WorldWideScience

Sample records for bwr boiling water

  1. BWR [boiling water reactor] shutdown margin model in SIMULATE-3

    International Nuclear Information System (INIS)

    Boiling water reactor (BWR) technical specifications require that the reactor be kept subcritical (by some prescribed margin) when at room temperature rodded conditions with any one control rod fully withdrawn. The design of an acceptable core loading pattern may require hundreds or thousands of neutronic calculations in order to predict the shutdown margin for each control rod. Direct, full-core, three-dimensional calculations with the SIMULATE-3 two-group advanced nodal code require 3 to 6 CPU min (on a SUN-4 workstation) for each statepoint/control rod that is computed. Such computing and manpower requirements may be burdensome, particularly during the early core design process. These requirements have been significantly reduced by the development of a fast, accurate shutdown margin model in SIMULATE-3. The SIMULATE-3 shutdown margin model achieves a high degree of accuracy and speed without using axial collapsing approximations inherent in many models. The mean difference between SIMULATE-3 one-group and two-group calculations is approximately - 12 pcm with a standard deviation of 35 pcm. The SIMULATE-3 shutdown margin model requires a factor of ∼15 less CPU time than is required for stacked independent two-group SIMULATE-3 calculations

  2. Investigation of BWR [boiling water reactor] instability phenomena using RETRAN-03

    International Nuclear Information System (INIS)

    In 1988, LaSalle, a boiling water reactor (BWR)/5, experienced severe flux oscillations following a trip of both recirculation pumps. The flux oscillations were terminated by an automatic scram at 118% of rated neutron flux. As a result of this event, the U.S. Nuclear Regulatory Commission has asked the BWR utilities to develop procedural or hardware changes that will assure protection of all safety limits. The rapid growth of the oscillations at LaSalle, and the fact that previous stability analyses had predicted the plant to be very stable, emphasizes that a better understanding of this phenomenon is needed before the success of the long-term fixes can be assured. The intent of the Electric Power Research Institute's work was to use BWR transient methods to model reactor instabilities and investigate the factors that dominate this phenomenon. The one-dimensional transient code RETRAN-03 (Ref. 1) was used. The following conclusions are drawn: (1) RETRAN has demonstrated the ability to model BWR instability (nonlinear oscillations). (2) The general system behavior predicted by RETRAN in BWR stability analyses matches theoretical prediction and plant data. (3) These one-dimensional, time-domain results have increased the understanding of BWR stability phenomena and have helped optimize the long-term solutions being developed by the utilities

  3. BWR [boiling water reactor] core criticality versus water level during an ATWS [anticipated transient without scram] event

    International Nuclear Information System (INIS)

    The BWR [boiling water reactor] emergency procedures guidelines recommend management of core water level to reduce the power generated during an anticipated transient without scram (ATWS) event. BWR power level variation has traditionally been calculated in the system codes using a 1-D [one-dimensional] 2-group neutron kinetics model to determine criticality. This methodology used also for calculating criticality of the partially covered BWR cores has, however, never been validated against data. In this paper, the power level versus water level issues in an ATWS severe accident are introduced and the accuracy of the traditional methodology is investigated by comparing with measured data. It is found that the 1-D 2-group treatment is not adequate for accurate predictions of criticality and therefore the system power level for the water level variations that may be encountered in a prototypical ATWS severe accident. It is believed that the current predictions for power level may be too high

  4. Simulation of the automatic depressurization system (Ads) for a boiling water reactor (BWR) based on RELAP

    International Nuclear Information System (INIS)

    The automatic depressurization system (Ads) of the boiling water reactor (BWR) like part of the emergency cooling systems is designed to liberate the vapor pressure of the reactor vessel, as well as the main vapor lines. At the present time in the Engineering Faculty, UNAM personnel works in the simulation of the Laguna Verde reactor based on the nuclear code RELAP/SCADAP and in the incorporation to the same of the emergency cooling systems. The simulation of the emergency cooling systems began with the inclusion of two hydrodynamic volumes, one source and another drain, and the incorporation of the initiation logic for each emergency system. In this work is defined and designed a simplified model of Ads of the reactor, considering a detail level based on the main elements that compose it. As tool to implement the proposed model, the RELAP code was used. The simulated main functions of Ads are centered in the quick depressurization of the reactor by means of the vapor discharge through the relief/safety valves to the suppression pool, and, in the event of break of the main vapor line, the reduction of the vessel pressure operates for that the cooling systems of the core to low pressure (Lpcs and Lpci) they can begin their operation. (Author)

  5. An advanced frequency-domain code for boiling water reactor (BWR) stability analysis and design

    International Nuclear Information System (INIS)

    The two-phase flow instability is of interest for the design and operation of many industrial systems such as boiling water reactors (BWRs), chemical reactors, and steam generators. In case of BWRs, the flow instabilities are coupled to the power instabilities via neutronic-thermal hydraulic feedbacks. Since these instabilities produce also local pressure oscillations, the coolant flashing plays a very important role at low pressure. Many frequency-domain codes have been used for two-phase flow stability analysis of thermal hydraulic industrial systems with particular emphasis to BWRs. Some were ignoring the effect of the local pressure, or the effect of 3D power oscillations, and many were not able to deal with the neutronics-thermal hydraulics problems considering the entire core and all its fuel assemblies. The new frequency domain tool uses the best available nuclear, thermal hydraulic, algebraic and control theory methods for simulating BWRs and analyzing their stability in either off-line or on-line fashion. The novel code takes all necessary information from plant files via an interface, solves and integrates, for all reactor fuel assemblies divided into a number of segments, the thermal-hydraulic non-homogenous non-equilibrium coupled linear differential equations, and solves the 3D, two-energy-group diffusion equations for the entire core (with spatial expansion of the neutron fluxes in Legendre polynomials).It is important to note that the neutronics equations written in terms of flux harmonics for a discretized system (nodal-modal equations) generate a set of large sparse matrices. The eigenvalue problem associated to the discretized core statics equations is solved by the implementation of the implicit restarted Arnoldi method (IRAM) with implicit shifted QR mechanism. The results of the steady state are then used for the calculation of the local transfer functions and system transfer matrices. The later are large-dense and complex matrices, (their size

  6. Cracks propagation by stress corrosion cracking in conditions of Boiling Water Reactor (BWR)

    International Nuclear Information System (INIS)

    This work presents the results of the assays carried out in the Laboratory of Hot Cells of the National Institute of Nuclear Research (ININ) to a type test tube Compact Tension (CT), built in steel austenitic stainless type 304L, simulating those conditions those that it operates a Boiling Water Reactor (BWR), at temperature 288 C and pressure of 8 MPa, to determine the speed to which the cracks spread in this material that is of the one that different components of a reactor are made, among those that it highlights the reactor core vessel. The application of the Hydrogen Chemistry of the Water is presented (HWC) that is one alternative to diminish the corrosion effect low stress in the component, this is gets controlling the quantity of oxygen and of hydrogen as well as the conductivity of the water. The rehearsal is made following the principles of the Mechanics of Elastic Lineal Fracture (LEFM) that considers a crack of defined size with little plastic deformation in the tip of this; the measurement of crack advance is continued with the technique of potential drop of direct current of alternating signal, this is contained inside the standard Astm E-647 (Method of Test Standard for the Measurement of Speed of Growth of Crack by fatigue) that is the one that indicates us as carrying out this test. The specifications that should complete the test tubes that are rehearsed as for their dimensions, it forms, finish and determination of mechanical properties (tenacity to the fracture mainly) they are contained inside the norm Astm E-399, the one which it is also based on the principles of the fracture mechanics. The obtained results were part of a database to be compared with those of other rehearsals under different conditions, Normal Chemistry of the Water (NWC) and it dilutes with high content of O2; to determine the conditions that slow more the phenomena of stress corrosion cracking, as well as the effectiveness of the used chemistry and of the method of

  7. Calculation of releases of radioactive materials in gaseous and liquid effluents from boiling water reactors (BWR-GALE Code)

    Energy Technology Data Exchange (ETDEWEB)

    Bangart, R.L.; Bell, L.G.; Boegli, J.S.; Burke, W.C.; Lee, J.Y.; Minns, J.L.; Stoddart, P.G.; Weller, R.A.; Collins, J.T.

    1978-12-01

    The calculational procedures described in the report reflect current NRC staff practice. The methods described will be used in the evaluation of applications for construction permits and operating licenses docketed after January 1, 1979, until this NUREG is revised as a result of additional staff review. The BWR-GALE (Boiling Water Reactor Gaseous and Liquid Effluents) Code is a computerized mathematical model for calculating the release of radioactive material in gaseous and liquid effluents from boiling water reactors (BWRs). The calculations are based on data generated from operating reactors, field tests, laboratory tests, and plant-specific design considerations incorporated to reduce the quantity of radioactive materials that may be released to the environment.

  8. Dynamic reconstruction and Lyapunov experiments from time series data in boiling water reactors. Application to B.W.R. stability analysis

    International Nuclear Information System (INIS)

    This paper shows how to obtain Lyapunov exponents from time series data on Boiling Water Reactor (BWR) stability. In order to validate the method, these characteristic exponents are compared with the ones obtained directly from the governing equations of the dynamic system. Finally, we present a method for obtaining the stability of the B.W.R. from Lyapunov exponents and describe some other applications related to limit cycles. (Author)

  9. BWR [boiling-water reactor] and PWR [pressurized-water reactor] off-normal event descriptions

    International Nuclear Information System (INIS)

    This document chronicles a total of 87 reactor event descriptions for use by operator licensing examiners in the construction of simulator scenarios. Events are organized into four categories: (1) boiling-water reactor abnormal events; (2) boiling-water reactor emergency events; (3) pressurized-water reactor abnormal events; and (4) pressurized-water reactor emergency events. Each event described includes a cover sheet and a progression of operator actions flow chart. The cover sheet contains the following general information: initial plant state, sequence initiator, important plant parameters, major plant systems affected, tolerance ranges, final plant state, and competencies tested. The progression of operator actions flow chart depicts, in a flow chart manner, the representative sequence(s) of expected immediate and subsequent candidate actions, including communications, that can be observed during the event. These descriptions are intended to provide examiners with a reliable, performance-based source of information from which to design simulator scenarios that will provide a valid test of the candidates' ability to safely and competently perform all licensed duties and responsibilities

  10. Standard Technical Specifications for General Electric Boiling Water Reactors (BWR/5)

    International Nuclear Information System (INIS)

    The Standard Technical Specifications for General Electric Boiling Water Reactors (GE-STS) is a generic document prepared by the US NRC for use in the licensing process of current General Electric Boiling Water Reactors. The GE-STS sets forth the limits, operating conditions, and other requirements applicable to nuclear reactor facility operation as set forth by Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public. The document is revised periodically to reflect current licensing requirements

  11. Standard- and extended-burnup PWR [pressurized-water reactor] and BWR [boiling-water reactor] reactor models for the ORIGEN2 computer code

    International Nuclear Information System (INIS)

    The purpose of this report is to describe an updated set of reactor models for pressurized-water reactors (PWRs) and boiling-water reactors (BWRs) operating on uranium fuel cycles and the methods used to generate the information for these models. Since new fuel cycle schemes and reactor core designs are introduced from time to time by reactor manufacturers and fuel vendors, an effort has been made to update these reactor models periodically and to expand the data bases used by the ORIGEN2 computer code. In addition, more sophisticated computational techniques than previously available were used to calculate the resulting reactor model cross-section libraries. The PWR models were based on a Westinghouse design, while the BWR models were based on a General Electric BWR/6 design. The specific reactor types considered in this report are as follows (see Glossary for the definition of these and other terms): (1) PWR-US, (2) PWR-UE, (3) BWR-US, (4) BWR-USO, and (5) BWR-UE. Each reactor model includes a unique data library that may be used to simulate the buildup and deletion of isotopes in nuclear materials using the ORIGEN2 computer code. 33 refs., 44 tabs

  12. Recriticality in a BWR [boiling water reactor] following a core damage event

    International Nuclear Information System (INIS)

    This report describes the results of a study conducted by Pacific Northwest Laboratory to assist the US Nuclear Regulatory Commission in evaluating the potential for recriticality in boiling water reactors (BWRs) during certain low probability severe accidents. Based on a conservative bounding analysis, this report concludes that there is a potential for recriticality in BWRs if core reflood occurs after control blade melting has begun but prior to significant fuel rod melting. However, a recriticality event will most likely not generate a pressure pulse significant enough to fail the vessel. Instead, a quasi-steady power level would result and the containment pressure and temperature would increase until the containment failure pressure is reached, unless actions are taken to terminate the event. Two strategies are identified that would aid in regaining control of the reactor and terminate the recriticality event before containment failure pressures are reached. The first strategy involves initiating boration injection at or before the time of core reflood if the potential for control blade melting exists. The second strategy involves initiating residual heat removal suppression pool cooling to remove the heat load generated by the recriticality event and thus extend the time available for boration. 31 figs., 17 tabs

  13. Cracks propagation by stress corrosion cracking in conditions of Boiling Water Reactor (BWR); Propagacion de grietas por corrosion bajo esfuerzo en condiciones de reactor de agua hirviente (BWR)

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes C, P

    2003-07-01

    This work presents the results of the assays carried out in the Laboratory of Hot Cells of the National Institute of Nuclear Research (ININ) to a type test tube Compact Tension (CT), built in steel austenitic stainless type 304L, simulating those conditions those that it operates a Boiling Water Reactor (BWR), at temperature 288 C and pressure of 8 MPa, to determine the speed to which the cracks spread in this material that is of the one that different components of a reactor are made, among those that it highlights the reactor core vessel. The application of the Hydrogen Chemistry of the Water is presented (HWC) that is one alternative to diminish the corrosion effect low stress in the component, this is gets controlling the quantity of oxygen and of hydrogen as well as the conductivity of the water. The rehearsal is made following the principles of the Mechanics of Elastic Lineal Fracture (LEFM) that considers a crack of defined size with little plastic deformation in the tip of this; the measurement of crack advance is continued with the technique of potential drop of direct current of alternating signal, this is contained inside the standard Astm E-647 (Method of Test Standard for the Measurement of Speed of Growth of Crack by fatigue) that is the one that indicates us as carrying out this test. The specifications that should complete the test tubes that are rehearsed as for their dimensions, it forms, finish and determination of mechanical properties (tenacity to the fracture mainly) they are contained inside the norm Astm E-399, the one which it is also based on the principles of the fracture mechanics. The obtained results were part of a database to be compared with those of other rehearsals under different conditions, Normal Chemistry of the Water (NWC) and it dilutes with high content of O{sub 2}; to determine the conditions that slow more the phenomena of stress corrosion cracking, as well as the effectiveness of the used chemistry and of the method of

  14. Transient boiling and void formation during postulated reactivity-initiated accident in BWR: Experimental simulation

    International Nuclear Information System (INIS)

    The current safety analysis of the postulated reactivity initiated accident (RIA) in the boiling water reactor (BWR) neglects the favorable effect of voids because of the difficulties in predicting void formation in transient boiling. This paper presents experimental results on the transient void formation in response to a step heating of a surface facing to low-pressure subcooled water. The void fractions are measured by measuring optically the water surface movement or water velocity induced by the void formation. (author)

  15. Estimating boiling water reactor decommissioning costs: A user`s manual for the BWR Cost Estimating Computer Program (CECP) software. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bierschbach, M.C. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-06-01

    Nuclear power plant licensees are required to submit to the US Nuclear Regulatory Commission (NRC) for review their decommissioning cost estimates. This user`s manual and the accompanying Cost Estimating Computer Program (CECP) software provide a cost-calculating methodology to the NRC staff that will assist them in assessing the adequacy of the licensee submittals. The CECP, designed to be used on a personal computer, provides estimates for the cost of decommissioning boiling water reactor (BWR) power stations to the point of license termination. Such cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial costs; and manpower costs. In addition to costs, the CECP also calculates burial volumes, person-hours, crew-hours, and exposure person-hours associated with decommissioning.

  16. Boiling water reactors with uranium-plutonium mixed oxide fuel. Report 5: Analysis of the reactivity coefficients and the stability of a BWR loaded with MOx fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demaziere, C. [CEA Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires

    2000-01-01

    This report is a part of the project titled 'Boiling Water Reactors With Uranium-Plutonium Mixed Oxide (MOx) Fuel'. The aim of this study is to model the impact of a core loading pattern containing MOx bundles upon the main characteristics of a BWR (reactivity coefficients, stability, etc.). For this purpose, the Core Management System (CMS) codes of Studsvik Scandpower are used. This package is constituted by CASMO-4/TABLES-3/SIMULATE-3. It has been shown in previous reports that these codes are able to accurately represent and model MOx bundles. This report is thus devoted to the study of BWR cores loaded (partially or totally) with MOx bundles. The plutonium quality used is the Pu type 2016 (mostly Pu-239, 56 %, and Pu-240, 26 %), but a variation of the plutonium isotopic vector was also investigated, in case of a partial MOx loading. One notices that the reactivity coefficients do not present significant changes in comparison with a full UOx loading. Nevertheless, two main problems arise: the shutdown margin at BOC is lower than 1 % and the stability to in-phase oscillations is slightly decreased. (The SIMULATE-3 version used for this study does not contain the latest MOx enhancements described in literature, since these code developments have not been provided to the department. Nevertheless, as the nominal average enrichment of the MOx bundles is 5.41 % (total amount of plutonium), which can still be considered as a relatively low enrichment, the accuracy of the CMS codes is acceptable without the use of the MOx improvements for this level of Pu enrichment.

  17. Simulation of the automatic depressurization system (Ads) for a boiling water reactor (BWR) based on RELAP; Simulacion del sistema de despresurizacion automatica (ADS) para un reactor de agua en ebullicion (BWR) basado en RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez G, C.; Chavez M, C., E-mail: ces.raga@gmail.com [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-10-15

    The automatic depressurization system (Ads) of the boiling water reactor (BWR) like part of the emergency cooling systems is designed to liberate the vapor pressure of the reactor vessel, as well as the main vapor lines. At the present time in the Engineering Faculty, UNAM personnel works in the simulation of the Laguna Verde reactor based on the nuclear code RELAP/SCADAP and in the incorporation to the same of the emergency cooling systems. The simulation of the emergency cooling systems began with the inclusion of two hydrodynamic volumes, one source and another drain, and the incorporation of the initiation logic for each emergency system. In this work is defined and designed a simplified model of Ads of the reactor, considering a detail level based on the main elements that compose it. As tool to implement the proposed model, the RELAP code was used. The simulated main functions of Ads are centered in the quick depressurization of the reactor by means of the vapor discharge through the relief/safety valves to the suppression pool, and, in the event of break of the main vapor line, the reduction of the vessel pressure operates for that the cooling systems of the core to low pressure (Lpcs and Lpci) they can begin their operation. (Author)

  18. Technical report on material selection and processing guidelines for BWR [boiling water reactor] coolant pressure boundary piping: Final report

    International Nuclear Information System (INIS)

    This report provides the technical bases for the NRC staff's revised recommended methods to control the intergranular stress corrosion cracking susceptibility of BWR piping. For piping that does not fully comply with the material selection, testing, and processing guideline combinations of this document, varying degrees of augmented inservice inspection are recommended. This revision also includes guidance and NRC staff recommendations (not requirements) regarding crack evaluation and weld overlay repair methods for long-term operation or for continuing interim operation of plants until a more permanent solution is implemented

  19. An assessment of BWR (boiling water reactor) Mark-II containment challenges, failure modes, and potential improvements in performance

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, D.L.; Jones, K.R.; Dallman, R.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA)); Wagner, K.C. (Science Applications International Corp., Albuquerque, NM (USA))

    1990-07-01

    This report assesses challenges to BWR Mark II containment integrity that could potentially arise from severe accidents. Also assessed are some potential improvements that could prevent core damage or containment failure, or could mitigate the consequences of such failure by reducing the release of fission products to the environment. These challenges and improvements are analyzed via a limited quantitative risk/benefit analysis of a generic BWR/4 reactor with Mark II containment. Point estimate frequencies of the dominant core damage sequences are obtained and simple containment event trees are constructed to evaluate the response of the containment to these severe accident sequences. The resulting containment release modes are then binned into source term release categories, which provide inputs to the consequence analysis. The output of the consequences analysis is used to construct an overall base case risk profile. Potential improvements and sensitivities are evaluated by modifying the event tree spilt fractions, thus generating a revised risk profile. Several important sensitivity cases are examined to evaluate the impact of phenomenological uncertainties on the final results. 75 refs., 25 figs., 65 tabs.

  20. An assessment of BWR [boiling water reactor] Mark-II containment challenges, failure modes, and potential improvements in performance

    International Nuclear Information System (INIS)

    This report assesses challenges to BWR Mark II containment integrity that could potentially arise from severe accidents. Also assessed are some potential improvements that could prevent core damage or containment failure, or could mitigate the consequences of such failure by reducing the release of fission products to the environment. These challenges and improvements are analyzed via a limited quantitative risk/benefit analysis of a generic BWR/4 reactor with Mark II containment. Point estimate frequencies of the dominant core damage sequences are obtained and simple containment event trees are constructed to evaluate the response of the containment to these severe accident sequences. The resulting containment release modes are then binned into source term release categories, which provide inputs to the consequence analysis. The output of the consequences analysis is used to construct an overall base case risk profile. Potential improvements and sensitivities are evaluated by modifying the event tree spilt fractions, thus generating a revised risk profile. Several important sensitivity cases are examined to evaluate the impact of phenomenological uncertainties on the final results. 75 refs., 25 figs., 65 tabs

  1. Recent developments in BWR water chemistry

    International Nuclear Information System (INIS)

    Water chemistry is of critical importance to the operation and economic viability of the Boiling Water Reactor (BWR). A successful water chemistry program will satisfy the following goals: - Minimize the incidence and growth of SCC/IASCC, - Minimize plant radiation fields controllable by chemistry, -Maintain fuel integrity by minimizing cladding corrosion, - Minimize flow-accelerated corrosion (FAC) in balance-of-plant components. The impact of water chemistry on each of these goals is discussed in more detail in this paper. It should be noted that water chemistry programs also include surveillance and operating limits for other plant water systems (e.g., service water, closed cooling water systems, etc.) but these are out of the scope of this paper. This paper reviews developments in water chemistry guidelines for U.S. BWR nuclear power plants. (author). 2 figs., 2 tabs., 7 refs

  2. Advances in the development and validation of CFD-BWR, a two-phase computational fluid dynamics model for the simulation of flow and heat transfer in boiling water reactors

    International Nuclear Information System (INIS)

    This paper presents recent advances in the validation of an advanced Computational Fluid Dynamics (CFD) computer code (CFD-BWR) that allows the detailed analysis of two-phase flow and heat transfer phenomena in Boiling Water Reactor (BWR) fuel bundles. The CFD-BWR code is being developed as a customized module built on the foundation of the commercial CFD-code STAR-CD which provides general two-phase flow modeling capabilities. We have described the model development strategy that has been adopted by the development team for the prediction of boiling flow regimes in a BWR fuel bundle. This strategy includes the use of local flow topology maps and flow topology specific phenomenological models. The paper reviews the key boiling phenomenological models and focuses on recent results of experiment analyses for the validation of two-phase BWR phenomena models including cladding-to-coolant heat transfer and Critical Heat Flux experiments and the BWR Full-size Assembly Boiling Test (BFBT). The two-phase flow models implemented in the CFD-BWR code can be grouped into three broad categories: models describing the vapor generation at the heated cladding surface, models describing the interactions between the vapor and the liquid coolant, and models describing the heat transfer between the fuel pin and the two-phase coolant. These models have been described and will be briefly reviewed. The boiling model used in the second generation of the CFD-BWR code includes a local flow topology map which allows the cell-by-cell selection of the local flow topology. Local flow topologies can range from a bubbly flow topology where the continuous phase is liquid, to a transition flow topology, to a droplet flow topology where the continuous phase is vapor, depending primarily on the local void fraction. The models describing the cladding-to-coolant heat transfer and the interplay between these models and the local flow topology are important in Critical Heat Flux (CHF) analyses, and will

  3. Advances in BWR water chemistry

    International Nuclear Information System (INIS)

    This paper reviews recent advances in Boiling Water Reactor (BWR) water chemistry control with examples of plant experiences at U.S. designed BWRs. Water chemistry advances provide some of the most effective methods for mitigating materials degradation, reducing fuel performance concerns and lowering radiation fields. Mitigation of stress corrosion cracking (SCC) of materials remains a high priority and improved techniques that have been demonstrated in BWRs will be reviewed, specifically hydrogen injection combined with noble metal chemical addition (NMCA) and the newer on-line noble metal application process (OLNC). Hydrogen injection performance, an important part of SCC mitigation, will also be reviewed for the BWR fleet, highlighting system improvements that have enabled earlier injection of hydrogen including the potential for hydrogen injection during plant startup. Water chemistry has been significantly improved by the application of pre-filtration and optimized use of ion exchange resins in the CP (condensate polishing) and reactor water cleanup (RWCU) systems. EPRI has monitored and supported water treatment improvements to meet water chemistry goals as outlined in the EPRI BWR Water Chemistry Guidelines, particularly those for SCC mitigation of reactor internals and piping, minimization of fuel risk due to corrosion and crud deposits and chemistry control for radiation field reduction. In recent years, a significant reduction has occurred in feedwater corrosion product input, particularly iron. A large percentage of plants are now reporting <0.1 ppb feedwater iron. The impacts to plant operation and chemistry of lower feedwater iron will be explored. Depleted zinc addition is widely practiced across the fleet and the enhanced focus on radiation reduction continues to emphasize the importance of controlling radiation source term. In addition, shutdown chemistry control is necessary to avoid excessive release of activated corrosion products from fuel

  4. Droplet entrainment and deposition rate models for determination of boiling transition in BWR fuel assembly

    International Nuclear Information System (INIS)

    Droplet entrainment and deposition rates are of vital importance for mechanistic determination of critical power and location of boiling transition in a BWR fuel assembly. Data from high-pressure, high-temperature steam-water adiabatic experiments conducted in very tall test sections are used to develop a combination of equilibrium entrainment-deposition rate. Application of this combination to the heated tests conducted in a shorter test section of typical height of a BWR fuel assembly shows that correct split of total liquid in form of the film and droplets at the onset of annular-mist flow regime is also important to obtain good prediction of film flow rates/entrainment fraction. The improved model is then applied to simulate critical power tests in annulus and rod bundles. (author)

  5. Simulation of the injection system of cooling water to low pressure (Lpci) for a boiling water reactor (BWR) based on RELAP

    International Nuclear Information System (INIS)

    The present article describes the modeling and simulation of the Injection System of Cooling Water to Low Pressure (Lpci) for the nuclear power plant of Laguna Verde. Is very important to be able to predict the behavior of the nuclear plant in the case of an emergency stop, and while nearer to the reality are the results of a simulation, better is the safety protocol that can be devised. In the Engineering Faculty of the UNAM at the present is had logical models of the safety systems, but due to the nature of the same, these simulations do not provide of the quantity of enough information to be able to reproduce with more accuracy the behavior of the Lpci in the case of a severe accident. For this reason, the RELAP code was used for the flows modeling, components and structures of heat transfers in relation to the system Lpci. The modeling of the components is carried out with base on technical information of the nuclear plant and the results will be corroborated with information in reference documents as the Rasp (the Reactor analysis support package) and the Fsar (Final safety analysis report) for the nuclear power plant of Laguna Verde. (Author)

  6. Estimating boiling water reactor decommissioning costs. A user`s manual for the BWR Cost Estimating Computer Program (CECP) software: Draft report for comment

    Energy Technology Data Exchange (ETDEWEB)

    Bierschbach, M.C. [Pacific Northwest Lab., Richland, WA (United States)

    1994-12-01

    With the issuance of the Decommissioning Rule (July 27, 1988), nuclear power plant licensees are required to submit to the U.S. Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. This user`s manual and the accompanying Cost Estimating Computer Program (CECP) software provide a cost-calculating methodology to the NRC staff that will assist them in assessing the adequacy of the licensee submittals. The CECP, designed to be used on a personal computer, provides estimates for the cost of decommissioning BWR power stations to the point of license termination. Such cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial costs; and manpower costs. In addition to costs, the CECP also calculates burial volumes, person-hours, crew-hours, and exposure person-hours associated with decommissioning.

  7. Estimating boiling water reactor decommissioning costs. A user's manual for the BWR Cost Estimating Computer Program (CECP) software: Draft report for comment

    International Nuclear Information System (INIS)

    With the issuance of the Decommissioning Rule (July 27, 1988), nuclear power plant licensees are required to submit to the U.S. Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. This user's manual and the accompanying Cost Estimating Computer Program (CECP) software provide a cost-calculating methodology to the NRC staff that will assist them in assessing the adequacy of the licensee submittals. The CECP, designed to be used on a personal computer, provides estimates for the cost of decommissioning BWR power stations to the point of license termination. Such cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial costs; and manpower costs. In addition to costs, the CECP also calculates burial volumes, person-hours, crew-hours, and exposure person-hours associated with decommissioning

  8. TRAC-BD1: transient reactor analysis code for boiling-water systems

    Energy Technology Data Exchange (ETDEWEB)

    Spore, J.W.; Weaver, W.L.; Shumway, R.W.; Giles, M.M.; Phillips, R.E.; Mohr, C.M.; Singer, G.L.; Aguilar, F.; Fischer, S.R.

