed that the new MELCOR eutectics model played an important role in predicting control blade behavior. These studies revealed slight time step dependence and no machine dependencies. Comparisons made with the results from four best-estimate codes showed that MELCOR did as well as these codes in matching DF-4 experimental data.

  19. Full scale stability and void fraction measurements for the ATRIUM trademark 10XM BWR fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Wehle, Franz; Velten, Roger; Kronenberg, Juris; Beisiegel, Achim [AREVA NP GmbH, Erlangen (Germany); Pruitt, D.W.; Greene, K.R. [AREVA NP Inc., Lynchburg, VA (United States); Farawila, Y.M. [Farawila et al., Inc., Richland, WA (United States)

    2011-07-01

    This paper describes recent advances in BWR fuel testing at AREVA NP's KATHY loop including stability and void fraction measurements. The stability tests for the ATRIUM trademark 10XM bundle with corner PLFR's were expanded in scope compared with previous campaigns to include simulated reactivity and power feedback essentially reproducing BWR operational environment. The oscillation magnitude was allowed to grow to explore inlet flow reversal and cyclical dryout and rewetting. The void fraction measurements employed a gamma ray computed tomography technique that reveals not only the average but the detailed sub-channel void distribution, and the range of measured void fraction has been expanded to higher values than was previously attained. With the completion of the required licensing tests and stability performance demonstration, the ATRIUM trademark 10XM is available and fully qualified for reload supply. (orig.)

  20. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mertyurek, Ugur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    utilized or referenced, justification has been provided as to why the data can be utilized for BWR fuel.

  1. Spent fuel data base: commercial light water reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel.

  2. Axial profiles of burned and fraction of holes for calculations of criticality with credit for BWR fuel burning; Perfiles axiales de quemado y fraccion de huecos para calculos de criticidad con credito al quemado para combustible BWR

    Energy Technology Data Exchange (ETDEWEB)

    Casado Sanchez, C.; Rubio Oviedo, P.

    2014-07-01

    This paper presents a method to define surround profiles of burning and fraction of holes suited for use in applications of credit to burning of BWR fuel from results obtained with the module STARBUCS of SCALE. (Author)

  3. Transient and stability analysis of a BWR core with thorium-uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779 Col. Narvarte, 03020 Mexico, DF (Mexico); Espinosa-Paredes, Gilberto [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico, DF (Mexico)], E-mail: gepe@xanum.uam.mx; Francois, Juan-Luis [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, 62550 Jiutepec Mor. (Mexico)

    2008-08-15

    The kinetic response of a boiling water reactor (BWR) equilibrium core using thorium as a nuclear material, in an integrated blanket-seed assembly, is presented in this work. Additionally an in-house code was developed to evaluate this core under steady state and transient conditions including a stability analysis. The code has two modules: (a) the time domain module for transient analysis and (b) the frequency domain module for stability analysis. The thermal-hydraulic process is modeled by a set of five equations, considering no homogeneous flow with drift-flux approximation and non-equilibrium thermodynamic. The neutronic process is calculated with a point kinetics model. Typical BWR reactivity effects are considered: void fraction, fuel temperature, moderator temperature and control rod density. Collapsed parameters were included in the code to represent the core using an average fuel channel. For the stability analysis, in the frequency domain, the transfer function is determined by applying Laplace-transforming to the calculated pressure drop perturbations in each of the considered regions where a constant total pressure drop was considered. The transfer function was used to study the system response in the frequency domain when an inlet flow perturbation is applied. The results show that the neutronic behavior of the core with thorium uranium fuel is similar to a UO{sub 2} core, even during transient conditions. The stability and transient analysis show that the thorium-uranium fuel can be operated safely in current BWRs.

  4. Entrainment and deposition modeling of liquid films with applications for BWR fuel rod dryout

    Science.gov (United States)

    Ratnayake, Ruwan Kumara

    While best estimate computer codes provide the licensing basis for nuclear power facilities, they also serve as analytical tools in overall plant and component design procedures. An ideal best estimate code would comprise of universally applicable mechanistic models for all its components. However, due to the limited understanding in these specific areas, many of the models and correlations used in these codes reflect high levels of empiricism. As a result, the use of such models is strictly limited to the range of parameters within which the experiments have been conducted. Disagreements between best estimate code predictions and experimental results are often explained by the mechanistic inadequacies of embedded models. Significant mismatches between calculated and experimental critical power values are common observations in the analyses of Boiling Water Reactors (BWR). Based on experimental observations and calculations, these mismatches are attributed to the additional entrainment and deposition caused by spacer grids in BWR fuel assemblies. In COBRA-TF (Coolant Boiling in Rod Arrays-Two Fluid); a state of the art industrial best estimate code, these disagreements are hypothesized to occur due the absence of an appropriate spacer grid model. In this thesis, development of a suitably detailed spacer grid model and integrating it to COBRA-TF is documented. The new spacer grid model is highly mechanistic so that the applicability of it is not seriously affected by geometric variations in different spacer grid designs. COBRA-TF (original version) simulations performed on single tube tests and BWR rod bundles with spacer grids showed that single tube predictions were more accurate than those of the rod bundles. This observation is understood to arise from the non-availability of a suitable spacer grid model in COBRA-TF. Air water entrainment experiments were conducted in a test section simulating two adjacent BWR sub channels to visualize the flow behavior at

  5. A Mechanistic Approach for the Prediction of Critical Power in BWR Fuel Bundles

    Science.gov (United States)

    Chandraker, Dinesh Kumar; Vijayan, Pallipattu Krishnan; Sinha, Ratan Kumar; Aritomi, Masanori

    The critical power corresponding to the Critical Heat Flux (CHF) or dryout condition is an important design parameter for the evaluation of safety margins in a nuclear fuel bundle. The empirical approaches for the prediction of CHF in a rod bundle are highly geometric specific and proprietary in nature. The critical power experiments are very expensive and technically challenging owing to the stringent simulation requirements for the rod bundle tests involving radial and axial power profiles. In view of this, the mechanistic approach has gained momentum in the thermal hydraulic community. The Liquid Film Dryout (LFD) in an annular flow is the mechanism of CHF under BWR conditions and the dryout modeling has been found to predict the CHF quite accurately for a tubular geometry. The successful extension of the mechanistic model of dryout to the rod bundle application is vital for the evaluation of critical power in the rod bundle. The present work proposes the uniform film flow approach around the rod by analyzing individual film of the subchannel bounded by rods with different heat fluxes resulting in different film flow rates around a rod and subsequently distributing the varying film flow rates of a rod to arrive at the uniform film flow rate as it has been found that the liquid film has a strong tendency to be uniform around the rod. The FIDOM-Rod code developed for the dryout prediction in BWR assemblies provides detailed solution of the multiple liquid films in a subchannel. The approach of uniform film flow rate around the rod simplifies the liquid film cross flow modeling and was found to provide dryout prediction with a good accuracy when compared with the experimental data of 16, 19 and 37 rod bundles under BWR conditions. The critical power has been predicted for a newly designed 54 rod bundle of the Advanced Heavy Water Reactor (AHWR). The selected constitutive models for the droplet entrainment and deposition rates validated for the dryout in tube were

  6. Optimization of fuel reloads for a BWR using the ant colony system; Optimizacion de recargas de combustible para un BWR usando el sistema de colonia de hormigas

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel E, J. [Universidad Autonoma del Estado de Mexico, Facultad de Ingenieria, Cerro de Coatepec s/n, Ciudad Universitaria, 50110 Toluca, Estado de Mexico (Mexico); Ortiz S, J. J. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)], e-mail: jaime.es.jaime@gmail.com

    2009-10-15

    In this work some results obtained during the development of optimization systems are presented, which are employees for the fuel reload design in a BWR. The systems use the ant colony optimization technique. As first instance, a system is developed that was adapted at travel salesman problem applied for the 32 state capitals of Mexican Republic. The purpose of this implementation is that a similarity exists with the design of fuel reload, since the two problems are of combinatorial optimization with decision variables that have similarity between both. The system was coupled to simulator SIMULATE-3, obtaining good results when being applied to an operation cycle in equilibrium for reactors of nuclear power plant of Laguna Verde. (Author)

  7. Qualification of helium measurement system for detection of fuel failures in a BWR

    Science.gov (United States)

    Larsson, I.; Sihver, L.; Loner, H.; Grundin, A.; Helmersson, J.-O.; Ledergerber, G.

    2014-05-01

    There are several methods for surveillance of fuel integrity during the operation of a boiling water reactor (BWR). The detection of fuel failures is usually performed by analysis of grab samples of off-gas and coolant activities, where a measured increased level of ionizing radiation serves as an indication of new failure or degradation of an already existing one. At some nuclear power plants the detection of fuel failures is performed by on-line nuclide specific measurements of the released fission gases in the off-gas system. However, it can be difficult to distinguish primary fuel failures from degradation of already existing failures. In this paper, a helium measuring system installed in connection to a nuclide specific measuring system to support detection of fuel failures and separate primary fuel failures from secondary ones is presented. Helium measurements provide valuable additional information to measurements of the gamma emitting fission gases for detection of primary fuel failures, since helium is used as a fill gas in the fuel rods during fabrication. The ability to detect fuel failures using helium measurements was studied by injection of helium into the feed water systems at the Forsmark nuclear power plant (NPP) in Sweden and at the nuclear power plant Leibstadt (KKL) in Switzerland. In addition, the influence of an off-gas delay line on the helium measurements was examined at KKL by injecting helium into the off-gas system. By using different injection rates, several types of fuel failures with different helium release rates were simulated. From these measurements, it was confirmed that the helium released by a failed fuel can be detected. It was also shown that the helium measurements for the detection of fuel failures should be performed at a sampling point located before any delay system. Hence, these studies showed that helium measurements can be useful to support detection of fuel failures. However, not all fuel failures which occurred at

  8. Nuclear fuel element

    Science.gov (United States)

    Meadowcroft, Ronald Ross; Bain, Alastair Stewart

    1977-01-01

    A nuclear fuel element wherein a tubular cladding of zirconium or a zirconium alloy has a fission gas plenum chamber which is held against collapse by the loops of a spacer in the form of a tube which has been deformed inwardly at three equally spaced, circumferential positions to provide three loops. A heat resistant disc of, say, graphite separates nuclear fuel pellets within the cladding from the plenum chamber. The spacer is of zirconium or a zirconium alloy.

  9. Fuel Element Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Burley, H.H. [ed.

    1956-08-01

    It is the purpose of the Fuel Element Technical Manual to Provide a single document describing the fabrication processes used in the manufacture of the fuel element as well as the technical bases for these processes. The manual will be instrumental in the indoctrination of personnel new to the field and will provide a single data reference for all personnel involved in the design or manufacture of the fuel element. The material contained in this manual was assembled by members of the Engineering Department and the Manufacturing Department at the Hanford Atomic Products Operation between the dates October, 1955 and June, 1956. Arrangement of the manual. The manual is divided into six parts: Part I--introduction; Part II--technical bases; Part III--process; Part IV--plant and equipment; Part V--process control and improvement; and VI--safety.

  10. Impact of modeling Choices on Inventory and In-Cask Criticality Calculations for Forsmark 3 BWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Gonzalez, Jesus S. [Univ. Politecnica de Madrid (Spain); Ade, Brian J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bowman, Stephen M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marshall, William BJ J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Simulation of boiling water reactor (BWR) fuel depletion poses a challenge for nuclide inventory validation and nuclear criticality safety analyses. This challenge is due to the complex operating conditions and assembly design heterogeneities that characterize these nuclear systems. Fuel depletion simulations and in-cask criticality calculations are affected by (1) completeness of design information, (2) variability of operating conditions needed for modeling purposes, and (3) possible modeling choices. These effects must be identified, quantified, and ranked according to their significance. This paper presents an investigation of BWR fuel depletion using a complete set of actual design specifications and detailed operational data available for five operating cycles of the Swedish BWR Forsmark 3 reactor. The data includes detailed axial profiles of power, burnup, and void fraction in a very fine temporal mesh for a GE14 (10×10) fuel assembly. The specifications of this case can be used to assess the impacts of different modeling choices on inventory prediction and in-cask criticality, specifically regarding the key parameters that drive inventory and reactivity throughout fuel burnup. This study focused on the effects of the fidelity with which power history and void fraction distributions are modeled. The corresponding sensitivity of the reactivity in storage configurations is assessed, and the impacts of modeling choices on decay heat and inventory are addressed.

  11. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL; Ade, Brian J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Mertyurek, Ugur [ORNL; Radulescu, Georgeta [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (keff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup

  12. Development of a fuzzy logic method to build objective functions in optimization problems: application to BWR fuel lattice design

    Energy Technology Data Exchange (ETDEWEB)

    Martin-del-Campo, C.; Francois, J.L.; Barragan, A.M. [Universidad Nacional Autonoma de Mexico - Facultad de Ingenieria (Mexico); Palomera, M.A. [Universidad Nacional Autonoma de Mexico - Instituto de Investigaciones en Matematicas Aplicadas y Sistema, Mexico, D. F. (Mexico)

    2005-07-01

    In this paper we develop a methodology based on the use of the Fuzzy Logic technique to build multi-objective functions to be used in optimization processes applied to in-core nuclear fuel management. As an example, we selected the problem of determining optimal radial fuel enrichment and gadolinia distributions in a typical 'Boiling Water Reactor (BWR)' fuel lattice. The methodology is based on the use of the mathematical capability of Fuzzy Logic to model nonlinear functions of arbitrary complexity. The utility of Fuzzy Logic is to map an input space into an output space, and the primary mechanism for doing this is a list of if-then statements called rules. The rules refer to variables and adjectives that describe those variables and, the Fuzzy Logic technique interprets the values in the input vectors and, based on the set of rules assigns values to the output vector. The methodology was developed for the radial optimization of a BWR lattice where the optimization algorithm employed is Tabu Search. The global objective is to find the optimal distribution of enrichments and burnable poison concentrations in a 10*10 BWR lattice. In order to do that, a fuzzy control inference system was developed using the Fuzzy Logic Toolbox of Matlab and it has been linked to the Tabu Search optimization process. Results show that Tabu Search combined with Fuzzy Logic performs very well, obtaining lattices with optimal fuel utilization. (authors)

  13. Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian J [ORNL; Gauld, Ian C [ORNL

    2011-10-01

    in MOX fuel is generally obtained from reprocessed irradiated nuclear fuel, whereas weapons-grade plutonium is obtained from decommissioned nuclear weapons material and thus has a different plutonium (and other actinides) concentration. Using MOX fuel instead of UOX fuel has potential impacts on the neutronic performance of the nuclear fuel and the design of the nuclear fuel must take these differences into account. Each of the plutonium sources (RG and WG) has different implications on the neutronic behavior of the fuel because each contains a different blend of plutonium nuclides. The amount of heat and the number of neutrons produced from fission of plutonium nuclides is different from fission of {sup 235}U. These differences in UOX and MOX do not end at discharge of the fuel from the reactor core - the short- and long-term storage of MOX fuel may have different requirements than UOX fuel because of the different discharged fuel decay heat characteristics. The research documented in this report compares MOX and UOX fuel during storage and disposal of the fuel by comparing decay heat rates for typical pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies with and without weapons-grade (WG) and reactor-grade (RG) MOX fuel.

  14. Artificial intelligence applied to fuel management in BWR type reactors; Inteligencia artificial aplicada a la administracion de combustible en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J.J

    1998-10-01

    In this work two techniques of artificial intelligence, neural networks and genetic algorithms were applied to a practical problem of nuclear fuel management; the determination of the optimal fuel reload for a BWR type reactor. This is an important problem in the design of the operation cycle of the reactor. As a result of the application of these techniques, comparable or even better reloads proposals than those given by expert companies in the subject were obtained. Additionally, two other simpler problems in reactor physics were solved: the determination of the axial power profile and the prediction of the value of some variables of interest at the end of the operation cycle of the reactor. Neural networks and genetic algorithms have been applied to solve many problems of engineering because of their versatility but they have been rarely used in the area of fuel management. The results obtained in this thesis indicates the convenience of undertaking further work on this area and suggest the application of these techniques of artificial intelligence to the solution of other problems in nuclear reactor physics. (Author)

  15. VIPRE-W / MEFISTO-T - A mechanistic tool for transient prediction of dryout in BWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Adamsson, C., E-mail: carl.adamsson@psi.ch [Westinhouse Electric Sweden, Vasteras (Sweden); Paul Scherrer Institut, Villigen (Switzerland); Le Corre, J-M., E-mail: lecorrjm@westinghouse.com [Westinhouse Electric Sweden, Vasteras (Sweden)

    2011-07-01

    The VIPRE-W/MEFISTO-T code package constitutes a simplified approach to sub-channel film-flow analysis whereby the transport equations for the liquid films are decoupled from each other. The approach allows fast and robust simulation with high axial resolution of realistic BWR transients. It has previously been shown that a steady-state version of the model agrees well with dryout measurements in full-scale fuel assembly mock-ups performed at the Westinghouse FRIGG loop. In this paper, we present validation of the transient version of the code with around 300 transient dryout experiments from the same loop. The transients involve realistic variations of flow and power and three different axial power distributions at conditions typical for BWR operation. The results from the film-flow analysis show high precision in the dryout prediction but a hitherto unexplained bias that reduces the accuracy. (author)

  16. Optimization of fuel cells for BWR based in Tabu modified search; Optimizacion de celdas de combustible para BWR basada en busqueda Tabu modificada

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo M, C.; Francois L, J.L. [Facultad de Ingenieria, UNAM, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico); Palomera P, M.A. [Facultad de Ingenieria, UNAM, Posgrado en Ingenieria en Computacion, Circuito exterior s/n, Ciudad Universitaria, Mexico, D.F. (Mexico)]. e-mail: cmcm@fi-b.unam.mx

    2004-07-01

    The advances in the development of a computational system for the design and optimization of cells for assemble of fuel of Boiling Water Reactors (BWR) are presented. The method of optimization is based on the technique of Tabu Search (Tabu Search, TS) implemented in progressive stages designed to accelerate the search and to reduce the time used in the process of optimization. It was programed an algorithm to create the first solution. Also for to diversify the generation of random numbers, required by the technical TS, it was used the Makoto Matsumoto function obtaining excellent results. The objective function has been coded in such a way that can adapt to optimize different parameters like they can be the enrichment average or the peak factor of radial power. The neutronic evaluation of the cells is carried out in a fine way by means of the HELIOS simulator. In the work the main characteristics of the system are described and an application example is presented to the design of a cell of 10x10 bars of fuel with 10 different enrichment compositions and gadolinium content. (Author)

  17. Radial optimization of a BWR fuel cell using genetic algorithms; Optimizacion radial de una celda de combustible BWR usando algoritmos geneticos

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo M, C.; Carmona H, R.; Oropeza C, I.P. [UNAM, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)]. e-mail: cmcm@fi-b.unam.mx

    2006-07-01

    The development of the application of the Genetic Algorithms (GA) to the optimization of the radial distribution of enrichment in a cell of fuel of a BWR (Boiling Water Reactor) is presented. The optimization process it was ties to the HELIOS simulator, which is a transport code of neutron simulation of fuel cells that has been validated for the calculation of nuclear banks for BWRs. With heterogeneous radial designs can improve the radial distribution of the power, for what the radial design of fuel has a strong influence in the global design of fuel recharges. The optimum radial distribution of fuel bars is looked for with different enrichments of U{sup 235} and contents of consumable poison. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution of the problem. The optimization process it was coded in 'C' language, it was automated the creation of the entrances to the simulator, the execution of the simulator and the extraction, in the exit of the simulator, of the parameters that intervene in the objective function. The objective function includes four parameters: average enrichment of the cell, average gadolinia concentration of the cell, peak factor of radial power and k-infinite multiplication factor. To be able to calculate the parameters that intervene in the objective function, the one evaluation process of GA was ties to the HELIOS code executed in a Compaq Alpha workstation. It was applied to the design of a fuel cell of 10 x 10 that it can be employee in the fuel assemble designs that are used at the moment in the Laguna Verde Nucleo electric Central. Its were considered 10 different fuel compositions which four contain gadolinia. Three heuristic rules that consist in prohibiting the placement of bars with gadolinia in the ends of the cell, to place the compositions with the smallest enrichment in the corners of the cell and to fix

  18. Modeling and validation of a mechanistic tool (MEFISTO) for the prediction of critical power in BWR fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Adamsson, Carl, E-mail: carl.adamsson@psi.ch [Westinghouse Electric Sweden, SE-721 63, Vaesteras (Sweden); Le Corre, Jean-Marie, E-mail: lecorrjm@westinghouse.com [Westinghouse Electric Sweden, SE-721 63, Vaesteras (Sweden)

    2011-08-15

    Highlights: > The MEFISTO code efficiently and accurately predicts the dryout event in a BWR fuel bundle, using a mechanistic model. > A hybrid approach between a fast and robust sub-channel analysis and a three-field two-phase analysis is adopted. > MEFISTO modeling approach, calibration, CPU usage, sensitivity, trend analysis and performance evaluation are presented. > The calibration parameters and process were carefully selected to preserve the mechanistic nature of the code. > The code dryout prediction performance is near the level of fuel-specific empirical dryout correlations. - Abstract: Westinghouse is currently developing the MEFISTO code with the main goal to achieve fast, robust, practical and reliable prediction of steady-state dryout Critical Power in Boiling Water Reactor (BWR) fuel bundle based on a mechanistic approach. A computationally efficient simulation scheme was used to achieve this goal, where the code resolves all relevant field (drop, steam and multi-film) mass balance equations, within the annular flow region, at the sub-channel level while relying on a fast and robust two-phase (liquid/steam) sub-channel solution to provide the cross-flow information. The MEFISTO code can hence provide highly detailed solution of the multi-film flow in BWR fuel bundle while enhancing flexibility and reducing the computer time by an order of magnitude as compared to a standard three-field sub-channel analysis approach. Models for the numerical computation of the one-dimensional field flowrate distributions in an open channel (e.g. a sub-channel), including the numerical treatment of field cross-flows, part-length rods, spacers grids and post-dryout conditions are presented in this paper. The MEFISTO code is then applied to dryout prediction in BWR fuel bundle using VIPRE-W as a fast and robust two-phase sub-channel driver code. The dryout power is numerically predicted by iterating on the bundle power so that the minimum film flowrate in the bundle

  19. Analysis of the performance of fuel cells BWR with a single enrichment and radial distribution of enrichments; Analisis del desempeno de celdas combustibles BWR con un solo enriquecimiento y con distribucion radial de enriquecimientos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J. A.; Vargas, S.; Alonso, G.; Del Valle, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. Lindavista, Mexico D. F. 07738 (Mexico); Xolocostli M, J. V. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: govaj666@hotmail.com

    2008-07-01

    The efficient use of the fuel is one of the objectives in the assemblies design of type BWR. The present tendency in the assemblies design of type BWR is through a radial distribution of enrichments. The present work has like object showing the because of this decision, for what a comparison of the neutronic performance of two fuel cells with the same enrichment average but one of them with radial distribution of enrichment and the other with a single enrichment equal to the average. The cells were analyzed with the CASMO-4 code and the obtained results of the behavior of the neutron flow and the power sustain the because of the radial distribution of enrichments. (Author)

  20. Nuclear fuel elements design, fabrication and performance

    CERN Document Server

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  1. SNTP program fuel element design

    Science.gov (United States)

    Walton, Lewis A.; Ales, Matthew W.

    1993-06-01

    The SNTP program is evaluating the feasibility of utilizing a particle bed reactor to develop a high-performance nuclear thermal rocket engine. The optimum fuel element arrangement depends on the power level desired and the intended application. The key components of the fuel element have been developed and are being tested.

  2. Information to be requested from the NSSS vendor for fuel management capability for BWR

    Energy Technology Data Exchange (ETDEWEB)

    Minguez, E.; Esteban, A.; Gomez, M.; Leira, G.; Martinez, R.; Serrano, J.

    1975-07-01

    A set of the nuclear, thermal-hydraulic, and mechanical parameters necessary according to the design of BWRs, is listed. This parameters are necessary to perform the fuel elements management and design, and it must be supplied by the Reactor Manufacturer to the Utility. (Author) 18 refs.

  3. Analysis of the behavior of irradiated BWR fuel rod in storage dry conditions; Analisis del comportamiento de una barra combustible irradiada BWR en condiciones de almacenamiento en seco

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A.; Montes, D.; Ruiz-Hervias, J.; Munoz-Reja, C.

    2014-07-01

    In order to complete previous studies of creep on PWR sheath material, developed a joint experimental program by CSN, ENRESA and ENUSA about BWR (Zircaloy-2) sheath material. This program consisted in creep tests and then on the material under creep, compression testing diametral obtaining the permissible displacement of the sheath to break. (Author)

  4. Simulations of ex-vessel fuel coolant interactions in a Nordic BWR using MC3D code

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, S.; Ma, W. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    Nordic Boiling Water Reactors (BWRs) employ a drywell cavity flooding technique as a nuclear severe accident management strategy. In case of core melt accident where the reactor pressure vessel will fail and the melt will eject from the lower head and fall into a water pool, may be in the form of a continuous jet. It is assumed that the melt jet will fragment, quench and form a coolable debris bed into the water pool. The melt interaction with a water pool may cause an energetic steam explosion which creates a potential risk towards the integrity of containment, leading to fission products release into the atmosphere. The results of the APRI-7 project suggest that the significant damage to containment structures by steam explosion cannot be ruled according to the state-of-the-art knowledge about corresponding accident scenario. In the follow-up project APRI-8 (2012-2016) one of the goals of the KTH research is to resolve the steam explosion energetics (SEE) issue, developing a risk-oriented framework for quantifying conditional threats to containment integrity for a Nordic type BWR. The present study deals with the premixing and explosion phase calculations of a Nordic BWR dry cavity, using MC3D, a multiphase CFD code for fuel coolant interactions. The main goal of the study is the assessment of pressure buildup in the cavity and the impact loading on the side walls. The conditions for the calculations are used from the SERENA-II BWR case exercise. The other objective was to do the sensitivity analysis of the parameters in modeling of fuel coolant interactions, which can help to reduce uncertainty in assessment of steam explosion energetics. The results show that the amount of liquid melt droplets in the water (region of void<0.6) is maximum even before reaching the jet at the bottom. In the explosion phase, maximum pressure is attained at the bottom and the maximum impulse on the wall is at the bottom of the wall. The analysis is carried out using two different

  5. BWR spent fuel transport and storage system for KKL: TN trademark 52L, TN trademark 97L, TN trademark 24 BHL

    Energy Technology Data Exchange (ETDEWEB)

    Sicard, D.; Verdier, A. [COGEMA Logistics (AREVA Group) (France); Monsigny, P.A. [NOK/KKL (Switzerland)

    2004-07-01

    The LEIBSTADT (KKL) nuclear power plant in Switzerland has opted to ship spent fuel to a central facility called ZWILAG for interim storage. In the mid-nineties, COGEMA LOGISTICS was contracted by KKL for the supply of the TN trademark a52L and TN trademark 97L transport and storage casks for BWR fuel types. In 2003, KKL also ordered from COGEMA LOGISTICS the supply of six TNae24 BHL transport and storage casks. This paper shows how all the three cask designs have responded to the KKL needs to ship and store BWR spent fuel. In addition, it highlights the already significant operational feedback of the TN trademark 52L and TN trademark 97L casks by the KKL and ZWILAG operators.

  6. BUTREN-RC an hybrid system for the recharges optimization of nuclear fuels in a BWR; BUTREN-RC un sistema hibrido para la optimizacion de recargas de combustible nuclear en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J.J.; Castillo M, J.A. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico); Valle G, E. del [IPN, ESFM, 07738 Mexico D.F. (Mexico)

    2004-07-01

    The obtained results with the hybrid system BUTREN-RC are presented that obtains recharges of nuclear fuel for a BWR type reactor. The system has implemented the methods of optimization heuristic taboo search and neural networks. The optimization it carried out with the technique of taboo search, and the neural networks, previously trained, were used to predict the behavior of the recharges of fuel, in substitution of commercial codes of reactor simulation. The obtained recharges of nuclear fuel correspond to 5 different operation cycles of the Laguna Verde Nuclear Power plant, Veracruz in Mexico. The obtained results were compared with the designs of this cycles. The energy gain with the recharges of fuel proposals is of approximately 4.5% with respect to those of design. The time of compute consumed it was considerably smaller that when a commercial code for reactor simulation is used. (Author)

  7. Protected Nuclear Fuel Element

    Science.gov (United States)

    Kittel, J. H.; Schumar, J. F.

    1962-12-01

    A stainless steel-clad actinide metal fuel rod for use in fast reactors is reported. In order to prevert cladding failures due to alloy formation between the actinide metal and the stainless steel, a mesh-like sleeve of expanded metal is interposed between them, the sleeve metal being of niobium, tantalum, molybdenum, tungsten, zirconium, or vanadium. Liquid alkali metal is added as a heat transfer agent. (AEC)

  8. Development and Assessment of CFD Models Including a Supplemental Program Code for Analyzing Buoyancy-Driven Flows Through BWR Fuel Assemblies in SFP Complete LOCA Scenarios

    Science.gov (United States)

    Artnak, Edward Joseph, III

    This work seeks to illustrate the potential benefits afforded by implementing aspects of fluid dynamics, especially the latest computational fluid dynamics (CFD) modeling approach, through numerical experimentation and the traditional discipline of physical experimentation to improve the calibration of the severe reactor accident analysis code, MELCOR, in one of several spent fuel pool (SFP) complete loss-ofcoolant accident (LOCA) scenarios. While the scope of experimental work performed by Sandia National Laboratories (SNL) extends well beyond that which is reasonably addressed by our allotted resources and computational time in accordance with initial project allocations to complete the report, these simulated case trials produced a significant array of supplementary high-fidelity solutions and hydraulic flow-field data in support of SNL research objectives. Results contained herein show FLUENT CFD model representations of a 9x9 BWR fuel assembly in conditions corresponding to a complete loss-of-coolant accident scenario. In addition to the CFD model developments, a MATLAB based controlvolume model was constructed to independently assess the 9x9 BWR fuel assembly under similar accident scenarios. The data produced from this work show that FLUENT CFD models are capable of resolving complex flow fields within a BWR fuel assembly in the realm of buoyancy-induced mass flow rates and that characteristic hydraulic parameters from such CFD simulations (or physical experiments) are reasonably employed in corresponding constitutive correlations for developing simplified numerical models of comparable solution accuracy.

  9. Compact Fuel Element Environment Test

    Science.gov (United States)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.; Broadway, J. W.

    2012-01-01

    Deep space missions with large payloads require high specific impulse (I(sub sp)) and relatively high thrust to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average I(sub sp). Nuclear thermal rockets (NTRs) capable of high I(sub sp) thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3,000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements that employ high melting point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high-temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via noncontact radio frequency heating and expose samples to hydrogen for typical mission durations has been developed to assist in optimal material and manufacturing process selection without employing fissile material. This Technical Memorandum details the test bed design and results of testing conducted to date.

  10. MCTP, a code for the thermo-mechanical analysis of a fuel rod of BWR type reactors (Neutron part); MCTP, un codigo para el analisis termo-mecanico de una barra combustible de reactores tipo BWR (Parte Neutronica)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez L, H.; Ortiz V, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: hhl@nuclear.inin.mx

    2003-07-01

    In the National Institute of Nuclear Research of Mexico a code for the thermo-mechanical analysis of the fuel rods of the BWR type reactors of the Nucleo electric Central of Laguna Verde is developed. The code solves the diffusion equation in cylindrical coordinates with several energy groups. The code, likewise, calculates the temperature distribution and power distribution in those fuel rods. The code is denominated Multi groups With Temperatures and Power (MCTP). In the code, the energy with which the fission neutrons are emitted it is divided in six groups. They are also considered the produced perturbations by the changes in the temperatures of the materials that constitute the fuel rods, the content of fission products, the uranium consumption and in its case the gadolinium, as well as the plutonium production. In this work there are present preliminary results obtained with the code, using data of operation of the Nucleo electric Central of Laguna Verde. (Author)

  11. Process development and fabrication for sphere-pac fuel rods. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Welty, R.K.; Campbell, M.H.

    1981-06-01

    Uranium fuel rods containing sphere-pac fuel have been fabricated for in-reactor tests and demonstrations. A process for the development, qualification, and fabrication of acceptable sphere-pac fuel rods is described. Special equipment to control fuel contamination with moisture or air and the equipment layout needed for rod fabrication is described and tests for assuring the uniformity of the fuel column are discussed. Fuel retainers required for sphere-pac fuel column stability and instrumentation to measure fuel column smear density are described. Results of sphere-pac fuel rod fabrication campaigns are reviewed and recommended improvements for high throughput production are noted.

  12. BWR Assembly Optimization for Minor Actinide Recycling

    Energy Technology Data Exchange (ETDEWEB)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  13. BWR simulation in a stationary state for the evaluation of fuel cell design; Simulacion de un reactor BWR en estado estacionario para la evaluacion del diseno de celdas de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Montes T, J. L.; Ortiz S, J. J.; Perusquia del C, R.; Castillo M, A., E-mail: joseluis.montes@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    In this paper the simulation of a BWR in order to evaluate the performance of a set of fuel assemblies under stationary state in three dimensions (3-D) is presented. 15 cases selected from a database containing a total of 18225 cases are evaluated. The main selection criteria were based on the results of the design phase of the power cells in two dimensions (2-D) and 3-D initial study. In 2-D studies the parameters that were used to qualify and select the designs were basically the local power peaking factor and neutron multiplication factor of each fuel cell. In the initial 3-D study variables that defined the quality of results, and from which the selection was realized, are the margins to thermal limits of reactor operation and the value of the effective multiplication factor at the end of cycle operation. From the 2-D and 3-D results of the studies described a second 3-D study was realized, where the optimizations of the fuel reload pattern was carried out. The results presented in this paper correspond to this second 3-D study. It was found that the designs of the fuel cell they had a similar behavior to those provided by the fuel supplier of reference BWR. Particularly it noted the impact of reload pattern on the cold shut down margin. An estimate of the operation costs of reference cycle analyzed with each one designed reload batch was also performed. As a result a positive difference (gain) up to 10,347 M/US D was found. (Author)

  14. Evaluation of the radial design of fuel cells in an operation cycle of a BWR reactor; Evaluacion del diseno radial de celdas de combustible en un ciclo de operacion de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez C, J.; Martin del Campo M, C. [Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Facultad de Ingenieria, UNAM, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)]. e-mail: jgco@ver.megared.net.mx

    2003-07-01

    This work is continuation of one previous in the one that the application of the optimization technique called Tabu search to the radial design of fuel cells of boiling water reactors (BWR, Boiling Water Reactor) is presented. The objective function used in the optimization process only include neutron parameters (k-infinite and peak of radial power) considering the cell at infinite media. It was obtained to reduce the cell average enrichment completing the characteristics of reactivity of an original cell. The objective of the present work is to validate the objective function that was used for the radial design of the fuel cell (test cell), analyzing the operation of a one cycle of the reactor in which fuels have been fresh recharged that contain an axial area with the nuclear database of the cell designed instead of the original cell. For it is simulated it with Cm-Presto the cycle 10 of the reactor operation of the Unit 1 of the Nuclear Power station of Laguna Verde (U1-CNLV). For the cycle evaluation its were applied so much the simulation with the Haling strategy, as the simulation of the one cycle with control rod patterns and they were evaluated the energy generation and several power limits and reactivity that are used as design parameters in fuel reloads of BWR reactors. The results at level of an operation cycle of the reactor, show that the objective function used in the optimization and radial design of the cell is adequate and that it can induce to one good use of the fuel. (Author)

  15. BWR ASSEMBLY SOURCE TERMS FOR WASTE PACKAGE DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    T.L. Lotz

    1997-02-15

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide boiling water reactor (BWR) assembly radiation source term data for use during Waste Package (WP) design. The BWR assembly radiation source terms are to be used for evaluation of radiolysis effects at the WP surface, and for personnel shielding requirements during assembly or WP handling operations. The objectives of this evaluation are to generate BWR assembly radiation source terms that bound selected groupings of BWR assemblies, with regard to assembly average burnup and cooling time, which comprise the anticipated MGDS BWR commercial spent nuclear fuel (SNF) waste stream. The source term data is to be provided in a form which can easily be utilized in subsequent shielding/radiation dose calculations. Since these calculations may also be used for Total System Performance Assessment (TSPA), with appropriate justification provided by TSPA, or radionuclide release rate analysis, the grams of each element and additional cooling times out to 25 years will also be calculated and the data included in the output files.

  16. Analysis of the FeCrAl Accident Tolerant Fuel Concept Benefits during BWR Station Blackout Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Kevin R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Iron-chromium-aluminum (FeCrAl) alloys are being considered for fuel concepts with enhanced accident tolerance. FeCrAl alloys have very slow oxidation kinetics and good strength at high temperatures. FeCrAl could be used for fuel cladding in light water reactors and/or as channel box material in boiling water reactors (BWRs). To estimate the potential safety gains afforded by the FeCrAl concept, the MELCOR code was used to analyze a range of postulated station blackout severe accident scenarios in a BWR/4 reactor employing FeCrAl. The simulations utilize the most recently known thermophysical properties and oxidation kinetics for FeCrAl. Overall, when compared to the traditional Zircaloy-based cladding and channel box, the FeCrAl concept provides a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. Finally, due to the slower oxidation kinetics, substantially less hydrogen is generated, and the generation is delayed in time. This decreases the amount of non-condensable gases in containment and the potential for deflagrations to inhibit the accident response.

  17. Low cost, lightweight fuel cell elements

    Science.gov (United States)

    Kindler, Andrew (Inventor)

    2001-01-01

    New fuel cell elements for use in liquid feed fuel cells are provided. The elements including biplates and endplates are low in cost, light in weight, and allow high efficiency operation. Electrically conductive elements are also a part of the fuel cell elements.

  18. Actinides record, power calculations and activity for present isotopes in the spent fuel of a BWR; Historial de actinidos y calculos de potencia y actividad para isotopos presentes en el combustible gastado de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez C, P.; Ramirez S, J. R.; Lucatero, M. A., E-mail: pastor.enriquez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    The administration of spent fuel is one of the more important stages of the nuclear fuel cycle, and this has become a problem of supreme importance in countries that possess nuclear reactors. Due to this in this work, the study on the actinides record and present fission products to the discharge of the irradiated fuel in a light water reactor type BWR is shown, to quantify the power and activity that emit to the discharge and during the cooling time. The analysis was realized on a fuel assembly type 10 x 10 with an enrichment average of 3.69 wt % in U-235 and the assembly simulation assumes four cycles of operation of 18 months each one and presents an exposition of 47 G Wd/Tm to the discharge. The module OrigenArp of the Scale 6 code is the computation tool used for the assembly simulation and to obtain the results on the actinides record presents to the fuel discharge. The study covers the following points: a) Obtaining of the plutonium vector used in the fuel production of mixed oxides, and b) Power calculation and activity for present actinides to the discharge. The results presented in this work, correspond at the same time immediate of discharge (0 years) and to a cooling stage in the irradiated fuel pool (5 years). (Author)

  19. Impact analysis of modifying the composition of the nuclear fuel of a BWR with beryllium oxide; Analisis del impacto de modificar la composicion del combustible nuclear de un BWR con oxido de berilio

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo V, J. M.; Morales S, J. B., E-mail: euqrop@hotmail.com [UNAM, Facultad de Ingenieria, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2013-10-15

    The beryllium oxide (Be O) presents excellent physical properties, especially its high thermal conductivity that contrasts clearly with that of the uranium dioxide (UO{sub 2}) used at the present as fuel in a great number of nuclear plants. The present work models a nuclear reactor cooled by light water in boiling with two external recirculation loops (BWR/5) using the code for the transitory analysis and postulated accidents Trac-B F1, implementing a UO{sub 2} mixture and different fractions of Be O, with the objective of improving the thermal conductivity of the fuel. The numeric results and the realized analyses indicate that when adding a fraction in volume of 10% the central temperature decreases in 30.4% in stationary state, while during the large break loss of coolant accident the peak cladding temperature diminishes in 7%. Although the real interaction of the mixture has not been determined experimentally, the obtained results are promising. (Author)

  20. Thermionic fuel element technology status

    Science.gov (United States)

    Holland, J. W.; Horner, M. W.; Yang, L.

    1985-01-01

    The results of research, conducted between the mid-1960s and 1973, on the multiconverter thermionic fuel elements (TFEs) that comprise the reactor core of an SP-100 thermionic reactor system are presented. Fueled-emitter technology, insulator technology and cell and TFE assembly technology of the prototypical TFEs which were tested in-pile and out-of-pile during these years are described. The proto-TFEs have demonstrated reproducible performance within 5 percent and no premature failures within the 1.5 yr of operation (with projected 3-yr lifetimes). The two primary life-limiting factors had been identified as thermionic emitter dimensional increase due to interactions with the fuel and electrical insulator structural damage from fast neutrons. Multiple options for extending TFE lifetimes to 7 yr or longer are available and will be investigated in the 1984-1985 SP-100 program for resolution of critical technology issues. Design diagrams and test graphs are included.

  1. A high temperature fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Sekido, A.; Nakai, M.; Ninomiya, Y.

    1982-12-21

    A solid electrolyte which conducts electricity with heating by oxygen ions and operates at a temperature of 1,000C is used in the element. The cathode, besides the ionic conductivity in oxygen, has an electron conductivity. The anode has electron conductivity. Substances such as Bi203, into which oxides of alkaline earth metals are added, are used for making the cathode. The electrolyte consists of ZrO2 and Y2O3, to which CaO is added. WC, to which an H2 type fuel is fed, serves as the anode. The element has a long service life.

  2. OECD/NEA burnup credit criticality benchmarks phase IIIA: Criticality calculations of BWR spent fuel assemblies in storage and transport

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Hiroshi; Naito, Yoshitaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ando, Yoshihira [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    2000-09-01

    The report describes the final results of Phase IIIA Benchmarks conducted by the Burnup Credit Criticality Calculation Working Group under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD/NEA). The benchmarks are intended to confirm the predictive capability of the current computer code and data library combinations for the neutron multiplication factor (k{sub eff}) of a layer of irradiated BWR fuel assembly array model. In total 22 benchmark problems are proposed for calculations of k{sub eff}. The effects of following parameters are investigated: cooling time, inclusion/exclusion of FP nuclides and axial burnup profile, and inclusion of axial profile of void fraction or constant void fractions during burnup. Axial profiles of fractional fission rates are further requested for five cases out of the 22 problems. Twenty-one sets of results are presented, contributed by 17 institutes from 9 countries. The relative dispersion of k{sub eff} values calculated by the participants from the mean value is almost within the band of {+-}1%{delta}k/k. The deviations from the averaged calculated fission rate profiles are found to be within {+-}5% for most cases. (author)

  3. Prediction of the local power factor in BWR fuel cells by means of a multilayer neural network; Prediccion del factor local de potencia en celdas de combustible BWR mediante una red neuronal multicapas

    Energy Technology Data Exchange (ETDEWEB)

    Montes, J.L.; Ortiz, J.J.; Perusquia C, R. [ININ, Carretera Mexico-Toluca s/n, 52750 La Marquesa, Ocoyoacac, Estado de Mexico (Mexico); Francois, J.L.; Martin del Campo M, C. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)]. e-mail: jlmt@nuclear.inin.mx

    2007-07-01

    To the beginning of a new operation cycle in a BWR reactor the reactivity of this it increases by means of the introduction of fresh fuel, the one denominated reload fuel. The problem of the definition of the characteristics of this reload fuel represents a combinatory optimization problem that requires significantly a great quantity of CPU time for their determination. This situation has motivated to study the possibility to substitute the Helios code, the one which is used to generate the new cells of the reload fuel parameters, by an artificial neuronal network, with the purpose of predicting the parameters of the fuel reload cell of a BWR reactor. In this work the results of the one training of a multilayer neuronal net that can predict the local power factor (LPPF) in such fuel cells are presented. The prediction of the LPPF is carried out in those condition of beginning of the life of the cell (0.0 MWD/T, to 40% of holes in the one moderator, temperature of 793 K in the fuel and a moderator temperature of 560 K. The cells considered in the present study consist of an arrangement of 10x10 bars, of those which 92 contains U{sup 235}, some of these bars also contain a concentration of Gd{sub 2}O{sub 3} and 8 of them contain only water. The axial location inside the one assembles of recharge of these cells it is exactly up of the cells that contain natural uranium in the base of the reactor core. The training of the neuronal net is carried out by means of a retro-propagation algorithm that uses a space of training formed starting from previous evaluations of cells by means of the Helios code. They are also presented the results of the application of the neuronal net found for the prediction of the LPPF of some cells used in the real operation of the Unit One of the Laguna Verde Nuclear Power station. (Author)

  4. Fuel elements of thermionic converters

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, R.L. [ed.] [Sandia National Labs., Albuquerque, NM (United States). Environmental Systems Assessment Dept.; Gontar, A.S.; Nelidov, M.V.; Nikolaev, Yu.V.; Schulepov, L.N. [RI SIA Lutch, Podolsk (Russian Federation)

    1997-01-01

    Work on thermionic nuclear power systems has been performed in Russia within the framework of the TOPAZ reactor program since the early 1960s. In the TOPAZ in-core thermionic convertor reactor design, the fuel element`s cladding is also the thermionic convertor`s emitter. Deformation of the emitter can lead to short-circuiting and is the primary cause of premature TRC failure. Such deformation can be the result of fuel swelling, thermocycling, or increased unilateral pressure on the emitter due to the release of gaseous fission products. Much of the work on TRCs has concentrated on preventing or mitigating emitter deformation by improving the following materials and structures: nuclear fuel; emitter materials; electrical insulators; moderator and reflector materials; and gas-exhaust device. In addition, considerable effort has been directed toward the development of experimental techniques that accurately mimic operational conditions and toward the creation of analytical and numerical models that allow operational conditions and behavior to be predicted without the expense and time demands of in-pile tests. New and modified materials and structures for the cores of thermionic NPSs and new fabrication processes for the materials have ensured the possibility of creating thermionic NPSs for a wide range of powers, from tens to several hundreds of kilowatts, with life spans of 5 to 10 years.

  5. Fuel performance improvement program. Quarterly/annual progress report, October 1977--September 1978. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Crouthamel, C.E. (comp.)

    1978-10-01

    This quarterly/annual report reviews and summarizes the activities performed in support of the Fuel Performance Improvement Program (FPIP) during Fiscal Year 1978 with emphasis on those activities that transpired during the quarter ending September 30, 1978. Significant progress has been made in achieving the primary objectives of the program, i.e., to demonstrate commercially viable fuel concepts with improved fuel - cladding interaction (FCI) behavior. This includes out-of-reactor experiments to support the fuel concepts being evaluated, initiation of instrumented test rod experiments in the Halden Boiling Water Reactor (HBWR), and fabrication of the first series of demonstration rods for irradiation in the Big Rock Point Reactor (BRPR).

  6. Experimental data report for test TS-2; Reactivity initiated accident test in NSRR with pre-irradiated BWR fuel rod

    OpenAIRE

    1993-01-01

    本報告書は、1990年2月に実施した照射済BWR燃料を用いた2回目の反応度事故模擬実験であるTS-2について実験データをまとめたものである。TS-2実験に使用した試験燃料は初期濃縮度2.79%であり、敦賀1号炉で照射されたBWR7times7型燃料棒を短尺化したものである。短尺化に供した実用燃料のバンドル平均燃焼度は21.3Gwd/tであった。NSRRにおける照射実験は、大気圧、室温の静止水冷却条件下で行い、発熱量は72pm5cal/g・fuel(ピークエンタルピ66pm5cal/g・fuel)を与えた。その結果燃料破損は生じなかった。実験条件、実験方法、パルス照射時の燃料の過渡挙動及び照射後検査の結果をまとめて示した。...

  7. Experimental data report for test TS-1; Reactivity initiated accident test in NSRR with pre-irradiated BWR fuel rod

    OpenAIRE

    1992-01-01

    本報告書は、1989年10月に実施した照射済BWR燃料を用いた最初の反応度事故模擬実験であるTS-1について、実験データをまとめたものである。TS-1実験に使用した試験燃料は、初期濃縮度2.79%であり、敦賀1号炉で照射されたBWR7times7型燃料棒を短尺化したものである。短尺化に供した実用燃料のバンドル平均燃焼度は21.3GWd/tであった。NSRRにおける照射実験は、新たに開発した専用の2重カプセルを用い、大気圧・室温の静止水冷却条件下で行い、発熱量61cal/g・fuel(ピークエンタルピ55cal/g・fuel)を与えた。その結果、燃料破損は生じなかった。実験条件、実験方法、燃料燃焼度の測定結果、パルス照射時の燃料の過渡挙動及び照射後検査の結果をまとめて示した。...

  8. Boiling water reactors with uranium-plutonium mixed oxide fuel. Report 5: Analysis of the reactivity coefficients and the stability of a BWR loaded with MOx fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demaziere, C. [CEA Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires

    2000-01-01

    This report is a part of the project titled 'Boiling Water Reactors With Uranium-Plutonium Mixed Oxide (MOx) Fuel'. The aim of this study is to model the impact of a core loading pattern containing MOx bundles upon the main characteristics of a BWR (reactivity coefficients, stability, etc.). For this purpose, the Core Management System (CMS) codes of Studsvik Scandpower are used. This package is constituted by CASMO-4/TABLES-3/SIMULATE-3. It has been shown in previous reports that these codes are able to accurately represent and model MOx bundles. This report is thus devoted to the study of BWR cores loaded (partially or totally) with MOx bundles. The plutonium quality used is the Pu type 2016 (mostly Pu-239, 56 %, and Pu-240, 26 %), but a variation of the plutonium isotopic vector was also investigated, in case of a partial MOx loading. One notices that the reactivity coefficients do not present significant changes in comparison with a full UOx loading. Nevertheless, two main problems arise: the shutdown margin at BOC is lower than 1 % and the stability to in-phase oscillations is slightly decreased. (The SIMULATE-3 version used for this study does not contain the latest MOx enhancements described in literature, since these code developments have not been provided to the department. Nevertheless, as the nominal average enrichment of the MOx bundles is 5.41 % (total amount of plutonium), which can still be considered as a relatively low enrichment, the accuracy of the CMS codes is acceptable without the use of the MOx improvements for this level of Pu enrichment.

  9. Optimization of fuel cells for BWR using Path Re linking and flexible strategies of solution;Optimizacion de celdas de combustible para BWR empleando Path Relinking y estrategias flexibles de solucion

    Energy Technology Data Exchange (ETDEWEB)

    Castillo M, J. A.; Ortiz S, J. J.; Torres V, M.; Perusquia del Cueto, R., E-mail: alejandro.castillo@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-10-15

    In this work are presented the obtained preliminary results to design nuclear fuel cells for boiling water reactors (BWR) using new strategies. To carry out the cells design some of the used rules in the fuel administration were discarded and other were implemented. The above-mentioned with the idea of making a comparative analysis between the used rules and those implemented here, under the hypothesis that it can be possible to design nuclear fuel cells without using all the used rules and executing the security restrictions that are imposed in these cases. To evaluate the quality of the obtained cells it was taken into account the power pick factor and the infinite multiplication factor, in the same sense, to evaluate the proposed configurations and to obtain the mentioned parameters was used the CASMO-4 code. To optimize the design it is uses the combinatorial optimization technique named Path Re linking and the Dispersed Search as local search method. The preliminary results show that it is possible to implement new strategies for the cells design of nuclear fuel following new rules. (Author)

  10. Design and optimization of a fuel reload of BWR with plutonium and minor actinides; Diseno y optimizacion de una recarga de combustible de BWR con plutonio y actinidos menores

    Energy Technology Data Exchange (ETDEWEB)

    Guzman A, J. R.; Francois L, J. L.; Martin del Campo M, C.; Palomera P, M. A. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, Jiutepec, Morelos 62550 (Mexico)]. e-mail: maestro_juan_rafael@hotmail.com

    2008-07-01

    In this work is designed and optimized a pattern of fuel reload of a boiling water reactor (BWR), whose fuel is compound of uranium coming from the enrichment lines, plutonium and minor actinides (neptunium, americium, curium); obtained of the spent fuel recycling of reactors type BWR. This work is divided in two stages: in the first stage a reload pattern designs with and equilibrium cycle is reached, where the reload lot is invariant cycle to cycle. This reload pattern is gotten adjusting the plutonium content of the assembly for to reach the length of the wished cycle. Furthermore, it is necessary to increase the concentration of boron-10 in the control rods and to introduce gadolinium in some fuel rods of the assembly, in order to satisfy the margin approach of out. Some reactor parameters are presented: the axial profile of power average of the reactor core, and the axial and radial distribution of the fraction of holes, for the one reload pattern in balance. For the design of reload pattern codes HELIOS and CM-PRESTO are used. In the second stage an optimization technique based on genetic algorithms is used, along with certain obtained heuristic rules of the engineer experience, with the intention of optimizing the reload pattern obtained in the first stage. The objective function looks for to maximize the length of the reactor cycle, at the same time as that they are satisfied their limits related to the power and the reactor reactivity. Certain heuristic rules are applied in order to satisfy the recommendations of the fuel management: the strategy of the control cells core, the strategy of reload pattern of low leakage, and the symmetry of a quarter of nucleus. For the evaluation of the parameters that take part in the objective function it simulates the reactor using code CM-PRESTO. Using the technique of optimization of the genetic algorithms an energy of the cycle of 10834.5 MW d/tHM is obtained, which represents 5.5% of extra energy with respect to the

  11. Experience of Areva in fuel services for PWR and BWR; Experiencia de Areva en servicios de combustible para PWR y BWR

    Energy Technology Data Exchange (ETDEWEB)

    Morales, I.

    2015-07-01

    AREVA being an integrated supplier of fuel assemblies has included in its strategy to develop services and solutions to customers who desire to improve the performance and safety of their fuel. These services go beyond the simple 'after sale' services that can be expected from a fuel supplier: The portfolio of AREVA includes a wide variety of services, from scientific calculations to fuel handling services in a nuclear power plant. AREVA is committed to collaborate and to propose best-in-class solutions that really make the difference for the customer, based on 40 years of Fuel design and manufacturing experience. (Author)

  12. Visual examinations of K east fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Pitner, A.L., Fluor Daniel Hanford

    1997-02-03

    Selected fuel elements stored in both ``good fuel`` and ``bad fuel`` canisters in K East Basin were extracted and visually examined full length for damage. Lower end damage in the ``bad fuel`` canisters was found to be more severe than expected based on top end appearances. Lower end damage for the ``good fuel`` canisters, however, was less than expected based on top end observations. Since about half of the fuel in K East Basin is contained in ``good fuel`` canisters based on top end assessments, the fraction of fuel projected to be intact with respect to IPS processing considerations remains at 50% based on these examination results.

  13. A comparison of crud phases appearing on some Swedish BWR fuel rods using Laser Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hermansson, H.P. [Studsvik Nuclear AB, Nykoeping (Sweden)]|[Lulea Univ. of Technology (Sweden)

    2002-07-01

    Previous investigations showed that laser Raman spectroscopy (LRS) can be used as a phase specific analytical tool for radioactive fuel crud samples and also for details in the underlying layer of zirconium dioxide. It is relatively easy to record Raman spectra that discriminate between chemical phases for all crud oxides of interest. The method has therefore been recommended for crud investigations within the Swedish program. At ideal conditions the resolution is about 1 {mu}m, permitting detailed position determination of crud phases in the sample. Therefore LRS is a very good complement to X-ray diffraction (XRD). The methods for sample preparation and handling of radioactive crud samples for LRS turn out to be relatively simple. A detailed LRS study on fuel crud samples from Barsebaeck 2, Forsmark 2, Forsmark 3 and Ringhals 1 was performed in this work. All of those Swedish BWRs were operated at different conditions at the time of sampling. The chemistry regimes covered NWC, HWC and other variable conditions. Also different types of fuel, exposure times and sampling positions were selected. (authors)

  14. Optimization of fuel rod enrichment distribution to minimize rod power peaking throughout life within BWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Yasushi; Hida, Kazuki; Sakurada, Koichi; Yamamoto, Munenari [Toshiba Corp., Kawasaki, Kanagawa (Japan). Nuclear Engineering Lab.

    1997-01-01

    A practical method was developed for determining the optimum fuel enrichment distribution within a boiling water reactor fuel assembly. The method deals with two different optimization problems, i.e. a combinatorial optimization problem grouping fuel rods into a given number of rod groups with the same enrichment, and a problem determining an optimal enrichment for each fuel rod under the resultant rod-grouping pattern. In solving these problems, the primary goal is to minimize a predefined objective function over a given exposure period. The objective function used here is defined by a linear combination: C{sub 1}X+C{sub 2}X{sub G}, where X and X{sub G} stand for a control variable to give the constraint respectively for a local power peaking factor and a gadolinium rod power, and C{sub 1} and C{sub 2} are user-definable weighting factor to accommodate the design preference. The algorithm of solving the combinatorial optimization problem starts with finding the optimal enrichment vector without any rod-grouping, and promising candidates of rod-grouping patterns are found by exhaustive enumeration based on the resulting fuel enrichment ordering, and then the latter problem is solved by using the method of approximation programming. The practical application of the present method is shown for a contemporary 8x8 Pu mixed-oxide fuel assembly with 10 gadolinium-poisoned rods. (author)

  15. Fuel design with low peak of local power for BWR reactors with increased nominal power; Diseno de un combustible con bajo pico de potencia local para reactores BWR con potencia nominal aumentada

    Energy Technology Data Exchange (ETDEWEB)

    Perusquia C, R.; Montes, J.L.; Hernandez, J.L.; Ortiz, J.J.; Castillo, A. [ININ, 52750 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: mrpc@nuclear.inin.mx

    2006-07-01

    The Federal Commission of Electricity recently announcement the beginning of the works related with the increase of the power to 120% of the original nominal one in the Boiling Water Reactors (BWR) of the Laguna Verde Central (CLV): In the National Institute of Nuclear Research (ININ) are carried out studies of the impact on the design of the recharge of derived fuel of this increase. One of the main effects of the power increase type that it is promoting, is the increment of the flow of generated vapor, what takes, to a bigger fraction of vacuum in the core presenting increased values of the maximum fraction to the limit, so much of the ratio of lineal heat generation (XFLPD) as of the ratio of critic power (MFLCPR). In the made studies, it is found that these fractions rise lineally with the increase of the nominal power. Considering that the reactors of the CLV at the moment operate to 105% of the original nominal power, it would imply an increment of the order of 13.35% in the XFLPD and in the MFLCPR operating to a nominal power of 120% of the original one. This would propitiate bigger problems to design appropriately the fuel cycle and the necessity, almost unavoidable, of to resort to a fuel assembly type more advanced for the recharges of the cores. As option, in the ININ the feasibility of continuing using the same type of it fuel assembles that one has come using recently in the CLV, the type GE12 is analyzed. To achieve it was outlined to diminish the peak factor of local power (LPPF) of the power cells that compose the fuel recharge in 13.35%. It was started of a fuel design previously used in the recharge of the unit 1 cycle 12 and it was re-design to use it in the recharge design of the cycle 13 of the unit 1, considering an increase to 120% of the original power and the same requirements of cycle extension. For the re-design of the fuel assembly cell it was used the PreDiCeldas computer program developed in the ININ. It was able to diminish the LPPF

  16. Advanced and flexible genetic algorithms for BWR fuel loading pattern optimization

    Energy Technology Data Exchange (ETDEWEB)

    Martin-del-Campo, Cecilia [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, Jiutepec, Mor., 62550 (Mexico)], E-mail: cmcm@fi-b.unam.mx; Palomera-Perez, Miguel-Angel [Instituto de Investigaciones en Matematicas Aplicadas y Sistemas, Universidad Nacional Autonoma de Mexico, Circuito Escolar, Ciudad Universitaria, 04510 DF (Mexico)], E-mail: mapp@uxmcc2.iimas.unam.mx; Francois, Juan-Luis [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, Jiutepec, Mor., 62550 (Mexico)], E-mail: jlfl@fi-b.unam.mx

    2009-10-15

    This work proposes advances in the implementation of a flexible genetic algorithm (GA) for fuel loading pattern optimization for Boiling Water Reactors (BWRs). In order to avoid specific implementations of genetic operators and to obtain a more flexible treatment, a binary representation of the solution was implemented; this representation had to take into account that a little change in the genotype must correspond to a little change in the phenotype. An identifier number is assigned to each assembly by means of a Gray Code of 7 bits and the solution (the loading pattern) is represented by a binary chain of 777 bits of length. Another important contribution is the use of a Fitness Function which includes a Heuristic Function and an Objective Function. The Heuristic Function which is defined to give flexibility on the application of a set of positioning rules based on knowledge, and the Objective Function that contains all the parameters which qualify the neutronic and thermal hydraulic performances of each loading pattern. Experimental results illustrating the effectiveness and flexibility of this optimization algorithm are presented and discussed.