    1981-01-01

    The Boiling Water Reactor (BWR) version of the Transient Reactor Analysis Code (TRAC) is being developed at the Idaho National Engineering Laboratory (INEL) to provide an advanced best-estimate predictive capability for the analysis of postulated accidents in BWRs. The TRAC-BD1 program provides the Loss of Coolant Accident (LOCA) analysis capability for BWRs and for many BWR related thermal hydraulic experimental facilities. This code features a three-dimensional treatment of the BWR pressure vessel; a detailed model of a BWR fuel bundle including multirod, multibundle, radiation heat transfer, leakage path modeling capability, flow-regime-dependent constitutive equation treatment, reflood tracking capability for both falling films and bottom flood quench fronts, and consistent treatment of the entire accident sequence. The BWR component models in TRAC-BD1 are described and comparisons with data presented. Application of the code to a BWR6 LOCA is also presented.

  9. SIMULATE-3K: Enhancements and Application to Boiling Water Reactor Transients

    International Nuclear Information System (INIS)

    The SIMULATE-3K (S-3K) reactor analysis code has been applied to a variety of pressurized water reactor (PWR) and boiling water reactor (BWR) transients since 1993. Over the years, many changes have occurred in the S-3K channel hydraulics and ex-core component modeling. This paper summarizes those changes and outlines the status of existing vessel and steam line models. Examples are given for BWR transients that can be analyzed with S-3K

  10. Mitigation performance indicator for boiling water reactors

    International Nuclear Information System (INIS)

    All U.S. boiling water reactors (BWRs) inject hydrogen for mitigation of intergranular stress corrosion cracking (IGSCC), and most currently use or plan to use noble metals technology. The EPRI Boiling Water Reactor Vessels and Internals Project (BWRVIP) developed a Mitigation Performance Indicator (MPI) in 2006 to accurately depict to management the status of mitigation equipment and as a standardized way to show the overall health of reactor vessel internals from a chemistry perspective. It is a 'Needed' requirement in the EPRI BWR Water Chemistry Guidelines that plants have an MPI, and use of the BWRVIP MPI is a 'Good Practice'. The MPI is aligned with inspection relief criteria for reactor piping and internal components for U.S. BWRs. This paper discusses the history of the MPI, from its first use for plants operating with moderate hydrogen water chemistry (HWC-M) or Noble Metal Chemical Application (NMCA) + HWC to its more recent use for plants operating with On-Line NobleChem™ (OLNC) + HWC. Key mitigation parameters are discussed along with the technical bases for the indicators associated with the parameters. (author)

  11. EPRI BWR Water Chemistry Guidelines Revision

    International Nuclear Information System (INIS)

    BWRVIP-190: BWR Water Chemistry Guidelines – 2008 Revision has been revised. The revision committee consisted of U.S. and non-U.S. utilities (members of the BWR Vessel and Internals Protection (BWRVIP) Mitigation Committee), reactor system manufacturers, fuel suppliers, and EPRI and industry experts. The revised document, BWRVIP-190 Revision 1, was completely reformatted into two volumes, with a simplified presentation of water chemistry control, diagnostic and good practice parameters in Volume 1 and the technical bases in Volume 2, to facilitate use. The revision was developed in parallel and in coordination with preparation of the Fuel Reliability Guidelines Revision 1: BWR Fuel Cladding Crud and Corrosion. Guidance is included for plants operating under normal water chemistry (NWC), moderate hydrogen water chemistry (HWC-M), and noble metal application (GE-Hitachi NobleChem™) plus hydrogen injection. Volume 1 includes significant changes to BWR feedwater and reactor water chemistry control parameters to provide increased assurance of intergranular stress corrosion cracking (IGSCC) mitigation of reactor materials and fuel reliability during all plant conditions, including cold shutdown (≤200°F (93°C)), startup/hot standby (>200°F (93°C) and ≤ 10%) and power operation (>10% power). Action Level values for chloride and sulfate have been tightened to minimize environmentally assisted cracking (EAC) of all wetted surfaces, including those not protected by hydrogen injection, with or without noble metals. Chemistry control guidance has been enhanced to minimize shutdown radiation fields by clarifying targets for depleted zinc oxide (DZO) injection while meeting requirements for fuel reliability. Improved tabular presentations of parameter values explicitly indicate levels at which actions are to be taken and required sampling frequencies. Volume 2 provides the technical bases for BWR water chemistry control for control of EAC, flow accelerated corrosion

  12. Trends in BWR transient analysis

    International Nuclear Information System (INIS)

    While boiling water reactor (BWR) analysis methods for transient and loss of coolant accident analysis are well established, refinements and improvements continue to be made. This evolution of BWR analysis methods is driven by the new applications. This paper discusses some examples of these trends, specifically, time domain stability analysis and analysis of the simplified BWR (SBWR), General Electric's design approach involving a shift from active to passive safety systems and the elimination/simplification of systems for improved operation and maintenance

  13. Overview of activities for the reduction of dose rates in Swiss boiling water reactors

    International Nuclear Information System (INIS)

    Since March 1990, zinc has been added to the reactor water of the boiling water reactor (BWR) Leibstadt (KKL) and, since January 1991, iron has been added to the BWR Muehleberg (KKM). These changes in reactor water chemistry were accompanied by a comprehensive R+D programme. This paper covers three selected topics: a) the statistical analysis of KKL reactor water data before and after zinc addition; b) the analysis of the KKL reactor water during the 1991 annual shutdown; c) laboratory autoclave tests to clarify the role of water additives on the cobalt deposition on austenitic steel surfaces. (author) 2 figs., 4 tabs

  14. Experimental simulation of the water cooling of corium spread over the floor of a BWR containment

    Energy Technology Data Exchange (ETDEWEB)

    Morage, F.; Lahey, R.T. Jr.; Podowski, M.Z. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1995-09-01

    This paper is concerned with an experimental investigation of the cooling effect of water collected on the surface of corium released onto the floor of a BWR drywell. In the present experiments, the actual reactor materials were replaced by simulant materials. Specifically, the results are shown for Freon-11 film boiling over liquid Wood`s metal spread above a solid porous surface through which argon gas was injected. An analysis of the obtained experimental data revealed that the actual film boiling heat transfer between a molten pool of corium and the water above the pool should be more efficient than predicted by using standard correlations for boiling over solid surfaces. This effect will be further augmented by the gas released due to the ablation of concrete floor beneath the corium and percolating towards its upper surface and into through the water layer above.

  15. Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

  16. Analysis of the magnetic corrosion product deposits on a boiling water reactor cladding

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, Andrey [Paul Scherrer Institut, Villigen (Switzerland); Degueldre, Claude, E-mail: claude.degueldre@psi.ch [Paul Scherrer Institut, Villigen (Switzerland); Kaufmann, Wilfried [Kernkraftwerk Leibstadt, Leibstadt (Switzerland)

    2013-01-15

    The buildup of corrosion product deposits (CRUD) on the fuel cladding of the boiling water reactor (BWR) before and after zinc injection has been investigated by applying local experimental analytical techniques. Under the BWR water chemistry conditions, Zn addition together with the presence of Ni and Mn induce the formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}] spinel solid solutions. X-ray absorption spectroscopy (XAS) revealed inversion ratios of cation distribution in spinels deposited from the solid solution. Based on this information, a two-site ferrite spinel solid solution model is proposed. Electron probe microanalysis (EPMA) and extended X-ray absorption fine structure (EXAFS) findings suggest the zinc-rich ferrite spinels formation on BWR fuel cladding mainly at lower pin. - Graphical Abstract: Analysis of spinels in corrosion product deposits on boiling water reactor fuel rod. Combining EPMA and XAFS results: schematic representation of the ferrite spinels in terms of the end members and their extent of inversion. Note that the ferrites are represented as a surface between the normal (upper plane, M[Fe{sub 2}]O{sub 4}) and the inverse (lower plane, Fe[MFe]O{sub 4}). Actual compositions red Black-Small-Square for the specimen at low elevation (810 mm), blue Black-Small-Square for the specimen at mid elevation (1800 mm). The results have an impact on the properties of the CRUD material. Highlights: Black-Right-Pointing-Pointer Buildup of corrosion product deposits on fuel claddings of a boiling water reactor (BWR) are investigated. Black-Right-Pointing-Pointer Under BWR water conditions, Zn addition with Ni and Mn induced formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}]. Black-Right-Pointing-Pointer X-Ray Adsorption Spectroscopy (XAS) revealed inversion of cations in spinel solid solutions. Black-Right-Pointing-Pointer Zinc-rich ferrite spinels are formed on BWR fuel cladding mainly at lower pin elevations.

  17. Gas bubbling-enhanced film boiling of Freon-11 on liquid metal pools. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Greene, G.A.

    1985-01-01

    In the analysis of severe core damage accidents in LWRs, a major driving force which must be considered in evaluating containment loading and fission product transport is the ex-vessel interaction between molten core debris and structural concrete. Two computer codes have been developed for this purpose, the CORCON-MOD2 model of ex-vessel, core concrete interactions and the VANESA model for aerosol generation and fission product release as a result of molten core-concrete interactions. Under a wide spectrum of reactor designs and accident sequences, it is possible for water to come into contact with the molten core debris and form a coolant pool overlying the core debris which is attacking the concrete. As the concrete decomposes, noncondensable gases are released, which bubble through the melt and across the boiling interface, affecting the liquid-liquid boiling process. Currently, the CORCON code includes the classical Berenson model for film boiling over a horizontal flat plate for this phenomenon. The objectives of this activity are to investigate the influence of transverse noncondensable gas flux on the magnitude of the stable liquid-liquid film boiling heat flux and develop a gas flux-enhanced, liquid-liquid film boiling model for incorporation into the CORCON-MOD2 computer code to replace or modify the Berenson model.

  18. BWR Assembly Optimization for Minor Actinide Recycling

    Energy Technology Data Exchange (ETDEWEB)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  19. Feasibility study on the thorium fueled boiling water breeder reactor

    International Nuclear Information System (INIS)

    The feasibility of (Th,U)O 2 fueled, boiling water breeder reactor based on conventional BWR technology has been studied. In order to determine the potential use of water cooled thorium reactor as a competitive breeder, this study evaluated criticality, breeding and void reactivity coefficient in response to changes made in MFR and fissile enrichments. The result of the study shows that while using light water as moderator, low moderator to fuel volume ratio (MFR=0.5), it was possible to breed fissile fuel in negative void reactivity condition. However the burnup value was lower than the value of the current LWR. On the other hand, heavy water cooled reactor shows relatively wider feasible breeding region, which lead into possibility of designing a core having better neutronic and economic performance than light water with negative void reactivity coefficient. (authors)

  20. Investigation of void effects in boiling water reactor fuels using neutron tomography

    OpenAIRE

    Loberg, John

    2006-01-01

    In a boiling water reactor (BWR), the void is correlated to dry out and the power level of the reactor. However, measuring the void is very difficult so it is therefore calculated with an accuracy that leaves room for improvements. Typically the uncertainty is ± 3% for 40% average void in the reactor. If the void could be determined with improved accuracy, both safety and economical features could be improved. X-ray tomography has previously been done on BWR fuel models in order to determine ...

  1. Discussion on 'Electrochemical potential measurements under simulated BWR water chemistry conditions'

    International Nuclear Information System (INIS)

    In the above-referenced paper, Lin et al. report measurements of the corrosion potentials (the electrochemical potential or ECP) of types 304 and 316 SS in simulated boiling water reactor (BWR) heat transport environments at 270 C. There are four reasons for this discussion: to demonstrate that their theoretical explanation for the variation of ECP with oxygen concentration is inadequate; to show that their flow velocity/ECP results for oxygenated and hydrogenated systems are experimentally inconclusive because of experimental problems and, in any case, are inconsistent with electrochemical expectations; to cite previous work on the origin of the ECP of stainless steels in BWR environments that was not referenced in the paper but provides a basis for interpreting their data; and to identify previous work on the effect of Cu2+ on the ECP of type 304 SS, which was also not referenced in the paper

  2. Improving the neutronic characteristics of a boiling water reactor by using uranium zirconium hydride fuel instead of uranium dioxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, Ahmed Abdelghafar [Higher Technological Institute, Ramadan (Egypt)

    2016-06-15

    The present work discusses two different models of boiling water reactor (BWR) bundle to compare the neutronic characteristics of uranium dioxide (UO{sub 2}) and uranium zirconium hydride (UZrH{sub 1.6}) fuel. Each bundle consists of four assemblies. The BWR assembly fueled with UO{sub 2} contains 8 × 8 fuel rods while that fueled with UZrH{sub 1.6} contains 9 × 9 fuel rods. The Monte Carlo N-Particle Transport code, based on the Mont Carlo method, is used to design three dimensional models for BWR fuel bundles at typical operating temperatures and pressure conditions. These models are used to determine the multiplication factor, pin-by-pin power distribution, axial power distribution, thermal neutron flux distribution, and axial thermal neutron flux. The moderator and coolant (water) are permitted to boil within the BWR core forming steam bubbles, so it is important to calculate the reactivity effect of voiding at different values. It is found that the hydride fuel bundle design can be simplified by eliminating water rods and replacing the control blade with control rods. UZrH{sub 1.6} fuel improves the performance of the BWR in different ways such as increasing the energy extracted per fuel assembly, reducing the uranium ore, and reducing the plutonium accumulated in the BWR through burnup.

  3. Uncommon water chemistry observations in modern day boiling water reactors

    International Nuclear Information System (INIS)

    Numerous technologies have been developed to mitigate intergranular stress corrosion cracking (IGSCC) of boiling water reactor (BWR) materials that include hydrogen water chemistry (HWC), noble metal chemical application (NMCA) and on-line NMCA (OLNC). These are matured technologies with extensive plant operating experiences, HWC – 32 years, NMCA – 18 years and OLNC – 9 years. Over the past three decades, numerous water chemistry data, dose rate data and IGSCC mitigation data relating to these technologies have been published and presented at many international conferences. However, there are many valuable and critical water chemistry and dose rate data that have gone unnoticed and unreported. The purpose of this paper is to highlight some of the uncommon water chemistry and dose rate experiences that reveal valuable information on the performance and durability of NMCA and OLNC technologies. Data will be presented, that have hitherto been unseen in public domain, from the lead OLNC plant in Switzerland giving reasons for some of the uncommon or overlooked water chemistry observations. They include, decreasing reactor water platinum concentration with each successive OLNC application, lack of increase in reactor water activation products in later applications, gradual disappearance of main steam line radiation (MSLR) monitor response decrease, Curium and Au-199 release during OLNC applications, rapid increase in reactor water clean-up conductivity, and Iodine, Mo-99 and Tc-99m spiking when hydrogen is interrupted and brought back to service, and main steam and reactor water conductivity spiking when clean-up beds or condensate demineralizers are changed. All these observations give valuable information on the success of OLNC applications and also signal the presence of sufficient noble metal on in-reactor surfaces from the long term durability and effectiveness stand point. Some of these observations can be used as secondary parameters, if and when a primary

  4. Advanced core physics and thermal hydraulics analysis of boiling water reactors using innovative fuel concepts

    OpenAIRE

    Winter, Dominik

    2014-01-01

    The economical operation of a boiling water reactor (BWR) is mainly achieved by the axially uniform utilization of the nuclear fuel in the assemblies which is challenging because the neutron spectrum in the active reactor core varies with the axial position. More precisely, the neutron spectrum becomes harder the higher the position is resulting in a decrease of the fuel utilization because the microscopic fission cross section is smaller by several orders of magnitude. In this work, the use ...

  5. Mitigation strategies of intergranular corrosion in systems of reactors of water boiling (BWR). Combined action of the chemistry of the hydrogen and the oxygen; Estrategias de mitigacion de la corrosion intergranular en sistemas de reactores de agua en ebullicion (BWR). Accion combinada de la quimica del hidrogeno y del oxigeno

    Energy Technology Data Exchange (ETDEWEB)

    Verdugo, M.

    2015-07-01

    Inter-Granular Stress Corrosion cracking (IGSCC) in austenitic stainless steel and in austenitic nickel-based alloys has been the subject of many studies the aim of which was to resolve one of the main problems faced by BWR nuclear power plants since the 1960s. This corrosion phenomenon is the result of the combined action of three factors: sensitization of the material, high local stresses and an aggressive medium. This paper deals with these factors separately and analyzes the oxidative chemistry of BWR reactors (aggressivity of the medium) as one the main causes if IGSCC. (Author)

  6. Boiling water reactor off-gas systems evaluation

    International Nuclear Information System (INIS)

    An evaluation of the off-gas systems for all 25 operating Boiling Water Reactors (BWR) was made to determine the adequacy of their design and operating procedures to reduce the probability of off-gas detonations. The results of the evaluations are that, of the 25 operable units, 13 meet all the acceptance criteria. The other 12 units do not have the features needed to meet the criteria, but have been judged to have, or are committed to provide, features which give reasonable assurance that the potential for external off-gas detonations is minimized. The 12 units which did not originally meet the criteria are aware of the potential hazards associated with off-gas detonations and have agreed to take action to minimize the probability of future detonations

  7. Improvements in boiling water reactor designs and safety

    International Nuclear Information System (INIS)

    The advanced boiling water reactor (ABWR) is being developed by an international team of BWR manufacturers to respond to worldwide utility needs in the 1990's. Major objectives of the ABWR program are discussed in this paper. They include: design simplification; improved safety and reliability; reduced construction, fuel and operating costs; improved maneuverability; and reduced occupational exposure and radwaste. Key features of the ABWR are internal recirculation pumps; fine-motion, electro-hydraulic control rod drives; digital control and instrumentation; multiplexed, fiber optic cabling network; pressure suppression containment with horizontal vents; cylindrical reinforced concrete containment; structural integration of the containment and reactor building; severe accident capability; state-of-the-art fuel; advanced turbine/generator with 52 last stage buckets; and advanced radwaste technology

  8. Dynamic simulation of a boiling water nuclear reactor

    International Nuclear Information System (INIS)

    For the application of modern control theory, specifically optimal control, to the boiling water reactor, it is necessary to have a linear model that is validated. The nonlinear model of the BWR derived on the basis of physical laws and empirical relations is linearized around an operating point and the model if verified against experimental results by simulating various tests such as the pressure transient test, change in power to recirculating pump etc. The transport delay occurring in the model is approximated by various representations and the results are compared with the exact delay representation. Validation such as discussed in the paper forms the basis for devising appropriate control strategies in the presence of disturbances. (author)

  9. Resolution of US regulatory issues involving boiling water reactor stability

    International Nuclear Information System (INIS)

    The U.S. Nuclear Regulatory Commission (NRC) and the Boiling Water Reactor Owners Group (BWROG) have been reexamining BWR instability characteristics and consequences since the March 1988 instability event at LaSalle Unit 2. The NRC and BWROG concluded that existing reactor protection systems do not prevent violation of the critical power ratio (CPR) safety limits caused by large asymmetric oscillations. The studies are also examining the need to modify the automatic and operator actions previously developed for response to an anticipated transient without scram (ATWS) event because of oscillation effects not fully considered in previous studies. This paper presents the current status of these studies and an assessment of actions needed to resolve the issue. (author)

  10. Boiling Water Reactor Loading Pattern Optimization Using Simple Linear Perturbation and Modified Tabu Search Methods

    International Nuclear Information System (INIS)

    An automated system for designing a loading pattern (LP) for boiling water reactors (BWRs) given a reference LP and control rod (CR) sequence has been developed. This system employs the advanced nodal code SIMULATE-3 and a BWR LP optimization code FINELOAD-3, which uses a simple linear perturbation method and a modified Tabu search method to select potential optimized LP candidates. Both of these unique methods of FINELOAD-3 were developed to achieve an effective BWR LP optimization strategy and to have high computational efficiency. FINELOAD-3 also adjusts deep CR positions to compensate for the core reactivity deviation caused by fuel shuffling. The objective function is to maximize the end-of-cycle core reactivity while satisfying the specified thermal margins and cold shutdown margin constraints. This optimization system realized the practical application for real BWR LP design. Computer time needed to obtain an optimized LP for a typical BWR/5 octant core with 15 depletion steps is ∼4 h using an engineering workstation. This system was extensively tested for real BWR reload core designs and showed that the developed LPs using this system are equivalent or better than the manually optimized LPs

  11. 21 CFR 872.6710 - Boiling water sterilizer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling...

  12. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  13. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    International Nuclear Information System (INIS)

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE

  14. Knowledge and abilities catalog for nuclear power plant operators: boiling water reactors

    International Nuclear Information System (INIS)

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWR) (NUREG-1123) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog and Examiners' Handbook for Developing Operator Licensing Examinations (NUREG-1121) will cover those topics listed under Title 10, Code of Federal Regulations, Part 55. The BWR Catalog contains approximately 7000 knowledge and ability (K/A) statements for ROs and SROs at boiling water reactors. Each K/A statement has been rated for its importance to the safe operation of the plant in a manner ensuring personnel and public health and safety. The BWR K/A Catalog is organized into five major sections: Plant-wide Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Function, Emergency and Abnormal Plant Evolutions, Components, and Theory. The BWR Catalog represents a modification of the form and content of the K/A Catalog for Nuclear Power Plant Operators: Pressurized Water Reactors (NUREG-1122). First, categories of knowledge and ability statements have been redefined. Second, the scope of the definition of emergency and abnormal plant evolutions has been revised in line with a symptom-based approach. Third, K/As related to the operational applications of theory have been incorporated into the delineations for both plant systems and emergency and abnormal plant evolutions, while K/As pertaining to theory fundamental to plant operation have been delineated in a separate theory section. Finally, the components section has been revised

  15. The effectiveness of early hydrogen water chemistry on corrosion mitigation for boiling water reactors

    International Nuclear Information System (INIS)

    For mitigating intergranular stress corrosion cracking (IGSCC) in an operating boiling water reactor (BWR), the technology of hydrogen water chemistry (HWC) aiming at coolant chemistry improvement has been adopted worldwide. However, the hydrogen injection system is usually in an idle and standby mode during a startup operation. The coolant in a BWR during a cold shutdown normally contains a relatively high level of dissolved oxygen from intrusion of atmospheric air. Accordingly, the structural materials in the primary coolant circuit (PCC) of a BWR could be exposed to a strongly oxidizing environment for a short period of time during a subsequent startup operation. At some plants, the feasibility of hydrogen water chemistry during startup operations has been studied. It is technically difficult to directly procure water chemistry data at various locations of an operating reactor. Accordingly, the impact of startup operation on water chemistry in the PCC of a BWR operating under HWC can only be theoretically evaluated through computer modelling. In this study, a well-developed computer code DEMACE was used to investigate the variations in redox species concentration and in electrochemical corrosion potential (ECP) of components in the PCC of a domestic BWR during startup operations in the presence of HWC. Simulations were carried out for [H2]FWs ranging from 0.0 to 2.0 parts per million (ppm) and for power levels ranging from 3.8% to 11.3% during startup operations. Our analyses indicated that for power levels with steam generation in the core, a higher power level would tend to promote a more oxidizing coolant environment for the structural components and therefore lead to less HWC effectiveness on ECP reduction and corrosion mitigation. At comparatively lower power levels in the absence of steam, the effectiveness of HWC on ECP reduction was much better. The effectiveness of HWC in the PCC of a BWR during startup operations is expected to vary from location to

  16. Water boiling kinetic in rapid decompression

    International Nuclear Information System (INIS)

    This study entering in the frame of a CEA, EDF and Framatome collaboration, has for objective to modelize two-phase flows in case of PWR Loca. The objective is to find, by taking in account the all imbalances, a formulation for the mass transfer at the interface water-vapor by the study of water boiling phenomenon in case of fast decompression such as a primary circuit break. In this accident, the estimation of boiling speeds in an essential parameter for determining the break discharge which conditions the safety systems design

  17. Electrochemical potential measurements under simulated BWR water chemistry conditions

    International Nuclear Information System (INIS)

    Laboratory studies have been performed to investigate the stainless steel corrosion potential under simulated BWR coolant chemistry conditions. In addition to dissolved oxygen and hydrogen, test parameters also included chemical additives, metallic ions and hydrogen peroxide at various concentrations. The effect of water flow velocity was also investigated under various water chemistry conditions. The details of test results have been described elsewhere, and the highlights of the investigation are summarized in this paper. (J.P.N.)

  18. Feasibility study of boiling water reactor core based on thorium-uranium fuel concept

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779, Col Narvarte, 03020 Mexico D.F. (Mexico); Francois Lacouture, Juan Luis; Martin del Campo, Cecilia [Universidad Nacional Autonoma de Mexico, Facultad de Ingenieria, Paseo Cuauhnahuac 8532, Jiutepec, Mor. (Mexico); Espinosa-Paredes, Gilberto [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana Iztapalapa, Apartado Postal 55-534, Mexico D.F. 09340 (Mexico)], E-mail: gepe@xanum.uam.mx

    2008-01-15

    The design of a boiling water reactor (BWR) equilibrium core using the thorium-uranium (blanket-seed) concept in the same integrated fuel assembly is presented in this paper. The lattice design uses the thorium conversion capability to {sup 233}U in a BWR spectrum. A core design was developed to achieve an equilibrium cycle of one effective full power year in a standard BWR with a reload of 104 fuel assemblies designed with an average {sup 235}U enrichment of 7.5 w/o in the seed sub-lattice. The main core operating parameters were obtained. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The economic analysis shows that the fuel cycle cost of the proposed core design can be competitive with a standard uranium core design. Finally, a comparison of the toxicity of the spent fuel showed that the toxicity is lower in the thorium cycle than in other fuel cycles (UO{sub 2} and MOX uranium and plutonium) in the case of the once through cycle for light water reactors (LWR)

  19. Fuel assembly for a boiling water reactor

    International Nuclear Information System (INIS)

    The fuel assembly of a boiling water reactor contains a number of vertical fuel rods with their lower ends against a bottom tie plate. The rods are positioned by spacers, which are fixed to the canning. The upward motion is reduced by the top plate of a special design. (G.B.)

  20. Passive gamma analysis of the boiling-water-reactor assemblies

    Science.gov (United States)

    Vo, D.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Schwalbach, P.; Sjöland, A.; Tobin, S.; Trellue, H.; Vaccaro, S.

    2016-09-01

    This research focused on the analysis of a set of stationary passive gamma measurements taken on the spent nuclear fuel assemblies from a boiling water reactor (BWR) using pulse height analysis data acquisition. The measurements were performed on 25 different BWR assemblies in 2014 at Sweden's Central Interim Storage Facility for Spent Nuclear Fuel (Clab). This study was performed as part of the Next Generation of Safeguards Initiative-Spent Fuel project to research the application of nondestructive assay (NDA) to spent fuel assemblies. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay (NDA) measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. The final objective of this project is to quantify the capability of several integrated NDA instruments to meet the aforementioned goals using the combined signatures of neutrons, gamma rays, and heat. This report presents a selection of the measured data and summarizes an analysis of the results. Specifically, trends in the count rates measured for spectral lines from the following isotopes were analyzed as a function of the declared burnup and cooling time: 137Cs, 154Eu, 134Cs, and to a lesser extent, 106Ru and 144Ce. From these measured count rates, predictive algorithms were developed to enable the estimation of the burnup and cooling time. Furthermore, these algorithms were benchmarked on a set of assemblies not included in the standard assemblies set used by this research team.

  1. Self-Sustaining Thorium Boiling Water Reactors

    OpenAIRE

    Ehud Greenspan; Jasmina Vujic; Francesco Ganda; Arias, Francisco J.

    2012-01-01

    A thorium-fueled water-cooled reactor core design approach that features a radially uniform composition of fuel rods in stationary fuel assembly and is fuel-self-sustaining is described. This core design concept is similar to the Reduced moderation Boiling Water Reactor (RBWR) proposed by Hitachi to fit within an ABWR pressure vessel, with the following exceptions: use of thorium instead of depleted uranium for the fertile fuel; elimination of the internal blanket; and elimination of absorber...

  2. Simulation of the injection system of cooling water to low pressure (Lpci) for a boiling water reactor (BWR) based on RELAP; Simulacion del sistema de inyeccion de agua de refrigeracion a baja presion (LPCI) para un reactor de agua en ebullicion (BWR) basado en RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Delgado C, R. A.; Lopez S, E.; Chavez M, C., E-mail: renedelgado2015@hotmail.com [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-10-15

    The present article describes the modeling and simulation of the Injection System of Cooling Water to Low Pressure (Lpci) for the nuclear power plant of Laguna Verde. Is very important to be able to predict the behavior of the nuclear plant in the case of an emergency stop, and while nearer to the reality are the results of a simulation, better is the safety protocol that can be devised. In the Engineering Faculty of the UNAM at the present is had logical models of the safety systems, but due to the nature of the same, these simulations do not provide of the quantity of enough information to be able to reproduce with more accuracy the behavior of the Lpci in the case of a severe accident. For this reason, the RELAP code was used for the flows modeling, components and structures of heat transfers in relation to the system Lpci. The modeling of the components is carried out with base on technical information of the nuclear plant and the results will be corroborated with information in reference documents as the Rasp (the Reactor analysis support package) and the Fsar (Final safety analysis report) for the nuclear power plant of Laguna Verde. (Author)

  3. Evaluation of instrumentation for detection of inadequate core cooling in boiling water reactors

    International Nuclear Information System (INIS)

    This report is a review of the Approach to Inadequate Core Cooling issue in Boiling Water Reactors (BWR). The report consists of seven sections. The principal conclusion is that the condition of the reference leg, and operator awareness of that condition are of primary importance in level indication reliability for safety. An indication of reference leg level and temperature displayed to the operators would be a useful enhancement of reliability and a guide to further operator action in all circumstances. We conclude that the BWR practice of multiple, redundant coolant level measurements, with overlapping ranges, can be a reliable basis for indication of approach to an ICC condition, and, in correlation with the other control and safety systems of modern BWRs, will prevent unsafe conditions

  4. Stability monitoring of a natural-circulation-cooled boiling water reactor

    International Nuclear Information System (INIS)

    Methods for monitoring the stability of a boiling water reactor (BWR) are discussed. Surveillance of BWR stability is of importance as problems were encountered in several large reactors. Moreover, surveying stability allows plant owners to operate at high power with acceptable stability margins. The results of experiments performed on the Dodewaard BWR (the Netherlands) are reported. This type reactor is cooled by natural circulation, a cooling principle that is also being considered for new reactor designs. The stability of this reactor was studied both with deterministic methods and by noise analysis. Three types of stability are distinguished and were investigated separately: reactor-kinetic stability, thermal-hydraulic stability and total-plant stability. It is shown that the Dodewaard reactor has very large stability margins. A simple yet reliable stability criterion is introduced. It can be derived on-line from thhe noise signal of ex-vessel neutron detectors during normal operation. The sensitivity of neutron detectors to in-core flux perturbations - reflected in the field-of-view of the detector - was calculated in order to insure proper stability surveillance. A novel technique is presented which enables the determination of variations of the in-core coolant velocity by noise correlation. The velocity measured was interpreted on the basis of experiments performed on the air/water flow in a model of a BWR coolant channel. It appeared from this analysis that the velocity measured was much higher than the volume-averaged water and air velocities and the volumetric flux. The applicability of the above-mentioned technique to monitoring of local channel-flow stability was tested. It was observed that stability effects on the coolant velocity are masked by other effects originating from the local flow pattern. Experimental and theoretical studies show a shorter effective fuel time constant in a BWR than was assumed. (author). 118 refs.; 73 figs.; 21 tabs

  5. European simplified boiling water reactor (ESBWR) plant

    International Nuclear Information System (INIS)

    This paper covers innovative ideas which made possible the redesign of the US 660-MW Simplified Boiling Water Reactor (SBWR) Reactor Island for a 1,200-MW size reactor while actually reducing the building cost. This was achieved by breaking down the Reactor Island into multiple buildings separating seismic-1 from non-seismic-1 areas, providing for better space utilization, shorter construction schedule, easier maintainability and better postaccident accessibility

  6. The Nuclear option for U.S. electrical generating capacity additions utilizing boiling water reactor technology

    International Nuclear Information System (INIS)

    The technology status of the Advanced Boiling Water (ABWR) and Simplified Boiling Water (SBWR) reactors are presented along with an analysis of the economic potential of advanced nuclear power generation systems based on BWR technology to meet the projected domestic electrical generating capacity need through 2005. The forecasted capacity needs are determined for each domestic North American Electric Reliability Council (NERC) region. Extensive data sets detailing each NERC region's specific generation and load characteristics, and capital and fuel cost parameters are utilized in the economic analysis of the optimal generation additions to meet this need by use of an expansion planning model. In addition to a reference case, several sensitivity cases are performed with regard to capital costs and fuel price escalation

  7. Stability analysis on natural circulation boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Peter

    1999-05-01

    The purpose of the study is a stability analysis of the simplified boiling water reactor concept. A fluid dynamics code, DYNOS, was developed and successfully validated against FRIGG and DESIRE data and a stability benchmark on the Ringhals 1 forced circulation BWR. Three simplified desings were considered in the analysis: The SWRIOOO by Siemens and the SBWR and ESBWR from the General Electric Co. For all three design operational characteristics, i.e. power versus flow rate maps, were calculated. The effects which different geometric and operational parameters, such as the riser height, inlet subcooling etc., have on the characteristics have been investigated. Dynamic simulations on the three simplified design revealed the geysering and the natural circulation oscillations modes only. They were, however, only encountered at pressure below 0.6 MPa. Stability maps for all tree simplified BWRs were calculated and plotted. The study concluded that a fast pressurisation of the reactor vessel is necessary to eliminate the possibility of geysering or natural circulation oscillations mode instability. (au) 26 tabs., 88 ills.

  8. Neutronic challenges of advanced boiling water reactor designs

    International Nuclear Information System (INIS)

    The advancement of Boiling Water Reactor technology has been under investigation at the Center for Advance Nuclear Energy Systems at MIT. The advanced concepts under study provide economic incentives through enabling further power uprates (i.e. increasing vessel power density) or better fuel cycle uranium utilization. The challenges in modeling of three advanced concepts with focus on neutronics are presented. First, the Helical Cruciform Fuel rod has been used in some Russian reactors, and studied at MIT for uprating the power in LWRs through increased heat transfer area per unit core volume. The HCF design requires high fidelity 3D tools to assess its reactor physics behavior as well as thermal and fuel performance. Second, an advanced core design, the BWR-HD, was found to promise 65% higher power density over existing BWRs, while using current licensing tools and existing technology. Its larger assembly size requires stronger coupling between neutronics and thermal hydraulics compared to the current practice. Third is the reduced moderation BWRs, which had been proposed in Japan to enable breeding and burning of fuel as an alternative to sodium fast reactors. Such technology suffers from stronger sensitivity of its neutronics to the void fraction than the traditional BWRs, thus requiring exact modeling of the core conditions such as bypass voiding, to correctly characterize its performance. (author)

  9. Corrosion products release from steel surface into BWR water coolant

    Energy Technology Data Exchange (ETDEWEB)

    Kritsky, V.G.; Korolev, A.S.; Berezina, I.G.; Sofyin, M.V.

    1986-02-01

    Factors influencing steel corrosion product release and transfer into a BWR primary circuit have been studied and reported on in this paper. The study of corrosion kinetics and corrosion product release was carried out on the samples tested under RBMK NPP condensate-feedwater cycle conditions, as well as, under test rig conditions. The ratio of corrosion product specific mass, transferred to the water, to the whole corrosion product specific mass of steel, formed under the given conditions was determined and used as a criterion, characterizing the extent of corrosion product transfer from the steel surface into the water.

  10. Boils

    Science.gov (United States)

    ... the boil is very bad or comes back. Antibacterial soaps and creams cannot help much once a boil ... following may help prevent the spread of infection: Antibacterial soaps Antiseptic (germ-killing) washes Keeping clean (such as ...

  11. Boiling in the presence of boron compounds in light water reactors

    International Nuclear Information System (INIS)

    The scope of the thesis on boiling in the presence of boron compounds in light water reactors was to study the effects of the boron compound addition on the heat removal from the fuel elements. For an effective cooling of the fuel elements in case of boiling processes a high heat transfer coefficient is of importance. Up to now experimental studies were not performed under reactor specific conditions, for instance with respect to the geometry of the flow conditions, high temperature and pressure levels were not represented. Therefore the experiments in the frame of the thesis were using reactor specific parameters. The test facility SECA (study into the effects of coolant additives) was designed and constructed. The experiments simulated the conditions of normal PWR operation, accidental PWR and accidental BWR conditions.

  12. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1

    International Nuclear Information System (INIS)

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner's Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section

  13. Simulation of Boiling Water Reactor dynamics

    International Nuclear Information System (INIS)

    This master thesis describes a mathematical model of a boiling water reactor and address the dynamic behaviour of the neutron kinetics, boilding dynamics and pressur stability. The simulation have been done using the SIMNON-program. The meaning were that the result from this work possibly would be adjust to supervision methods suitable for application in computer systems. This master thesis in automatic control has been done at the Department of Automatic Control, Lund Institute of Technology. The initiative to the work came from Sydkraft AB. (author)

  14. BWR Water Chemistry Guidelines: 1993 Revision, Normal and hydrogen water chemistry

    International Nuclear Information System (INIS)

    The goal of water chemistry control is to extend the operating life of the reactor and rector coolant system, balance-of-plant components, and turbines while simultaneously controlling costs to safeguard the continued economic viability of the nuclear power generation investment. To further this goal an industry committee of chemistry personnel prepared guidelines to identify the benefits, risks, and costs associated with water chemistry in BWRs and to provide a template for an optimized water chemistry program. This document replaces the BWR Normal Water Chemistry Guidelines - 1986 Revision and the BWR Hydrogen Water Chemistry Guidelines -- 1987 Revision. It expands on the previous guidelines documents by covering the economic implications of BWR water chemistry control

  15. Final air test results for the 1/5-scale Mark I boiling water reactor pressure suppression experiment

    International Nuclear Information System (INIS)

    A loss-of-coolant accident (LOCA) in a boiling-water reactor (BWR) power plant has never occurred. However, because this type of accident is particularly severe, it is used as a principal basis for design. During a hypothetical LOCA in a Mark I BWR, air followed by steam is injected from a drywell into a toroidal wetwell about half-filled with water. A series of consistent, versatile, and accurate air-water tests simulating LOCA conditions was completed in the Lawrence Livermore Laboratory 1/5-Scale Mark I BWR Pressure Suppression Experimental Facility. Results from this test series were used to quantify the vertical loading function and to study the associated fluid dynamic phenomena. Detailed histories of vertical loads on the wetwell are shown. In particular, variations of hydrodynamic-generated vertical loads with changes in drywell pressurization rate, downcomer submergence, and the vent-line loss coefficient are established. Initial drywell overpressure, which partially preclears the downcomers of water, substantially reduces the peak vertical loads. Scaling relationships, developed from dimensional analysis and verified by bench-top experiments, allow the 1/5-scale results to be applied to a full-scale BWR power plant. This analysis leads to dimensionless groupings which are invariant. These groupongs show that if water is used as the working fluid, the magnitude of the forces in a scaled facility is reduced by the cube of the scale factor; the time when these forces occur is reduced by the square root of the scale factor

  16. Modeling and numerical simulation of oscillatory two-phase flows, with application to boiling water nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, M.P. [Instituto de Estudos Avancados - CTA, Sao Paolo (Brazil); Podowski, M.Z. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1995-09-01

    This paper is concerned with the analysis of dynamics and stability of boiling channels and systems. The specific objectives are two-fold. One of them is to present the results of a study aimed at analyzing the effects of various modeling concepts and numerical approaches on the transient response and stability of parallel boiling channels. The other objective is to investigate the effect of closed-loop feedback on stability of a boiling water reactor (BWR). Various modeling and computational issues for parallel boiling channels are discussed, such as: the impact of the numerical discretization scheme for the node containing the moving boiling boundary on the convergence and accuracy of computations, and the effects of subcooled boiling and other two-phase flow phenomena on the predictions of marginal stability conditions. Furthermore, the effects are analyzed of local loss coefficients around the recirculation loop of a boiling water reactor on stability of the reactor system. An apparent paradox is explained concerning the impact of changing single-phase losses on loop stability. The calculations have been performed using the DYNOBOSS computer code. The results of DYNOBOSS validation against other computer codes and experimental data are shown.

  17. Simulation of the aspersion system of the core at high pressure (HPCS) for a boiling water reactor (BWR) based on RELAP; Simulacion del sistema de aspersion del nucleo alta presion (HPCS) para un reactor de agua en ebullicion (BWR) basado en RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Vargas O, D.; Chavez M, C., E-mail: danmirnyi@gmail.com [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-10-15

    A high-priority topic for the nuclear industry is the safety, consequently a nuclear power plant should have the emergency systems of cooling of the core (ECCS), designed exclusively to enter in operation in the event of an accident with coolant loss, including the design base accident. The objective of the aspersion system of the core at high pressure (HPCS) is to provide in an autonomous way the cooling to the core maintaining for if same the coolant inventory even when a small break is presented that does not allow the depressurization of the reactor and also avoiding excessive temperatures that affect the shielding of the fuel. The present work describes the development of the model and the simulation of the HPCS using the RELAP/SCDAP code. During the process simulation, for the setting in march of the system HPCS in an accident with coolant loss is necessary to implement the main components of the system taking into account what unites them, the main pump, the filled pump, the suction and injection valves, pipes and its water sources that can be condensed storage tanks and the suppression pool. The simulation of this system will complement the model with which counts the Analysis Laboratory in Nuclear Reactors Engineering of the UNAM regarding to the nuclear power plant of Laguna Verde which does not have a detailed simulation of the emergency cooling systems. (Author)

  18. Proceedings of the International Workshop on Boiling Water Reactor Stability

    International Nuclear Information System (INIS)

    General design criteria for nuclear power plants in every OECD country require that the reactor core and associated coolant, control, and protection systems be designed so that power oscillations which can result in conditions exceeding acceptable fuel design limits are not possible, or they can be reliably and readily detected and suppressed. In practice, this means that reactor cores should be stable with regard to perturbations from their normal operating state, so that expected variations to the operating parameters do not induce undamped power oscillations. These power oscillations can take a variety of forms, from very local power peaks which can cause no damage, or only slight damage to only a few fuel rods, to large core-wide oscillations where entire segments of the core can become neutronically uncoupled, with wide power swings. Ever since the fast boiling water reactors began operating, over 30 years ago, it has been recognized that their operation under certain conditions of power and flow could cause power and flow oscillations. Considerable research was performed at that time to better understand the principal operating parameters which contribute to the initiation of these oscillations, and guidelines were developed to avoid plant operation under the conditions which were the most unstable. Experiments in the the first Special Power Excursion Reactor Test (SPERT-1) program produced spontaneous power oscillations, and investigations in an out-of-pile loop were necessary to demonstrate that the immediate cause of the oscillations was a power-to-reactivity feedback. Further investigations indicated that the instabilities were limited to certain areas on the operating map. These regions could not be absolutely defined, but there was sufficient understanding of them that they could be generally avoided, with only minor examples of instability events. More recently, though, several reactor events, and especially one that occurred at the La Salle Nuclear

  19. Water Boiling inside Carbon Nanotubes: Towards Efficient Drug Release

    OpenAIRE

    Chaban, Vitaly V.; Prezhdo, Oleg V.

    2012-01-01

    We show using molecular dynamics simulation that spatial confinement of water inside carbon nanotubes (CNT) substantially increases its boiling temperature and that a small temperature growth above the boiling point dramatically raises the inside pressure. Capillary theory successfully predicts the boiling point elevation down to 2 nm, below which large deviations between the theory and atomistic simulation take place. Water behaves qualitatively different inside narrow CNTs, exhibiting trans...

  20. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979

    International Nuclear Information System (INIS)

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices

  1. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices.

  2. Models and Stability Analysis of Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    John Dorning

    2002-04-15

    We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model that includes: space-time modal neutron kinetics based on spatial w-modes; single- and two-phase flow in parallel boiling channels; fuel rod heat conduction dynamics; and a simple model of the recirculation loop. The BR model is represented by a set of time-dependent nonlinear ordinary differential equations, and is studied as a dynamical system using the modern bifurcation theory and nonlinear dynamical systems analysis. We first determine the stability boundary (SB) - or Hopf bifurcation set- in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value; then we transform the SB to the practical power-flow map used by BWR operating engineers and regulatory agencies. Using this SB, we show that the normal operating point at 100% power is very stable, that stability of points on the 100% rod line decreases as the flow rate is reduced, and that operating points in the low-flow/high-power region are least stable. We also determine the SB that results when the modal kinetics is replaced by simple point reactor kinetics, and we thereby show that the first harmonic mode does not have a significant effect on the SB. However, we later show that it nevertheless has a significant effect on stability because it affects the basin of attraction of stable operating points. Using numerical simulations we show that, in the important low-flow/high-power region, the Hopf bifurcation that occurs as the SB is crossed is subcritical; hence, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line at points in the low-flow/high-power region. Numerical simulations are also performed to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is

  3. Technique for technological calculation of critical flow of boiling water

    International Nuclear Information System (INIS)

    Average values of friction factor and mach number for a critical flow of boiling water are determined on the basis of computerized processing of experimental data. Empirical formula, relating these values, which can be used for technological calculations of critical conditions of boiling water flow through transport pipelines, is derived

  4. Implementation of a source term control program in a mature boiling water reactor.

    Science.gov (United States)

    Vargo, G J; Jarvis, A J; Remark, J F

    1991-06-01

    The implementation and results of a source term control program implemented at the James A. FitzPatrick Nuclear Power Plant (JAF), a mature boiling water reactor (BWR) facility that has been in commercial operation since 1975, are discussed. Following a chemical decontamination of the reactor water recirculation piping in the Reload 8/Cycle 9 refueling outage in 1988, hydrogen water chemistry (HWC) and feedwater Zn addition were implemented. This is the first application of both HWC and feedwater Zn addition in a BWR facility. The radiological benefits and impacts of combined operation of HWC and feedwater Zn addition at JAF during Cycle 9 are detailed and summarized. The implementation of hydrogen water chemistry resulted in a significant transport of corrosion products within the reactor coolant system that was greater than anticipated. Feedwater Zn addition appears to be effective in controlling buildup of other activated corrosion products such as 60Co on reactor water recirculation piping; however, adverse impacts were encountered. The major adverse impact of feedwater Zn addition is the production of 65Zn that is released during plant outages and operational transients. PMID:2032839

  5. Implementation of a source term control program in a mature boiling water reactor

    International Nuclear Information System (INIS)

    The implementation and results of a source term control program at the James A. FitzPatrick Nuclear Power Plant (JAF), a mature boiling water reactor (BWR) facility that has been in commercial operation since 1975, are discussed. Following a chemical decontamination of the reactor water recirculation piping in the Reload 8/Cycle 9 refueling outage in 1988, hydrogen water chemistry (HWC) and feedwater Zn addition were implemented. This is the first application of both HWC and feedwater Zn addition in a BWR facility. The radiological benefits and impacts of combined operation of HWC and feedwater Zn addition at JAF during Cycle 9 are detailed and summarized. The implementation of hydrogen water chemistry resulted in a significant transport of corrosion products within the reactor coolant system that was greater than anticipated. Feedwater Zn addition appears to be effective in controlling buildup of other activated corrosion products such as 60Co on reactor water recirculation piping; however, adverse impacts were encountered. The major adverse impact of feedwater Zn addition is the production of 65Zn that is released during plant outages and operational transients

  6. Corrosion Products Identification at Normal Water and Hydrogen Water Chemistry in Boiling Water Reactors

    International Nuclear Information System (INIS)

    The corrosion products sampled from condensate and feedwater systems of boiling water reactors (BWRs) at normal water chemistry (NWC) and hydrogen water chemistry (HWC) operating condition were analyzed with dissolution and instrumental simulation methods. The crystallite and amorphous of iron oxides were separated by means of dissolving method with appropriate chemical solution. The iron oxide composition and content were analyzed by X-ray diffraction (XRD) and inductively coupled plasma atomic emission spectrometer (ICP-AES) in this study. The insoluble iron oxides were obtained in influent and effluent of condensate demineralizer comprised mostly crystalline structure of hematite, magnetite and non-crystallite form of amorphous at NWC and HWC environments. Both goethite and lepidocrocite compositions are of minor importance in feed water system. Crystallite and amorphous compositions in the samples will be calculated from the new developing dissolution method. The crystalline phase of corrosion products are varied with water chemistry conditions in BWRs. The oxide characterization of system corrosion products includes compositions, morphology and particle size can effectively provide the ways of solving crud removal problem in different condition for the performance of condensate demineralizer. The feasibility of identifying other iron oxides and hydroxides in corrosion products is briefly discussed and the mechanisms of iron oxide formation formed around BWR piping will also be shown in detail in this report. Moreover, it will be figured out the properties of radioactive corrosion products growing in different operation periods. The results can also assist in plant units to improve the crud reduction countermeasures and to optimize the system water chemistry. (authors)

  7. Microbiological Effectiveness of Disinfecting Water by Boiling in Rural Guatemala

    OpenAIRE

    Rosa, Ghislaine; Miller, Laura; Clasen, Thomas

    2010-01-01

    Boiling is the most common means of treating water in the home and the benchmark against which alternative point-of-use water treatment options must be compared. In a 5-week study in rural Guatemala among 45 households who claimed they always or almost always boiled their drinking water, boiling was associated with a 86.2% reduction in geometric mean thermotolerant coliforms (TTC) (N = 206, P < 0.0001). Despite consistent levels of fecal contamination in source water, 71.2% of stored water sa...

  8. Reducing radiation levels at boiling water reactors of a commercial nuclear power plant fleet

    International Nuclear Information System (INIS)

    Boiling Water Reactors (BWRs) have suffered from high radiation fields in the primary loop, typically measured by the 'BRAC' (BWR Radiation Level Assessment and Control) reactor recirculation system (RRS) dose rates. Reactor water chemistry and activated corrosion product measurements are important in understanding changes in radiation fields in components and systems of a BWR. Several studies have been conducted at Exelon Nuclear's 14 BWRs in order to understand more fully the cause and effect relationships between reactor water radioactive species and radiation levels. Various radiation control strategies are utilized to control and reduce radiation levels. The proper measurement of radioactive soluble and insoluble species is a critical component in understanding radiation fields. Other factors that impact radiation fields include: noble metal applications; hydrogen injection; zinc addition; chemistry results; cobalt source term; fuel design and operation. Chemistry and radiation field trending and projections are important tools that assist in assessing the potential for increased radiation fields and aiding outage planning efforts, including techniques to minimize outage dose. This paper will present the findings from various studies and predictor tools as well as provide recommendations for continued research efforts in this field. Current plant data will be shared on reactor water radioactive species, plant radiation levels, zinc addition amounts and other chemistry controls. (author)

  9. Boiling water reactor shutdown dose rate experience after on-line NobleChem™

    International Nuclear Information System (INIS)

    All U.S. boiling water reactors (BWRs) inject hydrogen for mitigation of intergranular stress corrosion cracking (IGSCC), depleted zinc oxide (DZO) for control of shutdown dose rates, and most have implemented or plan to implement On-Line NobleChem™ (OLNC). In this process, the injection of a platinum compound that catalyzes the recombination of hydrogen and oxygen at surfaces results in restructuring of oxide films on reactor internals and piping, impacting reactor water Co-60 and shutdown dose rates. Since the first implementation of OLNC in 2005, the experience base has significantly expanded in both U.S. and non-U.S. BWRs. This paper investigates the response of reactor recirculation system (RRS) dose rates after OLNC and their relationship to reactor water chemistry parameters, including Co-60 and zinc, using data from EPRI's BWR Chemistry Monitoring and Assessment database. Results of a recent study evaluating correlations of chemistry parameters, other than Co-60, with RRS dose rates are discussed. Relevant revised guidance in the BWR Water Chemistry Guidelines is also presented. (author)

  10. Design of a boiling water reactor core based on an integrated blanket-seed thorium-uranium concept

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Carrera, Alejandro [Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Mor. (Mexico); Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779, Col. Narvarte, 03020 Mexico, D.F. (Mexico); Francois, Juan Luis [Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Mor. (Mexico)]. E-mail: jlfl@fi-b.unam.mx; Martin-del-Campo, Cecilia [Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Mor. (Mexico); Espinosa-Paredes, Gilberto [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana, Avenida San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico, D.F. (Mexico)

    2005-04-15

    This paper is concerned with the design of a boiling water reactor (BWR) equilibrium core using thorium as a nuclear material in an integrated blanket-seed (BS) assembly. The integrated BS concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned out in a once-through cycle. The idea behind the lattice design is to use the thorium conversion capability in a BWR spectrum, taking advantage of the {sup 233}U build-up. A core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average {sup 235}U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the fuel assembly.

  11. Conceptual design and thermal-hydraulic characteristics of natural circulation Boiling Water Reactors

    International Nuclear Information System (INIS)

    A natural circulation boiling water reactor (BWR) with a rated capacity of 600 MW (electric) has been conceptually designed for small- and medium-sized light water reactors. The components and systems in the reactor are simplified by eliminating pumped recirculation systems and pumped emergency core cooling systems. Consequently, the volume of the reactor building is -- 50% of that for current BWRs with the same rated capacity; the construction period is also shorter. Its thermal-hydraulic characteristics, critical power ratio (CPR) and flow stability at steady state, decrease in the minimum CPR (ΔMCPR) at transients, and the two-phase mixture level in the reactor pressure vessel (RPV) during accidents are investigated. The two-phase mixture level in the RPV during an accident does not decrease to lower than the top of the core; the core uncovery and heatup of fuel cladding would not occur during any loss-of-coolant accident

  12. Self-Sustaining Thorium Boiling Water Reactors

    Directory of Open Access Journals (Sweden)

    Ehud Greenspan

    2012-10-01

    Full Text Available A thorium-fueled water-cooled reactor core design approach that features a radially uniform composition of fuel rods in stationary fuel assembly and is fuel-self-sustaining is described. This core design concept is similar to the Reduced moderation Boiling Water Reactor (RBWR proposed by Hitachi to fit within an ABWR pressure vessel, with the following exceptions: use of thorium instead of depleted uranium for the fertile fuel; elimination of the internal blanket; and elimination of absorbers from the axial reflectors, while increasing the length of the fissile zone. The preliminary analysis indicates that it is feasible to design such cores to be fuel-self-sustaining and to have a comfortably low peak linear heat generation rate when operating at the nominal ABWR power level of nearly 4000 MWth. However, the void reactivity feedback tends to be too negative, making it difficult to have sufficient shutdown reactivity margin at cold zero power condition. An addition of a small amount of plutonium from LWR used nuclear fuel was found effective in reducing the magnitude of the negative void reactivity effect and enables attaining adequate shutdown reactivity margin; it also flattens the axial power distribution. The resulting design concept offers an efficient incineration of the LWR generated plutonium in addition to effective utilization of thorium. Additional R&D is required in order to arrive at a reliable practical and safe design.

  13. Strain-induced corrosion cracking behaviour of low-alloy steels under boiling water reactor conditions

    Science.gov (United States)

    Seifert, H. P.; Ritter, S.

    2008-09-01

    The strain-induced corrosion cracking (SICC) behaviour of different low-alloy reactor pressure vessel (RPV) and piping steels and of a RPV weld filler/weld heat-affected zone (HAZ) material was characterized under simulated boiling water reactor (BWR)/normal water chemistry (NWC) conditions by slow rising load (SRL) and very low-frequency fatigue tests with pre-cracked fracture mechanics specimens. Under highly oxidizing BWR/NWC conditions (ECP ⩾+50 mV SHE, ⩾0.4 ppm dissolved oxygen), the SICC crack growth rates were comparable for all materials (hardness <350 HV5) and increased (once initiated) with increasing loading rates and with increasing temperature with a possible maximum/plateau at 250 °C. A minimum KI value of 25 MPa m 1/2 had to be exceeded to initiate SICC in SRL tests. Above this value, the SICC rates increased with increasing loading rate d KI/d t, but were not dependent on the actual KI values up to 60 MPa m 1/2. A maximum in SICC initiation susceptibility occurred at intermediate temperatures around 200-250 °C and at slow strain rates in all materials. In contrast to crack growth, the SICC initiation susceptibility was affected by environmental and material parameters within certain limits.

  14. Study of plutonium disposition using existing GE advanced Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ``Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs.

  15. Study of plutonium disposition using existing GE advanced Boiling Water Reactors

    International Nuclear Information System (INIS)

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ''Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs

  16. Simulation of the Lower Head Boiling Water Reactor Vessel in a Severe Accident

    Directory of Open Access Journals (Sweden)

    Alejandro Nuñez-Carrera

    2012-01-01

    Full Text Available The objective of this paper is the simulation and analysis of the BoilingWater Reactor (BWR lower head during a severe accident. The COUPLE computer code was used in this work to model the heatup of the reactor core material that slumps in the lower head of the reactor pressure vessel. The prediction of the lower head failure is an important issue in the severe accidents field, due to the accident progression and the radiological consequences that are completely different with or without the failure of the Reactor Pressure Vessel (RPV. The release of molten material to the primary containment and the possibility of steam explosion may produce the failure of the primary containment with high radiological consequences. Then, it is important to have a detailed model in order to predict the behavior of the reactor vessel lower head in a severe accident. In this paper, a hypothetical simulation of a Loss of Coolant Accident (LOCA with simultaneous loss of off-site power and without injection of cooling water is presented with the proposal to evaluate the temperature distribution and heatup of the lower part of the RPV. The SCDAPSIM/RELAP5 3.2 code was used to build the BWR model and conduct the numerical simulation.