  17. Serpent: an alternative for the nuclear fuel cells analysis of a BWR; SERPENT: una alternativa para el analisis de celdas de combustible nuclear de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Silva A, L.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. Instituto Politecnico Nacional s/n, U.P. Adolfo Lopez Mateos, Edificio 9, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Gomez T, A. M., E-mail: lidi.s.albarran@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In the last ten years the diverse research groups in nuclear engineering of the Universidad Nacional Autonoma de Mexico and Instituto Politecnico Nacional (UNAM, IPN), as of research (Instituto Nacional de Investigaciones Nucleares, ININ) as well as the personnel of the Nuclear Plant Management of the Comision Federal de Electricidad have been using the codes Helios and /or CASMO-4 in the generation of cross sections (X S) of nuclear fuel cells of the cores corresponding to the Units 1 and 2 of the nuclear power plant of Laguna Verde. Both codes belong to the Studsvik-Scandpower Company who receives the payment for the use and their respective maintenance. In recent years, the code Serpent appears among the nuclear community distributed by the OECD/Nea which does not has cost neither in its use neither in its maintenance. The code is based on the Monte Carlo method and makes use of the processing in parallel. In the Escuela Superior de Fisica y Matematicas of the IPN, the personnel has accumulated certain experience in the use of Serpent under the direction of personal of the ININ; of this experience have been obtained for diverse fuel burned, the infinite multiplication factor for three cells of nuclear fuel, without control bar and with control bar for a known thermodynamic state fixed by: a) the fuel temperature (T{sub f}), b) the moderator temperature (T{sub m}) and c) the vacuums fraction (α). Although was not realized any comparison with the X S that the codes Helios and CASMO-4 generate, the results obtained for the infinite multiplication factor show the prospective tendencies with regard to the fuel burned so much in the case in that is not present the control bar like when it is. The results are encouraging and motivate to the study group to continue with the X S generation of a core in order to build the respective library of nuclear data as a following step and this can be used for the codes PARCS, of USA NRC, DYN3D of HZDR, or others developed locally

  18. 44 BWR Waste Package Loading Curve Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Scaglione

    2001-11-05

    The objective of this calculation is to evaluate the required minimum burnup as a function of average initial boiling water reactor (BWR) assembly enrichment that would permit loading of fuel into a potential 44 BWR waste package (WP). The potential WP design is illustrated in Attachment I. The scope of this calculation covers a range of initial enrichments from 1.5 through 5.0 weight percent U-235, and a burnup range of 0 through 50 GWd/mtU.

  19. MRT fuel element inspection at Dounreay

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.

    1997-08-01

    To ensure that their production and inspection processes are performed in an acceptable manner, ie. auditable and traceable, the MTR Fuel Element Fabrication Plant at Dounreay operates to a documented quality system. This quality system, together with the fuel element manufacturing and inspection operations, has been independently certified to ISO9002-1987, EN29002-1987 and BS5750:Pt2:1987 by Lloyd`s Register Quality Assurance Limited (LRQA). This certification also provides dual accreditation to the relevant German, Dutch and Australian certification bodies. This paper briefly describes the quality system, together with the various inspection stages involved in the manufacture of MTR fuel elements at Dounreay.

  20. Fundamental aspects of nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1976-01-01

    The book presented is designed to function both as a text for first-year graduate courses in nuclear materials and as a reference for workers involved in the materials design and performance aspects of nuclear power plants. The contents are arranged under the following chapter headings: statistical thermodynamics, thermal properties of solids, crystal structures, cohesive energy of solids, chemical equilibrium, point defects in solids, diffusion in solids, dislocations and grain boundaries, equation of state of UO/sub 2/, fuel element thermal performance, fuel chemistry, behavior of solid fission products in oxide fuel elements, swelling due to fission gases, pore migration and fuel restructuring kinetics, fission gas release, mechanical properties of UO/sub 2/, radiation damage, radiation effects in metals, interaction of sodium and stainless steel, modeling of the structural behavior of fuel elements and assemblies. (DG)

  1. Visual examinations of K west fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Pitner, A.L., Fluor Daniel Hanford

    1997-02-03

    Over 250 fuel assemblies stored in sealed canisters in the K West Basin were extracted and visually examined for damage. Substantial damage was expected based on high cesium levels previously measured in water samples taken from these canisters. About 11% of the inner elements and 45% of the outer elements were found to be failed in these examinations. Canisters that had cesium levels of I curie or more generally had multiple instances of major fuel damage.

  2. Nuclear fuel elements having a composite cladding

    Science.gov (United States)

    Gordon, Gerald M.; Cowan, II, Robert L.; Davies, John H.

    1983-09-20

    An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.

  3. Structural analysis of reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, R.W.

    1977-01-01

    An overview of fuel-element modeling is presented that traces the development of codes for the prediction of light-water-reactor and fast-breeder-reactor fuel-element performance. It is concluded that although the mathematical analysis is now far advanced, the development and incorporation of mechanistic constitutive equations has not kept pace. The resultant reliance on empirical correlations severely limits the physical insight that can be gained from code extrapolations. Current efforts include modeling of alternate fuel systems, analysis of local fuel-cladding interactions, and development of a predictive capability for off-normal behavior. Future work should help remedy the current constitutive deficiencies and should include the development of deterministic failure criteria for use in design.

  4. HTGR fuel element structural design considerations

    Energy Technology Data Exchange (ETDEWEB)

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1986-09-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabalistic stress analysis techniques coupled with probabalistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistent with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the USA is discussed in the context of stress analysis uncertainty and structural criteria development.

  5. Calculation of the linear heat generation rates which violate the thermomechanical limit of plastic deformation of the fuel cladding in function of the burn up of a BWR fuel rod type; Calculo de las razones de generacion de calor lineal que violen el limite termomecanico de deformacion plastica de la camisa en funcion del quemado de una barra combustible tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lucatero, M.A.; Hernandez L, H. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: mal@nuclear.inin.mx

    2003-07-01

    The linear heat generation rates (LHGR) for a BWR type generic fuel rod, as function of the burnup that violate the thermomechanical limit of circumferential plastic deformation of the can (canning) in nominal operation in stationary state of the fuel rod are calculated. The evaluation of the LHGR in function of the burnt of the fuel, is carried out under the condition that the deformation values of the circumferential plastic deformation of the can exceeds in 0.1 the thermomechanical value operation limit of 1%. The results of the calculations are compared with the generation rates of linear operation heat in function of the burnt for this fuel rod type. The calculations are carried out with the FEMAXI-V and RODBURN codes. The results show that for exhibitions or burnt between 0 and 16,000 M Wd/tU a minimum margin of 160.8 W/cm exists among LHGR (439.6 W/cm) operation peak for the given fuel and maximum LHGR of the fuel (calculated) to reach 1.1% of circumferential plastic deformation of the can, for the peak factor of power of 1.40. For burnt of 20,000 MWd/tU and 60,000 MWd/tU exist a margin of 150.3 and 298.6 W/cm, respectively. (Author)

  6. Study of intermediate configurations during the fuel reload in BWRs; Estudio de configuraciones intermedias durante la recarga de combustible en BWR's

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes M, L.; Castillo M, J. A.; Ortiz S, J. J.; Perusquia del C, R. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Jacinto C, S., E-mail: luis.fuentes@inin.gob.mx [Universidad Autonoma del Estado de Yucatan, Calle 60 No. 491-A por 57, 97000 Merida, Yucatan (Mexico)

    2012-10-15

    The criticality state of the core of a boiling water reactor (BWR) was evaluated, during the reload process for the intermediate states between the load pattern of cycle end and the beginning of the next, using the information of the load pattern of the operation cycles 13 and 14 of Unit 1 of the nuclear power plant of Laguna Verde. For this evaluation the codes CASMO-4 and Simulate-3 for conditions of the core in cold were used. The strategy consisted on moving assemblies with 4 burned cycles of the reactor core. Later on were re situated the remaining assemblies, placing them in the positions to occupy in the next operation cycle. Finally, was carried out the assemblies load of fresh fuel. In each realized change, it was observing the behavior of the k-effective value that is the parameter used to evaluate the criticality state of each state of the core change. In a second stage, was designed a program that builds in automatic way each one of the intermediate cores and also analyzes the criticality state of the reactor core after each withdrawal, re situated and load of fuel assemblies. (Author)

  7. Research Development of MOX Fuel Element Technology

    Institute of Scientific and Technical Information of China (English)

    YANG; Qi-fa; YANG; Ting-gui; SHANG; Gai-bin; YIN; Bang-yue; ZHOU; Guo-liang; LI; Qiang; JIANG; Bao-jun

    2015-01-01

    The project of"MOX Fuel Element Research"led by China Institute of Atomic Energy,404Company Ltd.and CNPE Zhengzhou Branch are members of the project research team.The research task of 2015had been accomplished successfully,and the research productions of this year build up a basis for the future research,also

  8. Post-processor for simulations of the ORIGEN program and calculation of the composition of the activity of a burnt fuel core by a BWR type reactor; Post-procesador para simulaciones del programa ORIGEN y calculo de la composicion de la actividad de un nucleo de combustible quemado por un reactor tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval V, S. [IIE, Av. Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico)]. e-mail: sandoval@iie.org.mx

    2006-07-01

    The composition calculation and the activity of nuclear materials subject to processes of burnt, irradiation and decay periods are of utility for diverse activities inside the nuclear industry, as they are it: the processes design and operations that manage radioactive material, the calculation of the inventory and activity of a core of burnt nuclear fuel, for studies of type Probabilistic Safety Analysis (APS), as well as for regulation processes and licensing of nuclear facilities. ORIGEN is a program for computer that calculates the composition and the activity of nuclear materials subject to periods of burnt, irradiation and decay. ORIGEN generates a great quantity of information whose processing and analysis are laborious, and it requires thoroughness to avoid errors. The automation of the extraction, conditioning and classification of that information is of great utility for the analyst. By means of the use of the post-processor presented in this work it is facilitated, it speeds up and wide the capacity of analysis of results, since diverse consultations with several classification options and filtrate of results can be made. As illustration of the utility of the post-processor, and as an analysis of interest for itself, it is also presented in this work the composition of the activity of a burned core in a BWR type reactor according to the following classification criteria: by type of radioisotope (fission products, activation products and actinides), by specie type (gassy, volatile, semi-volatile and not volatile), by element and by chemical group. The results show that the total activity of the studied core is dominated by the fission products and for the actinides, in proportion four to one, and that the gassy and volatile species conform a fifth part of the total activity of the core. (Author)

  9. Automatic inspection for remotely manufactured fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Reifman, J.; Vitela, J.E. [Argonne National Lab., IL (United States); Gibbs, K.S.; Benedict, R.W. [Argonne National Lab., Idaho Falls, ID (United States)

    1995-06-01

    Two classification techniques, standard control charts and artificial neural networks, are studied as a means for automating the visual inspection of the welding of end plugs onto the top of remotely manufactured reprocessed nuclear fuel element jackets. Classificatory data are obtained through measurements performed on pre- and post-weld images captured with a remote camera and processed by an off-the-shelf vision system. The two classification methods are applied in the classification of 167 dummy stainless steel (HT9) fuel jackets yielding comparable results.

  10. Liquid fuel injection elements for rocket engines

    Science.gov (United States)

    Cox, George B., Jr. (Inventor)

    1993-01-01

    Thrust chambers for liquid propellant rocket engines include three principal components. One of these components is an injector which contains a plurality of injection elements to meter the flow of propellants at a predetermined rate, and fuel to oxidizer mixture ratio, to introduce the mixture into the combustion chamber, and to cause them to be atomized within the combustion chamber so that even combustion takes place. Evolving from these injectors are tube injectors. These tube injectors have injection elements for injecting the oxidizer into the combustion chamber. The oxidizer and fuel must be metered at predetermined rates and mixture ratios in order to mix them within the combustion chamber so that combustion takes place smoothly and completely. Hence tube injectors are subject to improvement. An injection element for a liquid propellant rocket engine of the bipropellant type is provided which includes tangential fuel metering orifices, and a plurality of oxidizer tube injection elements whose injection tubes are also provided with tangential oxidizer entry slots and internal reed valves.

  11. Experimental data report for test TS-4, Reactivity initiated accident test in the NSRR with pre-irradiated BWR fuel rod

    OpenAIRE

    1994-01-01

    本報告書は1991年1月に実施した照射済BWR燃料を用いた4回目の反応度事故模擬実験であるTS-4について、実験データをまとめたものである。TS-4実験に使用した試験燃料は、初期濃縮度2.79%であり、日本原子力発電(株)の敦賀1号炉で照射されたBWR7times7型燃料棒を短尺化したものである。短尺化に供した燃料の燃焼度は26GWd/tUであった。NSRRにおける照射実験は、BWRのコールドスタートアップ条件を模擬した大気圧・室温の静止水冷却条件下で行い、公称発熱量は110pm5cal/g・fuel(ピークエンタルピ89pm4cal/g・fuel)を与えた。その結果、燃料破損は生じなかった。実験条件、実験方法、パルス照射時の燃料の過渡挙動及び照射後検査の結果をまとめて示した。...

  12. Experimental data report for test TS-3; Reactivity initiated accident test in the NSRR with pre-irradiated BWR fuel rod

    OpenAIRE

    1993-01-01

    本報告書は、1990年9月に実施した照射済BWR燃料を用いた3回目の反応度事故模擬実験であるTS-3について実験データをまとめたものである。TS-3実験に使用した試験燃料は初期濃縮度2.79%であり、敦賀1号炉で照射されたBWR7times7型燃料棒を短尺化したものである。短尺化に供した実用燃料のバンドル平均燃焼度は21.3GWd/tUであった。NSRRにおける照射実験は、大気圧・室温の静止水冷却条件下で行い、発熱量は94pm4cal/g・fuel(ピークエンタルピ88pm4cal/g・fuel)を与えた。その結果燃料破損は生じなかった。実験条件、実験方法、パルス照射時の燃料の過渡挙動及び照射後検査の結果をまとめて示した。...

  13. Estimate of radiation-induced steel embrittlement in the BWR core shroud and vessel wall from reactor-grade MOX/UOX fuel for the nuclear power plant at Laguna Verde, Veracruz, Mexico

    Science.gov (United States)

    Vickers, Lisa Rene

    The government of Mexico has expressed interest to utilize the Laguna Verde boiling water reactor (BWR) nuclear power plant for the disposition of reprocessed spent uranium oxide (UOX) fuel in the form of reactor-grade mixed-oxide (MOX) fuel. MOX fuel would replace spent UOX fuel as a fraction in the core from 18--30% depending on the fuel loading cycle. MOX fuel is expected to increase the neutron fluence, flux, fuel centerline temperature, reactor core pressure, and yield higher energy neutrons. There is concern that a core with a fraction of MOX fuel (i.e., increased 239Pu wt%) would increase the radiation-induced steel embrittlement within the core shroud and vessel wall as compared to only conventional, enriched UOX fuel in the core. The evaluation of radiation-induced steel embrittlement within the core shroud and vessel wall is a concern because of the potentially adverse affect to plant and public safety, environment, and operating life of the reactor. This dissertation provides computational results of the neutron fluence, flux, energy spectrum, and radiation damage displacements per atom per second (dpa-s-1) in steel within the core shroud and vessel wall of the Laguna Verde Unit 1 BWR. The results were computed using the nuclear data processing code NJOY99 and the continuous energy Monte Carlo Neutral Particle transport code MCNP4B. The MCNP4B model of the reactor core was for maximum core loading fractions of ⅓ MOX and ⅔ UOX reactor-grade fuel in an equilibrium core. The primary conclusion of this dissertation was that the addition of the maximum fraction of ⅓ MOX fuel to the LV1 BWR core did significantly accelerate the radiation-induced steel embrittlement such that without mitigation of steel embrittlement by periodic thermal annealing or reduction in operating parameters such as, neutron fluence, core temperature and pressure, it posed a potentially adverse affect to the plant and public safety, environment, and operating life of the reactor.

  14. BWR Refill-Reflood Program, Task 4. 7 - model development: TRAC-BWR component models

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Y K; Parameswaran, V; Shaug, J C

    1983-09-01

    TRAC (Transient Reactor Analysis Code) is a computer code for best-estimate analysis for the thermal hydraulic conditions in a reactor system. The development and assessment of the BWR component models developed under the Refill/Reflood Program that are necessary to structure a BWR-version of TRAC are described in this report. These component models are the jet pump, steam separator, steam dryer, two-phase level tracking model, and upper-plenum mixing model. These models have been implemented into TRAC-B02. Also a single-channel option has been developed for individual fuel-channel analysis following a system-response calculation.

  15. Experimental data report for test TS-5; Reactivity initiated accident test in the NSRR with pre-irradiated BWR fuel rod

    OpenAIRE

    1995-01-01

    本報告書は、1993年度1月に実施した照射済BWR燃料を用いた5回目の反応度事故模擬実験であるTS-5について、実験データをまとめたものである。TS-4実験に使用した試験燃料は、初期濃縮度2.79%であり、日本原子力発電(株)の敦賀1号炉で照射されたBWR7times7型燃料棒を短尺化したものである。短尺化に供した燃料の燃焼度は26GWd/tUであった。NSRRにおける照射実験は、BWRのコールドスタートアップ条件を模擬した大気圧・室温の静止水冷却条件下で行い、公称発熱量は117pm5cal/g・fuel(ピークエンタルピ98pm4cal/g・fuel)を与えた。その結果燃料破損は生じなかった。なお、この実験では集合体中の燃料/水比を模した流路管中で燃料のパルス照射を行った。実験条件、実験方法、パルス照射時の燃料の過渡挙動及び照射後検査の結果をまとめて示した。...

  16. Fuel element concept for long life high power nuclear reactors

    Science.gov (United States)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  17. Heat and Mass Transfer during Hydrogen Generation in an Array of Fuel Bars of a BWR Using a Periodic Unit Cell

    Directory of Open Access Journals (Sweden)

    H. Romero-Paredes

    2012-01-01

    Full Text Available This paper presents, the numerical analysis of heat and mass transfer during hydrogen generation in an array of fuel cylinder bars, each coated with a cladding and a steam current flowing outside the cylinders. The analysis considers the fuel element without mitigation effects. The system consists of a representative periodic unit cell where the initial and boundary-value problems for heat and mass transfer were solved. In this unit cell, we considered that a fuel element is coated by a cladding with steam surrounding it as a coolant. The numerical simulations allow describing the evolution of the temperature and concentration profiles inside the nuclear reactor and could be used as a basis for hybrid upscaling simulations.

  18. Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    Science.gov (United States)

    González-Robles, E.; Serrano-Purroy, D.; Sureda, R.; Casas, I.; de Pablo, J.

    2015-10-01

    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO2 spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%. One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAPc) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel.

  19. Fuel cell elements with improved water handling capacity

    Science.gov (United States)

    Kindler, Andrew (Inventor); Lee, Albany (Inventor)

    2001-01-01

    New fuel cell components for use in liquid feed fuel cell systems are provided. The components include biplates and endplates, having a hydrophilic surface and allow high efficiency operation. Conductive elements and a wicking device also form a part of the fuel cell components of the invention.

  20. Separation of metallic residues from the dissolution of a high-burnup BWR fuel using nitrogen trifluoride

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, Bruce K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buck, Edgar C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soderquist, Chuck Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Frances N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mausolf, Edward J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scheele, Randall D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-03-23

    Nitrogen trifluoride (NF3) was used to fluorinate the metallic residue from the dissolution of a high burnup, boiling water reactor fuel (~70 MWd/kgU). The metallic residue included the noble metal phase (containing ruthenium, rhodium, palladium, technetium, and molybdenum), and smaller amounts of zirconium, selenium, tellurium, and silver. Exposing the noble metal phase to 10% NF3 in argon between 400 and 550°C, removed molybdenum and technetium near 400°C as their volatile fluorides, and ruthenium near 500C as its volatile fluoride. The events were thermally and temporally distinct and the conditions specified are a recipe to separate these transition metals from each other and from the noble metal phase nonvolatile residue. Depletion of the volatile fluorides resulted in substantial exothermicity. Thermal excursion behavior was recorded under non-adiabatic, isothermal conditions that typically minimize heat release. Physical characterization of the metallic noble phase and its thermal behavior are consistent with high kinetic velocity reactions encouraged by the nanoparticulate phase or perhaps catalytic influences of the mixed platinum metals with nearly pure phase structure. Post-fluorination, only two phases were present in the residual nonvolatile fraction. These were identified as a nano-crystalline, metallic palladium cubic phase and a hexagonal rhodium trifluoride (RhF3) phase. The two phases were distinct as the sub-µm crystallites of metallic palladium were in contrast to the RhF3 phase, which grew from the parent nano-crystalline noble-metal phase during fluorination, to acicular crystals exceeding 20-µm in length.

  1. Thermal analysis of IRT-T reactor fuel elements

    OpenAIRE

    Naymushin, Artem Georgievich; Chertkov, Yuri Borisovich; Lebedev, Ivan Igorevich; Anikin, Mikhail Nikolaevich

    2015-01-01

    The article describes the method and results of thermo-physical calculations of IRT-T reactor core. Heat fluxes, temperatures of cladding, fuel meat and coolant were calculated for height of core, azimuth directions of FA and each fuel elements in FA. Average calculated values of uniformity factor of energy release distribution for height of fuel assemblies were shown in this research. Onset nucleate boiling temperature and ONB-ratio were calculated. Shows that temperature regimes of fuel ele...

  2. CHF Enhancement of Advanced 37-Element Fuel Bundles

    Directory of Open Access Journals (Sweden)

    Joo Hwan Park

    2015-01-01

    Full Text Available A standard 37-element fuel bundle (37S fuel bundle has been used in commercial CANDU reactors for over 40 years as a reference fuel bundle. Most CHF of a 37S fuel bundle have occurred at the elements arranged in the inner pitch circle for high flows and at the elements arranged in the outer pitch circle for low flows. It should be noted that a 37S fuel bundle has a relatively small flow area and high flow resistance at the peripheral subchannels of its center element compared to the other subchannels. The configuration of a fuel bundle is one of the important factors affecting the local CHF occurrence. Considering the CHF characteristics of a 37S fuel bundle in terms of CHF enhancement, there can be two approaches to enlarge the flow areas of the peripheral subchannels of a center element in order to enhance CHF of a 37S fuel bundle. To increase the center subchannel areas, one approach is the reduction of the diameter of a center element, and the other is an increase of the inner pitch circle. The former can increase the total flow area of a fuel bundle and redistributes the power density of all fuel elements as well as the CHF. On the other hand, the latter can reduce the gap between the elements located in the middle and inner pitch circles owing to the increasing inner pitch circle. This can also affect the enthalpy redistribution of the fuel bundle and finally enhance CHF or dry-out power. In this study, the above two approaches, which are proposed to enlarge the flow areas of the center subchannels, were considered to investigate the impact of the flow area changes of the center subchannels on the CHF enhancement as well as the thermal characteristics by applying a subchannel analysis method.

  3. IN-CELL visual examinations of K east fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Pitner, A.L.; Pyecha, T.D., Fluor Daniel Hanford

    1997-03-06

    Nine outer fuel elements were recovered from the K East Basin and transferred to a hot cell for examination. Extensive testing planned for these elements will support the process design for the Integrated Process Strategy (IPS), with emphasis on drying and conditioning behavior. Visual examinations of the fuel elements confirmed that they are appropriate to meet testing objectives to provide design guidance for IPS processing parameters.

  4. A comparison between genetic algorithms and neural networks for optimizing fuel recharges in BWR; Una comparacion entre algoritmos geneticos y redes neuronales para optimizar recargas de combustible en BWR's

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz J, J. [Instituto Nacional de Investigaciones Nucleares, Depto. Sistemas Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Requena, I. [Universidad de Granada (Spain)

    2002-07-01

    In this work the results of a genetic algorithm (AG) and a neural recurrent multi state network (RNRME) for optimizing the fuel reload of 5 cycles of the Laguna Verde nuclear power plant (CNLV) are presented. The fuel reload obtained by both methods are compared and it was observed that the RNRME creates better fuel distributions that the AG. Moreover a comparison of the utility for using one or another one techniques is make. (Author)

  5. Updating of the costs of the nuclear fuels of the equilibrium reloading of the A BWR and EPR reactors; Actualizacion de los costos de combustible nuclear de la recarga de equilibrio de los reactores ABWR y EPR

    Energy Technology Data Exchange (ETDEWEB)

    Ortega C, R.F. [FI-UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: rortega@fi-b.unam.mx

    2008-07-01

    In the last two and a half years, the price of the uranium in the market spot has ascended of US$20.00 dollars by lb U{sub 3O}8 in January, 2005 to a maximum of US$137.00 dollars by Ib U{sub 3}O{sub 8} by the middle of 2007. At the moment this price has been stabilized in US$90.00 dollars by Ib U{sub 3}O{sub 8} such for the market spot, like for the long term contracts. In this work the reasons of this increment are analyzed, as well as their impact in the fuel prices of the balance recharge of the advanced reactors of boiling water (A BWR) and of the advanced water at pressure reactors (EPR). (Author)

  6. Repurposing an irradiated instrumented TRIGA fuel element for regular use

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Paulo F.; Souza, Luiz C.A., E-mail: pfo@cdtn.br, E-mail: lcas@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    TRIGA IPR-R1 is a research reactor also used for training and radioisotope production, located at the Centro de Desenvolvimento da Tecnologia Nuclear da Comissao Nacional de Energia Nuclear (Nuclear Technology Development Centre, Brazilian National Nuclear Energy Commission - CDTN/CNEN). Its first criticality occurred in November 1960. All original fuel elements were aluminum-clad. In 1971 nine new fuel elements, stainless steel-clad were acquired. One of them was an instrumented fuel element (IFE), equipped with 3 thermocouples. The IFE was introduced into the core only on August 2004, and remained there until July 2007. It was removed from the core after the severing of contacts between the thermocouples and their extension cables. After an unsuccessful attempt to recover electrical access to the thermocouples the IFE was transferred from the reactor pool to an auxiliary spent fuel storage well, with water, in the reactor room. In December 2011 the IFE was transferred to an identical well, dry, where it remains so far. This work is a proposal for recovery of this instrumented fuel element, by removing the cable guide rod and adaptation of a superior terminal plug similar to conventional fuel elements. This will enable its handling through the same tool used for regular fuel elements and its return to the reactor core. This is a delicate intervention in terms of radiological protection, and will require special care to minimize the exposure of operators. (author)

  7. Inspection of state of spent fuel elements stored in RA reactor spent fuel storage pool

    Energy Technology Data Exchange (ETDEWEB)

    Aden, V.G.; Bulkin, S.Yu.; Sokolov, A.V. [Research and Development Institute of Power Engineering, Moscow (Russian Federation); Matausek, M.V.; Vukadin, Z. [VINCA Institute of Nuclear Science, Belgrade (Yugoslavia)

    1999-07-01

    About five thousand spent fuel elements from RA reactor have been stored for over 30 years in sealed aluminum barrels in the spent fuel storage pool. This way of storage does not provide complete information about the state of spent fuel elements or the medium inside the barrels, like pressure or radioactivity. The technology has recently been developed and the equipment has been manufactured to inspect the state of the spent fuel and to reduce eventual internal pressure inside the aluminum barrels. Based on the results of this inspection, a procedure will be proposed for transferring spent fuel to a more reliable storage facility. (author)

  8. Design and Testing of Prototypic Elements Containing Monolithic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    N.E. Woolstenhulme; M.K. Meyer; D.M. Wachs

    2011-10-01

    The US fuel development team has performed numerous irradiation tests on small to medium sized specimens containing low enriched uranium fuel designs. The team is now focused on qualification and demonstration of the uranium-molybdenum Base Monolithic Design and has entered the next generation of testing with the design and irradiation of prototypic elements which contain this fuel. The designs of fuel elements containing monolithic fuel, such as AFIP-7 (which is currently under irradiation) and RERTR-FE (which is currently under fabrication), are appropriate progressions relative to the technology life cycle. The culmination of this testing program will occur with the design, fabrication, and irradiation of demonstration products to include the base fuel demonstration and design demonstration experiments. Future plans show that design, fabrication, and testing activities will apply the rigor needed for a demonstration campaign.

  9. Design of an equilibrium nucleus of a BWR type reactor based in a Thorium-Uranium fuel; Diseno de un nucleo de equilibrio de un reactor tipo BWR basado en un combustible de Torio-Uranio

    Energy Technology Data Exchange (ETDEWEB)

    Francois, J.L.; Nunez C, A. [Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Facultad de Ingenieria-UNAM, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)

    2003-07-01

    In this work the design of the reactor nucleus of boiling water using fuel of thorium-uranium is presented. Starting from an integral concept based in a type cover-seed assemble is carried out the design of an equilibrium reload for the nucleus of a reactor like that of the Laguna Verde Central and its are analyzed some of the main design variables like the cycle length, the reload fraction, the burnt fuel, the vacuum distribution, the generation of lineal heat, the margin of shutdown, as well as a first estimation of the fuel cost. The results show that it is feasible to obtain an equilibrium reload, comparable to those that are carried out in the Laguna Verde reactors, with a good behavior of those analyzed variables. The cost of the equilibrium reload designed with the thorium-uranium fuel is approximately 2% high that the uranium reload producing the same energy. It is concluded that it is convenient to include burnable poisons, type gadolinium, in the fuel with the end of improving the reload design, the fuel costs and the margin of shutdown. (Author)

  10. Research on Measuring Technology for In-pile Fuel Element Testing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The tested fuel assembly for In-pile test for PWR fuel element with instrumentation consisted of 4instrumented fuel elements and total 12 sets of transducers. Double claddings are adopted to raise fueltemperature. Two fuel elements each have 2 thermocouples for measuring separately the fuel centerlinetemperature and the cladding surface temperature. The other two elements have membrane type oressure

  11. Technology Status of Thermionic Fuel Elements for Space Nuclear Power

    Science.gov (United States)

    Holland, J. W.; Yang, L.

    1984-01-01

    Thermionic reactor power systems are discussed with respect to their suitability for space missions. The technology status of thermionic emitters and sheath insulator assemblies is described along with testing of the thermionic fuel elements.

  12. Failed MTR Fuel Element Detect in a Sipping Tests

    Energy Technology Data Exchange (ETDEWEB)

    Zeituni, C.A.; Terremoto, L.A.A.; da Silva, J.E.R.

    2004-10-06

    This work describes sipping tests performed on Material Testing Reactor (MTR) fuel elements of the IEA-R1 research reactor, in order to find out which one failed in the core during a routine operation. Radioactive iodine isotopes {sup 131}I and {sup 133}I, employed as failure monitors, were detected in samples corresponding to the failed fuel element. The specific activity of each sample, as well as the average leaking rate, were measured for {sup 137}Cs. The nuclear fuels U{sub 3}O{sub 8} - Al dispersion and U - Al alloy were compared concerning their measured average leaking rates of {sup 137}Cs.

  13. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    Science.gov (United States)

    Mohammed, Abdul Aziz; Pauzi, Anas Muhamad; Rahman, Shaik Mohmmed Haikhal Abdul; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad

    2016-01-01

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  14. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Abdul Aziz, E-mail: azizM@uniten.edu.my; Rahman, Shaik Mohmmed Haikhal Abdul [Universiti Tenaga Nasional. Jalan Ikram-UNITEN, 43000 Kajang, Selangor (Malaysia); Pauzi, Anas Muhamad, E-mail: anas@uniten.edu.my; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 ({sup 233}U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  15. Weld Joint Design for SFR Metallic Fuel Element Closures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Won; Kim, Soo Sung; Woo, Yoon Myeng; Kim, Hyung Tae; Kim, Ki Hwan; Yoon, Kyung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The sodium-cooled fast reactor (SFR) system is among the six systems selected for Gen-IV promising systems and expected to become available for commercial introduction around 2030. In Korea, the R and D on SFR has been begun since 1997, as one of the national long-term nuclear R and D programs. The international collaborative research is under way on fuel developments within Advanced Fuel Project for Gen-IV SFR with the closed fuel cycle of full actinide recycling, while TRU bearing metallic fuel, U-TRU-Zr alloy fuel, was selected and is being developed. For the fabrication of SFR metallic fuel elements, the endplug welding is a crucial process. The sealing of endplug to cladding tube should be hermetically perfect to prevent a leakage of fission gases and to maintain a good reactor performance. In this study, the joint designs for endplug welding were investigated. For the irradiation test of SFR metallic fuel element, the TIG welding technique was adopted and the welding joint design was developed based on the welding conditions and parameters established. In order to make SFR metallic fuel elements, the weld joint design was developed based on the TIG welding technique.

  16. A method for limitation of probability of accumulation of fuel elements claddings damage in WWER

    OpenAIRE

    Sergey N. Pelykh; Mark V. Nikolsky; S. D. Ryabchikov

    2014-01-01

    The aim is to reduce the probability of accumulation of fuel elements claddings damage by developing a method to control the properties of the fuel elements on stages of design and operation of WWER. An averaged over the fuel assembly WWER-1000 fuel element is considered. The probability of depressurization of fuel elements claddings is found. The ability to predict the reliability of claddings by controlling the factors that determine the properties of the fuel elements is proved. The expedi...

  17. Use of silicide fuel in the Ford Nuclear Reactor - to lengthen fuel element lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Bretscher, M.M.; Snelgrove, J.L. [Argonne National Lab., IL (United States); Burn, R.R.; Lee, J.C. [Univ. of Michigan, Ann Arbor, MI (United States). Phoenix Memorial Lab.

    1995-12-31

    Based on economic considerations, it has been proposed to increase the lifetime of LEU fuel elements in the Ford Nuclear Reactor by raising the {sup 235}U plate loading from 9.3 grams in aluminide (UAl{sub x}) fuel to 12.5 grams in silicide (U{sub 3}Si{sub 2}) fuel. For a representative core configuration, preliminary neutronic depletion and steady state thermal hydraulic calculations have been performed to investigate core characteristics during the transition from an all-aluminide to an all-silicide core. This paper discusses motivations for this fuel element upgrade, results from the calculations, and conclusions.

  18. Uranium density reduction on fuel element side plates assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Ilka A. [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Andrade, Delvonei A.; Domingos, Douglas B.; Umbehaun, Pedro E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    During operation of IEA-R1 research reactor, located at Instituto de Pesquisas Energeticas e Nucleares, IPEN - CNEN/SP, an abnormal oxidation on some fuel elements was noted. It was also verified, among the possible causes of the problem, that the most likely one was insufficient cooling of the elements in the core. One of the propositions to solve or minimize the problem is to reduce uranium density on fuel elements side plates. In this paper, the influence of this change on neutronic and thermal hydraulic parameters for IEA-R1 reactor is verified by simulations with the codes HAMMER and CITATION. Results are presented and discussed. (author)

  19. Radial distribution of UO{sub 2} and Gd{sub 2}O{sub 3} in fuel cells of a BWR Reactor; Distribucion radial de UO{sub 2} y Gd{sub 2}O{sub 3} en celdas de combustible de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Montes, J.L.; Ortiz, J.J.; Perusquia del C, R. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico); Francois, J.L.; Martin del Campo M, C. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, UNAM, Paseo Cuauhnahuac 8532, Jiutepec, Morelos 62500 (Mexico)]. e-mail: jlmt@nuclear.inin.mx

    2008-07-01

    The fuel system that is used at the moment in a power plant based on power reactors BWR, includes as much like the one of its substantial parts to the distribution of the fissile materials like a distribution of burnt poisons within each one of the cells which they constitute the fuel assemblies, used for the energy generation. Reason why at the beginning of a new operation cycle in a reactor of this type, the reactivity of the nucleus should be compensated by the exhaustion of the assemblies that it moves away of the nucleus for their final disposition. This compensation is given by means of the introduction of the recharge fuel, starting from the UO{sub 2} enriched in U{sup 2}35, and of the Gadolinium (Gd{sub 2}O{sub 3}). The distribution of these materials not only defines the requirements of energy generation, but in certain measures also the form in that the margins will behave to the limit them thermal during the operation of the reactor. These margins must be taken into account for the safe and efficient extraction of the energy of the fuel. In this work typical fuel cells appear that are obtained by means of the use of a emulation model of an ants colony. This model allows generating from a possible inventory of values of enrichment of U{sup 2}35, as well as of concentration of Gadolinium a typical fuel cell, which consists of an arrangement of lOxlO rods, of which 92 contain U{sup 2}35, some of these rods contain a concentration of Gd{sub 2}O{sub 3} and 8 of the total contain only water. The search of each cell finishes when the value of the Local Peak Power Factor (LPPF) in the cell reaches a minimal value, or when a pre established value of iterations is reached. The cell parameters are obtained from the results of the execution of the code HELIOS, which incorporates like a part integral of the search algorithm. (Author)

  20. Highest average burnups achieved by MTR fuel elements of the IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Damy, Margaret A.; Terremoto, Luis A.A.; Silva, Jose E.R.; Silva, Antonio Teixeira e; Castanheira, Myrthes; Teodoro, Celso A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear (CEN)]. E-mail: madamy@ipen.br

    2007-07-01

    Different nuclear fuels were employed in the manufacture of plate type at IPEN , usually designated as Material Testing Reactor (MTR) fuel elements. These fuel elements were used at the IEA-R1 research reactor. This work describes the main characteristics of these nuclear fuels, emphasizing the highest average burn up achieved by these fuel elements. (author)

  1. Attempt to produce silicide fuel elements in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Soentono, S. (Nuclear Fuel Element Centre, BATAN Kawasan PUSPIPTEK, Serpong (Indonesia)); Suripto, A. (Nuclear Fuel Element Centre, BATAN Kawasan PUSPIPTEK, Serpong (Indonesia))

    1991-01-01

    After the successful experiment to produce U[sub 3]Si[sub 2] powder and U[sub 3]Si[sub 2]-Al fuel plates using depleted U and Si of semiconductor quality, silicide fuel was synthesized using <20% enriched U metal and silicon chips employing production train of UAl[sub x]-Al available at the Fuel Element Production Installation (FEPI) at Serpong, Indonesia. Two full-size U[sub 3]Si[sub 2]-Al fuel elements, having similar specifications to the ones of U[sub 3]O[sub 8]-Al for the RSG-GAS (formerly known as MPR-30), have been produced at the FEPI. All quality controls required have been imposed to the feeds, intermediate, as well as final products throughout the production processes of the two fuel elements. The current results show that these fuel elements are qualified from fabrication point of view, therefore it is expected that they will be permitted to be tested in the RSG-GAS, sometime by the end of 1989, for normal ([proportional to]50%) and above normal burn-up. (orig.)

  2. Research Progress About Gas-Exhaust-Device for Fuel Element

    Institute of Scientific and Technical Information of China (English)

    ZHONG; Wu-ye

    2012-01-01

    <正>UO2-x stack applied in the fuel element has a form of a cylinder with a central hole, where temperature field characterized by high temperature and high gradient is formed due to irradiation. Then nearly all of the gaseous fission products (GFPs) can release into central cavity. However, uranium oxide will evaporate form the fuel stack’s inner surface because of its high temperature (about 1 800-2 000 ℃),

  3. The manufacture of LEU fuel elements at Dounreay

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.

    1997-08-01

    Two LEU test elements are being manufactured at Dounreay for test irradiation in the HFR at Petten, The Netherlands. This paper describes the installation of equipment and the development of the fabrication and inspection techniques necessary for the manufacture of LEU fuel plates. The author`s experience in overcoming the technical problems of stray fuel particles, dog-boning, uranium homogeneity and the measurement of uranium distribution is also described.

  4. Analysis of the ATR fuel element swaging process

    Energy Technology Data Exchange (ETDEWEB)

    Richins, W.D.; Miller, G.K.

    1995-12-01

    This report documents a detailed evaluation of the swaging process used to connect fuel plates to side plates in Advanced Test Reactor (ATR) fuel elements. The swaging is a mechanical process that begins with fitting a fuel plate into grooves in the side plates. Once a fuel plate is positioned, a lip on each of two side plate grooves is pressed into the fuel plate using swaging wheels to form the joints. Each connection must have a specified strength (measured in terms, of a pullout force capacity) to assure that these joints do not fail during reactor operation. The purpose of this study is to analyze the swaging process and associated procedural controls, and to provide recommendations to assure that the manufacturing process produces swaged connections that meet the minimum strength requirement. The current fuel element manufacturer, Babcock and Wilcox (B&W) of Lynchburg, Virginia, follows established procedures that include quality inspections and process controls in swaging these connections. The procedures have been approved by Lockheed Martin Idaho Technologies and are designed to assure repeatability of the process and structural integrity of each joint. Prior to July 1994, ATR fuel elements were placed in the Hydraulic Test Facility (HTF) at the Idaho National Engineering Laboratory (AGNAIL), Test Reactor Area (TRA) for application of Boehmite (an aluminum oxide) film and for checking structural integrity before placement of the elements into the ATR. The results presented in this report demonstrate that the pullout strength of the swaged connections is assured by the current manufacturing process (with several recommended enhancements) without the need for- testing each element in the HTF.

  5. Latest experiences in inspecting the inside of BWR vessel shields

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, R.; Gonzalez, E.

    2001-07-01

    In the last few years, the owners of BWR nuclear power plants have been forced to address new fuel shield inspection requirements, TECNATOM has responded to this situation by launching the TEIDE projects, which include development of an inspection machine and the corresponding Non-Destructive Tests to examine the inside of this shield. With these projects, TECNATOM has performed more than 12 fuel shield inspections in different countries. This article describes the experience gained in the last three years. (Author)

  6. Core analysis during transition from 37-element fuel to CANFLEX-NU fuel in CANDU 6

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    An 1200-day time-dependent fuel-management for the transition from 37-element fuel to CANFLEX-NU fuel in a CANDU 6 reactor has been simulated to show the compatibility of the CANFLEX-NU fuel with the reactor operation. The simulation calculations were carried out with the RFSP code, provided by cell averaged fuel properties obtained from the POWDERPUFS-V code. The refueling scheme for both fuels was an eight bundle shift at a time. The simulation results show that the maximum channel and bundle powers were maintained below the license limit of the CANDU 6. This indicates that the CANFLEX-NU fuel bundle is compatible with the CANDU 6 reactor operation during the transition period. 3 refs., 2 figs., 1 tab. (Author)

  7. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    Science.gov (United States)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  8. Model for the analysis of transitories and stability of a BWR reactor with fuel of thorium; Modelo para el analisis de transitorios y de estabilidad de un reactor BWR con combustible de torio

    Energy Technology Data Exchange (ETDEWEB)

    Nunez C, A. [CNSNS, 03020 Mexico D.F. (Mexico)]. E-mail: anunezc@cnsns.gob.mx; Espinosa P, G. [UAM-I, 09340 Mexico D.F. (Mexico); Francois L, J.L. [Fac. de Ingenieria, UNAM 62550 Jiutepec, Morelos (Mexico)

    2004-07-01

    In this work it is described the thermo hydraulic and neutronic pattern used to simulate the behavior of a nucleus of thorium-uranium under different conditions of operation. The analysed nucleus was designed with base to assemblies that operate under the cover-seed concept. The pattern was proven to conditions of stationary state and transitory state. Here it is only presented the simulation of the one SCRAM manual and it is compared in the behavior of a nucleus with UO{sub 2}. Additionally one carries out an analysis of stability taking into account the four corners that define the area of stability of the map flow-power and to conditions of 100% of flow and 100% of power. The module of stability is based on the pattern of Lahey and Podowsky to estimate the drops of pressure during a perturbation. It is concludes that the behavior of this nucleus is not very different to the one shown by the nuclei loaded with the fuel of UO{sub 2}. (Author)

  9. The OSU Hydro-Mechanical Fuel Test Facility: Standard Fuel Element Testing

    Energy Technology Data Exchange (ETDEWEB)

    Wade R. Marcum; Brian G. Woods; Ann Marie Phillips; Richard G. Ambrosek; James D. Wiest; Daniel M. Wachs

    2001-10-01

    Oregon State University (OSU) and the Idaho National Laboratory (INL) are currently collaborating on a test program which entails hydro-mechanical testing of a generic plate type fuel element, or standard fuel element (SFE), for the purpose of qualitatively demonstrating mechanical integrity of uranium-molybdenum monolithic plates as compared to that of uranium aluminum dispersion, and aluminum fuel plates due to hydraulic forces. This test program supports ongoing work conducted for/by the fuel development program and will take place at OSU in the Hydro-Mechanical Fuel Test Facility (HMFTF). Discussion of a preliminary test matrix, SFE design, measurement and instrumentation techniques, and facility description are detailed in this paper.

  10. Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)

    Science.gov (United States)

    Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.

    2013-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.

  11. Modeling and Simulation of a Nuclear Fuel Element Test Section

    Science.gov (United States)

    Moran, Robert P.; Emrich, William

    2011-01-01

    "The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor.

  12. Fuel burnup calculation of a research reactor plate element

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Nadia Rodrigues dos; Lima, Zelmo Rodrigues de; Moreira, Maria de Lourdes, E-mail: nadiasam@gmail.com, E-mail: zrlima@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    This work consists in simulating the burnup of two different plate type fuel elements, where one is the benchmark MTR of the IAEA, which is made of an alloy of uranium and aluminum, while the other belonging to a typical multipurpose reactor is composed of an alloy of uranium and silicon. The simulation is performed using the WIMSD-5B computer code, which makes use of deterministic methods for solving neutron transport. In developing this task, fuel element equivalent cells were calculated representing each of the reactors to obtain the initial concentrations of each isotope constituent element of the fuel cell and the thicknesses corresponding to each region of the cell, since this information is part of the input data. The compared values of the k∞ showed a similar behavior for the case of the MTR calculated with the WIMSD-5B and EPRI-CELL codes. Relating the graphs of the concentrations in the burnup of both reactors, there are aspects very similar to each isotope selected. The application WIMSD-5B code to calculate isotopic concentrations and burnup of the fuel element, proved to be satisfactory for the fulfillment of the objective of this work. (author)

  13. Some parametric flow analyses of a particle bed fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Dobranich, D.

    1993-05-01

    Parametric calculations are performed, using the SAFSIM computer program, to investigate the fluid mechanics and heat transfer performance of a particle bed fuel element. Both steady-state and transient calculations are included, addressing such issues as flow stability, reduced thrust operation, transpiration drag, coolant conductivity enhancement, flow maldistributions, decay heat removal, flow perturbations, and pulse cooling. The calculations demonstrate the dependence of the predicted results on the modeling assumptions and thus provide guidance as to where further experimental and computational investigations are needed. The calculations also demonstrate that both flow instability and flow maldistribution in the fuel element are important phenomena. Furthermore, results are encouraging that geometric design changes to the element can significantly reduce problems related to these phenomena, allowing improved performance over a wide range of element power densities and flow rates. Such design changes will help to maximize the operational efficiency of space propulsion reactors employing particle bed fuel element technology. Finally, the results demonstrate that SAFSIM is a valuable engineering tool for performing quick and inexpensive parametric simulations addressing complex flow problems.

  14. Fuel cell design using a new heuristic method; Diseno de celdas de combustible mediante un nuevo metodo heuristico

    Energy Technology Data Exchange (ETDEWEB)

    Perusquia, R.; Montes T, J. L.; Ortiz S, J. J.; Castillo M, A., E-mail: joseluis.montes@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    In this paper a new method for the pre-design of a typical fuel cell with a structural array of 10 x 10 fuel elements for a BWR is presented. The method is based on principles of maximum dispersion and minimum peaks of local power within the array of fuel elements. The pre-design of the fuel cells is made by simulation in two dimensions (2-D) through the cells physics code CASMO-4. For this purpose of pre-design the search process is guided by an objective function which is a combination of the main neutronic parameters of the fuel cell. The results show that the method is a promising tool that could be used for the design of fuel cells for use in a nuclear plant BWR. (Author)

  15. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    Science.gov (United States)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames.1,2 Conventional storable propellants produce average specific impulse. Nuclear thermal rockets capable of producing high specific impulse are proposed. Nuclear thermal rockets employ heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K), and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited.3 The primary concern is the mechanical failure of fuel elements that employ high-melting-point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. The purpose of the testing is to obtain data to assess the properties of the non-nuclear support materials, as-fabricated, and determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures. The fission process of the planned fissile material and the resulting heating performance is well known and does not therefore require that active fissile material be integrated in this testing. A small-scale test bed designed to heat fuel element samples via non-contact radio frequency heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  16. Nuclear reactor fuel element with vanadium getter on cladding

    Science.gov (United States)

    Johnson, Carl E.; Carroll, Kenneth G.

    1977-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of vanadium as an oxygen getter on the inner surface of the cladding. The vanadium reacts with oxygen released by the fissionable material during irradiation of the core to prevent the oxygen from reacting with and corroding the cladding. Also described is a method for coating the inner surface of small diameter tubes of cladding with a layer of vanadium.

  17. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.W.; Morin, R.A.

    1999-12-01

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U{sub 3}O{sub 8} powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated.

  18. Licos, a fuel performance code for innovative fuel elements or experimental devices design

    Energy Technology Data Exchange (ETDEWEB)

    Helfer, Thomas, E-mail: thomas.helfer@cea.fr; Bejaoui, Syriac, E-mail: syriac.bejaoui@cea.fr; Michel, Bruno, E-mail: bruno.michel@cea.fr

    2015-12-01

    Highlights: • The Licos fuel performance code is introduced. • Advanced features, such as dependency algorithm and kriging are described. • First results on three dimensional modelling of the SFR fuel pin are given. • Application to the DIAMINO design computations is discussed. - Abstract: This paper provides an overview of the Licos fuel performance code which has been developed for several years within the platform pleiades, co-developed by the French Alternative Energies and Atomic Energy Commission (CEA) and its industrial partners Électricité de France (EDF) and AREVA. CEA engineers have been using Licos to back multidimensional thermo-mechanical studies on innovative fuel elements design and experimental device pre-and post-irradiation computations. Studies made with Licos thus encompass a wide range of situations, including most nuclear systems used or studied in France in recent years (PWR, SFR or GFR), normal and off-normal operating conditions, and a large selection of materials (either for fuel, absorber, coolant and cladding). The aim of this paper is to give some insights about some innovative features in the design of Licos (dependency management, kriging, mfront, etc.). We also present two studies that demonstrate the flexibility of this code. The first one shows how Licos can be combined with the Germinal monodimensional fuel performance code to demonstrate the interest of a three dimensional modelling of the fuel relocation phenomenon in the Sodium Fast Reactor fuel pin. The second one describes how Licos was used to model the DIAMINO experiment.

  19. METHOD AND APPARATUS FOR EXAMINING FUEL ELEMENTS FOR LEAKAGE

    Science.gov (United States)

    Smith, R.R.; Echo, M.W.; Doe, C.B.

    1963-12-31

    A process and a device for the continuous monitoring of fuel elements while in use in a liquid-metal-cooled, argonblanketed nuclear reactor are presented. A fraction of the argon gas is withdrawn, contacted with a negative electrical charge for attraction of any alkali metal formed from argon by neutron reaction, and recycled into the reactor. The electrical charge is introduced into water, and the water is examined for radioactive alkali metals. (AEC)

  20. The element technology of clean fuel alcohol plant construction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.S; Lee, D.S. [Sam-Sung Engineering Technical Institute (Korea, Republic of); Choi, C.Y [Seoul National University, Seoul (Korea, Republic of)] [and others

    1996-02-01

    The fuel alcohol has been highlighted as a clean energy among new renewable energy sources. However, the production of the fuel alcohol has following problems; (i)bulk distillate remains is generated and (ii) benzene to be used as a entertainer in the azeotropic distillation causes the environmental problem. Thus, we started this research on the ground of preserving the cleanness in the production of fuel alcohol, a clean energy. We examined the schemes of replacing the azotropic distillation column which causes the problems with MSDP(Molecular Sieve Dehydration Process) system using adsorption technology and of treating the bulk distillate remains to be generated as by-products. In addition, we need to develop the continuous yea station technology for the continuous operation of fuel alcohol plant as a side goal. Thus, we try to develop a continuous ethanol fermentation process by high-density cell culture from tapioca, a industrial substrate, using cohesive yeast. For this purpose, we intend to examine the problem of tapioca, a industrial substrate, where a solid is existed and develop a new process which can solve the problem. Ultimately, the object of this project is to develop each element technology for the construction of fuel alcohol plant and obtain the ability to design the whole plant. (author) 54 refs., 143 figs., 34 tabs.

  1. Improvements in the fabrication of HTR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Braehler, Georg, E-mail: georg.braehler@nukemtechnologies.de [NUKEM Technologies GmbH, Industriestrasse 13, 63755 Alzenau (Germany); Hartung, Markus [NUKEM Technologies GmbH, Industriestrasse 13, 63755 Alzenau (Germany); Fachinger, Johannes; Grosse, Karl-Heinz [FNAG Furnaces Nuclear Applications Grenoble S.A.S., Wilhelm-Rohn Strasse 35, 63450 Hanau (Germany); Seemann, Richard [ALD Vacuum Technologies GmbH, Wilhelm-Rohn Strasse 35, 63450 Hanau (Germany)

    2012-10-15

    The application of High Temperature Reactor (HTR) Technology in the course of the continuously increasing world wide demand on energy is taken more and more under serious consideration in the power supply strategy of various countries. Especially for the emerging nations the HTR Technology has become of special interest because of its inherent safety feature and due to the alternative possibilities of applications, e.g. in the production of liquid hydrocarbons or the alternative application in H{sub 2} generation. The HTR fuel in its various forms (spheres or prismatic fuel blocks) is based on small fuel kernels of about 500 {mu}m in diameter. Each of these uranium oxide or carbide kernels are coated with several layers of pyrocarbon (PyC) as well as an additional silicon carbide (SiC) layer. While the inner pyrocarbon layer is porous and capable to absorb gaseous fission products, the dense outer PyC layer forms the barrier against fission product release. The SiC layer improves the mechanical strengths of this barrier and considerably increases the retention capacity for solid fission products that tent to diffuse at these temperatures. Especially the high quality German LEU TRISO spherical fuel based on the NUKEM design, has demonstrated the best fission product release rate, particular at high temperatures. The {approx}10% enriched uranium triple-coated particles are embedded in a moulded graphite sphere. A fuel sphere consists of approximately 9 g of uranium (some 15,000 particles) and has a diameter of 60 mm. As the unique safety features, especially the inherent safety of the HTR is based on the fuel design, this paper shall reflect the complexity but also developments and economical aspects of the fabrication processes for HTR fuel elements.

  2. Estimation of dose rate around the spent control rods of a BWR; Estimacion de la rapidez de dosis alrededor de las barras de control gastadas de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Cancino P, G.

    2016-10-01

    The energy can come from fossil renewable sources (solar (natural gas, oil), wind, hydro, tidal, geothermal, biomass, bio energy and nuclear. Nuclear power can be obtained by fission reactions and fusion (still under investigation) atomic nuclei. Fission, is a partition of a very heavy nucleus (Uranium 235, for example) into two lighter nuclei. Much of the world's electric power is generated from the energy released by fission processes. In a nuclear power reactor, light water as the BWR, there are many important elements that allow safe driving operation, one of them are the elements or control systems, the burnable poison or neutron absorber inherently allow control power reactor. The control rods, which consist mostly of stainless steel and absorbing elements (such as boron carbide, hafnium, cadmium, among others) of thermal neutrons is able to initiate, regulate or stop the reactor power. These, due to the use of depleted burned or absorbing material and therefore reach their lifespan, which can be 15 years or have other values depending on the manufacturer. Control rods worn should be removed, stored or confined in expressly places. Precisely at this stage arises the importance of knowing their radiological condition to manipulate safely and without incident to the people health responsible for conducting these proceedings state arises. This thesis consists in the estimation of the dose rate in spent control rod made of boron carbide, from a typical BWR reactor. It will be estimated by direct radiation measurements with measurement equipment for radiotherapy ionization chamber, in six spent control rods, which were taken at different reactor operating cycles and are in a spent fuel pool. Using bracket electromechanical and electronic equipment for positioning and lifting equipment for radiation measurement around the control rod in the axial and radial arrangement for proper scanning. Finally will be presented a graphic corresponding to the dose

  3. A novel microbial fuel cell sensor with biocathode sensing element.

    Science.gov (United States)

    Jiang, Yong; Liang, Peng; Liu, Panpan; Wang, Donglin; Miao, Bo; Huang, Xia

    2017-03-02

    The traditional microbial fuel cell (MFC) sensor with bioanode as sensing element delivers limited sensitivity to toxicity monitoring, restricted application to only anaerobic and organic rich water body, and increased potential fault warning to the combined shock of organic matter/toxicity. In this study, the biocathode for oxygen reduction reaction was employed for the first time as the sensing element in MFC sensor for toxicity monitoring. The results shown that the sensitivity of MFC sensor with biocathode sensing element (7.4±2.0 to 67.5±4.0mA%(-1)cm(-2)) was much greater than that showed by bioanode sensing element (3.4±1.5 to 5.5±0.7mA%(-1)cm(-2)). The biocathode sensing element achieved the lowest detection limit reported to date using MFC sensor for formaldehyde detection (0.0005%), while the bioanode was more applicable for higher concentration (>0.0025%). There was a quicker response of biocathode sensing element with the increase of conductivity and dissolved oxygen (DO). The biocathode sensing element made the MFC sensor directly applied to clean water body monitoring, e.g., drinking water and reclaimed water, without the amending of background organic matter, and it also decreased the warning failure when challenged by a combined shock of organic matter/toxicity.