  17. Factors influencing the precoat filtration of boiling water reactor water streams

    International Nuclear Information System (INIS)

    A series of studies on precoat filtration were carried out on condensate and preheater drains in the Swedish and Finnish boiling water reactors (BWRs). The goal was to increase knowledge about the precoat filtration process and to find physical and chemical means to improve the performance of the precoat filters in the condensate polishing plants. To achieve this goal a number of parameters, such as type of resin, bed depth, pH, oxygen and organic contaminant concentrations (measured total organic carbon), and corrosion product particle characteristics, were selected for the study. The work was mainly carried out in the power plants using an experimental facility fed with on-line sampled condensates and drains taken from the plant sampling lines. The main results are that there is a varying influence on precoat filtration from all the aforementioned parameters. The oxygen concentration, the concentration of organic contaminants, and the type of corrosion products are, however, the factors that have the strongest influence within the parameter ranges that are representative for BWR operation. The results are rather similar when the different units are compared. There are, however, some differences that could be mainly attributed to deviations in operation parameters and the subsequent differences in the corrosion product spectra. The mechanism for precoat filtration of corrosion products in BWR condensate is complex. The filtration behavior is to a large extent governed by competition between depth filtration and electrostatic interactions. During the early stages of the filtration cycle, electrostatic interaction is of great importance, whereas depth filtration becomes more important with increasing operating time. Rapid pressure drop buildup rates have been demonstrated to be caused by the presence of amorphous corrosion products. An effect from the presence of organic contaminants has been found, although this should be of little significance

  18. Cracking in stabilized austenitic stainless steel piping of German boiling water reactors - characteristic features and root cause

    International Nuclear Information System (INIS)

    Cracks have been found in the welds of piping systems made from stabilized austenitic stainless steels in German boiling water reactors (BWR). In the course of the intensive failure analysis metallographic examinations, microstructural investigations by electron microscopy, corrosion experiments and welding tests have been performed. The results show that cracking under the given medium conditions is due to intergranular stress corrosion cracking (IGSCC) in those parts of the heat affected zone (HAZ) which are overheated during welding and where solution of titanium carbides and subsequent precipitation of chromium carbides and depletion of chromium along the affected grain boundaries could occur. (orig.)

  19. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part I: BWR/NWC conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S.; Seifert, H.P. [Paul Scherrer Institute, PSI, Villigen (Switzerland); Devrient, B.; Roth, A. [Framatome ANP GmbH, Erlangen (Germany); Ehrnsten, U. [VTT Industrial Systems, Espoo (Finland); Ernestova, M.; Zamboch, M. [Nuclear Research Institute, NRI, Rez (Czech Republic); Foehl, J.; Weissenberg, T. [Staatliche Materialpruefungsanstalt, MPA, Stuttgart (Germany); Gomez-Briceno, D.; Lapena, J. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, CIEMAT, Madrid (Spain)

    2004-07-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWR) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It was focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of EAC crack growth behaviour/mechanism of LAS in high-temperature water under steady-state power operation (constant load) and transient operating conditions (e.g., start-up/shut-down, transients in water chemistry and load). Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurised water reactor (VVER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (VVER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarises the most important crack growth results obtained under simulated BWR/NWC conditions. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  20. Feasibility assessment of burnup credit in the criticality analysis of shipping casks with boiling water reactor spent fuel

    International Nuclear Information System (INIS)

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This ''burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent fuel casks used for transportation and storage. Recently, analyses have demonstrated the technical feasibility and estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This report summarizes the extension of the previous PWR technical feasibility assessment to boiling water reactor (BWR) fuel. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. Two different aspects of fuel characterization were considered:l first, the generation of burn- up dependent material interaction probabilities; second, the prediction of material inventories over time (depletion). After characterizing the spent fuel at various stages of exposure and decay, three dimensional (3-D) models for an infinite array of assemblies and, in several cases, infinite arrays of assemblies in a typical shipping cask basket were analyzed. Results for assemblies without a basket provide reactivity control requirements as a function of burnup and decay, while results including the basket allow assessment of typical basket configurations to provide sufficient reactivity control for spent BWR fuel. Resulting basket worths and reactivity trends over time are then evaluated to determine whether burnup credit is needed and feasible in BWR applications

  1. Status of the advanced boiling water reactor and simplified boiling water reactor

    International Nuclear Information System (INIS)

    This paper reports that the excess of U.S. electrical generating capacity which has existed for the past 15 years is coming to an end as we enter the 1990s. Environmental and energy security issues associated with fossil fuels are kindling renewed interest in the nuclear option. The importance of these issues are underscored by the National Energy Strategy (NES) which calls for actions which are designed to ensure that the nuclear power option is available to utilities. Utilities, utility associations, and nuclear suppliers, under the leadership of the Nuclear Power Oversight Committee (NPOC), have jointly developed a 14 point strategic plan aimed at establishing a predictable regulatory environment, standardized and pre-licensed Advanced Light Water Reactor (ALWR) nuclear plants, resolving the long-term waste management issue, and other enabling conditions. GE is participating in this national effort and GE's family of advanced nuclear power plants feature two new reactor designs, developed on a common technology base, aimed at providing a new generation of nuclear plants to provide safe, clean, economical electricity to the world's utilities in the 1990s and beyond. Together, the large-size (1300 MWe) Advanced Boiling Water Reactor (ABWR) and the small-size (600 MWe) Simplified Boiling Water Reactor (SBWR) are innovative, near-term candidates for expanding electrical generating capacity in the U.S. and worldwide. Both possess the features necessary to do so safely, reliably, and economically

  2. Automatic boiling water reactor loading pattern design using ant colony optimization algorithm

    International Nuclear Information System (INIS)

    An automatic boiling water reactor (BWR) loading pattern (LP) design methodology was developed using the rank-based ant system (RAS), which is a variant of the ant colony optimization (ACO) algorithm. To reduce design complexity, only the fuel assemblies (FAs) of one eight-core positions were determined using the RAS algorithm, and then the corresponding FAs were loaded into the other parts of the core. Heuristic information was adopted to exclude the selection of the inappropriate FAs which will reduce search space, and thus, the computation time. When the LP was determined, Haling cycle length, beginning of cycle (BOC) shutdown margin (SDM), and Haling end of cycle (EOC) maximum fraction of limit for critical power ratio (MFLCPR) were calculated using SIMULATE-3 code, which were used to evaluate the LP for updating pheromone of RAS. The developed design methodology was demonstrated using FAs of a reference cycle of the BWR6 nuclear power plant. The results show that, the designed LP can be obtained within reasonable computation time, and has a longer cycle length than that of the original design.

  3. Automatic boiling water reactor loading pattern design using ant colony optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.-D. [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 30013, Taiwan (China); Nuclear Engineering Division, Institute of Nuclear Energy Research, No. 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China)], E-mail: jdwang@iner.gov.tw; Lin Chaung [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 30013, Taiwan (China)

    2009-08-15

    An automatic boiling water reactor (BWR) loading pattern (LP) design methodology was developed using the rank-based ant system (RAS), which is a variant of the ant colony optimization (ACO) algorithm. To reduce design complexity, only the fuel assemblies (FAs) of one eight-core positions were determined using the RAS algorithm, and then the corresponding FAs were loaded into the other parts of the core. Heuristic information was adopted to exclude the selection of the inappropriate FAs which will reduce search space, and thus, the computation time. When the LP was determined, Haling cycle length, beginning of cycle (BOC) shutdown margin (SDM), and Haling end of cycle (EOC) maximum fraction of limit for critical power ratio (MFLCPR) were calculated using SIMULATE-3 code, which were used to evaluate the LP for updating pheromone of RAS. The developed design methodology was demonstrated using FAs of a reference cycle of the BWR6 nuclear power plant. The results show that, the designed LP can be obtained within reasonable computation time, and has a longer cycle length than that of the original design.

  4. A diagnostic expert system for a boiling water reactor using a dynamic model

    International Nuclear Information System (INIS)

    A diagnostic expert system for abnormal disturbances in a BWR (Boiling Water Reactor) plant has been developed. The peculiar feature of this system is a diagnostic method which combines artificial intelligence technique with numerical analysis technique. The system has three diagnostic functions, 1) identification of anomaly position (device or sensor), 2) identification of anomaly mode and 3) identification of anomaly cause. Function 1) is implemented as follows. First, a hypothesis about anomaly propagation paths is built up by qualitative reasoning, using knowledge of causal relations among observed signals. Next, the abnormal device or sensor is found by applying model reference method and fuzzy set theory to test the hypothesis, using knowledge of plant structure and function, heuristic strategy of diagnosis and module type dynamic simulator. This simulator is composed of basic transfer function modules. The simulation model for the testing region is built up automatically, according to the requirement from the diagnostic task. Function 2) means identification of dynamic characteristics for an anomaly. It is realized by tuning model parameters so as to reproduce the abnormal signal behavior using the non-linear programing method. Function 3) derives probable anomaly causes from heuristic rules between anomaly mode and cause. A basic plant dynamic model was built up and adjusted to dynamic characteristics for one BWR plant (1100MWe). In order to verify the diagnostic functions of this system, data for several abnormal events was compiled by modifying this model. The diagnostic functions were proved useful, through the simulated abnormal data

  5. Feasibility of core management system by data communication for boiling water reactors

    International Nuclear Information System (INIS)

    A core management system by data communication has been designed and proposed for more efficient operation of boiling water reactor (BWR) plants by faster transmission and centralized management of information. The system comprises three kinds f computers: a process computer for monitoring purposes at the reactor site, a center computer for administration purposes at the head office, and a large scientific computer for planning and evaluation purposes. The process and the large computers are connected to the center computer by a data transmission line. To demonstrate the feasibility of such a system, the operating history evaluation system, which is one of the subsystems of the core management system, has been developed along the above concept. Application to the evaluation of the operating history of a commercial BWR shows a great deal of merit. Quick response and a significant manpower reduction can be expected by data communication and minimized intervention of human labor. Visual display is also found to be very useful in understanding the core characteristics

  6. Statics and dynamics of a natural circulation cooled boiling water reactor. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Stekelenburg, A.J.C.

    1994-02-21

    Due to the strong interconnection of the various processes in the reactor vessel of a natural circulation cooled boiling water reactor (BWR), explaining the physics of both the statics and the dynamics of the Dodewaard reactor is not an easy task. In this thesis, the physics is studied through a combined experimental and theoretical investigation. The experiments are analyzed further with the use of the model, and the results of the model calculations provide ideas for new experiments. For an experimental study of the reactor behavior, measurement tools are required. Many relevant process variables are supplied by the power plant's data-logger, but a direct method for measuring the circulation flow rate is not available. Reactor behavior can be studied theoreticallly with the use of a complex computer code, based on a multi-node model. In this way, reliable results are obtained. In many cases, however, such a code is not easy to use, and the calculations require much computer time. Calculations based on a simple model have a lower reliability, but, as the model is clearer, provide more insight into the physics of the system. For this reason, a simple theoretical dynamical model for the main physical processes of the Dodewaard natural circulation cooled BWR is presented in the thesis.

  7. RELAP5/SCDAPSIM/MOD3.5 analysis of the influence of water addition during a core isolation event in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, A.K., E-mail: akhanna@iitk.ac.in [Nuclear Engineering and Technology Programme, Indian Institute of Technology, Kanpur 208016 (India); Allison, C. [Innovative Systems Software, Idaho Falls, ID 83406 (United States); Khanna, A.; Munshi, P. [Nuclear Engineering and Technology Programme, Indian Institute of Technology, Kanpur 208016 (India)

    2014-07-01

    Highlights: • This work analyses the influence of water addition in a boiling water reactor during a Fukushima like scenario. • Injection uses thermal hydraulic conditions representative of the reactor core isolation cooling (RCIC) system. • A detailed RELAP/SCDAPSIM model of Laguna Verde BWR has been used for the analysis. • Results confirm the importance of both timing and temperature of core at the time of water addition to mitigate the accident. - Abstract: This work analyses the influence of water addition in a boiling water reactor during a core isolation event in BWR. Injection of water is impacted by time as well as reactor vessel water level and it uses thermal hydraulic conditions representative of the reactor core isolation cooling (RCIC) system. A detailed RELAP/SCDAPSIM model of Laguna Verde BWR vessel and related reactor cooling system (provided by the Mexican Nuclear Regulatory Authority) has been used for this analysis. These calculations have been extended to the point of likely vessel failure or stable core cooling. They focus on initial heating and melting of the core where water addition is found to be most effective in limiting the extent of fuel melting. It also presents the results of a base case, a station blackout transient without water addition. These calculations have been carried out up to 5 h (after reactor scram) beyond the point of likely vessel failure. The maximum core surface temperature of 3042 K and hydrogen production of 367 kg is observed in this case. The importance of timing can be seen from 3500 s and 3700 s injection cases. One case leads to maximum core surface temperature of 1520 K with hydrogen production of 21 kg while the second case leads to temperature of 2940 K with hydrogen production of 193 kg. Temperatures (at the time of start of first injection) in both these cases are1371 K and 1590 K which explains this switching from stable core cooling to very high core surface temperature.

  8. Fracture toughness of highly irradiated stainless steels in boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Demma, A. [Electric Power Research Inst., Palo Alto, California (United States); Carter, R. [Electric Power Research Inst., Charlotte, North Carolina (United States); Jenssen, A. [Studsvik Nuclear (Sweden); Torimaru, T. [Nippon Nuclear Fuel Development Co. Ltd, Oarai-machi, Ibaraki (Japan); Gamble, R. [Sartrex Corp., Rockville, Maryland (United States)

    2007-07-01

    Austenitic stainless steels in boiling water reactor (BWR) core structures can experience significant fracture toughness reductions at elevated fluence levels. One of the gaps identified by EPRI is the lack of data over the full range of radiation exposure anticipated for BWRs. This paper describes an experimental project started in 2005 to generate additional fracture toughness data of highly irradiated stainless steels at appropriate fluences, in support of a methodology for evaluating the serviceability of internal components in BWRs. The irradiated austenitic stainless steels retrieved from disposed BWR internal components and their irradiation and fabrication histories are described as well as an updated evaluation of the relationship between fracture toughness and neutron fluence for BWR internals. The effect of specimen orientation on fracture toughness is also being investigated. Microstructural and microchemical analyses of the various materials tested are also presented to complement the fracture toughness results. The fracture toughness results indicate: (1) there is a distinct orientation effect on the toughness, (2) there is no apparent variation in JIC with respect to fluence within the test range (from 3.3 to 9.1 10{sup 21} n/cm{sup 2}, E > 1MeV); any variation with fluence is embedded within the testing and material scatter, and (3) the four specimens corresponding to a material irradiated at approximately 5.2 and 5.9 10{sup 21} n/cm{sup 2} have distinctly lower toughness compared to the other tests. The reason for the low toughness of this material is discussed. (author)

  9. Boiling water reactor uranium utilization improvement potential

    International Nuclear Information System (INIS)

    This report documents the results of design and operational simulation studies to assess the potential for reduction of BWR uranium requirements. The impact of the improvements on separative work requirements and other fuel cycle requirements also were evaluated. The emphasis was on analysis of the improvement potential for once-through cycles, although plutonium recycle also was evaluated. The improvement potential was analyzed for several design alternatives including axial and radial natural uranium blankets, low-leakage refueling patterns, initial core enrichment distribution optimization, reinsert of initial core discharge fuel, preplanned end-of-cycle power coastdown and feedwater temperature reduction, increased discharge burnup, high enrichment discharge fuel rod reassembly and reinsert, lattice and fuel bundle design optimization, coolant density spectral shift with flow control, reduced burnable absorber residual, boric acid for cold shutdown, six-month subcycle refueling, and applications of a once-through thorium cycle design and plutonium recycle

  10. Design of a boiling water reactor equilibrium core using thorium-uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Francois, J-L.; Nunez-Carrera, A.; Espinosa-Paredes, G.; Martin-del-Campo, C.

    2004-10-06

    In this paper the design of a Boiling Water Reactor (BWR) equilibrium core using thorium is presented; a heterogeneous blanket-seed core arrangement concept was adopted. The design was developed in three steps: in the first step two different assemblies were designed based on the integrated blanket-seed concept, they are the blanket-dummy assembly and the blanket-seed assembly. The integrated blanketseed concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned-out in a once-through cycle. In the second step, a core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average 235U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the assembly. In the third step an in-house code was developed to evaluate the thorium equilibrium core under transient conditions. A stability analysis was also performed. Regarding the stability analysis, five operational states were analyzed; four of them define the traditional instability region corner of the power-flow map and the fifth one is the operational state for the full power condition. The frequency and the boiling length were calculated for each operational state. The frequency of the analyzed operational states was similar to that reported for BWRs; these are close to the unstable region that occurs due to the density wave oscillation phenomena in some nuclear power plants. Four transient analyses were also performed: manual SCRAM, recirculation pumps trip, main steam isolation valves closure and loss of feed water. The results of these transients are

  11. Recent trends in the mitigation of the IGSCC through modifications in the water chemistry of BWR reactors; Tendencias recientes en la mitigacion del IGSCC mediante modificaciones en la quimica del agua de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Robles, E.F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    During the last years, the Nuclear Power stations had been that to adequate or to modify the parameters and operational conditions, attempting to maintain and to safeguard the integrity and functionality of its components and systems, as well as the personnel safety involved in its operation. In a Boiling water reactor (BWR), the chemical control of the water, constitutes one of the fundamental aspects to get a sure and reliable operation, having as main objectives: (a) The protection of the reactor vessel, of the structural materials of the same one and of the pipes and components of those recirculation systems against the Intergranular stress corrosion phenomena (IGSCC); (b) To guarantee the integrity of the nuclear fuel minimizing the corrosion phenomena in the fuel elements; and (c) The reduction of the operational dose of the personnel involved directly in the operation and maintenance by means of the control of the activated corrosion products. (Author)

  12. On the dynamics of bubbles in boiling water

    International Nuclear Information System (INIS)

    Research highlights: → We devote this work to investigate the bubbles dynamics in boiling water. → A simple experiment of laser scattering was designed to obtain dynamical features. → Correlations and non-exponential distributions were found. → A simple model was able to describe several aspects of the system. - Abstract: We investigate the dynamics of many interacting bubbles in boiling water by using a laser scattering experiment. Specifically, we analyze the temporal variations of a laser intensity signal which passed through a sample of boiling water. Our empirical results indicate that the return interval distribution of the laser signal does not follow an exponential distribution; contrariwise, a heavy-tailed distribution has been found. Additionally, we compare the experimental results with those obtained from a minimalist phenomenological model, finding a good agreement.

  13. Radioactive waste management practices with KWU-boiling water reactors

    International Nuclear Information System (INIS)

    A Kraftwerk Union boiling water reactor is used to demonstrate the reactor auxiliary systems which are applied to minimize the radioactive discharge. Based on the most important design criteria the philosophy and function of the various systems for handling the off-gas, ventilation air, waste water and concentrated waste are described. (orig.)

  14. Passive Gamma Analysis of the Boiling-Water-Reactor Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Duc Ta [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-31

    Passive gamma analysis can be used to determine BU and CT of BWR assembly. The analysis is somewhat more complicated and less effective than similar method for PWR assemblies. From the measurements along the lengths of the BWR1 and BWR9 assemblies, there are hints that we may be able to use their information to help improve the model functions for better results.

  15. Passive Gamma Analysis of the Boiling-Water-Reactor Assemblies

    International Nuclear Information System (INIS)

    Passive gamma analysis can be used to determine BU and CT of BWR assembly. The analysis is somewhat more complicated and less effective than similar method for PWR assemblies. From the measurements along the lengths of the BWR1 and BWR9 assemblies, there are hints that we may be able to use their information to help improve the model functions for better results.

  16. Construction of the advanced boiling water reactor in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Natsume, Nobuo; Noda, Hiroshi [Tokyo Electric Power Co. (Japan). Nuclear Power Plant Construction Dept.

    1996-07-01

    The Advanced Boiling Reactor (ABWR) has been developed with international cooperation between Japan and the US as the generation of plants for the 1990s and beyond. It incorporates the best BWR technologies from the world in challengeable pursuit of improved safety and reliability, reduced construction and operating cost, reduced radiation exposure and radioactive waste. Tokyo Electric Power Company (MPCO) decided to apply the first ABWRs to unit No. 6 and 7 of Kashiwazaki-Kariwa nuclear power station (K-6 and 7). These units are scheduled to commence commercial operation in December 1996 and July 1997 respectively. Particular attention is given in this discussion to the construction period from rock inspection for the reactor building to commercial operation, which is to be achieved in only 52 months through innovative and challenging construction methods. To date, construction work is advancing ahead of the original schedule. This paper describes not only how to shorten the construction period by adoption of a variety of new technologies, such as all-weather construction method and large block module construction method, but also how to check and test the state of the art technologies during manufacturing and installation of new equipment for K-6 and 7.

  17. Electrochemical study of aluminum corrosion in boiling high purity water

    Science.gov (United States)

    Draley, J. E.; Legault, R. A.

    1969-01-01

    Electrochemical study of aluminum corrosion in boiling high-purity water includes an equation relating current and electrochemical potential derived on the basis of a physical model of the corrosion process. The work involved an examination of the cathodic polarization behavior of 1100 aluminum during aqueous oxidation.

  18. Local heat transfer from the corium melt pool to the boiling water reactor pressure vessel wall

    International Nuclear Information System (INIS)

    The present study considers in-vessel accident progression after core melt relocation to the lower head of a Boiling Water Reactor (BWR) and formation of a melt pool containing a forest of Control Rod Guide Tubes (CRGTs) cooled by purging flows. Descending streams of melt that flow along cooled surfaces of CRGT, and impinge on the bottom surface of the vessel wall can significantly increase local heat transfer. The area of enhanced heat transfer enlarges with decreasing of the melt Prandtl (Pr) number, while the peaking value of the heat transfer coefficient is a non-monotone function of Pr number. The melt Pr number depends on the melt composition (fractions of metallic and oxidic melt components) and thus is inherently uncertain parameter of the core melting and relocation scenarios. The effect of Pr number in the range of 1.02 - 0.03 on the local and integral thermal loads on the vessel wall is examined using Computational Fluid Dynamics (CFD). Heat transfer models obtained on the base of CFD simulations are implemented in the Phase-change Effective Convectivity Model (PECM) for simulation of reactor-scale accident progression heat transfer in real 3D geometry of the BWR lower plenum. We found that the influence of the low Pr number on the thermal loads in a big melt pool becomes more significant at later time, than rapid acceleration of the creep in the vessel wall. This result suggests that global vessel failure is insensitive to the melt composition in the considered 0.7 m deep melt pool configuration. However, it is not clear yet if the low Pr number effect has an influence on vessel failure mode in the other possible melt pool configurations. (author)

  19. A nondiffusive solution method for RETRAN-03 boiling water reactor stability analysis

    International Nuclear Information System (INIS)

    This paper reports that boiling water reactors (BWRs) are susceptible to thermal-hydraulic instabilities that must be considered in BWR design and operation. Early BWRs were designed to be very stable while operating under natural-circulation conditions. As reactor designs have been modified, stability margins have been reduced, and the potential for stability events, such as occurred at the La Salle and Vermont Yankee plants, has increased. These events and other considerations point to the need for a reliable analysis tool for predicting the dynamic behavior of these events. Transient thermal-hydraulic systems analysis codes have been used to analyze hydrodynamic instabilities, and although the results are often reasonable and exhibit the expected behavior, they are sensitive to changes in node and time-step size and a converged solution cannot be demonstrated by reducing the node and time-step sizes. This sensitivity is due to numerical-diffusion that limits the use of most time domain system analysis codes for BWR stability analyses since it directly affects the decay (or growth) ratio compared for stability events. A conservation equation transport model using the method of characteristics has been developed for use with the RETRAN-03 mixture energy and vapor continuity equations. The model eliminates numerical diffusion in the RETRAN solution. The development and validation of a conservation equation transport model for the RETRAN-03 time domain thermal-hydraulic analysis code that extends the range of application to simulating the dynamic behavior of stability events are presented. RETRAN-03 analyses are presented that compare simulations of hydrodynamic instability events with data

  20. A bifurcation analysis of boiling water reactor on large domain of parametric spaces

    Science.gov (United States)

    Pandey, Vikas; Singh, Suneet

    2016-09-01

    The boiling water reactors (BWRs) are inherently nonlinear physical system, as any other physical system. The reactivity feedback, which is caused by both moderator density and temperature, allows several effects reflecting the nonlinear behavior of the system. Stability analyses of BWR is done with a simplified, reduced order model, which couples point reactor kinetics with thermal hydraulics of the reactor core. The linear stability analysis of the BWR for steady states shows that at a critical value of bifurcation parameter (i.e. feedback gain), Hopf bifurcation occurs. These stable and unstable domains of parametric spaces cannot be predicted by linear stability analysis because the stability of system does not include only stability of the steady states. The stability of other dynamics of the system such as limit cycles must be included in study of stability. The nonlinear stability analysis (i.e. bifurcation analysis) becomes an indispensable component of stability analysis in this scenario. Hopf bifurcation, which occur with one free parameter, is studied here and it formulates birth of limit cycles. The excitation of these limit cycles makes the system bistable in the case of subcritical bifurcation whereas stable limit cycles continues in an unstable region for supercritical bifurcation. The distinction between subcritical and supercritical Hopf is done by two parameter analysis (i.e. codimension-2 bifurcation). In this scenario, Generalized Hopf bifurcation (GH) takes place, which separates sub and supercritical Hopf bifurcation. The various types of bifurcation such as limit point bifurcation of limit cycle (LPC), period doubling bifurcation of limit cycles (PD) and Neimark-Sacker bifurcation of limit cycles (NS) have been identified with the Floquet multipliers. The LPC manifests itself as the region of bistability whereas chaotic region exist because of cascading of PD. This region of bistability and chaotic solutions are drawn on the various

  1. 76 FR 61118 - Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting

    Science.gov (United States)

    2011-10-03

    ... Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR... published in the Federal Register on October 21, 2010, (75 FR 65038-65039). Detailed meeting agendas...

  2. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Science.gov (United States)

    2012-01-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors..., ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors.''...

  3. 76 FR 14437 - Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of...

    Science.gov (United States)

    2011-03-16

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of... GE Hitachi Nuclear Energy (GEH) for the economic simplified boiling water reactor (ESBWR)...

  4. Corrosion product deposition on fuel element surfaces of a boiling water reactor

    International Nuclear Information System (INIS)

    Over the last decade the problem of corrosion products deposition on light water reactor fuel elements has been extensively investigated in relation to the possibility of failures caused by them. The goal of the present study is to understand in a quantitative way the formation of such kind of deposits and to analytically understand the mechanism of formation and deposition with help of the quasi-steady state concentrations of a number of 3d metals in reactor water. Recent investigations on the complex corrosion product deposits on a Boiling Water Reactor (BWR) fuel cladding have shown that the observed layer locally presents unexpected magnetic properties. The buildup of magnetic corrosion product deposits (crud) on the fuel cladding of the BWR, Kernkraftwerk Leibstadt (KKL) Switzerland has hampered the Eddy-current based measurements of ZrO2 layer thickness. The magnetic behavior of this layer and its axial variation on BWR fuel cladding is of interest with respect to non-destructive cladding characterization. Consequently, a cladding from a BWR was cut at elevations of 810 mm, where the layer was observed to be magnetic, and of 1810 mm where it was less magnetic. The samples were subsequently analyzed using electron probe microanalysis (EPMA), magnetic analysis and X-ray techniques (μXRF, μXRD and μXAFS). Both EPMA and μXRF have shown that the observed corrosion deposit layer which is situated on the Zircaloy corrosion layer consists mostly of 3-d elements’ oxides (Fe, Zn, Ni and Mn). The distribution of these elements within the investigated layer is rather complex and not homogeneous. The main components identified by 2D μXRD mapping inside the layer were hematite and spinel phases with the common formula (MxFey)[M(1-x)Fe(2-y)]O4, where M = Zn, Ni, Mn. With μXRD it was clearly shown that the cell parameter of analyzed spinel is different from the one of the pure endmembers (ZnFe2O4, NiFe2O4 and MnFe2O4) proving the existence of solid solutions. These

  5. 76 FR 3540 - U.S. Advanced Boiling Water Reactor Aircraft Impact Design Certification Amendment

    Science.gov (United States)

    2011-01-20

    ... COMMISSION 10 CFR Part 52 RIN 3150-AI84 U.S. Advanced Boiling Water Reactor Aircraft Impact Design... the U.S. Advanced Boiling Water Reactor (ABWR) standard plant design to comply with the NRC's aircraft...--Design Certification Rule for the U.S. Advanced Boiling Water Reactor IV. Section-by-Section Analysis...

  6. 77 FR 36014 - Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors

    Science.gov (United States)

    2012-06-15

    ... COMMISSION Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors AGENCY: Nuclear...-1277, ``Initial Test Program of Emergency Core Cooling Systems for Boiling- Water Reactors.'' This... testing features of emergency core cooling systems (ECCSs) for boiling-water reactors (BWRs)....

  7. Cold neutron tomography of annular coolant flow in a double subchannel model of a boiling water reactor

    International Nuclear Information System (INIS)

    Dryout of the liquid coolant film on fuel pins at the top of boiling water reactor (BWR) cores constitutes the type of heat transfer crisis relevant for the conditions of high void fractions. It is a limiting factor in the thermal power, and therefore the economy, of BWRs. Ongoing research on multiphase annular flow, specifically the liquid film thickness, is fundamental not only to nuclear reactor safety and operation but also to that of evaporators, condensers, and pipelines in a general industrial context. We have performed cold neutron tomography of adiabatic air water annular flow in a scaled up model of the subchannel geometry found in BWR fuel assemblies today. All imaging has been performed at the ICON beamline at the neutron spallation source SINQ at the Paul Scherrer Institut in Switzerland. Neutron tomography is shown to excel in investigating the interactions of air water two phase flows with spacer vanes of different geometry. The high resolution, high contrast measurements provide spatial distributions of the coolant on top of the surfaces of the spacer, including the vanes, and in the subchannel downstream of the spacers.

  8. Cold neutron tomography of annular coolant flow in a double subchannel model of a boiling water reactor

    Science.gov (United States)

    Kickhofel, J. L.; Zboray, R.; Damsohn, M.; Kaestner, A.; Lehmann, E. H.; Prasser, H.-M.

    2011-09-01

    Dryout of the liquid coolant film on fuel pins at the top of boiling water reactor (BWR) cores constitutes the type of heat transfer crisis relevant for the conditions of high void fractions. It is a limiting factor in the thermal power, and therefore the economy, of BWRs. Ongoing research on multiphase annular flow, specifically the liquid film thickness, is fundamental not only to nuclear reactor safety and operation but also to that of evaporators, condensers, and pipelines in a general industrial context. We have performed cold neutron tomography of adiabatic air water annular flow in a scaled up model of the subchannel geometry found in BWR fuel assemblies today. All imaging has been performed at the ICON beamline at the neutron spallation source SINQ at the Paul Scherrer Institut in Switzerland. Neutron tomography is shown to excel in investigating the interactions of air water two phase flows with spacer vanes of different geometry. The high resolution, high contrast measurements provide spatial distributions of the coolant on top of the surfaces of the spacer, including the vanes, and in the subchannel downstream of the spacers.

  9. Evaluation of pool swell velocity during large break loss of coolant accident in boiling water reactor Mark III containment design

    Energy Technology Data Exchange (ETDEWEB)

    Yan Jin, E-mail: jinyan10@gmail.co [GE-Hitachi Nuclear Energy, 3901 Castle Hayne Road, Wilmington, M/L-30, NC 28402 (United States); Bolger, Francis [GE-Hitachi Nuclear Energy, 3901 Castle Hayne Road, Wilmington, M/L-30, NC 28402 (United States)

    2010-07-15

    In boiling water reactor (BWR) design, safety scenarios such as main steam line break need to be evaluated. After the main steam line break, the steam will fill the upper dry well of the containment. It will then enter the vertical vent and eventually flow into the suppression pool via horizontal vents. The steam will create large bubbles in the suppression pool and cause the pool to swell. The impact of the pool swell on the equipment inside the pool and containment structure needed to be evaluated for licensing. GE has conducted a series of one-third scale three-vent air tests in supporting the horizontal vent pressure suppression system used in Mark III containment design for General Electric BWR plants. During the test, the air-water interface locations were tracked by conductivity probes. The pressure was measured at many locations inside the test rig as well. The purpose of the test was to provide a basis for the pool swell load definition for the Mark III containment. In this paper, a transient three-dimensional CFD model to simulate the one-third scale Mark III suppression pool swell process is illustrated. The Volume of Fluid (VOF) multiphase model is used to explicitly track the interface between the water liquid and the air. The CFD results such as flow velocity, pressure, interface locations are compared to the data from the test. Through comparisons, a technical approach to numerically model the pool swell phenomenon is established and benchmarked.

  10. Evaluation of pool swell velocity during large break loss of coolant accident in boiling water reactor Mark III containment design

    International Nuclear Information System (INIS)

    In boiling water reactor (BWR) design, safety scenarios such as main steam line break need to be evaluated. After the main steam line break, the steam will fill the upper dry well of the containment. It will then enter the vertical vent and eventually flow into the suppression pool via horizontal vents. The steam will create large bubbles in the suppression pool and cause the pool to swell. The impact of the pool swell on the equipment inside the pool and containment structure needed to be evaluated for licensing. GE has conducted a series of one-third scale three-vent air tests in supporting the horizontal vent pressure suppression system used in Mark III containment design for General Electric BWR plants. During the test, the air-water interface locations were tracked by conductivity probes. The pressure was measured at many locations inside the test rig as well. The purpose of the test was to provide a basis for the pool swell load definition for the Mark III containment. In this paper, a transient three-dimensional CFD model to simulate the one-third scale Mark III suppression pool swell process is illustrated. The Volume of Fluid (VOF) multiphase model is used to explicitly track the interface between the water liquid and the air. The CFD results such as flow velocity, pressure, interface locations are compared to the data from the test. Through comparisons, a technical approach to numerically model the pool swell phenomenon is established and benchmarked.

  11. Study of the oxide layer formed on stainless steel exposed to boiling water reactor conditions by ion beam techniques

    Science.gov (United States)

    Degueldre, C.; Buckley, D.; Dran, J. C.; Schenker, E.

    1998-01-01

    The build-up of the oxide layer on austenitic steel under boiling water reactor (BWR) conditions was studied by macro- and micro-Rutherford backscattering spectrometry (RBS) and sputtered neutral mass spectroscopy (SNMS). RBS is applicable when the oxide thickness is larger than 20 nm and yields both the layer thickness and its stoichiometry. SNMS provides elemental depth profiles and the oxide thickness when combined with profilometry. Stainless steel strip samples pre-treated (electro- or mechanically polished) or not, exposed in a loop simulating the BWR-conditions for periods ranging from 31 to 291 days and with a low water flow velocity show oxide layers with a thickness of about 300 to 600 nm. There is no significant increase of the oxide layer thickness after 31 days of exposure. The paper confirms the presence of inner and outer oxide layers and also confirms the stoichiometry M 2O 3 in the external part in contact with the oxygenated water. The oxide layer consists not only of an outer layer and an inner layer but also of a deep apparent oxide/metal interface that is attributed to oxide formation through the steel grain boundaries.

  12. Evaluation of PWR and BWR pin cell benchmark results

    International Nuclear Information System (INIS)

    In order to carry out reliable reactor core calculations for a boiled water reactor (BWR) or a pressurized water reactor (PWR) first reactivity calculations have to be carried out for which several calculation programs are available. The purpose of the title project is to exchange experiences to improve the knowledge of this reactivity calculations. In a large number of institutes reactivity calculations of PWR and BWR pin cells were executed by means of available computer codes. Results are compared. It is concluded that the variations in the calculated results are problem dependent. Part of the results is satisfactory. However, further research is necessary

  13. Dilute chemical decontamination process for pressurized and boiling water reactor applications

    International Nuclear Information System (INIS)

    Westinghouse Electric Corporation (WEC) has developed five chemical processes for nuclear decontamination, based on extensive experimental testing using radioactive pressurized water reactor (PWR) and boiling water reactor (BWR) samples. The dilute chemical decontamination process offers the best combination of effectiveness, low corrosion, low waste volume, and fast field implementation time. This is an alternating multistep process. For PWRs, an oxidation treatment is necessary. Projected contact decontamination factors (DFs) are about 50 on plant Inconel surfaces, with comparable results on stainless steel. Actual test DFs have exceeded 500 in the process test loop. For BWRs, an oxidation step is unnecessary, but very beneficial. DFs of 10 to 20 are achieved without an oxidation treatment. Full process DFs exceed 500 when the oxidation treatment is included. Low corrosion rates are observed, without any adverse effects. Only solid waste is produced by the process. WEC has fabricated a trailer-mounted application system for this process, and is offering it as a decontamination service to commercial customers

  14. An analysis of reactor transient response for boiling water reactor ATWS events

    International Nuclear Information System (INIS)

    Numerical simulations of BWR (boiling water reactor) dynamic response under ATWS (anticipated transient without scram) conditions are presented for the case where the reactor is operated at natural circulation conditions. In non-isolation events, reactor stability is strongly influenced by the degree of core inlet subcooling. At normal water level and pressure, instabilities develop if core-inlet subcooling exceeds a critical value of ∼ 21 Btu/Ibm. A sensitivity study with regard to the steam separator pressure-loss coefficient, however, indicates that system stability is strongly dependent on the magnitude of this parameter which suggests a significant degree of uncertainty in the results. Under isolation conditions at rated pressure, stability is significantly enhanced by rapid pressure fluctuations generated through cycling of safety/relief valves. Large-amplitude instabilities develop, however, in depressurization events, and SRV cycling no longer stabilizes the system. In a simulated depressurization to ∼ 500 psia, prompt critical excursions occurred, and oscillation amplitudes reached 1000% of rated power

  15. Simplified distributed parameters BWR dynamic model for transient and stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, Gilberto [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco, 186, Col. Vicentina, Mexico, DF 09340 (Mexico)]. E-mail: gepe@xanum.uam.mx; Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Doctor Barragan 779, Col. Narvarte, Mexico, DF 03020 (Mexico); Vazquez-Rodriguez, Alejandro [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco, 186, Col. Vicentina, Mexico, DF 09340 (Mexico)

    2006-09-15

    This paper describes a simplified model to perform transient and linear stability analysis for a typical boiling water reactor (BWR). The simplified transient model was based in lumped and distributed parameters approximations, which includes vessel dome and the downcomer, recirculation loops, neutron process, fuel pin temperature distribution, lower and upper plenums reactor core and pressure and level controls. The stability was determined by studying the linearized versions of the equations representing the BWR system in the frequency domain. Numerical examples are used to illustrate the wide application of the simplified BWR model. We concluded that this simplified model describes properly the dynamic of a BWR and can be used for safety analysis or as a first approach in the design of an advanced BWR.

  16. A Compilation of Boiling Water Reactor Operational Experience for the United Kingdom's Office for Nuclear Regulation's Advanced Boiling Water Reactor Generic Design Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Timothy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Liao, Huafei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    United States nuclear power plant Licensee Event Reports (LERs), submitted to the United States Nuclear Regulatory Commission (NRC) under law as required by 10 CFR 50.72 and 50.73 were evaluated for reliance to the United Kingdom’s Health and Safety Executive – Office for Nuclear Regulation’s (ONR) general design assessment of the Advanced Boiling Water Reactor (ABWR) design. An NRC compendium of LERs, compiled by Idaho National Laboratory over the time period January 1, 2000 through March 31, 2014, were sorted by BWR safety system and sorted into two categories: those events leading to a SCRAM, and those events which constituted a safety system failure. The LERs were then evaluated as to the relevance of the operational experience to the ABWR design.

  17. A compilation of boiling water reactor operational experience for the United Kingdom's Office for Nuclear Regulations Advanced Boiling Water Reactor generic design assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Timothy A.; Liao, Huafei

    2014-12-01

    United States nuclear power plant Licensee Event Reports (LERs), submitted to the United States Nuclear Regulatory Commission (NRC) under law as required by 10 CFR 50.72 and 50.73 were evaluated for reliance to the United Kingdoms Health and Safety Executive Office for Nuclear Regulations (ONR) general design assessment of the Advanced Boiling Water Reactor (ABWR) design. An NRC compendium of LERs, compiled by Idaho National Laboratory over the time period January 1, 2000 through March 31, 2014, were sorted by BWR safety system and sorted into two categories: those events leading to a SCRAM, and those events which constituted a safety system failure. The LERs were then evaluated as to the relevance of the operational experience to the ABWR design.

  18. Identification of dose-reduction techniques for BWR and PWR repetitive high-dose jobs

    International Nuclear Information System (INIS)

    As a result of concern about the apparent increase in collective radiation dose to workers at nuclear power plants, this project will provide information to industry in preplanning for radiation protection during maintenance operations. This study identifies Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR) repetitive jobs, and respective collective dose trends and dose reduction techniques. 3 references, 2 tables

  19. Phased array UT application for boiling water reactor vessel bottom head

    International Nuclear Information System (INIS)

    Stress Corrosion Cracking (SCC) on welds of reactor internals is one of the most important issues in nuclear plants since 1990's. Demands to inspect the reactor internals are increasing. This paper focuses on the development and the application of the phased array ultrasonic testing (PAUT) for the reactor internals located in Boiling Water Reactor (BWR) vessel bottom head (e.g., shroud support). The Toshiba PAUT technologies and technique has been developed and applied to in-Vessel inspections (IVIs) as our universal nondestructive testing (NDT) technologies. Though it was difficult to detect and size cracks in Alloy 182 welds (i.e. weld metal of the shroud support and a CRD stub tube), the efficiency of the PAUT techniques is shown in recent IVI activities. For example the PAUT techniques are applied to crack depth sizing in the weld between the CRD stub tube and RPV bottom build-up in recent years. An immersion technique by the PAUT enables to perform the UT examination on a complex geometric surface to be inspected. The PAUT techniques are developed to detect and size flaws on the shroud support Alloy 182 welds. The techniques include detection from the outside and the inside of RPV. These techniques are applied to the simulated shroud support mockups with SCC-simulated flaws. The examination result is proven to have a good agreement with their actual. As a result, the efficiency of the PAUT techniques is confirmed. (author)

  20. A two-step method for developing a control rod program for boiling water reactors

    International Nuclear Information System (INIS)

    This paper reports on a two-step method that is established for the generation of a long-term control rod program for boiling water reactors (BWRs). The new method assumes a time-variant target power distribution in core depletion. In the new method, the BWR control rod programming is divided into two steps. In step 1, a sequence of optimal, exposure-dependent Haling power distribution profiles is generated, utilizing the spectral shift concept. In step 2, a set of exposure-dependent control rod patterns is developed by using the Haling profiles generated at step 1 as a target. The new method is implemented in a computer program named OCTOPUS. The optimization procedure of OCTOPUS is based on the method of approximation programming, in which the SIMULATE-E code is used to determine the nucleonics characteristics of the reactor core state. In a test in cycle length over a time-invariant, target Haling power distribution case because of a moderate application of spectral shift. No thermal limits of the core were violated. The gain in cycle length could be increased further by broadening the extent of the spetral shift

  1. Time domain model sensitivity in boiling water reactor stability analysis using TRAC/BF1

    International Nuclear Information System (INIS)

    Boiling water nuclear reactors (BWRs) may experience density wave instabilities. These instabilities cause the density, and consequently the mass flow rate, to oscillate in the shrouded fuel bundles. This effect causes the nuclear power generation to oscillate because of the tight coupling of flow to power, especially under gravity-driven circulation. To predict the amplitude of the power oscillation, a time domain transient analysis tool may be employed. The modeling tool must have sufficient hydrodynamic detail to model natural circulation in two-phase flow as well as the coupled nuclear feedback. TRAC/BF1 is a modeling code with such capabilities. A dynamic system model is developed for a typical BWR. Using this tool, it is demonstrated that density waves may be modeled in this fashion and that their resultant hydrodynamic and nuclear behavior correspond well to simple theory. Several cases are analyzed using this model, the goal being to determine the coupling between the channel hydrodynamics and the nuclear power. As predicted by others, the two-phase friction controls the extent of the oscillation. Because of this sensitivity, existing conventional methodologies of implementing two-phase friction into analysis codes of this type can lead to significant deviation in results from one case to another. It is found that higher dimensional nuclear feedback models reduce the extent of the oscillation

  2. Calculation system for physical analysis of boiling water reactors; Modelisation des phenomenes physiques specifiques aux reacteurs a eau bouillante, notamment le couplage neutronique-thermohydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Bouveret, F

    2001-07-01

    Although Boiling Water Reactors generate a quarter of worldwide nuclear electricity, they have been only little studied in France. A certain interest now shows up for these reactors. So, the aim of the work presented here is to contribute to determine a core calculation methodology with CEA (Commissariat a l'Energie Atomique) codes. Vapour production in the reactor core involves great differences in technological options from pressurised water reactor. We analyse main physical phenomena for BWR and offer solutions taking them into account. BWR fuel assembly heterogeneity causes steep thermal flux gradients. The two dimensional collision probability method with exact boundary conditions makes possible to calculate accurately the flux in BWR fuel assemblies using the APOLLO-2 lattice code but induces a very long calculation time. So, we determine a new methodology based on a two-level flux calculation. Void fraction variations in assemblies involve big spectrum changes that we have to consider in core calculation. We suggest to use a void history parameter to generate cross-sections libraries for core calculation. The core calculation code has also to calculate the depletion of main isotopes concentrations. A core calculation associating neutronics and thermal-hydraulic codes lays stress on points we still have to study out. The most important of them is to take into account the control blade in the different calculation stages. (author)

  3. Numerical Evaluation of Fluid Mixing Phenomena in Boiling Water Reactor Using Advanced Interface Tracking Method

    Science.gov (United States)

    Yoshida, Hiroyuki; Takase, Kazuyuki

    Thermal-hydraulic design of the current boiling water reactor (BWR) is performed with the subchannel analysis codes which incorporated the correlations based on empirical results including actual-size tests. Then, for the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) core, an actual size test of an embodiment of its design is required to confirm or modify such correlations. In this situation, development of a method that enables the thermal-hydraulic design of nuclear reactors without these actual size tests is desired, because these tests take a long time and entail great cost. For this reason, we developed an advanced thermal-hydraulic design method for FLWRs using innovative two-phase flow simulation technology. In this study, a detailed Two-Phase Flow simulation code using advanced Interface Tracking method: TPFIT is developed to calculate the detailed information of the two-phase flow. In this paper, firstly, we tried to verify the TPFIT code by comparing it with the existing 2-channel air-water mixing experimental results. Secondary, the TPFIT code was applied to simulation of steam-water two-phase flow in a model of two subchannels of a current BWRs and FLWRs rod bundle. The fluid mixing was observed at a gap between the subchannels. The existing two-phase flow correlation for fluid mixing is evaluated using detailed numerical simulation data. This data indicates that pressure difference between fluid channels is responsible for the fluid mixing, and thus the effects of the time average pressure difference and fluctuations must be incorporated in the two-phase flow correlation for fluid mixing. When inlet quality ratio of subchannels is relatively large, it is understood that evaluation precision of the existing two-phase flow correlations for fluid mixing are relatively low.

  4. The design of large natural circulation BWR's

    International Nuclear Information System (INIS)

    Boiling water reactors (BWR) with natural circulation are applied for capacities up to 60 MWe. Based on scale studies, however, it appears that larger production units are more efficient. It is recommended to investigate the bottlenecks in realizing larger reactors (>1000 MWe). The aim of the study on the title subject is to study to what extent the production capacity of BWRs with natural circulation can be increased. Based on data from the literature a simple analytic method has been chosen and existing BWR designs were compared. Capacities of 1300 MWe appear to be possible. These reactors will have a smaller pin diameter and a lower water supply temperature. Also steam separators with a minor pressure reduction must be available. The reliability of the stability measurement must be increased. Based on the results of this investigation the priorities for research on the design of future BWRs have been determined

  5. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 1: Main report

    International Nuclear Information System (INIS)

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR section 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE's application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design

  6. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 2: Appendices

    International Nuclear Information System (INIS)

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR section 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE's application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design

  7. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 1: Main report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  8. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  9. Loss of coolant accident at boiling water reactors

    International Nuclear Information System (INIS)

    A revision is made with regard to the methods of thermohydraulic analysis which are used at present in order to determine the efficiency of the safety systems against loss of coolant at boiling water reactors. The object is to establish a program of work in the INEN so that the personnel in charge of the safety of the nuclear plants in Mexico, be able to make in a near future, independent valuations of the safety systems which mitigate the consequences of the above mentioned accident. (author)

  10. Coupled field effects in BWR stability simulations using SIMULATE-3K

    International Nuclear Information System (INIS)

    The SIMULATE-3K code is the transient analysis version of the Studsvik advanced nodal reactor analysis code, SIMULATE-3. Recent developments have focused on further broadening the range of transient applications by refinement of core thermal-hydraulic models and on comparison with boiling water reactor (BWR) stability measurements performed at Ringhals unit 1, during the startups of cycles 14 through 17

  11. Fuel lattice design in a boiling water reactor using an ant-colony-based system

    International Nuclear Information System (INIS)

    Research highlights: → We present an ant-colony-based system for BWR fuel lattice design and optimization. → Assessment of candidate solutions at 0.0 MWd/kg 235U seems to have a limited scope. → Suitable heuristic rules enable more realistic fuel lattice designs. → The election of the objective has a large impact in CPU time. → ACS enables an important decrease of the initial average U-235 enrichment. - Abstract: This paper presents a new approach to deal with the boiling water reactor radial fuel lattice design. The goal is to optimize the distribution of both, the fissionable material, and the reactivity control poison material inside the fuel lattice at the beginning of its life. An ant-colony-based system was used to search for either: the optimum location of the poisoned pin inside the lattice, or the U235 enrichment and Gd2O3 concentrations. In the optimization process, in order to know the parameters of the candidate solutions, the neutronic simulator CASMO-4 transport code was used. A typical 10 x 10 BWR fuel lattice with an initial average U235 enrichment of 4.1%, used in the current operation of Laguna Verde Nuclear Power Plant was taken as a reference. With respect to that reference lattice, it was possible to decrease the average U235 enrichment up to 3.949%, this obtained value represents a decrease of 3.84% with respect to the reference U235 enrichment; whereas, the k-infinity was inside the ±100 pcm's range, and there was a difference of 0.94% between the local power peaking factor and the lattice reference value. Particular emphasis was made on defining the objective function which is used for making the assessment of candidate solutions. In a typical desktop personal computer, about four hours of CPU time were necessary for the algorithm to fulfill the goals of the optimization process. The results obtained with the application of the implemented system showed that the proposed approach represents a powerful tool to tackle this step of

  12. Fuel lattice design in a boiling water reactor using an ant-colony-based system

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Jose Luis, E-mail: joseluis.montes@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Estado de Mexico, CP 52750 (Mexico); Facultad de Ciencias, Universidad Autonoma del Estado de Mexico (Mexico); Francois, Juan-Luis, E-mail: juan.luis.francois@gmail.com [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, Jiutepec, Mor., CP 62550 (Mexico); Ortiz, Juan Jose, E-mail: juanjose.ortiz@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Estado de Mexico, CP 52750 (Mexico); Martin-del-Campo, Cecilia, E-mail: cecilia.martin.del.campo@gmail.com [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, Jiutepec, Mor., CP 62550 (Mexico); Perusquia, Raul, E-mail: raul.perusquia@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Estado de Mexico, CP 52750 (Mexico)

    2011-06-15

    Research highlights: > We present an ant-colony-based system for BWR fuel lattice design and optimization. > Assessment of candidate solutions at 0.0 MWd/kg {sup 235}U seems to have a limited scope. > Suitable heuristic rules enable more realistic fuel lattice designs. > The election of the objective has a large impact in CPU time. > ACS enables an important decrease of the initial average U-235 enrichment. - Abstract: This paper presents a new approach to deal with the boiling water reactor radial fuel lattice design. The goal is to optimize the distribution of both, the fissionable material, and the reactivity control poison material inside the fuel lattice at the beginning of its life. An ant-colony-based system was used to search for either: the optimum location of the poisoned pin inside the lattice, or the U{sup 235} enrichment and Gd{sub 2}O{sub 3} concentrations. In the optimization process, in order to know the parameters of the candidate solutions, the neutronic simulator CASMO-4 transport code was used. A typical 10 x 10 BWR fuel lattice with an initial average U{sup 235} enrichment of 4.1%, used in the current operation of Laguna Verde Nuclear Power Plant was taken as a reference. With respect to that reference lattice, it was possible to decrease the average U{sup 235} enrichment up to 3.949%, this obtained value represents a decrease of 3.84% with respect to the reference U{sup 235} enrichment; whereas, the k-infinity was inside the {+-}100 pcm's range, and there was a difference of 0.94% between the local power peaking factor and the lattice reference value. Particular emphasis was made on defining the objective function which is used for making the assessment of candidate solutions. In a typical desktop personal computer, about four hours of CPU time were necessary for the algorithm to fulfill the goals of the optimization process. The results obtained with the application of the implemented system showed that the proposed approach represents a

  13. SWR 1000: The new boiling water reactor power plant concept

    International Nuclear Information System (INIS)

    Siemens' Power Generation Group (KWU) is currently developing - on behalf of and in close co-operation with the German nuclear utilities and with support from various European partners - the boiling water reactor SWR 1000. This advanced design concept marks a new era in the successful tradition of boiling water reactor technology in Germany and is aimed, with an electric output of 1000 MW, at assuring competitive power generating costs compared to large-capacity nuclear power plants as well as coal-fired stations, while at the same time meeting the highest of safety standards, including control of a core melt accident. This objective is met by replacing active safety systems with passive safety equipment of diverse design for accident detection and control and by simplifying systems needed for normal plant operation on the basis of past operating experience. A short construction period, flexible fuel cycle lengths of between 12 and 24 months and a high fuel discharge burnup all contribute towards meeting this goal. The design concept fulfils international nuclear regulatory requirements and will reach commercial maturity by the year 2000. (author)

  14. Experimental investigation into the effects of coolant additives on boiling phenomena in pressurized water reactors

    International Nuclear Information System (INIS)

    This study investigates the effects of coolant additives like boric acid on boiling phenomena in pressurized water reactors under conditions as realistic as possible. The effects covered range from subcooled boiling to critical boiling conditions (CHF). The focus of this project lies on flow boiling with up to 40 bar and 250 °C in order to generate a data basis for a possible extrapolation to reactor conditions. The results of the experiments are used to implement and validate new models into CFD-Codes in context to a nationwide German joint research project with the specific aim of improving CFD boiling-models. (author)

  15. Crud deposition modeling on BWR fuel rods

    International Nuclear Information System (INIS)

    Deposition of boiling water reactor (BWR) system corrosion products (crud) on operating fuel rods has resulted in performance-limiting conditions in a number of plants. The operational impact of performance-limiting conditions involving crud deposition can be detrimental to a BWR operator, resulting in unplanned or increased frequency of fuel inspections, fuel failure and associated radiological consequences, operational restrictions including core power derate and/or forced shutdowns to remove failed fuel, premature discharge of individual bundles or entire reloads, and/or undesirable core design restrictions. To facilitate improved management of crud-related fuel performance risks, EPRI has developed the CORAL (Crud DepOsition Risk Assessment ModeL) tool. This paper presents a summary of the CORAL elements and benchmarking results. Applications of CORAL as a tool for fuel performance risk assessment are also discussed. (author)

  16. The BWR owners' group planning guide for life extension

    International Nuclear Information System (INIS)

    Extending the operating life of a commercial nuclear power plant has been shown to be economically beneficial to both the utility and the electric customer. As such, many utilities are planning and implementing plant life extension (PLEX) programs. A document has been developed which provides guidance to utilities in formulating a PLEX program plant for one or more boiling water reactor (BWR) plants. The guide has been developed by the BWR Owners' Group Plant Life Extension Committee. The principal bases for this guide were the BWR Pilot and Lead Plant Programs. These programs were used as models to develop the 'base plan' described in this guide. By formulating their program plant utilizing the base plan, utilities will be able to maximize the use of existing evaluations and results. The utility planner will build upon the base plan by adding any tasks or features that are unique to their programs. (author)

  17. Flow boiling of water on nanocoated surfaces in a microchannel

    CERN Document Server

    Phan, Hai Trieu; Marty, Philippe; Colasson, Stéphane; Gavillet, Jérôme

    2010-01-01

    Experiments were performed to study the effects of surface wettability on flow boiling of water at atmospheric pressure. The test channel is a single rectangular channel 0.5 mm high, 5 mm wide and 180 mm long. The mass flux was set at 100 kg/m2 s and the base heat flux varied from 30 to 80 kW/m2. Water enters the test channel under subcooled conditions. The samples are silicone oxide (SiOx), titanium (Ti), diamond-like carbon (DLC) and carbon-doped silicon oxide (SiOC) surfaces with static contact angles of 26{\\deg}, 49{\\deg}, 63{\\deg} and 103{\\deg}, respectively. The results show significant impacts of surface wettability on heat transfer coefficient.

  18. 75 FR 26967 - Guidance for Industry: Use of Water by Food Manufacturers in Areas Subject to a Boil-Water...

    Science.gov (United States)

    2010-05-13

    ... HUMAN SERVICES Food and Drug Administration Guidance for Industry: Use of Water by Food Manufacturers in... entitled ``Guidance for Industry: Use of Water by Food Manufacturers in Areas Subject to a Boil-Water... ``Guidance for Industry: Use of Water by Food Manufacturers in Areas Subject to a Boil-Water Advisory.''...