  4. CFD prediction of flow and phase distribution in fuel assemblies with spacers

    Energy Technology Data Exchange (ETDEWEB)

    Anglart, H.; Nylund, O. [ABB Atom AB, Vasteras (Switzerland); Kurul, N. [Rensselaer Polytechnic Institute, Troy, NY (United States)] [and others

    1995-09-01

    This paper is concerned with the modeling and computation of multi-dimensional two-phase flows in BWR fuel assemblies. The modeling principles are presented based on using a two-fluid model in which lateral interfacial effects are accounted for. This model has been used to evaluate the velocity fields of both vapor and liquid phases, as well as phase distribution, between fuel elements in geometries similar to BWR fuel bundles. Furthermore, this model has been used to predict, in a detailed mechanistic manner, the effects of spacers on flow and phase distribution between, and pressure drop along, fuel elements. The related numerical simulations have been performed using a CFD computer code, CFDS-FLOW3D.

  5. Optimized clearing work concept for the BWR containment; Optimiertes Raeumungskonzept fuer SWR-Sicherheitsbehaelter

    Energy Technology Data Exchange (ETDEWEB)

    Kraps, Uwe [AREVA NP GmbH (Germany)

    2012-11-01

    Based on the experiences of reactor dismantling in the NPPs Wuergasse, Obrigheim and Stade an optimized clearing work concept for the BWR containment including the reactor pressure vessel and the biological shield was developed. The concept is focused on the safety objective, the reduction of the collective dose and the reduction of the execution time. Precondition for the decommissioning license was up to now the removal of fuel elements from the reactor; due to the significantly increased period until fulfillment of this premises concepts are developed that can be performed with simultaneous reduction of the radiological inventories and the fire loads. The most important step of the guideline of the concept is the transition from hot to cold. The in-situ disassembling of the reactor internals can be performed with decreased water level in the reactor pressure vessel, with following water treatment and complete shutdown of operational systems. This status allows an accelerated further dismantling of the plant.

  6. SCORE-EVET: a computer code for the multidimensional transient thermal-hydraulic analysis of nuclear fuel rod arrays. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, R. L.; Lords, L. V.; Kiser, D. M.

    1978-02-01

    The SCORE-EVET code was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code ocntains: (a) a one-dimensional steady state solution scheme to initialize the flow field, (b) steady state and transient fuel rod conduction models, and (c) comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocity and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage.

  7. Gamma-ray spectroscopy on irradiated MTR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Terremoto, L.A.A. E-mail: laaterre@net.ipen.br; Zeituni, C.A.; Perrotta, J.A.; Silva, J.E.R. da

    2000-08-11

    The availability of burnup data is an important requirement in any systematic approach to the enhancement of safety, economics and performance of a nuclear research reactor. This work presents the theory and experimental techniques applied to determine, by means of nondestructive gamma-ray spectroscopy, the burnup of Material Testing Reactor (MTR) fuel elements irradiated in the IEA-R1 research reactor. Burnup measurements, based on analysis of spectra that result from collimation and detection of gamma-rays emitted in the decay of radioactive fission products, were performed at the reactor pool area. The measuring system consists of a high-purity germanium (HPGe) detector together with suitable fast electronics and an on-line microcomputer data acquisition module. In order to achieve absolute burnup values, the detection set (collimator tube+HPGe detector) was previously calibrated in efficiency. The obtained burnup values are compared with ones provided by reactor physics calculations, for three kinds of MTR fuel elements with different cooling times, initial enrichment grades and total number of fuel plates. Both values show good agreement within the experimental error limits.

  8. Recapturing Graphite-Based Fuel Element Technology for Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Trammell, Michael P [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Qualls, A L [ORNL; Harrison, Thomas J [ORNL

    2013-01-01

    ORNL is currently recapturing graphite based fuel forms for Nuclear Thermal Propulsion (NTP). This effort involves research and development on materials selection, extrusion, and coating processes to produce fuel elements representative of historical ROVER and NERVA fuel. Initially, lab scale specimens were fabricated using surrogate oxides to develop processing parameters that could be applied to full length NTP fuel elements. Progress toward understanding the effect of these processing parameters on surrogate fuel microstructure is presented.

  9. Recent trends in the mitigation of the IGSCC through modifications in the water chemistry of BWR reactors; Tendencias recientes en la mitigacion del IGSCC mediante modificaciones en la quimica del agua de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Robles, E.F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    During the last years, the Nuclear Power stations had been that to adequate or to modify the parameters and operational conditions, attempting to maintain and to safeguard the integrity and functionality of its components and systems, as well as the personnel safety involved in its operation. In a Boiling water reactor (BWR), the chemical control of the water, constitutes one of the fundamental aspects to get a sure and reliable operation, having as main objectives: (a) The protection of the reactor vessel, of the structural materials of the same one and of the pipes and components of those recirculation systems against the Intergranular stress corrosion phenomena (IGSCC); (b) To guarantee the integrity of the nuclear fuel minimizing the corrosion phenomena in the fuel elements; and (c) The reduction of the operational dose of the personnel involved directly in the operation and maintenance by means of the control of the activated corrosion products. (Author)

  10. THERMAL EVALUATION OF THE USE OF BWR MOX SNF IN THE WASTE PACKAGE DESIGN (SCPB: N/A)

    Energy Technology Data Exchange (ETDEWEB)

    H. Wang

    1997-01-23

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) as specified in the Waste Package Implementation Plan (pp. 4-8,4-11,4-24, 5-1, and 5-13; Ref. 5.10) and Waste Package Plan (pp. 3-15,3-17, and 3-24; Ref. 5.9). The design data request addressed herein is: (1) Characterize the conceptual 40 BWR and 24 BWR Multi-Purpose Canister (MPC) Waste Package (WP) design to show that the design is feasible for use in the MGDS environment when loaded with BWR MOX SNF. (2) Characterize the conceptual 44 BWR and 24 BWR Uncanistered Fuel (UCF) Waste Package (WP) design to show that the design is feasible for use in the MGDS environment when loaded with BWR MOX SNF. The purpose of this analysis is to respond to a concern that the long-term disposal thermal issues for the WP Design, if used with SNF designed for a MOX fuel cycle, do not preclude WP compatibility with the MGDS. The objective of this analysis is to provide thermal parameter information for the conceptual WP design with disposal container which is loaded with BWR MOX SNF under nominal MGDS repository conditions. The results are intended to show that the design has a reasonable chance to meet the MGDS design requirements for normal MGDS operation, and to provide the required guidance to determining the major design issues for future design efforts, and to show that the BWR MOX SNF loaded WP performance is similar to an WP loaded with commercial BWR SNF.

  11. Triaxial Swirl Injector Element for Liquid-Fueled Engines

    Science.gov (United States)

    Muss, Jeff

    2010-01-01

    A triaxial injector is a single bi-propellant injection element located at the center of the injector body. The injector element consists of three nested, hydraulic swirl injectors. A small portion of the total fuel is injected through the central hydraulic injector, all of the oxidizer is injected through the middle concentric hydraulic swirl injector, and the balance of the fuel is injected through an outer concentric injection system. The configuration has been shown to provide good flame stabilization and the desired fuel-rich wall boundary condition. The injector design is well suited for preburner applications. Preburner injectors operate at extreme oxygen-to-fuel mass ratios, either very rich or very lean. The goal of a preburner is to create a uniform drive gas for the turbomachinery, while carefully controlling the temperature so as not to stress or damage turbine blades. The triaxial injector concept permits the lean propellant to be sandwiched between two layers of the rich propellant, while the hydraulic atomization characteristics of the swirl injectors promote interpropellant mixing and, ultimately, good combustion efficiency. This innovation is suited to a wide range of liquid oxidizer and liquid fuels, including hydrogen, methane, and kerosene. Prototype testing with the triaxial swirl injector demonstrated excellent injector and combustion chamber thermal compatibility and good combustion performance, both at levels far superior to a pintle injector. Initial testing with the prototype injector demonstrated over 96-percent combustion efficiency. The design showed excellent high -frequency combustion stability characteristics with oxygen and kerosene propellants. Unlike the more conventional pintle injector, there is not a large bluff body that must be cooled. The absence of a protruding center body enhances the thermal durability of the triaxial swirl injector. The hydraulic atomization characteristics of the innovation allow the design to be

  12. Corrosion studies in fuel element reprocessing environments containing nitric acid

    Energy Technology Data Exchange (ETDEWEB)

    Beavers, J A; White, R R; Berry, W E; Griess, J C

    1982-04-01

    Nitric acid is universally used in aqueous fuel element reprocessing plants; however, in the processing scheme being developed by the Consolidated Fuel Reprocessing Program, some of the equipment will be exposed to nitric acid under conditions not previously encountered in fuel element reprocessing plants. A previous report presented corrosion data obtained in hyperazeotropic nitric acid and in concentrated magnesium nitrate solutions used in its preparation. The results presented in this report are concerned with the following: (1) corrosion of titanium in nitric acid; (2) corrosion of nickel-base alloys in a nitric acid-hydrofluoric acid solution; (3) the formation of Cr(VI), which enhances corrosion, in nitric acid solutions; and (4) corrosion of mechanical pipe connectors in nitric acid. The results show that the corrosion rate of titanium increased with the refreshment rate of boiling nitric acid, but the effect diminished rapidly as the temperature decreased. The addition of iodic acid inhibited attack. Also, up to 200 ppM of fluoride in 70% HNO/sub 3/ had no major effect on the corrosion of either titanium or tantalum. In boiling 8 M HNO/sub 3/-0.05 M HF, Inconel 671 was more resistant than Inconel 690, but both alloys experienced end-grain attack. In the case of Inconel 671, heat treatment was very important; annealed and quenched material was much more resistant than furnace-cooled material.The rate of oxidation of Cr(III) to Cr(VI) increased significantly as the nitric acid concentration increased, and certain forms of ruthenium in the solution seemed to accelerate the rate of formation. Mechanical connectors of T-304L stainless steel experienced end-grain attack on the exposed pipe ends, and seal rings of both stainless steel and a titanium alloy (6% Al-4% V) underwent heavy attack in boiling 8 M HNO/sub 3/.

  13. Design and in-core fuel management of reload fuel elements for reactors made by other manufacturers. Auslegung und Einsatzplanung von Nachlade-Brennelementen fuer Reaktoren anderer Hersteller

    Energy Technology Data Exchange (ETDEWEB)

    Neufert, A.; Urban, P.

    1990-12-01

    By the end of 1990 Siemens had performed fuel element designs and in-core fuel management for 94 operating cycles in 27 pressurized and boiling water reactors of other manufacturers. Together with the client different fuel element designs are developed and proof is furnished of the reactor physics compatibility of different fuel elements from various producers, and of plant safety. (DG).

  14. Post irradiation examination of HANARO nucler mini-element fuel (metallographic and density test)

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byung Ok; Hong, K. P.; Park, D. G.; Choo, Y. S.; Baik, S. J.; Kim, K. H.; Kim, H. C.; Jung, Y. H

    2001-05-01

    The post irradiation examination of a HANARO mini-element nuclear fuel, KH96C-004, was done in June 6, 2000. The purpose of this project is to evaluate the in-core performance and reliability of mini-element nuclear fuel for HANARO developed by the project ''The Nuclear Fuel Material Development of Research Reactor''. And, in order to examine the performance of mini-element nuclear fuel in normal output condition, the post irradiation examination of a nuclear fuel bundle composed by 6 mini nuclear fuel rods and 12 dummy fuel rods was performed. Based on these examination results, the safety and reliability of HANARO fuel and the basic data on the design of HANARO nuclear fuel can be ensured and obtained,.

  15. Safety assessment for the CANFLEX-NU fuel bundles with respect to the 37-element fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Suk, H. C.; Lim, H. S. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-11-01

    The KAERI and AECL have jointly developed an advanced CANDU fuel, called CANFLEX-NU fuel bundle. CANFLEX 43-element bundle has some improved features of increased operating margin and enhanced safety compared to the existing 37-element bundle. Since CANFLEX fuel bundle is designed to be compatible with the CANDU-6 reactor design, the behaviour in the thermalhydraulic system will be nearly identical with 37-element bundle. But due to different element design and linear element power distribution between the two bundles, it is expected that CANFLEX fuel behaviour would be different from the behaviour of the 37-element fuel. Therefore, safety assessments on the design basis accidents which result if fuel failures are performed. For all accidents selected, it is observed that the loading of CANFLEX bundle in an existing CANDU-6 reactor would not worsen the reactor safety. It is also predicted that fission product release for CANFLEX fuel bundle generally is lower than that for 37-element bundle. 3 refs., 2 figs., 2 tabs. (Author)

  16. Thermionic Fuel Element performance: TFE Verification Program. Final test report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The program objective is to demonstrate the technology readiness of a Thermionic Fuel Element (TFE) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full power life of 7 years. A TFE was designed that met the reliability and lifetime requirements for a 2 MW(e) conceptual reactor design. Analysis showed that this TFE could be used over the range of 0.5 to 5 megawatts. This was used as the basis for designing components for test and evaluation. The demonstration of a 7-year component lifetime capability was through the combined use of analytical models and accelerated, confirmatory tests in a fast test reactor. Iterative testing was performed in which the results of one test series led to evolutionary improvements in the next test specimens. The TFE components underwent screening and initial development testing in ex-reactor tests. Several design and materials options were considered for each component. As screening tests permitted, down selection occurred to very specific designs and materials. In parallel with ex-reactor testing, and fast reactor component testing, components were integrated into a TFE and tested in the TRIGA test reactor at GA. Realtime testing of partial length TFEs was used to test support, alignment and interconnective TFE components, and to verify TFE performance in-reactor with integral cesium reservoirs. Realtime testing was also used to verify the relation between TFE performance and fueled emitter swelling, to test the durability of intercell insulation, to check temperature distributions, and to verify the adequacy over time of the fission gas venting channels. Predictions of TFE lifetime rested primarily on the accelerated component testing results, as correlated and extended to realtime by the use of analytical models.

  17. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition as part of a fuel meat thickness optimization effort for reactor performance other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  18. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  19. BWR Steam Dryer Alternating Stress Assessment Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Morante, R. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hambric, S. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ziada, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-01

    This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).

  20. Impact of Reactor Operating Parameters on Cask Reactivity in BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Betzler, Benjamin R [ORNL; Ade, Brian J [ORNL

    2017-01-01

    This paper discusses the effect of reactor operating parameters used in fuel depletion calculations on spent fuel cask reactivity, with relevance for boiling-water reactor (BWR) burnup credit (BUC) applications. Assessments that used generic BWR fuel assembly and spent fuel cask configurations are presented. The considered operating parameters, which were independently varied in the depletion simulations for the assembly, included fuel temperature, bypass water density, specific power, and operating history. Different operating history scenarios were considered for the assembly depletion to determine the effect of relative power distribution during the irradiation cycles, as well as the downtime between cycles. Depletion, decay, and criticality simulations were performed using computer codes and associated nuclear data within the SCALE code system. Results quantifying the dependence of cask reactivity on the assembly depletion parameters are presented herein.

  1. Development of a computer program of fast calculation for the pre design of advanced nuclear fuel 10 x 10 for BWR type reactors; Desarrollo de un program de computo de calculo rapido para el prediseno de celdas de combustible nuclear avanzado 10 x 10 para reactores de agua en ebullicion

    Energy Technology Data Exchange (ETDEWEB)

    Perusquia, R.; Montes, J.L.; Ortiz, J.J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: mrpc@nuclear.inin.mx

    2005-07-01

    In the National Institute of Nuclear Research (ININ) a methodology is developed to optimize the design of cells 10x10 of assemble fuels for reactors of water in boil or BWR. It was proposed a lineal calculation formula based on a coefficients matrix (of the change reason of the relative power due to changes in the enrichment of U-235) for estimate the relative powers by pin of a cell. With this it was developed the computer program of fast calculation named PreDiCeldas. The one which by means of a simple search algorithm allows to minimize the relative power peak maximum of cell or LPPF. This is achieved varying the distribution of U-235 inside the cell, maintaining in turn fixed its average enrichment. The accuracy in the estimation of the relative powers for pin is of the order from 1.9% when comparing it with results of the 'best estimate' HELIOS code. With the PreDiCeldas it was possible, at one minimum time of calculation, to re-design a reference cell diminishing the LPPF, to the beginning of the life, of 1.44 to a value of 1.31. With the cell design with low LPPF is sought to even design cycles but extensive that those reached at the moment in the BWR of the Laguna Verde Central. (Author)

  2. Thermohydraulic stability coupled to the neutronic in a BWR; Estabilidad termohidraulica acoplada a la neutronica en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Calleros M, G.; Zapata Y, M.; Gomez H, R.A.; Mendez M, A. [Comision Federal de Electricidad, Central Nucleoelectrica de Laguna Verde, Carretera Cardel-Nautla Km. 42.5, Mpio. Alto Lucero, Veracruz (Mexico); Castlllo D, R. [ININ, Carretera Mexico-Toluca Km 36.5, La Marquesa, Estado de Mexico (Mexico)]. e-mail: gcm9acpp@cfe.gob.mx

    2006-07-01

    In a BWR type reactor the phenomenon of the nuclear fission is presented, in which are liberated in stochastic form neutrons, originating that the population of the same ones varies in statistic form around a mean value. This variation will cause that when the neutron flow impacts on the neutron detectors, its are had as a result neutron flow signals with fluctuations around an average value. In this article it is shown that it conforms it lapses the time, this variations in the neutron flow (and therefore, in the flow signal due only to the fission), they presented oscillations inside a stable range, which won't be divergent. Considering that the BWR is characterized because boiling phenomena are presented, which affect the moderation of the neutrons, additional variations will be had in the signal coming from the neutron detectors, with relationship to the fission itself, which will be influenced by the feedback of the moderator's reactivity and of the temperature of the fuel pellet. Also, as the BWR it has coupled control systems to maintain the coolant level one and of the thermal power of the reactor, for each control action it was affected the neutron population. This means that the reactor could end up straying of a stable state condition. By it previously described, the study of the thermohydraulic stability coupled to the neutronic is complex. In this work it is shown the phenomenology, the mathematical models and the theoretical behavior associated to the stability of the BWR type reactor; the variables that affect it are identified, the models that reproduce the behavior of the thermohydraulic stability coupled to the neutronic, the way to maintain stable the reactor and the instrumentation that can settle to detect and to suppress uncertainties is described. In particular, is make reference to the evolution of the methods to maintain the stability of the reactor and the detection system and suppression of uncertainties implemented in the

  3. Numerical simulation of boron injection in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Tinoco, Hernan, E-mail: htb@forsmark.vattenfall.s [Forsmarks Kraftgrupp AB, SE-742 03 Osthammar (Sweden); Buchwald, Przemyslaw [Reactor Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Frid, Wiktor, E-mail: wiktor@reactor.sci.kth.s [Reactor Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden)

    2010-02-15

    The present study constitutes a first step to understand the process of boron injection, transport and mixing in a BWR. It consists of transient CFD simulations of boron injection in a model of the downcomer of Forsmark's Unit 3 containing about 6 million elements. The two cases studied are unintentional start of boron injection under normal operation and loss of offsite power with partial ATWS leaving 10% of the core power uncontrolled. The flow conditions of the second case are defined by means of an analysis with RELAP5, assuming boron injection start directly after the first ECCS injection. Recent publications show that meaningful conservative results may be obtained for boron or thermal mixing in PWRs with grids as coarse as that utilized here, provided that higher order discretization schemes are used to minimize numerical diffusion. The obtained results indicate an apparently strong influence of the scenario in the behavior of the injection process. The normal operation simulation shows that virtually all boron solution flows down to the Main Recirculation Pump inlet located directly below the boron inlet nozzle. The loss of offsite power simulation shows initially a spread of the boron solution over the entire sectional area of the lower part of the downcomer filled with colder water. This remaining effect of the ECCS injection lasts until all this water has left the downcomer. Above this region, the boron injection jet develops in a vertical streak, eventually resembling the injection of the normal operation scenario. Due to the initial spread, this boron injection will probably cause larger temporal and spatial concentration variations in the core. In both cases, these variations may cause reactivity transients and fuel damage due to local power escalation. To settle this issue, an analysis using an extended model containing the downcomer, the MRPs and the Lower Plenum will be carried out. Also, the simulation time will be extended to a scale of

  4. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL

    2016-01-01

    A technical basis for peak reactivity boiling water reactor (BWR) burnup credit (BUC) methods was recently generated, and the technical basis for extended BWR BUC is now being developed. In this paper, a number of effects related to extended BWR BUC are analyzed, including three major operational effects in BWRs: the coolant density axial distribution, the use of control blades during operation, and the axial burnup profile. Specifically, uniform axial moderator density profiles are analyzed and compared to previous results and an additional temporal fidelity study combing moderator density profiles for three different fuel assemblies is presented. Realistic control blade histories and cask criticality results are compared to previously generated constructed control blade histories. Finally, a preliminary study of the axial burnup profile is provided.

  5. Subcritical Noise Analysis Measurements with Fresh and Spent Research Reactor Fuels Elements

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, T.E.; Mihalczo, J.T.; Kryter, R.C.; Miller, V.C.

    1999-02-01

    The verification of the subcriticality is of utmost importance for the safe transportation and storage of nuclear reactor fuels. Transportation containers and storage facilities are designed such that nuclear fuels remain in a subcritical state. Such designs often involve excess conservatism because of the lack of relevant experimental data to verify the accuracy of Monte Carlo codes used in nuclear criticality safety analyses. A joint experimental research program between Oak Ridge National Laboratory, Westinghouse Safety Management Solutions, Inc., and the University of Missouri was initiated to obtain measured quantities that could be directly related to the subcriticality of simple arrays of Missouri University Research Reactor (MURR) fuel elements. A series of measurement were performed to assess the reactivity of materials such as BORAL, stainless steel, aluminum, and lead that are typically used in the construction of shipping casks. These materials were positioned between the fuel elements. In addition, a limited number of measurements were performed with configurations of fresh and spent (irradiated) fuel elements to ascertain the reactivity of the spent fuel elements. In these experiments, fresh fuel elements were replaced by spent fuel elements such that the subcritical reactivity change could be measured. The results of these measurements were used by Westinghouse Safety Management Solutions to determine the subcriticality of MURR fuel elements isolated by absorbing materials. The measurements were interpreted using the MCNP-DSP Monte Carlo code to obtain the subcritical neutron multiplication factor k(sub eff), and the bias in K(sub eff) that are used in criticality safety analyses.

  6. Multidisciplinary Simulation of Graphite-Composite and Cermet Fuel Elements for NTP Point of Departure Designs

    Science.gov (United States)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2015-01-01

    This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.

  7. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    Science.gov (United States)

    Allen, G. C.; Beck, D. F.; Harmon, C. D.; Shipers, L. R.

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program.

  8. Advancements in the behavioral modeling of fuel elements and related structures

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.C.; Montgomery, R.O.; Rashid, Y.R.; Head, J.L. (Argonne National Lab., IL (USA); ANATECH Research Corp., San Diego, CA (USA); Royal Naval Coll., Greenwich (UK))

    1989-01-01

    An important aspect of the design and analysis of nuclear reactors is the ability to predict the behavior of fuel elements in the adverse environment of a reactor system. By understanding the thermomechanical behavior of the different materials which constitute a nuclear fuel element, analysis and predictions can be made regarding the integrity and reliability of fuel element designs. The SMiRT conference series, through the division on fuel elements and the post-conference seminars on fuel element modeling, provided technical forums for the international participation in the exchange of knowledge concerning the thermomechanical modeling of fuel elements. This paper discusses the technical advances in the behavioral modeling of fuel elements presented at the SMiRT conference series since its inception in 1971. Progress in the areas of material properties and constitutive relationships, modeling methodologies, and integral modeling approaches was reviewed and is summarized in light of their impact on the thermomechanical modeling of nuclear fuel elements. 34 refs., 5 tabs.

  9. Preliminary Nuclear Analysis for the HANARO Fuel Element with Burnable Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chul Gyo; Kim, So Young; In, Won Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Burnable absorber is used for reducing reactivity swing and power peaking in high performance research reactors. Development of the HANARO fuel element with burnable absorber was started in the U-Mo fuel development program at HANARO, but detailed full core analysis was not performed because the current HANARO fuel management system is uncertain to analysis the HANARO core with burnable absorber. A sophisticated reactor physics system is required to analysis the core. The McCARD code was selected and the detailed McCARD core models, in which the basic HANARO core model was developed by one of the McCARD developers, are used in this study. The development of nuclear fuel requires a long time and correct developing direction especially by the nuclear analysis. This paper presents a preliminary nuclear analysis to promote the fuel development. Based on the developed fuel, the further nuclear analysis will improve reactor performance and safety. Basic nuclear analysis for the HANARO and the AHR were performed for getting the proper fuel elements with burnable absorber. Addition of 0.3 - 0.4% Cd to the fuel meat is promising for the current HANARO fuel element. Small addition of burnable absorber may not change any fuel characteristics of the HANARO fuel element, but various basic tests and irradiation tests at the HANARO core are required.

  10. Nonuniform Oxidation on the Surface of Fuel Element in HTR

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2016-01-01

    Full Text Available The graphite oxidation of fuel element has obtained high attention in air ingress accident analysis of high temperature gas-cooled reactor (HTR. The shape function, defined as the relationship between the maximum and the average of the oxidation, is an important factor to estimate the consequence of the accident. There are no detailed studies on the shape function currently except two experiments several decades ago. With the development of computer technology, CFD method is used in the numerical experiment about graphite oxidation in pebble bed of HTR in this paper. Structured packed beds are used in the calculation instead of random packed beds. The result shows the nonuniform distribution of oxidation on the sphere surface and the shape function in the condition of air ingress accident. Furthermore, the sensitive factors of shape function, such as temperature and Re number, are discussed in detail and the relationship between the shape function and sensitive factors is explained. According to the results in this paper, the shape function ranges from 1.05 to 4.7 under the condition of temperature varying from 600°C to 1200°C and Re varying from 16 to 1600.

  11. Status update of the BWR cask simulator

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The performance of commercial nuclear spent fuel dry storage casks are typically evaluated through detailed numerical analysis of the system's thermal performance. These modeling efforts are performed by the vendor to demonstrate the performance and regulatory compliance and are independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Numerous studies have been previously conducted. Recent advances in dry storage cask designs have moved the storage location from above ground to below ground and significantly increased the maximum thermal load allowed in a cask in part by increasing the canister helium pressure. Previous cask performance validation testing did not capture these parameters. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern dry casks. These modern cask designs utilize elevated helium pressure in the sealed canister or are intended for subsurface storage. The BWR cask simulator (BCS) has been designed in detail for both the above ground and below ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below ground storage configurations

  12. Plutonium and Minor Actinides Recycling in Standard BWR using Equilibrium Burnup Model

    Directory of Open Access Journals (Sweden)

    Abdul Waris

    2008-03-01

    Full Text Available Plutonium (Pu and minor actinides (MA recycling in standard BWR with equilibrium burnup model has been studied. We considered the equilibrium burnup model as a simple time independent burnup method, which can manage all possible produced nuclides in any nuclear system. The equilibrium burnup code was bundled with a SRAC cell-calculation code to become a coupled cell-burnup calculation code system. The results show that the uranium enrichment for the criticality of the reactor, the amount of loaded fuel and the required natural uranium supply per year decrease for the Pu recycling and even much lower for the Pu & MA recycling case compared to those of the standard once-through BWR case. The neutron spectra become harder with the increasing number of recycled heavy nuclides in the reactor core. The total fissile rises from 4.77% of the total nuclides number density in the reactor core for the standard once-through BWR case to 6.64% and 6.72% for the Plutonium recycling case and the Pu & MA recycling case, respectively. The two later data may become the main basis why the required uranium enrichment declines and consequently diminishes the annual loaded fuel and the required natural uranium supply. All these facts demonstrate the advantage of plutonium and minor actinides recycling in BWR.

  13. Prevention of organic iodide formation in BWR`s

    Energy Technology Data Exchange (ETDEWEB)

    Karjunen, T. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Laitinen, T.; Piippo, J.; Sirkiae, P. [VTT Manufacturing Technology (Finland)

    1996-12-01

    During an accident, many different forms of iodine may emerge. Organic iodides, such as methyl iodide and ethyl iodide, are relatively volatile, and thus their appearance leads to increased concentration of gaseous iodine. Since organic iodides are also relatively immune to most accident mitigation measures, such as sprays and filters, they can affect the accident source term significantly even when only a small portion of iodine is in organic form. Formation of organic iodides may not be limited by the amount of organic substances available. Excessive amounts of methane can be produced, for example, during oxidation of boron carbide, which is used in BWR`s as a neutron absorber material. Another important source is cable insulation. In a BWR, a large quantity of cables is placed below the pressure vessel. Thus a large quantity of pyrolyse gases will be produced, should the vessel fail. Organic iodides can be formed as a result of many different reactions, but at least in certain conditions the main reaction takes place between an organic radical produced by radiolysis and elemental iodine. A necessary requirement for prevention of organic iodide production is therefore that the pH in the containment water pools is kept high enough to eliminate formation of elemental iodine. In a typical BWR the suppression pool water is usually unbuffered. As a result, the pH may be dominated by chemicals introduced during an accident. If no system for adding basic chemicals is operable, the main factor affecting pool water pH may be hydrochloric acid released during cable degradation. Should this occur, the conditions could be very favorable for production of elemental iodine and, consequently, formation of organic iodides. Although high pH is necessary for iodine retention, it could have also adverse effects. High pH may, for example, accelerate corrosion of containment materials and alter the characteristics of the solid corrosion products. (author) 6 figs., 1 tab., 13 refs.

  14. Single-element coaxial injector for rocket fuel

    Science.gov (United States)

    Larson, L. L.

    1969-01-01

    Improved injector for oxygen difluoride and diborane has better mixing characteristics and is able to project fuel onto the wall of the combustion chamber for better cooling. It produces an essentially conical, diverging, continuous sheet of propellant mixture formed by similarly shaped and continuously impinging sheets of fuel and oxidant.

  15. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian J [ORNL; Marshall, William BJ J [ORNL; Martinez-Gonzalez, Jesus S [ORNL

    2015-05-01

    Oak Ridge National Laboratory (ORNL) and the US Nuclear Regulatory Commission (NRC) have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation systems (often referred to as casks) and spent fuel pools (SFPs). This work is divided into two main phases. The first phase investigated the applicability of peak reactivity methods currently used in SFPs to transportation and storage casks and the validation of reactivity calculations and spent fuel compositions within these methods. The second phase focuses on extending BUC beyond peak reactivity. This paper documents the analysis of the effects of control blade insertion history, and moderator density and burnup axial profiles for extended BWR BUC.

  16. 78 FR 33132 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Science.gov (United States)

    2013-06-03

    ... COMMISSION Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test... Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test Reactors.'' This guide... plate-type uranium-aluminum fuel elements used in research and test reactors (RTRs). ADDRESSES:...

  17. 77 FR 16868 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Science.gov (United States)

    2012-03-22

    ... COMMISSION Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test... quality assurance program for verifying the quality of plate-type uranium-aluminum fuel elements used in...-Type Uranium-Aluminum Fuel Elements for Use in Research and Test Reactors,'' is temporarily...

  18. 10 CFR Appendix O to Part 110 - Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Fuel Element Fabrication Plant... Appendix O to Part 110—Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export Licensing Authority Note: Nuclear fuel elements are manufactured from source or...

  19. A simple gamma spectrometry method for evaluating the burnup of MTR-type HEU fuel elements

    Science.gov (United States)

    Makmal, T.; Aviv, O.; Gilad, E.

    2016-10-01

    A simple method for the evaluation of the burnup of a materials testing reactor (MTR) fuel element by gamma spectrometry is presented. The method was applied to a highly enriched uranium MTR nuclear fuel element that was irradiated in a 5 MW pool-type research reactor for a total period of 34 years. The experimental approach is based on in-situ measurements of the MTR fuel element in the reactor pool by a portable high-purity germanium detector located in a gamma cell. To corroborate the method, analytical calculations (based on the irradiation history of the fuel element) and computer simulations using a dedicated fuel cycle burnup code ORIGEN2 were performed. The burnup of the MTR fuel element was found to be 52.4±8.8%, which is in good agreement with the analytical calculations and the computer simulations. The method presented here is suitable for research reactors with either a regular or an irregular irradiation regime and for reactors with limited infrastructure and/or resources. In addition, its simplicity and the enhanced safety it confers may render this method suitable for IAEA inspectors in fuel element burnup assessments during on-site inspections.

  20. Pumped lithium loop test to evaluate advanced refractory metal alloys and simulated nuclear fuel elements

    Science.gov (United States)

    Brandenburf, G. P.; Hoffman, E. E.; Smith, J. P.

    1974-01-01

    The performance was determined of refractory metal alloys and uranium nitride fuel element specimens in flowing 1900F (1083C) lithium. The results demonstrate the suitability of the selected materials to perform satisfactorily from a chemical compatibility standpoint.

  1. Douglas United Nuclear, Inc. report to the Working Committee of the Fuel Element Development Committee

    Energy Technology Data Exchange (ETDEWEB)

    Stringer, J.T.

    1966-05-04

    This document provides the report to the working committee of the fuel element development committee for small and K reactor production fuels. Topics discussed are: Uranium core production data; uranium specification; future planning -- five year R&D program; thoria development; heat treating; UO{sub 2} irradiation; and alternate process development.

  2. Experimental investigation of fuel evaporation in the vaporizing elements of combustion chambers

    Science.gov (United States)

    Vezhba, I.

    1979-01-01

    A description is given of the experimental apparatus and the methods used in the investigation of the degree of fuel (kerosene) evaporation in two types of vaporizing elements in combustion chambers. The results are presented as dependences of the degree of fuel evaporation on the factors which characterize the functioning of the vaporizing elements: the air surplus coefficient, the velocity of flow and temperature of the air at the entrance to the vaporizing element and the temperature of the wall of the vaporizing element.

  3. Non-destructive control of cladding thickness of fuel elements for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karlov, Y.; Zhukov, Y.; Chashchin, S

    1997-07-01

    The control method of fuel elements for research reactors by means of measuring beta particles back scattering made it possible to perform complete automatic non-destructive control of internal and external claddings at our plant. This control gives high guarantees of the fuel element correspondence to the requirements. The method can be used to control the three-layer items of different geometry, including plates. (author)

  4. Distribution of fission products in Peach Bottom HTGR fuel element E11-07

    Energy Technology Data Exchange (ETDEWEB)

    Wichner, R.P.; Dyer, F.F.; Martin, W.J.; Bate, L.C.

    1977-04-01

    This is the second in a projected series of six post-irradiation examinations of Peach Bottom High-Temperature Gas-Cooled Reactor driver fuel elements. Element E11-07, the subject of this report, received an equivalent of 701 full-power days of irradiation prior to scheduled withdrawal. The examination procedures emphasized the determination of fission product distributions in the graphite portions of the fuel element. Continuous axial scans indicated a /sup 137/Cs inventory of 17 Ci in the graphite sleeve and 8.3 Ci in the spine at the time of element withdrawal from the core. In addition, the nuclides /sup 134/Cs, /sup 110m/Ag, /sup 60/Co, and /sup 154/Eu were found in the graphite portions of the fuel element in significant amounts. Radial distributions of these nuclides plus the distribution of the beta emitters /sup 3/H, /sup 14/C, and /sup 90/Sr were obtained at six axial locations, four within the fueled region and one each above and below. The radial dissection was accomplished by use of a manipulator-operated lathe in a hot cell. These profiles reveal an increased degree of penetration of /sup 134/Cs, relative to /sup 137/Cs, evidently due to a longer time spent as xenon precursor. In addition to fission product distribution, the appearance of the element components was recorded photographically, fuel compact and graphite dimensions were recorded at numerous locations, and metallographic examinations of the fuel were performed.

  5. Multiphysics Modeling of a Single Channel in a Nuclear Thermal Propulsion Grooved Ring Fuel Element

    Science.gov (United States)

    Kim, Tony; Emrich, William J., Jr.; Barkett, Laura A.; Mathias, Adam D.; Cassibry, Jason T.

    2013-01-01

    In the past, fuel rods have been used in nuclear propulsion applications. A new fuel element concept that reduces weight and increases efficiency uses a stack of grooved discs. Each fuel element is a flat disc with a hole on the interior and grooves across the top. Many grooved ring fuel elements for use in nuclear thermal propulsion systems have been modeled, and a single flow channel for each design has been analyzed. For increased efficiency, a fuel element with a higher surface-area-to-volume ratio is ideal. When grooves are shallower, i.e., they have a lower surface area, the results show that the exit temperature is higher. By coupling the physics of turbulence with those of heat transfer, the effects on the cooler gas flowing through the grooves of the thermally excited solid can be predicted. Parametric studies were done to show how a pressure drop across the axial length of the channels will affect the exit temperatures of the gas. Geometric optimization was done to show the behaviors that result from the manipulation of various parameters. Temperature profiles of the solid and gas showed that more structural optimization is needed to produce the desired results. Keywords: Nuclear Thermal Propulsion, Fuel Element, Heat Transfer, Computational Fluid Dynamics, Coupled Physics Computations, Finite Element Analysis

  6. Coolant Density and Control Blade History Effects in Extended BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian J [ORNL; Marshall, William BJ J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Martinez-Gonzalez, Jesus S [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the US Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (keff) calculations and predicted spent fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date investigating some aspects of extended BUC. (The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper.) Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC: (1) the effect of axial void profile and (2) the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of a modern operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. Although a single cycle does not provide complete data, the data obtained are sufficient to determine the primary effects and to identify conservative modeling approaches. These data were used in a study of the effect of axial void profile. The first stage of the study was determination of the necessary moderator density temporal fidelity in depletion modeling. After the required temporal fidelity was established, multiple void profiles were used to examine the effect on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied was control blade history. Control blades are inserted in

  7. Trace elements in co-combustion of solid recovered fuel and coal

    DEFF Research Database (Denmark)

    Wu, Hao; Glarborg, Peter; Jappe Frandsen, Flemming

    2013-01-01

    Trace element partitioning in co-combustion of a bituminous coal and a solid recovered fuel (SRF) was studied in an entrained flow reactor. The experiments were carried out at conditions similar to pulverized coal combustion, with SRF shares of 7.9 wt.% (wet basis), 14.8 wt.% and 25.0 wt...... linearly with their content in fuel ash. This linear tendency was affected when the fuels were mixed with additives. The volatility of trace elements during combustion was assessed by applying a relative enrichment (RE) factor, and TEM–EDS analysis was conducted to provide qualitative interpretations.......%. In addition, the effect of additives such as NaCl, PVC, ammonium sulphate, and kaolinite on trace element partitioning was investigated. The trace elements studied were As, Cd, Cr, Pb, Sb and Zn, since these elements were significantly enriched in SRF as compared to coal. During the experiments, bottom ash...

  8. Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pope, M. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); DeHart, M. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Morrell, S. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jamison, R. K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nef, E. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nigg, D. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses, a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.

  9. Thermalhydraulics of advanced 37-element fuel bundle in crept pressure tubes

    Directory of Open Access Journals (Sweden)

    Park Joo Hwan

    2016-01-01

    Full Text Available A CANDU-6 reactor, which has 380 fuel channels of a pressure tube type, is suffering from aging or creep of the pressure tubes. Most of the aging effects for the CANDU primary heat transport system were originated from the horizontal crept pressure tubes. As the operating years of a CANDU reactor proceed, a pressure tube experiences high neutron irradiation damage under high temperature and pressure. The crept pressure tube can deteriorate the Critical Heat Flux (CHF of a fuel channel and finally worsen the reactor operating performance and thermal margin. Recently, the modification of the central subchannel area with increasing inner pitch length of a standard 37-element fuel bundle was proposed and studied in terms of the dryout power enhancement for the uncrept pressure tube since a standard 37-element fuel bundle has a relatively small flow area and high flow resistance at the central region. This study introduced a subchannel analysis for the crept pressure tubes loaded with the inner pitch length modification of a standard 37-element fuel bundle. In addition, the subchannel characteristics were investigated according to the flow area change of the center subchannels for the crept pressure tubes. Also, it was discussed how much the crept pressure tubes affected the thermalhydraulic characteristics of the fuel channel as well as the dryout power for the modification of a standard 37-element fuel bundle.

  10. Manufacturing of 37-element fuel bundles for PHWR 540 - new approach

    Energy Technology Data Exchange (ETDEWEB)

    Arora, U.K.; Sastry, V.S.; Banerjee, P.K.; Rao, G.V.S.H.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. Atomic Energy, Government of India, Hyderabad (India)

    2003-07-01

    Nuclear Fuel Complex (NFC), established in early seventies, is a major industrial unit of Department of Atomic Energy. NFC is responsible for the supply of fuel bundles to all the 220 MWe PHWRs presently in operation. For supplying fuel bundles for the forthcoming 540 MWe PHWRs, NEC is dovetailing 37-element fuel bundle manufacturing facilities in the existing plants. In tune with the philosophy of self-reliance, emphasis is given to technology upgradation, higher customer satisfaction and application of modern quality control techniques. With the experience gained over the years in manufacturing 19-element fuel bundles, NEC has introduced resistance welding of appendages on fuel tubes prior to loading of UO{sub 2} pellets, use of bio-degradable cleaning agents, simple diagnostic tools for checking the equipment condition, on line monitoring of variables, built-in process control methods and total productive maintenance concepts in the new manufacturing facility. Simple material handling systems have been contemplated for handling of the fuel bundles. This paper highlights the flow-sheet adopted for the process, design features of critical equipment and the methodology for fabricating the 37-element fuel bundles, 'RIGHT FIRST TIME'. (author)

  11. BEAM 1.7: development for modelling fuel element and bundle buckling strength

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, G.; Xu, S.; Xu, Z.; Paul, U.K. [Atomic Energy of Canada, Mississauga, Ontario (Canada)

    2010-07-01

    This paper describes BEAM, an AECL developed computer program, used to assess mechanical integrity of CANDU fuel bundles. The BEAM code has been developed to satisfy the need for buckling strength analysis of fuel bundles. Buckling refers to the phenomenon where a compressive axial load is large enough that a small lateral load can cause large lateral deflections. The buckling strength refers to the critical compressive axial load at which lateral instability is reached. The buckling strength analysis has practical significance for the design of fuel bundles, where the buckling strength of a fuel element/bundle is assessed so that the conditions leading to bundle jamming in the pressure tube are excluded. This paper presents the development and qualification of the BEAM code, with emphasis on the theoretical background and code implementation of the newly developed fuel element/bundle buckling strength model. (author)

  12. Non-destructive-Testing of Nuclear Fuel Element by Means of Neutron Imaging Technique

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Nuclear fuel element is the key component of nuclear reactor. People have to make strictly testing of the element to make sure the reactor operating safely. Neutron imaging is one of Non-destructive-Testing (NDT) techniques, which are very important techniques for

  13. Burn-up and Operation Time of Fuel Elements Produced in IPEN

    Science.gov (United States)

    Tondin, Julio Benedito Marin; Filho, Tufic Madi

    2011-08-01

    The aim of this paper is to present the developed work along the operational and reliability tests of fuel elements produced in the Institute of Energetic and Nuclear Research, IPEN-CNEN/SP, from the 1980's. The study analyzed the U-235 burn evolution and the element remain in the research reactor IEA-R1. The fuel elements are of the type MTR (Material Testing Reactor), the standard with 18 plates and a 12-plate control, with a nominal mean enrichment of 20%.

  14. Sipping test update device for fuel elements cladding inspections in IPR-r1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R.R.; Mesquita, A.Z.; Andrade, E.P.D.; Gual, Maritza R., E-mail: rrr@cdtn.br, E-mail: amir@cdtn.br, E-mail: edson@cdtn.br, E-mail: maritzargual@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    It is in progress at the Centro de Desenvolvimento da Tecnologia Nuclear - CDTN (Nuclear Technology Development Center), a research project that aims to investigate possible leaks in the fuel elements of the TRIGA reactor, located in this research center. This paper presents the final form of sipping test device for TRIGA reactor, and results of the first experiments setup. Mechanical support strength tests were made by knotting device on the crane, charged with water from the conventional water supply, and tests outside the reactor pool with the use of new non-irradiated fuel elements encapsulated in stainless steel, and available safe stored in this unit. It is expected that tests with graphite elements from reactor pool are done soon after and also the test experiment with the first fuel elements in service positioned in the B ring (central ring) of the reactor core in the coming months. (author)

  15. 76 FR 17019 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Science.gov (United States)

    2011-03-28

    ... Reactor (BWR) fuel with high initial enrichment (up to 4.8 weight percent uranium-235 planer average...) The ability to store and transport BWR fuel with high initial enrichment (up to 4.8 weight percent... part 72, entitled ``General License for Storage of Spent Fuel at Power Reactor Sites'' (55 FR...

  16. Wind-Aided Firespread Across Arrays of Discrete Fuel Elements

    Science.gov (United States)

    1990-10-01

    Ph.D. thesis, Department of Chemical Engineering. Fredericton , Canada: University of New Brunswick. Fang, J. B., and Steward, F. R. 1969 Flame spread... Fredericton , Canada: University of New Brunswick. Steward, F. R., and Tennankore, K. N. 1981 The measurement of the burning rate of an individual dowel in a...1973 Flame spread through uniform fuel matrices. Report, Fire Science Center. Fredericton , Canada: University of New Brunswick. Steward, F. R

  17. Analytical Solution of Fick's Law of the TRISO-Coated Fuel Particles and Fuel Elements in Pebble-Bed High Temperature Gas-Cooled Reactors

    Institute of Scientific and Technical Information of China (English)

    CAO Jian-Zhu; FANG Chao; SUN Li-Feng

    2011-01-01

    T wo kinds of approaches are built to solve the fission products diffusion models (Fick's equation) based on sphere fuel particles and sphere fuel elements exactly. Two models for homogenous TRISO-coated fuel particles and fuel elements used in pebble-bed high temperature gas-cooled reactors are presented, respectively. The analytica,solution of Fick's equation for fission products diffusion in fuel particles is derived by variables separation.In the fuel element system, a modification of the diffusion coefficient from D to D/r is made to characterize the difference of diffusion rates in distinct areas and it is shown that the Laplace and Hankel transformations are effective as the diffusion coefficient in Fick's equation is dependant on the radius of the fuel element. Both the solutions are useful for the prediction of the fission product behaviors and could be programmed in the corresponding engineering calculations.%@@ Two kinds of approaches are built to solve the fission products diffusion models(Fick's equation) based on sphere fuel particles and sphere fuel elements exactly.Two models for homogenous TRISO-coated fuel particles and fuel elements used in pebble-bed high temperature gas-cooled reactors are presented,respectively.The analytical solution of Fick's equation for fission products diffusion in fuel particles is derived by variables separation.In the fuel element system,a modification of the diffusion coefficient from D to D/r is made to characterize the difference of diffusion rates in distinct areas and it is shown that the Laplace and Hankel transformations are effective as the diffusion coefficient in Fick's equation is dependant on the radius of the fuel element.Both the solutions are useful for the prediction of the fission product behaviors and could be programmed in the corresponding engineering calculations.

  18. Determining the elemental composition of fuels by bomb calorimetry and the inverse correlation of HHV with elemental composition

    DEFF Research Database (Denmark)

    Bech, Niels; Jensen, Peter Arendt; Dam-Johansen, Kim

    2009-01-01

    This article presents a method to obtain a simplified elemental analysis of an organic sample in which oxygen, nitrogen, and sulphur are lumped. The method uses a bomb calorimeter, water, and ash measurements combined with a numerical procedure based on a generalised equation for predicting higher...... heating value. By analysing pure organic substances, literature data, and fuels it is demonstrated that the method can provide hydrogen estimates within +/- 0.7% daf. and carbon and sum of oxygen, nitrogen, and sulphur estimates within +/- 2% daf. for fuels containing less than 90% ash db., 2% nitrogen...

  19. Standard laboratory hydraulic pressure drop characteristics of various solid and I&E fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Waters, E.D.; Horn, G.R.

    1958-01-20

    The purpose of this report is to present a set of standard pressure-drop curves for various fuel elements in process tubes of Hanford reactors. The flow and pressures within a process tube assembly under normal conditions are dependent to a large extent on the magnitude of the pressure drop across the fuel elements. The knowledge of this pressure drop is important in determination of existing thermal conditions within the process tubes and in predicting conditions for new fuel element designs or changes in operating conditions. The pressure-flow relations for the different Hanford fuel element-process tube assemblies have all been determined at one time or another in the 189-D Hydraulics Laboratory but the data had never been collected into a single report. Such a report is presented now in the interest of establishing a set of ``standard curves`` as determined by laboratory investigations. It must be recognized that the pressure drops of fuel elements in actual process tubes in the reactors may be slightly different than those reported here. The data presented here were obtained in new process tubes while reactor process tubes are usually either corroded or filmed, depending on their past history.

  20. Post irradiation examination of thermal reactor fuels

    Science.gov (United States)

    Sah, D. N.; Viswanathan, U. K.; Ramadasan, E.; Unnikrishnan, K.; Anantharaman, S.

    2008-12-01

    The post irradiation examination (PIE) facility at the Bhabha Atomic Research Centre (BARC) has been in operation for more than three decades. Over these years this facility has been utilized for examination of experimental fuel pins and fuels from commercial power reactors operating in India. In a program to assess the performance of (U,Pu)O 2 MOX fuel prior to its introduction in commercial reactors, three experimental MOX fuel clusters irradiated in the pressurized water loop (PWL) of CIRUS up to burnup of 16 000 MWd/tU were examined. Fission gas release from these pins was measured by puncture test. Some of these fuel pins in the cluster contained controlled porosity pellets, low temperature sintered (LTS) pellets, large grain size pellets and annular pellets. PIE has also been carried out on natural UO 2 fuel bundles from Indian PHWRs, which included two high burnup (˜15 000 MWd/tU) bundles. Salient investigations carried out consisted of visual examination, leak testing, axial gamma scanning, fission gas analysis, microstructural examination of fuel and cladding, β, γ autoradiography of the fuel cross-section and fuel central temperature estimation from restructuring. A ThO 2 fuel bundle irradiated in Kakrapar Atomic Power Station (KAPS) up to a nominal fuel burnup of ˜11 000 MWd/tTh was also examined to evaluate its in-pile performance. The performance of the BWR fuel pins of Tarapur Atomic Power Stations (TAPS) was earlier assessed by carrying out PIE on 18 fuel elements selected from eight fuel assemblies irradiated in the two reactors. The burnup of these fuel elements varied from 5000 to 29 000 MWd/tU. This paper provides a brief review of some of the fuels examined and the results obtained on the performance of natural UO 2, enriched UO 2, MOX, and ThO 2 fuels.

  1. GEH-4-63, 64: Proposal for irradiation of production brazed Zircaloy-2 clad fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Tverberg, J.C.

    1961-05-18

    A brazed end closure is currently being used on prototypical NPR fuel elements. The production closure will use a braze alloy composed of 5% Be + 95% Zry-2 to braze the Zircaloy-2 cap to the jacket and to the metallic uranium core. A similar MTR test, a GEH-4-57, 58, used a braze alloy of the composition 4% Be + 12% Fe + 84% Zry-2 which melts at a lower temperature. In this previous test, element GEH-4-57 failed through a cladding defect located at the base of the braze heat affected zone. Because of this failure it would be desirable to subject a fuel element, which had been subjected to more severe brazing conditions, to the same conditions as GEH-4-57, 58. For this reason the thermal conditions of this test essentially match those of GEH-4-57, 58. This irradiation test consists of two identical fuel elements. The fuel material is normal metallic uranium, Zircaloy-2 clad of the tubular geometry, NPR inner size. The fuel was coextruded at Hanford by General Electric`s Fuels Preparation Department. Each element is 10.8 inches in length with flat Zircaloy-2 end caps brazed to the jacket and uranium core with the 5 Be + 95 Zry-2 brazing alloy, then TIG welded to further insure closure integrity. The elements ar 1.254 inches OD and 0.439 inches ID. For hydraulic purposes a 0.343 inch diamater flow restrictor has been fitted into the central flow channel of both elements.

  2. Development and Testing of CTF to Support Modeling of BWR Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Salko, Robert K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wysocki, Aaron [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Collins, Benjamin S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Godfrey, Andrew T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gosdin, Chris [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria [North Carolina State Univ., Raleigh, NC (United States)

    2016-01-29

    This milestone supports developing and assessing COBRA-TF (CTF) for the modeling of boiling water reactors (BWRs). This is achieved in three stages. First, a new preprocessor utility that is capable of handling BWR-specic design elements (e.g., channel boxes and large water rods) is developed. A previous milestone (L3:PHI.CTF.P12.01) led to the development of this preprocessor capability for single assembly models. This current milestone expands this utility so that it is applicable to multi-assembly BWR models that can be modeled in either serial or parallel. The second stage involves making necessary modications to CTF so that it can execute these new models. Specically, this means implementing an outer-iteration loop, specic to BWR models, that equalizes the pressure loss over all assemblies in the core (which are not connected due to the channel boxes) by adjusting inlet mass ow rate. A third stage involves assessing the standard convergence metrics that are used by CTF to determine when a simulation is steady-state. The nal stage has resulted in the implementation of new metrics in the code that give a better indication of how steady the solution is at convergence. This report summarizes these eorts and provides a demonstration of CTF's BWR-modeling capabilities. CASL-U-2016-1030-000

  3. Metal-Element Compounds of Titanium, Zirconium, and Hafnium as Pyrotechnic Fuels

    Science.gov (United States)

    2015-05-04

    1-11 1 METAL-ELEMENT COMPOUNDS OF TITANIUM, ZIRCONIUM , AND HAFNIUM AS PYROTECHNIC FUELS Anthony P. Shaw,* Rajendra K. Sadangi, Jay C...have started to explore the pyrotechnic properties of other inorganic compounds, particularly those of titanium, zirconium , and hafnium. The...The group 4 metals—titanium, zirconium , and hafnium—are potent pyrotechnic fuels. However, the metals themselves are often pyrophoric as fine

  4. Characterizing high-temperature deformation of internally heated nuclear fuel element simulators

    Energy Technology Data Exchange (ETDEWEB)

    Belov, A.I.; Fong, R.W.L.; Leitch, B.W.; Nitheanandan, T.; Williams, A., E-mail: alexander.belov@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    The sag behaviour of a simulated nuclear fuel element during high-temperature transients has been investigated in an experiment utilizing an internal indirect heating method. The major motivation of the experiment was to improve understanding of the dominant mechanisms underlying the element thermo-mechanical response under loss-of-coolant accident conditions and to obtain accurate experimental data to support development of 3-D computational fuel element models. The experiment was conducted using an electrically heated CANDU fuel element simulator. Three consecutive thermal cycles with peak temperatures up to ≈1000 {sup o}C were applied to the element. The element sag deflections and sheath temperatures were measured. On heating up to 600 {sup o}C, only minor lateral deflections of the element were observed. Further heating to above 700 {sup o}C resulted in an element multi-rate creep and significant permanent bow. Post-test visual and X-ray examinations revealed a pronounced necking of the sheath at the pellet-to-pellet interface locations. A wall thickness reduction was detected in the necked region that is interpreted as a sheath longitudinal strain localization effect. The sheath cross-sectioning showed signs of a 'hard' pellet-cladding interaction due to the applied cycles. A 3-D model of the experiment was generated using the ANSYS finite element code. As a fully coupled thermal mechanical simulation is computationally expensive, it was deemed sufficient to use the measured sheath temperatures as a boundary condition, and thus an uncoupled mechanical simulation only was conducted. The ANSYS simulation results match the experiment sag observations well up to the point at which the fuel element started cooling down. (author)

  5. Review: Circulation of Inorganic Elements in Combustion of Alternative Fuels in Cement Plants

    DEFF Research Database (Denmark)

    Cortada Mut, Maria del Mar; Nørskov, Linda Kaare; Jappe Frandsen, Flemming;

    2015-01-01

    Cement production is an energy-intensive process, which traditionally has been dependent on fossil fuels. However, the use of alternative fuels, i.e., selected waste, biomass, and byproducts with recoverable calorific value, is constantly increasing. Combustion of these fuels is more challenging......, compared to fossil fuels, because of a lack of experience and different chemical and physical properties. When complete oxidation Of fuels in the calciner and main burner is not achieved, they burn in direct contact with the bed material of the rotary kiln, causing local reducing conditions and increasing...... the internal circulation of S, Cl, Na, and K. Compounds containing these elements, such as alkali salts, evaporate when exposed to high temperatures and subsequently condense in colder parts of the plant. The transformation of the volatile inorganic species at different locations in the cement plant...

  6. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  7. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  8. Countercurrent flow limited (CCFL) heat flux in the high flux isotope reactor (HFIR) fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Ruggles, A.E.

    1990-10-12

    The countercurrent flow (CCF) performance in the fuel element region of the HFIR is examined experimentally and theoretically. The fuel element consists of two concentric annuli filled with aluminum clad fuel plates of 1.27 mm thickness separated by 1.27 mm flow channels. The plates are curved as they go radially outward to accomplish constant flow channel width and constant metal-to-coolant ratio. A full-scale HFIR fuel element mock-up is studied in an adiabatic air-water CCF experiment. A review of CCF models for narrow channels is presented along with the treatment of CCFs in system of parallel channels. The experimental results are related to the existing models and a mechanistic model for the annular'' CCF in a narrow channel is developed that captures the data trends well. The results of the experiment are used to calculate the CCFL heat flux of the HFIR fuel assembly. It was determined that the HFIR fuel assembly can reject 0.62 Mw of thermal power in the CCFL situation. 31 refs., 17 figs.

  9. Comparison of Material Behavior of Matrix Graphite for HTGR Fuel Elements upon Irradiation: A literature Survey

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Woo; Yeo, Seunghwan; Cho, Moon Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The fuel elements for the HTGRs (i.e., spherical fuel element in pebble-bed type core design and fuel compact in prismatic core design) consists of coated fuel particles dispersed and bonded in a closely packed array within a carbonaceous matrix. This matrix is generally made by mixing fully graphitized natural and needle- or pitchcoke originated powders admixed with a binder material (pitch or phenolic resin), The resulting resinated graphite powder mixture, when compacted, may influence a number of material properties as well as its behavior under neutron irradiation during reactor operation. In the fabrication routes of these two different fuel element forms, different consolidation methods are employed; a quasi-isostatic pressing method is generally adopted to make pebbles while fuel compacts are fabricated by uni-axial pressing mode. The result showed that the hardness values obtained from the two directions showed an anisotropic behavior: The values obtained from the perpendicular section showed much higher micro hardness (176.6±10.5MPa in average) than from the parallel section ((125.6±MPa in average). This anisotropic behavior was concluded to be related to the microstructure of the matrix graphite. This may imply that the uni-axial pressing method to make compacts influence the microstructure of the matrix and hence the material properties of the matrix graphite.

  10. Vibration behavior of fuel-element vibration suppressors for the advanced power reactor

    Science.gov (United States)

    Adams, D. W.; Fiero, I. B.

    1973-01-01

    Preliminary shock and vibration tests were performed on vibration suppressors for the advanced power reactor for space application. These suppressors position the fuel pellets in a pin type fuel element. The test determined the effect of varying axial clearance on the behavior of the suppressors when subjected to shock and vibratory loading. The full-size suppressor was tested in a mockup model of fuel and clad which required scaling of test conditions. The test data were correlated with theoretical predictions for suppressor failure. Good agreement was obtained. The maximum difference with damping neglected was about 30 percent. Neglecting damping would result in a conservative design.

  11. Statistical analysis in the design of nuclear fuel cells and training of a neural network to predict safety parameters for reactors BWR; Analisis estadistico en el diseno de celdas de combustible nuclear y entrenamiento de una red neuronal para predecir parametros de seguridad para reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Jauregui Ch, V.

    2013-07-01

    In this work the obtained results for a statistical analysis are shown, with the purpose of studying the performance of the fuel lattice, taking into account the frequency of the pins that were used. For this objective, different statistical distributions were used; one approximately to normal, another type X{sup 2} but in an inverse form and a random distribution. Also, the prediction of some parameters of the nuclear reactor in a fuel reload was made through a neuronal network, which was trained. The statistical analysis was made using the parameters of the fuel lattice, which was generated through three heuristic techniques: Ant Colony Optimization System, Neuronal Networks and a hybrid among Scatter Search and Path Re linking. The behavior of the local power peak factor was revised in the fuel lattice with the use of different frequencies of enrichment uranium pines, using the three techniques mentioned before, in the same way the infinite multiplication factor of neutrons was analyzed (k..), to determine within what range this factor in the reactor is. Taking into account all the information, which was obtained through the statistical analysis, a neuronal network was trained; that will help to predict the behavior of some parameters of the nuclear reactor, considering a fixed fuel reload with their respective control rods pattern. In the same way, the quality of the training was evaluated using different fuel lattices. The neuronal network learned to predict the next parameters: Shutdown Margin (SDM), the pin burn peaks for two different fuel batches, Thermal Limits and the Effective Neutron Multiplication Factor (k{sup eff}). The results show that the fuel lattices in which the frequency, which the inverted form of the X{sup 2} distribution, was used revealed the best values of local power peak factor. Additionally it is shown that the performance of a fuel lattice could be enhanced controlling the frequency of the uranium enrichment rods and the variety of

  12. Clad thickness variation N-Reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E.A.

    1966-05-12

    The current specifications for the cladding on {open_quotes}N{close_quotes} fuels were established early in the course of process development and were predicted on several basic considerations. Among these were: (a) a desire to provide an adequate safety factor in cladding thickness to insure against corrosion penetration and rupture from uranium swelling stresses; (b) an apprehension that the striations in the zircaloy cladding of the U/zircaloy interface and on the exterior surface might serve as stress-raisers, leading to untimely failures of the jacket; and (c) then existing process capability - the need to maintain a specified ratio between zircaloy and uranium in the billet assembly to effect satisfactory coextrusion. It now appears appropriate to review these specifications in an effort to determine whether some of them may be revised, with attendant gains in economy and/or operating smoothness.

  13. Process inherent ultimate safety/boiling-water reactor PIUS/BWR

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.

    1985-01-01

    This document is a series of viewgraphs on: design basis of PIUS/BWR, definition of PIUS/BWR, mechanisms of safe shutdown and afterheat cooling, advantages of PIUS/BWR, and research and development requirements. (DLC)

  14. Burnup measurements on spent fuel elements of the RP-10 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vela Mora, Mariano; Gallardo Padilla, Alberto; Palomino, Jose Luis Castro, E-mail: mvela@ipen.gob.p [Instituto Peruano de Energia Nuclear (IPEN/Peru), Lima (Peru). Grupo de Calculo, Analisis y Seguridad de Reactores; Terremoto, Luis Antonio Albiac, E-mail: laaterre@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work describes the measurement, using nondestructive gamma-ray spectroscopy, of the average burnup attained by Material Testing Reactor (MTR) fuel elements irradiated in the RP-10 research reactor. Measurements were performed at the reactor storage pool area using {sup 137}Cs as the only burnup monitor, even for spent fuel elements with cooling times much shorter than two years. The experimental apparatus was previously calibrated in efficiency to obtain absolute average burnup values, which were compared against corresponding ones furnished by reactor physics calculations. The mean deviation between both values amounts to 6%. (author)

  15. Study on the high-precision laser welding technology of nuclear fuel elements processing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soo Sung; Yang, M. S.; Kim, W. K.; Lee, D. Y

    2001-01-01

    The proper welding method for appendage of bearing pads and spacers of PHWR nuclear fuel elements is considered important in respect to the soundness of weldments and the improvement of the performance of nuclear fuels during the operation in reactor. The probability of welding defects of the appendage parts is mostly apt to occur and it is connected directly with the safty and life prediction of the nuclear reactor in operation. Recently there has been studied all over the world to develope welding technology by laser in nuclear fuel processing, and the appendage of bearing pads and spacers of PHWR nuclear fuel elements. Therefore, the purpose of this study is to investigate the characteristics of the laser welded specimens and make some samples for the appendage of bearing pads of PHWR nuclear fuel elements. This study will be also provide the basic data for the fabrications of the appendage of bearing pads and spacers. Especially the laser welding is supposed to be used in the practical application such as precise materials manufacturing fields. In this respect this technology is not only a basic advanced technology with wide applications but also likely to be used for the development of directly applicable technologies for industries, with high potential benefits derived in the view point of economy and industry.

  16. An Expert System to Analyze Homogeneity in Fuel Element Plates for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tolosa, S.C.; Marajofsky, A.

    2004-10-06

    In the manufacturing control of Fuel Element Plates for Research Reactors, one of the problems to be addressed is how to determine the U-density homogeneity in a fuel plate and how to obtain qualitative and quantitative information in order to establish acceptance or rejection criteria for such, as well as carrying out the quality follow-up. This paper is aimed at developing computing software which implements an Unsupervised Competitive Learning Neural Network for the acknowledgment of regions belonging to a digitalized gray scale image. This program is applied to x-ray images. These images are generated when the x-ray beams go through a fuel plate of approximately 60 cm x 8 cm x 0.1 cm thick. A Nuclear Fuel Element for Research Reactors usually consists of 18 to 22 of these plates, positioned in parallel, in an arrangement of 8 x 7 cm. Carrying out the inspection of the digitalized x-ray image, the neural network detects regions with different luminous densities corresponding to U-densities in the fuel plate. This is used in quality control to detect failures and verify acceptance criteria depending on the homogeneity of the plate. This modality of inspection is important as it allows the performance of non-destructive measurements and the automatic generation of the map of U-relative densities of the fuel plate.

  17. Transposable elements and small RNAs: Genomic fuel for species diversity.

    Science.gov (United States)

    Hoffmann, Federico G; McGuire, Liam P; Counterman, Brian A; Ray, David A

    2015-01-01

    While transposable elements (TE) have long been suspected of involvement in species diversification, identifying specific roles has been difficult. We recently found evidence of TE-derived regulatory RNAs in a species-rich family of bats. The TE-derived small RNAs are temporally associated with the burst of species diversification, suggesting that they may have been involved in the processes that led to the diversification. In this commentary, we expand on the ideas that were briefly touched upon in that manuscript. Specifically, we suggest avenues of research that may help to identify the roles that TEs may play in perturbing regulatory pathways. Such research endeavors may serve to inform evolutionary biologists of the ways that TEs have influenced the genomic and taxonomic diversity around us.

  18. TRISO-Fuel Element Performance Modeling for the Hybrid LIFE Engine with Pu Fuel Blanket

    Energy Technology Data Exchange (ETDEWEB)

    DeMange, P; Marian, J; Caro, M; Caro, A

    2010-02-18

    A TRISO-coated fuel thermo-mechanical performance study is performed for the hybrid LIFE engine to test the viability of TRISO particles to achieve ultra-high burnup of a weapons-grade Pu blanket. Our methodology includes full elastic anisotropy, time and temperature varying material properties for all TRISO layers, and a procedure to remap the elastic solutions in order to achieve fast fluences up to 30 x 10{sup 25} n {center_dot} m{sup -2} (E > 0.18 MeV). In order to model fast fluences in the range of {approx} 7 {approx} 30 x 10{sup 25} n {center_dot} m{sup -2}, for which no data exist, careful scalings and extrapolations of the known TRISO material properties are carried out under a number of potential scenarios. A number of findings can be extracted from our study. First, failure of the internal pyrolytic carbon (PyC) layer occurs within the first two months of operation. Then, the particles behave as BISO-coated particles, with the internal pressure being withstood directly by the SiC layer. Later, after 1.6 years, the remaining PyC crumbles due to void swelling and the fuel particle becomes a single-SiC-layer particle. Unrestrained by the PyC layers, and at the temperatures and fluences in the LIFE engine, the SiC layer maintains reasonably-low tensile stresses until the end-of-life. Second, the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Obtaining more reliable measurements, especially at higher fluences, is an imperative for the fidelity of our models. Finally, varying the geometry of the TRISO-coated fuel particles results in little differences in the scope of fuel performance. The mechanical integrity of 2-cm graphite pebbles that act as fuel matrix has also been studied and it is concluded that they can reliable serve the entire LIFE burnup cycle without failure.

  19. Fuel-element failures in Hanford single-pass reactors 1944--1971

    Energy Technology Data Exchange (ETDEWEB)

    Gydesen, S.P.

    1993-07-01

    The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. To estimate the doses, the staff of the Source Terms Task use operating information from historical documents to approximate the radioactive emissions. One source of radioactive emissions to the Columbia River came from leaks in the aluminum cladding of the uranium metal fuel elements in single-pass reactors. The purpose of this letter report is to provide photocopies of the documents that recorded these failures. The data from these documents will be used by the Source Terms Task to determine the contribution of single-pass reactor fuel-element failures to the radioactivity of the reactor effluent from 1944 through 1971. Each referenced fuel-element failure occurring in the Hanford single-pass reactors is addressed. The first recorded failure was in 1948, the last in 1970. No records of fuel-element failures were found in documents prior to 1948. Data on the approximately 2000 failures which occurred during the 28 years (1944--1971) of Hanford single-pass reactor operations are provided in this report.

  20. Aerothermal modeling program, Phase 2, Element C: Fuel injector-air swirl characterization

    Science.gov (United States)

    Mostafa, A. A.; Mongia, H. C.; Mcdonnel, V. G.; Samuelsen, G. S.

    1987-01-01

    The main objectives of the NASA sponsored Aerothermal Modeling Program, Phase 2, Element C, are to collect benchmark quality data to quantify the fuel spray interaction with the turbulent swirling flows and to validate current and advanced two phase flow models. The technical tasks involved in this effort are discussed.

  1. Review of Rover fuel element protective coating development at Los Alamos

    Science.gov (United States)

    Wallace, Terry C.

    1991-01-01

    The Los Alamos Scientific Laboratory (LASL) entered the nuclear propulsion field in 1955 and began work on all aspects of a nuclear propulsion program with a target exhaust temperature of about 2750 K. A very extensive chemical vapor deposition coating technology for preventing catastrophic corrosion of reactor core components by the high temperature, high pressure hydrogen propellant gas was developed. Over the 17-year term of the program, more than 50,000 fuel elements were coated and evaluated. Advances in performance were achieved only through closely coupled interaction between the developing fuel element fabrication and protective coating technologies. The endurance of fuel elements in high temperature, high pressure hydrogen environment increased from several minutes at 2000 K exit gas temperature to 2 hours at 2440 K exit gas temperature in a reactor test and 10 hours at 2350 K exit gas temperature in a hot gas test. The purpose of this paper is to highlight the rationale for selection of coating materials used (NbC and ZrC), identify critical fuel element-coat interactions that had to be modified to increase system performance, and review the evolution of protective coating technology.

  2. Volatile Elements Retention During Injection Casting of Metallic Fuel Slug for a Recycling Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Hwan; Song, Hoon; Kim, Hyung-Tae; Oh, Seok-Jin; Kuk, Seoung-Woo; Keum, Chang-Woon; Lee, Jung-Won; Kim, Ki-Hwan; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The as-cast fuels prepared by injection casting were sound and the internal integrities were found to be satisfactory through gamma-ray radiography. U and Zr were uniform throughout the matrix of the slug, and the impurities, i.e., oxygen, carbon, and nitrogen, satisfied the specification of the total impurities of less than 2000 ppm. The losses of the volatile Mn were effectively controlled using argon over pressures, and dynamic pumping for a period of time before injection showed no detrimental effect on the Mn loss by vaporization. This result suggests that volatile minor actinide-bearing fuels for SFRs can be prepared by improved injection methods. A practical process of metallic fuel fabrication for an SFR needs to be cost efficient, suitable for remote operation, and capable of mass production while reducing the amount of radioactive waste. Injection casting was chosen as the most promising technique, and this technique has been applied to fuel slug fabrication for the Experimental Breeder Reactor-II (EBR-II) driver and the Fast Flux Test Facility (FFTF) fuel pins. Because of the simplistic nature of the process and equipment, compared to other processes examined, this process has been successfully used in a remote operation environment for fueling of the EBR-II reactor. In this study, several injection casting methods were applied in order to prepare metallic fuel for an fast reactor that control the transport of volatile elements during fuel melting and casting. Mn was selected as a surrogate alloy since it possesses a total vapor pressure equivalent to that of a volatile minor actinide-bearing fuel. U.10Zr and U.10Zr.5Mn (wt%) metallic fuels were injection cast under various casting conditions and their soundness was characterized.

  3. Discrete element method study of fuel relocation and dispersal during loss-of-coolant accidents

    Science.gov (United States)

    Govers, K.; Verwerft, M.

    2016-09-01

    The fuel fragmentation, relocation and dispersal (FFRD) during LOCA transients today retain the attention of the nuclear safety community. The fine fragmentation observed at high burnup may, indeed, affect the Emergency Core Cooling System performance: accumulation of fuel debris in the cladding ballooned zone leads to a redistribution of the temperature profile, while dispersal of debris might lead to coolant blockage or to debris circulation through the primary circuit. This work presents a contribution, by discrete element method, towards a mechanistic description of the various stages of FFRD. The fuel fragments are described as a set of interacting particles, behaving as a granular medium. The model shows qualitative and quantitative agreement with experimental observations, such as the packing efficiency in the balloon, which is shown to stabilize at about 55%. The model is then applied to study fuel dispersal, for which experimental parametric studies are both difficult and expensive.

  4. Burnup determination of a fuel element concerning different cooling times; Seguimiento del quemado de un elemento combustible, para diferentes tiempos de enfriamento

    Energy Technology Data Exchange (ETDEWEB)

    Henriquez, C.; Navarro, G.; Pereda, C.; Mutis, O. [Comision Chilena de Energia Nuclear, Santiago (Chile). Dept. de Aplicaciones Nucleares. Unidad de Reactores; Terremoto, Luis A.A.; Zeituni, Carlos A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear

    2002-07-01

    In this work we report a complete set of measurements and some relevant results regarding the burnup process of a fuel element containing low enriched nuclear fuel. This fuel element was fabricated at the Plant of Fuel Elements of the Chilean Nuclear Energy Commission (CCHEN). Measurements were carried out using gamma-ray spectroscopy and the absolute burnup of the fuel element was determined. (author)

  5. Development of TUF-ELOCA - a software tool for integrated single-channel thermal-hydraulic and fuel element analyses

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, A.I.; Wu, E.; Yousef, W.W.; Pascoe, J. [Nuclear Safety Solutions Ltd., Toronto, Ontario (Canada); Parlatan, Y. [Ontario Power Generation, Toronto, Ontario (Canada); Kwee, M. [Bruce Power, Tiverton, Ontario (Canada)

    2006-07-01

    The TUF-ELOCA tool couples the TUF and ELOCA codes to enable an integrated thermal-hydraulic and fuel element analysis for a single channel during transient conditions. The coupled architecture is based on TUF as the parent process controlling multiple ELOCA executions that simulate the fuel elements behaviour and is scalable to different fuel channel designs. The coupling ensures a proper feedback between the coolant conditions and fuel elements response, eliminates model duplications, and constitutes an improvement from the prediction accuracy point of view. The communication interfaces are based on PVM and allow parallelization of the fuel element simulations. Developmental testing results are presented showing realistic predictions for the fuel channel behaviour during a transient. (author)

  6. BWR mechanics and materials technology update

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, E.

    1983-05-01

    This paper discusses technical results obtained from a variety of important programs underway at General Electric's Nuclear Engineering Division. The principal objective of these programs is to qualify and improve BWR product related technologies that fall broadly under the disciplines of Applied Mechanics and Materials Engineering. The paper identifies and deals with current technical issues that are of general importance to the LWR industry albeit the specific focus is directed to the development and qualification of analytical predictive methods and criteria, and improved materials for use in the design of the BWR. In this paper, specific results and accomplishments are summarized to provide a braod perspective of technology advances. Results are presented in sections which discuss: dynamic analysis and modeling; fatigue and fracture evaluation; materials engineering advances; and flow induced vibration.

  7. Improving the neutronic characteristics of a boiling water reactor by using uranium zirconium hydride fuel instead of uranium dioxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, Ahmed Abdelghafar [Higher Technological Institute, Ramadan (Egypt)

    2016-06-15

    The present work discusses two different models of boiling water reactor (BWR) bundle to compare the neutronic characteristics of uranium dioxide (UO{sub 2}) and uranium zirconium hydride (UZrH{sub 1.6}) fuel. Each bundle consists of four assemblies. The BWR assembly fueled with UO{sub 2} contains 8 × 8 fuel rods while that fueled with UZrH{sub 1.6} contains 9 × 9 fuel rods. The Monte Carlo N-Particle Transport code, based on the Mont Carlo method, is used to design three dimensional models for BWR fuel bundles at typical operating temperatures and pressure conditions. These models are used to determine the multiplication factor, pin-by-pin power distribution, axial power distribution, thermal neutron flux distribution, and axial thermal neutron flux. The moderator and coolant (water) are permitted to boil within the BWR core forming steam bubbles, so it is important to calculate the reactivity effect of voiding at different values. It is found that the hydride fuel bundle design can be simplified by eliminating water rods and replacing the control blade with control rods. UZrH{sub 1.6} fuel improves the performance of the BWR in different ways such as increasing the energy extracted per fuel assembly, reducing the uranium ore, and reducing the plutonium accumulated in the BWR through burnup.

  8. Fuel composition optimization in a 78-element fuel bundle for use in a pressure tube type supercritical water-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, D.W.; Novog, D.R. [McMaster Univ., Hamilton, Ontario (Canada)

    2012-07-01

    A 78-element fuel bundle containing a plutonium-thorium fuel mixture has been proposed for a Generation IV pressure tube type supercritical water-cooled reactor. In this work, using a lattice cell model created with the code DRAGON,the lattice pitch, fuel composition (fraction of PuO{sub 2} in ThO{sub 2}) and radial enrichment profile of the 78-element bundle is optimized using a merit function and a metaheuristic search algorithm.The merit function is designed such that the optimal fuel maximizes fuel utilization while minimizing peak element ratings and coolant void reactivity. A radial enrichment profile of 10 wt%, 11 wt% and 20 wt% PuO{sub 2} (inner to outer ring) with a lattice pitch of 25.0 cm was found to provide the optimal merit score based on the aforementioned criteria. (author)

  9. Prediction of the thermal behavior of a particle spherical fuel element using GITT

    Energy Technology Data Exchange (ETDEWEB)

    Pessoa, C.V. [Brazilian Army, Rio de Janeiro, RJ (Brazil). Dept. of Science and Technology. Technological Center of the Army]. E-mail: pessoapen@gmail.com; Oliveira, Claudio L. de [Engineering Military Institute, Rio de Janeiro, RJ (Brazil). Dept. of Science and Technology]. E-mail: d7luiz@ime.eb.br; Jian, Su [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mail: sujian@con.ufrj.br

    2008-07-01

    In this work, the transient and steady state heat conduction in a spherical fuel element of a pebble-bed high temperature were studied. This pebble element is composed by a particulate region with spherical inclusions, the fuel UO{sub 2} particles, dispersed in a graphite matrix. A convective heat transfer by helium occurs on the outer surface of the fuel element. The two-energy equation model for the case of pure conduction was applied to this particulate spherical element, generating two macroscopic temperatures, respectively, of the inclusions and of the matrix. The transient analysis was carried out by using the Generalized Integral Transform Technique (GITT) that requires low computational efforts and allows a fast evaluation of the two macroscopic transient temperatures of the particulate region. The solution by GITT leads to a system of ordinary differential equations with the unknown transformed potentials. The mechanical properties (thermal conductivity and specific heat) of the materials were supposed not to depend on the temperature and to be uniform in each region. (author)

  10. Fabrication of simulated plate fuel elements: Defining role of out-of-plane residual shear stress

    Science.gov (United States)

    Rakesh, R.; Kohli, D.; Sinha, V. P.; Prasad, G. J.; Samajdar, I.

    2014-02-01

    Bond strength and microstructural developments were investigated during fabrication of simulated plate fuel elements. The study involved roll bonding of aluminum-aluminum (case A) and aluminum-aluminum + yttria (Y2O3) dispersion (case B). Case B approximated aluminum-uranium silicide (U3Si2) 'fuel-meat' in an actual plate fuel. Samples after different stages of fabrication, hot and cold rolling, were investigated through peel and pull tests, micro-hardness, residual stresses, electron and micro-focus X-ray diffraction. Measurements revealed a clear drop in bond strength during cold rolling: an observation unique to case B. This was related to significant increase in 'out-of-plane' residual shear stresses near the clad/dispersion interface, and not from visible signatures of microstructural heterogeneities.

  11. Fusion option to dispose of spent nuclear fuel and transuranic elements

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.

    2000-02-10

    The fusion option is examined to solve the disposition problems of the spent nuclear fuel and the transuranic elements. The analysis of this report shows that the top rated solution, the elimination of the transuranic elements and the long-lived fission products, can be achieved in a fusion reactor. A 167 MW of fusion power from a D-T plasma for sixty years with an availability factor of 0.75 can transmute all the transuranic elements and the long-lived fission products of the 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. The operating time can be reduced to thirty years with use of 334 MW of fusion power, a system study is needed to define the optimum time. In addition, the fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future. Fusion blankets with a liquid carrier for the transuranic elements can achieve a transmutation rate for the transuranic elements up to 80 kg/MW.y of fusion power with k{sub eff} of 0.98. In addition, the liquid blankets have several advantages relative to the other blanket options. The energy from this transmutation is utilized to produce revenue for the system. Molten salt (Flibe) and lithium-lead eutectic are identified as the most promising liquids for this application, both materials are under development for future fusion blanket concepts. The Flibe molten salt with transuranic elements was developed and used successfully as nuclear fuel for the molten salt breeder reactor in the 1960's.

  12. Demonstration tests for HTGR fuel elements and core components with test sections in HENDEL

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Hino, Ryutaro; Inagaki, Yoshiyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1995-03-01

    In the fuel stack test section (T{sub 1}) of the Helium Engineering Demonstration Loop (HENDEL), thermal and hydraulic performances of helium gas flows through a fuel rod channel and a fuel stack have been investigated for the High-Temperature Engineering Test Reactor (HTTR) core thermal design. The test data showed that the turbulent characteristics appearing in the Reynolds number above 2000: no typical behavior in the transition zone, and friction factors and heat transfer coefficients in the fuel channel were found to be higher than those in a smooth annular channel. Heat transfer behavior of gas flow in a fuel element channel with blockage and cross-flow through a gap between upper and lower fuel elements stacked was revealed using the mock-up models. On the other hand, demonstration tests have been performed to verify thermal and hydraulic characteristics and structural integrity related to the core bottom structure using a full-scale test facility named as the in-core structure test section (T{sub 2}). The sealing performance test revealed that the leakage of low-temperature helium gas through gaps between the permanent reflector blocks to the core was very low level compared with the HTTR design value and no change of the leakage flow rate were observed after a long term operation. The heat transfer tests including thermal transient at shutdown of gas circulators verified good insulating performance of core insulation structures in the core bottom structure and the hot gas duct; the temperature of the metal portion of these structure was below the design value. Examination of the thermal mixing characteristics indicated that the mixing of the hot helium gas started at a hot plenum and finished completely at downstream of the outlet hot gas duct. The present results obtained from these demonstration tests have been practically applied to the detailed design works and licensing procedures of the HTTR. (J.P.N.) 92 refs.

  13. Analytical assessment for stress corrosion fatigue of CANDU fuel elements under load following conditions

    Energy Technology Data Exchange (ETDEWEB)

    Horhoianu, Grigore; Ionescu, Drags; Pauna, Eduard [Institute for Nuclear Research, Pitesti (Romania). Nuclear Fuel Engineering Lab.

    2012-03-15

    When nuclear power reactors are operated in a load following (LF) mode, the nuclear fuel may be subjected to step changes in power on weekly, daily, or even hourly basis, depending on the grid's needs. Two load following tests performed in TRIGA Research Reactor of Institute for Nuclear Research (INR) Pitesti were simulated with finite elements computer codes in order to evaluate Stress Corrosion Fatigue (SCF) of the sheath arising from expansion and contraction of the pellets in the corrosive environment. The 3D finite element analyses show that the cyclic strains give highly multiaxial stresses in the sheath at ridge region. This paper summarizes the results of the analytical assessment for SCF and their relation to CANDU fuel performance in LF tests conditions. (orig.)

  14. Fabrication of simulated plate fuel elements: Defining role of stress relief annealing

    Science.gov (United States)

    Kohli, D.; Rakesh, R.; Sinha, V. P.; Prasad, G. J.; Samajdar, I.

    2014-04-01

    This study involved fabrication of simulated plate fuel elements. Uranium silicide of actual fuel elements was replaced with yttria. The fabrication stages were otherwise identical. The final cold rolled and/or straightened plates, without stress relief, showed an inverse relationship between bond strength and out of plane residual shear stress (τ13). Stress relief of τ13 was conducted over a range of temperatures/times (200-500 °C and 15-240 min) and led to corresponding improvements in bond strength. Fastest τ13 relief was obtained through 300 °C annealing. Elimination of microscopic shear bands, through recovery and partial recrystallization, was clearly the most effective mechanism of relieving τ13.

  15. Reduced Toxicity Fuel Satellite Propulsion System Including Catalytic Decomposing Element with Hydrogen Peroxide

    Science.gov (United States)

    Schneider, Steven J. (Inventor)

    2002-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  16. Research on the interfacial behaviors of plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Wang, Qiming; Yan, Xiaoqing; Ding, Shurong; Huo, Yongzhong

    2010-04-01

    The three-dimensional constitutive relations are constructed, respectively, for the fuel particles, the metal matrix and the cladding of dispersion nuclear fuel elements, allowing for the effects of large deformation and thermal-elastoplasticity. According to the constitutive relations, the method of modeling their irradiation behaviors in ABAQUS is developed and validated. Numerical simulations of the interfacial performances between the fuel meat and the cladding are implemented with the developed finite element models for different micro-structures of the fuel meat. The research results indicate that: (1) the interfacial tensile stresses and shear stresses for some cases will increase with burnup, but the relative stresses will decrease with burnup for some micro-structures; (2) at the lower burnups, the interfacial stresses increase with the particle sizes and the particle volume fractions; however, it is not the case at the higher burnups; (3) the particle distribution characteristics distinctly affect the interfacial stresses, and the face-centered cubic case has the best interfacial performance of the three considered cases.

  17. Comparative analysis of results between CASMO, MCNP and Serpent for a suite of Benchmark problems on BWR reactors; Analisis comparativo de resultados entre CASMO, MCNP y SERPENT para una suite de problemas Benchmark en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, J. V.; Vargas E, S.; Gomez T, A. M. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Reyes F, M. del C.; Del Valle G, E., E-mail: vicente.xolocostli@inin.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, UP - Adolfo Lopez Mateos, Edif. 9, 07738 Mexico D. F. (Mexico)

    2014-10-15

    In this paper a comparison is made in analyzing the suite of Benchmark problems for reactors type BWR between CASMO-4, MCNP6 and Serpent code. The Benchmark problem consists of two different geometries: a fuel cell of a pin and assembly type BWR. To facilitate the study of reactors physics in the fuel pin their nuclear characteristics are provided to detail, such as burnt dependence, the reactivity of selected nuclide, etc. With respect to the fuel assembly, the presented results are regarding to infinite multiplication factor for burning different steps and different vacuum conditions. Making the analysis of this set of Benchmark problems provides comprehensive test problems for the next fuels generation of BWR reactors with high extended burned. It is important to note that when making this comparison the purpose is to validate the methodologies used in modeling for different operating conditions, if the case is of other BWR assembly. The results will be within a range with some uncertainty, considering that does not depend on code that is used. Escuela Superior de Fisica y Matematicas of Instituto Politecnico Nacional (IPN (Mexico) has accumulated some experience in using Serpent, due to the potential of this code over other commercial codes such as CASMO and MCNP. The obtained results for the infinite multiplication factor are encouraging and motivate the studies to continue with the generation of the X S of a core to a next step a respective nuclear data library is constructed and this can be used by codes developed as part of the development project of the Mexican Analysis Platform of Nuclear Reactors AZTLAN. (Author)

  18. Space shuttle orbit maneuvering engine, reusable thrust chamber program. Task 6: Data dump hot fuel element investigation

    Science.gov (United States)

    Nurick, W. H.

    1974-01-01

    An evaluation of reusable thrust chambers for the space shuttle orbit maneuvering engine was conducted. Tests were conducted using subscale injector hot-fire procedures for the injector configurations designed for a regenerative cooled engine. The effect of operating conditions and fuel temperature on combustion chamber performance was determined. Specific objectives of the evaluation were to examine the optimum like-doublet element geometry for operation at conditions consistent with a fuel regeneratively cooled engine (hot fuel, 200 to 250 F) and the sensitivity of the triplet injector element to hot fuels.

  19. Revised uranium--plutonium cycle PWR and BWR models for the ORIGEN computer code

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A. G.; Bjerke, M. A.; Morrison, G. W.; Petrie, L. M.

    1978-09-01

    Reactor physics calculations and literature searches have been conducted, leading to the creation of revised enriched-uranium and enriched-uranium/mixed-oxide-fueled PWR and BWR reactor models for the ORIGEN computer code. These ORIGEN reactor models are based on cross sections that have been taken directly from the reactor physics codes and eliminate the need to make adjustments in uncorrected cross sections in order to obtain correct depletion results. Revised values of the ORIGEN flux parameters THERM, RES, and FAST were calculated along with new parameters related to the activation of fuel-assembly structural materials not located in the active fuel zone. Recommended fuel and structural material masses and compositions are presented. A summary of the new ORIGEN reactor models is given.

  20. Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing

    2009-08-01

    Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.

  1. Design of a mixed recharge with MOX assemblies of greater relation of moderation for a BWR reactor; Diseno de una recarga mixta con ensambles MOX de mayor relacion de moderacion para un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J.R.; Alonso V, G.; Palacios H, J. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin.mx

    2004-07-01

    The study of the fuel of mixed oxides of uranium and plutonium (MOX) it has been topic of investigation in many countries of the world and those are even discussed in many places the benefits of reprocessing the spent fuel to extract the plutonium created during the irradiation of the fuel in the nuclear power reactors. At the moment those reactors that have been loaded partially with MOX fuel, are mainly of the type PWR where a mature technology has been achieved in some countries like they are France, Belgium and England, however the experience with reactors of the type BWR is more limited and it is continued studying the best way to introduce this type of fuel in BWRs, one of the main problems to introduce MOX in reactors BWR is the neutronic design of the same one, existing different concepts to introduce the plutonium in the assemblies of fuel and one of them is the one of increasing the relationship of moderation of the assemble. In this work a MOX fuel assemble design is presented and the obtained results so far in the ININ. These results indicate that the investigated concept has some exploitable advantages in the use of the MOX fuel. (Author)

  2. Advanced fuels for thermal spectrum reactors

    OpenAIRE

    Zakova, Jitka

    2012-01-01

    The advanced fuels investigated in this thesis comprise fuels non− conventional in their design/form (TRISO), their composition (high content of plutonium and minor actinides) or their use in a reactor type, in which they have not been used before (e.g. nitride fuel in BWR). These fuels come with a promise of improved characteristics such as safe, high temperature operation, spent fuel transmutation or fuel cycle extension, for which reasons their potentialis worth assessment and investigatio...

  3. Development of the manufacture and process for DUPIC fuel elements; development of the quality evaluation techniques for end cap welds of DUPIC fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Tae; Choi, Myong Seon; Yang, Hyun Tae; Kim, Dong Gyun; Park, Jin Seok; Kim, Jin Ho [Yeungnam University, Kyongsan (Korea)

    2002-04-01

    The objective of this research is to set up the quality evaluation techniques for end cap welds of DUPIC fuel element. High temperature corrosion test and the SCC test for Zircaloy-4 were performed, and also the possibility of the ultrasonic test technique was verified for the quality evaluation and control of the laser welds in the DUPIC fuel rod end cap. From the evaluation of corrosion properties with measuring the weight gain and observing oxide film of the specimen that had been in the circumstance of steam(400 .deg. C, 1,500 psi) by max. 70 days later, the weight gain of the welded specimens was larger than original tube and the weight increasing rate increased with the exposed days. For the Development of techniques for ultrasonic test, semi-auto ultrasonic test system has been made based on immersion pulse-echo technique using spherically concentrated ultrasonic beam. Subsequently, developed ultrasonic test technique is quite sensible to shape of welds in the inside and outside of tube as well as crack, undercut and expulsion, and also this ultrasonic test, together with metallurgical fracture test, has good reliance as enough to be used for control method of welding process. 43 refs., 47 figs., 8 tabs. (Author)

  4. Genusa Bepu methodologies for the safety analysis of BWRs; Metodologias Bepu de Genusa para el analisis de seguridad de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Trueba, M.; Garcia, J.; Goodson, C.; Ibarra, L.

    2016-08-01

    This article describes the BEPU methodologies developed by General Electric-Hitachi (GEH) for the evaluation of the BWR reactor safety analysis based on the TRACG best-estimate code. These methodologies are applicable to a wide range of events, operational transients (AOO), anticipated transients without scram (ATWS), loss of coolant accidents (LOCA) and instability events; to different BWR types operating commercially. General Electric (GE( designs and other vendors, including Generation III+ESBWR; to the new operation strategies, and to all types of BWR fuel. Their application achieves, among other benefits, a better understanding of the overall plant response and an improvement in margins to the operating limits; thus, the increase of flexibility in reactor operation and reduction in generation costs. (Author)

  5. Last experiences on ID BWR shroud inspection and the new developments to examine the below core plate areas

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, R.; Gonzalez, E.; Willke, A.; Yague, L. [TECNATOM SA, Madrid (Spain)

    2001-07-01

    In recent years, the owners of BWR type nuclear power plants have had to address new inspection requirements relating to the core shroud inside the reactor vessel, the aim of which is to contain the fuel assemblies and provide support for the structures located in the upper part of the reactor. The shroud consists of a cylinder measuring some 40-50 mm in thickness, manufactured from various sections of AISI-304 stainless steel and INCONEL, joined by vertical and circumferential welds. The appearance of unstable cracks in these welds would directly affect the structural integrity of the component and the safety of the plant. As regards access to the core shroud and to the surface to be examined, two alternatives might be considered: inspection from outside the component, moving along the so-called annulus between the reactor vessel wall and the component (OD inspection), or from the interior (ID inspection). With a view to addressing this problem, Tecnatom has in recent years launched several projects, grouped under the generic name TEIDE, in order to develop scanners and NDT techniques achieving the maximum inspection coverage of this component. The decision was taken to perform ID inspections, mainly because this type of scanners were not available at that time, and which provide the 4 following advantages. 1) Maximum inspected weld length. This avoids interference with the jet pumps and the systems present in the annulus and affecting OD inspections. Besides, the repairs performed on in-service core shrouds in all cases imply the addition of new fixed elements on their outer surface, since the fuel assembly space must be left free. 2) Reduction of inspection times and of unforeseen events: maintenance of planning schedules, reduction of personnel doses, reduced critical path time. 3) High inspection accuracy and repeatability. 4) Simplification of equipment positioning work (similar to the installation of fuel assemblies). As regards inspection techniques, the

  6. Phase characteristics of rare earth elements in metallic fuel for a sodium-cooled fast reactor by injection casting

    Science.gov (United States)

    Kuk, Seoung Woo; Kim, Ki Hwan; Kim, Jong Hwan; Song, Hoon; Oh, Seok Jin; Park, Jeong-Yong; Lee, Chan Bock; Youn, Young-Sang; Kim, Jong-Yun

    2017-04-01

    Uranium-zirconium-rare earth (U-Zr-RE) fuel slugs for a sodium-cooled fast reactor were manufactured using a modified injection casting method, and investigated with respect to their uniformity, distribution, composition, and phase behavior according to RE content. Nd, Ce, Pr, and La were chosen as four representative lanthanide elements because they are considered to be major RE components of fuel ingots after pyroprocessing. Immiscible layers were found on the top layers of the melt-residue commensurate with higher fuel slug RE content. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) data showed that RE elements in the melt-residue were distributed uniformly throughout the fuel slugs. RE element agglomeration did not contaminate the fuel slugs but strongly affected the RE content of the slugs.

  7. Studies on disintegrating spherical fuel elements of high temperature gas-cooled reactor by a electrochemical method

    Science.gov (United States)

    Tian, Lifang; Wen, Mingfen; Chen, Jing

    2013-01-01

    Spherical fuel elements of a high temperature gas-cooled reactor were disintegrated through a electrochemical method with NaNO3 as electrolyte. The X-ray diffraction spectra and total carbon contents of the graphite fragments were determined, and the results agreed with those from simulated fuel elements. After conducting the characterization analysis and the leaching experiment of coated fuel particles, the uranium concentrations of leaching solutions and spent electrolyte were found to be at background levels. The results demonstrate the effectiveness of the improved electrochemical method with NaNO3 as electrolyte in disintegrating the unirradiated fuel elements without any damage to the coated fuel particles. Moreover, the method avoided unexpected radioactivity contamination to the graphite matrix and spent electrolyte.

  8. Electrolyser and fuel cells, key elements for energy and life support

    Science.gov (United States)

    Bockstahler, Klaus; Funke, Helmut; Lucas, Joachim

    Both, Electrolyser and Fuel Cells are key elements for regenerative energy and life support systems. Electrolyser technology is originally intended for oxygen production in manned space habitats and in submarines, through splitting water into hydrogen and oxygen. Fuel cells serve for energy production through the reaction, triggered in the presence of an electrolyte, between a fuel and an oxidant. Now combining both technologies i.e. electrolyser and fuel cell makes it a Regenerative Fuel Cell System (RFCS). In charge mode, i.e. with energy supplied e.g. by solar cells, the electrolyser splits water into hydrogen and oxygen being stored in tanks. In discharge mode, when power is needed but no energy is available, the stored gases are converted in the fuel cell to generate electricity under the formation of water that is stored in tanks. Rerouting the water to the electrolyser makes it a closed-loop i.e. regenerative process. Different electrolyser and fuel cell technologies are being evolved. At Astrium emphasis is put on the development of an RFCS comprised of Fixed Alkaline Electrolyser (FAE) and Fuel Cell (AFC) as such technology offers a high electrical efficiency and thus reduced system weight, which is important in space applications. With increasing power demand and increasing discharge time an RFCS proves to be superior to batteries. Since the early technology development multiple design refinements were done at Astrium, funded by the European Space Agency ESA and the German National Agency DLR as well as based on company internal R and T funding. Today a complete RFCS energy system breadboard is established and the operational behavior of the system is being tested. In parallel the electrolyser itself is subject to design refinement and testing in terms of oxygen production in manned space habitats. In addition essential features and components for process monitoring and control are being developed. The present results and achievements and the dedicated

  9. ACR fuel storage analysis: finite element heat transfer analysis of dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Khair, K.; Baset, S.; Millard, J. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)

    2006-07-01

    Over the past decade Atomic Energy of Canada Limited (AECL) has designed and licensed air-cooled concrete structures used as above ground dry storage containers (MACSTOR) to store irradiated nuclear fuel from CANDU plants. A typical MACSTOR 200 module is designed to store 12,000 bundles in 20 storage cylinders. MACSTOR 200 modules are in operation at Gentilly-2 in Canada and at Cernavoda in Romania. The MACSTOR module is cooled passively by natural convection and by conduction through the concrete walls and roof. Currently AECL is designing the Advanced Candu Reactor (ACR) with CANFLEX slightly enriched uranium fuel to be used. AECL has initiated a study to explore the possibility of storing the irradiated nuclear fuel from ACR in MACSTOR modules. This included work to consider ways of minimizing footprint both in the spent fuel storage bay and in the dry storage area. The commercial finite element code ANSYS has been used in this study. The FE model is used to complete simulations with the higher heat source using the same concrete structural dimensions to assess the feasibility of using the MACSTOR design for storing the ACR irradiated fuel. This paper presents the results of the analysis. The results are used to confirm the possibility of using, with minimal changes to the design of the storage baskets and the structure, the proven design of the MACSTOR 200 containment to store the ACR fuel bundles with higher enrichment and burnup. This has thus allowed us to confirm conceptual feasibility and move on to investigation of optimization. (author)

  10. Investigation of control rod worth and nuclear end of life of BWR control rods

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Per

    2008-01-15

    This work has investigated the Control Rod Worth (CRW) and Nuclear End of Life (NEOL) values for BWR control rods. A study of how different parameters affect NEOL was performed with the transport code PHOENIX4. It was found that NEOL, expressed in terms of {sup 10}B depletion, can be generalized beyond the conditions for which the rod is depleted, such as different power densities and void fractions, the corresponding variation in the NEOL will be about 0.2-0.4% {sup 10}B. It was also found that NEOL results for different fuel types and different fuel enrichments have a variation of about 2-3% in {sup 10}B depletion. A comparative study on NHOL and CRW was made between PHOENIX4 and the stochastic Monte Carlo code MCNP. It was found that there is a significant difference, both due to differences in the codes and to limitations in the geometrical modeling in PHOENIX4. Since MCNP is considered more physically correct, a methodology was developed to calculate the nuclear end of life of BWR control rods with MCNP. The advantages of the methodology are that it does not require other codes to perform the depletion of the absorber material, it can describe control rods of any design and it can deplete the control rod absorber material without burning the fuel. The disadvantage of the method is that is it time-consuming.

  11. Void Reactivity Coefficient Analysis during Void Fraction Changes in Innovative BWR Assemblies

    Directory of Open Access Journals (Sweden)

    Andrius Slavickas

    2015-01-01

    Full Text Available The study of the void reactivity variation in innovative BWR fuel assemblies is presented in this paper. The innovative assemblies are loaded with high enrichment fresh UO2 and MOX fuels. UO2 fuel enrichment is increased above existing design limitations for LWR fuels (>5%. MOX fuel enrichment with fissile Pu content is established to achieve the same burnup level as that of high enrichment UO2 fuel. For the numerical analysis, the TRITON functional module of SCALE 6.1 code with the 238-group ENDF/B-VI cross section data library was applied. The investigation of the void reactivity feedback is performed in the entire 0–100% void fraction range. Higher values of void reactivity coefficient for assembly loaded with MOX fuel are found in comparison with values for assembly loaded with UO2 fuel. Moreover, coefficient values for MOX fuel are positive over 75% void fraction. The variation of the void reactivity coefficient is explained by the results of the decomposition analysis based on four-factor formula and neutron absorption reactions for main isotopes. Additionally, the impact of the moderation enhancement on the void reactivity coefficient was investigated for the innovative assembly with MOX fuel.

  12. Calibration of the Failed-Fuel-Element Detection Systems in the Aagesta Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Strindehag, O.

    1966-06-15

    Results from a calibration of the systems for detection of fuel element ruptures in the Aagesta reactor are presented. The calibration was carried out by means of foils of zirconium-uranium alloy which were placed in a special fuel assembly. The release of fission products from these foils is due mainly to recoil and can be accurately calculated. Before the foils were used in the reactor their corrosion behaviour in high temperature water was investigated. The results obtained with the precipitator systems for bulk detection and localization are in good agreement with the expected performance. The sensitivity of these systems was found to be high enough for detection and localization of small defects of pin-hole type ({nu} = 10{sup -8}/s ). The general performance of the systems was satisfactory during the calibration tests, although a few adjustments are desirable. A bulk detecting system for monitoring of activities in the moderator, in which the {gamma}-radiation from coolant samples is measured directly after an ion exchanger, showed lower sensitivity than expected from calculations. It seems that the sensitivity of the latter system has to be improved to admit the detection of small defects. In the ion exchanger system, and to some extent in the precipitator systems, the background from A{sup 41} in the coolant limits the sensitivity. The calibration technique utilized seems to be of great advantage when investigating the performance of failed-fuel-element detection systems.

  13. Cofrentes EOC16B poolside measurements of channels from the three BWR vendors

    Energy Technology Data Exchange (ETDEWEB)

    Sedano, Pablo J. Garcia; Ayuela, Javier Iglesias [Iberdrola Ingenieria Construccion SAU, Veronica Anaures (Mexico); Albendea, Manuel [Iberdrola Generation S. A., Plaza Euskadi, 5 48009 BILBAO (Spain)

    2008-10-15

    As part of the EPRI Fuel Reliability Program, a fuel channel focus group was formed in 2002 to initiate measurements on irradiated BWR fuel channels. Fuel channels from GNF and AREVA have been measured in campaigns performed during 2004{approx}2007. Fuel channels designed and supplied by Westinghouse were of particular interest since no measurement information had been previously taken on modern Westinghouse channels operating on conventional loading pattern cycles, either in European or U.S. plants. Conventional loading pattern cycles are more susceptible to experience shadow corrosion induced bow since the fresh bundles are exposed to control blade influence early in life. During summer of 2007 extensive poolside measurements of a total of 180 fuel channels (24 SVEA-96 +/L, 68 SVEA-96 Optima-2, 36 GE-12, 42 GE-14 and 10 ATRIUM-10XP) have been performed by Westinghouse at Cofrentes NPP (Spanish BWR-6 operating on 24 month cycle strategy). This campaign has been co-sponsored by EPRI, Iberdrola and Westinghouse Sweden. Channels covering a range of exposure and control blade history were selected in order to determine the dependency of the channel deformation with those parameters. Channels with the most limiting conditions of exposure and control blade history were included. Channel bow, bulge and twist have been measured and fast neutron fluence calculations have been performed in order to determine the effects of neutron fluence gradient and shadow corrosion on the total channel deformation. Additionally channel oxide measurements have been performed on 20 channels from the three fuel vendors.The results indicate that channel bow and bulge remained at anticipated levels with no indication of significant channel bow due to shadow corrosion phenomenon. Destructive metallographic evaluations of samples taken from one cycle Westinghouse channels with high control blade exposure are underway at Studsvik hot cell facilities. These examinations will provide additional

  14. Studies on production planning of IPEN fuel-element plant in order to meet RMB demand

    Energy Technology Data Exchange (ETDEWEB)

    Negro, Miguel L.M.; Saliba-Silva, Adonis M.; Durazzo, Michelangelo, E-mail: mlnegro@ipen.br, E-mail: saliba@ipen.br, E-mail: mdurazzo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The plant of the Nuclear Fuel Center (CCN) will have to change its current laboratorial production level to an industrial level in order to meet the fuel demand of RMB and of IEA-R1. CCN's production process is based on the hydrolysis of UF6, which is not a frequent production route for nuclear fuel. The optimization of the production capacity of such a production route is a new field of studies. Two different approaches from the area of Operations Research (OR) were used in this paper. The first one was the PERT/CPM technique and the second one was the creation of a mathematical linear model for minimization of the production time. PERT/CPM's results reflect the current situation and disclose which production activities may not be critical. The results of the second approach show a new average time of 3.57 days to produce one Fuel Element and set the need of inventory. The mathematical model is dynamic, so that it issues better results if performed monthly. CCN's management team will therefore have a clearer view of the process times and production and inventory levels. That may help to shape the decisions that need to be taken for the enlargement of the plant's production capacity. (author)

  15. Obtention control bars patterns for a BWR using Tabo search; Obtencion de patrones de barras de control para un BWR usando busqueda Tabu

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, A.; Ortiz, J.J.; Alonso, G. [Instituto Nacional de Investigaciones Nucleares, Km. 36.5 Carretera Mexico-Toluca, Ocoyoacac, Estado de Mexico 52045 (Mexico); Morales, L.B. [UNAM, IIMAS, Ciudad Universitaria, D. F. 04510 (Mexico); Valle, E. del [IPN, ESFM, Unidad Profesional ' Adolfo Lopez Mateos' , Col. Lindavista 07738, D. F. (Mexico)]. e-mail: jacm@nuclear.inin.mx

    2004-07-01

    The obtained results when implementing the technique of tabu search, for to optimize patterns of control bars in a BWR type reactor, using the CM-PRESTO code are presented. The patterns of control bars were obtained for the designs of fuel reloads obtained in a previous work, using the same technique. The obtained results correspond to a cycle of 18 months using 112 fresh fuels enriched at the 3.53 of U-235. The used technique of tabu search, prohibits recently visited movements, in the position that correspond to the axial positions of the control bars, additionally the tiempo{sub t}abu matrix is used for to manage a size of variable tabu list and the objective function is punished with the frequency of the forbidden movements. The obtained patterns of control bars improve the longitude of the cycle with regard to the reference values and they complete the restrictions of safety. (Author)

  16. Analysis of assemblies exchange in the core of a reactor BWR; Analisis del intercambio de ensambles en el nucleo de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Kauil U, J. S. [Universidad Autonoma de Yucatan, Facultad de Ingenieria, Av. Industrias no contaminantes por Anillo Periferico Norte s/n, Apdo. Postal 150 Cordemex, Merida, Yucatan (Mexico); Fuentes M, L.; Castillo M, J. A.; Ortiz S, J. J.; Perusquia del Cueto, R., E-mail: san_dino@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    The performance of the core of a boiling water reactor (BWR) was evaluated when two assemblies are exchanged during the fuel reload in erroneous way. All with the purpose of analyzing the value of the neutrons effective multiplication factor and the thermal limits for an exchange of assemblies. In their realization the mentioned study was based in a transition cycle of the Unit 1 of the nuclear power plant of Laguna Verde. The obtained results demonstrate that when carrying out an exchange between two fuel assemblies in erroneous way, with regard to the original reload, the changes in the neutrons effective multiplication factor do not present a serious problem, unless the exchange has been carried out among a very burnt assembly with one fresh, where this last is taken to the periphery. (Author)

  17. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    SCHWINKENDORF, K.N.

    2006-05-12

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can

  18. Experimental evaluation of thermal ratcheting behavior in UO2 fuel elements

    Science.gov (United States)

    Phillips, W. M.

    1973-01-01

    The effects of thermal cycling of UO2 at high temperatures has been experimentally evaluated to determine the rates of distortion of UO2/clad fuel elements. Two capsules were rested in the 1500 C range, one with a 50 C thermal cycle, the other with a 100 C thermal cycle. It was observed that eight hours at the lower cycle temperature produced sufficient UO2 redistribution to cause clad distortion. The amount of distortion produced by the 100 C cycle was less than double that produced by the 50 C, indicating smaller thermal cycles would result in clad distortion. An incubation period was observed to occur before the onset of distortion with cycling similar to fuel swelling observed in-pile at these temperatures.

  19. Fuel element failure detection experiments, evaluation of the experiments at KNK II/1 (Intermediate Report)

    CERN Document Server

    Bruetsch, D

    1983-01-01

    In the frame of the fuel element failure detection experiments at KNK II with its first core the measurement devices of INTERATOM were taken into operation in August 1981 and were in operation almost continuously. Since the start-up until the end of the first KNK II core operation plugs with different fuel test areas were inserted in order to test the efficiency of the different measuring devices. The experimental results determined during this test phase and the gained experiences are described in this report and valuated. All three measuring techniques (Xenon adsorption line XAS, gas-chromatograph GC and precipitator PIT) could fulfil the expectations concerning their susceptibility. For XAS and GC the nuclide specific sensitivities as determined during the preliminary tests could be confirmed. For PIT the influences of different parameters on the signal yield could be determined. The sensitivity of the device could not be measured due to a missing reference measuring point.

  20. Fusion solution to dispose of spent nuclear fuel, transuranic elements, and highly enriched uranium

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Yousry E-mail: gohar@anl.gov

    2001-11-01

    The disposal of the nuclear spent fuel, the transuranic elements, and the highly enriched uranium represents a major problem under investigation by the international scientific community to identify the most promising solutions. The investigation of this paper focused on achieving the top rated solution for the problem, the elimination goal, which requires complete elimination for the transuranic elements or the highly enriched uranium, and the long-lived fission products. To achieve this goal, fusion blankets with liquid carrier, molten salts or liquid metal eutectics, for the transuranic elements and the uranium isotopes are utilized. The generated energy from the fusion blankets is used to provide revenue for the system. The long-lived fission products are fabricated into fission product targets for transmutation utilizing the neutron leakage from the fusion blankets. This paper investigated the fusion blanket designs for small fusion devices and the system requirements for such application. The results show that 334 MW of fusion power from D-T plasma for 30 years with an availability factor of 0.75 can dispose of the 70,000 tons of the U.S. inventory of spent nuclear fuel generated up to the year 2015. In addition, this fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future.

  1. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  2. A BWR licensing experience in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J.; Ogura, C. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Arai, K. [Toshiba Corporation, Yokohama, Kanagawa (Japan); Thomas, S.; Mookhoek, B., E-mail: jim.powers@toshiba.com [Nuclear Innovation North America, Lake Jackson, Texas (United States)

    2015-09-15

    The US-Advanced Boiling Water Reactor (A BWR), certified by the United States Nuclear Regulatory Commission (US NRC), is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The STP3-4 project has finished the US NRC technical review of the Cola through the final meeting of the Advisory Committee on Reactor Safeguards (ACRS), and the Final Safety Evaluation Report (FSER) is scheduled to be issued by the US NRC in the middle of 2015. The next steps are to support the Mandatory Hearing process, and voting by the NRC commissioners on the motion to grant the Combined License, which is scheduled beginning of 2016 according to US NRC schedule as of March 30, 2015. This paper summarizes the history and progress of the US-A BWR licensing, including the experiences of the Licensee, Nina, and Toshiba as the Epc team worked through the Code of Federal Regulations Title 10 (10-Cfr) Part 52 process, and provides some perspectives on how the related licensing material would also be of value within a 10-Cfr Part 50, two-step process to minimize schedule and financial risks which could arise from ongoing technical developments and regulatory reviews. (Author)

  3. LBB application in Swedish BWR design

    Energy Technology Data Exchange (ETDEWEB)

    Kornfeldt, H.; Bjoerk, K.O.; Ekstroem, P. [ABB Atom, Vaesteras (Sweden)

    1997-04-01

    The protection against dynamic effects in connection with potential pipe breaks has been implemented in different ways in the development of BWR reactor designs. First-generation plant designs reflect code requirements in effect at that time which means that no piping restraint systems were designed and built into those plants. Modern designs have, in contrast, implemented full protection against damage in connection with postulated pipe breaks, as required in current codes and regulations. Moderns standards and current regulatory demands can be met for the older plants by backfitting pipe whip restraint hardware. This could lead to several practical difficulties as these installations were not anticipated in the original plant design and layout. Meeting the new demands by analysis would in this situation have great advantages. Application of leak-before-break criteria gives an alternative opportunity of meeting modem standards in reactor safety design. Analysis takes into account data specific to BWR primary system operation, actual pipe material properties, piping loads and leak detection capability. Special attention must be given to ensure that the data used reflects actual plant conditions.

  4. BWR/5 Pressure-Suppression Pool Response during an SBO

    Directory of Open Access Journals (Sweden)

    Javier Ortiz-Villafuerte

    2013-01-01

    Full Text Available RELAP/SCDAPSIM Mod 3.4 has been used to simulate a station blackout occurring at a BWR/5 power station. Further, a simplified model of a wet well and dry well has been added to the NSSS model to study the response of the primary containment during the evolution of this accident. The initial event leading to severe accident was considered to be a LOOP with simultaneous scram. The results show that RCIC alone can keep the core fully covered, but even in this case about 30% of the original liquid water inventory in the PSP is vaporized. During the SBO, without RCIC, this inventory is reduced about 5% more within six hours. Further, a significant pressure rise occurs in containment at about the time when a sharp increase of heat generation occurs in RPV due to cladding oxidation. Failure temperature of fuel clad is also reached at this point. As the accident progresses, conditions for containment venting can be reached in about nine hours, although there still exists considerable margin before reaching containment design pressure. Detailed information of accident progress in reactor vessel and containment is presented and discussed.

  5. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong

    2011-06-01

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent

  6. Sipping test on a failed MTR fuel element; Teste de sipping em um elemento combustivel tipo placa falhado

    Energy Technology Data Exchange (ETDEWEB)

    Terremoto, Luis Antonio Albiac; Zeituni, Carlos Alberto; Silva, Antonio Teixeira e; Perrotta, Jose Augusto; Silva, Jose Eduardo Rosa da [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear

    2002-07-01

    This work describes sipping tests performed on MTR fuel elements of the IEA-R1 research reactor, in order to determinate which one failed in the core during a routine operation of the reactor. radioactive iodine isotopes {sup 131} I and {sup 133} I, employed as failure indicators, were detected in samples corresponding to the fuel element IEA-156. The specific activity of each sample, as well as the average leaking rate, were measured for {sup 137} Cs. The nuclear fuels U{sub 3} O{sub 8} - Al dispersion and U - Al alloy were compared concerning their measured average leaking rates of {sup 137} Cs. (author)

  7. Characterization of spent fuel elements stored at IEA-R1 research reactor based on visual inspections and sipping tests

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jose Eduardo Rosa da; Terremoto, Luis Antonio Albiac; Teodoro, Celso Antonio; Castanheira, Myrthes; Lucki, Georgi; Damy, Margaret de Almeida; Silva, Antonio Teixeira e [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: jersilva@ipen.br

    2005-07-01

    Aluminum spent nuclear fuels are susceptible to corrosion attack, or mechanical damage from improper handling, while in pool reactor storage. Storage practices have been modified to reduce the potential for damage, based on recommendations presented at second WS on Spent Fuel Characterization, promoted by IAEA. In this work, we present the inspection program proposed to the IEA-R1 stored spent fuel elements, in order to provide information on the physical condition during the interim storage time under wet condition at the reactor pool. The inspection program is based on non-destructive tests results (visual inspection and sipping tests) already periodically performed to exam the IEA-R1 stored spent fuel and fuel elements from the core reactor. To record the available information and examination results it was elaborated a document in the format of a catalogue containing the proposed inspection program for the IEA-R1 stored spent fuel, the description of the visual inspection and sipping tests systems, a compilation of information and images result from the tests performed for all stored standard spent fuel element and, in annexes, copies of the reference documents. That document constitutes an important step of the effective implementation of the referred IEA-R1 spent fuel inspection program and can be used to address regulatory and operational needs for the demonstration, for example, of safe storage throughout the pool storage period. (author)

  8. Elemental characterization of particulate matter emitted from biomass burning: Wind tunnel derived source profiles for herbaceous and wood fuels

    Science.gov (United States)

    Turn, S. Q.; Jenkins, B. M.; Chow, J. C.; Pritchett, L. C.; Campbell, D.; Cahill, T.; Whalen, S. A.