  19. A pilot study for errors of commission for a boiling water reactor using the CESA method

    International Nuclear Information System (INIS)

    Probabilistic Safety Assessment (PSA) typically focuses on the errors leading to the non-performance of required actions (Errors of Omission, EOOs). On the other hand, Errors Of Commission (EOCs) refer to inappropriate, undesired actions that aggravate an accident scenario. The challenges to their treatment in PSA relate to both their identification (which error events should be included in the PSA) and to the quantification of their probabilities. This paper presents the results from a plant-specific study to identify potential EOC vulnerabilities and quantify their risk significance. The study addresses a Boiling Water Reactor (BWR) in Switzerland. It is one of the first EOC analyses ever made for BWRs. The Commission Error Search and Assessment (CESA) method was used to identify EOC scenarios. The EOC probabilities were estimated using the elicitation approach developed as part of the ATHEANA method (A Technique for Human Event Analysis), with input from interviews with plant personnel (with oral as well as written questions). The basis for the quantification was a qualitative analysis of the scenario, the operator response and its procedural basis, and of the opportunities for the EOC and its recovery. The results suggest that the contribution to risk of the most important EOCs is comparable to that of the most important errors of omission, i.e. the required actions typically treated in a PSA; thus, they highlight the significance of EOCs in the overall risk profile of the plant. This study demonstrates the feasibility of a systematic treatment of EOCs for large-scale applications and contributes to understanding the importance of EOCs in the plant risk profile.

  20. Implementation of automated, on-line fatigue monitoring in a boiling water reactor

    International Nuclear Information System (INIS)

    A workstation-based, on-line fatigue monitoring system for tracking fatigue usage applied to a Japanese operating boiling water reactor (BWR), Tsuruga Unit 1, is described. The system uses the influence function approach and rainflow cycle counting methodology, operates on a workstation computer, and determines component stresses using temperature, pressure, and flow rate data that are made available via signal taps from previously existing plant sensors. Using plant-unique influence functions developed specifically for the feedwater nozzle location, the system calculates stresses as a function of time and computes the fatigue usage. The analysis method used to compute fatigue usage complies with MITI Code Notification number-sign 501. Fatigue values are saved automatically on files at times defined by the user for use at a later time. Of particular note, this paper describes some of the details involved with implementing such a system from the utility perspective. Utility installation details, as well as why such a system was chosen for implementation are presented. Fatigue results for an entire fuel cycle are presented and compared to assumed design basis events to confirm that actual plant thermal duty is significantly less severe than originally estimated in the design basis stress report. Although the system is specifically set up to address fatigue duty for the feedwater nozzle location, a generic shell structure was implemented so that any other components could be added at a future time without software modifications. As a result, the system provides the technical basis to more accurately evaluate actual reactor conditions as well as the justification for plant life extension

  1. Analytical simulation of boiling water reactor pressure suppression pool swell

    International Nuclear Information System (INIS)

    In a loss-of-coolant accident, the pressure suppression pool of a boiling water reactor swells as a steam/air mixture is expelled from the drywell into the pool and large gas bubbles are formed beneath the surface. Many tests have been performed to quantify pool swell loads, but analytical methods have been limited in their ability to provide accurate loading estimates. With advancement of numerical methods, it is now feasible to numerically simulate the pool swell process. A finite difference solution algorithm is used to solve the transient imcompressible equations for the liquid flow field. Boundary conditions at the fluid-gas interface are determined using a simplified gas flow model. The program is used to simulate several pool swell tests: comparison of the simulation with test data shows good agreement

  2. Analytical simulation of boiling water reactor pressure suppression pool swell

    Energy Technology Data Exchange (ETDEWEB)

    Widener, S.K.

    1986-01-01

    In a loss-of-coolant accident, the pressure suppression pool of a boiling water reactor swells as a steam/air mixture is expelled from the drywell into the pool and large gas bubbles are formed beneath the surface. Many tests have been performed to quantify pool swell loads, but analytical methods have been limited in their ability to provide accurate loading estimates. With advancement of numerical methods, it is now feasible to numerically simulate the pool swell process. A finite difference solution algorithm is used to solve the transient imcompressible equations for the liquid flow field. Boundary conditions at the fluid-gas interface are determined using a simplified gas flow model. The program is used to simulate several pool swell tests: comparison of the simulation with test data shows good agreement.

  3. Operational margin monitoring system for boiling water reactor power plants

    International Nuclear Information System (INIS)

    This paper reports on an on-line operational margin monitoring system which has been developed for boiling water reactor power plants to improve safety, reliability, and quality of reactor operation. The system consists of a steady-state core status prediction module, a transient analysis module, a stability analysis module, and an evaluation and guidance module. This system quantitatively evaluates the thermal margin during abnormal transients as well as the stability margin, which cannot be evaluated by direct monitoring of the plant parameters, either for the current operational state or for a predicted operating state that may be brought about by the intended operation. This system also gives operator guidance as to appropriate or alternate operations when the operating state has or will become marginless

  4. Boiling water reactor stability analysis in the time domain

    International Nuclear Information System (INIS)

    Boiling water nuclear reactors may experience density wave instabilities. These instabilities cause the density, and consequently the mass flow rate, to oscillate in the shrouded fuel bundles. This effect causes the nuclear power generation to oscillate due to the tight coupling of flow to power, especially under gravity-driven circulation. In order to predict the amplitude of the power oscillation, a time domain transient analysis tool may be employed. The modeling tool must have sufficient hydrodynamic detail to model natural circulation in two-phase flow as well as the coupled nuclear feedback. TRAC/BF1 is a modeling code with such capabilities. A dynamic system model has been developed for a typical boiling water reactor. Using this tool it has been demonstrated that density waxes may be modeled in this fashion and that their resultant hydrodynamic and nuclear behavior correspond well to simple theory. Several cases have been analyzed using this model, the goal being to determine the coupling between the channel hydrodynamics and the nuclear power. From that study it has been concluded that two-phase friction controls the extent of the oscillation and that the existing conventional methodologies of implementing two-phase friction into analysis codes of this type can lead to significant deviation in results from case to case. It has also been determined that higher dimensional nuclear feedback models reduce the extent of the oscillation. It has also been confirmed from a nonlinear dynamic standpoint that the birth of this oscillation may be described as a Hopf Bifurcation

  5. Spent fuel data base: commercial light water reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel.

  6. Electrochemical potential measurements under simulated BWR water chemistry conditions

    International Nuclear Information System (INIS)

    This paper discusses electrochemical potentials (ECP) measured in a high-temperature test loop under various water chemistry conditions. Several types of reference electrodes were used in this study. Effects of chemical additives were systematically examined, and the shift of ECP was found to be relatively small (±50 mV) by the addition of most common chemicals studied. However, the effects of Cu ions on the ECP of stainless steel and other materials are more significant. The effect of H2O2 was semi-quantitatively determined. The increase of ECP, compared with the dissolved O2 at similar levels was found to range from ∼200 mV to ∼500 mV. The effect is attributed to the oxidizing radicals produced from the catalytic decomposition of H2O2 on the stainless steel surface

  7. High conversion pressurized water reactor with boiling channels

    Energy Technology Data Exchange (ETDEWEB)

    Margulis, M., E-mail: maratm@post.bgu.ac.il [The Unit of Nuclear Engineering, Ben Gurion University of the Negev, POB 653, Beer Sheva 84105 (Israel); Shwageraus, E., E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom)

    2015-10-15

    Highlights: • Conceptual design of partially boiling PWR core was proposed and studied. • Self-sustainable Th–{sup 233}U fuel cycle was utilized in this study. • Seed-blanket fuel assembly lattice optimization was performed. • A coupled Monte Carlo, fuel depletion and thermal-hydraulics studies were carried out. • Thermal–hydraulic analysis assured that the design matches imposed safety constraints. - Abstract: Parametric studies have been performed on a seed-blanket Th–{sup 233}U fuel configuration in a pressurized water reactor (PWR) with boiling channels to achieve high conversion ratio. Previous studies on seed-blanket concepts suggested substantial reduction in the core power density is needed in order to operate under nominal PWR system conditions. Boiling flow regime in the seed region allows more heat to be removed for a given coolant mass flow rate, which in turn, may potentially allow increasing the power density of the core. In addition, reduced moderation improves the breeding performance. A two-dimensional design optimization study was carried out with BOXER and SERPENT codes in order to determine the most attractive fuel assembly configuration that would ensure breeding. Effects of various parameters, such as void fraction, blanket fuel form, number of seed pins and their dimensions, on the conversion ratio were examined. The obtained results, for which the power density was set to be 104 W/cm{sup 3}, created a map of potentially feasible designs. It was found that several options have the potential to achieve end of life fissile inventory ratio above unity, which implies potential feasibility of a self-sustainable Thorium fuel cycle in PWRs without significant reduction in the core power density. Finally, a preliminary three-dimensional coupled neutronic and thermal–hydraulic analysis for a single seed-blanket fuel assembly was performed. The results indicate that axial void distribution changes drastically with burnup. Therefore

  8. High conversion pressurized water reactor with boiling channels

    International Nuclear Information System (INIS)

    Highlights: • Conceptual design of partially boiling PWR core was proposed and studied. • Self-sustainable Th–233U fuel cycle was utilized in this study. • Seed-blanket fuel assembly lattice optimization was performed. • A coupled Monte Carlo, fuel depletion and thermal-hydraulics studies were carried out. • Thermal–hydraulic analysis assured that the design matches imposed safety constraints. - Abstract: Parametric studies have been performed on a seed-blanket Th–233U fuel configuration in a pressurized water reactor (PWR) with boiling channels to achieve high conversion ratio. Previous studies on seed-blanket concepts suggested substantial reduction in the core power density is needed in order to operate under nominal PWR system conditions. Boiling flow regime in the seed region allows more heat to be removed for a given coolant mass flow rate, which in turn, may potentially allow increasing the power density of the core. In addition, reduced moderation improves the breeding performance. A two-dimensional design optimization study was carried out with BOXER and SERPENT codes in order to determine the most attractive fuel assembly configuration that would ensure breeding. Effects of various parameters, such as void fraction, blanket fuel form, number of seed pins and their dimensions, on the conversion ratio were examined. The obtained results, for which the power density was set to be 104 W/cm3, created a map of potentially feasible designs. It was found that several options have the potential to achieve end of life fissile inventory ratio above unity, which implies potential feasibility of a self-sustainable Thorium fuel cycle in PWRs without significant reduction in the core power density. Finally, a preliminary three-dimensional coupled neutronic and thermal–hydraulic analysis for a single seed-blanket fuel assembly was performed. The results indicate that axial void distribution changes drastically with burnup. Therefore, some means of

  9. 44-BWR WASTE PACKAGE LOADING CURVE EVALUATION

    International Nuclear Information System (INIS)

    The objective of this calculation is to evaluate the required minimum burnup as a function of initial boiling water reactor (BWR) assembly enrichment that would permit loading of spent nuclear fuel into the 44 BWR waste package configuration as provided in Attachment IV. This calculation is an application of the methodology presented in ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). The scope of this calculation covers a range of enrichments from 0 through 5.0 weight percent (wt%) U-235, and a burnup range of 0 through 40 GWd/MTU. This activity supports the validation of the use of burnup credit for commercial spent nuclear fuel applications. The intended use of these results will be in establishing BWR waste package configuration loading specifications. Limitations of this evaluation are as follows: (1) The results are based on burnup credit for actinides and selected fission products as proposed in YMP (2003, Table 3-1) and referred to as the ''Principal Isotopes''. Any change to the isotope listing will have a direct impact on the results of this report. (2) The results of 100 percent of the current BWR projected waste stream being able to be disposed of in the 44-BWR waste package with Ni-Gd Alloy absorber plates is contingent upon the referenced waste stream being sufficiently similar to the waste stream received for disposal. (3) The results are based on 1.5 wt% Gd in the Ni-Gd Alloy material and having no tuff inside the waste package. If the Gd loading is reduced or a process to introduce tuff inside the waste package is defined, then this report would need to be reevaluated based on the alternative materials

  10. Safety analysis of thorium-based fuels in the General Electric Standard BWR

    International Nuclear Information System (INIS)

    A denatured (U-233/Th)O2 fuel assembly has been designed which is energy equivalent to and hardware interchangeable with a modern boiling water reactor (BWR) reference reload assembly. Relative to the reference UO2 fuel, the thorium fuel design shows better performance during normal and transient reactor operation for the BWR/6 product line and will meet or exceed current safety and licensing criteria. Power distributions are flattened and thermal operating margins are increased by reduced steam void reactivity coefficients caused by U-233. However, a (U-233/Th)O2-fueled BWR will likely have reduced operating flexibility. A (U-235/Th)O2-fueled BWR should perform similar to a UO2-fueled BWR under all operating conditions. A (Pu/Th)O2-fueled BWR may have reduced thermal margins and similar accident response and be less stable than a UO2-fueled BWR. The assessment is based on comparisions of point model and infinite lattice predictions of various nuclear reactivity parameters, including void reactivity coefficients, Doppler reactivity coefficients, and control blade worths

  11. Calculations of the effect of boiling water on bitumen production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Kantzas, A. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering]|[Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory; McGee, B. [E-T Energy Limited, Calgary, AB (Canada)

    2006-07-01

    Alberta's vast resources of heavy oil and bitumen are playing an increasing role as a main resource for crude oil. Thermal recovery methods for heavy oil and bitumen include steam injection and steam flooding in which thermal energy is given to the oil to reduce its viscosity and allow it to flow towards a production spot. A viable alternative to steam injection is the electromagnetic heating method for heavy oil and bitumen reservoirs. Electromagnetic heating transfers heat to heavy oil reservoirs based on electromagnetic energy and can be used in situations where steam injection may not work well. The process can also be used to preheat the reservoir before steam injection. This study examined the possible displacement mechanisms of such processes with particular focus on the physics of boiling water in porous media as a potential displacement agent for heavy oil and bitumen. It is very possible that water could vaporize while being electrically heated and the vaporized water could push more heavy oil or bitumen out of reservoir. As such, higher oil recovery could be expected due to water vaporization. The role of water vaporization during electrical heating process was examined and a methodology to estimate the magnitude of incremental oil recovery was developed based on simple conceptual models with numerical simulators and illustrative experiments. The primary contributors of this process appear to be a combination of drainage, imbibition, viscosity reduction and gas expansion. The study showed that the expansion of water into steam could very efficiently flush oil out of pore spaces. It was concluded that water vaporization inside the reservoir can be an additional driving force for heavy oil or bitumen production, and that this alternative to steam injection can offer energy savings for the recovery process. 10 refs., 4 tabs., 6 figs., 1 appendix.

  12. Feasibility of underwater welding of highly irradiated in-vessel components of boiling-water reactors: A literature review

    International Nuclear Information System (INIS)

    In February 1997, the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research (RES), initiated a literature review to assess the state of underwater welding technology. In particular, the objective of this literature review was to evaluate the viability of underwater welding in-vessel components of boiling water reactor (BWR) in-vessel components, especially those components fabricated from stainless steels that are subjected to high neutron fluences. This assessment was requested because of the recent increased level of activity in the commercial nuclear industry to address generic issues concerning the reactor vessel and internals, especially those issues related to repair options. This literature review revealed a preponderance of general information about underwater welding technology, as a result of the active research in this field sponsored by the U.S. Navy and offshore oil and gas industry concerns. However, the literature search yielded only a limited amount of information about underwater welding of components in low-fluence areas of BWR in-vessel environments, and no information at all concerning underwater welding experiences in high-fluence environments. Research reported by the staff of the U.S. Department of Energy (DOE) Savannah River Site and researchers from the DOE fusion reactor program proved more fruitful. This research documented relevant experience concerning welding of stainless steel materials in air environments exposed to high neutron fluences. It also addressed problems with welding highly irradiated materials, and primarily attributed those problems to helium-induced cracking in the material. (Helium is produced from the neutron irradiation of boron, an impurity, and nickel.) The researchers found that the amount of helium-induced cracking could be controlled, or even eliminated, by reducing the heat input into the weld and applying a compressive stress perpendicular to the weld path

  13. BWR ASSEMBLY SOURCE TERMS FOR WASTE PACKAGE DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    T.L. Lotz

    1997-02-15

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide boiling water reactor (BWR) assembly radiation source term data for use during Waste Package (WP) design. The BWR assembly radiation source terms are to be used for evaluation of radiolysis effects at the WP surface, and for personnel shielding requirements during assembly or WP handling operations. The objectives of this evaluation are to generate BWR assembly radiation source terms that bound selected groupings of BWR assemblies, with regard to assembly average burnup and cooling time, which comprise the anticipated MGDS BWR commercial spent nuclear fuel (SNF) waste stream. The source term data is to be provided in a form which can easily be utilized in subsequent shielding/radiation dose calculations. Since these calculations may also be used for Total System Performance Assessment (TSPA), with appropriate justification provided by TSPA, or radionuclide release rate analysis, the grams of each element and additional cooling times out to 25 years will also be calculated and the data included in the output files.

  14. Assessment of the Prony's method for BWR stability analysis

    International Nuclear Information System (INIS)

    Highlights: → This paper describes a method to determine the degree of stability of a BWR. → Performance comparison between Prony's and common AR techniques is presented. → Benchmark data and actual BWR transient data are used for comparison. → DR and f results are presented and discussed. → The Prony's method is shown to be a robust technique for BWR stability. - Abstract: It is known that Boiling Water Reactors are susceptible to present power oscillations in regions of high power and low coolant flow, in the power-flow operational map. It is possible to fall in one of such instability regions during reactor startup, since both power and coolant flow are being increased but not proportionally. One other possibility for falling into those areas is the occurrence of a trip of recirculation pumps. Stability monitoring in such cases can be difficult, because the amount or quality of power signal data required for calculation of the stability key parameters may not be enough to provide reliable results in an adequate time range. In this work, the Prony's Method is presented as one complementary alternative to determine the degree of stability of a BWR, through time series data. This analysis method can provide information about decay ratio and oscillation frequency from power signals obtained during transient events. However, so far not many applications in Boiling Water Reactors operation have been reported and supported to establish the scope of using such analysis for actual transient events. This work presents first a comparison of decay ratio and frequency oscillation results obtained by Prony's method and those results obtained by the participants of the Forsmark 1 and 2 Boiling Water Reactor Stability Benchmark using diverse techniques. Then, a comparison of decay ratio and frequency oscillation results is performed for four real BWR transient event data, using Prony's method and two other techniques based on an autoregressive modeling. The four

  15. An analysis of reactor transient response for boiling water reactor ATWS events

    International Nuclear Information System (INIS)

    Numerical simulations of BWR (boiling water reactor) dynamic response under ATWS (anticipated transient without scram) conditions are presented for the case where the reactor is operated at natural circulation conditions. In non-isolation events, reactor stability is strongly influenced by the degree of core inlet subcooling. At normal water level and pressure, instabilities develop if core-inlet subcooling exceeds a critical value of ∼21 Btu/lbm. A sensitivity study with regard to the steam separator pressure - loss coefficient, however, indicates that system stability is strongly dependent on the magnitude of this parameter which suggests a significant degree of uncertainty In the results. Under isolation conditions at rated pressure, stability is significantly enhanced by rapid pressure fluctuations generated through cycling of safety/relief valves. Large-amplitude instabilities develop, however, in depressurization events, and SRV cycling no longer stabilizes the system. In a simulated depressurization to ∼500 psia, prompt critical excursions occurred, and oscillation amplitudes reached 1000% of rated power. Implications of the Present Study: With the exception of guidance to avoid SRV cycling, these preliminary results have provided further support for the validity of this response strategy. SABRE calculations have shown that the reactor is probably slightly unstable in natural circulation operation, but relief valve cycling prevents the occurrence of instabilities at or near design pressure. Thus, unstable operation should not be a concern when boron injection and HPCI are available and depressurization is unnecessary. The reactor water level for injection flow corresponding to HPCI operation has been shown to be acceptable and consistent with earlier estimates based on the NSAC results; however, condensation effects have a significant influence on the equilibrium reactor water level. In addition, the SABRE results reinforce PP and L's concerns that

  16. Generation of shockwave and vortex structures at the outflow of a boiling water jet

    Science.gov (United States)

    Alekseev, M. V.; Lezhnin, S. I.; Pribaturin, N. A.; Sorokin, A. L.

    2014-12-01

    Results of numerical simulation for shock waves and generation of vortex structures during unsteady outflow of boiling liquid jet are presented. The features of evolution of shock waves and vortex structures formation during unsteady outflow of boiling water are compared with corresponding structures during unsteady gas outflow.

  17. 78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors

    Science.gov (United States)

    2013-10-24

    ... COMMISSION Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors AGENCY... Cooling Systems for New Boiling-Water Reactors.'' This RG describes testing methods the NRC staff...)-1277, ``Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors.''...

  18. Propagation of cracks by stress corrosion in conditions of BWR type reactor; Propagacion de grietas por corrosion bajo esfuerzo en condiciones de reactor de agua en ebullicion (BWR)

    Energy Technology Data Exchange (ETDEWEB)

    Merino C, F.J. [ININ, 52045 Estado de Mexico (Mexico); Fuentes C, P. [ITT, Metepec, Estado de Mexico (Mexico)]. E-mail: fjmc@nuclear.inin.mx

    2004-07-01

    In this work, the obtained results when applying the Hydrogen Chemistry to a test tube type Compact Tension (CT), built in austenitic stainless steel 304l, simulating the conditions to those that it operates a Boiling Water Reactor (BWR), temperature 288 C and pressure of 8 MPa are presented. With the application of this water chemistry, seeks to be proven the diminution of the crack propagation speed. (Author)

  19. An A BWR demonstration simulator for training and developing technical staff

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Yonezawa, H.; Aoyagi, Y.; Kataoka, K., E-mail: jim.powers@toshiba.com [Toshiba Corporation, Kawasaki, Kanagawa (Japan)

    2015-09-15

    The US-Advanced Boiling Water Reactor (A BWR), certified by the US NRC, is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. Toshiba has developed a Demonstration Simulator of the A BWR control room that provides a realistic experience for training and education on BWR principles and operations fundamentals. The Demonstration Simulator is located in the Toshiba America Nuclear Energy (Tane) office in Charlotte, North Carolina and is composed of standard office computer equipment set up in a specific arrangement that is representative of the layout of an A BWR control room. The Demonstration Simulator is not intended for licensed operator training, but can provide a framework for encouraging entry level technically oriented nuclear workers to enter the operations field; strengthening the linkage between university energy field curricula and real-life application of theory; and, improving understanding of integrated plant operations for developing station technical staff. This paper describes the A BWR Demonstration Simulator and its applications for training and educating future nuclear workers. (Author)

  20. An A BWR demonstration simulator for training and developing technical staff

    International Nuclear Information System (INIS)

    The US-Advanced Boiling Water Reactor (A BWR), certified by the US NRC, is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. Toshiba has developed a Demonstration Simulator of the A BWR control room that provides a realistic experience for training and education on BWR principles and operations fundamentals. The Demonstration Simulator is located in the Toshiba America Nuclear Energy (Tane) office in Charlotte, North Carolina and is composed of standard office computer equipment set up in a specific arrangement that is representative of the layout of an A BWR control room. The Demonstration Simulator is not intended for licensed operator training, but can provide a framework for encouraging entry level technically oriented nuclear workers to enter the operations field; strengthening the linkage between university energy field curricula and real-life application of theory; and, improving understanding of integrated plant operations for developing station technical staff. This paper describes the A BWR Demonstration Simulator and its applications for training and educating future nuclear workers. (Author)

  1. A novel approach for noble metal deposition on surfaces for IGSCC mitigation of boiling water reactor internals

    International Nuclear Information System (INIS)

    A novel in-situ approach has been developed to deposit noble metals on surfaces of materials commonly used in the nuclear power generating industry. The method involves the injection of a noble metal chemical solution directly into the high temperature water that is in contact with a metal surface to be coated with the noble metal. An effective noble metal coating on a surface can be achieved by maintaining the noble metal concentration at a level of 10 to 100 ppb over a period of 48 hours during the injection process. The surface concentration of the noble metal after the treatment was 2 to 3 atomic %, and the noble metal was present to a depth of 200 to 500 A. The concept of noble metal chemical addition (NMCA) technology was successfully used to create a ''noble metal like'' surface on three of the major nuclear materials, 304 SS, Alloy 600 and Alloy 182. The success of this technology was demonstrated by using constant extension rate tensile (CERT) tests, crack growth rate (CGR) tests and electrochemical corrosion potential (ECP) response tests. The NMCA technology in combination with hydrogen has successfully decreased the ECP of surfaces below the critical cracking potential of -0.230 V(SHE), and prevented both crack initiation and crack propagation in simulated boiling water reactor (BWR) environments

  2. A BWR licensing experience in the USA

    International Nuclear Information System (INIS)

    The US-Advanced Boiling Water Reactor (A BWR), certified by the United States Nuclear Regulatory Commission (US NRC), is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The STP3-4 project has finished the US NRC technical review of the Cola through the final meeting of the Advisory Committee on Reactor Safeguards (ACRS), and the Final Safety Evaluation Report (FSER) is scheduled to be issued by the US NRC in the middle of 2015. The next steps are to support the Mandatory Hearing process, and voting by the NRC commissioners on the motion to grant the Combined License, which is scheduled beginning of 2016 according to US NRC schedule as of March 30, 2015. This paper summarizes the history and progress of the US-A BWR licensing, including the experiences of the Licensee, Nina, and Toshiba as the Epc team worked through the Code of Federal Regulations Title 10 (10-Cfr) Part 52 process, and provides some perspectives on how the related licensing material would also be of value within a 10-Cfr Part 50, two-step process to minimize schedule and financial risks which could arise from ongoing technical developments and regulatory reviews. (Author)

  3. A BWR licensing experience in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J.; Ogura, C. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Arai, K. [Toshiba Corporation, Yokohama, Kanagawa (Japan); Thomas, S.; Mookhoek, B., E-mail: jim.powers@toshiba.com [Nuclear Innovation North America, Lake Jackson, Texas (United States)

    2015-09-15

    The US-Advanced Boiling Water Reactor (A BWR), certified by the United States Nuclear Regulatory Commission (US NRC), is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The STP3-4 project has finished the US NRC technical review of the Cola through the final meeting of the Advisory Committee on Reactor Safeguards (ACRS), and the Final Safety Evaluation Report (FSER) is scheduled to be issued by the US NRC in the middle of 2015. The next steps are to support the Mandatory Hearing process, and voting by the NRC commissioners on the motion to grant the Combined License, which is scheduled beginning of 2016 according to US NRC schedule as of March 30, 2015. This paper summarizes the history and progress of the US-A BWR licensing, including the experiences of the Licensee, Nina, and Toshiba as the Epc team worked through the Code of Federal Regulations Title 10 (10-Cfr) Part 52 process, and provides some perspectives on how the related licensing material would also be of value within a 10-Cfr Part 50, two-step process to minimize schedule and financial risks which could arise from ongoing technical developments and regulatory reviews. (Author)

  4. Aging study of boiling water reactor high pressure injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Conley, D.A.; Edson, J.L.; Fineman, C.F. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  5. Generic safety evaluation report regarding integrity of BWR scram system piping

    International Nuclear Information System (INIS)

    Safety concerns associated with postulated pipe breaks in the boiling water reactor (BWR) scram system were identified during the staff's continuing investigation of the Browns Ferry Unit 3 control rod partial insertion failure on June 28, 1980. This report includes an evaluation of the licensing basis for the BWR scram discharge volume (SDV) piping and an assessment of the potential for the SDV piping to fail while in service. A discussion of the means available for mitigation an unlikely SDV system failure is provided. Generic recommendations are made to improve mitigation capability and ensure that system integrity is maintained in service

  6. Modeling and measurement of boiling point elevation during water vaporization from aqueous urea for SCR applications

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Ho Jin; Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of)

    2016-03-15

    Understanding of water vaporization is the first step to anticipate the conversion process of urea into ammonia in the exhaust stream. As aqueous urea is a mixture and the urea in the mixture acts as a non-volatile solute, its colligative properties should be considered during water vaporization. The elevation of boiling point for urea water solution is measured with respect to urea mole fraction. With the boiling-point elevation relation, a model for water vaporization is proposed underlining the correction of the heat of vaporization of water in the urea water mixture due to the enthalpy of urea dissolution in water. The model is verified by the experiments of water vaporization as well. Finally, the water vaporization model is applied to the water vaporization of aqueous urea droplets. It is shown that urea decomposition can begin before water evaporation finishes due to the boiling-point elevation.