    1997-02-01

    Particulate matter emitted from wind tunnel simulations of biomass burning for five herbaceous crop residues (rice, wheat and barley straws, corn stover, and sugar cane trash) and four wood fuels (walnut and almond prunings and ponderosa pine and Douglas fir slash) was collected and analyzed for major elements and water soluble species. Primary constituents of the particulate matter were C, K, Cl, and S. Carbon accounted for roughly 50% of the herbaceous fuel PM and about 70% for the wood fuels. For the herbaceous fuels, particulate matter from rice straw in the size range below 10 μm aerodynamic diameter (PM10) had the highest concentrations of both K (24%) and Cl, (17%) and barley straw PM10 contained the highest sulfur content (4%). K, Cl, and S were present in the PM of the wood fuels at reduced levels with maximum concentrations of 6.5% (almond prunings), 3% (walnut prunings), and 2% (almond prunings), respectively. Analysis of water soluble species indicated that ionic forms of K, Cl, and S made up the majority of these elements from all fuels. Element balances showed K, Cl, S, and N to have the highest recovery factors (fraction of fuel element found in the particulate matter) in the PM of the elements analyzed. In general, chlorine was the most efficiently recovered element for the herbaceous fuels (10 to 35%), whereas sulfur recovery was greatest for the wood fuels (25 to 45%). Unique potassium to elemental carbon ratios of 0.20 and 0.95 were computed for particulate matter (PM10 K/C(e)) from herbaceous and wood fuels, respectively. Similarly, in the size class below 2.5 μm, high-temperature elemental carbon to bromine (PM2.5 C(eht)/Br) ratios of ˜7.5, 43, and 150 were found for the herbaceous fuels, orchard prunings, and forest slash, respectively. The molar ratios of particulate phase bromine to gas phase CO2 (PM10 Br/CO2) are of the same order of magnitude as gas phase CH3Br/CO2 reported by others.

  9. STAT, GAPS, STRAIN, DRWDIM: a system of computer codes for analyzing HTGR fuel test element metrology data. User's manual

    Energy Technology Data Exchange (ETDEWEB)

    Saurwein, J.J.

    1977-08-01

    A system of computer codes has been developed to statistically reduce Peach Bottom fuel test element metrology data and to compare the material strains and fuel rod-fuel hole gaps computed from these data with HTGR design code predictions. The codes included in this system are STAT, STRAIN, GAPS, and DRWDIM. STAT statistically evaluates test element metrology data yielding fuel rod, fuel body, and sleeve irradiation-induced strains; fuel rod anisotropy; and additional data characterizing each analyzed fuel element. STRAIN compares test element fuel rod and fuel body irradiation-induced strains computed from metrology data with the corresponding design code predictions. GAPS compares test element fuel rod, fuel hole heat transfer gaps computed from metrology data with the corresponding design code predictions. DRWDIM plots the measured and predicted gaps and strains. Although specifically developed to expedite the analysis of Peach Bottom fuel test elements, this system can be applied, without extensive modification, to the analysis of Fort St. Vrain or other HTGR-type fuel test elements.

  10. PETER loop. Multifunctional test facility for thermal hydraulic investigations of PWR fuel elements; PETER Loop. Multifunktionsversuchstand zur thermohydraulischen Untersuchung von DWR Brennelementen

    Energy Technology Data Exchange (ETDEWEB)

    Ganzmann, I.; Hille, D.; Staude, U. [AREVA NP GmbH (Germany). Materials, Fluid-Structure Interaction, Plant Life Management NTCM-G

    2009-07-01

    The reliable fuel element behavior during the complete fuel cycle is one of the fundamental prerequisites of a safe and efficient nuclear power plant operation. The fuel element behavior with respect to pressure drop and vibration impact cannot be simulated by means of fluid-structure interaction codes. Therefore it is necessary to perform tests using fuel element mock-ups (1:1). AREVA NP has constructed the test facility PETER (PWR fuel element tests in Erlangen) loop. The modular construction allows maximum flexibility for any type of fuel elements. Modern measuring instrumentation for flow, pressure and vibration characterization allows the analysis of cause and consequences of thermal hydraulic phenomena. PETER loop is the standard test facility for the qualification of dynamic fuel element behavior in flowing fluid and is used for failure mode analysis.

  11. Study on the effect of the CANFLEX-NU fuel element bowing on the critical heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Ho Chun; Cho, Moon Sung; Jeon, Ji Su

    2001-01-01

    The effect of the CANFLEX-NU fuel element bowing on the critical heat flux is reviewed and analyzed, which is requested by KINS as the Government design licensing condition for the use of the fuel bundles in CANDU power reactors. The effect of the gap between two adjacent fuel elements on the critical heat flux and onset-of-dryout power is studied. The reduction of the width of a single inter-rod gap from its nominal size to the minimum manufacture allowance of 1 mm has a negligible effects on the thermal-hydraulic performance of the bundle for the given set of boundary conditions applied to the CANFLEX-43 element bundle in an uncrept channel. As expected, the in-reactor irradiation test results show that there are no evidence of the element bow problems on the bundle performance.

  12. Design of Production Test IP-262-A-11-FP -- Evaluation of projection fuel elements for use in ribbed process tubes -- Demonstration loading

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, W.H.; Hall, R.E.

    1959-06-29

    For several years, a major category of fuel element failures has been the side corrosion type, characterized by localized accelerated fuel element jacket corrosion. Since it has been demonstrated {sup 1} that misalignment of fuel elements in a process tube will produce flow patterns and accelerated corrosion, termed ``hot spots``, failure to align the fuel elements in process tubes is considered a contributing factor in the production of side corrosion failures. Preliminary testing of both self-supporting and ``bumper`` fuel elements is underway. Data on the self-supporting fuel elements have demonstrated that the bridge-rail projections have sufficient support strength, do not of themselves create a corrosion problem and in actuality probably eliminate any hot-spot areas. Although one tube of bumper fuel elements in KW Reactor {sup 3} has been discharged, data are not as yet available. Potentially, the most sever corrosion conditions exist during the summer months when reactor inlet temperatures are high. It is desirable then, provided bumper fuel elements limit hot- spot corrosion, to evaluate the bumper concept for large scale use possibly by the summer of 1960. To accomplish this, a demonstration loading of the bumper type fuel elements must be underway by about July, 1959. The purpose of this report is to present the design of a test to evaluate the fabrication process and irradiation performance of fuel elements having projections, which may prevent misalignment in ribbed process tubes and meet the aforementioned goals.

  13. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  14. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    TOFFER, H.

    2006-07-18

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Fuel that had experienced a neutron environment in a reactor is known as spent, exposed, or irradiated fuel. In contrast fuel that has not yet been placed in a reactor is known as green, unexposed, or unirradiated fuel. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled (References 1 and 2) and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements (Reference 3). The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprised of two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with unirradiated fuel and one with irradiated fuel. Both the unirradiated and irradiated fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, three (3) green fuel

  15. Release to the Gas Phase of Inorganic Elements during Wood Combustion. Part 2: Influence of Fuel Composition

    DEFF Research Database (Denmark)

    van Lith, Simone Cornelia; Jensen, Peter Arendt; Frandsen, Flemming

    2008-01-01

    Combustion of wood for heat and power production may cause problems such as ash deposition, corrosion, and harmful emissions of gases and particulate matter. These problems are all directly related to the release of inorganic elements (in particular Cl, S, K, Na, Zn, and Pb) from the fuel...... to the gas phase. The aims of this study are to obtain quantitative data on the release of inorganic elements during wood combustion and to investigate the influence of fuel composition. Quantitative release data were obtained by pyrolyzing and subsequently combusting small samples of wood (~30 g) at various...... temperatures in the range of 500–1150 °C in a laboratory-scale tube reactor and by performing mass balance calculations based on the weight measurements and chemical analyses of the wood fuels and the residual ash samples. Four wood fuels with different ash contents and inorganic compositions were investigated...

  16. Decomposition Analysis of Void Reactivity Coefficient for Innovative and Modified BWR Assemblies

    Directory of Open Access Journals (Sweden)

    Andrius Slavickas

    2014-01-01

    Full Text Available The decomposition analysis of void reactivity coefficient for innovative BWR assemblies is presented in this paper. The innovative assemblies were loaded with high enrichment UO2 and MOX fuels. Additionally the impact of the moderation enhancement on the void reactivity coefficient through a full fuel burnup discharge interval was investigated for the innovative assembly with MOX fuel. For the numerical analysis the TRITON functional module of SCALE code with ENDF/B-VI cross section library was applied. The obtained results indicate the influence of the most important isotopes to the void reactivity behaviour over a fuel burnup interval of 70 GWd/t for both UO2 and MOX fuels. From the neutronic safety concern positive void reactivity coefficient values are observed for MOX fuel at the beginning of the fuel irradiation cycle. For extra-moderated assembly designs, implementing 8 and 12 water holes, the neutron spectrum softening is achieved and consequently the lower void reactivity values. Variations in void reactivity coefficient values are explained by fulfilled decomposition analysis based on neutrons absorption reactions for separate isotopes.

  17. Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Oinas, Pekka

    2016-01-01

    In the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF. This paper presents the mass flow of polluting and potentially toxic elements (PTEs) in SRF production. The SRF was produced from municipal solid waste (MSW) through mechanical treatment (MT). The results showed that of the total input chlorine content to process, 55% was found in the SRF and 30% in reject material. Of the total input arsenic content, 30% was found in the SRF and 45% in fine fraction. In case of cadmium, lead and mercury, of their total input content to the process, 62%, 38% and 30%, respectively, was found in the SRF. Among the components of MSW, rubber material was identified as potential source of chlorine, containing 8.0 wt.% of chlorine. Plastic (hard) and textile components contained 1.6 and 1.1. wt.% of chlorine, respectively. Plastic (hard) contained higher lead and cadmium content compared with other waste components, i.e. 500 mg kg(-1) and 9.0 mg kg(-1), respectively.

  18. Estimate of coolant flow in assemblies of a natural circulation BWR applying and equivalent electric model; Estimacion del flujo de refrigerante en los ensambles de un BWR de circulacion natural aplicando un modelo electrico equivalente

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J.; Morales S, J. B. [UNAM, DEPFI, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico); Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)], e-mail: julfi_jg@yahoo.com.mx

    2009-10-15

    The present work exposes the design and implementation of an advanced controller that it allows to estimate the coolant flow in fuel assemblies of a natural circulation BWR in real time. the complete development of this study is part of a doctoral project in course. In this work the construction of optimal controller is shown that allows to estimate the coolant flows in reactor and its operation applied to an equivalent electric model to natural circulation ESBWR. The controller design that allows the completely automatic starter of natural circulation reactor, required of a variables estimator not meter directly of nuclear power plant and use of local distributions estimates of coolant flow, (this controller type at the moment is utilized in the A BWR and several BWR in operation in Japan). The construction of estimator controller is mathematically based in the theory referring to Kalman filter, whose algorithm provides an advanced control of system. To prove the estimator operation was developed a simplified model that reproduces the basic dynamic of coolant flowing in the ESBWR, a practice way and very interesting of representing this phenomenon is by means the use of an equivalent electric model, which was developed starting from analogies that there is among the relation that keep the pressure differences with the mass flow and differences of electric potential with electric current. A detailed analysis of equivalence among models will be presented in a later article. (Author)

  19. Fuel injection and mixing systems having piezoelectric elements and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Chien-Pei (Clive, IA); Short, John (Norwalk, IA); Klemm, Jim (Des Moines, IA); Abbott, Royce (Des Moines, IA); Overman, Nick (West Des Moines, IA); Pack, Spencer (Urbandale, IA); Winebrenner, Audra (Des Moines, IA)

    2011-12-13

    A fuel injection and mixing system is provided that is suitable for use with various types of fuel reformers. Preferably, the system includes a piezoelectric injector for delivering atomized fuel, a gas swirler, such as a steam swirler and/or an air swirler, a mixing chamber and a flow mixing device. The system utilizes ultrasonic vibrations to achieve fuel atomization. The fuel injection and mixing system can be used with a variety of fuel reformers and fuel cells, such as SOFC fuel cells.

  20. Internal flow measurements of the SSME fuel preburner injector element using real time neutron radiography

    Science.gov (United States)

    Lindsay, John T.; Elam, Sandy; Koblish, Ted; Lee, Phil; Mcauliffe, Dave

    1990-01-01

    Due to observations of unsteady flow in the Space Shuttle Main Engine fuel preburner injector element, several flow studies have been performed. Real time neutron radiography tests were recently completed. This technique provided real time images of MiL-c-7024 and Freon-22 flow through an aluminum liquid oxygen post model at three back pressures (0, 150, and 545 psig) and pressure drops up to 1000 psid. Separated flow appeared only while operating at back pressures of 0 and 150 psig. The behavior of separated flow was similar to that observed for water in a 3x acrylic model of the LOX post. On the average, separated flow appeared to reattach near the exit of the post when the ratio of pressure drop to supply pressure was about 0.75.

  1. Research on graphite powders used for HTR-PM fuel elements

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hongsheng; LIANG Tongxiang; ZHANG Jie; LI Ziqiang; TANG Chunhe

    2006-01-01

    Different batches of natural graphite powders and electrographite powders were characterized by impurity, degree of graphitization, particle size distribution, specific surface area, and shape characteristics. The graphite balls consist of proper mix-ratio of natural graphite, electrographite and phenolic resin were manufactured and characterized by thermal conductivity, anisotropy of thermal expansion, crush strength, and drop strength. Results show that some types of graphite powders possess very high purity, degree of graphitization, and sound size distribution and apparent density, which can serve for matrix graphite of HTR-PM. The graphite balls manufactured with reasonable mix-ratio of graphite powders and process method show very good properties. It is indicated that the properties of graphite balls can meet the design criterion of HTR-PM. We can provide a powerful candidate material for the future manufacture of HTR-PM fuel elements.

  2. Experimental Investigation of Vibratory Stresses in a Concentric-Ring Direct-Air-Cycle Nuclear Fuel Element

    Science.gov (United States)

    Chiarito, Patrick T.

    1957-01-01

    Preliminary tests made by the General Electric Company indicated that aerodynamic loads might cause large enough distortions in the thin sheet-metal rings of a nuclear fuel element to result in structural failure. The magnitude of the distortions in a test fuel element was determined from strains measured with airflow conditions simulating those expected during engine operation. The measured vibratory strains were low enough to indicate the improbability of failure by fatigue. A conservative estimate of the radial deflection that accompanied peak strains in the outer ring was +0.0006 inch.

  3. Formation of intermetallic compound at interface between rare earth elements and ferritic-martensitic steel by fuel cladding chemical interaction

    Institute of Scientific and Technical Information of China (English)

    Jun Hwan Kim; Byoung Oon Lee; Chan Bock Lee; Seung Hyun Jee; Young Soo Yoon

    2012-01-01

    The intermetallic compounds formation at interface between rare earth elements and clad material were investigated to demonstrate the effects of rare earth elements on fuel-cladding chemical interaction (FCCI) behavior.Mischmetal (70Ce-30La) and Nd were prepared as rare earth elements.Diffusion couple testing was performed on the rare earth elements and cladding (9Cr2W steel) near the operation temperature of(sodium-cooled fast reactor) SFR fuel.The performance of a diffusion barrier consisting of Zr and V metallic foil against the rare earth elements was also evaluated.Our results showed that Ce and Nd in the rare earth elements and Fe in the clad material interdiffused and reacted to form intermetallic species according to the parabolic rate law,describing the migration of the rare earth element.The diffusion of Fe limited the reaction progress such that the entire process was governed by the cubic rate law.Rare earth materials could be used as a surrogate for high burnup metallic fuels,and the performance of the barrier material was demonstrated to be effective.

  4. Experimental approach and modelling of the mechanical behaviour of graphite fuel elements subjected to compression pulses

    Directory of Open Access Journals (Sweden)

    Forquin P.

    2010-06-01

    Full Text Available Among the activities led by the Generation IV International Forum (GIF relative to the future nuclear systems, the improvement of recycling of fuel elements and their components is a major issue. One of the studied systems by the GIF is the graphite-moderated high-temperature gas cooled reactor (HTGR. The fuel elements are composed of fuel roads half-inch in diameter named compacts. The compacts contain spherical particles made of actinide kernels about 500 m in diameter coated with three layers of carbon and silicon carbide, each about 50 m thick, dispersed in a graphite matrix. Recycling of compacts requires first a separation of triso-particles from the graphite matrix and secondly, the separation of the triso-coating from the kernels. This aim may be achieved by using pulsed currents: the compacts are placed within a cell filled by water and exposed to high voltage between 200 – 500 kV and discharge currents from 10 to 20 kA during short laps of time (about 2 µs [1-2]. This repeated treatment leads to a progressive fragmentation of the graphite matrix and a disassembly of the compacts. In order to improve understanding of the fragmentation properties of compacts a series of quasi-static and dynamic experiments have been conducted with similar cylindrical samples containing 10% (volume fraction of SiC particles coated in a graphite matrix. First, quasi-static compression tests have been performed to identify the mechanical behaviour of the material at low strain-rates (Fig.1. The experiments reveal a complex elasto-visco-plastic behaviour before a brittle failure. The mechanical response is characterised by a low yield stress (about 1 MPa, a strong strain-hardening in the loading phase and marked hysteresis-loops during unloading-reloading stages. Brittle failure is observed for axial stress about 13 MPa. In parallel, a series of flexural tests have been performed with the aim to characterise the quasi-static tensile strength of the

  5. Experimental approach and modelling of the mechanical behaviour of graphite fuel elements subjected to compression pulses

    Science.gov (United States)

    Forquin, P.

    2010-06-01

    Among the activities led by the Generation IV International Forum (GIF) relative to the future nuclear systems, the improvement of recycling of fuel elements and their components is a major issue. One of the studied systems by the GIF is the graphite-moderated high-temperature gas cooled reactor (HTGR). The fuel elements are composed of fuel roads half-inch in diameter named compacts. The compacts contain spherical particles made of actinide kernels about 500 m in diameter coated with three layers of carbon and silicon carbide, each about 50 m thick, dispersed in a graphite matrix. Recycling of compacts requires first a separation of triso-particles from the graphite matrix and secondly, the separation of the triso-coating from the kernels. This aim may be achieved by using pulsed currents: the compacts are placed within a cell filled by water and exposed to high voltage between 200 - 500 kV and discharge currents from 10 to 20 kA during short laps of time (about 2 µs) [1-2]. This repeated treatment leads to a progressive fragmentation of the graphite matrix and a disassembly of the compacts. In order to improve understanding of the fragmentation properties of compacts a series of quasi-static and dynamic experiments have been conducted with similar cylindrical samples containing 10% (volume fraction) of SiC particles coated in a graphite matrix. First, quasi-static compression tests have been performed to identify the mechanical behaviour of the material at low strain-rates (Fig.1). The experiments reveal a complex elasto-visco-plastic behaviour before a brittle failure. The mechanical response is characterised by a low yield stress (about 1 MPa), a strong strain-hardening in the loading phase and marked hysteresis-loops during unloading-reloading stages. Brittle failure is observed for axial stress about 13 MPa. In parallel, a series of flexural tests have been performed with the aim to characterise the quasi-static tensile strength of the particulate

  6. 3D laser inspection of fuel assembly grid spacers for nuclear reactors based on diffractive optical elements

    Science.gov (United States)

    Finogenov, L. V.; Lemeshko, Yu A.; Zav'yalov, P. S.; Chugui, Yu V.

    2007-06-01

    Ensuring the safety and high operation reliability of nuclear reactors takes 100% inspection of geometrical parameters of fuel assemblies, which include the grid spacers performed as a cellular structure with fuel elements. The required grid spacer geometry of assembly in the transverse and longitudinal cross sections is extremely important for maintaining the necessary heat regime. A universal method for 3D grid spacer inspection using a diffractive optical element (DOE), which generates as the structural illumination a multiple-ring pattern on the inner surface of a grid spacer cell, is investigated. Using some DOEs one can inspect the nomenclature of all produced grids. A special objective has been developed for forming the inner surface cell image. The problems of diffractive elements synthesis, projecting optics calculation, adjusting methods as well as calibration of the experimental measuring system are considered. The algorithms for image processing for different constructive elements of grids (cell, channel hole, outer grid spacer rim) and the experimental results are presented.

  7. High-fidelity multiphysics simulation of BWR assembly with coupled TORT-TD/CTF

    Energy Technology Data Exchange (ETDEWEB)

    Magedanz, J. [Dept. of Mechanical and Nuclear Engineering, Pennsylvania State Univ., Reber Building, Univ. Park, PA 16802 (United States); Perin, Y. [Gesellschaft fuer Anlagen- und Reaktorsicherheit GRS mbH, Forschungsinstitute, D-85748 Garching (Germany); Avramova, M. [Dept. of Mechanical and Nuclear Engineering, Pennsylvania State Univ., Reber Building, Univ. Park, PA 16802 (United States); Pautz, A.; Puente-Espel, F.; Seubert, A.; Sureda, A.; Velkov, K.; Zwermann, W. [Gesellschaft fuer Anlagen- und Reaktorsicherheit GRS mbH, Forschungsinstitute, D-85748 Garching (Germany)

    2012-07-01

    This paper describes the application of the coupled codes TORT-TD and CTF to the pin-by-pin modeling of a BWR fuel assembly with thermal-hydraulic feedback. TORT-TD, developed at GRS, is a time-dependent three dimensional discrete ordinates code. CTF is the PSU's improved version of the subchannel code COBRA-TF, which uses a two-fluid, three-field model to represent two-phase flow with entrained droplets, and is commonly applied to evaluate LWR safety margins. The coupled codes system TORT-TD/CTF, already applied to several PWR cases involving MOX, was adapted from PWR to BWR applications. The purpose of the research described in this paper is to verify the coupling for modeling two-phase flow at the pin cell level. Using an ATRIUM-10 assembly, the system's steady-state capabilities were tested on two cases: one without control blade insertion and another with partially inserted blades. The influence of the neutron absorber on local axial and radial parameters is presented. The description of an inlet flow reduction transient is an example for the time-dependent capability of the coupled system. (authors)

  8. Fuel element development committee: Annual report from the General Electric Company, Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M.; Minor, J.E.; Stringer, J.T.

    1964-08-14

    A summary of HAPO activities is given to include separate sections on the N-Reactor and other current production reactors. Specific programs and fuel performance for current production reactor fuels is discussed. Also, the production status, fuel performance, development program and process technology for N-Reactor fuels is presented.

  9. Development of Sirius facility that simulates void-reactivity feedback, and regional and core-wide stability estimation of natural circulation BWR

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, M.; Inada, F.; Yasuo, A. [Tokyo Electric Power Co., Inc., Central Research Institute (Japan)

    2001-07-01

    The SIRIUS facility was designed and constructed for highly accurate simulation of core-wide and regional instabilities of the BWR. A real-time simulation was performed in the digital controller for modal point kinetics of reactor neutronics and fuel-rod conduction on the basis of measured void fractions in reactor core sections of the thermal-hydraulic loop. Stability experiments were conducted for a wide range of fluid conditions, power distributions, and fuel rod thermal conductivity time constants, including the normal operating conditions of a typical natural circulation BWR. The results showed that there is a sufficiently wide stability margin under normal operating conditions, even when void-reactivity feedback is taken into account. (author)

  10. Experimental study of water flow in nuclear fuel elements; Estudo experimental do escoamento de agua em elementos combustiveis nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Lorena Escriche, E-mail: ler@cdtn.br [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET), Belo Horizonte, MG (Brazil); Rezende, Hugo Cesar; Mattos, Joao Roberto Loureiro de; Barros Filho, Jose Afonso; Santos, Andre Augusto Campagnole dos, E-mail: hcr@cdtn.br, E-mail: jrmattos@cdtn.br, E-mail: jabf@cdtn.br, E-mail: aacs@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    This work aims to develop an experimental methodology for investigating the water flow through rod bundles after spacer grids of nuclear fuel elements of PWR type reactors. Speed profiles, with the device LDV (Laser Doppler Velocimetry), and the pressure drop between two sockets located before and after the spacer grid, using pressure transducers were measured.

  11. An overview of the BWR ECCS strainer blockage issues

    Energy Technology Data Exchange (ETDEWEB)

    Serkiz, A.W.; Marshall, M.L. Jr.; Elliott, R. [Nuclear Regulatory Commission, Washington, DC (United States)

    1996-03-01

    This Paper provides a brief overview of actions taken in the mid 1980s to resolve Unresolved Safety Issue (USI) A-43, {open_quotes}Containment Emergency Sump Performance,{close_quotes} and their relationship to the BWR strainer blockage issue; the importance of insights gained from the Barseback-2 (a Swedish BWR) incident in 1992 and from ECCS strainer testing and inspections at the Perry nuclear power plant in 1992 and 1993; an analysis of an US BWR/4 with a Mark I containment; an international community sharing of knowledge relevant to ECCS strainer blockage, additional experimental programs; and identification of actions needed to resolve the strainer blockage issue and the status of such efforts.

  12. Finite-element procedure for calculating the three-dimensional inelastic bowing of fuel rods (AWBA development program)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S E

    1982-05-01

    An incremental finite element procedure is developed for calculating the in-pile lateral bowing of nuclear fuel rods. The fuel rod is modeled as a viscoelastic beam whose material properties are derived as perturbations of the results of an axisymmetric stress analysis of the fuel rod. The effects which are taken into account in calculating the rod's lateral bowing include: (a) lateral, axial, and rotational motions and forces at the rod supports, (b) transverse gradients of temperature, fast-neutron flux, and fissioning rate, and (c) cladding circumferential wall thickness variation. The procedure developed in this report could be used to form the basis for a computer program to calculate the time-dependent bowing as a function of the fuel rod's operational and environmental history.

  13. Accumulation of Elements in Salix and Other Species Used in Vegetation Filters with Focus on Wood Fuel Quality

    Energy Technology Data Exchange (ETDEWEB)

    Adler, Anneli

    2007-07-01

    Woody or herbaceous perennials used as vegetation filters for treatment of different types of wastes can be suitable for production of solid biofuels when their above ground harvestable biomass yield is sufficiently high and when biomass contains appropriate concentrations of minerals with regard to fuel combustion processes. The concentrations of nitrogen (N), potassium (K) and heavy metals (especially Zn and Cd) in fuel should be low and calcium (Ca) concentrations high to avoid technical problems and environmentally harmful emissions during combustion. Since soil supplementation with essential elements improves biomass yield, a conflict might arise between yield and quality aims. There are various possibilities to influence fuel quality during the growing phase of the life cycle of perennial biomass crops. This study assessed the suitability of two deciduous woody perennials (Salix and Populus) and two summer green herbaceous perennials (Phragmites and Urtica) for phytoremediation in terms of growth and nutrient allocation patterns. Salix and Populus proved suitable as vegetation filters when nutrients were available to plants in near-optimal proportions, but when unbalanced nutrient solutions (wastewater) were applied, stem biomass fraction was strongly reduced. Phragmites was more tolerant to wastewater treatment in terms of plant biomass production and nutrient allocation patterns, so if the N:P ratio of the wastewater is suboptimal, a vegetation filter using Phragmites could be considered. In further studies, a method was developed to determine the proportions of nutrient-rich bark in coppiced Salix, while heavy metal phytoextraction capacity was assessed in two Salix vegetation filters. The relevance of proportion of bark on wood fuel quality and element removal from vegetation filters was also investigated. The concentrations of the elements studied in harvestable Salix shoot biomass were higher, meaning lower wood fuel quality, in plantations where

  14. The upgrade and conversion of the ET-RR-1 research reactor using plate type fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Ashoub, N. [Reactor Physics Dept., Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt); Saleh, H.G. [Faculty of Girls for Arts and Education, Ain-Shams Univ., Cairo (Egypt)

    2001-11-01

    The ET-RR-1 research reactor has been operated at 2 MW since 1961 using EK-10 fuel elements with 10% enriched uranium. The reactor has been used for nuclear applied research and isotope production. In order to upgrade the reactor power to a reasonable limit facing up-to-date uses, core conversion by a new type of fuel element available is necessary. Two fuel elements in plate type are suggested in this study to be used in the ET-RR-1 reactor core rather than the utilized ones. The first element has a dimension of 8 x 8 x 50 cm and consists of 19.7% enriched uranium, which is typical for that utilized in the ET-RR-2 reactor, but with a different length. The other element is proposed with a dimension of 7 x 7 x 50 cm and has the same uranium enrichment. To accomplish safety requirements for these fuel elements, thermal-hydraulic evaluation has been carried out using the PARET code. To reach a core conversion of the ET-RR-1 reactor with the above two types of fuel elements, neutronic calculations have been performed using WIMSD4, DIXY2 and EREBUS codes. Some important nuclear parameters needed in the physical design of the reactor were calculated and included in this study. (orig.) [German] Der ET-RR-1 Forschungsreaktor wird seit 1961 unter Verwendung von EK-10 Brennelementen mit einer Leistung von 2 MW betrieben. Der Reaktor wird in der angewandten Forschung und zur Isotopenherstellung eingesetzt. Um die Reaktorleistung im Hinblick auf eine zeitgemaesse Nutzung der Anlage in einem vernuenftigen Mass zu erhoehen, ist eine Umwandlung des Kerns durch Verwendung neuartiger Brennelemente noetig. In der vorliegenden Untersuchung wird vorgeschlagen, anstelle der z. Z. verwendeten Elemente zwei neue, plattenfoermige Brennelemente zu verwenden. Das erste Element hat eine Groesse von 8 x 8 x 50 cm und besteht aus 19,7% angereichertem Uran, was den im ET-RR-2 Reaktor verwendeten Elementen entspricht, allerdings mit einer anderen Groesse. Das zweite Element hat die gleiche

  15. Evaluation of PWR and BWR pin cell benchmark results

    Energy Technology Data Exchange (ETDEWEB)

    Pijlgroms, B.J.; Gruppelaar, H.; Janssen, A.J. (Unit Nuclear Energy, Netherlands Energy Research Foundation ECN, Petten (Netherlands)); Hoogenboorm, J.E.; De Leege, P.F.A. (International Reactor Institute IRI, University of Leiden, Leiden (Netherlands)); Van de Voet, J.; Verhagen, F.C.M. (KEMA NV, Arnhem (Netherlands))

    1992-01-01

    In order to carry out reliable reactor core calculations for a boiled water reactor (BWR) or a pressurized water reactor (PWR) first reactivity calculations have to be carried out for which several calculation programs are available. The purpose of the title project is to exchange experiences to improve the knowledge of this reactivity calculations. In a large number of institutes reactivity calculations of PWR and BWR pin cells were executed by means of available computer codes. Results are compared. It is concluded that the variations in the calculated results are problem dependent. Part of the results is satisfactory. However, further research is necessary.

  16. Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.

    Science.gov (United States)

    Lloyd, William G.; Davenport, Derek A.

    1980-01-01

    Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)

  17. Transfer of elements relevant to nuclear fuel cycle from soil to boreal plants and animals in experimental meso- and microcosms

    Energy Technology Data Exchange (ETDEWEB)

    Tuovinen, Tiina S., E-mail: tiina.tuovinen@uef.fi [Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Kasurinen, Anne; Häikiö, Elina [Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Tervahauta, Arja [Department of Biology, University of Eastern Finland, P.O. Box FI-70211, Kuopio (Finland); Makkonen, Sari; Holopainen, Toini; Juutilainen, Jukka [Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland)

    2016-01-01

    Uranium (U), cobalt (Co), molybdenum (Mo), nickel (Ni), lead (Pb), thorium (Th) and zinc (Zn) occur naturally in soil but their radioactive isotopes can also be released into the environment during the nuclear fuel cycle. The transfer of these elements was studied in three different trophic levels in experimental mesocosms containing downy birch (Betula pubescens), narrow buckler fern (Dryopteris carthusiana) and Scandinavian small-reed (Calamagrostis purpurea ssp. Phragmitoides) as producers, snails (Arianta arbostorum) as herbivores, and earthworms (Lumbricus terrestris) as decomposers. To determine more precisely whether the element uptake of snails is mainly via their food (birch leaves) or both via soil and food, a separate microcosm experiment was also performed. The element uptake of snails did not generally depend on the presence of soil, indicating that the main uptake route was food, except for U, where soil contact was important for uptake when soil U concentration was high. Transfer of elements from soil to plants was not linear, i.e. it was not correctly described by constant concentration ratios (CR) commonly applied in radioecological modeling. Similar nonlinear transfer was found for the invertebrate animals included in this study: elements other than U were taken up more efficiently when element concentration in soil or food was low. - Highlights: • We studied transfer of elements in boreal food chain using meso- and microcosms. • Elements related to nuclear fuel cycle and mining were examined. • Higher uptake at lower soil concentrations was observed for primary producers. • Snails took up elements mainly from food but for U also soil was an element source. • Non-linear transfer of essential elements was observed for herbivore and decomposer.

  18. On-line elemental analysis of fossil fuel process streams by inductively coupled plasma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, W.P.

    1995-06-01

    METC is continuing development of a real-time, multi-element plasma based spectrometer system for application to high temperature and high pressure fossil fuel process streams. Two versions are under consideration for development. One is an Inductively Coupled Plasma system that has been described previously, and the other is a high power microwave system. The ICP torch operates on a mixture of argon and helium with a conventional annular swirl flow plasma gas, no auxiliary gas, and a conventional sample stream injection through the base of the plasma plume. A new, demountable torch design comprising three ceramic sections allows bolts passing the length of the torch to compress a double O-ring seal. This improves the reliability of the torch. The microwave system will use the same data acquisition and reduction components as the ICP system; only the plasma source itself is different. It will operate with a 750-Watt, 2.45 gigahertz microwave generator. The plasma discharge will be contained within a narrow quartz tube one quarter wavelength from a shorted waveguide termination. The plasma source will be observed via fiber optics and a battery of computer controlled monochromators. To extract more information from the raw spectral data, a neural net computer program is being developed. This program will calculate analyte concentrations from data that includes analyte and interferant spectral emission intensity. Matrix effects and spectral overlaps can be treated more effectively by this method than by conventional spectral analysis.

  19. Review: Circulation of Inorganic Elements in Combustion of Alternative Fuels in Cement Plants

    DEFF Research Database (Denmark)

    Cortada Mut, Maria del Mar; Nørskov, Linda Kaare; Jappe Frandsen, Flemming

    2015-01-01

    Cement production is an energy-intensive process, which traditionally has been dependent on fossil fuels. However, the use of alternative fuels, i.e., selected waste, biomass, and byproducts with recoverable calorific value, is constantly increasing. Combustion of these fuels is more challenging......, compared to fossil fuels, because of a lack of experience and different chemical and physical properties. When complete oxidation Of fuels in the calciner and main burner is not achieved, they burn in direct contact with the bed material of the rotary kiln, causing local reducing conditions and increasing...

  20. Elastic analysis of thermal gradient bowing in rod-type fuel elements subjected to axial thrust (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Newman, J.B.

    1968-01-01

    Thermal radient bowing of rod type fuel elements can be analyzed in terms of the deflections of a precurved beam. The fundamental aspects of an analysis of axially compressed multispan beams are given. Elasticity of supports in both axial and transverse directions is considered; the technique is applicable to problems in which the axial thrust depends on the transverse deflection as well as problems with prescribed axial thrust. The formulas presented constitute the theory for a computer program of broad applicability, not only in the analysis of fuel rod bowing, but also to almost any multispan beam, particularly when the effects of axial loads cannot be neglected. 17 references. (NSA 22: 22866)

  1. Analysis of a German BWR core with TRACE/PARCS using different cross section sets

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, C., E-mail: Christoph.Hartmann@kit.edu [Karlsruhe Inst. of Tech. (KIT), Inst. for Neutron Physics and Reactor Technology (INR), Eggenstein-Leopoldshafen (Germany); Westinghouse Electric Germany GmbH, Mannheim (Germany); Sanchez, V.H. [Karlsruhe Inst. of Tech. (KIT), Inst. for Neutron Physics and Reactor Technology (INR), Eggenstein-Leopoldshafen (Germany); Tietsch, W. [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2011-07-01

    'Full text:' Coupled Thermal-hydraulic/Neutron-kinetic (TH/NK) simulations of Boiling Water Reactor transients require well validated and accurate simulation tools as well as appropriate cross sections (XS) libraries depending on the individual thermal hydraulic state parameters. Problem-dependent XS-sets for 3D core simulations are being generated mainly by well validated, fast running and user-friendly lattice codes such as Casco and Helios. At research institutions and universities, alternative tools to the commercial ones with full access to the source code as well as moderate cost are urgently needed. The Scale system is being developed and improved for lattice physics calculations of real core loading of Light Water Reactors (LWR). It represents a promising alternative to the commercial lattice codes. At Karlsruhe Institute of Technology (Kit) a computational route based on Scale/Triton/Newt for BWR core loading is under development. The generated XS-data sets have to be transformed in PMAXS-format for use in the reactor dynamic code PARCS. This task is performed by the module GenPMAXS being developed and tested at the Michigan University. To verify the computational route, a BWR fuel assembly depletion problem was calculated by PARCS and compared to the CASMO results. Since the SCALE/TRITON XS-file does actually not contain all required neutronic data, FORTRAN routines have been developed to incorporate the missing data e.g. the yields of Iodine, Xenon and Promethium into the XS-data sets in the PMAXS-format. The comparison of the results obtained with PARCS (using the corrected PMAXS file) and CASMO for the depletion problem exhibited a good agreement. Consequently, this approach was followed for the generation of a complete XS-set for a real BWR core to be used in subsequent transient analysis. Then 3D neutronic and thermal hydraulic core model were elaborated for a TRACE/PARCS analysis. The thermal hydraulic model is based on the 3D VESSEL

  2. Full system decontamination experience in BWR

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, N.; Sugai, K.; Katayouse, N.; Fujimori, A.; Iida, K.; Hayashi, K. [Tokyo Electric Power Company, Tokyo (Japan); Kanasaki, T.; Inami, I. [Toshiba Corporation, Yokohama (Japan); Strohmer, F. [Framatome ANP Gmbh, Eelangen (Germany)

    2002-07-01

    At the Fukushima Daiichi Nuclear Power Station unit 3, unit 2, unit 5 and unit 1 of Tokyo Electric Power Company (TEPCO), the replacement of the core shroud and internals has been conducted since 1997 in this order. The welded core internals in operating BWR plants were replaced to improve stress corrosion cracking (SCC) resistance. At present these units are operating smoothly. The developed technology concept is to restore those internals in open air inside the reactor pressure vessel (RPV). To reduce the radiation dose rate inside the RPV, not only a shielding method was applied to cut the radiation from the irradiated structures but also a chemical decontamination method was applied to dissolve the radioactive crud deposited on the surface by using chemical agents. The calculated decontamination factor (DF) at the RPV bottom reached 35-117. As result, the dose rate decreased to approximately 0.1 mSv/h under water. Before and after the installation of the in-vessel shielding, a mechanical cleaning was extensively applied inside the RPV to remove the residual crud as well as the swarf, chips from cutting. As a result, the dose rate at the RPV bottom decreased to ranging from 0.2 to 0.4 mSv/h in air. A working environment for human access, which was better than expected, was established inside the RPV, resulting in 70, 140, 50 and 70 man-Sv (estimated) saving respectively at unit 3 (1F-3), unit 2(1F-2), unit 5(1F-5) and unit 1(1F-1). All four full system decontamination (FSDs) contributed to the successful realization of the core shroud replacement project under the dry condition in RPV.

  3. BWR stability using a reducing dynamical model; Estabilidad de un BWR con un modelo dinamico reducido

    Energy Technology Data Exchange (ETDEWEB)

    Ballestrin Bolea, J. M.; Blazquez Martinez, J. B.

    1990-07-01

    BWR stability can be treated with reduced order dynamical models. When the parameters of the model came from dynamical models. When the parameters of the model came from experimental data, the predictions are accurate. In this work an alternative derivation for the void fraction equation is made, but remarking the physical structure of the parameters. As the poles of power/reactivity transfer function are related with the parameters, the measurement of the poles by other techniques such as noise analysis will lead to the parameters, but the system of equations is non-linear. Simple parametric calculation of decay ratio are performed, showing why BWRs become unstable when they are operated at low flow and high power. (Author)

  4. A safety and regulatory assessment of generic BWR and PWR permanently shutdown nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Travis, R.J.; Davis, R.E.; Grove, E.J.; Azarm, M.A. [Brookhaven National Lab., Upton, NY (United States)

    1997-08-01

    The long-term availability of less expensive power and the increasing plant modification and maintenance costs have caused some utilities to re-examine the economics of nuclear power. As a result, several utilities have opted to permanently shutdown their plants. Each licensee of these permanently shutdown (PSD) plants has submitted plant-specific exemption requests for those regulations that they believe are no longer applicable to their facility. This report presents a regulatory assessment for generic BWR and PWR plants that have permanently ceased operation in support of NRC rulemaking activities in this area. After the reactor vessel is defueled, the traditional accident sequences that dominate the operating plant risk are no longer applicable. The remaining source of public risk is associated with the accidents that involve the spent fuel. Previous studies have indicated that complete spent fuel pool drainage is an accident of potential concern. Certain combinations of spent fuel storage configurations and decay times, could cause freshly discharged fuel assemblies to self heat to a temperature where the self sustained oxidation of the zircaloy fuel cladding may cause cladding failure. This study has defined four spent fuel configurations which encompass all of the anticipated spent fuel characteristics and storage modes following permanent shutdown. A representative accident sequence was chosen for each configuration. Consequence analyses were performed using these sequences to estimate onsite and boundary doses, population doses and economic costs. A list of candidate regulations was identified from a screening of 10 CFR Parts 0 to 199. The continued applicability of each regulation was assessed within the context of each spent fuel storage configuration and the results of the consequence analyses.

  5. Evaluation of PWR and BWR pin cell benchmark results

    Energy Technology Data Exchange (ETDEWEB)

    Pijlgroms, B.J.; Gruppelaar, H.; Janssen, A.J. (Netherlands Energy Research Foundation (ECN), Petten (Netherlands)); Hoogenboom, J.E.; Leege, P.F.A. de (Interuniversitair Reactor Inst., Delft (Netherlands)); Voet, J. van der (Gemeenschappelijke Kernenergiecentrale Nederland NV, Dodewaard (Netherlands)); Verhagen, F.C.M. (Keuring van Electrotechnische Materialen NV, Arnhem (Netherlands))

    1991-12-01

    Benchmark results of the Dutch PINK working group on PWR and BWR pin cell calculational benchmark as defined by EPRI are presented and evaluated. The observed discrepancies are problem dependent: a part of the results is satisfactory, some other results require further analysis. A brief overview is given of the different code packages used in this analysis. (author). 14 refs., 9 figs., 30 tabs.

  6. The Advanced BWR Nuclear Plant: Safe, economic nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Redding, J.R. [GE Nuclear Energy, San Jose, CA (United States)

    1994-12-31

    The safety and economics of Advanced BWR Nuclear Power Plants are outlined. The topics discussed include: ABWR Programs: status in US and Japan; ABWR competitiveness: safety and economics; SBWR status; combining ABWR and SBWR: the passive ABWR; and Korean/GE partnership.

  7. Hydraulic demand characteristics of self-supported C-IV-N and K-I-N I&E fuel elements in a zirconium C-Reactor tube

    Energy Technology Data Exchange (ETDEWEB)

    Waters, E.D.

    1960-01-13

    This report discusses the isothermal hydraulic demand characteristics were determined by laboratory experiment for full charges of self-supported I&E fuel elements in a zirconium process tube. Pressure drop, flow rate data, and the calculations of annulus-to-hole flow ratio are presented. For self-supported fuel elements, pressure drop does not vary with temperature as much as it dies for non-self-supported furl elements.

  8. Program ELM: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements

    Science.gov (United States)

    Walton, James T.

    1992-01-01

    This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts and provides a listing of the code.

  9. Portland clinker production with carbonatite waste and tire-derived fuel: crystallochemistry of minor and trace elements

    Directory of Open Access Journals (Sweden)

    F. R. D. Andrade

    2014-12-01

    Full Text Available This paper presents results on the composition of Portland clinkers produced with non-conventional raw-materials and fuels, focusing on the distribution of selected trace elements. Clinkers produced with three different fuel compositions were sampled in an industrial plant, where all other parameters were kept unchanged. The fuels have chemical fingerprints, which are sulfur for petroleum coke and zinc for TDF (tire-derived fuel. Presence of carbonatite in the raw materials is indicated by high amounts of strontium and phosphorous. Electron microprobe data was used to determine occupation of structural site of both C3S and C2S, and the distribution of trace elements among clinker phases. Phosphorous occurs in similar proportions in C3S and C2S; while considering its modal abundance, C3S is its main reservoir in the clinker. Sulfur is preferentially partitioned toward C2S compared to C3S. Strontium substitutes for Ca2+ mainly in C2S and in non-silicatic phases, compared to C3S.

  10. A Multi-Dimensional Heat Transfer Model of a Tie-Tube and Hexagonal Fuel Element for Nuclear Thermal Propulsion

    Science.gov (United States)

    Gomez, C. F.; Mireles, O. R.; Stewart, E.

    2016-01-01

    The Space Capable Cryogenic Thermal Engine (SCCTE) effort considers a nuclear thermal rocket design based around a Low-Enriched Uranium (LEU) design fission reactor. The reactor core is comprised of bundled hexagonal fuel elements that directly heat hydrogen for expansion in a thrust chamber and hexagonal tie-tubes that house zirconium hydride moderator mass for the purpose of thermalizing fast neutrons resulting from fission events. Created 3D steady state Hex fuel rod model with 1D flow channels. Hand Calculation were used to set up initial conditions for fluid flow. The Hex Fuel rod uses 1D flow paths to model the channels using empirical correlations for heat transfer in a pipe. Created a 2-D axisymmetric transient to steady state model using the CFD turbulent flow and Heat Transfer module in COMSOL. This model was developed to find and understand the hydrogen flow that might effect the thermal gradients axially and at the end of the tie tube where the flow turns and enters an annulus. The Hex fuel rod and Tie tube models were made based on requirements given to us by CSNR and the SCCTE team. The models helped simplify and understand the physics and assumptions. Using pipe correlations reduced the complexity of the 3-D fuel rod model and is numerically more stable and computationally more time-efficient compared to the CFD approach. The 2-D axisymmetric tie tube model can be used as a reference "Virtual test model" for comparing and improving 3-D Models.

  11. The effect of fuel form on trace element emissions in an industrial-scale coal fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.F.; Wincek, R.T.; Miller, B.G.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States). Coal Utilization Lab.

    1998-12-31

    Eleven of the fourteen inorganic hazardous air pollutants identified in Title 3 of the Clean Air Act Amendments of 1990 are present in the flue gas of pulverized coal-fired boilers. The designated elements include: antimony (Sb), beryllium (Be), chlorine (Cl), cobalt (Co), manganese (Mn), nickel (Ni), selenium (Se), fluorine (F), arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and phosphorus (P). Determining the risk of these elements in the environment is difficult at best. However, regulating their emission into the environment has some scientific basis and merit. Approximately 137.5 tons of mercury were emitted in the US by combustion sources in 1994--1995, with coal-fired utility boilers accounting for 37.4% (or 51.6 tons) of the total. Control of trace element emissions from coal-fired utility boilers requires an understanding of the manner in which they occur in coal, their behavior during and after combustion and their form in the stack gas. The multimedia behavior of trace elements during combustion can be traced to their volatility within the combustion and post-combustion environment. The temperature distribution within the combustion system, the mechanism of char and ash formation (e.g. duration of char burnout and char and cenosphere morphology) and the combustion efficiency determine the partitioning of trace elements during combustion. These factors can be affected by the form in which a fuel is fired, e.g., pulverized coal (PC) versus coal-water slurry fuel (CWSF). This paper presents preliminary results of emissions testing aimed at determining the effect of fuel form on the penetration and partitioning of trace elements in an industrial-scale boiler. The tests were conducted on a 2 MMBtu/hr research boiler, in which Middle Kittanning Seam coal (hvA bituminous) from Jefferson County, Pennsylvania was burned in pulverized form and as a CWSF. The tests were conducted in accordance with the procedure outlined in EPA Methods 5 and 29

  12. BWR refill-reflood program: core spray distribution experimental task plan

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, T.

    1981-02-01

    An experimental task plan for the BWR/4 core spray task of the Refill-Reflood Test Program is presented. The test program will provide core spray distribution data for a 30 degree sector of the BWR/4 and 5-218 design. This design uses different nozzle types and different sparger elevations than the BWR/6-218 design which was tested previously. Test parameter ranges are specified; individual tests are defined; and measurement and data utilization plans are defined.

  13. The Influence of Distance and Atmospheric Elements on the Concentration of Odour from Refuse Derived Fuel (RDF Operations

    Directory of Open Access Journals (Sweden)

    Zaini Sakawi

    2013-08-01

    Full Text Available Odour is an environmental element that occurs as varieties of aroma, either pleasant or otherwise to its immediate community. The various sources of odour pollution may come from either natural or of human activities. Odour concentration may change due to environmental factors such as atmosphere, topography, distance and mitigation efforts. This study describes a study on the influence of distance and athmospheric elements on concentration of odour generated by the Refuse Derived Fuel (RDF operations. The distribution of odour concentration was measured using Odour concentration meter XP-329 III series per its distance from the RDF operations. The results indicated that distance factors did influence the odour concentration. Results at test stations of distances farther from the RDF showed incrementally higher distribution of odour concentration compared to those nearer to the RDF. In addition, athmosperic elements like temperatures, humidity, wind speed and directions also evidenlty linked to the distribution of odour concentration.

  14. Safe conditioning of waste for final disposal. Vitrification of spent used fuel elements; Sichere Konditionierung zur Endlagerung. Verglasung von abgebrannten Brennelementen

    Energy Technology Data Exchange (ETDEWEB)

    Niessen, Stefan; Blanc, Eric [Areva GmbH, Erlangen (Germany)

    2016-08-15

    The strategy for disposal of spent nuclear fuel in Germany requires an interim storage over a longer period. The used fuel assemblies are stored in dry storage casks. An alternative method for storage is the conditioning of the fuel elements. This technology is proven on an industrial scale and is carried out at the La Hague plant. The know-how is currently available for both, the operators as well as in industry and science in Germany.

  15. Capacity of the equipment family SICOM to inspect fuel elements; Capacidad de los equipos familia SICOM para inspeccionar elementos de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Siguero, A.; Sola, A.

    2013-07-01

    To check the status where the fuel assemblies are after has been operating in the core of nuclear plants, inspections have been conducted to carry out an improvement in the behavior of alloys used in pods of fuel, the control of corrosion of these pods because of heat, reducing the transfer of heat due to the oxide and with the support of visual inspections monitor the physical integrity of the fuel elements.

  16. Porous Carbon Materials for Elements in Low-Temperature Fuel Cells

    Directory of Open Access Journals (Sweden)

    Wlodarczyk R.

    2015-04-01

    Full Text Available The porosity, distribution of pores, shape of pores and specific surface area of carbon materials were investigated. The study of sintered graphite and commercial carbon materials used in low-temperature fuel cells (Graphite Grade FU, Toray Teflon Treated was compared. The study covered measurements of density, microstructural examinations and wettability (contact angle of carbon materials. The main criterion adopted for choosing a particular material for components of fuel cells is their corrosion resistance under operating conditions of hydrogen fuel cells. In order to determine resistance to corrosion in the environment of operation of fuel cells, potentiokinetic curves were registered for synthetic solution 0.1M H2SO4+ 2 ppmF-at 80°C.

  17. Fuel element design for the enhanced destruction of plutonium in a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Douglas C.; Porter, Douglas L.; Hayes, Steven L.; Hill, Robert N.

    1997-12-01

    A uranium-free fuel for a fast nuclear reactor comprising an alloy of Pu, Zr and Hf, wherein Hf is present in an amount less than about 10% by weight of the alloy. The fuel may be in the form of a Pu alloy surrounded by a Zr-Hf alloy or an alloy of Pu-Zr-Hf or a combination of both.

  18. Transfer of elements relevant to nuclear fuel cycle from soil to boreal plants and animals in experimental meso- and microcosms.

    Science.gov (United States)

    Tuovinen, Tiina S; Kasurinen, Anne; Häikiö, Elina; Tervahauta, Arja; Makkonen, Sari; Holopainen, Toini; Juutilainen, Jukka

    2016-01-01

    Uranium (U), cobalt (Co), molybdenum (Mo), nickel (Ni), lead (Pb), thorium (Th) and zinc (Zn) occur naturally in soil but their radioactive isotopes can also be released into the environment during the nuclear fuel cycle. The transfer of these elements was studied in three different trophic levels in experimental mesocosms containing downy birch (Betula pubescens), narrow buckler fern (Dryopteris carthusiana) and Scandinavian small-reed (Calamagrostis purpurea ssp. Phragmitoides) as producers, snails (Arianta arbostorum) as herbivores, and earthworms (Lumbricus terrestris) as decomposers. To determine more precisely whether the element uptake of snails is mainly via their food (birch leaves) or both via soil and food, a separate microcosm experiment was also performed. The element uptake of snails did not generally depend on the presence of soil, indicating that the main uptake route was food, except for U, where soil contact was important for uptake when soil U concentration was high. Transfer of elements from soil to plants was not linear, i.e. it was not correctly described by constant concentration ratios (CR) commonly applied in radioecological modeling. Similar nonlinear transfer was found for the invertebrate animals included in this study: elements other than U were taken up more efficiently when element concentration in soil or food was low.

  19. Production Cycle for Large Scale Fission Mo-99 Separation by the Processing of Irradiated LEU Uranium Silicide Fuel Element Targets

    Directory of Open Access Journals (Sweden)

    Abdel-Hadi Ali Sameh

    2013-01-01

    Full Text Available Uranium silicide fuels proved over decades their exceptional qualification for the operation of higher flux material testing reactors with LEU elements. The application of such fuels as target materials, particularly for the large scale fission Mo-99 producers, offers an efficient and economical solution for the related facilities. The realization of such aim demands the introduction of a suitable dissolution process for the applied U3Si2 compound. Excellent results are achieved by the oxidizing dissolution of the fuel meat in hydrofluoric acid at room temperature. The resulting solution is directly behind added to an over stoichiometric amount of potassium hydroxide solution. Uranium and the bulk of fission products are precipitated together with the transuranium compounds. The filtrate contains the molybdenum and the soluble fission product species. It is further treated similar to the in-full scale proven process. The generated off gas stream is handled also as experienced before after passing through KOH washing solution. The generated alkaline fluoride containing waste solution is noncorrosive. Nevertheless fluoride can be selectively bonded as in soluble CaF2 by addition of a mixture of solid calcium hydroxide calcium carbonate to the sand cement mixture used for waste solidification. The generated elevated amounts of LEU remnants can be recycled and retargeted. The related technology permits the minimization of the generated fuel waste, saving environment, and improving processing economy.

  20. Vertical Drop of 44-BWR Waste Package With Lifting Collars

    Energy Technology Data Exchange (ETDEWEB)

    A.K. Scheider

    2005-08-23

    The objective of this calculation is to determine the structural response of a waste package (WP) dropped flat on its bottom from a specified height. The WP used for that purpose is the 44-Boiling Water Reactor (BWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. The Uncanistered Waste Disposal Container System is classified as Quality Level 1 (Ref. 4, page 7). Therefore, this calculation is subject to the requirements of the Quality Assurance Requirements and Description (Ref. 16). AP-3. 12Q, Design Calculations and Analyses (Ref. 11) is used to perform the calculation and develop the document. The information provided by the sketches attached to this calculation is that of the potential design of the type of 44-BWR WP considered in this calculation and provides the potential dimensions and materials for that design.

  1. MR-6 type fuel elements cooling in natural convection conditions after the reactor shut down

    Energy Technology Data Exchange (ETDEWEB)

    Pytel, K.; Bykowski, W.; Moldysz, A. [Institute of Atomic Energy, Otwock Swierk (Poland)

    2002-07-01

    Natural cooling conditions of the nuclear fuel in the channel type reactor after its shut down are commonly determined with relatively high uncertainty. This is not only to he lack of adequate measurements of thermal parameters i.e. the residual power generation, the coolant flow and temperatures, but also due to indeterminate model of convection mechanism. The numerical simulation of natural convection in multitube fuel assembly in the fuel channel leads to various convection modes including evidently chaotic behaviour. To determine the real cooling conditions in the MARIA research reactor a series of experiments has been performed with fuel assembly equipped with a set of thermocouples. After some forced cooling period (the shortest was half an hour after the reactor shut down) the reactor was left with the only natural convection. Two completely different cooling modes have been observed. The MARIA core consists of series of individual fuel channel and so called bypasses, maintaining the hydraulic properties of the fuel channel, connected in parallel. Initially, the convection cells were established trough few so-called bypasses providing a very effective mode of cooling. In this mode the flow charts were identical to those existing in forced cooling mode. After certain period the system switched on the second cooling mode with natural circulation within the individual fuel cells. Higher temperatures and temperature fluctuations were characteristic for this mode approaching 30 deg in amplitude. In almost all the cases the system was switching few times between modes, but eventually remained in the second mode. The switching times were not regular and the process has a chaotic behaviour. (author)

  2. Evaluation of PWR and BWR pin cell benchmark results

    Energy Technology Data Exchange (ETDEWEB)

    Pilgroms, B.J.; Gruppelaar, H.; Janssen, A.J. (Netherlands Energy Research Foundation (ECN), Petten (Netherlands)); Hoogenboom, J.E.; Leege, P.F.A. de (Interuniversitair Reactor Inst., Delft (Netherlands)); Voet, J. van der (Gemeenschappelijke Kernenergiecentrale Nederland NV, Dodewaard (Netherlands)); Verhagen, F.C.M. (Keuring van Electrotechnische Materialen NV, Arnhem (Netherlands))

    1991-12-01

    Benchmark results of the Dutch PINK working group on the PWR and BWR pin cell calculational benchmark as defined by EPRI are presented and evaluated. The observed discrepancies are problem dependent: a part of the results is satisfactory, some other results require further analysis. A brief overview is given of the different code packages used in this analysis. (author). 14 refs.; 9 figs.; 30 tabs.

  3. Partitioning behavior of trace elements during pilot-scale combustion of pulverized coal and coal-water slurry fuel

    Science.gov (United States)

    Nodelman; Pisupati; Miller; Scaroni

    2000-05-29

    Release pathways for inorganic hazardous air pollutants (IHAPs) from a pilot-scale, down-fired combustor (DFC) when firing pulverized coal (PC) and coal-water slurry fuel (CWSF) were identified and quantified to demonstrate the effect of fuel form on IHAP partitioning, enrichment and emissions. The baghouse capturing efficiency for each element was calculated to determine the effectiveness of IHAP emission control. Most of the IHAPs were enriched in the fly ash and depleted in the bottom ash. Mercury was found to be enriched in the flue gas, and preferentially emitted in the vapor phase. When firing CWSF, more IHAPs were partitioned in the bottom ash than when firing PC. Significant reduction of Hg emissions during CWSF combustion was also observed.

  4. Sensitivity analysis of a PWR fuel element using zircaloy and silicon carbide claddings

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Rochkhudson B. de; Cardoso, Fabiano; Salome, Jean A.D.; Pereira, Claubia; Fortini, Angela, E-mail: rochkhudson@ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Departamento de Engenharia Nuclear

    2015-07-01

    The alloy composed of zirconium has been used effectively for over 50 years in claddings of nuclear fuel, especially for PWR type reactors. However, to increase fuel enrichment with the aim of raising the burning and maintaining the safety of nuclear plants is of great relevance the study of new materials that can replace safely and efficiently zircaloy cladding. Among several proposed material, silicon carbide (SiC) has a potential to replace zircaloy as fuel cladding material due to its high-temperature tolerance, chemical stability and low neutron affinity. In this paper, the goal is to expand the study with silicon carbide cladding, checking its behavior when submitted to an environment with boron, burnable poison rods, and temperature variations. Sensitivity calculation and the impact in multiplication factor to both claddings, zircaloy and silicon carbide, were performed during the burnup. The neutronic analysis was made using the SCALE 6.0 (Standardized Computer Analysis for Licensing Evaluation) code. (author)

  5. Transmutation of present transuranics elements in the fuel nuclear radiated; Transmutacion de elementos transuranicos presentes en los combustible nucleares irradiados

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, E.; Alvarez, F.; Blazquez, J.; Cano-Ott, D.; Fernandez Ordonez, M.; Guerrero, C.; Martin-Fuertes, F.; Martinez, T.; Vicente, C.; Villamarin, D.

    2008-07-01

    This technical report of ENRESA refers to the transmutation of some transuranic elements, mainly plutonium and minor actinides (Np, Am and Cm). The transmutation of minor actinides (MA) could be efficiently made by very energetic neutrons, using fast reactors of Generation IV or accelerator driven systems (ADS). This publication is dedicated to expose the state-of-the-art situation of the ADS, mainly the activities developed by CIEMAT within the R+D projects of the EU. This technical publication of ENRESA on Transmutation is the second volume, of a set of two, on Partitioning and Transmutation. The first volume, entitled Partitioning of transuranic elements and some fission products from spent nuclear fuels, was published in 2006. The present report has ten chapters; the first one is an introduction on the spent fuels management, mainly in Spain. In the second one a summary of the main characteristics of spent fuels is provided; in the third the transmutation concept including their nuclear reactions is described; and in the fourth one a description of the present management options of the spent fuels is given. In the fifth chapter several new advanced closed cycles with transmutation of Pu and MA are given and in the sixth one the main proposed transmutation systems are de scribed. Among these, a great emphasis is given to the ADS including its main parts, as they are: the proton accelerator, the spallation source for neutrons production and the subcritical core. Also a re view of different fuels and proposed cool ants for the ADS is made, as well as proposed reprocessing of the transmuted spent fuel from ADS. In this chapter a description of some R+D projects is given, most of them supported by the European Union, with participation of CIEMAT. Chapters seven and eight show the progress on the measurement of new nuclear data to complete the simulation of the transmutation basic processes and systems, together in chapter nine with new R+D activities on

  6. Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure

    Science.gov (United States)

    Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.

    1988-01-01

    Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect on criticality ratings. Over 70 depot-related technology areas are addressed.

  7. Technology requirements for an orbiting fuel depot - A necessary element of a space infrastructure

    Science.gov (United States)

    Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.

    1988-01-01

    Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect of criticality ratings. Over 70 depot-related technology areas are addressed.

  8. Release of segregated nuclides from spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.H.; Tait, J.C. [Atomic Energy Canada Ltd., Pinawa, MB (Canada). Whiteshell Laboratories

    1997-10-01

    The potential release of fission and activation products from spent nuclear fuel into groundwater after container failure in the Swedish deep repository is discussed. Data from studies of fission gas release from representative Swedish BWR fuel are used to estimate the average fission gas release for the spent fuel population. Information from a variety of leaching studies on LWR and CANDU fuel are then reviewed as a basis for estimating the fraction of the inventory of key radionuclides that could be released preferentially (the Instant Release Fraction of IRF) upon failure of the fuel cladding. The uncertainties associated with these estimates are discussed. 33 refs, 6 figs, 3 tabs.

  9. Flow tests of a single fuel element coolant channel for a compact fast reactor for space power

    Science.gov (United States)

    Springborn, R. H.

    1971-01-01

    Water flow tests were conducted on a single-fuel-element cooling channel for a nuclear concept to be used for space power. The tests established a method for measuring coolant flow rate which is applicable to water flow testing of a complete mockup of the reference reactor. The inlet plenum-to-outlet plenum pressure drop, which approximates the overall core pressure drop, was measured and correlated with flow rate. This information can be used for reactor coolant flow and heat transfer calculations. An analytical study of the flow characteristics was also conducted.

  10. CSAU methodology and results for an ATWS event in a BWR using information theory methods

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Cobo, J.L., E-mail: jlcobos@iqn.upv.es [Universitat Politècnica de València, Thermal-Hydraulics and Nuclear Engineering Group (TIN), Institute for Energy Engineering (IEE), Valencia (Spain); Escrivá, A., E-mail: aescriva@iqn.upv.es [Universitat Politècnica de València, Thermal-Hydraulics and Nuclear Engineering Group (TIN), Institute for Energy Engineering (IEE), Valencia (Spain); Mendizabal, R., E-mail: rmsanz@csn.es [Consejo de Seguridad Nuclear, 28040 Madrid (Spain); Pelayo, F., E-mail: fpl@csn.es [Consejo de Seguridad Nuclear, 28040 Madrid (Spain); Melara, J., E-mail: jls@iberdrola.es [IBERINCO, IBERDROLA Ingeniería y Construcción, Madrid (Spain)

    2014-10-15

    Highlights: • We apply the CSAU methodology to an ATWS in a BWR using information theory methods. • We show how to perform the selection of the most influential inputs on the critical safety parameter. • We apply the maximum entropy principle to get the input parameter distribution. • We examine the maximum relative entropy principle to update the input parameter PDF. • We quantify the uncertainty of the critical safety parameter using order statistics and information theory. - Abstract: This paper shows an application of the CSAU methodology to an ATWS in a BWR reactor, when the temperature of the suppression pool is taken as the critical safety parameter. The method combines CSAU methodology with recent techniques of information theory. In this paper we use auxiliary tools to help in the evaluation and improvement of the parameters distribution that enter in the elements II and III of CSAU based methodologies. These tools have been implemented in two FORTRAN programs: GEDIPA (Generation of the Parameter Distribution) and UNTHERCO (Uncertainty in Thermal Hydraulic Codes). The first one analyzes the information data available on a given parameter or parameters with the goal to know all the information about the probability distribution function of these parameters. The second apply information theory methods, as the maximum entropy principle (MEP) and the maximum relative entropy Principle (MREP), in order to build conservative distribution functions for the parameters from the available data. Also, the distribution function of a given parameter can be updated using the MREP principle when new information is provided. UNTHERCO performs the MONTECARLO sampling for a given set of parameters when the distribution function of these parameters is previously known. If the distribution of a parameter is unknown, then, the MEP is applied to deduce the distribution function for this parameter.

  11. FINITE ELEMENT SIMULATION FOR STRUCTURAL RESPONSE OF U7MO DISPERSION FUEL PLATES VIA FLUID-THERMAL-STRUCTURAL INTERACTION

    Energy Technology Data Exchange (ETDEWEB)

    Hakan Ozaltun; Herman Shen; Pavel Madvedev

    2010-11-01

    This article presents numerical simulation of dispersion fuel mini plates via fluid–thermal–structural interaction performed by commercial finite element solver COMSOL Multiphysics to identify initial mechanical response under actual operating conditions. Since fuel particles are dispersed in Aluminum matrix, and temperatures during the fabrication process reach to the melting temperature of the Aluminum matrix, stress/strain characteristics of the domain cannot be reproduced by using simplified models and assumptions. Therefore, fabrication induced stresses were considered and simulated via image based modeling techniques with the consideration of the high temperature material data. In order to identify the residuals over the U7Mo particles and the Aluminum matrix, a representative SEM image was employed to construct a microstructure based thermo-elasto-plastic FE model. Once residuals and plastic strains were identified in micro-scale, solution was used as initial condition for subsequent multiphysics simulations at the continuum level. Furthermore, since solid, thermal and fluid properties are temperature dependent and temperature field is a function of the velocity field of the coolant, coupled multiphysics simulations were considered. First, velocity and pressure fields of the coolant were computed via fluidstructural interaction. Computed solution for velocity fields were used to identify the temperature distribution on the coolant and on the fuel plate via fluid-thermal interaction. Finally, temperature fields and residual stresses were used to obtain the stress field of the plates via fluid-thermal-structural interaction.

  12. Fission Gas Release in LWR Fuel Rods Exhibiting Very High Burn-Up

    DEFF Research Database (Denmark)

    Carlsen, H.

    1980-01-01

    Two UO2Zr BWR type test fuel rods were irradiated to a burn-up of about 38000 MWd/tUO2. After non-destructive characterization, the fission gas released to the internal free volume was extracted and analysed. The irradiation was simulated by means of the Danish fuel performance code WAFER-2, which...

  13. Prony's method application for BWR instabilities characterization

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Rogelio, E-mail: rogelio.castillo@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Ramírez, J. Ramón, E-mail: ramon.ramirez@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Alonso, Gustavo, E-mail: gustavo.alonso@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Instituto Politecnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Ortiz-Villafuerte, Javier, E-mail: javier.ortiz@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico)

    2015-04-01

    Highlights: • Prony's method application for BWR instability events. • Several BWR instability benchmark are assessed using this method. • DR and frequency are obtained and a new parameter is proposed to eliminate false signals. • Adequate characterization of in-phase and out-of-phase events is obtained. • The Prony's method application is validated. - Abstract: Several methods have been developed for the analysis of reactor power signals during BWR power oscillations. Among them is the Prony's method, its application provides the DR and the frequency of oscillations. In this paper another characteristic of the method is proposed to determine the type of oscillations that can occur, in-phase or out-of-phase. Prony's method decomposes a given signal in all the frequencies that it contains, therefore the DR of the fundamental mode and the first harmonic are obtained. To determine the more dominant pole of the system a normalized amplitude W of the system is calculated, which depends on the amplitude and the damping coefficient. With this term, it can be analyzed which type of oscillations is present, if W of the fundamental mode frequency is the greater, the type of oscillations is in-phase, if W of the first harmonic frequency is the greater, the type of oscillations is out-of-phase. The method is applied to several stability benchmarks to assess its validity. Results show the applicability of the method as an alternative analysis method to determine the type of oscillations occurred.

  14. Drag and distribution measurements of single-element fuel injectors for supersonic combustors

    Science.gov (United States)

    Povinelli, L. A.

    1974-01-01

    The drag caused by several vortex generating fuel injectors for scramjet combustors was measured in a Mach 2 to 3.5 airstream. Injector drag was found to be strongly dependent on injector thickness ratio. The distribution of helium injected into the stream was measured both in the near field and the far field of the injectors for a variety of pressure ratios. The far field results differed appreciably from measurements in the near field. Injection pressure ratio was found to profoundly influence the penetration. One of the aerowing configurations tested yielded low drag consistent with desirable penetration and spreading characteristics.

  15. A New Innovative Spherical Cermet Nuclear Fuel Element to Achieve an Ultra-Long Core Life for use in Grid-Appropriate LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Senor, David J.; Painter, Chad L.; Geelhood, Ken J.; Wootan, David W.; Meriwether, George H.; Cuta, Judith M.; Adkins, Harold E.; Matson, Dean W.; Abrego, Celestino P.

    2007-12-01

    Spherical cermet fuel elements are proposed for use in the Atoms For Peace Reactor (AFPR-100) concept. AFPR-100 is a small-scale, inherently safe, proliferation-resistant reactor that would be ideal for deployment to nations with emerging economies that decide to select nuclear power for the generation of carbon-free electricity. The basic concept of the AFPR core is a water-cooled fixed particle bed, randomly packed with spherical fuel elements. The flow of coolant within the particle bed is at such a low rate that the bed does not fluidize. This report summarizes an approach to fuel fabrication, results associated with fuel performance modeling, core neutronics and thermal hydraulics analyses demonstrating a ~20 year core life, and a conclusion that the proliferation resistance of the AFPR reactor concept is high.

  16. Release and Transformation of Inorganic Elements in Combustion of a High-Phosphorus Fuel

    DEFF Research Database (Denmark)

    Wu, Hao; Castro, Maria; Jensen, Peter Arendt

    2011-01-01

    The release and transformation of inorganic elements during grate-firing of bran was studied via experiments in a laboratory-scale reactor, analysis of fly ash from a grate-fired plant, and equilibrium modeling. It was found that K, P, S, and to a lesser extent Cl and Na were released to the gas...

  17. Finite Element Simulation for Equivalent Elastic Properties of Dispersion Fuel Elements%弥散型燃料等效弹性性质的有限元模拟

    Institute of Scientific and Technical Information of China (English)

    姜馨; 丁淑蓉; 霍永忠

    2011-01-01

    The safety and reliability of the dispersion fuel elements in the reactors are the focus of relative researches. They depend on the mechanical property of the fuel elements. In the present work, several representative volume elements are chosen from the fuel elements according to the arrangement styles of the fuel particles in the matrix and the finite element analysis is applied to study the effective elastic property of the fuel element. The effects of temperature and volume fraction of the fuel particles on the property are investigated in details. As the particles are distributed randomly, the numerical results are compared with several analytical equations, and the comparison indicates that the Moriu-Tanaka model provides the best agreement with the FEM data.%弥散型核燃料元件在反应堆中的安全和可靠性与元件芯体的等效力学性能密切相关.本研究采用细观力学的方法,假设芯体中的燃料颗粒在基体中周期性排列,从中取出代表性体积元,运用有限元方法计算弥散型燃料在不同温度和颗粒体积含量下的等效弹性模量.分析比较了颗粒的体积含量和分布形式对弥散型燃料等效弹性性质的影响,并在颗粒随机排列时,将有限元计算结果和解析模型的结果进行了比较.结果表明,计算值和Mori-Tanaka模型的预测值最为接近.

  18. A feasibility study on the use of the MOOSE computational framework to simulate three-dimensional deformation of CANDU reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, Kyle A., E-mail: Kyle.Gamble@inl.gov [Royal Military College of Canada, Chemistry and Chemical Engineering, 13 General Crerar Crescent, Kingston, Ontario, Canada K7K 7B4 (Canada); Williams, Anthony F., E-mail: Tony.Williams@cnl.ca [Canadian Nuclear Laboratories, Fuel and Fuel Channel Safety, 1 Plant Road, Chalk River, Ontario, Canada K0J 1J0 (Canada); Chan, Paul K., E-mail: Paul.Chan@rmc.ca [Royal Military College of Canada, Chemistry and Chemical Engineering, 13 General Crerar Crescent, Kingston, Ontario, Canada K7K 7B4 (Canada); Wowk, Diane, E-mail: Diane.Wowk@rmc.ca [Royal Military College of Canada, Mechanical and Aerospace Engineering, 13 General Crerar Crescent, Kingston, Ontario, Canada K7K 7B4 (Canada)

    2015-11-15

    Highlights: • This is the first demonstration of using the MOOSE framework for modeling CANDU fuel. • Glued and frictionless contact algorithms behave as expected for 2D and 3D cases. • MOOSE accepts and correctly interprets functions of arbitrary form. • 3D deformation calculations accurately compare against analytical solutions. • MOOSE is a viable simulation tool for modeling accident reactor conditions. - Abstract: Horizontally oriented fuel bundles, such as those in CANada Deuterium Uranium (CANDU) reactors present unique modeling challenges. After long irradiation times or during severe transients the fuel elements can laterally deform out of plane due to processes known as bow and sag. Bowing is a thermally driven process that causes the fuel elements to laterally deform when a temperature gradient develops across the diameter of the element. Sagging is a coupled mechanical and thermal process caused by deformation of the fuel pin due to creep mechanisms of the sheathing after long irradiation times and or high temperatures. These out-of-plane deformations can lead to reduced coolant flow and a reduction in coolability of the fuel bundle. In extreme cases element-to-element or element-to-pressure tube contact could occur leading to reduced coolant flow in the subchannels or pressure tube rupture leading to a loss of coolant accident. This paper evaluates the capability of the Multiphysics Object-Oriented Simulation Environment (MOOSE) framework developed at the Idaho National Laboratory to model these deformation mechanisms. The material model capabilities of MOOSE and its ability to simulate contact are also investigated.

  19. Neutron dosimetry. Environmental monitoring in a BWR type reactor; Dosimetria de neutrones. Monitoreo ambiental en un reactor del tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Tavera D, L.; Camacho L, M.E

    1991-01-15

    The measurements carried out on reactor dosimetry are applied mainly to the study on the effects of the radiation in 108 materials of the reactor; little is on the environmental dosimetry outside of the primary container of BWR reactors. In this work the application of a neutron spectrometer formed by plastic detectors of nuclear traces manufactured in the ININ, for the environmental monitoring in penetrations around the primary container of the unit I of the Laguna Verde central is presented. The neutron monitoring carries out with purposes of radiological protection, during the operational tests of the reactor. (Author)

  20. Stability prediction of continuous surveillance in BWR reactor; Predictor de estabilidad para la vigilancia continua de un reactor tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Tofino Gomez, Y.

    2006-07-01

    As result of the susceptibility of the Boiling Water Reactors (BWR) to suffer from power instabilities, the program LIP has been developed (LAPUR Input Preprocessor), which automatically determines the decay ratio (DR), as stability margin indication. For DR calculation, LAPUR program is a good predictive alternative: a fast execution for an acceptable precision. LAPUR demands a complex input, dependent on the instantaneous core configuration, requiring an exhaustive control of its generation. LIP, with a modular character, automatically generates the input from the core monitoring system, CAPRICORE (based on Simulate-3), obtaining the DR during the operation. This tool can accelerate the start-up maneuvers and other transients, increasing the plant availability. (Author)

  1. ELM - A SIMPLE TOOL FOR THERMAL-HYDRAULIC ANALYSIS OF SOLID-CORE NUCLEAR ROCKET FUEL ELEMENTS

    Science.gov (United States)

    Walton, J. T.

    1994-01-01

    ELM is a simple computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in nuclear thermal rockets. Written for the nuclear propulsion project of the Space Exploration Initiative, ELM evaluates the various heat transfer coefficient and friction factor correlations available for turbulent pipe flow with heat addition. In the past, these correlations were found in different reactor analysis codes, but now comparisons are possible within one program. The logic of ELM is based on the one-dimensional conservation of energy in combination with Newton's Law of Cooling to determine the bulk flow temperature and the wall temperature across a control volume. Since the control volume is an incremental length of tube, the corresponding pressure drop is determined by application of the Law of Conservation of Momentum. The size, speed, and accuracy of ELM make it a simple tool for use in fuel element parametric studies. ELM is a machine independent program written in FORTRAN 77. It has been successfully compiled on an IBM PC compatible running MS-DOS using Lahey FORTRAN 77, a DEC VAX series computer running VMS, and a Sun4 series computer running SunOS UNIX. ELM requires 565K of RAM under SunOS 4.1, 360K of RAM under VMS 5.4, and 406K of RAM under MS-DOS. Because this program is machine independent, no executable is provided on the distribution media. The standard distribution medium for ELM is one 5.25 inch 360K MS-DOS format diskette. ELM was developed in 1991. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.

  2. Development of numerical methodology for stress analysis in fuel element nozzles; Desenvolvimento de metodologia numerica para analise de tensoes nos bocais de elementos combustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Carrilho, Leo A.; Dotto, Rosvita M. [Industrias Nucleares do Brasil SA, Resende, RJ (Brazil); Gouvea, Jayme P. de [Universidade Federal Fluminense, Volta Redonda, RJ (Brazil)

    2000-07-01

    Calculations of stresses and deformations of the bottom end piece of fuel elements of Angra-2 were performed with finite element method for the load case handling, zero load cold and full power operation, considering the same load of the actual and well established methodology, but applying shell elements instead of solid. The obtained results show that the application of this element is conservative and shall be used in future mechanical analysis of design alterations of this component when performed by the INB engineering group. (author)

  3. BWR Servicing and Refueling Improvement Program: Phase I summary report

    Energy Technology Data Exchange (ETDEWEB)

    Perry, D.R.

    1978-09-01

    Under the U.S. Department of Energy sponsorship, General Electric Co. (GE) undertook a study of boiling water reactor (BWR) refueling outages for the purpose of recommending the development and demonstration of critical path time savings improvements. The Tennessee Valley Authority (TVA) joined the study as a subcontractor, providing monitoring assistance and making the Browns Ferry Site available for improvement demonstrations. Agreement was also reached with Georgia Power Co., Power Authority of the State of New York, and Commonwealth Edison Co. for monitoring and data collection at Hatch 1, FitzPatrick, and Quad Cities 1 nuclear plants, respectively. The objective was to identify, develop, and demonstrate improved refueling, maintenance, and inspection procedures and equipment. The improvements recommended in this study are applicable to BWR nuclear plants currently in operation as well as those in the design and construction phases. The recommendations and outage information can be used as a basis to plan and conduct the first outages of new plants and to improve the planning and facilities of currently operating plants. Many of the recommendations can readily be incorporated in plants currently in the design and construction phases as well as in the design of future plants. Many of these recommended improvements can be implemented immediately by utilities without further technical development.

  4. BWR online monitoring system based on noise analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Villafuerte, Javier [Departamento de Sistemas Nucleares, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, Ocoyoacac, Edo. de Mexico, 52750 (Mexico)]. E-mail: jov@nuclear.inin.mx; Castillo-Duran, Rogelio [Departamento de Sistemas Nucleares, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, Ocoyoacac, Edo. de Mexico, 52750 (Mexico)]. E-mail: rcd@nuclear.inin.mx; Alonso, Gustavo [Departamento de Sistemas Nucleares, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, Ocoyoacac, Edo. de Mexico, 52750 (Mexico)]. E-mail: galonso@nuclear.inin.mx; Calleros-Micheland, Gabriel [Central Nuclear de Laguna Verde, Comision Federal de Electricidad, Carr. Cardel-Nautla, km. 42.5, Alto Lucero, Veracruz (Mexico)]. E-mail: gcm9acpp@cfe.gob.mx

    2006-11-15

    A monitoring system for during operation early detection of an anomaly and/or faulty behavior of equipment and systems related to the dynamics of a boiling water reactor (BWR) has been developed. The monitoring system is based on the analysis of the 'noise' or fluctuations of a signal from a sensor or measurement device. An efficient prime factor algorithm to compute the fast Fourier transform allows the continuous, real-time comparison of the normalized power spectrum density function of the signal against previously stored reference patterns in a continuously evolving matrix. The monitoring system has been successfully tested offline. Four examples of the application of the monitoring system to the detection and diagnostic of faulty equipment behavior are presented in this work: the detection of two different events of partial blockage at the jet pump inlet nozzle, miss-calibration of a recirculation mass flow sensor, and detection of a faulty data acquisition card. The events occurred at the two BWR Units of the Laguna Verde Nuclear Power Plant. The monitoring system and its possible coupling to the data and processing information system of the Laguna Verde Nuclear Power Plant are described. The signal processing methodology is presented along with the introduction of the application of the evolutionary matrix concept for determining the base signature of reactor equipment or component and the detection of off normal operation conditions.

  5. Plant analyzer for high-speed interactive simulation of BWR power plant transients

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, H.S.; Lekach, S.V.; Mallen, A.N.; Wulff, W.; Cerbone, R.J.

    1984-04-01

    A combination of advanced modeling techniques and modern, special-purpose peripheral minicomputer technology is presented which affords realistic predictions of plant transient and severe off-normal events in LWR power plants through on-line simulations at a speed ten times faster than actual process speeds. Results are shown for a BWR plant simulation. The mathematical models account for nonequilibrium, nonhomogeneous two-phase flow effects in the coolant, for acoustical effects in the steam line and for the dynamics of the recirculation loop and feedwater train. Point kinetics incorporate reactivity feedback due to void fraction, fuel temperature, coolant temperature, and boron concentration. Control systems and trip logic are simulated for the nuclear steam supply system. The AD10 of Applied Dynamics International is the special-purpose peripheral processor. It is specifically designed for high-speed digital system simulation, accommodates hardware (instrumentation) in the input/output loop, and operates interactively on-line, like an analog computer. Results are shown to demonstrate computing capacity, accuracy, and speed. Simulation speeds have been achieved which are orders of magnitude faster than those of a CDC-7600 mainframe computer or ten times faster than real-time speed.

  6. Surface chemistry effects in finite element modeling of heat transfer in (micron)-fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Havstad, M

    2000-12-07

    Equations for modeling surface chemical kinetics by the interaction of gaseous and surface species are presented. The formulation is embedded in a finite element heat transfer code and an ordinary differential equation package is used to solve the surface system of chemical kinetic equations for each iteration within the heat transfer solver. The method is applied to a flow which includes methane and methanol in a microreactor on a chip. A simpler more conventional method, a plug flow reactor model, is then applied to a similar problem. Initial results for steam reforming of methanol are given.

  7. Report of the CCQM-K123: trace elements in biodiesel fuel

    Science.gov (United States)

    Kuroiwa, T.; Zhu, Y.; Inagaki, K.; Long, S. E.; Christopher, S. J.; Puelles, M.; Borinsky, M.; Hatamleh, N.; Murby, J.; Merrick, J.; White, I.; Saxby, D.; Sena, R. C.; Almeida, M. D.; Vogl, J.; Phukphatthanachai, P.; Fung, W. H.; Yau, H. P.; Okumu, T. O.; Kang'iri, J. N.; Télle, J. A. S.; Campos, E. Z.; Gal&vacute; n, E. C.; Kaewkhomdee, N.; Taebunpakul, S.; Thiengmanee, U.; Yafa, C.; Tokman, N.; Tunç, M.; Can, S. Z.

    2017-01-01

    The CCQM-K123 key comparison was organized by the Inorganic Analysis Working Group (IAWG) of CCQM to assess and document the capabilities of the national metrology institutes (NMIs) or the designated institutes (DIs) to measure the mass fractions of sodium, calcium, potassium, magnesium phosphorous and sulfur in biodiesel fuel (BDF). National Metrology Institute of Japan (NMIJ) and National Institute of Standards and Technology (NIST) acted as the coordinating laboratories. Results were submitted by 11 NMIs and DIs. Most of the participants used inductively coupled plasma-mass spectrometry (ICP-MS), isotope dilution technique with ICP-MS and inductively coupled plasma-optical emission spectrometry (ICP-OES) with microwave acid digestion. Accounting for relative expanded uncertainty, comparability of measurement results for each of Na, Ca, K, Mg and P was successfully demonstrated by the participants. Concerning S, the variation in results between participants, particularly those using IDMS methods was observed. According to the additional evaluation and investigation, the revised results were overlapping between IDMS measurements at the k = 2 level. However, this KC does not support S measurements. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  8. Disposal of irradiated fuel elements from German research reactors. Status and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Thamm, G. [Central Research Reactor and Nuclear Operations Division, Research Centre Juelich, Forschungszentrum Juelich GmbH, Juelich (Germany)

    1999-07-01

    There will be a quantity of highly radioactive spent nuclear fuel (snf) from German research reactors amounting to about 9.1 t by the end of the next decade, which has to be disposed of. About 4.1 t of this quantity are intended to be returned to the USA. The remaining approximately 5 t can be loaded into approximately 30 CASTOR-2 casks and will be stored in a central German dry interim store for about 30 to 50 years (first step of the domestic disposal concept). Of course, snf arising from the operation of research reactors beyond 2010 has to be disposed of in the same way (3 MTR-2 casks every two years for BER-II and FRM-II). It is expected that snf from the zero-power facilities probably will be recycled for reusing the uranium. Due to the amendment of the German Atomic Energy Act intended by the new Federal German Government, the interim dry storage of snf from power reactors in central storage facilities like Ahaus or Gorleben will be stopped and the power reactors have to store snf at their own sites. Although the amendment only concerns nuclear power reactors, it could not be excluded that snf from research reactors, too, cannot be stored at Ahaus or Gorleben at present. (author)

  9. System control model of a turbine for a BWR; Modelo del sistema de control de una turbina para un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Vargas O, Y. [Universidad del Valle de Mexico, Campus Toluca, Av. Las Palmas No. 136, Col. San Jorge Pueblo Nuevo, 52140 Metepec, Estado de Mexico (Mexico); Amador G, R.; Ortiz V, J.; Castillo D, R.; Delfin L, A. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)], e-mail: rodolfo.amador@inin.gob.mx

    2009-10-15

    In this work is presented a design of a control system of a turbine for a nuclear power plant with a BWR like energy source. The model seeks to implement later on at thermal hydraulics code of better estimate RELAP/SCDAPSIM. The model is developed for control and protection of turbine, and the consequent protection to the BWR, considering that the turbine control could be employed for one or several turbines in series. The quality of present designs of control pattern of turbine it is that it considers the parameters more important in the operation of a turbine besides that is has incorporated at control the secondary parameters that will be activated originally as true when the turbine model is substituted by a model more detailed. The development of control model of a turbine will be good in short and medium term to realize analysis about the operation of turbine with different operation conditions, of vapor extraction specific steps of turbine to feed other equipment s, besides analyzing the separate effect and integrated effect. (Author)

  10. Studies of fragileness in steels of vessels of BWR reactors; Estudios de fragilizacion en aceros de vasija de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Robles, E.F.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The structural materials with those that are manufactured the pressure vessels of the BWR reactors, suffer degradation in its mechanical properties mainly to the damage taken place by the fast neutrons (E > 1 MeV) coming from the reactor core. Its are experimentally studied those mechanisms of neutron damage in this material type, by means of the irradiation of steel vessel in experimental reactors to age them quickly. Alternatively it is simulated the neutron damage by means of irradiation of steel with heavy ions. In this work those are shown first results of the damage induced by irradiation from a similar steel to the vessel of a BWR reactor. The irradiation was carried out with fast neutrons (E > 1 MeV, fluence of 1.45 x 10{sup 18} n/cm{sup 2}) in the TRIGA MARK lll reactor and separately with Ni{sup +3} ions in a Tandetrom accelerator, E = 4.8 MeV and range of the ionic flow of 0.1 to 53 iones/A{sup 2}. (Author)

  11. Stress Analysis of Coated Particle Fuel Using Finite Element Method%包覆燃料颗粒应力的有限元分析

    Institute of Scientific and Technical Information of China (English)

    曹彬; 刘兵; 唐春和

    2014-01-01

    高温气冷堆的燃料元件由包覆燃料颗粒弥散在石墨基体中组成。在反应堆运行过程中,辐照及各复杂的物理化学反应产生的应力会使包覆燃料颗粒发生破损,对包覆燃料颗粒进行应力分析是评价燃料元件和反应堆运行安全性能的主要内容之一。本文基于压力壳模式,主要考虑内压作用下的球形壳层应力及包覆燃料颗粒的非球形因素,用有限元法对应力进行了分析。%The fuel element of high temperature gas-cooled reactor is composed of coated particle fuel w hich is dispersed in graphite matrix .In normal operation ,the stress due to irradiation and a variety of complex physical and chemical reactions will cause failure of the coated particle fuel . Therefore , the stress analysis of coated particle fuel is important for the safety of fuel element and reactor .The stress was analyzed by the finite element method based on the inner pressure failure mechanism considering asphericity of the particles .

  12. Numerical analysis of a nuclear fuel element for nuclear thermal propulsion

    Science.gov (United States)

    Wang, Ten-See; Schutzenhofer, Luke

    1991-01-01

    A computational fluid dynamics model with porosity and permeability formulations in the transport equations has been developed to study the concept of nuclear thermal propulsion through the analysis of a pulsed irradiation of a particle bed element (PIPE). The numerical model is a time-accurate pressure-based formulation. An adaptive upwind scheme is employed for spatial discretization. The upwind scheme is based on second- and fourth-order central differencing with adaptive artificial dissipation. Multiblocked porosity regions have been formulated to model the cold frit, particle bed, and hot frit. Multiblocked permeability regions have been formulated to describe the flow shaping effect from the thickness-varying cold frit. Computational results for several zero-power density PIPEs and an elevated-particle-temperature PIPE are presented. The implications of the computational results are discussed.

  13. Welding procedures used in the fabrication of fuel elements for the DON Reactor exponential experiment; La soldadura en la fabricacion de elementos combustibles destinados a una experiencia exponencial

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Beltran, A.; Jaraiz Franco, E.; Rivas Diaz, M. de las

    1965-07-01

    This exponential experiment required 74 units (37 loaded with UO{sub 2} and 37 with UC) to simulate the Reactor fuel channels. Each unit was enclosed in a tube similar to the calandria ones. It contained the pressure tube, the shroud and the 19 rods cluster. Within the pressure tube, in touch with the elements, was the organic liquid. (Author)

  14. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature.

    Science.gov (United States)

    Saqib, Naeem; Bäckström, Mattias

    2014-12-01

    Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature.

  15. Characterization of a Neutron Beam Following Reconfiguration of the Neutron Radiography Reactor (NRAD Core and Addition of New Fuel Elements

    Directory of Open Access Journals (Sweden)

    Aaron E. Craft

    2016-02-01

    Full Text Available The neutron radiography reactor (NRAD is a 250 kW Mark-II Training, Research, Isotopes, General Atomics (TRIGA reactor at Idaho National Laboratory, Idaho Falls, ID, USA. The East Radiography Station (ERS is one of two neutron beams at the NRAD used for neutron radiography, which sits beneath a large hot cell and is primarily used for neutron radiography of highly radioactive objects. Additional fuel elements were added to the NRAD core in 2013 to increase the excess reactivity of the reactor, and may have changed some characteristics of the neutron beamline. This report discusses characterization of the neutron beamline following the addition of fuel to the NRAD. This work includes determination of the facility category according to the American Society for Testing and Materials (ASTM standards, and also uses an array of gold foils to determine the neutron beam flux and evaluate the neutron beam profile. The NRAD ERS neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. Gold foil activation experiments show that the average neutron flux with length-to-diameter ratio (L/D = 125 is 5.96 × 106 n/cm2/s with a 2σ standard error of 2.90 × 105 n/cm2/s. The neutron beam profile can be considered flat for qualitative neutron radiographic evaluation purposes. However, the neutron beam profile should be taken into account for quantitative evaluation.

  16. Validation and Application of the Thermal Hydraulic System Code TRACE for Analysis of BWR Transients

    Directory of Open Access Journals (Sweden)

    V. H. Sánchez

    2012-01-01

    Full Text Available The Karlsruhe Institute of Technology (KIT is participating on (Code Applications and Maintenance Program CAMP of the US Nuclear Regulatory Commission (NRC to validate TRACE code for LWR transient analysis. The application of TRACE for the safety assessment of BWR requires a throughout verification and validation using experimental data from separate effect and integral tests but also using plant data. The validation process is normally focused on safety-relevant phenomena for example, pressure drop, void fraction, heat transfer, and critical power models. The purpose of this paper is to validate selected BWR-relevant TRACE-models using both data of bundle tests such as the (Boiling Water Reactor Full-Size Fine-Mesh Bundle Test BFBT and plant data recorded during a turbine trip event (TUSA occurred in a Type-72 German BWR plant. For the validation, TRACE models of the BFBT bundle and of the BWR plant were developed. The performed investigations have shown that the TRACE code is appropriate to describe main BWR-safety-relevant phenomena (pressure drop, void fraction, and critical power with acceptable accuracy. The comparison of the predicted global BWR plant parameters for the TUSA event with the measured plant data indicates that the code predictions are following the main trends of the measured parameters such as dome pressure and reactor power.

  17. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements; Procedimentos de fabricacao de elementos combustiveis a base de dispersoes com alta concentracao de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Souza, J.A.B.; Durazzo, M., E-mail: jasouza@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 gU/cm{sup 3} by using the U{sub 3}Si{sub 2}-Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 gU/cm{sup 3} for the U{sub 3}Si{sub 2}-Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian-Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  18. Simulation in 3 dimensions of a cycle 18 months for an BWR type reactor using the Nod3D program; Simulacion en 3 dimensiones de un ciclo de 18 meses para un reactor BWR usando el programa Nod3D

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, N.; Alonso, G. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)]. E-mail: nhm@nuclear.inin.mx; Valle, E. del [IPN, ESFM, 07738 Mexico D.F. (Mexico)

    2004-07-01

    The development of own codes that you/they allow the simulation in 3 dimensions of the nucleus of a reactor and be of easy maintenance, without the consequent payment of expensive use licenses, it can be a factor that propitiates the technological independence. In the Department of Nuclear Engineering (DIN) of the Superior School of Physics and Mathematics (ESFM) of the National Polytechnic Institute (IPN) a denominated program Nod3D has been developed with the one that one can simulate the operation of a reactor BWR in 3 dimensions calculating the effective multiplication factor (kJJ3, as well as the distribution of the flow neutronic and of the axial and radial profiles of the power, inside a means of well-known characteristics solving the equations of diffusion of neutrons numerically in stationary state and geometry XYZ using the mathematical nodal method RTN0 (Raviart-Thomas-Nedelec of index zero). One of the limitations of the program Nod3D is that it doesn't allow to consider the burnt of the fuel in an independent way considering feedback, this makes it in an implicit way considering the effective sections in each step of burnt and these sections are obtained of the code Core Master LEND. However even given this limitation, the results obtained in the simulation of a cycle of typical operation of a reactor of the type BWR are similar to those reported by the code Core Master LENDS. The results of the keJ - that were obtained with the program Nod3D they were compared with the results of the code Core Master LEND, presenting a difference smaller than 0.2% (200 pcm), and in the case of the axial profile of power, the maxim differs it was of 2.5%. (Author)

  19. Oxide evolution on Alloy X-750 in simulated BWR environment

    Science.gov (United States)

    Tuzi, Silvia; Göransson, Kenneth; Rahman, Seikh M. H.; Eriksson, Sten G.; Liu, Fang; Thuvander, Mattias; Stiller, Krystyna

    2016-12-01

    In order to simulate the environment experienced by spacer grids in a boiling water reactor (BWR), specimens of the Ni-based Alloy X-750 were exposed to a water jet in an autoclave at a temperature of 286 °C and a pressure of 80 bar. The oxide microstructure of specimens exposed for 2 h, 24 h, 168 h and 840 h has been investigated mainly using electron microscopy. The specimens suffer mass loss due to dissolution during exposure. At the same time a complex layered oxide develops. After the longest exposure the oxide consists of two outer spinel layers consisting of blocky crystals, one intermediate layer of nickel oxide interspersed with Ti-rich oxide needles, and an inner layer of oxidized base metal. The evolution of the oxide leading up to this structure is discussed and a model is presented.

  20. Evaluation of plate type fuel elements by eddy current test method; Avaliacao de combustiveis nucleares tipo placa pelo metodo de correntes parasitas

    Energy Technology Data Exchange (ETDEWEB)

    Frade, Rangel Teixeira

    2015-07-01

    Plate type fuel elements are used in MTR research nuclear reactors. The fuel plates are manufactured by assembling a briquette containing the fissile material inserted in a frame, with metal plates in both sides of the set, to act as a cladding. This set is rolled under controlled conditions in order to obtain the fuel plate. In Brazil, this type of fuel is manufactured by IPEN and used in the IEA-R1 reactor. After fabrication of three batches of fuel plates, 24 plates, one of them is taken, in order to verify the thickness of the cladding. For this purpose, the plate is sectioned and the thickness measurements are carried out by using optical microscopy. This procedure implies in damage of the plate, with the consequent cost. Besides, the process of sample preparation for optical microscopy analysis is time consuming, it is necessary an infrastructure for handling radioactive materials and there is a generation of radioactive residues during the process. The objective of this study was verify the applicability of eddy current test method for nondestructive measurement of cladding thickness in plate type nuclear fuels, enabling the inspection of all manufactured fuel plates. For this purpose, reference standards, representative of the cladding of the fuel plates, were manufactured using thermomechanical processing conditions similar to those used for plates manufacturing. Due to no availability of fuel plates for performing the experiments, the presence of the plate’s core was simulated using materials with different electrical conductivities, fixed to the thickness reference standards. Probes of eddy current testing were designed and manufactured. They showed high sensitivity to thickness variations, being able to separate small thickness changes. The sensitivity was higher in tests performed on the reference standards and samples without the presence of the materials simulating the core. For examination of the cladding with influence of materials simulating the

  1. Light water reactor fuel element suitable for thorium employment in a discrete seed and blanket configuration with the aim to attain conversion ratios above the range of one

    Energy Technology Data Exchange (ETDEWEB)

    Hrovat, M.F.; Grosse, K.H.; Seemann, R. [ALD Vacuum Technologies GmbH, Hanau (Germany)

    2008-07-01

    The thorium resources in the world are relatively large. According to the IAEA-NEA-publication ''Red Book'' they amount to 4.5 10E6 metric tons and are about 4 times greater than the resources of Uranium. The fuel element described in this paper could be used in light water reactor (LWR) preferably in pressurized water reactor (PWR). The seed (feed) rods contain uranium 235 as fissionable material and the blanket (breed) rods contain thorium and uranium. The thorium in the blanket rods is converted to fissionable U-233 by irradiation with thermal neutrons. The U-233 produced is a valuable fissionable material and is characterized by high revalues, where t is defined as the number of fission neutrons per absorption in fissile materials. By optimized configuration and loading of the seed- and blanket rods the thorium is converted to U-233 and the U-238 is converted to fissionable Plutonium isotopes. Consequently more fissionable material is generated than is used. The fuel cycle is also flexible. Thus U-235, Pu-239 or weapons-grade Plutonium can be used.Based on knowledge obtained in the development of fuel elements for material test reactors (MTR), high temperature reactors (HTR) and light water reactors (LWR), a new design of fuel element suitable for thorium employment in PWR is described.

  2. Feasibility study of boiling water reactor core based on thorium-uranium fuel concept

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779, Col Narvarte, 03020 Mexico D.F. (Mexico); Francois Lacouture, Juan Luis; Martin del Campo, Cecilia [Universidad Nacional Autonoma de Mexico, Facultad de Ingenieria, Paseo Cuauhnahuac 8532, Jiutepec, Mor. (Mexico); Espinosa-Paredes, Gilberto [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana Iztapalapa, Apartado Postal 55-534, Mexico D.F. 09340 (Mexico)], E-mail: gepe@xanum.uam.mx

    2008-01-15

    The design of a boiling water reactor (BWR) equilibrium core using the thorium-uranium (blanket-seed) concept in the same integrated fuel assembly is presented in this paper. The lattice design uses the thorium conversion capability to {sup 233}U in a BWR spectrum. A core design was developed to achieve an equilibrium cycle of one effective full power year in a standard BWR with a reload of 104 fuel assemblies designed with an average {sup 235}U enrichment of 7.5 w/o in the seed sub-lattice. The main core operating parameters were obtained. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The economic analysis shows that the fuel cycle cost of the proposed core design can be competitive with a standard uranium core design. Finally, a comparison of the toxicity of the spent fuel showed that the toxicity is lower in the thorium cycle than in other fuel cycles (UO{sub 2} and MOX uranium and plutonium) in the case of the once through cycle for light water reactors (LWR)

  3. Contamination transfers during fuel transport cask loading. A concrete situation

    Energy Technology Data Exchange (ETDEWEB)

    Fournel, B.; Turchet, J.P.; Faure, S.; Allinei, P.G. [DEN/DED Centre d' Etudes de Cadarache, 13 - Saint Paul lez Durance (France); Briquet, L. [EDF GENV, 93 - Saint Denis (France); Baubet, D. [SGS Qualitest Industrie, 30 - Pont Saint Esprit (France)

    2002-07-01

    In 1998, a number of contamination cases detected during fuel shipments have been pointed out by the french nuclear safety authority. Wagon and casks external surfaces were partly contaminated upon arrival in Valognes railway terminal. Since then, measures taken by nuclear power plants operators in France and abroad solved the problem. In Germany, a report analyzing the situation in depth has been published in which correctives actions have been listed. In France, EDF launched a large cleanliness program (projet proprete radiologique) in order to better understand contamination transfers mechanisms during power plants exploitation and to list remediation actions to avoid further problems. In this context, CEA Department for Wastes Studies at Cadarache (CEA/DEN/DED) was in charge of a study about contamination transfers during fuel elements loading operations. It was decided to lead experiments for a concrete case. The loading of a transport cask at Tricastin-PWR-1 was followed in november 2000 and different analysis comprising water analysis and smear tests analysis were carried out and are detailed in this paper. Results are discussed and qualitatively compared to those obtained in Philippsburg-BWR, Germany for a similar set of tests. (authors)

  4. Experiment data report IFA-226 postirradiation examination. [PWR, BWR

    Energy Technology Data Exchange (ETDEWEB)

    Bagger, C.; Carlsen, H.; Domanus, J.; Hougaard, H.; Larsen, E.; Larsen, N.

    1977-09-01

    IFA-226 contained twelve, mixed plutonium-uranium oxide fuel rods arranged in two, six-rod clusters. The assembly was designed to study fuel-cladding mechanical interaction, fuel thermal response, and fission gas release as a function of fuel density, initial fuel-to-cladding gap, rod power, and burnup. Data were obtained from fuel rod centerline thermocouples, fission gas pressure transducers, and cladding elongation sensors. Results of both nondestructive and destructive examinations are presented. The PIE indicated that one fuel rod failed during service as a result of internal hydriding of the end plug. Circumferential cladding ridges resulting from fuel-cladding interaction were present on all of the rods, with the largest ridges present on the rod with the smallest initial fuel-to-cladding gap. No incipient fuel rod failures were detected.

  5. Fuel safety research 2001

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    The Fuel Safety Research Laboratory is in charge of research activity which covers almost research items related to fuel safety of water reactor in JAERI. Various types of experimental and analytical researches are being conducted by using some unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and the Reactor Fuel Examination Facility (RFEF) of JAERI. The research to confirm the safety of high burn-up fuel and MOX fuel under accident conditions is the most important item among them. The laboratory consists of following five research groups corresponding to each research fields; Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). Research group of fuel behavior analysis (FEMAXI group). Research group of radionuclides release and transport behavior from irradiated fuel under severe accident conditions (VEGA group). The research conducted in the year 2001 produced many important data and information. They are, for example, the fuel behavior data under BWR power oscillation conditions in the NSRR, the data on failure-bearing capability of hydrided cladding under LOCA conditions and the FP release data at very high temperature in steam which simulate the reactor core condition during severe accidents. This report summarizes the outline of research activities and major outcomes of the research executed in 2001 in the Fuel Safety Research Laboratory. (author)

  6. Optimal estimate of the coolant flow in the assemblies of a BWR of natural circulation in real time; Estimacion optima del flujo de refrigerante en los ensambles de un BWR de circulacion natural en tiempo real

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J.; Morales S, J. B. [UNAM, Facultad de Ingenieria, Division de Estudios de Posgrado, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, Col. Progreso, 62550 Jiutepec, Morelos (Mexico); Espinosa P, G., E-mail: julfi_jg@yahoo.com.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2012-10-15

    The present work exposes the design and the implementation of an advanced controller that allows estimating the coolant flow in the fuel assemblies of a BWR reactor of natural circulation in real time. To be able to reduce the penalizations that are established in the calculations of the operation limits due to the magnitude of the uncertainties in the coolant flows of a natural circulation reactor, is the objective of this research. In this work the construction of the optimal controller that allows estimating the coolant flows in a fuel channels group of the reactor is shown, as well as the operation of this applied to a reduced order model that simulates the dynamics of a natural circulation reactor. The controller design required of an estimator of the valuation variables not directly of the plant and of the estimates use of the local distributions of the coolant flow. The controller construction of the estimator was based mathematically in the filter Kalman whose algorithm allows to be carried out an advanced control of the system. To prove the estimator operation was development a simplified model that reproduces the basic dynamics of the flowing coolant in the reactor, which works as observer of the system, this model is coupled by means of the estimator controller to a detail model of the plant. The results are presented by means of graphics of the interest variables and the estimate flow, and they are documented in the chart that is presented at the end of this article. (Author)

  7. Development of numerical methodology for determination of natural frequencies of fuel elements; Desenvolvimento de metodologia numerica para determinacao de frequencias naturais de elementos combustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Carrilho, Leo A.; Dotto, Rosvita M. [Industrias Nucleares do Brasil SA, Resende, RJ (Brazil); Gouvea, Jayme P. de [Universidade Federal Fluminense, Volta Redonda, RJ (Brazil)

    2000-07-01

    The analysis of the effects of postulated accidents on the structure of the fuel assemblies is done by INB through a bidimensional model resolved by a finite element program and considering an average lateral stiffness obtained experimentally. In order to to develop an equivalent ANSYS model with the capability of guide-thimble stress analysis during normal operation vibrations, one modal analysis on a tridimensional model is performed as a first step, considering the average lateral stiffness as obtained numerically from the models with and without sliding of the fuel rods on the spacers. Natural frequencies are presented to the sixth mode together with the relative most external guide-thimble stresses at the first mode, which is the base for a future analysis of absolute stresses on fuel assembly during vibration. (author)

  8. The Manufacture of W-UO2 Fuel Elements for NTP Using the Hot Isostatic Pressing Consolidation Process

    Science.gov (United States)

    Broadway, Jeramie; Hickman, Robert; Mireles, Omar

    2012-01-01

    NTP is attractive for space exploration because: (1) Higher Isp than traditional chemical rockets (2)Shorter trip times (3) Reduced propellant mass (4) Increased payload. Lack of qualified fuel material is a key risk (cost, schedule, and performance). Development of stable fuel form is a critical path, long lead activity. Goals of this project are: Mature CERMET and Graphite based fuel materials and Develop and demonstrate critical technologies and capabilities.

  9. Thermal-hydraulic analysis of the outermost fuel plates of a MTR5 fuel element used in the IEA-R1 research reactor; Analise termo-hidraulica das placas externas de um elemento combustivel tipo placa utilizado no reator de pesquisas IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Umbehaun, Pedro Ernesto; Torres, Walmir Maximo; Andrade, Delvonei Alves de [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: umbehaun@ipen.br; wmtorres@ipen.br; delvonei@ipen.br

    2004-07-01

    This work presents the thermal-hydraulic analysis for the outermost fuel plates for 5 MW reactor operation power, considering internal flow distribution experimentally measured, and by using the flow through the channels between two fuel elements, external flow. Results showed the necessity of changing the fuel element design, which was taken into account through the reduction of uranium concentration for external plates in order to guarantee its suitable cooling.

  10. Behaviour of the elements introduced with the fuels in their distribution and immobilization between the coal-petroleum coke IGCC solid products

    Energy Technology Data Exchange (ETDEWEB)

    Ramon Alvarez-Rodriguez; Carmen Clemente-Jul; Juan A. Martin-Rubi [Technical University of Madrid (UPM), Madrid (Spain). Mining School

    2007-09-15

    In this research on the solid products of the Elcogas IGCC plant (Puertollano, Spain) the influence of the two fuels, coal and pet coke, on the composition of the fly ashes and slag is demonstrated and how the majority of the elements are provided by the coal and only some as V, Ni and Mo are provided by the pet coke. The different nature of slag and fly ashes is highlighted and how the different elements are distributed between them that in general follow the indications of the mathematical models. The passage of the elements into gaseous phase is calculated. The fly ashes are some products of very fine granulometry that present problems of solubilization of a series of elements and therefore of deposition. Their inertization has been investigated by calcination at 1000{sup o}C and with additives. Some good results have been obtained. 20 refs., 14 figs., 4 tabs.

  11. Experimental detailed power distribution in a fast spectrum thermionic reactor fuel element at the core/BeO reflector interface region

    Science.gov (United States)

    Klann, P. G.; Lantz, E.

    1973-01-01

    A zero-power critical assembly was designed, constructed, and operated for the prupose of conducting a series of benchmark experiments dealing with the physics characteristics of a UN-fueled, Li-7-cooled, Mo-reflected, drum-controlled compact fast reactor for use with a space-power conversion system. The critical assembly was modified to simulate a fast spectrum advanced thermionics reactor by: (1) using BeO as a reflector in place of some of the existing molybdenum, (2) substituting Nb-1Zr tubing for some of the existing Ta tubing, and (3) inserting four full-scale mockups of thermionic type fuel elements near the core and BeO reflector boundary. These mockups were surrounded with a buffer zone having the equivalent thermionic core composition. In addition to measuring the critical mass of this thermionic configuration, a detailed power distribution in one of the thermionic element stages in the mixed spectrum region was measured. A power peak to average ratio of two was observed for this fuel stage at the midplane of the core and adjacent to the reflector. Also, the power on the outer surface adjacent to the BeO was slightly more than a factor of two larger than the power on the inside surface of a 5.08 cm (2.0 in.) high annular fuel segment with a 2.52 cm (0.993 in. ) o.d. and a 1.86 cm (0.731 in.) i.d.

  12. Development of Nano-Sulfide Sorbent for Efficient Removal of Elemental Mercury from Coal Combustion Fuel Gas.

    Science.gov (United States)

    Li, Hailong; Zhu, Lei; Wang, Jun; Li, Liqing; Shih, Kaimin

    2016-09-06

    The surface area of zinc sulfide (ZnS) was successfully enlarged using nanostructure particles synthesized by a liquid-phase precipitation method. The ZnS with the highest surface area (named Nano-ZnS) of 196.1 m(2)·g(-1) was then used to remove gas-phase elemental mercury (Hg(0)) from simulated coal combustion fuel gas at relatively high temperatures (140 to 260 °C). The Nano-ZnS exhibited far greater Hg(0) adsorption capacity than the conventional bulk ZnS sorbent due to the abundance of surface sulfur sites, which have a high binding affinity for Hg(0). Hg(0) was first physically adsorbed on the sorbent surface and then reacted with the adjacent surface sulfur to form the most stable mercury compound, HgS, which was confirmed by X-ray photoelectron spectroscopy analysis and a temperature-programmed desorption test. At the optimal temperature of 180 °C, the equilibrium Hg(0) adsorption capacity of the Nano-ZnS (inlet Hg(0) concentration of 65.0 μg·m(-3)) was greater than 497.84 μg·g(-1). Compared with several commercial activated carbons used exclusively for gas-phase mercury removal, the Nano-ZnS was superior in both Hg(0) adsorption capacity and adsorption rate. With this excellent Hg(0) removal performance, noncarbon Nano-ZnS may prove to be an advantageous alternative to activated carbon for Hg(0) removal in power plants equipped with particulate matter control devices, while also offering a means of reusing fly ash as a valuable resource, for example as a concrete additive.

  13. Comparative Analysis of Structural Changes In U-Mo Dispersed Fuel of Full-Size Fuel Elements And Mini-Rods Irradiated In The MIR Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Izhutov, Aleksey L.; Iakovlev, Valeriy V.; Novoselov, Andrey E. and others

    2013-12-15

    The paper summarizes the irradiation test and post-irradiation examination (PIE) data for the U-Mo low-enriched fuel that was irradiated in the MIR reactor under the RERTR Program. The PIE data were analyzed for both full-size fuel rods and mini-rods with atomized powder dispersed in Al matrix as well as with additions of 2%, 5% and 13% of silicon in the matrix and ZrN protective coating on the fuel particles. The full-size fuel rods were irradiated up to an average burnup of ∼ 60%{sup 235}U; the mini-rods were irradiated to an average burnup of ∼ 85%{sup 235}U. The presented data show a significant increase of the void fraction in the U-Mo alloy as the U-235 burnup rises from ∼ 40% up to ∼ 85%. The effect of irradiation test conditions and U-235 burnup were analyzed with regard to the formation of an interaction layer between the matrix and fuel particles as well as generation of porosity in the U-Mo alloy. Shown here are changes in distribution of U fission products as the U-235 burnup increases from ∼ 40% up to ∼ 85%.

  14. An A BWR demonstration simulator for training and developing technical staff

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Yonezawa, H.; Aoyagi, Y.; Kataoka, K., E-mail: jim.powers@toshiba.com [Toshiba Corporation, Kawasaki, Kanagawa (Japan)

    2015-09-15

    The US-Advanced Boiling Water Reactor (A BWR), certified by the US NRC, is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. Toshiba has developed a Demonstration Simulator of the A BWR control room that provides a realistic experience for training and education on BWR principles and operations fundamentals. The Demonstration Simulator is located in the Toshiba America Nuclear Energy (Tane) office in Charlotte, North Carolina and is composed of standard office computer equipment set up in a specific arrangement that is representative of the layout of an A BWR control room. The Demonstration Simulator is not intended for licensed operator training, but can provide a framework for encouraging entry level technically oriented nuclear workers to enter the operations field; strengthening the linkage between university energy field curricula and real-life application of theory; and, improving understanding of integrated plant operations for developing station technical staff. This paper describes the A BWR Demonstration Simulator and its applications for training and educating future nuclear workers. (Author)

  15. Research on Precaution and Detection Technology for Flow Blockage of Plate-type Fuel Element in Research Reactors

    Institute of Scientific and Technical Information of China (English)

    DING; Li; QIAO; Ya-xin; ZHANG; Nian-peng; LUO; Bei-bei; HUA; Xiao; JIA; Shu-jie; YAN; Hui-yang

    2013-01-01

    The main aim of this study is to offer the technical support for safety operation and management of research reactors using plate-type fuel assemblies in China,which is performed from analysis of precaution measures for flow blockage and detection methods of accidents.Study shows that most accidents were induced by in-core foreign objects and the swelling of fuel

  16. A New Methodology for Early Anomaly Detection of BWR Instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, K. N.

    2005-11-27

    The objective of the performed research is to develop an early anomaly detection methodology so as to enhance safety, availability, and operational flexibility of Boiling Water Reactor (BWR) nuclear power plants. The technical approach relies on suppression of potential power oscillations in BWRs by detecting small anomalies at an early stage and taking appropriate prognostic actions based on an anticipated operation schedule. The research utilizes a model of coupled (two-phase) thermal-hydraulic and neutron flux dynamics, which is used as a generator of time series data for anomaly detection at an early stage. The model captures critical nonlinear features of coupled thermal-hydraulic and nuclear reactor dynamics and (slow time-scale) evolution of the anomalies as non-stationary parameters. The time series data derived from this nonlinear non-stationary model serves as the source of information for generating the symbolic dynamics for characterization of model parameter changes that quantitatively represent small anomalies. The major focus of the presented research activity was on developing and qualifying algorithms of pattern recognition for power instability based on anomaly detection from time series data, which later can be used to formulate real-time decision and control algorithms for suppression of power oscillations for a variety of anticipated operating conditions. The research being performed in the framework of this project is essential to make significant improvement in the capability of thermal instability analyses for enhancing safety, availability, and operational flexibility of currently operating and next generation BWRs.

  17. Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [ORNL; Poore III, Willis P [ORNL

    2015-01-01

    The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Mark I plant for those instrumentation systems considered most important for accident management purposes.