  7. Boiling water reactors with uranium-plutonium mixed oxide fuel. Report 2: A survey of the accuracy of the Studsvik of America CMS codes

    Energy Technology Data Exchange (ETDEWEB)

    Demaziere, C. [CEA Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires

    1999-02-01

    This report is a part of the project titled 'Boiling Water Reactors With Uranium-Plutonium Mixed Oxide (MOx) Fuel'. The aim of this study is to model the impact of a core loading pattern containing MOx bundles upon the main characteristics of a BWR (reactivity coefficients, stability, etc.). The tools that are available to perform a modeling in the Department of Reactor Physics in Chalmers are CASMO-4/TABLES-3/SIMULATE-3 from Studsvik of America. Thus, before performing any kind of calculation with MOx fuels, it is necessary to be able to establish the reliability and the accuracy of these Core Management System (CMS) codes. This report presents a quantitative analysis of the models used in the package. A qualitative presentation is realized in a coming report.

  8. Analytical and Experimental Study of The Effects of Non-Condensable in a Passive Condenser System for The Advanced Boiling Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shripad T. Revankar; Seungmin Oh

    2003-09-30

    The main goal of the project is to study analytically and experimentally condensation heat transfer for the passive condenser system relevant to the safety of next generation nuclear reactor such as Simplified Boiling Water Reactor (BWR). The objectives of this three-year research project are to: (1) obtain experimental data on the phenomenon of condensation of steam in a vertical tube in the presence of non-condensable for flow conditions of PCCS, (2) develop a analytic model for the condensation phenomena in the presence of non-condensable gas for the vertical tube, and (3) assess the RELAP5 computer code against the experimental data. The project involves experiment, theoretical modeling and a thermal-hydraulic code assessment. It involves graduate and undergraduate students' participation providing them with exposure and training in advanced reactor concepts and safety systems

  9. Analytical and Experimental Study of The Effects of Non-Condensable in a Passive Condenser System for The Advanced Boiling Water Reactor

    International Nuclear Information System (INIS)

    The main goal of the project is to study analytically and experimentally condensation heat transfer for the passive condenser system relevant to the safety of next generation nuclear reactor such as Simplified Boiling Water Reactor (BWR). The objectives of this three-year research project are to: (1) obtain experimental data on the phenomenon of condensation of steam in a vertical tube in the presence of non-condensable for flow conditions of PCCS, (2) develop a analytic model for the condensation phenomena in the presence of non-condensable gas for the vertical tube, and (3) assess the RELAP5 computer code against the experimental data. The project involves experiment, theoretical modeling and a thermal-hydraulic code assessment. It involves graduate and undergraduate students' participation providing them with exposure and training in advanced reactor concepts and safety systems

  10. Hydraulic performance of pump suction inlets for emergency core cooling systems in boiling water reactors. Containment sump reliability studies. Generic task A-43

    International Nuclear Information System (INIS)

    This document reports on the hydraulic performance of two representative Boiling Water Reactor (BWR) Residual Heat Removal (RHR) suction inlet configurations; namely, those of the Mark I, and Mark II and Mark III designs. Key parameters of interest were air-ingestion levels, vortex types, suction pipe swirl, and the RHR inlet pressure loss coefficient. Tests were conducted with nearly uniform and non-uniform approach flows to the inlets. Flows and submergences were in the range of from 2000 to 12,000 gpm per pipe and 2 to 5 ft, respectively, giving a Froude number range of 0.17 to 1.06. Zero air-withdrawal was measured for both configurations for Froude number equal to or less than 0.8 even under non-unifrom approach flows; likewise, no air-core vortices were observed for the same flow conditions

  11. 78 FR 46378 - La Crosse Boiling Water Reactor, Environmental Assessment and Finding of No Significant Impact...

    Science.gov (United States)

    2013-07-31

    ... COMMISSION La Crosse Boiling Water Reactor, Environmental Assessment and Finding of No Significant Impact Regarding an Exemption Request AGENCY: Nuclear Regulatory Commission. ACTION: Environmental assessment and... Waste Management and Environmental Protection, Office of Federal and State Materials and...

  12. Experimental study on a new solar boiling water system with holistic track solar funnel concentrator

    International Nuclear Information System (INIS)

    A new solar boiling water system with conventional vacuum-tube solar collector as primary heater and the holistic solar funnel concentrator as secondary heater had been designed. In this paper, the system was measured out door and its performance was analyzed. The configuration and operation principle of the system are described. Variations of the boiled water yield, the temperature of the stove and the solar irradiance with local time have been measured. Main factors affecting the system performance have been analyzed. The experimental results indicate that the system produced large amount of boiled water. And the performance of the system has been found closely related to the solar radiance. When the solar radiance is above 600 W/m2, the boiled water yield rate of the system has reached 20 kg/h and its total energy efficiency has exceeded 40%.

  13. Identification of chromium oxides and other solids in BWR reactor water

    International Nuclear Information System (INIS)

    Radioactive solid particles in reactor water may deposit as hot spots on reactor component surfaces, contributing to plant radiation field build-up. Phase identification of these solid particles would improve our understanding about the origins of the 'hot spots' and their behaviour under various water chemistry conditions. Phase identification is also important for the purpose of experimental verification of some thermodynamic calculations that predict thermodynamic stability of certain solid phases in BWR water environments. This paper concerns a transmission electron microscopy study on solid particles that were collected from two Swedish BWRs operated with hydrogen water chemistry. In the samples collected from both reactors, a significant fraction of the total activities came from radionuclide Cr-51. Among various solid particles detected, a significant number of chromium oxide particles were found. From one reactor amorphous chromium oxide particles were detected while from another reactor crystalline Cr2O3 was found. The presence of the metastable amorphous chromium oxide in the coolant suggests that any assumption of achieving thermodynamic equilibrium in the coolant system would not be valid. (author)

  14. Boiling water reactors with Uranium-Plutonium mixed oxide fuel. Report 1: Accuracy of the nuclide concentrations calculated by CASMO-4

    Energy Technology Data Exchange (ETDEWEB)

    Demaziere, C. [CEA Centre d' Etudes de Cadarache, Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires

    1999-07-01

    This report is a part of the project titled 'Boiling Water Reactors With Uranium-Plutonium Mixed Oxide (MOx) Fuel'. The aim of this study is to model the impact of a core loading pattern containing MOx bundles upon the main characteristics of a BWR (reactivity coefficients, stability, etc.). The tools that are available to perform a modeling in the Department of Reactor Physics in Chalmers are CASMO-4/TABLES-3/SIMULATE-3 from Studsvik of America. These CMS (Core Management System) programs have been extensively compared with both measurements and reference codes. Nevertheless some data are proprietary in particular the comparison of the calculated nuclide concentrations versus experiments (because of the cost of this kind of experimental study). This is why this report describes such a comparative investigation carried out with a General Electric 7x7 BWR bundle. Unfortunately, since some core history parameters were unknown, a lot of hypotheses have been adopted. This invokes sometimes a significant discrepancy in the results without being able to determine the origin of the differences between calculations and experiments. Yet one can assess that, except for four nuclides - Plutonium-238, Curium-243, Curium-244 and Cesium-135 - for which the approximate power history (history effect) can be invoked, the accuracy of the calculated nuclide concentrations is rather good if one takes the numerous approximations into account.

  15. Technology, safety and costs of decommissioning a refernce boiling water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule

    International Nuclear Information System (INIS)

    Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies of conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference boiling water reactor (BWR) described in the earlier study; and defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs. This report presents the results of recent PNL studies to provide supporting information in three areas concerning decommissioning of the reference BWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation

  16. Tritium in liquid phase in a BWR-5 like Laguna Verde; Tritio en fase liquida en un BWR-5 como Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Tijerina S, F.; Vargas A, A.; Cardenas J, J., E-mail: francisco.tijerina@cfe.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Subgerencia de Ingenieria, Carretera Veracruz-Medellin Km 7.5, Veracruz (Mexico)

    2011-11-15

    In boiling water reactors (BWR), the tritium (H{sub 3}) takes place mainly as a result of ternary fissions in the nuclear reactors, of those which 75% are in gaseous form and 25% in liquid form. In the liquid phase, the tritium is transported to the pipes of the primary coolant toward condensed tanks or tanks of drainage excesses of radioactive equipment, located in external areas of a BWR, as well as to the processes of radioactive wastes to be able to be directed to the liquid effluents. For that reason, is necessary to know the possible routes of the transport and processes of the tritium in a BWR to control this radioisotope in the site of the event of leaks in equipment s and buried pipes, avoiding that emigrates toward underground flowing and an impact to the environment and to the people in general. (Author)

  17. Critical heat flux of an impinging water jet on a heated surface with boiling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.S. [Andong Institute of Informaion Technology, Andong (Korea); Kim, H.D. [Andong National University, Andong (Korea); Choi, K.W. [Incheon University, Incheon (Korea)

    2000-04-01

    The purpose of this paper is to investigate a critical heat flux(CHF) during forced convective subcooled and saturated boiling in free water jet system impinged on a rectangular heated surface. The surface is supplied with subcooled or saturated water through a rectangular jet. Experimental parameters studied are a width of heated surface, a height of supplementary water and a degree of subcooling. Incipient boiling point is observed in the temperature of 6{approx}8 deg.C of superheat of test specimen. CHF depends on jet velocity for various boiling-involved coolant system. CHF also is proportional to the nozzle exit velocity to the power of n, where n is 0.55 and 0.8 for subcooled and saturated boiling, respectively. CHF is enhanced with a higher jet velocity, higher degree of subcooling and smaller width of a heated surface. (author). 18 refs., 13 figs., 1 tab.

  18. Application of water jet penning technology to BWR core shroud for IGSCC mitigation

    International Nuclear Information System (INIS)

    Water Jet Peening (WJP) is one of the promising SCC mitigation technologies which make original surface tensile residual stress to compressive one. The Water Jet Peening Technology has the following advantages: a) no foreign material entering into the reactor because of using only water, b) applicability to narrow and complicated structure because it is effective in the wide range of parameters, c) simple in the system/equipment and short period of application in actual plant. WJP was first applied to BWR Core Shroud for preventive maintenance purpose during 1999 outage in Japan. Although the target welds of Shroud are surrounded by various kinds of other components and access space is very limited, most of the weld could be peened by optimizing the peening condition. Effect of residual stress improvement was verified by mock-up test prior to actual work. WJP application was completed within the planned schedule without trouble. Application experience to the Shroud and examples of development of application to other Reactor Internal components will be presented. (author)

  19. Pressure measurements in boiling particle beds with water at 1 bar

    International Nuclear Information System (INIS)

    Pressures have been measured at the top and bottom of uniformly heated beds of uniform spherical particles with water boiling at atmospheric pressure. Particle sizes used vary from 0.22 to 5 mm diameter and bed heights from 50 to 150 mm. The pressures have been recorded at power levels up to dry-out. The results show how much liquid remains in a boiling bed at different power levels and how the liquid/vapour phase pressure losses vary. The results give a valuable insight into the working of a boiling bed. (author)

  20. Pressure suppression containment system for boiling water reactor

    Science.gov (United States)

    Gluntz, Douglas M.; Nesbitt, Loyd B.

    1997-01-01

    A system for suppressing the pressure inside the containment of a BWR following a postulated accident. A piping subsystem is provided which features a main process pipe that communicates the wetwell airspace to a connection point downstream of the guard charcoal bed in an offgas system and upstream of the main bank of delay charcoal beds which give extensive holdup to offgases. The main process pipe is fitted with both inboard and outboard containment isolation valves. Also incorporated in the main process pipe is a low-differential-pressure rupture disk which prevents any gas outflow in this piping whatsoever until or unless rupture occurs by virtue of pressure inside this main process pipe on the wetwell airspace side of the disk exceeding the design opening (rupture) pressure differential. The charcoal holds up the radioactive species in the noncondensable gas from the wetwell plenum by adsorption, allowing time for radioactive decay before the gas is vented to the environs.

  1. Non linear dynamics of boiling water reactor dynamical system

    International Nuclear Information System (INIS)

    The fifth order phenomenological model of March-Leuba for boiling water reactors include the point reactor kinetics equations for neutron balance and effective delayed neutron precursor groups with one node representation of the heat transfer process and channel thermal hydraulics. This nonlinear mathematical model consists five coupled nonlinear ordinary differential equations. The reactivity feedback (void coefficient of reactivity as well as the fuel temperature coefficient of reactivity), heat transfer process and momentum balance are major reasons for the appearance of nonlinearity in this dynamical system. The linear stability of a dynamical system with the existence of nonlinearity cannot predict a true picture of the stability characteristics of dynamical system; hence nonlinear stability analyses become an essential part to predict the global stable region on the stability map. The linear stable region is analyzed by the eigenvalues. In this stable region all the eigenvalues have negative real parts, but when pair of one of the complex eigenvalues passes transversely through imaginary axis, the dynamical system loses or gain its stability via a Hopf bifurcation and limit cycles emerges from the tip. The study of eigenvalues can predict a few bifurcations. The first Lyapunov coefficient and normal form coefficients can be used for the detection of other bifurcations in the systems. Stable or unstable limit cycles excite from these Hopf points. These limits cycles gains or loses their stability via limit point bifurcation of cycles, period doubling bifurcation of cycles and Neimark-Sacker bifurcation of cycles when one of the parameters of the nuclear dynamical system is varied. The stability of these limit cycles can be studied by Floquet theory and Lyapunov coefficient, but the bifurcations of limit cycles can be investigated only by critical Floquet multiplier which is basically the eigenvalue of the monodromy matrices. The cascade of period doubling

  2. Influence of metal addition to BWR water on contamination and corrosion of stainless steel

    International Nuclear Information System (INIS)

    Oxide layers grown on stainless steel under modified BWR conditions with or without addition of different bivalent metal ions have been characterised using methods like SIMS and photo-electrochemistry. The Co-58 activity of the samples depends strongly on the thickness of the oxide film. Low pHT values generally favour dominance of p-type semiconductivity, implying a corrosion process controlled by cation transport through the oxide layer. High pHt values normally result in a change of semiconducting properties from predominantly p-type to n-type, which can be used as an indicator for a change in the corrosion mechanism. The metal ions added to high-temperature water do not significantly affect the specific activity of the different stainless steel samples after exposure. The aim of the described tests was to identify possible alternatives to zinc and to elucidate underlying mechanisms controlling the incorporation of radio-isotopes of cobalt in the oxide layer on stainless steel. Manganese has been identified in the described short-term exposure tests as a possible alternative to zinc. The positive effect of manganese must be confirmed by long-term tests. During these tests, the concentration of dissolved manganese should be reduced to 10 ppb maximum and the other water chemistry parameters should be also adjusted more closely to reactor coolant conditions. (orig./MM)

  3. Proceedings of the International Workshop on Boiling Water Reactor Stability

    International Nuclear Information System (INIS)

    With regard to technical understanding of the phenomena, the participants agreed that the causes of instability appear to be well understood, but there are many variables involved, and their correlation with instability conditions is not always certain. Most codes claimed to be capable of predicting oscillations and unstable conditions, based on post-test analyses of data from actual events, but there do not seem to be any blind predictions available which accurately predict an instability event before the actual test results are released. As a result, reactor owners have decided that the best course is to avoid, with sufficient margin, certain regions in the power-flow map where regions of instability are known to exist, rather than try to predict them very accurately. The meeting concluded that the safety significance of BWR instability is rather limited, and current estimates of plant risk do not show it to be a dominant contributor. This is because the installed plant protection systems will shut a reactor down when the oscillations exceed power limits, and any fuel damage which might occur will be localized and containable. However, it was also agreed that an instability event could increase uncertainties in the human error rate, because operators who have never seen an unstable reactor may take actions which are not necessarily the best for the particular situation. In addition, although an instability event may not cause any harm to the public, it may cause some fuel failures, and these are certainly a concern to a reactor owner, for economic and radiation protection reasons. Finally, it was also agreed that BWR instability is certainly considered to be significant by the public, where acceptance of the technology would erode if a plant is perceived to be in an uncontrolled state, regardless of the actual risk inherent in the situation

  4. Advanced methods for BWR transient and stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A.; Wehle, F.; Opel, S.; Velten, R. [AREVA, AREVA NP, Erlangen (Germany)

    2008-07-01

    The design of advanced Boiling Water Reactor (BWR) fuel assemblies and cores is governed by the basic requirement of safe, reliable and flexible reactor operation with optimal fuel utilization. AREVA NP's comprehensive steady state and transient BWR methodology allows the designer to respond quickly and effectively to customer needs. AREVA NP uses S-RELAP5/RAMONA as the appropriate methodology for the representation of the entire plant. The 3D neutron kinetics and thermal-hydraulics code has been developed for the prediction of system, fuel and core behavior and provides additional margins for normal operation and transients. Of major importance is the extensive validation of the methodology. The validation is based on measurements at AREVA NP's test facilities, and comparison of the predictions with a great wealth of measured data gathered from BWR plants during many years of operation. Three of the main fields of interest are stability analysis, operational transients and reactivity initiated accidents (RIAs). The introduced 3D methodology for operational transients shows significant margin regarding the operational limit of critical power ratio, which has been approved by the German licensing authority. Regarding BWR stability a large number of measurements at different plants under various conditions have been performed and successfully post-calculated with RAMONA. This is the basis of reliable pre-calculations of the locations of regional and core-wide stability boundaries. (authors)

  5. Advanced methods for BWR transient and stability analysis

    International Nuclear Information System (INIS)

    The design of advanced Boiling Water Reactor (BWR) fuel assemblies and cores is governed by the basic requirement of safe, reliable and flexible reactor operation with optimal fuel utilization. AREVA NP's comprehensive steady state and transient BWR methodology allows the designer to respond quickly and effectively to customer needs. AREVA NP uses S-RELAP5/RAMONA as the appropriate methodology for the representation of the entire plant. The 3D neutron kinetics and thermal-hydraulics code has been developed for the prediction of system, fuel and core behavior and provides additional margins for normal operation and transients. Of major importance is the extensive validation of the methodology. The validation is based on measurements at AREVA NP's test facilities, and comparison of the predictions with a great wealth of measured data gathered from BWR plants during many years of operation. Three of the main fields of interest are stability analysis, operational transients and reactivity initiated accidents (RIAs). The introduced 3D methodology for operational transients shows significant margin regarding the operational limit of critical power ratio, which has been approved by the German licensing authority. Regarding BWR stability a large number of measurements at different plants under various conditions have been performed and successfully post-calculated with RAMONA. This is the basis of reliable pre-calculations of the locations of regional and core-wide stability boundaries. (authors)

  6. Advanced BWR core component designs and the implications for SFD analysis

    International Nuclear Information System (INIS)

    Prior to the DF-4 boiling water reactor (BWR) severe fuel damage (SFD) experiment conducted at the Sandia National Laboratories in 1986, no experimental data base existed for guidance in modeling core component behavior under postulated severe accident conditions in commercial BWRs. This paper will present the lessons learned from the DF-4 experiment (and subsequent German CORA BWR SFD tests) and the impact on core models in the current generation of SFD codes. The DF-4 and CORA BWR test assemblies were modeled on the core component designs circa 1985; that is, the 8 x 8 fuel assembly with two water rods and a cruciform control blade constructed of B4C-filled tubelets. Within the past ten years, the state-of-the-art with respect to BWR core component development has out-distanced the current SFD experimental data base and SFD code capabilities. For example, modern BWR control blade design includes hafnium at the tips and top of each control blade wing for longer blade operating lifetimes; also water rods have been replaced by larger water channels for better neutronics economy; and fuel assemblies now contain partial-length fuel rods, again for better neutronics economy. This paper will also discuss the implications of these advanced fuel assembly and core component designs on severe accident progression and on the current SFD code capabilities

  7. Effects of Boiling Water Temperature on Biofilm Formation in PTI Community Potable Water

    Directory of Open Access Journals (Sweden)

    E. A. Fadairo

    2015-04-01

    Full Text Available This study investigated the effects of boiling temperature and associated physico-chemical parameters on the Petroleum Training Institute potable water and the possibility of biofilm formation in its delivery systems. A total of 25 potable water samples were used for this study. The environmental parameters investigated were pH, conductivity, total dissolved solids (TDS, total suspended solid (TSS, dissolved oxygen (DO1, / DO5, salinity, resistivity, total coliform bacteria (as an indicator of possible biofilm presence in the distribution system and biofilm . An overall prevalence of <1 of the total coliform bacteria was observed in the plus-boiling and minus-boiling potable water sample, except for the female hostel which showed moderate stain for the qualitative biofilm test. For the minus-boiling water sample, pH values were between 5.04±0.47 to 6.82±0.48; Total suspended solids ranged between 0.09±0.05-0.17±0.02, total dissolved solid ranged between 4.07±0.73 to 5.58±0.70, conductivity values ranged between 8.02±0.90 to 11.54±1.67, dissolved oxygen ranged between 1.97±0.26 to 3.12 ±0.13, the DO5 ranged between 1.91±0.32 to 2.72± 0.29 while resistivity ranged between 7.79±0.13 to 10.88±0.18. Values for the Plus-boiling and filtered samples showed a pH range of 6.02±0.26 to 6.95±0.26; conductivity 7.21±0.10 to 9.88±0.67; DO ranged between 1.01±0.14 to 2.08±0.35, DO 5 was 1.02±0.02 to 2.01±0.38, TSS and TDS ranged between 0.02±0.001, 3.74±0.62 to 0.03±0.002 and 4.95±0.42 respectively while resistivity ranged between 1.02±0.11 to 1.98±0.16. For all parameters analyzed, values obtained falls within the WHO limit for potable water except for the qualitative biofilm test on FSH minus-boiling water sample which gave moderate stain with 0.1% crystal violet stain and the pH values which fall below WHO acceptable limits. Boiling and filtration of potable water irrespective of the source is campaigned from this study in order

  8. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL

    2016-01-01

    A technical basis for peak reactivity boiling water reactor (BWR) burnup credit (BUC) methods was recently generated, and the technical basis for extended BWR BUC is now being developed. In this paper, a number of effects related to extended BWR BUC are analyzed, including three major operational effects in BWRs: the coolant density axial distribution, the use of control blades during operation, and the axial burnup profile. Specifically, uniform axial moderator density profiles are analyzed and compared to previous results and an additional temporal fidelity study combing moderator density profiles for three different fuel assemblies is presented. Realistic control blade histories and cask criticality results are compared to previously generated constructed control blade histories. Finally, a preliminary study of the axial burnup profile is provided.

  9. Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [ORNL; Poore III, Willis P [ORNL

    2015-01-01

    The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Mark I plant for those instrumentation systems considered most important for accident management purposes.

  10. Transient CHF enhancement of saturated pool boiling of water using a honeycomb porous media

    International Nuclear Information System (INIS)

    Several studies have been performed to make clear the transient boiling heat transfer during the exponential heat generation which is occurred in reactivity accident of a nuclear reactor. These researches have been focused on the mechanism of the phenomena mainly, not on the enhancement of the transient boiling heat transfer. In a previous study, we proposed a method of CHF enhancement under steady-state conditions using honeycomb porous plate. The CHF was shown experimentally to be enhanced to more than twice that of a plain surface using honeycomb porous plate. The enhancement is considered to result from the capillary supply of liquid onto the heated surface and the release of generated vapor through the channels. In the present paper, enhancement of the transient critical heat flux in pool boiling by the attachment of a honeycomb-structured porous plate on a heated wire is investigated experimentally using water under saturated boiling conditions. (author)

  11. Experimental study of the characteristics of pool boiling CHF enhancement using water-based magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hyuk; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2011-05-15

    Nucleate boiling is a very effective heat transfer mechanism. However, there exists a critical value of heat flux at which nucleate boiling transitions to film boiling shows very poor heat transfer behavior. Critical heat flux(CHF) is a main constraint to the design process because it can generate damages or deformations of material. There have been many efforts to improve the CHF by using nanofluids by researchers. This paper will describe the effects of magnetic fluid on CHF enhancement of pool boiling. We compared the CHF values of pool boiling experiment between magnetic fluid and other nanofluids with several volume concentrations to evaluate the degree of CHF enhancement. SEM(Scanning Electron Microscope) images were obtained to explain CHF enhancement through the effect of the deposited nanoparticles, which can change the surface wettability, during the pool boiling experiment. Lastly, Finally, in order to investigate the effect of magnetic field in the water-based magnetic fluid, magnetic field was analytically calculated by using Biot-Savart law. Using these results, we discussed the CHF enhancement of magnetite-water nanofluids in detailed

  12. Test Plan for the Boiling Water Reactor Dry Cask Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis . These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing the internal convection through greater canister helium pressure. These same vertical, canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern vertical, canistered dry cask systems. The BWR cask simulator (BCS) has been designed in detail for both the above-ground and below-ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 deg C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the

  13. Non normal modal analysis of oscillations in boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Antola, Roberto, E-mail: roberto.suarez@miem.gub.uy [Ministerio de Industria, Energia y Mineria (MIEM), Montevideo (Uruguay); Flores-Godoy, Jose-Job, E-mail: job.flores@ibero.mx [Universidad Iberoamericana (UIA), Mexico, DF (Mexico). Dept. de Fisica Y Matematicas

    2013-07-01

    The first objective of the present work is to construct a simple reduced order model for BWR stability analysis, combining a two nodes nodal model of the thermal hydraulics with a two modes modal model of the neutronics. Two coupled non-linear integral-differential equations are obtained, in terms of one global (in phase) and one local (out of phase) power amplitude, with direct and cross feedback reactivities given as functions of thermal hydraulics core variables (void fractions and temperatures). The second objective is to apply the effective life time approximation to further simplify the nonlinear equations. Linear approximations for the equations of the amplitudes of the global and regional modes are derived. The linearized equation for the amplitude of the global mode corresponds to a decoupled and damped harmonic oscillator. An analytical closed form formula for the damping coefficient, as a function of the parameters space of the BWR, is obtained. The coefficient changes its sign (with the corresponding modification in the decay ratio) when a stability boundary is crossed. This produces a supercritical Hopf bifurcation, with the steady state power of the reactor as the bifurcation parameter. However, the linearized equation for the amplitude of the regional mode corresponds always to an over-damped and always coupled (with the amplitude of the global mode) harmonic oscillator, for every set of possible values of core parameters (including the steady state power of the reactor) in the framework of the present mathematical model. The equation for the above mentioned over damped linear oscillator is closely connected with a non-normal operator. Due to this connection, there could be a significant transient growth of some solutions of the linear equation. This behavior allows a significant shrinking of the basin of attraction of the equilibrium state. The third objective is to apply the above approach to partially study the stability of the regional mode and

  14. Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions

    Science.gov (United States)

    Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha

    2015-10-01

    Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale

  15. Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions

    Science.gov (United States)

    Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha

    2016-09-01

    Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale

  16. MODULAR AND FULL SIZE SIMPLIFIED BOILING WATER REACTOR DESIGN WITH FULLY PASSIVE SAFETY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    M. Ishii; S. T. Revankar; T. Downar; Y. Xu, H. J. Yoon; D. Tinkler; U. S. Rohatgi

    2003-06-16

    OAK B204 The overall goal of this three-year research project was to develop a new scientific design of a compact modular 200 MWe and a full size 1200 MWe simplified boiling water reactors (SBWR). Specific objectives of this research were: (1) to perform scientific designs of the core neutronics and core thermal-hydraulics for a small capacity and full size simplified boiling water reactor, (2) to develop a passive safety system design, (3) improve and validate safety analysis code, (4) demonstrate experimentally and analytically all design functions of the safety systems for the design basis accidents (DBA) and (5) to develop the final scientific design of both SBWR systems, 200 MWe (SBWR-200) and 1200 MWe (SBWR-1200). The SBWR combines the advantages of design simplicity and completely passive safety systems. These advantages fit well within the objectives of NERI and the Department of Energy's focus on the development of Generation III and IV nuclear power. The 3-year research program was structured around seven tasks. Task 1 was to perform the preliminary thermal-hydraulic design. Task 2 was to perform the core neutronic design analysis. Task 3 was to perform a detailed scaling study and obtain corresponding PUMA conditions from an integral test. Task 4 was to perform integral tests and code evaluation for the DBA. Task 5 was to perform a safety analysis for the DBA. Task 6 was to perform a BWR stability analysis. Task 7 was to perform a final scientific design of the compact modular SBWR-200 and the full size SBWR-1200. A no cost extension for the third year was requested and the request was granted and all the project tasks were completed by April 2003. The design activities in tasks 1, 2, and 3 were completed as planned. The existing thermal-hydraulic information, core physics, and fuel lattice information was collected on the existing design of the simplified boiling water reactor. The thermal-hydraulic design were developed. Based on a detailed

  17. MODULAR AND FULL SIZE SIMPLIFIED BOILING WATER REACTOR DESIGN WITH FULLY PASSIVE SAFETY SYSTEMS

    International Nuclear Information System (INIS)