  18. Application of the FFTBM method and the power relative contribution to the discharge transitory of the recirculation pumps of a BWR; Aplicacion del metodo FFTBM y de la contribucion relativa de potencia al transitorio de disparo de las bombas de recirculacion de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Castillo D, R.; Ortiz V, J.; Fuentes M, L., E-mail: rogelio.castillo@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In this work was realized the simulation of the discharge transitory of both recirculation pumps of a BWR with the Simulate-3K code. This type of transitory is used in the stability analyses for the licensing of the fuel reload. An analysis of the precision of the simulation is also presented, using the FFTBM method jointly with the power relative contribution. This way, instead of determining the total precision of the calculation, a weighed precision is obtained by the contribution of each relevant parameter of the transitory. The results show that the precision of the simulation is acceptable due to the small magnitude of the merit figure of the width total average. The error in the merit figure comes mainly from the parameters total flow in the core and temperature of the fuel in the core. (Author)

  19. Design and operation of gamma scan and fission gas sampling systems for characterization of irradiated commercial nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Knox, C.A.; Thornhill, R.E.; Mellinger, G.B.

    1989-09-01

    One of the primary objectives of the Materials Characterization Center (MCC) is to acquire and characterize spent fuels used in waste form testing related to nuclear waste disposal. The initial steps in the characterization of a fuel rod consist of gamma scanning the rod and sampling the gas contained in the fuel rod (referred to as fission gas sampling). The gamma scan and fission gas sampling systems used by the MCC are adaptable to a wide range of fuel types and have been successfully used to characterize both boiling water reactor (BWR) and pressurized water reactor (PWR) fuel rods. This report describes the design and operation of systems used to gamma scan and fission gas sample full-length PWR and BWR fuel rods. 1 ref., 10 figs., 1 tab.

  20. The life of some metallic uranium based fuel elements; Duree de vie de quelques combustibles a base d'uranium metal

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J.A.; Englander, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Description of some theoretical and experimental data concerning the design and most economic preparation of metallic uranium based fuel elements, which are intended to produce an energy of 3 kW days/g of uranium in a thermal reactor, at a sufficiently high mean temperature. Experimental results obtained by testing by analogy or by actually trying out fuel elements obtained by alloying uranium with other metals in proportions such that the resistance to deformation of the alloy produced is much higher than that of pure metallic uranium and that the thermal utilisation factor is only slightly different from that of the uranium. (author) [French] Description de quelques donnees theoriques et experimentales concernant la conception et la preparation la plus economique d'elements combustibles a base d'uranium metallique naturel, destines a degager dans un reacteur thermique une energie de l'ordre de 3 kWj/g d'uranium a une temperature moyenne suffisamment elevee. Resultats experimentaux acquis par tests analogiques ou reels sur combustibles obtenus par alliage de l'uranium avec des elements metalliques en proportions telles que la resistance a la deformation soit bien superieure a celle de l'uranium metal pur et que le facteur propre d'utilisation thermique n ne soit que peu affecte. (auteur)

  1. 喷气燃料中元素硫的定量测定%QUANTITATIVE DETERMINATION OF ELEMENTAL SULFUR IN JET FUEL

    Institute of Scientific and Technical Information of China (English)

    胡泽祥; 杨官汉; 王立光; 娄方

    2001-01-01

    采用将喷气燃料中的元素硫与汞反应转化生成汞的化合物后由冷原子吸收 法测汞的 方法,获得油样中元素硫含量。此法灵敏度高,元素硫最低检测浓度为1.6×10-3 μ g /ml; 元素硫浓度在0~0.05 μg/ml范围内与紫外光吸收值存在良好线性关系,方法精密度和准确 度好。%In order to measure the elemental sulfur in jet fuel,the method can be used,that is the elemental sulfur in jet fuel reacts quantitatively with mercury to produce mercury sulfide,and then the mercury content in mercury sulfide is measured by atomic absorption spectrophotometry.This measurement method possesses high sensitivity,good precision and accuracy,the minimum detectable concentration of elemental sulfur is 1.6×10-3μg/ml,and the linear range of elemental sulfur is 0 to 0.05 μg/ml.

  2. AREVA solutions to licensing challenges in PWR and BWR reload and safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Curca-Tivig, Florin [AREVA GmbH, Erlangen (Germany)

    2016-05-15

    Regulatory requirements for reload and safety analyses are evolving: new safety criteria, request for enlarged qualification databases, statistical applications, uncertainty propagation.. In order to address these challenges and access more predictable licensing processes, AVERA is implementing consistent code and methodology suites for PWR and BWR core design and safety analysis, based on first principles modeling and extremely broad verification and validation data base. Thanks to the high computational power increase in the last decades methods' development and application now include new capabilities. An overview of the main AREVA codes and methods developments is given covering PWR and BWR applications in different licensing environments.

  3. Development of an Input Model to MELCOR 1.8.5 for the Oskarshamn 3 BWR

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Lars [Lentek, Nykoeping (Sweden)

    2006-05-15

    An input model has been prepared to the code MELCOR 1.8.5 for the Swedish Oskarshamn 3 Boiling Water Reactor (O3). This report describes the modelling work and the various files which comprise the input deck. Input data are mainly based on original drawings and system descriptions made available by courtesy of OKG AB. Comparison and check of some primary system data were made against an O3 input file to the SCDAP/RELAP5 code that was used in the SARA project. Useful information was also obtained from the FSAR (Final Safety Analysis Report) for O3 and the SKI report '2003 Stoerningshandboken BWR'. The input models the O3 reactor at its current state with the operating power of 3300 MW{sub th}. One aim with this work is that the MELCOR input could also be used for power upgrading studies. All fuel assemblies are thus assumed to consist of the new Westinghouse-Atom's SVEA-96 Optima2 fuel. MELCOR is a severe accident code developed by Sandia National Laboratory under contract from the U.S. Nuclear Regulatory Commission (NRC). MELCOR is a successor to STCP (Source Term Code Package) and has thus a long evolutionary history. The input described here is adapted to the latest version 1.8.5 available when the work began. It was released the year 2000, but a new version 1.8.6 was distributed recently. Conversion to the new version is recommended. (During the writing of this report still another code version, MELCOR 2.0, has been announced to be released within short.) In version 1.8.5 there is an option to describe the accident progression in the lower plenum and the melt-through of the reactor vessel bottom in more detail by use of the Bottom Head (BH) package developed by Oak Ridge National Laboratory especially for BWRs. This is in addition to the ordinary MELCOR COR package. Since problems arose running with the BH input two versions of the O3 input deck were produced, a NONBH and a BH deck. The BH package is no longer a separate package in the new 1

  4. Influence of coolant temperature and pressure on destructive forces at fuel failure in the NSRR experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kusagaya, Kazuyuki [Global Nuclear Fuel - Japan Co., Ltd., Yokosuka, Kanagawa (Japan); Sugiyama, Tomoyuki; Nakamura, Takehiko; Uetsuka, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-01-01

    In order to design a new experimental capsule to be used in the NSRR (Nuclear Safety Research Reactor) experiment with the temperature and pressure conditions in a typical commercial BWR, coolant temperature and pressure influence is estimated for destructive forces during fuel rod failure in the experiment simulating reactivity-initiated accident (RIA). Considering steam property dependence on temperature and pressure, it is qualitatively shown that the destructive forces in the BWR operation condition are smaller than those in the room temperature and atmospheric pressure condition. Water column velocity, which determines impact by water hammer, is further investigated quantitatively by modeling the experimental system and water hammer phenomenon. As a result, the maximum velocity of the water column in the BWR operation conditions is calculated to be only about 10% of that in the room temperature and atmospheric pressure condition. (author)

  5. Design of a redundant meteorological station for a BWR reactor; Diseno de una estacion meteorologica redundante para un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, R.; Celis del Angel, L.; Bucio, F.; Rivero, T.; Palacios, J. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: ramses@nuclear.inin.mx

    2008-07-01

    In this work the design of a meteorological station for a reactor type BWR is proposed. Two independent channels of data acquisition that allow him to have a bigger readiness is exposed. It is incorporate sensors without mobile parts to measure speed, wind direction and pluvial precipitation. It also counts, with sensors of global solar radiation, net radiation, barometric pressure, relative humidity and ambient temperature; with them they are possible to be calculated, moreover, other variables as temperature differential, dew point and atmospheric stability. The sensors are placed on a tower to different heights and send their information (each second) to a local registration system, the one which in turn, it remits the data to the monitoring office so that a computer is linked with the system, display and management the information in real time and automatic way. The redundant structure allows that in the event of maintenance the data acquisition is not interrupted, even if the information is transferred to another place. In all the station sections it is used protocols of standard communication to allow that a great quantity of devices can be connected without major problem. The above-mentioned would allow to the operators in the control room to have reliable information during the whole time of the reactor operation. (Author)

  6. Identification of the reduced order models of a BWR reactor; Identificacion de modelos de orden reducido de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez S, A. [UNAM, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: augusto@correo.unam.mx

    2004-07-01

    The present work has as objective to analyze the relative stability of a BWR type reactor. It is analyzed that so adaptive it turns out to identify the parameters of a model of reduced order so that this it reproduces a condition of given uncertainty. This will take of a real fact happened in the La Salle plant under certain operation conditions of power and flow of coolant. The parametric identification is carried out by means of an algorithm of recursive least square and an Output Error model (Output Error), measuring the output power of the reactor when the instability is present, and considering that it is produced by a change in the reactivity of the system in the same way that a sign of type step. Also it is carried out an analytic comparison of the relative stability, analyzing two types of answers: the original answer of the uncertainty of the reactor vs. the obtained response identifying the parameters of the model of reduced order, reaching the conclusion that it is very viable to adapt a model of reduced order to study the stability of a reactor, under the only condition to consider that the dynamics of the reactivity is of step type. (Author)

  7. COMPARATIVE ANALYSIS OF STRUCTURAL CHANGES IN U-MO DISPERSED FUEL OF FULL-SIZE FUEL ELEMENTS AND MINI-RODS IRRADIATED IN THE MIR REACTOR

    Directory of Open Access Journals (Sweden)

    ALEKSEY. L. IZHUTOV

    2013-12-01

    The full-size fuel rods were irradiated up to an average burnup of ∼ 60%235U; the mini-rods were irradiated to an average burnup of ∼ 85%235U. The presented data show a significant increase of the void fraction in the U-Mo alloy as the U-235 burnup rises from ∼ 40% up to ∼ 85%. The effect of irradiation test conditions and U-235 burnup were analyzed with regard to the formation of an interaction layer between the matrix and fuel particles as well as generation of porosity in the U-Mo alloy. Shown here are changes in distribution of U fission products as the U-235 burnup increases from ∼ 40% up to ∼ 85%.

  8. Overview of New Tools to Perform Safety Analysis: BWR Station Black Out Test Case

    Energy Technology Data Exchange (ETDEWEB)

    D. Mandelli; C. Smith; T. Riley; J. Nielsen; J. Schroeder; C. Rabiti; A. Alfonsi; Cogliati; R. Kinoshita; V. Pasucci; B. Wang; D. Maljovec

    2014-06-01

    Dynamic Probabilistic Risk Assessment (DPRA) methodologies couple system simulator codes (e.g., RELAP, MELCOR) with simulation controller codes (e.g., RAVEN, ADAPT). While system simulator codes accurately model system dynamics deterministically, simulation controller codes introduce both deterministic (e.g., system control logic, operating procedures) and stochastic (e.g., component failures, parameter uncertainties) elements into the simulation. Typically, a DPRA is performed by: 1) sampling values of a set of parameters from the uncertainty space of interest (using the simulation controller codes), and 2) simulating the system behavior for that specific set of parameter values (using the system simulator codes). For complex systems, one of the major challenges in using DPRA methodologies is to analyze the large amount of information (i.e., large number of scenarios ) generated, where clustering techniques are typically employed to allow users to better organize and interpret the data. In this paper, we focus on the analysis of a nuclear simulation dataset that is part of the Risk Informed Safety Margin Characterization (RISMC) Boiling Water Reactor (BWR) station blackout (SBO) case study. We apply a software tool that provides the domain experts with an interactive analysis and visualization environment for understanding the structures of such high-dimensional nuclear simulation datasets. Our tool encodes traditional and topology-based clustering techniques, where the latter partitions the data points into clusters based on their uniform gradient flow behavior. We demonstrate through our case study that both types of clustering techniques complement each other in bringing enhanced structural understanding of the data.

  9. Development of finite element analysis code SPOTBOW for prediction of local velocity and temperature fields around distorted fuel pin in LMFBR assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takeshi [Toshiba Corp., Kawasaki, Kanagawa (Japan). Nuclear Engineering Lab.

    1996-05-01

    A two-dimensional steady-state distributed parameter code SPOTBOW has been developed for predicting the fine structure of cladding temperature in an liquid metal fast breeder reactor (LMFBR) fuel assembly where the deformation of fuel pins is induced by irradiation swelling, creep and thermal distortion under high burn-up operating condition. When the deformed fuel pin approaches adjacent pins and wrapper tube and comes in contact with those, the peak temperature, known as the hot spot temperature, can appear somewhere on the outer surface of the cladding. The temperature rise across the film is an important consideration in the cladding temperature analysis. Fully developed turbulent momentum and heat transfer equations based on the empirical turbulent model are solved by using the Galerkin finite element method which is suitable for the problem of the complicated boundary shape, such as the wire-wrapped fuel pin bundle. A new iteration procedure has been developed for solving the above equations by using the rise in coolant temperature, which is obtained with subchannel analysis codes, as a boundary condition. Calculated results are presented for local temperature distribution in normal and bowing pin bundle geometry, as compared with experiments. (author).

  10. Performance of iron-chromium-aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions

    Science.gov (United States)

    Zhong, Weicheng; Mouche, Peter A.; Han, Xiaochun; Heuser, Brent J.; Mandapaka, Kiran K.; Was, Gary S.

    2016-03-01

    Iron-chromium-aluminum (FeCrAl) coatings deposited on Zircaloy 2 (Zy2) and yttria-stabilized zirconia (YSZ) by magnetron sputtering have been tested with respect to oxidation weight gain in high-temperature steam. In addition, autoclave testing of FeCrAl-coated Zy2 coupons under pressure-temperature-dissolved oxygen coolant conditions representative of a boiling water reactor (BWR) environment has been performed. Four different FeCrAl compositions have been tested in 700 °C steam; compositions that promote alumina formation inhibited oxidation of the underlying Zy2. Parabolic growth kinetics of alumina on FeCrAl-coated Zy2 is quantified via elemental depth profiling. Autoclave testing under normal BWR operating conditions (288 °C, 9.5 MPa with normal water chemistry) up to 20 days demonstrates observable weight gain over uncoated Zy2 simultaneously exposed to the same environment. However, no FeCrAl film degradation was observed. The 900 °C eutectic in binary Fe-Zr is addressed with the FeCrAl-YSZ system.

  11. Calculations for a BWR Lattice with Adjacent Gadolinium Pins Using the Monte Carlo Cell Code Serpent v.1.1.7

    Directory of Open Access Journals (Sweden)

    Diego Ferraro

    2011-01-01

    Full Text Available Monte Carlo neutron transport codes are usually used to perform criticality calculations and to solve shielding problems due to their capability to model complex systems without major approximations. However, these codes demand high computational resources. The improvement in computer capabilities leads to several new applications of Monte Carlo neutron transport codes. An interesting one is to use this method to perform cell-level fuel assembly calculations in order to obtain few group constants to be used on core calculations. In the present work the VTT recently developed Serpent v.1.1.7 cell-oriented neutronic calculation code is used to perform cell calculations of a theoretical BWR lattice benchmark with burnable poisons, and the main results are compared to reported ones and with calculations performed with Condor v.2.61, the INVAP's neutronic collision probability cell code.

  12. Thermal breeder fuel enrichment zoning

    Science.gov (United States)

    Capossela, Harry J.; Dwyer, Joseph R.; Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.

    1992-01-01

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect.

  13. Applied methods for mitigation of damage by stress corrosion in BWR type reactors; Metodos aplicados para la mitigacion del dano por corrosion bajo esfuerzo en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez C, R.; Diaz S, A.; Gachuz M, M.; Arganis J, C. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencia de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    The Boiling Water nuclear Reactors (BWR) have presented stress corrosion problems, mainly in components and pipes of the primary system, provoking negative impacts in the performance of energy generator plants, as well as the increasing in the radiation exposure to personnel involucred. This problem has caused development of research programs, which are guided to find solution alternatives for the phenomena control. Among results of greater relevance the control for the reactor water chemistry stands out particularly in the impurities concentration and oxidation of radiolysis products; as well as the supervision in the materials selection and the stresses levels reduction. The present work presents the methods which can be applied to diminish the problems of stress corrosion in BWR reactors. (Author)

  14. Testing of LWR fuel rods to support criticality safety analysis of transport accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Purcell, P.C. [BNFL International Transport, Spent Fuel Services (United Kingdom); Dallongeville, M. [COGEMA Logistics (AREVA Group) (France)

    2004-07-01

    For the transport of low enriched materials, criticality safety may be demonstrated by applying pessimistic modelling assumptions that bound any realistic case. Where Light Water Reactor (LWR) fuel is being transported, enrichment levels are usually too high to permit this approach and more realistic data is needed. This requires a method by which the response of LWR fuel under impact accident conditions can be approximated or bounded. In 2000, BNFL and COGEMA LOGISTICS jointly commenced the Fuel Integrity Project (FIP) whose objective was to develop such methods. COGEMA LOGISTICS were well advanced with a method for determining the impact response of unirradiated fuel, but required further test data before acceptance by the Transport Regulators. The joint project team extensively discussed the required inputs to the FIP, from which it was agreed that BNFL would organise new tests on both unirradiated and irradiated fuel samples and COGEMA LOGISTICS would take major responsibility for evaluating the test results. Tests on unirradiated fuel rod samples involved both dynamic and quasi-static loading on fuel samples. PWR fuel rods loaded with uranium pellets were dropped vertically from 9m onto a rigid target and this was repeated on BWR fuel rods, similar tests on empty fuel rods were also conducted. Quasi-static tests were conducted on 530 mm long PWR and BWR fuel specimens under axial loading. Tests on irradiated fuel samples were conducted on high burn-up fuel rods of both PWR and BWR types. These were believed original to the FIP project and involved applying bending loads to simply supported pressurised rod specimens. In one test the fuel rod was heated to nearly 500oC during loading, all specimens were subject to axial impact before testing. Considerable experience of fuel rod testing and new data was gained from this test programme.

  15. IEA-R1 reactor spent fuel element surveillance; Acompanhamento da irradiacao dos elementos combustiveis do reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Damy, Margaret de Almeida; Terremoto, Luis Antonio Albiac; Silva, Jose Eduardo Rosa da; Silva, Antonio Teixeira e; Teodoro, Celso A.; Lucki, Georgi; Castanheira, Myrthes [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: madamy@ipen.br

    2005-07-01

    The irradiation surveillance is an important part of a qualification program of the U{sub 3}O{sub 8}-Al and U{sub 3}Si{sub 2}-Al dispersion nuclear fuels manufactured in IPEN/CNEN-SP. This work presents the surveillance results regarding the fuel and control elements irradiated in the IEA-R1 research reactor during the period from June/1999 until December/2003, which embraced register of visual inspections, irradiation conditions, burn-up calculations, thermal hydraulic parameters and failure occurrences. Also providing information that helps the safe operation of the IEA-R1 research reactor, the irradiation surveillance is a collaboration work involving researchers of the Centro de Engenharia Nuclear (CEN) and the operators' staff of the Centro do Reator de Pesquisas (CRPq), both from IPEN/CNEN-SP. (author)

  16. Comparison of results for burning with BWR reactors CASMO and SCALE 6.2 (TRITON / NEWT); Comparacion de los resultados de quemado para reactores BWR con CASMO y SCALE 6.2 (TRITON/NEWT)

    Energy Technology Data Exchange (ETDEWEB)

    Mesado, C.; Miro, R.; Barrachina, T.; Verdu, G.

    2014-07-01

    In this paper we compare the results from two codes burned, CASMO and SCALE 6.2 (TRITON). To do this, is simulated all segments corresponding to a boiling water reactor (BWR) using both codes. In addition, to account for different working points, simulations changing the instantaneous variables, these are repeated: void fractions (6 points), fuel temperature (6 points) and control rods (two points), with a total of 72 possible combinations of different instantaneous variables for each segment. After all simulations are completed for each segment, we can reorder the obtained cross sections, as SCALE CASMO both, to create a library of compositions nemtab format. This format is accepted by the neutronic code of nodal diffusion, PARCS v2.7. Finally compares the results obtained with PARCS and with the SIMULATE3 -SIMTAB methodology to level of full reactor. Also, we have made use of the KENO-VI and MCDANCOFF modules belonging to SCALE. The first is a Monte Carlo transport code with which you can validate the value of the multiplier, the second has been used to obtain values of Dancoff factor and increase the accuracy of model SCALE. (Author)

  17. Evaluation of Erosion of the Dummy “EE” Plate 19 in YA Type ATR Fuel Element During Reactor PALM Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Jeffrey O. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Test Reactor; Glazoff, Michael V. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Test Reactor; Eiden, Thomas J. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Test Reactor; Rezvoi, Aleksey V. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Test Reactor

    2016-08-01

    Advanced Test Reactor (ATR) Cycle 153B-1 was a 14-day, high-power, powered axial locator mechanism (PALM) operating cycle that completed on April 12, 2013. Cycle 153B-1 was a typical operating cycle for the ATR and did not result in any unusual plant transients. ATR was started up and shut down as scheduled. The PALM drive physically moves the selected experiments into and out of the core to simulate reactor startup and heat up, and shutdown and cooldown transients, while the reactor remains in steady state conditions. However, after the cycle was over, when the fuel elements were removed from the core and inspected, several thousand flow-assisted erosion pits and “horseshoeing” defects were readily observed on the surface of the several YA-type fuel elements (these are aluminum “dummy” plates that contain no fuel). In order to understand these erosion phenomena a thermal-hydraulic model of coolant channel 20 on a YA-M fuel element was generated. The boundaries of the model were the aluminum EE plate of a YA-M fuel element and a beryllium reflector block with 13 horizontal saw cuts which represented regions of zero flow. The heat generated in fuel plates 1 through 18 was modeled to be passing through the aluminum EE plate. The coolant channel 20 width was set at 0.058 in. (58 mils). It was established that the horizontal saw cuts had a significant effect on the temperature of the coolant. The flow, which was expected to vary linearly with gradual heating of the coolant as it passed through the channel, was extremely turbulent. The temperature rise, which was expected to be a smooth “S” curve, was represented by a series temperature rise “humps,” which occurred at each horizontal saw cut in the beryllium reflector block. Each of the 13 saw cuts had a chamfered edge which resulted in the coolant flow being re-directed as a jet across the coolant channel into the surface of the EE plate, which explained the temperature rise and the observed scalloping

  18. Power excursion analysis for BWR`s at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D.J.; Neymoith, L.; Kohut, P. [Brookhaven National Lab., Upton, NY (United States)

    1996-03-01

    A study has been undertaken to determine the fuel enthalpy during a rod drop accident and during two thermal-hydraulic transients. The objective was to understand the consequences to high burnup fuel and the sources of uncertainty in the calculations. The analysis was done with RAMONA-4B, a computer code that models the neutron kinetics throughout the core along with the thermal-hydraulics in the core, vessel, and steamline. The results showed that the maximum fuel enthalpy in high burnup fuel will be affected by core design, initial conditions, and modeling assumptions. The important parameters in each of these categories are discussed in the paper.

  19. Propagation of cracks by stress corrosion in conditions of BWR type reactor; Propagacion de grietas por corrosion bajo esfuerzo en condiciones de reactor de agua en ebullicion (BWR)

    Energy Technology Data Exchange (ETDEWEB)

    Merino C, F.J. [ININ, 52045 Estado de Mexico (Mexico); Fuentes C, P. [ITT, Metepec, Estado de Mexico (Mexico)]. E-mail: fjmc@nuclear.inin.mx

    2004-07-01

    In this work, the obtained results when applying the Hydrogen Chemistry to a test tube type Compact Tension (CT), built in austenitic stainless steel 304l, simulating the conditions to those that it operates a Boiling Water Reactor (BWR), temperature 288 C and pressure of 8 MPa are presented. With the application of this water chemistry, seeks to be proven the diminution of the crack propagation speed. (Author)

  20. Stiffness evaluation of the welded connection between guide thimbles and the spacer grids 16 X 16 fuel assemblies types, using the finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Schettino, Carlos Frederico Mattos; Sakamiti, Guilherme Pennachin; Gaspar Junior, Joao Carlos Aguiar, E-mail: carlosschettino@inb.gov.br, E-mail: guilhermesakamiti@inb.gov.br, E-mail: joaojunior@inb.gov.br [Industrias Nucleares do Brasil S.A. (INB), Resende, RJ (Brazil). Diretoria de Producao Nuclear

    2013-07-01

    The present work aims to evaluate, structurally, the increase in the number of spot welds to properly join the guide thimbles and the spacer grids in 16 x 16 fuel assemblies. This new and improved process can provide more stiffness to the whole structure, since the number of spots raised from four to eight. A 3-D geometric model of a guide thimble section was generated in the program SOLIDWORKS. After that, the geometric model was imported to ANSYS program, where the finite element model was built, considering the guide thimble geometry assembled with the spacer grid and the welded connections. Boundaries conditions were implemented in the model in order to simulate the correct physical behavior due to the operation of the fuel assembly inside the reactor. The analysis covered specific loads and displacements acting on the entire structure. The method used to develop this finite element analysis was a linear static simulation that performing a single connection between a spacer grid cell and a guide thimble section. Hence four models was evaluated, differing on the spot weld number in the spacer grid and guide thimble connection. The rotational stiffness results of each model were compared. The results acquired from four and eight spot weld were validated with physical test results.The behavior of the structure under the acting force/displacement and the related results of the analysis, mainly the stiffness, were satisfied. The results of this analysis were used to prove that the increasing of the spot welds number is an improvement in the dimensional stability when submitted to loads and displacements required on the fuel assembly design. This analysis aid to get more information of extreme importance such as, the pursuance to develop better manufacturing process and to improve the fuel assembly performance due to the increasing of the burn-up. (author)

  1. Analysis CFD for the hydrogen transport in the primary containment of a BWR; Analisis CFD para el transporte de hidrogeno en la contencion primaria de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez P, D. A.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Edificio 9, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Gomez T, A. M., E-mail: guerreroazteca_69@hotmail.com [ININ, Departamento de Sistemas Nucleares, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    This study presents a qualitative and quantitative comparison among the CFD GASFLOW and OpenFOAM codes which are related with the phenomenon of hydrogen transport and other gases in the primary containment of a Boiling Water Reactor (BWR). GASFLOW is a commercial license code that is well validated and that was developed in Germany for the analysis of the gases transport in containments of nuclear reactors. On the other hand, OpenFOAM is an open source code that offers several evaluation solvers for different types of phenomena; in this case, the solver reacting-Foam is used to analyze the hydrogen transport inside the primary containment of the BWR. The results that offer the solver reacting-Foam of OpenFOAM are evaluated in the hydrogen transport calculation and the results are compared with those of the program of commercial license GASFLOW to see if is viable the use of the open source code in the case of the hydrogen transport in the primary containment of a BWR. Of the obtained results so much quantitative as qualitative some differences were identified between both codes, the differences (with a percentage of maximum error of 4%) in the quantitative results are small and they are considered acceptable for this analysis type, also, these differences are attributed mainly to the used transport models, considering that OpenFOAM uses a homogeneous model and GASFLOW uses a heterogeneous model. (Author)

  2. Signal analysis of acoustic and flow-induced vibrations of BWR main steam line

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, G., E-mail: gepe@xanum.uam.mx [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Prieto-Guerrero, A. [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Núñez-Carrera, A. [Comisión Nacional de Seguridad Nuclear y Salvaguardias, Doctor Barragán 779, Col. Narvarte, México, D.F. 03020 (Mexico); Vázquez-Rodríguez, A. [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Centeno-Pérez, J. [Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas Unidad Profesional “Adolfo López Mateos”, Av. IPN, s/n, México, D.F. 07738 (Mexico); Espinosa-Martínez, E.-G. [Departamento de Sistemas Energéticos, Universidad Nacional Autónoma de México, México, D.F. 04510 (Mexico); and others

    2016-05-15

    Highlights: • Acoustic and flow-induced vibrations of BWR are analyzed. • BWR performance after extended power uprate is considered. • Effect of acoustic side branches (ASB) is analyzed. • The ASB represents a reduction in the acoustic loads to the steam dryer. • Methodology developed for simultaneous analyzing the signals in the MSL. - Abstract: The aim of this work is the signal analysis of acoustic waves due to phenomenon known as singing in Safety Relief Valves (SRV) of the main steam lines (MSL) in a typical BWR5. The acoustic resonance in SRV standpipes and fluctuating pressure is propagated from SRV to the dryer through the MSL. The signals are analyzed with a novel method based on the Multivariate Empirical Mode Decomposition (M-EMD). The M-EMD algorithm has the potential to find common oscillatory modes (IMF) within multivariate data. Based on this fact, we implement the M-EMD technique to find the oscillatory mode in BWR considering the measurements obtained collected by the strain gauges located around the MSL. These IMF, analyzed simultaneously in time, allow obtaining an estimation of the effects of the multiple-SRV in the MSL. Two scenarios are analyzed: the first is the signal obtained before the installation of the acoustic dampers (ASB), and the second, the signal obtained after installation. The results show the effectiveness of the ASB to damp the strong resonances when the steam flow increases, which represents an important reduction in the acoustic loads to the steam dryer.

  3. Predictions by the proper orthogonal decomposition reduced order methodology regarding non-linear BWR stability

    Energy Technology Data Exchange (ETDEWEB)

    Prill, Dennis; Class, Andreas G. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). AREVA Nuclear Professional School (ANPS)

    2013-07-01

    Unexpected non-linear boiling water reactor (BWR) instability events in various plants, e.g. LaSalle II in 1988 and Oskarshamn II in 1990 amongst others, emphasize the major safety relevance and the existence of parameter regions with unstable behavior. A detailed description of the complete dynamical non-linear behavior is of paramount importance for BWR operation. An extension of state-of-the-art methodology towards a more general stability description, also applicable in the non-linear region, could lead to a deeper understanding of non-linear BWR stability phenomena. With the intention of a full non-linear stability analysis of the two-phase BWR system, the present paper aims at a general non-linear methodology capable to achieve reliable and numerical stable reduced order models (ROMs), representing the dynamical behavior of an original system based on a small number of transients. Model-specific options and aspects of the proposed methodology are focused on and illustrated by means of a strongly non-linear dynamical system showing complex oscillating behavior. Prediction capability of the proposed methodology is also addressed. (orig.)

  4. Estimation of the activity and isotopic composition of the fuel elements of the reactor in decaying; Estimacion de la actividad y composicion isotopica de los elementos combustibles del reactor en decaimiento

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-03-15

    At the present time its are had 59 fuel elements, 3 control bars with follower and 2 instrumented irradiated fuels that its are decaying in the pool of the reactor. The burnt one that its have these fuels is not uniform, the quantity of U-235 that contain at the moment it varies between 33.5 g up to 35.2 and its have a decay of at least 12 years. The burnt of the fuels was obtained with the CREMAT code, this burnt was takes like base to estimate the current isotopic inventory and the activity of the same ones using the ORIGEN2 code. (Author)

  5. Fuel elements assembling for the DON project exponential experience; Montaje de los elementos combustibles para la experiencia exponencial del proyecto DON

    Energy Technology Data Exchange (ETDEWEB)

    Anca Abati, R. de

    1966-07-01

    It is described the fuel unit used in the DON exponential experience, the manufacturing installments and tools as well as the stages in the fabrication.These 74 elements contain each 19 cartridges loaded with synterized urania, uranium carbide and indium, gold, and manganese probes. They were arranged in calandria-like tubes and the process-tube. This last one containing a cooling liquid simulating the reactor organic. Besides being used in the DON reactor exponential experience they were used in critic essays by the substitution method in the French reactor AQUILON II. (Author) 6 refs.

  6. Approaching six sigma quality in nuclear fuel fabrication - an Indian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Laxminarayana, B.; Kamalesh Kumar, B.; Saratchandran, N.; Ganguly, C. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    1999-07-01

    Nuclear Fuel complex (NFC), Hyderabad, manufactures fuel and structural components for both Boiling Water Reactors (BWR) and Pressurised Heavy water (PHWR). Customer and product quality has always been assigned top priority at NFC. At present, NFC is pursuing the goal of attaining six sigma quality levels, the paper brings out the details of various steps initiated and progress made towards the same, with a special reference to end closure welds. (author)

  7. Alternatives for nuclear fuel disposal

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Badillo A, V.; Palacios H, J.; Celis del Angel, L., E-mail: ramon.ramirez@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2010-10-15

    The spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments in the construction of repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution? or, What is the best technology for a specific solution? Many countries have deferred the decision on selecting an option, while other works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However, currently is under process an extended power up rate to 20% of their original power and also there are plans to extend operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. So this work describes some different alternatives that have been studied in Mexico to define which will be the best alternative to follow. (Author)

  8. Disposal of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report addresses the topic of the mined geologic disposal of spent nuclear fuel from Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). Although some fuel processing options are identified, most of the information in this report relates to the isolation of spent fuel in the form it is removed from the reactor. The characteristics of the waste management system and research which relate to spent fuel isolation are discussed. The differences between spent fuel and processed HLW which impact the waste isolation system are defined and evaluated for the nature and extent of that impact. What is known and what needs to be determined about spent fuel as a waste form to design a viable waste isolation system is presented. Other waste forms and programs such as geologic exploration, site characterization and licensing which are generic to all waste forms are also discussed. R and D is being carried out to establish the technical information to develop the methods used for disposal of spent fuel. All evidence to date indicates that there is no reason, based on safety considerations, that spent fuel should not be disposed of as a waste.

  9. Flex concept for US-A BWR extended loss of AC power events

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Aoyagi, Y.; Kataoka, K. [Toshiba Corporation, Kawasaki, Kanagawa (Japan); Thomas, S.; Mookhoek, B., E-mail: jim.powers@toshiba.com [Nuclear Innovation North America, Lake Jackson, Texas (United States)

    2015-09-15

    The US-Advanced Boiling Water Reactor (US-A BWR), certified by the US NRC, is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (Stp 3 and 4) Combined License Application (Cola) and incorporates numerous design and technology enhancements for improved safety performance. Nuclear Innovation North America (NINA) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The Stp 3 and 4 project has finished the US NRC technical review of the Cola, and the final safety evaluation report (FSER) is scheduled to be issued by the US NRC in 2015. Following the accident at the Fukushima Dai-ichi plant, the US-A BWR was reviewed for Beyond Design Basis Event (BDBE) safety using industry and regulatory guidance for US NRC Order EA-12-049 Order Modifying Licenses with Regard to Requirements for Mitigation of Beyond Design Basis External Events (BDBEE). By virtue of the design approach, the US-A BWR is capable of providing an indefinite coping period for a station blackout. The use of installed systems with extended coping times is a significant advantage of the US-A BWR compared to most of the plants currently operating in the U.S. In addition, the Stp 3 and 4 design incorporates enhancements consistent with the current US industry Diverse and Flexible Coping Strategies (Flex) initiative. The final technical topic requiring review by the US NRC Advisory Committee on Reactor Safeguards was the Flex Integrated Plan submitted by NINA, and this review was successfully completed. This paper summarizes the progress of the US-A BWR in licensing the Flex Integrated Plan for the project, and describes the technology and features of the US-A BWR design that contribute to safety post-Fukushima. It also provides an informational comparison of the design capabilities of the US-A BWR for extreme external events, and relates these capabilities to re

  10. Assessment of the Prony's method for BWR stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Villafuerte, Javier, E-mail: javier.ortiz@inin.gob.m [Gerencia de Ciencias Aplicadas, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Edo. Mexico 52750 (Mexico); Castillo-Duran, Rogelio, E-mail: rogelio.castillo@inin.gob.m [Gerencia de Ciencias Aplicadas, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Edo. Mexico 52750 (Mexico); Palacios-Hernandez, Javier C., E-mail: javier.palacios@inin.gob.m [Gerencia de Ciencias Aplicadas, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Edo. Mexico 52750 (Mexico)

    2011-05-15

    Highlights: This paper describes a method to determine the degree of stability of a BWR. Performance comparison between Prony's and common AR techniques is presented. Benchmark data and actual BWR transient data are used for comparison. DR and f results are presented and discussed. The Prony's method is shown to be a robust technique for BWR stability. - Abstract: It is known that Boiling Water Reactors are susceptible to present power oscillations in regions of high power and low coolant flow, in the power-flow operational map. It is possible to fall in one of such instability regions during reactor startup, since both power and coolant flow are being increased but not proportionally. One other possibility for falling into those areas is the occurrence of a trip of recirculation pumps. Stability monitoring in such cases can be difficult, because the amount or quality of power signal data required for calculation of the stability key parameters may not be enough to provide reliable results in an adequate time range. In this work, the Prony's Method is presented as one complementary alternative to determine the degree of stability of a BWR, through time series data. This analysis method can provide information about decay ratio and oscillation frequency from power signals obtained during transient events. However, so far not many applications in Boiling Water Reactors operation have been reported and supported to establish the scope of using such analysis for actual transient events. This work presents first a comparison of decay ratio and frequency oscillation results obtained by Prony's method and those results obtained by the participants of the Forsmark 1 and 2 Boiling Water Reactor Stability Benchmark using diverse techniques. Then, a comparison of decay ratio and frequency oscillation results is performed for four real BWR transient event data, using Prony's method and two other techniques based on an autoregressive modeling. The four

  11. Simulation of a hybrid fuel cell electric powered vehicle; intermediary elements of power storage; Simulation d'un vehicule electrique a source hybridee pile a combustible; elements intermediaires de stockage de la puissance

    Energy Technology Data Exchange (ETDEWEB)

    Candusso, D.; Rulliere, E.; Yonnet, J.P. [Ecole Nationale Superieure d' Ingenieurs Electriciens de Grenoble, 38 - Saint Martin d' Heres (France); Baurens, P. [CEA/Grenoble, Dept. d' Etudes des Materiaux, DEM, 38 (France)

    2000-07-01

    Studies carried out by the LEG ('Laboratoire Electrotechnique de Grenoble') on the modelling of the different elements of the traction chains of batteries electric powered vehicles (motors, electric converters..) and on the coupling batteries - super-capacitors by a converter allowing to manage the energy exchanges between these different storage elements are basic works for the future studies of fuel cells vehicles. In this article is shown that the electric size range of each components of the traction chain is strongly conditioned by those of its neighbours and that a global simulation of the chain is a precious tool of decision assistance. The interest to combine the energy source is presented too. (O.M.)

  12. COMPARISON OF PARTICLE SIZE DISTRIBUTIONS AND ELEMENTAL PARTITIONING FROM THE COMBUSTION OF PULVERIZED COAL AND RESIDUAL FUEL OIL

    Science.gov (United States)

    The paper gives results of experimental efforts in which three coals and a residual fuel oil were combusted in three different systems simulating process and utility boilers. Particloe size distributions (PSDs) were determined using atmospheric and low-pressure impaction, electr...

  13. Spatially resolved modelling of the fission product behaviour in a HTR-core with spherical or prismatic fuel elements; Raeumlich hoch aufgeloeste Modellierung des Spaltproduktverhaltens in einem HTR-Core mit kugelfoermigen oder prismatischen Brennelementen

    Energy Technology Data Exchange (ETDEWEB)

    Xhonneux, Andre

    2014-07-01

    One of the most important aspects during the licensing procedure of nuclear facilities is the release of radioactive isotopes. The transport from the origin to the environment is called release chain. In the scope of this work, the spatially distributed fission product release from both spherical and prismatic fuel elements, the transport with the coolant as well as the deposition on reactor internals are simulated in detail. The fission product release codes which were developed at Forschungszentrum Juelich are analyzed, shortcomings are identified and resolved. On this basis, a consistent simulation module, named STACY, was developed, which contains all capabilities of the stand-alone codes and at the same time exceeds the methodology towards new aspects. The physics models were extended, for example to take the radial temperature profile within the fuel element and the realistic time-depending nuclide inventory into account. A central part of this work is the automated treatment of the release behavior of a representative number of fuel elements. This allows for a spatially resolved release calculation, where an individual release rate is calculated for each space region. The coupling with the depletion code Topological Nuclide Transmutation (TNT) allows for conducting an individual depletion calculation for each considered fuel element. It is shown, that the released inventory is representative for a certain number of fuel elements. By using this model, the fission product release is being studied for a reference plant (HTR-Modul). Both the releases from the equilibrium core as well as the release during a core heat-up after a fast depressurization accident are being studied. In comparison to former studies, the cumulative release of long-lived nuclides during the core heat-up phase is lower and the release of short-lived nuclides is about two times higher. The release calculation can also be conducted for prismatic fuel elements (e.g. those of the Japanese

  14. Thermohydraulic study of a MTR fuel element aimed at the construction of an irradiation facility; Estudo termohidraulico de um elemento combustivel tipo MTR visando a construcao de um dispositivo de irradiacao

    Energy Technology Data Exchange (ETDEWEB)

    Coragem, Helio Boemer de Oliveira

    1980-07-01

    A thermohydraulic study of MTR fuel element is presented as a basic requirement for the development of an irradiation facility for testing fuel elements. A computer code named 'Thermo' has been developed for this purpose, which can stimulate different working conditions, such as, cooling, power elements and neutron flux, performing all pertinent thermohydraulic calculations. Thermocouples were used to measure the temperature gradients of the cooling fluid throughout the IEAR-1 reactor core. All experimental data are in good agreement with the theoretical model applied in this work. Finally, a draft of the proposed facility and its safety system is presented. (author)

  15. FINITE-ELEMENT ANALYSIS OF ROCK FALL ON UNCANISTERED FUEL WASTE PACKAGE DESIGNS (SCPB: N/A)

    Energy Technology Data Exchange (ETDEWEB)

    Z. Ceylan

    1996-10-18

    The objective of this analysis is to explore the Uncanistered Fuel (UCF) Tube Design waste package (WP) resistance to rock falls. This analysis will also be used to determine the size of rock that can strike the WP without causing failure in the containment barriers from a height based on the starter tunnel dimensions. The purpose of this analysis is to document the models and methods used in the calculations.

  16. 球形燃料元件中包覆燃料颗粒的化学分析%Chemical analysis of coated particles in spherical fuel element

    Institute of Scientific and Technical Information of China (English)

    郑文革; 倪晓军

    2001-01-01

    The free uranium content (the ratio of free uranium which is notentirely coated with SiC layer in coated fuel particles to total uranium in coated fuel particles) and the uranium content were studied and determined by laser-induced fluorimetric method and titration with a potentiometer. The sample was burned in air first, then immersed and refluxed in nitric acid to separate the free uranium with coated fuel particles to the nitric acid solution. The uranium content in sample solution can be directly measured by laser-induced fluorimetric method, other elements had no interference on the determination of uranium. The method is simpler, faster and more accurate than traditional method in uranium analysis. The method has low measurement error of below 10%, and satisfies the needs of the specifications in the manufacture of coated fuel particles.%报道了高温气冷堆球形燃料元件中包覆燃料颗粒的表面铀沾污、自由铀含量及包覆燃料颗粒的装铀量等性能指标的测试方法、范围及测量误差。利用激光荧光法测量并计算了包覆燃料颗粒中的自由铀含量及表面铀沾污,利用电位滴定法测量了包覆燃料颗粒的装铀量。结果表明,经4层连续包覆的包覆燃料颗粒的质量符合并满足高温气冷堆球形燃料元件对包覆燃料颗粒的设计要求。

  17. Validation of the CASMO-4 code against SIMS-measured spatial gadolinium distributions inside a BWR pin

    Energy Technology Data Exchange (ETDEWEB)

    Holzgrewe, F.; Gavillet, D.; Restani, R.; Zimmermann, M.A

    2000-07-01

    The purpose of the present study was to establish a database, useful for the assessment of the predictive capabilities of assembly burnup codes with respect to the depletion of the burnable absorber gadolinium (Gd). An SVEA-96 fuel assembly containing one unique Gd rod, with an initial Gd{sub 2}O{sub 3}-content of 9 wt%, was irradiated for one cycle in a Swiss Boiling Water Reactor (BWR), and then transported to the PSI hotcells for post-irradiation examination. Relative radial and azimuthal Gd distributions were obtained from Secondary Ion Mass Spectrometry (SIMS) at three axial positions. Two perpendicular line scans were performed at each position in order to capture the expected asymmetry in the Gd depletion. Since such high-spatial-resolution experimental data for individual fuel pins are quite rare, they form a valuable basis for the further validation of the calculational methods in reactor physics codes. The goal of this study was to contribute to the validation of the micro-region depletion model of CASMO-4 with respect to its standard application of generating two-group cross sections for the 3-D core simulator SIMULATE-3. The only notable difference to the standard application is a more detailed noding scheme for the Gd pin, required to obtain an improved resolution of the calculated distributions. The comparison of measurements with calculational results was found to be quite insensitive to the axial position, and the agreement was found to be very good for all isotopes investigated. The two important neutron-absorbing isotopes {sup 155} Gd and {sup 157} Gd, in particular, show excellent agreement. In conclusion, the CASMO-4 micro-region depletion model has been demonstrated to accurately predict the evolution of the radial distribution of the burnable absorber gadolinium. (authors)

  18. Current and anticipated use of thermal-hydraulic codes for BWR transient and accident analyses in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Kenji; Ebata, Shigeo [Toshiba Corp., Yokohama (Japan)

    1997-07-01

    This paper summarizes the current and anticipated use of the thermal-hydraulic and neutronic codes for the BWR transient and accident analyses in Japan. The codes may be categorized into the licensing codes and the best estimate codes for the BWR transient and accident analyses. Most of the licensing codes have been originally developed by General Electric. Some codes have been updated based on the technical knowledge obtained in the thermal hydraulic study in Japan, and according to the BWR design changes. The best estimates codes have been used to support the licensing calculations and to obtain the phenomenological understanding of the thermal hydraulic phenomena during a BWR transient or accident. The best estimate codes can be also applied to a design study for a next generation BWR to which the current licensing model may not be directly applied. In order to rationalize the margin included in the current BWR design and develop a next generation reactor with appropriate design margin, it will be required to improve the accuracy of the thermal-hydraulic and neutronic model. In addition, regarding the current best estimate codes, the improvement in the user interface and the numerics will be needed.

  19. Simulation of the automatic depressurization system (Ads) for a boiling water reactor (BWR) based on RELAP; Simulacion del sistema de despresurizacion automatica (ADS) para un reactor de agua en ebullicion (BWR) basado en RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez G, C.; Chavez M, C., E-mail: ces.raga@gmail.com [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-10-15

    The automatic depressurization system (Ads) of the boiling water reactor (BWR) like part of the emergency cooling systems is designed to liberate the vapor pressure of the reactor vessel, as well as the main vapor lines. At the present time in the Engineering Faculty, UNAM personnel works in the simulation of the Laguna Verde reactor based on the nuclear code RELAP/SCADAP and in the incorporation to the same of the emergency cooling systems. The simulation of the emergency cooling systems began with the inclusion of two hydrodynamic volumes, one source and another drain, and the incorporation of the initiation logic for each emergency system. In this work is defined and designed a simplified model of Ads of the reactor, considering a detail level based on the main elements that compose it. As tool to implement the proposed model, the RELAP code was used. The simulated main functions of Ads are centered in the quick depressurization of the reactor by means of the vapor discharge through the relief/safety valves to the suppression pool, and, in the event of break of the main vapor line, the reduction of the vessel pressure operates for that the cooling systems of the core to low pressure (Lpcs and Lpci) they can begin their operation. (Author)

  20. Analysis by the Monte Carlo method of doses around the pool of storage of the control rods irradiated in a BWR reactor; Analisis mediante el metodo de Monte Carlo de las dosis alrededor de la piscina de almacenamiento de las barras de control irradiadas en un reactror BWR

    Energy Technology Data Exchange (ETDEWEB)

    Rodenas, J.; Gallardo, S.

    2011-07-01

    The control rods of a boiling water reactor (BWR) are subject to a neutron flux and thus become activated during their stay in the reactor core. Activation occurs especially in the stainless steel components and impurities. The activity generated results in a dose around the bar, while it le unimportant in the reactor, but to be taken into account when removed f ron it. The bars drawn are stored on hangers placed in the storage pools of spent fuel f ron the plant. Each hanger 12 accommodates control rods and are arranged so that at least three meters of water abode the heads of the control rods. The dose received by potentially exposed workers who are in the vicinity of the storage must be calculated to ensure adequate protection of the came. This dose can be decreased significantly by changing the arrangement of the bars on hangers.

  1. Multivariate analysis of gamma spectra to characterize used nuclear fuel

    Science.gov (United States)

    Coble, Jamie; Orton, Christopher; Schwantes, Jon

    2017-04-01

    The Multi-Isotope Process (MIP) Monitor provides an efficient means to monitor the process conditions in used nuclear fuel reprocessing facilities to support process verification and validation. The MIP Monitor applies multivariate analysis to gamma spectroscopy of key stages in the reprocessing stream in order to detect small changes in the gamma spectrum, which may indicate changes in process conditions. This research extends the MIP Monitor by characterizing a used fuel sample after initial dissolution according to the type of reactor of origin (pressurized or boiling water reactor; PWR and BWR, respectively), initial enrichment, burn up, and cooling time. Simulated gamma spectra were used to develop and test three fuel characterization algorithms. The classification and estimation models employed are based on the partial least squares regression (PLS) algorithm. A PLS discriminate analysis model was developed which perfectly classified reactor type for the three PWR and three BWR reactor designs studied. Locally weighted PLS models were fitted on-the-fly to estimate the remaining fuel characteristics. For the simulated gamma spectra considered, burn up was predicted with 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment with approximately 2% RMSPE. This approach to automated fuel characterization can be used to independently verify operator declarations of used fuel characteristics and to inform the MIP Monitor anomaly detection routines at later stages of the fuel reprocessing stream to improve sensitivity to changes in operational parameters that may indicate issues with operational control or malicious activities.

  2. {alpha} grain refining and metallurgical study of alloyed uranium, Sicral F1, used for fuel elements; Affinage du grain {alpha} et etude metallurgique de l'alliage d'uranium sicral F1 pour elements combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Magnier, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    This study was made to know more about grain refining in low alloyed uranium of composition not very different from SICRAL F 1. Alpha grain refining of fuel elements made of these alloys was studied after casting and quenching by the methods used for mass production. The author describes the effect: - of the metallurgical history before quenching: - casting - purity - rate of solidification - of quenching parameters: - annealing temperature before quenching - annealing time - quenching rate - of the composition of the alloy. For the graphite gas fuel elements of various dimensions, he suggests some modifications to give a better adaptation of fabrication to size. He describes the grain refining made during quenching and the {beta} -> {alpha} and {gamma} -> {alpha} transformation types. He proposes the use of a U-Fe-Si especially useful from the point of view of grain refining. (author) [French] Le but de l'etude est de determiner les facteurs metallurgiques favorables a l'affinage du grain {alpha} des alliages d'uranium a tres faibles teneurs en elements d'addition voisins du SICRAL F 1 au cours du cycle de fabrication et de trempe industrielle des elements combustibles nucleaires prepares avec ces alliages. L'auteur met en evidence l'influence: - de l'histoire metallurgique avant trempe: - coulee - teneur en impuretes - vitesse de solidification - des parametres de la trempe: - temperature de trempe - temps et maintien a cette temperature - vitesse de trempe - des variations de composition de l'alliage. Il envisage les modifications a apporter au cycle de fabrication du SICRAL F 1 de facon a l'adapter aux differentes geometries des elements combustibles des reacteurs de la filiere graphite-gaz. L'auteur presente a cette occasion les mecanismes de l'affinage du grain {alpha} par trempe dans les alliages d'uranium et les modes de transformation {beta} -> {alpha} et {gamma} -> {alpha} au cours de la trempe

  3. Properties of unirradiated fuel element graphites H-451 and SO818. [Bulk density, tensile properties, thermal expansion, thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Engle, G.B.; Johnson, W.R.

    1976-10-08

    Nuclear graphites H-451, lot 440 (Great Lakes Carbon Corporation (GLCC)), and SO818 (Airco Speer Division, Air Reduction Corporation (AS)) are described, and physical, mechanical, and chemical property data are presented for the graphites in the unirradiated state. A summary of the mean values of the property data and of data on TS-1240 and H-451, lot 426, is tabulated. A direct comparison of H-451, lot 426, chosen for Fort St. Vrain (FSV) fuel reload production, TS-1240, and SO818 may be made from the table. (auth)

  4. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, Nathan M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wirth, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling the integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and

  5. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, Nathan M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wirth, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling the integral thermo-mechanical performance of FeCrAl cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and

  6. Development and optimization of the procedure of gas- chromatographic elemental analysis of high-carbon solid fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, V.V.; Shvykin, A.Y.; Proskuryakov, V.A.; Podshibyakin, S.I.; Chilachava, K.B.; Khmarin, E.M.; Solov' ev, A.S. [Tolstoy Tula State Pedagogical University, Tula (Russian Federation)

    2002-07-01

    A procedure was developed for gas-chromatographic elemental analysis of coals. The conditions of exhaustive oxidation of weighed microportions of the coals were optimized. The procedure of calculating the results of analysis was modified with the aim to improve its reproducibility.

  7. Fission product release model for failed plate-type fuel element and storage under water; Modelo para liberacao de produtos de fissao por placa combustivel falhada e armazenada sob agua

    Energy Technology Data Exchange (ETDEWEB)

    Terremoto, L.A.A.; Zeituni, C.A.; Silva, J.E.R. da; Castanheira, M.; Lucki, G.; Silva, A.T. e; Teodoro, C.A.; Damy, M. de A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear]. E-mail: laaterre@ipen.br

    2005-07-01

    Plate-type fuel elements burned-up inside the core of nuclear research reactors are stored mainly under deionized water of storage pools. When cladding failure occurs in such elements, radioactive fission products are released into the storage pool water. This work proposes a model to describe the release mechanism considering the diffusion through a postulated small cylindrical failure. As a consequence, an analytical expression is obtained for the activity released into the water as a function of the total storage time of a failed fuel plate. The proposed model reproduces the linear increasing of {sup 137}Cs specific activity observed in sipping tests already performed on failed plate-type fuel elements. (author)

  8. Year-round Source Contributions of Fossil Fuel and Biomass Combustion to Elemental Carbon on the North Slope Alaska Utilizing Radiocarbon Analysis

    Science.gov (United States)

    Barrett, T. E.; Gustafsson, O.; Winiger, P.; Moffett, C.; Back, J.; Sheesley, R. J.

    2015-12-01

    It is well documented that the Arctic has undergone rapid warming at an alarming rate over the past century. Black carbon (BC) affects the radiative balance of the Arctic directly and indirectly through the absorption of incoming solar radiation and by providing a source of cloud and ice condensation nuclei. Among atmospheric aerosols, BC is the most efficient absorber of light in the visible spectrum. The solar absorbing efficiency of BC is amplified when it is internally mixed with sulfates. Furthermore, BC plumes that are fossil fuel dominated have been shown to be approximately 100% more efficient warming agents than biomass burning dominated plumes. The renewal of offshore oil and gas exploration in the Arctic, specifically in the Chukchi Sea, will introduce new BC sources to the region. This study focuses on the quantification of fossil fuel and biomass combustion sources to atmospheric elemental carbon (EC) during a year-long sampling campaign in the North Slope Alaska. Samples were collected at the Department of Energy Atmospheric Radiation Measurement (ARM) climate research facility in Barrow, AK, USA. Particulate matter (PM10) samples collected from July 2012 to June 2013 were analyzed for EC and sulfate concentrations combined with radiocarbon (14C) analysis of the EC fraction. Radiocarbon analysis distinguishes fossil fuel and biomass burning contributions based on large differences in end members between fossil and contemporary carbon. To perform isotope analysis on EC, it must be separated from the organic carbon fraction of the sample. Separation was achieved by trapping evolved CO2 produced during EC combustion in a cryo-trap utilizing liquid nitrogen. Radiocarbon results show an average fossil contribution of 85% to atmospheric EC, with individual samples ranging from 47% to 95%. Source apportionment results will be combined with back trajectory (BT) analysis to assess geographic source region impacts on the EC burden in the western Arctic.

  9. Finite element based stress analysis of BWR internals exposed to accident loads

    Energy Technology Data Exchange (ETDEWEB)

    Altstadt, E.; Weiss, F.P.; Werner, M.; Willschuetz, H.G.

    1998-10-01

    During a hypothetical accident the reactor pressure vessel internals of boiling water reactors can be exposed to considerable loads resulting from temperature gradients and pressure waves. Three dimensional FE models were developed for the core shroud, the upper and the lower core supporting structure, the steam separator pipes and the feed water distributor. The models of core shroud, upper core structure and lower core structure were coupled by means of the substructure technique. All FE models can be used for thermal and for structural mechanical analyses. As an example the FE analysis for the case of a station black-out scenario (loss of power supply for the main circulating pumps) with subsequent emergency core cooling is demonstrated. The transient temperature distributions within the core shroud and within the steam dryer pipes as well were calculated based on the fluid temperatures and the heat transfer coefficients provided by thermo-hydraulic codes. At the maximum temperature gradients in the core shroud, the mechanical stress distribution was computed in a static analysis with the actual temperature field being the load. (orig.)

  10. Status report: Intergranular stress corrosion cracking of BWR core shrouds and other internal components

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    On July 25, 1994, the US Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 94-03 to obtain information needed to assess compliance with regulatory requirements regarding the structural integrity of core shrouds in domestic boiling water reactors (BWRs). This report begins with a brief description of the safety significance of intergranular stress corrosion cracking (IGSCC) as it relates to the design and function of BWR core shrouds and other internal components. It then presents a brief history of shroud cracking events both in the US and abroad, followed by an indepth summary of the industry actions to address the issue of IGSCC in BWR core shrouds and other internal components. This report summarizes the staff`s basis for issuing GL 94-03, as well as the staff`s assessment of plant-specific responses to GL 94-03. The staff is continually evaluating the licensee inspection programs and the results from examinations of BWR core shrouds and other internal components. This report is representative of submittals to and evaluations by the staff as of September 30, 1995. An update of this report will be issued at a later date.

  11. Characterization of corrosion layers on irradiated and non-irradiated surfaces in BWR conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kysela, J.; Balek, V.; Zmitko, M.; Brozova, A.; Burda, J. [Nuclear Research Inst., Rez (Czech Republic); Hoffmann, H.; Ruehle, W. [VGB Essen (Germany); Bezdicka, P. [Institute of Inorganic Chemistry, ASCR, Rez (Czech Republic)

    2002-07-01

    Stress corrosion cracking of low-alloyed steel 22NiMoCr37 is evaluated with the goal to determine crack growth rate in irradiated steel under conditions simulating closely conditions of BWR RPV under operation. For the experiment, in pile BWR experimental loop has been built at Nuclear Research Institute, Rez. During the experiment, specimens are loaded by cyclic and constant load. Crack growth is monitored by means of potential drop measurement and COD. Corrosion layers formed on specimens in reactor water loop exposed to BWR primary water chemistry and radiation were studied. Two sets of specimens were placed in loop channels. One set of specimens was situated in reactor conditions and the second set out of reactor, other parameters like water chemistry (e.g. concentration of hydrogen, oxygen and conductivity), temperature and flow rate were identical. By means of this an effect of radiation could be studied. The differences in chemical composition, structure and microstructure of corrosion products were characterized by SEM and X-ray powder diffractometry. The differences in microstructure of corrosion layer formed under different conditions were observed. (authors)

  12. Reports of the 8th new type nuclear fuel materials studying meeting. Present status of the plutonium mixed oxide fuel application

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This was the reports of the 8th New Type Nuclear Fuel Materials Studying Meeting, as a circle of Yayoi Studying Group meeting held on March 17, 1997. This meeting was added to a subtitle of `Present status and problems of plutonium mixed oxide application`, which had 12 lectures. In this meeting, for the MOX fuels putting the most attention in the field of nuclear fuel development at present, many specialists introduced faithfully on present status and problems of its nuclear features, reactor core design, and application to light water reactor and fast reactor. And, following reports were executed: (A) On feature of plutonium and reactor core design; (1) nuclear feature of plutonium, (2) nuclear design of BWR, (3) nuclear design of PWR, (4) nuclear design of FBR, and (5) and (6) properties of the MOX fuel; (B) On application of plutonium to the light water reactor; (1) preparation of the MOX fuel for light water reactor, (2) radiation behavior and using result of the MOX fuel for BWR, and (3) radiation behavior and using result of the MOX fuel for PWR; and (C) On application of plutonium to the fast reactor; (1) fuel preparation, (2) radiation behavior, and (3) reprocessing of the fast reactor fuel. (G.K.)

  13. Decay profiles of {beta} and {gamma} for a radionuclide inventory in equilibrium cycle of a BWR type reactor; Perfiles de decaimiento de radiacion {beta} y {gamma} para un inventario de radionuclidos en ciclo de equilibrio de un reactor tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Salaices, M.; Sandoval, S.; Ovando, R. [Instituto de Investigaciones Electricas. Gerencia de Energia Nuclear, Av. Reforma 113 Col. Palmira. 62490 Cuernavaca, Morelos (Mexico)]. e-mail: sal@iie.org.mx

    2007-07-01

    Presently work the {beta} and {gamma} radiation decay profiles for a radionuclides inventory in equilibrium cycle of a BWR type reactor is presented. The profiles are presented in terms of decay in the activity of the total inventory as well as of the chemical groups that conform the inventory. In the obtaining of the radionuclides inventory in equilibrium cycle the ORIGEN2 code, version 1 was used, which simulates fuel burnup cycles and it calculates the evolution of the isotopic composition as a result of the burnt one, irradiation and decay of the nuclear fuel. It can be observed starting from the results that the decrease in the activity for the initial inventory and the different chemical groups that conform it is approximately proportional to the base 10 logarithm of the time for the first 24 hours of having concluded the burnt one. It can also be observed that the chemical groups that contribute in more proportion to the total activity of the inventory are the lanthanides-actinides and the transition metals, with 39% and 28%, respectively. The groups of alkaline earth metals, halogens, metalloids, noble gases and alkaline metals, contribute with percentages that go from the 8 to 5%. The groups that less they contribute to the total activity of the inventory they are the non metals and semi-metals with smaller proportions that 1%. The chemical groups that more contribute to the energy of {beta} and {gamma} radiation its are the transition metals and the lanthanides-actinides with a change in the order of importance at the end of the 24 hours period. The case of the halogens is of relevance for the case of the {gamma} radiation energy due that occupying the very near third site to the dimensions of the two previous groups. Additionally, the decay in the activity for the total inventory and the groups that conform it can be simulated by means of order 6 polynomials or smaller than describe its behavior appropriately. The results presented in this work, coupled

  14. Spent fuel characteristics & disposal considerations

    Energy Technology Data Exchange (ETDEWEB)

    Oversby, V.M.

    1996-06-01

    The fuel used in commercial nuclear power reactors is uranium, generally in the form of an oxide. The gas-cooled reactors developed in England use metallic uranium enclosed in a thin layer of Magnox. Since this fuel must be processed into a more stable form before disposal, we will not consider the characteristics of the Magnox spent fuel. The vast majority of the remaining power reactors in the world use uranium dioxide pellets in Zircaloy cladding as the fuel material. Reactors that are fueled with uranium dioxide generally use water as the moderator. If ordinary water is used, the reactors are called Light Water Reactors (LWR), while if water enriched in the deuterium isotope of hydrogen is used, the reactors are called Heavy Water reactors. The LWRs can be either pressurized reactors (PWR) or boiling water reactors (BWR). Both of these reactor types use uranium that has been enriched in the 235 isotope to about 3.5 to 4% total abundance. There may be minor differences in the details of the spent fuel characteristics for PWRs and BWRs, but for simplicity we will not consider these second-order effects. The Canadian designed reactor (CANDU) that is moderated by heavy water uses natural uranium without enrichment of the 235 isotope as the fuel. These reactors run at higher linear power density than LWRs and produce spent fuel with lower total burn-up than LWRs. Where these difference are important with respect to spent fuel management, we will discuss them. Otherwise, we will concentrate on spent fuel from LWRs.

  15. Damage by radiation in structural materials of BWR reactor vessels; Dano por radiacion en materiales estructurales de vasijas de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Robles, E.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E. [Departamento de Sintesis y Caracterizacion de Materiales, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The structural materials which are manufactured the pressure vessels of the BWR reactors undergo degradation in their mechanical properties mainly due to the damage produced by the fast neutrons (E> 1 MeV) coming from the reactor core. The mechanisms of neutron damage in this type of materials are experimentally studied, through the irradiation of vessel steel in experimental reactors for a quickly ageing. Alternately the neutron damage through steel irradiation with heavy ions is simulated. In this work the first results of the damage induced by irradiation of a similar steel to the vessel of a BWR reactor are shown. The irradiation was performed with fast neutrons (E> 1 MeV, fluence of 1.45 x 10{sup 18} n/cm{sup 2}) in the TRIGA Mark III Salazar reactor and separately with Ni{sup +3} ions in a Tandetrom accelerator (E= 4.8 MeV and an ion flux rank of 0.1 to 53 ions/A{sup 2}). (Author)

  16. Logical model for the control of a BWR turbine;Modelo logico para el control de una turbina de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Vargas O, Y. [Universidad del Valle de Mexico, Campus Toluca, Av. Las Palmas No. 136, Col. San Jorge Pueblo Nuevo, 52140 Metepec, Estado de Mexico (Mexico); Amador G, R.; Ortiz V, J.; Castillo D, R., E-mail: yonaeton@hotmail.co [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-07-01

    In this work a design of a logical model is presented for the turbine control of a nuclear power plant with a BWR like energy source. The model is sought to implement later on inside the thermal hydraulics code of better estimate RELAP/SCDAPSIM. The logical model is developed for the control and protection of the turbine, and the consequent protection to the BWR, considering that the turbine control will be been able to use for one or several turbines in series. The quality of the present design of the logical model of the turbine control is that it considers the most important parameters in the operation of a turbine, besides that they have incorporated to the logical model the secondary parameters that will be activated originally as true when the turbine model is substituted by a detailed model. The development of the logical model of a turbine will be of utility in the short and medium term to carry out analysis on the turbine operation with different operation conditions, of vapor extraction, specific steps of the turbine to feed other equipment s, in addition to analyze the separate and the integrated effect. (Author)

  17. The health physics of installations for decladding irradiated fuels or for handling radio-elements at Marcoule; La radioprotection des installations de degainage des combustibles irradies et des radio-elements a Marcoule

    Energy Technology Data Exchange (ETDEWEB)

    Chassany, J.; Guillermin, P.; Mallet, P. [Commissariat a l' Energie Atomique, Centre de Production de Plutonium de Marcoule, 30 - Chusclan (France)

    1966-07-01

    Radiation protection practices for handling reactor fuel elements are described. Elements of considerable specific radioactivity are handled under water. A study was made of water filtration and of ventilation in the building. The installations are divided up into zones depending on the radioactive risks, and the radiation level atmospheric contamination are the object of a systematic control at various points. A description is given of all aspects of health physics which have been encountered during six years: storage, transfer of radioactive material; decladding, rolling, waste disposal, specialized operations, installations in operation and at rest, and transport. In spite of the gradual increase in the activity of these installations, the total doses received by the personnel have hardly altered and the number of cases of physical contamination has diminished. (authors) [French] Dans ces installations, se manipulent sous l'eau des elements a radioactivite specifique considerable. La filtration de l'eau, la ventilation ont ete particulierement etudiees. L'ensemble a ete divise en lieux classes en fonction des risques radioactifs et des appareils controlent en permanence l'irradiation et la contamination atmospherique en certains points. Tous les aspects de la radioprotection resultant de six annees d'experience relatifs: au stockage, au deconteneurage, au degainage, au laminage, a l'evacuation des residus, aux travaux particuliers, installations en marche et a l'arret, et aux transports sont successivement decrits. Malgre l'accroissement progressif de l'activite de cet ensemble, les doses integrees par le personnel n'ont pratiquement pas augmente et le nombre des cas de contamination corporelle a diminue. (auteurs)

  18. Electrolytic reduction of a simulated oxide spent fuel and the fates of representative elements in a Li2O-LiCl molten salt

    Science.gov (United States)

    Park, Wooshin; Choi, Eun-Young; Kim, Sung-Wook; Jeon, Sang-Chae; Cho, Young-Hwan; Hur, Jin-Mok

    2016-08-01

    A series of electrolytic reduction experiments were carried out using a simulated oxide spent fuel to investigate the reduction behavior of elements in a mixed oxide condition and the fates of elements in the reduction process with 1.0 wt% Li2O-LiCl. It was found out that 155% of the theoretical charge was enough to reduce the simulated. Te and Eu were expected to possibly exist in the precipitate and on the anode surface, whereas Ba and Sr showed apparent dissolution behaviors. Rare earths showed relatively low metal fractions from 28.2 to 34.0% except for Y. And the solubility of rare earths was observed to be low due to the low concentration of Li2O. The reduction of U was successful as expected showing 99.8% of a metal fraction. Also it was shown that the reduction of ZrO2 would be effective when a relatively small amount was included in a metal oxide mixture.

  19. Identification of cytoskeletal elements enclosing the ATP pools that fuel human red blood cell membrane cation pumps.

    Science.gov (United States)

    Chu, Haiyan; Puchulu-Campanella, Estela; Galan, Jacob A; Tao, W Andy; Low, Philip S; Hoffman, Joseph F

    2012-07-31

    The type of metabolic compartmentalization that occurs in red blood cells differs from the types that exist in most eukaryotic cells, such as intracellular organelles. In red blood cells (ghosts), ATP is sequestered within the cytoskeletal-membrane complex. These pools of ATP are known to directly fuel both the Na(+)/K(+) and Ca(2+) pumps. ATP can be entrapped within these pools either by incubation with bulk ATP or by operation of the phosphoglycerate kinase and pyruvate kinase reactions to enzymatically generate ATP. When the pool is filled with nascent ATP, metabolic labeling of the Na(+)/K(+) or Ca(2+) pump phosphoproteins (E(Na)-P and E(Ca)-P, respectively) from bulk [γ-(32)P]-ATP is prevented until the pool is emptied by various means. Importantly, the pool also can be filled with the fluorescent ATP analog trinitrophenol ATP, as well as with a photoactivatable ATP analog, 8-azido-ATP (N(3)-ATP). Using the fluorescent ATP, we show that ATP accumulates and then disappears from the membrane as the ATP pools are filled and subsequently emptied, respectively. By loading N(3)-ATP into the membrane pool, we demonstrate that membrane proteins that contribute to the pool's architecture can be photolabeled. With the aid of an antibody to N(3)-ATP, we identify these labeled proteins by immunoblotting and characterize their derived peptides by mass spectrometry. These analyses show that the specific peptides that corral the entrapped ATP derive from sequences within β-spectrin, ankyrin, band 3, and GAPDH.

  20. Finite element analysis of the Space Shuttle Main Engine (SSME) high pressure fuel turbopump turbine blade (HPFTP)

    Science.gov (United States)

    Lee, H. M.; Faile, G. C.; Perkins, L. B.; Yaksh, M. C.

    1989-01-01

    Cracking of the turbine blades of the SSME HPFTP is studied using two- and three-dimensional finite element analysis. The development and composition of the two- and three-dimensional models are described. Analyses are conducted under the speed, pressure, and thermal load conditions that occur during the full power level of the engine. The effects of friction on the two-dimensional model are examined. The strain and life cycle data reveal that the LCF cracking in the first stage is not probable unless the effects of fit-up tolerance between the blade and rotor are present, and for the second stage it is predicted that hydrogen assisted LCF cracking will occur under the present thermal environment. Design modifications to alleviate this cracking are discussed.

  1. PVT modeling of reservoir fluids using PC-SAFT EoS and Soave-BWR EoS

    DEFF Research Database (Denmark)

    Yan, Wei; Varzandeh, Farhad; Stenby, Erling Halfdan

    2015-01-01

    non-cubic EoS models, such as the Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) EoS and the Soave modified Benedict-Webb-Rubin (Soave-BWR) EoS, may partly replace the roles of these classical cubic models in the upstream oil industry. Here, we attempt to make a comparative study...... of non-cubic models (PC-SAFT and Soave-BWR) and cubic models (SRK and PR) in several important aspects related to PVT modeling of reservoir fluids, including density description for typical pure components in reservoir fluids, description of binary VLE, prediction of multicomponent phase envelopes...... and Soave-BWR. For PC-SAFT, new correlations for estimating its model parameters in heptanes plus are developed. The results reveal that the non-cubic models are clearly advantageous in density calculation of pure components. For binary VLE and multicomponent phase envelopes, the results are similar...

  2. Thermal Safety Analysis and Experimental Validation of New Fuel Element Transportation Container%新燃料元件运输容器热工安全分析及试验验证

    Institute of Scientific and Technical Information of China (English)

    郭春秋; 邹佳讯; 衣大勇; 张金山

    2016-01-01

    The new fuel element transportation container is a specific equipment de‐signed for transporting 493 reactor’s fuel elements .In order to insure the safety of fuel elements during transportation and fulfill the requirements of standard GB 11806—2004 ,thermal design calculation and validation experiments were carried out .The accu‐racy of the container’s thermal design was proven by comparing thermal design results with thermal experimental data .The safety of the new fuel elements can be insured and the requirements of GB 11806—2004 can be fulfilled by using the new fuel elements transportation container under both normal transport condition and accidental transport condition .%新燃料元件运输容器是为运输493反应堆燃料元件设计的专用设备。为保证燃料元件在运输过程中的安全性,使运输容器及燃料元件的各项性能指标符合标准GB 11806—2004的要求,对运输容器进行了热工设计计算和验证试验。通过计算与相应热工试验结果的比较,验证了运输容器热工设计的准确性。采用该运输容器运输新燃料元件,在正常运输工况和事故运输工况下可保证燃料元件的安全,完全满足GB 11806—2004的规定。

  3. Effects of temperature distribution on failure probability of coated particles in spherical fuel elements%球形燃料元件温度分布对包覆燃料颗粒失效概率的影响

    Institute of Scientific and Technical Information of China (English)

    张永栋; 林俊; 朱天宝; 张海青; 朱智勇

    2016-01-01

    Background:Particles coated by TRISO (Tristructural isotropic) embedded in spherical fuel elements are used in solid fuel molten salt reactor. Temperature distribution during operation can affect the failure probability of TRISO particles embedded in different parts of fuel elements. Purpose: This study aims to investigate the temperature distribution effects on failure probability of coated fuel particles. Methods: Micro-volume element analysis of temperature distribution effect on the failure probability of coated particles was carried out for the first time, and the impact of spherical fuel element size on the average failure probability of TRISO particles was also evaluated. Results: At a given power density, the failure probability of TRISO particles would be deviated by an order of magnitude when either core temperature or average temperature of the fuel element was used to calculate the average failure probability. With the same power density and the same burnups, the average failure probability of coated particles could be lowered by two orders of magnitude through reducing the diameter of fuel element by 1 cm. Conclusion:It is necessary to take the temperature distribution into account for calculating the failure probability of coated fuel particles. In addition, it is found that the average failure probability of coated fuel particles can be lowered by reducing the sizes of the fuel element. This may be a proper way to secure the fuel elements working at high power densities.%固态熔盐堆采用TRISO (Tristructural isotropic)包覆颗粒球形燃料元件。在运行工况下,燃料元件内部存在一定的温度分布,填充在燃料元件内部不同位置的TRISO颗粒的失效概率会因此受到影响。利用体积微元的方法分析了温度分布对包覆颗粒失效概率的影响,并进一步研究了球形燃料元件尺寸对TRISO颗粒平均失效概率的影响。结果表明,在一定的功率密度下,如果利用球心

  4. The cost of spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Palacios H, J. C.; Badillo, V.; Alonso, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    Spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments, constructing repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution?, or What is the best technology for an specific solution? Many countries have deferred the decision on selecting an option, while others works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However currently, the plants are under a process for extended power up-rate to 20% of original power and also there are plans to extended operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. (Author)

  5. Crack growth tests on a ferritic reactor pressure vessel steel under the simultaneous influence of simulated BWR coolant and irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, H. [VGB PowerTech e.V., Essen (Germany); Huettner, F. [Hamburgische Electricitaets-Werke AG, Hamburg (Germany); Ilg, U. [EnBW Kraftwerke AG, Philippsburg (Germany); Wachter, O. [E.ON Kernkraft GmbH, Hannover(Germany); Widera, M. [RWE Power AG, Essen (Germany); Brozova, A.; Ernestova, M.; Kysela, J.; Vsolak, R. [Nuclear Research Institute Rez plc (Czech Republic)

    2004-07-01

    Crack growth tests under constant load with initial in-situ cycling were performed on the low alloy reactor pressure vessel (RPV) steel 22 NiMoCr 3 7 (A 508 Cl. 2) with the goal to determine crack growth rates of irradiated and non-irradiated steel under the simultaneous influence of simulated BWR coolant and irradiation. The tests were performed under conditions as near as possible to operational conditions in a commercial BWR reactor. The research results are summarized and are compared with international data. (orig.)

  6. Study of transient turbine shot without bypass in a BWR; Estudio del transitorio disparo de turbina sin bypass en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Vallejo Q, J. A.; Martin del Campo M, C.; Fuentes M, L.; Francois L, J. L., E-mail: amhed_jvq@hotmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico)

    2015-09-15

    The study and analysis of operational transients are important for predicting the behavior of a system to short-terms events and the impact that would cause this transition. For the nuclear industry these studies are indispensable due to economic, environmental and social impacts that could result in an accident during the operation of a nuclear reactor. In this paper the preparation, simulation and analysis of results of a turbine shot transient, which is not taken into operation the bypass is presented. The study is realized for a BWR of 2027 MWt, to an intermediate cycle life and using the computer code Simulate-3K a depressurization stage of the vessel is created which shows the response of other security systems and gives a coherent prediction to the event presented type. (Author)

  7. Study of transient rod extraction failure without RBM in a BWR; Estudio del transitorio error de extraccion de barra sin RBM en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Vallejo Q, J. A.; Martin del Campo M, C.; Fuentes M, L.; Francois L, J. L., E-mail: amhed_jvq@hotmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico)

    2015-09-15

    The study and analysis of the operational transients are important for predicting the behavior of a system to short-term events and the impact that would cause this transient. For the nuclear industry these studies are indispensable due to economic, environmental and social impacts that could cause an accident during the operation of a nuclear reactor. In this paper the preparation, simulation and analysis results of the transient rod extraction failure in which not taken into operation the RBM is presented. The study was conducted for a BWR of 2027 MWt, in an intermediate cycle of its useful life and using the computer code Simulate-3K a scenario of anomalies was created in the core reactivity which gave a coherent prediction to the type of presented event. (Author)

  8. Thermal hydraulics characterization of the core and the reactor vessel type BWR; Caracterizacion termohidraulica del nucleo y de la vasija de un reactor tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Zapata Y, M.; Lopez H, L.E. [CFE, Carretera Cardel-Nautla Km. 42.5, Municipio Alto Lucero, Veracruz (Mexico)]. e-mail: marxlenin.zapata@cfe.gob.mx

    2008-07-01

    The thermal hydraulics design of a reactor type BWR 5 as the employees in the nuclear power plant of Laguna Verde involves the coupling of at least six control volumes: Pumps jet region, Stratification region, Core region, Vapor dryer region, Humidity separator region and Reactor region. Except by the regions of the core and reactor, these control volumes only are used for design considerations and their importance as operative data source is limited. It is for that is fundamental to complement the thermal hydraulics relations to obtain major data that allow to determine the efficiency of internal components, such as pumps jet, humidity separator and vapor dryer. Like example of the previous thing, calculations are realized on the humidity of the principal vapor during starting, comparing it with the values at the moment incorporated in the data banks of the computers of process of both units. (Author)

  9. Redistribution of alloying elements in Zircaloy-2 after in-reactor exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sundell, G., E-mail: gustav.sundell@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Thuvander, M. [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Tejland, P. [Studsvik Nuclear AB, SE-611 82 Nyköping (Sweden); Dahlbäck, M.; Hallstadius, L. [Westinghouse Electric Sweden, SE-721 Västerås (Sweden); Andrén, H.-O. [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden)

    2014-11-15

    Highlights: • We have conducted an atom probe tomography study on a Zircaloy-2 fuel cladding material that has been subjected to 9 annual cycles of in-reactor exposure. • The results show that large numbers of nanosized Fe and Cr rich particles have precipitated along parallel planes in the matrix. • Fe and Sn are seen to segregate to ring-shaped features that are interpreted to be c-loops. • A sub-oxide of approximate composition ZrO is found at the metal–oxide interface. - Abstract: An atom probe tomography study of the microstructure of a Zircaloy-2 material subjected to 9 annual cycles of BWR exposure has been conducted. Upon dissolution of secondary phase particles, Fe and Cr are seen to reprecipitate in large numbers of clusters and particles of 1–5 nm sizes throughout the Zr metal matrix. Fe and Sn were observed to segregate to ring-shaped features in the metal that are interpreted to be -component vacancy loops. This implies that these two elements play a major role in the irradiation growth phenomenon in Zr alloys, which is believed to be caused by the formation of -loops. Similarly to autoclave-corroded Zr alloys, the formation of a sub-oxide layer of approximate composition ZrO was observed. On the other hand, no oxygen saturated metal phase was detected underneath the oxide scale.

  10. Calculation and analysis of fuel concentration at the rear of spray injecting element%直射式喷孔后方燃油浓度场计算及其分析

    Institute of Scientific and Technical Information of China (English)

    王永卫; 朱永刚; 牛志刚; 王健

    2011-01-01

    Because of its simple structure,arrangement and convenient adjustment,spray injecting element is extensively applied to the combustion chamber of ramjet engine,and the rear concentration of spray injecting element has important influence on flame stability and combustion efficiency,thus the precognition of fuel concentration is very important to spray injecting element arrangement and the relative position between spray injecting element and flame holder is extremely important.According to test result,this paper deduced the formula of fuel concentration at the rear of spray injecting element,and developed the calculation procedure of fuel concentration,thus fuel concentration at the rear of spray injecting element is analyzed.%由于直射式喷油孔的结构简单、布置和调整方便,因此已被广泛地应用于冲压发动机的燃烧室中,而且喷孔后方的燃油浓度分布对火焰稳定及燃烧效率有很大影响,由此预知喷孔后方燃油浓度分布对喷孔布置、确定喷孔与稳定器的相对位置是十分重要的。根据试验结果,推导得到了直射式喷孔后方燃油浓度分布的计算公式,编制燃油浓度分布的计算程序,以分析直射式喷油孔后方的燃油浓度场分布。

  11. On-site gamma-ray spectroscopic measurements of fission gas release in irradiated nuclear fuel.

    Science.gov (United States)

    Matsson, I; Grapengiesser, B; Andersson, B

    2007-01-01

    An experimental, non-destructive in-pool, method for measuring fission gas release (FGR) in irradiated nuclear fuel has been developed. Using the method, a significant number of experiments have been performed in-pool at several nuclear power plants of the BWR type. The method utilises the 514 keV gamma-radiation from the gaseous fission product (85)Kr captured in the fuel rod plenum volume. A submergible measuring device (LOKET) consisting of an HPGe-detector and a collimator system was utilised allowing for single rod measurements on virtually all types of BWR fuel. A FGR database covering a wide range of burn-ups (up to average rod burn-up well above 60 MWd/kgU), irradiation history, fuel rod position in cross section and fuel designs has been compiled and used for computer code benchmarking, fuel performance analysis and feedback to reactor operators. Measurements clearly indicate the low FGR in more modern fuel designs in comparison to older fuel types.

  12. Crack growth rate in core shroud horizontal welds using two models for a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Arganis Juárez, C.R., E-mail: carlos.arganis@inin.gob.mx; Hernández Callejas, R.; Medina Almazán, A.L.

    2015-05-15

    Highlights: • Two models were used to predict SCC growth rate in a core shroud of a BWR. • A weld residual stress distribution with 30% stress relaxation by neutron was used. • Agreement is shown between the measurements of SCC growth rate and the predictions. • Slip–oxidation model is better at low fluences and empirical model at high fluences. - Abstract: An empirical crack growth rate correlation model and a predictive model based on the slip–oxidation mechanism for Stress Corrosion Cracking (SCC) were used to calculate the crack growth rate in a BWR core shroud. In this study, the crack growth rate was calculated by accounting for the environmental factors related to aqueous environment, neutron irradiation to high fluence and the complex residual stress conditions resulting from welding. In estimating the SCC behavior the crack growth measurements data from a Boiling Water Reactor (BWR) plant are referred to, and the stress intensity factor vs crack depth throughout thickness is calculated using a generic weld residual stress distribution for a core shroud, with a 30% stress relaxation induced by neutron irradiation. Quantitative agreement is shown between the measurements of SCC growth rate and the predictions of the slip–oxidation mechanism model for relatively low fluences (5 × 10{sup 24} n/m{sup 2}), and the empirical model predicted better the SCC growth rate than the slip–oxidation model for high fluences (>1 × 10{sup 25} n/m{sup 2}). The relevance of the models predictions for SCC growth rate behavior depends on knowing the model parameters.

  13. 多层套管燃料元件工程热点因子敏感性分析%Sensitivity Analysis of Engineering Hot Spot Factor for Multi-layer Tube Fuel Element

    Institute of Scientific and Technical Information of China (English)

    胡跃春; 邓才玉; 李海涛; 徐涛忠

    2014-01-01

    为保证反应堆的安全,并对燃料元件的制造加工提出合理可行的要求,从元件制造加工和反应堆运行测量两方面对多层套管燃料元件工程热点因子的敏感性进行了分析。结果表明:流道间隙偏差直接影响元件热源的导出,由此引起的工程热点因子造成的温升较大。%For ensuring reactor safety and putting forward reasonable requirements of fuel element manufacture , the sensitivity analysis of engineering hot spot factor for multi-layer tube fuel element was completed from both aspects of fuel manufacture and reactor operation measurement .The result shows that the flow channel deviation is of direct effect on fuel element heat transfer ,yielding a higher temperature rise caused by the relevant engineering hot spot factor .

  14. Electrical equipment performance under severe accident conditions (BWR/Mark 1 plant analysis): Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.R.; Kolaczkowski, A.M.; Medford, G.T.

    1986-09-01

    The purpose of the Performance Evaluation of Electrical Equipment during Severe Accident States Program is to determine the performance of electrical equipment, important to safety, under severe accident conditions. In FY85, a method was devised to identify important electrical equipment and the severe accident environments in which the equipment was likely to fail. This method was used to evaluate the equipment and severe accident environments for Browns Ferry Unit 1, a BWR/Mark I. Following this work, a test plan was written in FY86 to experimentally determine the performance of one selected component to two severe accident environments.

  15. LOCA steam condensation loads in BWR Mark II pressure suppression containment system

    Energy Technology Data Exchange (ETDEWEB)

    Kukita, Y.; Namatame, K.; Takeshita, I.; Shiba, M.

    1987-06-01

    Hydrodynamic loads induced in the BWR Mark II pressure suppression containment system during a loss-of-coolant accident (LOCA) were investigated using a large scale test facility. The maximum-bounding loading conditions on the pressure suppression pool-boundary structures were defined by conducting experiments for a wide range of parameters. The maximum-bounding loads occurred when steam, with air concentration less than 1% in weight, was injected at moderate rates (approx. = 30 kg/m/sup 2/.s) into a low-temperature (below 310 K) pool. Such conditions are most likely to be encountered during LOCAs with intermediate break sizes.

  16. LOCA air-injection loads in BWR Mark II pressure suppression containment systems

    Energy Technology Data Exchange (ETDEWEB)

    Kukita, Y.; Shiba, M. (Japan Atomic Energy Research Inst., Tokai, Ibaraki); Namatame, K. (Institute of Nuclear Safety, Tokyo (Japan))

    1984-02-01

    Large-scale blowdown tests were conducted to investigate the thermal-hydrodynamic response of a boiling-water reactor (BWR) Mark II pressure suppression containment system to a postulated loss-of-coolant accident. This paper presents the test results on the early blowdown transients, where air in the drywell is injected into the pressure suppression pool and induces various hydrodynamic loads onto the containment pressure boundary and internal structures. The test data are compared to predictions by analytical models used for the licensing evaluation of the hydrodynamic loads to assess these models.

  17. Effect of non-heterogeneous wetwell boundaries on pressure suppression system response. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    McCauley, E.W.; Holman, G.S.; Namatame, K.; Kukita, Y.; Shiba, M.

    1980-08-29

    The Full-Scale Mark II CRT (Containment Response Test) Program is in progress at the Tokai-Mura Establishment of the Japan Atomic Energy Research Institute (JAERI). The primary objective of the on-going CRT Program is to provide a data base for evaluation of the pressure suppression pool (wetwell) hydrodynamic loads associated with a postulated loss-of-coolant accident (LOCA) in the BWR Mark II containment system. The test facility is 1/18 of full scale in volume and has a wetwell which is a full-scale geometric replica of one 20/sup 0/-sector of a reference 1100MWe Mark II.

  18. TRACE code validation for BWR spray cooling injection based on GOTA facility experiments

    Energy Technology Data Exchange (ETDEWEB)

    Racca, S. [San Piero a Grado Nuclear Research Group (GRNSPG), Pisa (Italy); Kozlowski, T. [Royal Inst. of Tech., Stockholm (Sweden)

    2011-07-01

    Best estimate codes have been used in the past thirty years for the design, licensing and safety of NPP. Nevertheless, large efforts are necessary for the qualification and the assessment of such codes. The aim of this work is to study the main phenomena involved in the emergency spray cooling injection in a Swedish designed BWR. For this purpose, data from the Swedish separate effect test facility GOTA have been simulated using TRACE version 5.0 Patch 2. Furthermore, uncertainty calculations have been performed with the propagation of input errors method and the identification of the input parameters that mostly influence the peak cladding temperature has been performed. (author)

  19. Fuel slugs considered for use in the high flux reactor EL3; Elements combustibles envisages pour la pile a haut flux EL 3

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J.A.; Caillat, R.; Gauthron, M.; Montagne, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    EL3 was designed essentially for the study, under irradiation conditions, of materials used in the construction of atomic reactors. The study schedule allocates considerable time and effort to new types of fuel slugs. The present report described the various types of slug being tested or scheduled for tests. After laboratory study, each slug is tested in an experimental cell in the pile. The best are retained and used to charge the reactor (the present charge is purely provisional to permit first criticality and power rise tests)ren. [French] La pile EL3 est essentiellement destinee a l'etude sous irradiation des materiaux utilises dans la construction des reacteurs atomiques. Dans ce programme, une tres large part est reservee a l'etude de nouveaux elements combustibles. Le present rapport decrit les differentes solutions de cartouches dont l'essai est envisage ou en cours. Apres etude en laboratoire, chacune de ces solutions est testee dans une cellule experimentale en pile. Les meilleures seront retenues pour constituer le chargement normal de la pile (le chargement actuel etant essentiellement une solution provisoire qui a permis la divergence de la pile et les premiers essais de montee en puissance). (auteur)

  20. Design package for fuel retrieval system fuel handling tool modification

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, D.J.

    1999-03-17

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports.

  1. Design package for fuel retrieval system fuel handling tool modification

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, D.J.

    1998-11-09

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports.

  2. Optimization of the distribution of bars with gadolinium oxide in reactor fuel elements PWR; Optimizacion de la distribucion de barras con oxido de gadolinio en elementos combustibles para reactores PWR

    Energy Technology Data Exchange (ETDEWEB)

    Melgar Santa Cecilia, P. A.; Velazquez, J.; Ahnert Iglesias, C.

    2014-07-01

    In the schemes of low leakage, currently used in the majority of PWR reactors, it makes use of absorbent consumables for the effective control of the factors of peak, the critical concentration of initial boron and the moderator temperature coefficient. One of the most used absorbing is the oxide of gadolinium, which is integrated within the fuel pickup. Occurs a process of optimization of fuel elements with oxide of gadolinium, which allows for a smaller number of configurations with a low peak factor for bar. (Author)

  3. Impact of uranium concentration reduction in side plates of the fuel elements of IEA-R1 reactor on neutronic and thermal hydraulic analyses; Impacto da reducao na concentracao de uranio nas placas laterais dos elementos combustiveis do reator IEA-R1 nas analises neutronica e termo-hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Ilka Antonia

    2013-09-01

    This master thesis presents a study to verify the impact of the uranium concentration reduction in the side plates of the reactor IEA-R1 fuel elements on the neutronic and thermal-hydraulic analyses. To develop such study, a previous IPEN-CNEN/SP research was reproduced by simulating the fuel elements burn-up, with side plate uranium density reduced to 50, 60 and 70% of the standard fuel element plates. This research begins with the neutronic analysis using the computer code HAMMER and the first step consists in the calculation of the cross section of all materials presented at the reactor core, with their initial concentration; the second step consists in the calculation of the fast and thermal neutron group fluxes and power densities for fuel elements using the computer code CITATION. HAMMER output data is used as input data. Once the neutronic analysis is finished and the most critical fuel elements with highest power density have been defined, the thermal-hydraulics analysis begins. This analysis uses MCTR-IEA-R1 thermal-hydraulics model, which equations are solved by commercial code EES. Thermalhydraulics analysis input is the power density data calculated by CITATION: it is considered the highest power density on each fuel element, where there is a higher energy release and, consequently, higher temperatures. This data is used on energy balance equations to calculate temperatures on critical fuel element regions. Reactor operation comparison for three different uranium densities on fuel side plates is presented. Uranium density reduction contributes to the cladding surface temperature to remain below the established limit, as reactor operation safety requirement and it does not affect significantly fuel element final burn-up nor reactor reactivity. The reduction of uranium in the side plates of the fuel elements of the IEA-R1 showed to be a viable option to avoid corrosion problems due to high temperatures. (author)

  4. Technology assessment of alternative fuels for the transportation sector. Fact sheets on technology elements and system calculations for technology tracks; Teknologivurdering af alternative drivmidler til transportsektoren. Fakta-ark for teknologi-elementer og systemberegninger for teknologi-spor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-05-15

    The report documents an analysis, which aims at evaluating technologies in connection with alternative fuels for the transportation sector. During the analysis process a method has been developed for consistent evaluation of alternative transportation fuels with the largest technological and economic potential. This appendix presents key fact sheets which substantiate the analysis presented in the report 'Technology assessment of alternative fuels for the transportation sector'. (BA)

  5. TRACE Model for Simulation of Anticipated Transients Without Scram in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Cheng L. Y.; Baek J.; Cuadra,A.; Aronson, A.; Diamond, D.; Yarsky, P.

    2013-11-10

    A TRACE model has been developed for using theTRACE/PARCS computational package [1, 2] to simulate anticipated transients without scram (ATWS) events in a boiling water reactor (BWR). The model represents a BWR/5 housed in a Mark II containment. The reactor and the balance of plant systems are modeled in sufficient detail to enable the evaluation of plant responses and theeffectiveness of automatic and operator actions tomitigate this beyond design basis accident.The TRACE model implements features thatfacilitate the simulation of ATWS events initiated by turbine trip and closure of the main steam isolation valves (MSIV). It also incorporates control logic to initiate actions to mitigate the ATWS events, such as water levelcontrol, emergency depressurization, and injection of boron via the standby liquid control system (SLCS). Two different approaches have been used to model boron mixing in the lower plenum of the reactor vessel: modulate coolant flow in the lower plenum by a flow valve, and use control logic to modular.

  6. Analysis of containment venting following a core damage at a BWR Mark I using THALES-2

    Energy Technology Data Exchange (ETDEWEB)

    Widodo, Surip [Nuclear Safety Technology Development Center, National Nuclear Energy Agency (BATAN), Tangerang (Indonesia); Ishikawa, Jun; Muramatsu, Ken [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Sakamoto, Toru [Toshiba Advanced System Co., Kawasaki, Kanagawa (Japan)

    2000-11-01

    Analysis of containment venting following a core damage at a boiling water reactor (BWR) Mark I using THALES-2 was performed. In this analysis, the effect of various parameters, namely, the areas of the vent path, containment venting pressure, and accident sequences on the containment thermodynamic response, and radionuclide transport and release in the containment venting at a BWR was examined. The code THALES-2B developed by the Japan Atomic Energy Research Institute (JAERI) was used in this analysis. The model plant in this analysis was the Browns Ferry plant. From this analysis was found that the 4-inch pipe of containment venting flow path is sufficient to maintain the containment pressure in the specified range if the containment was pressurized by the decay heat power. The entrainment by the pool swelling as well as by the flashing was not occurred during the containment venting. The source terms are not sensitive to the variation of containment venting flow path area. The containment venting pressure operation setting point has important rule in the containment venting. In the containment venting, the source terms are not sensitive to the accident sequence, except for Sr source term. In order to get better understanding on the containment venting strategy, the following analyses are necessary. Analyses of accident sequence which has a high power such as anticipated transient without scram are necessary, as well as analyses of accident sequence which pressurize the containment before the core damage. (author)

  7. Identification and initial assessment of candidate BWR late-phase in-vessel accident management strategies

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, S.A.

    1991-04-15

    Work sponsored by the United States Nuclear Regulatory Commission (USNRC) to identify and perform preliminary assessments of candidate BWR (boiling water reactor) in-vessel accident management strategies was completed at Oak Ridge National Laboratory (ORNL) during fiscal year 1990. Mitigative strategies for containment events have been the subject of a companion study at Brookhaven National Laboratory. The focus of this Oak Ridge effort was the development of new strategies for mitigation of the late phase events, that is, the events that would occur in-vessel after the onset of significant core damage. The work began with an investigation of the current status of BWR in-vessel accident management procedures and proceeded through a preliminary evaluation of several candidate new strategies. The steps leading to the identification of the candidate strategies are described. The four new candidate late-phase (in-vessel) accident mitigation strategies identified by this study and discussed in the report are: (1) keep the reactor vessel depressurized; (2) restore injection in a controlled manner; (3) inject boron if control blade damage has occurred; and (4) containment flooding to maintain core and structural debris in-vessel. Additional assessments of these strategies are proposed.

  8. ''Last experiences on ID BWR shroud inspection and the new developments to examine the below core plate areas''

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, R.; Willke, A.; Gonzalez, E.; Yague, L

    2001-07-01

    In recent years, the owners of BWR type nuclear power plants have had to address new inspection requirements relating to the core shroud inside the reactor vessel, the aim of which is to contain the fuel assemblies and provide support for the structures located in the upper part of the reactor. The shroud consists of a cylinder measuring some 40-50 mm in thickness, manufactured from various sections of AISI-304 stainless steel and INCONEL, joined by vertical and circumferential welds. The appearance of unstable cracks in these welds would directly affect the structural integrity of the component and the safety of the plant. As regards access to the core shroud and to the surface to be examined, two alternatives might be considered: inspection from outside the component, moving along the so-called annulus between the reactor vessel wall and the component (OD inspection), or from the interior (ID inspection). With a view to addressing this problem, Tecnatom has in recent years launched several projects, grouped under the generic name TEIDE, in order to develop scanners and NDT techniques achieving the maximum inspection coverage of this component. As regards inspection techniques, the decision was taken to carry out acquisition simultaneously using both ultrasonics (UT) and eddy currents (ET). (author)

  9. 球床反应堆燃料元件脉冲气力提升动力特性分析%Dynamical Analysis of Impulse Pneumatic Transportation of Fuel Element in Pebble Bed Reactor

    Institute of Scientific and Technical Information of China (English)

    曾凯; 沈鹏; 都东; 王鑫; 张海泉

    2012-01-01

    球床反应堆采用球形燃料元件多次通过堆芯的循环运行方式,燃料元件从堆芯底部连续单列排出后依靠管路气动推力逐一被提升至堆芯顶部.本文建立了球形燃料元件“近等径”管路脉冲气力提升运动模型,并在此基础上分析了气源压力、控制阀有效截面积、球外径与管内径的直径比等参数对提升过程燃料元件运行速度的影响.利用测速装置测量了10 MW球床反应实验堆提升器出口燃料元件的运行速度,实验结果接近理论分析结果.近等径球流管路脉冲气力提升运动模型的建立及实验研究为球床反应堆燃料输送系统优化设计及运行调控提供了理论依据.%Pebble bed reactors use "multi-pass" circulation scheme of spherical fuel element. The fuel spheres are uploaded from the core one by one, and lifted up to return to the core through the pneumatic conveying pipeline. In this paper, the motion model of impulse pneumatic transportation of spherical fuel characterized by the "approximately equal diameter" was established. Some influences, such as air supply pressure, effective area of controlling valve, sphere-to-pipe diameter ratio, etc. , to the velocity of fuel elements were analyzed. The practical velocity of fuel element was measured by using speed measuring instrument fixed in 10 MW pebble bed reactor. The test results agree with the theoretical results. The establishment of the motion model of fuel element in impulse pneumatic transportation provides the foundation for the optimum design and regulation of fuel transporting system.

  10. Development of numerical and analytical methodology for stress analysis in guide tubes of fuel elements; Desenvolvimento analitico e numerico da metodologia para analise de tensoes nos tubos-guia de elementos combustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Carrilho, Leo A.; Dotto, Rosvita M. [Industrias Nucleares do Brasil SA, Resende, RJ (Brazil); Gouvea, Jayme P. de [Universidade Federal Fluminense, Volta Redonda, RJ (Brazil)

    2000-07-01

    The stresses in the components of fuel elements in operation have been calculated by Industrias Nucleares do Brasil - INB, using programmes specifically developed for this are. However, worldwide useful software as Excel and ANSYS have resources that make them an alternative with advantages for those computing. In this context, the stress and displacements were calculated in the guide thimbles of a fuel element in normal operation in the reactor under static loads, through analytic and numeric models, which results are comparable to that obtained with the actual INB's methodology. The discussion of the results exposes the peculiarity of a pick of compression stress in a segment of the guide thimble which is accentuated during low power operations. Suggestions for the relief of these high stresses are proposed for future studies. (author)

  11. Trace elements and mineral composition of waste produced in the process of combustion of solid fuels in individual household furnaces in the Upper Silesian Industrial Region (Poland

    Directory of Open Access Journals (Sweden)

    Smołka-Danielowska Danuta

    2015-12-01

    Full Text Available This study presents preliminary research results, with regard to the concentration of chosen trace elements (Mn, Cr, Tl, Ni, Cu, Zn, As, Cd, Ba, Pb in waste, which was produced in the process of combustion of solid fuels (hard coal and flotation concentrate of bituminous coal in individual household furnaces in Poland (in the Upper Silesian Industrial Region. 27 samples of ash, 4 samples of hard coal and 2 samples of flotation concentrate of bituminous coal were prepared for the research. Methods such as: ICP-MS, X-ray diffraction by means of the powder method and scanning electron microscopy were used during the research. In the ash samples obtained from the combustion of hard coal, the highest average concentrations were: Mn (1477.7 ppm, Ba (1336.4 ppm and Zn (599.7 ppm. In the samples obtained from the combustion of flotation concentrate of bituminous coal, the highest average concentrations was stated for: Zn (762.4 ppm, Mn (668.5 ppm, Pb (552.1 ppm and Ba (211.7 ppm. Crystalline components were determined by used the X-ray diffraction method and the samples of ash obtained from the combustion of hard coal contained: anhydrite, gypsum, hematite, magnetite, quartz, calcite, mullite, periclase, kaolinite, dolomite, pyrite, sphalerite, galena and feldspars (albite-anorthite. The samples of ash obtained from the combustion of flotation concentrate of bituminous coal contain: pyrite, quartz, potassium feldspar, muscovite and kaolinite. The scanning electron microscope analysis enabled the identification of the chemical composition of single ash grains and determined their morphology (aluminosilicate forms, substance PbS and ZnS, oxides of Ni, Cu and Mn, monazite, xenotime.

  12. CFD Simulation of a fall accident of a fuel element in pool This project aims at calculating the speed ratio of impact-fall height for a PWR fuel element falling freely in the fuel pool; Simulacion CFD de un accidente de caida de un elemento combustible en piscina

    Energy Technology Data Exchange (ETDEWEB)

    Montoro Garcia, B.; Corpa Masa, R.; Jimenez-Reja, C.

    2014-07-01

    It is intended to provide a methodology of analysis more realistic this accident.que referred to in calculations of the license that requires fuel catastrophic break regardless of the height of the fall, with the consequent release of inventory analysers. Accidents that occurred in the past indicate that this hypothesis could be too conservative. (Author)

  13. Experimental result of BWR post-CHF tests. Critical heat flux and post-CHF heat transfer coefficient. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tadashi; Anoda, Yoshinari [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iwaki, Chikako [Toshiba Corp., Tokyo (Japan)

    2002-02-01

    Authors performed post-CHF experiments under wider pressure ranges of 2 MPa - 18 MPa, wider mass flux ranges of 33 kg/m{sup 2}s - 1651 kg/m{sup 2}s and wider superheat of heaters up to 500 K in comparison to experimental ranges at previous post-CHF experiments. Data on boiling transition, critical heat flux and post-CHF heat transfer coefficient were obtained. Used test section was 4x4-rod bundle with heaters, which diameter and length were the same as those of BWR nuclear fuels. As the result of the experiments, it was found that the boiling transition occurred just below several grid spacers, and that the fronts of the boiling transition region proceeded lower with increase of heated power. Heat transfer was due to nucleate boiling above grid spacers, while it was due to film boiling below grid spacers. Consequently, critical heat flux is affected on the distance from the grid spacers. Critical heat flux above the grid spacers was about 15% higher than that below the grid spacers, by comparing them under the same local condition. Heat transfer by steam turbulent flow was dominant to post-CHF heat transfer, when superheat of heaters was sufficiently high. Then, post-CHF heat transfer coefficient was predicted with heat transfer correlations for single-phase flow. On the other hand, when superhead of heaters was not sufficiently high, post-CHF heat transfer coefficient was higher than the prediction with heat transfer correlations for single-phase flow. Mass flux effect on post-CHF heat transfer coefficient was described by standardization of post-CHF heat transfer coefficient with the prediction for single-phase flow. However, pressure effect, superheat effect and effect of position were not described. Authors clarified that those effects could be described with functions of heater temperature and position. Post-CHF heat transfer coefficient was lowest just blow the grid spacers, and it increased with the lower positions. It increased by about 30% in one span of

  14. Implementation of a methodology to perform the uncertainty and sensitivity analysis of the control rod drop in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Reyes F, M. del C.

    2015-07-01

    A methodology to perform uncertainty and sensitivity analysis for the cross sections used in a Trace/PARCS coupled model for a control rod drop transient of a BWR-5 reactor was implemented with the neutronics code PARCS. A model of the nuclear reactor detailing all assemblies located in the core was developed. However, the thermohydraulic model designed in Trace was a simple model, where one channel representing all the types of assemblies located in the core, it was located inside a simple vessel model and boundary conditions were established. The thermohydraulic model was coupled with the neutronics model, first for the steady state and then a Control Rod Drop (CRD) transient was performed, in order to carry out the uncertainty and sensitivity analysis. To perform the analysis of the cross sections used in the Trace/PARCS coupled model during the transient, Probability Density Functions (PDFs) were generated for the 22 parameters cross sections selected from the neutronics parameters that PARCS requires, thus obtaining 100 different cases for the Trace/PARCS coupled model, each with a database of different cross sections. All these cases were executed with the coupled model, therefore obtaining 100 different outputs for the CRD transient with special emphasis on 4 responses per output: 1) The reactivity, 2) the percentage of rated power, 3) the average fuel temperature and 4) the average coolant density. For each response during the transient an uncertainty analysis was performed in which the corresponding uncertainty bands were generated. With this analysis it is possible to observe the results ranges of the responses chose by varying the uncertainty parameters selected. This is very useful and important for maintaining the safety in the nuclear power plants, also to verify if the uncertainty band is within of safety margins. The sensitivity analysis complements the uncertainty analysis identifying the parameter or parameters with the most influence on the

  15. Possibilities with OHWC. Development and application of ECP-simulation in Swedish BWRs; Moejligheter med OHWC. Utveckling och tillaempning av ECP-simulering i svenska BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lundgren, K. [ALARA Engineering, Skultuna (Sweden); Wikmark, G. [Advanced Nuclear Technology, Uppsala (Sweden)

    2000-02-01

    Hydrogen injection (HWC) to boiling water reactors has been used for two decades in Sweden, in order to reduce the impact of pipe cracking. The effect of HWC is to establish a sufficiently reducing environment in the systems to protect and hence mitigate the growth of existing stress corrosion cracks. Some disadvantages of HWC have been identified. One is the transitional increase of the dose rate of the main steam lines by up to seven times, another the corrosion release of systems with carbon steel components as a result of the reducing chemistry. In some cases, especially in the USA, an elevated activity build-up has been observed in a few plants in connection to the application of HWC. There is also a fear for increased hydrogen pick-up in fuel cladding and fuel channels by HWC operation. The hydrogen pick-up is already today in many cases limiting for fuel life. The objective of the current work has been to investigate the conditions by application of so called Optimised HWC. This implies a HWC operation with lower hydrogen addition rates than normally used. For this purpose, a computer model in order to simulate the radiolysis chemistry and the ECP (electrochemical corrosion potentials) in BWR systems has been developed. A previously developed radiolysis code, BwrChem, as well as a hydrogen peroxide decomposition code for piping, PEROX, have hence been equipped with ECP calculation modules. The ECP calculation algorithms have been based on fundamental electrochemical theory. The new model has been applied to simulate the radiolysis conditions in a large number of locations in typical BWRs. For the simulation, the external mechanical pump plant Barsebaeck-1 and the internal pump plant Forsmark-1 have been used. A wide range of hydrogen injection rates, down to 0. 1 ppm in the feed water, have been studied. The electrochemical model based on fundamental theory required adequate fundamental parameters. Significant effort has been used to scrutinise and evaluate

  16. Radial power density distribution of MOX fuel rods in the IFA-651

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Ho; Koo, Yang Hyun; Joo, Hyung Kook; Cheon, Jin Sik; Oh, Je Yong; Sohn, Dong Seong [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    Two MOX fuel rods, which were fabricated in the Paul Scherrer Institute (PSI), Switzerland in cooperation with Korea Atomic Energy Research Institute, have been irradiated in the HBWR from June, 2000 in the framework of OECD-HRP together with a reference MOX fuel rod supplied by the BNFL. Since fuel temperature, which is influenced by radial power distribution, is basic in analyzing fuel behavior, it is required to consider radial power distribution in the HBWR. A subroutine FACTOR{sub H}BWR that calculates radial power density distribution for three MOX fuel rods has been developed based on neutron physics results and DEPRESS program. The developed subroutine FACTOR{sub H}BWR gives good agreement with the physics calculation except slight under-prediction at the outer part of the pellet above the burnup of 20 MWd/kgHM. The subroutine will be incorporated into a computer code COSMOS and used to analyze the in-reactor behavior of the three MOX fuel rods during the Halden irradiation test. 24 figs., 4 tabs. (Author)

  17. SUN-RAH: a nucleoelectric BWR university simulator based in reduced order models; SUN-RAH: simulador universitario de nucleoelectrica BWR basado en modelos de orden reducido

    Energy Technology Data Exchange (ETDEWEB)

    Morales S, J.B.; Lopez R, A.; Sanchez B, A.; Sanchez S, R.; Hernandez S, A. [DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: jms0620@yahoo.com

    2003-07-01

    The development of a simulator that allows to represent the dynamics of a nucleo electric central, with nuclear reactor of the BWR type, using reduced order models is presented. These models present the characteristics defined by the dominant poles of the system (1) and most of those premature operation transitories in a power station can be reproduced with considerable fidelity if the models are identified with data of plant or references of a code of better estimate like RAMONA, TRAC (2) or RELAP. The models of the simulator are developments or own simplifications starting from the physical laws and retaining the main terms. This work describes the objective of the project and the general specifications of the University student of Nucleo electric simulator with Boiling Water Reactor type (SUN-RAH) as well as the finished parts that fundamentally are the nuclear reactor, the one of steam supply (NSSS), the plant balance (BOP), the main controllers of the plant and the implemented graphic interfaces. The pendent goals as well as the future developments and applications of SUN-RAH are described. (Author)

  18. Prediction of the stability of BWR reactors during the start-up process; Prediccion de la estabilidad de reactores BWR durante el proceso de arranque

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz E, J.A.; Castillo D, R. [ININ, Km. 36.5 Carretera Mexico-Toluca, 52045 Salazar, Estado de Mexico (Mexico); Blazquez M, J.B. [Centro de Investigaciones Energetics, Medioambientales y Tecnologicas, Av Complutense 22, 28040 Madrid (Spain)

    2004-07-01

    The Boiling Water Reactors (BWR) are susceptible of uncertainties of power when they are operated to low flows of coolant (W) and high powers (P), being presented this situation mainly in the start-up process. The start-up process could be made but sure if the operator knew the value of the stability index Decay reason (Dr) before going up power and therefore to guarantee the stability. The power and the flow are constantly measures, the index Dr could also be considered its value in real time. The index Dr depends on the power, flow and many other values, such as, the distribution of the flow axial and radial neutronic, the temperature of the feeding water, the fraction of holes and other thermohydraulic and nuclear parameters. A simple relationship of Dr is derived leaving of the pattern reduced of March-Leuba, where three independent variables are had that are the power, the flow and a parameter that it contains the rest of the phenomenology, that is to say all the other quantities that affect the value of Dr. This relationship developed work presently and verified its prediction with data of start-up of commercial reactors could be used for the design of a practical procedure practice of start-up, what would support to the operator to prevent this type of events of uncertainty. (Author)

  19. FIBWR2 evaluation of fuel thermal limits during density wave oscillaions in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Nik, N.; Rajan, S.R.; Karasulu, M. [New York Power Authority, White Plains, NY (United States)

    1995-09-01

    Analyses were performed to evaluate hydraulic and thermal margin responses of three different BWR fuel designs subjected to the same periodic power/flow oscillations, such as those that might be exhibited during an instability event. The power/flow versus time information from the oscillations was used as a forcing function to calculate the hydraulic response and the MCPR performance of the limiting fuel bundles during the regional oscillations using the analytical code FIBWR2. The results of the calculations were used to determine the thermal margin variation as a function of oscillation magnitude.

  20. Solution of the transport equation in stationary state, in one and two dimensions, for BWR assemblies using nodal methods; Solucion de la ecuacion de transporte en estado estacionario, en 1 y 2 dimensiones, para ensambles tipo BWR usando metodos nodales

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, J.V

    2002-07-01

    The main objective of this work is to solve the neutron transport equation in one and two dimensions (slab geometry and X Y geometry, respectively), with no time dependence, for BWR assemblies using nodal methods. In slab geometry, the nodal methods here used are the polynomial continuous (CMPk) and discontinuous (DMPk) families but only the Linear Continuous (also known as Diamond Difference), the Quadratic Continuous (QC), the Cubic Continuous (CC), the Step Discontinuous (also known as Backward Euler), the Linear Discontinuous (LD) and the Quadratic Discontinuous (QD) were considered. In all these schemes the unknown function, the angular neutron flux, is approximated as a sum of basis functions in terms of Legendre polynomials, associated to the values of the neutron flux in the edges (left, right, or both) and the Legendre moments in the cell, depending on the nodal scheme used. All these schemes were implemented in a computer program developed in previous thesis works and known with the name TNX. This program was modified for the purposes of this work. The program discreetizes the domain of concern in one dimension and determines numerically the angular neutron flux for each point of the discretization when the number of energy groups and regions are known starting from an initial approximation for the angular neutron flux being consistent with the boundary condition imposed for a given problem. Although only problems with two-energy groups were studied the computer program does not have limitations regarding the number of energy groups and the number of regions. The two problems analyzed with the program TNX have practically the same characteristics (fuel and water), with the difference that one of them has a control rod. In the part corresponding to two-dimensional problems, the implemented nodal methods were those designated as hybrids that consider not only the edge and cell Legendre moments, but also the values of the neutron flux in the corner points

  1. Solution of the transport equation in stationary state, in one and two dimensions, for BWR assemblies using nodal methods; Solucion de la ecuacion de transporte en estado estacionario, en 1 y 2 dimensiones, para ensambles tipo BWR usando metodos nodales

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, J.V

    2002-07-01

    The main objective of this work is to solve the neutron transport equation in one and two dimensions (slab geometry and X Y geometry, respectively), with no time dependence, for BWR assemblies using nodal methods. In slab geometry, the nodal methods here used are the polynomial continuous (CMPk) and discontinuous (DMPk) families but only the Linear Continuous (also known as Diamond Difference), the Quadratic Continuous (QC), the Cubic Continuous (CC), the Step Discontinuous (also known as Backward Euler), the Linear Discontinuous (LD) and the Quadratic Discontinuous (QD) were considered. In all these schemes the unknown function, the angular neutron flux, is approximated as a sum of basis functions in terms of Legendre polynomials, associated to the values of the neutron flux in the edges (left, right, or both) and the Legendre moments in the cell, depending on the nodal scheme used. All these schemes were implemented in a computer program developed in previous thesis works and known with the name TNX. This program was modified for the purposes of this work. The program discreetizes the domain of concern in one dimension and determines numerically the angular neutron flux for each point of the discretization when the number of energy groups and regions are known starting from an initial approximation for the angular neutron flux being consistent with the boundary condition imposed for a given problem. Although only problems with two-energy groups were studied the computer program does not have limitations regarding the number of energy groups and the number of regions. The two problems analyzed with the program TNX have practically the same characteristics (fuel and water), with the difference that one of them has a control rod. In the part corresponding to two-dimensional problems, the implemented nodal methods were those designated as hybrids that consider not only the edge and cell Legendre moments, but also the values of the neutron flux in the corner points

  2. Non-local two phase flow momentum transport in S BWR

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)

    2015-09-15

    The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)

  3. Experimental simulation of the water cooling of corium spread over the floor of a BWR containment

    Energy Technology Data Exchange (ETDEWEB)

    Morage, F.; Lahey, R.T. Jr.; Podowski, M.Z. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1995-09-01

    This paper is concerned with an experimental investigation of the cooling effect of water collected on the surface of corium released onto the floor of a BWR drywell. In the present experiments, the actual reactor materials were replaced by simulant materials. Specifically, the results are shown for Freon-11 film boiling over liquid Wood`s metal spread above a solid porous surface through which argon gas was injected. An analysis of the obtained exper