    OAK B204 The overall goal of this three-year research project was to develop a new scientific design of a compact modular 200 MWe and a full size 1200 MWe simplified boiling water reactors (SBWR). Specific objectives of this research were: (1) to perform scientific designs of the core neutronics and core thermal-hydraulics for a small capacity and full size simplified boiling water reactor, (2) to develop a passive safety system design, (3) improve and validate safety analysis code, (4) demonstrate experimentally and analytically all design functions of the safety systems for the design basis accidents (DBA) and (5) to develop the final scientific design of both SBWR systems, 200 MWe (SBWR-200) and 1200 MWe (SBWR-1200). The SBWR combines the advantages of design simplicity and completely passive safety systems. These advantages fit well within the objectives of NERI and the Department of Energy's focus on the development of Generation III and IV nuclear power. The 3-year research program was structured around seven tasks. Task 1 was to perform the preliminary thermal-hydraulic design. Task 2 was to perform the core neutronic design analysis. Task 3 was to perform a detailed scaling study and obtain corresponding PUMA conditions from an integral test. Task 4 was to perform integral tests and code evaluation for the DBA. Task 5 was to perform a safety analysis for the DBA. Task 6 was to perform a BWR stability analysis. Task 7 was to perform a final scientific design of the compact modular SBWR-200 and the full size SBWR-1200. A no cost extension for the third year was requested and the request was granted and all the project tasks were completed by April 2003. The design activities in tasks 1, 2, and 3 were completed as planned. The existing thermal-hydraulic information, core physics, and fuel lattice information was collected on the existing design of the simplified boiling water reactor. The thermal-hydraulic design were developed. Based on a detailed integral

  18. Passive depressurization accident management strategy for boiling water reactors

    International Nuclear Information System (INIS)

    Highlights: • We proposed two passive depressurization systems for BWR severe accident management. • Sensitivity analysis of the passive depressurization systems with different leakage area. • Passive depressurization strategies can prevent direct containment heating. - Abstract: According to the current severe accident management guidance, operators are required to depressurize the reactor coolant system to prevent or mitigate the effects of direct containment heating using the safety/relief valves. During the course of a severe accident, the pressure boundary might fail prematurely, resulting in a rapid depressurization of the reactor cooling system before the startup of SRV operation. In this study, we demonstrated that a passive depressurization system could be used as a severe accident management tool under the severe accident conditions to depressurize the reactor coolant system and to prevent an additional devastating sequence of events and direct containment heating. The sensitivity analysis performed with SAMPSON code also demonstrated that the passive depressurization system with an optimized leakage area and failure condition is more efficient in managing a severe accident

  19. Radiation effects in organic paints of a Boiling Water Reactor

    International Nuclear Information System (INIS)

    The coatings on a BWR are used as a protection for the building and equipments from corrosion and contamination by radionuclides. The purpose of this work is to test this kind of coatings by simulating real absorbed doses in 40 years of use plus a nuclear accident (LOCA). Standards said that irradiation should be made with gamma radiation. In this work it's suggested to irradiate with electrons simulating secondary radiation produced on the interaction gamma-matter, and protons simulating the damage caused by the interaction neutron-matter. It's also suggested a new kind of adhesion test for coatings that gives a quantitative measure all other tests are qualitative. Two types of coatings were tested: Modified Phenolic and Epoxic both kinds had a very satisfactory performance in all the tests. The maximum dose accumulated by the coatings was 450 Mrad and the minimum 50 Mrad. The dose rates were: gamma in between 0.4 Mrad/hr and 1.0 Mrad/hr; protons and electrons between 500 Mrad/hr and 4000 Mrad/hr. Other important fact is that a calibration was made for a polymer to be used as a high dose dosimeter, these new dosimeters can measure doses between 10 Mrad and 100 Mrad not depending on the dose rate. (author)

  20. Development of evaluation tool for radiation dose rate distribution in PCV of Hamaoka BWR plants based on water chemistry

    International Nuclear Information System (INIS)

    We have developed an evaluation tool for the radiation dose rate distribution of the work areas in the primary containment vessel (PCV) of Units 3, 4 (BWR5) and 5 (ABWR) at Hamaoka NPS. This tool has been constructed based on the transport behavior of radioactive corrosion products in the primary cooling water of BWR. This tool can be used to evaluate quantitatively the effects of the dose reduction methods by water chemistry control or radiation management. It is composed of two calculation codes; water chemistry code (ACTTUBE) and radiation dose rate code (RADTUBE). ACTTUBE calculates the piping dose rates based on the mass balance of corrosion products, 6 kinds of metal and 5 kinds of radionuclide, among the parts of primary cooling water, such as reactor water, feed water, fuel rod surface and out-of-core piping surface. RADTUBE calculates the dose rate distribution based on the radiation shielding calculation from a calculation result of ACTTUBE. Additionally, this tool has a visualization function of calculated radiation dose rate distribution in the PCV by using a wireless controller and 3D glasses/monitor in order to improve user convenience. The accuracy of the tool's calculation results was evaluated using the water chemistry data and radiation dose rate data of the Hamaoka plants. As a result, it was confirmed that this tool had sufficient accuracy to be used in the evaluation of radiation dose rates for the radiation management of actual plants. (author)

  1. Startup transient simulation for natural circulation boiling water reactors in PUMA facility

    International Nuclear Information System (INIS)

    In view of the importance of instabilities that may occur at low-pressure and -flow conditions during the startup of natural circulation boiling water reactors, startup simulation experiments were performed in the Purdue University Multi-Dimensional Integral Test Assembly (PUMA) facility. The simulations used pressure scaling and followed the startup procedure of a typical natural circulation boiling water reactor. Two simulation experiments were performed for the reactor dome pressures ranging from 55 kPa to 1 MPa, where the instabilities may occur. The experimental results show the signature of condensation-induced oscillations during the single-phase-to-two-phase natural circulation transition. The results also suggest that a rational startup procedure is needed to overcome the startup instabilities in natural circulation boiling water reactor designs

  2. Reliability of BWR high pressure core cooling

    International Nuclear Information System (INIS)

    The high pressure coolant injection system (HPCI), and the reactor core isolation cooling system (RCIC) are steam turbine driven systems that can inject water into a boiling water reactor at full operating pressure. Their purpose is to supply water during any failure that allows water to be lost while the reactor is at pressure and temperature. A large number of BWR plants are not meeting HPCI and RCIC performance goals for core cooling. NSAC considers concurrent failure of NPCI and RCIC to be the most probable potential cause of low reactor water level and possibly fuel damage in a boiling water reactor. Between January 1978 and May 1981, 169 licensee event reports were filed where HPCI or RCIC was inoperable or was declared inoperable. The present effort has shown that at least 40% of NPCI and RCIC problems might be averted by a high quality preventive maintenance program. About half of the plants do not perform cold quick-start surveillance testing of HPCI and RCIC. They do perform routine startup tests, but the equipment is first preheated and the startup is relatively gentle. However, emergency start-ups are abrupt and from the cold condition. Therefore, cold quick-start testing is the only way to assure that all components, control systems, and instruments are functioning correctly for automatic safety initiation. (author)

  3. Cold-neutron tomography of annular flow and functional spacer performance in a model of a boiling water reactor fuel rod bundle

    International Nuclear Information System (INIS)

    Highlights: → Annular flows w/wo functional spacers are investigated by cold neutron imaging. → Liquid film thickness distribution on fuel pins and on spacer vanes is measured. → The influence of the spacers on the liquid film distributions has been quantified. → The cross-sectional averaged liquid hold-up significantly affected by the spacers. → The sapers affect the fraction of the entrained liquid hold up in the gas core. - Abstract: Dryout of the coolant liquid film at the upper part of the fuel pins of a boiling water reactor (BWR) core constitutes the type of heat transfer crisis relevant for the conditions of high void fractions. It is both a safety concern and a limiting factor in the thermal power and thus for the economy of BWRs. We have investigated adiabatic, air-water annular flows in a scaled-up model of two neighboring subchannels as found in BWR fuel assemblies using cold-neutron tomography. The imaging of the double suchannel has been performed at the ICON beamline at the neutron spallation source SINQ at the Paul Scherrer Institute, Switzerland. Cold-neutron tomography is shown here to be an excellent tool for investigating air-water annular flows and the influence of functional spacers of different geometries on such flows. The high-resolution, high-contrast measurements provide the spatial distributions of the coolant liquid film thickness on the fuel pin surfaces as well as on the surfaces of the spacer vanes. The axial variations of the cross-section averaged liquid hold-up and its fraction in the gas core shows the effect of the spacers on the redistribution of the two phases.

  4. On the determination of boiling water reactor characteristics by noise analysis

    International Nuclear Information System (INIS)

    In boiling water reactors the main noise source is the boiling process in the core and the most important variable is the neutron flux, thus the effect of the steam bubbles on the neutron flux is studied in detail. An experiment has been performed in a small subcritical reactor to measure the response of a neutron detector to the passage of a single air bubble. A mathematical model for the description of the response was tested and the results agree very well with the experiment. Noise measurements in the Dodewaard boiling water reactor are discussed. The construction of a twin self-powered neutron detector, developed to perform steam velocity measurements in the core is described. The low-frequency part of the neutron noise characteristics is considered. The transfer functions exhibit a good agreement with ones obtained by independent means: control rod step experiments and model calculations. (Auth.)

  5. Heat Transfer From Electrically Heated Nichrome Wires to Boiling Water at Different Pressures

    Directory of Open Access Journals (Sweden)

    Devi Dayal

    1968-01-01

    Full Text Available Boiling curves for nucleate and film boiling have been drawn for nichrome of three sizes in distilled and degasified water at saturation temperatures under five different sub-atmospheric vapour pressure. It has been observed that (i for the same Q/A (heat transfer, Delta Theta (excess of wire temperature over saturation point of water decreases with pressure in both nucleate and film boiling ranges, (ii Both Q/A max. and Delta Theta/SubC show a rapid decrease with pressure but these variations become more gradual at higher pressures, and (iii Q/A max. and Delta Theta/SubC increase with wire size at all pressures; increase in Delta Theta/SubC however, becomes less conspicuous at higher pressures approaching one atmosphere.

  6. Advanced core physics and thermal hydraulics analysis of boiling water reactors using innovative fuel concepts

    International Nuclear Information System (INIS)

    The economical operation of a boiling water reactor (BWR) is mainly achieved by the axially uniform utilization of the nuclear fuel in the assemblies which is challenging because the neutron spectrum in the active reactor core varies with the axial position. More precisely, the neutron spectrum becomes harder the higher the position is resulting in a decrease of the fuel utilization because the microscopic fission cross section is smaller by several orders of magnitude. In this work, the use of two fuel concepts based on a mixed oxide (MOX) fuel and an innovative thorium-plutonium (ThPu) fuel is investigated by a developed simulation model encompassing thermal hydraulics, neutronics, and fuel burnup. The main feature of these fuel concepts is the axially varying enrichment in plutonium which is, in this work, recycled from spent nuclear fuel and shows a high fission fraction of the absorption cross section for fast incident neutron energies. The potential of balancing the overall fuel utilization by an increase of the fission rate in the upper part of the active height with a combination of the harder spectrum and the higher fission fraction of the absorption cross section in the BWR core is studied. The three particular calculational models for thermal hydraulics, neutronics, and fuel burnup provide results at fuel assembly and/or at core level. In the former case, the main focus lies on the thermal hydraulics analysis, fuel burnup, and activity evolution after unloading from the core and, in the latter case, special attention is paid to reactivity safety coefficients (feedback effects) and the optimization of the operational behavior. At both levels (assembly and core), the isotopic buildup and depletion rates as a function of the active height are analyzed. In addition, a comparison between the use of conventional fuel types with homogeneous enrichments and the use of the innovative fuel types is made. In the framework of the simulations, the ThPu and the MOX

  7. The chemistry of feedwater for boiling-water and pressurized-water reactors

    International Nuclear Information System (INIS)

    In a nuclear power plant the purity of the feedwater depends largely on whether a condensate polishing plant is provided, whether the loop is conditioned and on the presence of corrosion products originating in the materials from which the loop is made. The feedwater specification depends on the type of steam generator used. The article defines the characteristic parameters of a condensate polishing plant (CPP), such as the 'degree of polishing' and 'practical exchange capacity of the resins' and indicates how they can be determined. In pressurized-water reactors (PWR) the feedwater is normally conditioned with hydrazine. Measurements are quoted to demonstrate that, in contrast to conventional plants, the point of injection is immaterial as regards the copper content of the feedwater. Moreover, the iron content of the feedwater of a PWR can be reduced by using cyclic amines. The feedwater chemistry of a BWR is discussed by referring to oxygen, iron and copper measurements. The authors show that in loops in which the feed-heater condensate is pumped forwards and where a feedwater tank is provided, the stipulated purity of the feedwater can be attained by suitable measures (such as mechanical filtration, prevention of erosion-corrosion, and so on). (Auth.)

  8. Assessment of the Prony's method for BWR stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Villafuerte, Javier, E-mail: javier.ortiz@inin.gob.m [Gerencia de Ciencias Aplicadas, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Edo. Mexico 52750 (Mexico); Castillo-Duran, Rogelio, E-mail: rogelio.castillo@inin.gob.m [Gerencia de Ciencias Aplicadas, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Edo. Mexico 52750 (Mexico); Palacios-Hernandez, Javier C., E-mail: javier.palacios@inin.gob.m [Gerencia de Ciencias Aplicadas, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Edo. Mexico 52750 (Mexico)

    2011-05-15

    Highlights: This paper describes a method to determine the degree of stability of a BWR. Performance comparison between Prony's and common AR techniques is presented. Benchmark data and actual BWR transient data are used for comparison. DR and f results are presented and discussed. The Prony's method is shown to be a robust technique for BWR stability. - Abstract: It is known that Boiling Water Reactors are susceptible to present power oscillations in regions of high power and low coolant flow, in the power-flow operational map. It is possible to fall in one of such instability regions during reactor startup, since both power and coolant flow are being increased but not proportionally. One other possibility for falling into those areas is the occurrence of a trip of recirculation pumps. Stability monitoring in such cases can be difficult, because the amount or quality of power signal data required for calculation of the stability key parameters may not be enough to provide reliable results in an adequate time range. In this work, the Prony's Method is presented as one complementary alternative to determine the degree of stability of a BWR, through time series data. This analysis method can provide information about decay ratio and oscillation frequency from power signals obtained during transient events. However, so far not many applications in Boiling Water Reactors operation have been reported and supported to establish the scope of using such analysis for actual transient events. This work presents first a comparison of decay ratio and frequency oscillation results obtained by Prony's method and those results obtained by the participants of the Forsmark 1 and 2 Boiling Water Reactor Stability Benchmark using diverse techniques. Then, a comparison of decay ratio and frequency oscillation results is performed for four real BWR transient event data, using Prony's method and two other techniques based on an autoregressive modeling. The four

  9. Experimental and numerical stability investigations on natural circulation boiling water reactors

    NARCIS (Netherlands)

    Marcel, C.P.

    2007-01-01

    The stability of natural circulation boiling water reactors is investigated with a strong emphasis on experiments. Two different facilities are used for such a task: the GENESIS facility (to which a void reactivity feedback system is artificially added) and the CIRCUS facility. In addition, numerica

  10. 77 FR 27097 - LaCrosse Boiling Water Reactor, Exemption From Certain Requirements, Vernon County, WI

    Science.gov (United States)

    2012-05-08

    ... revised 10 CFR 73.55 through the issuance of a final rule on March 27, 2009 (74 FR 13926). Section 73.55... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION LaCrosse Boiling Water Reactor, Exemption From Certain Requirements, Vernon County, WI...

  11. An Investigation into Water Chemistry in Primary Coolant Circuit of an Advanced Boiling Water Reactor

    International Nuclear Information System (INIS)

    To ensure operation safety, an optimization on the coolant chemistry in the primary coolant circuit of a nuclear reactor is essential no matter what type or generation the reactor belongs to. For a better understanding toward the water chemistry in an advanced boiling water reactor (ABWR), such as the one being constructed in the northern part of Taiwan, and for a safer operation of this ABWR, we conducted a proactive, thorough water chemistry analysis prior to the completion of this reactor in this study. A numerical simulation model for water chemistry analyses in ABWRs has been developed, based upon the core technology we established in the past. This core technology for water chemistry modeling is basically an integration of water radiolysis, thermal-hydraulics, and reactor physics. The model, by the name of DEMACE-ABWR, is an improved version of the original DEMACE model and was used for radiolysis and water chemistry prediction in the Longmen ABWR in Taiwan. Predicted results pertinent to the water chemistry variation and the corrosion behavior of structure materials in the primary coolant circuit of this ABWR under rated-power operation were reported in this paper. (authors)

  12. Investigation of water films on fuel rods in boiling water reactors using neutron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lanthen, Jonas

    2006-09-15

    In a boiling water reactor, thin films of liquid water around the fuel rods play a very important role in cooling the fuel, and evaporation of the film can lead to fuel damage. If the thickness of the water film could be measured accurately the reactor operation could be both safer and more economical. In this thesis, the possibility to use neutron tomography, to study thin water films on fuel rods in an experimental nuclear fuel set-up, has been investigated. The main tool for this has been a computer simulation software. The simulations have shown that very thin water films, down to around 20 pm, can be seen on fuel rods in an experimental set-up using neutron tomography. The spatial resolution needed to obtain this result is around 300 pm. A suitable detector system for this kind of experiment would be plastic fiber scintillators combined with a CCD camera. As a neutron source it would be possible to use a D-D neutron generator, which generates neutrons with energies of 2.5 MeV. Using a neutron generator with a high enough neutron yield and a detector with high enough detection efficiency, a neutron tomography to measure thin water films should take no longer than 25 - 30 minutes.

  13. Co-boiling of NAPLs and water during thermal remediation: experimental and modeling study

    Science.gov (United States)

    Krol, M.; Zhao, C.; Mumford, K. G.; Sleep, B. E.; Kueper, B. H.

    2015-12-01

    The persistence of non-aqueous-phase liquids (NAPLs) in the subsurface has led to the development of several remediation technologies to address this environmental problem. One such group of technologies (in situ thermal treatment) uses heat to volatilize contaminants. Subsurface temperature measurements are often used to monitor progress and optimize contaminant removal. However, when NAPL and water are heated together, gas is created at a temperature lower than the boiling point of either liquid (co-boiling), which can affect temperature observations. To examine the effect of co-boiling on observed temperatures and NAPL mass removal, a series of heated laboratory experiments were performed using single and multi-component NAPLs. The experiments consisted of glass jars filled with a mixture of sand, water, and NAPL mixed to obtain an approximately uniform NAPL distribution within the jar. The experiments were heated from the outside and interior temperatures were measured using a thermocouple. The tests showed that local-scale temperature measurements are unreliable in indicating the end of co-boiling and may not indicate complete mass removal. This is because a well-defined co-boiling plateau does not exist when heating a multi-component NAPL and the temperature is dependent on the proximity of NAPL to the monitoring point. To further investigate temperature distributions and the potential to use gas production as a complementary indicator of NAPL removal, a 2D finite-difference mass transport model was used that incorporated heat transport, latent heat, phase change, and a multicomponent gas phase and used a macroscopic invasion percolation (MIP) model to simulate gas movement. Latent heat was calculated by multiplying specific latent heat, which is an intrinsic property of a substance, by the amount of liquid mass being vaporized and its incorporation into the model allowed for the simulation of co-boiling plateaus (during single component NAPL boiling). The

  14. Benchmark calculation for radioactivity inventory using MAXS library based on JENDL-4.0 and JEFF-3.0/A for decommissioning BWR plants

    Science.gov (United States)

    Tanaka, Ken-ichi

    2016-06-01

    We performed benchmark calculation for radioactivity activated in a Primary Containment Vessel (PCV) of a Boiling Water Reactor (BWR) by using MAXS library, which was developed by collapsing with neutron energy spectra in the PCV of the BWR. Radioactivities due to neutron irradiation were measured by using activation foil detector of Gold (Au) and Nickel (Ni) at thirty locations in the PCV. We performed activation calculations of the foils with SCALE5.1/ORIGEN-S code with irradiation conditions of each foil location as the benchmark calculation. We compared calculations and measurements to estimate an effectiveness of MAXS library.

  15. Benchmark calculation for radioactivity inventory using MAXS library based on JENDL-4.0 and JEFF-3.0/A for decommissioning BWR plants

    Directory of Open Access Journals (Sweden)

    Tanaka Ken-ichi

    2016-01-01

    Full Text Available We performed benchmark calculation for radioactivity activated in a Primary Containment Vessel (PCV of a Boiling Water Reactor (BWR by using MAXS library, which was developed by collapsing with neutron energy spectra in the PCV of the BWR. Radioactivities due to neutron irradiation were measured by using activation foil detector of Gold (Au and Nickel (Ni at thirty locations in the PCV. We performed activation calculations of the foils with SCALE5.1/ORIGEN-S code with irradiation conditions of each foil location as the benchmark calculation. We compared calculations and measurements to estimate an effectiveness of MAXS library.

  16. Determination of BWR Spent Nuclear Fuel Assembly Effective Thermal Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Matthew D. Hinds

    2001-10-17

    The purpose of this calculation is to provide an effective thermal conductivity for use in predicting peak cladding temperatures in boiling water reactor (BWR) fuel assemblies with 7x7,8x8, and 9x9 rod arrays. The first objective of this calculation is to describe the development and application of a finite element representation that predicts peak spent nuclear fuel temperatures for BWR assemblies. The second objective is to use the discrete representation to develop a basis for determining an effective thermal conductivity (described later) for a BWR assembly with srneared/homogeneous properties and to investigate the thermal behavior of a spent fuel assembly. The scope of this calculation is limited to a steady-state two-dimensional representation of the waste package interior region. This calculation is subject to procedure AP-3.124, Calculations (Ref. 27) and guided by the applicable technical work plan (Ref. 14). While these evaluations were originally developed for the thermal analysis of conceptual waste package designs emplaced in the potential repository at Yucca Mountain, the methodology applies to storage and transportation thermal analyses as well. Note that the waste package sketch in Attachment V depicts a preliminary design, and should not be interpreted otherwise.

  17. State of the art report on boiling water reactor stability (SOAR on BWRs)

    International Nuclear Information System (INIS)

    Starting issues of this SOAR are BWR plant descriptions including peculiarities relevant to stability and the manifestation of instabilities during operation. The report continues with the characterization of instabilities from various experiments, the features and the capabilities of relevant codes and models, BWR core instrumentation and control, the stability behaviour of operating BWR plants and the regulatory approach to the stability issue. The main conclusion is that the BWR stability should not be considered as a safety issue; however R and D in specific areas is recommended

  18. Boiling-up of liquid nitrogen jet in water

    Science.gov (United States)

    Nakoryakov, V. E.; Tsoi, A. N.; Mezentsev, I. V.; Meleshkin, A. V.

    2014-06-01

    The hydrodynamic processes occurring at injection of cryogenic liquid into water pool were studied experimentally. Processes accompanying the phase transitions were registered. Data testify the developing pressure burst with an amplitude sufficient for possible formation of gas hydrates when methane is injected as a cryogenic fluid.

  19. Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    Science.gov (United States)

    González-Robles, E.; Serrano-Purroy, D.; Sureda, R.; Casas, I.; de Pablo, J.

    2015-10-01

    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO2 spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%. One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAPc) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel.

  20. Validation of SCALE (SAS2H) Isotopic Predictions for BWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, O.W.

    1998-01-01

    Thirty spent fuel samples obtained from boiling-water-reactor (BWR) fuel pins have been modeled at Oak Ridge National Laboratory using the SAS2H sequence of the SCALE code system. The SAS2H sequence uses transport methods combined with the depletion and decay capabilities of the ORIGEN-S code to estimate the isotopic composition of fuel as a function of its burnup history. Results of these calculations are compared with chemical assay measurements of spent fuel inventories for each sample. Results show reasonable agreement between measured and predicted isotopic concentrations for important actinides; however, little data are available for most fission products considered to be important for spent fuel concerns (e.g., burnup credit, shielding, source-term calculations, etc.). This work is a follow-up to earlier works that studied the ability to predict spent fuel compositions in pressurized-water-reactor (PWR) fuel pins. Biases and uncertainties associated with BWR isotopic predictions are found to be larger than those of PWR calculations. Such behavior is expected, as the operation of a BWR is significantly more complex than that of a PWR plant, and in general the design of a BWR has a more heterogeneous configuration than that of a PWR. Nevertheless, this work shows that the simple models employed using SAS2H to represent such complexities result in agreement to within 5% (and often less than 1%) or less for most nuclides important for spent fuel applications. On the other hand, however, the set of fuel samples analyzed represent a small subset of the BWR fuel population, and results reported herein may not be representative of the full population of BWR spent fuel.

  1. Validation of SCALE (SAS2H) isotopic predictions for BWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, O.W.; DeHart, M.D.

    1998-09-01

    Thirty spent fuel samples obtained from boiling-water-reactor (BWR) fuel pins have been modeled at Oak Ridge National Laboratory using the SAS2H sequence of the SCALE code system. The SAS2H sequence uses transport methods combined with the depletion and decay capabilities of the ORIGEN-S code to estimate the isotopic composition of fuel as a function of its burnup history. Results of these calculations are compared with chemical assay measurements of spent fuel inventories for each sample. Results show reasonable agreement between measured and predicted isotopic concentrations for important actinides; however, little data are available for most fission products considered to be important for spent fuel concerns (e.g., burnup credit, shielding, source-term calculations, etc.). This work is a follow-up to earlier works that studied the ability to predict spent fuel compositions in pressurized-water-reactor (PWR) fuel pins. Biases and uncertainties associated with BWR isotopic predictions are found to be larger than those of PWR calculations. Such behavior is expected, as the operation of a BWR is significantly more complex than that of a PWR plant, and in general the design of a BWR has a more heterogeneous configuration than that of a PWR. Nevertheless, this work shows that the simple models employed using SAS2H to represent such complexities result in agreement to within 5% (and often less than 1%) or less for most nuclides important for spent fuel applications. On the other hand, however, the set of fuel samples analyzed represent a small subset of the BWR fuel population, and results reported herein may not be representative of the full population of BWR spent fuel.

  2. CHF Enhancement of SiC-water nanofluids in Pool Boiling Experiment

    International Nuclear Information System (INIS)

    SiC nanofluids were used for Critical heat flux(CHF) enhancement in the case of water pool boiling. Many kinds of nanofluids have been highlighted as a simple way to gain high thermal performance of fluids. Also, one of the ceramic particle, SiC is received attention these days as a promising material because of its relatively high thermal properties. In this study, SiC nanofluids were investigated to measure its thermal performance in water pool boiling experiment especially for CHF. The volume concentration of SiC nanofluids were 0.0001%, 0.001%, 0.01%. Several characteristic of SiC nanofluids, such as Zeta potential, and contact angle which could be affect on thermal performance of the fluids had been measured. The experiments were conducted under atmospheric pressure. The CHF has been enhanced upto 53.1% at volume concentration 0.01% SiC nanofluids

  3. Using largest Lyapunov exponent to confirm the intrinsic stability of boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gavilian-Moreno, Carlos [Iberdrola Generacion, S.A., Cofrentes Nuclear Power Plant, Project Engineering Department, Paraje le Plano S/N, Valencia (Spain); Espinosa-Paredes, Gilberto [Area de ingeniera en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Mexico city (Mexico)

    2016-04-15

    The aim of this paper is the study of instability state of boiling water reactors with a method based in largest Lyapunov exponents (LLEs). Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the LLE. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. This method was applied to a set of signals from several nuclear power plant (NPP) reactors under commercial operating conditions that experienced instabilities events, apparently each of a different nature. Laguna Verde and Forsmark NPPs with in-phase instabilities, and Cofrentes NPP with out-of-phases instability. This study presents the results of intrinsic instability in the boiling water reactors of three NPPs. In the analyzed cases the limit cycle was not reached, which implies that the point of equilibrium exerts influence and attraction on system evolution.

  4. On recriticality during reflooding of a degraded boiling water reactor core

    International Nuclear Information System (INIS)

    In-vessel core melt progression in Nordic BWRs has been studied as a part of the RAK-2 project within the Nordic Nuclear Safety Programme 1994-1997. A part of this study was the evaluation of possibility and consequences of recriticality in a re-flooded, degraded BWR core. The objective of the study was to examine, if a BWR core in a Nordic nuclear power plant can reach critical state in a severe accident, when the core is re-flooded with un-borated water from the emergency core cooling system and what is the possible power augmentation related to recriticality. The containment response to elevated power level and consequent enhanced steam production was evaluated. The first sub-task was to upgrade the existing neutronics/thermal hydraulic models to a level needed for a study of recriticality. Three different codes were applied for the task: RECRIT, SIMULATE-3K and APROS. Preliminary calculations were performed with the three codes. The results of present studies showed that reflodding of a partly control rod free core gives a recriticality power peak of a substantial amplitude, but with a short duration due to the Doppler feedback. The energy addition is small and contributes very little to heat-up of the fuel. However, with continued reflodding the fission power increases again and tend to stabilize on a level that can be ten per cent or more of the nominal power, the level being higher with higher reflooding flow rate. A scoping study on TVO BWR containment response to a presumed recriticality accident with a long-term power level being 20% of the nominal power was performed. The results indicated that containment venting system would not be sufficient to prevent containment overpressurization and containment failure would occur about 3-4 h after start of core reflooding. In the case of station blackout with operating ADS the present boron system would be sufficient to terminate the criticality even prior to containment failure, but in case of feedwater LOCA and

  5. Simulation and fault-detection of a pressure control servosystem in a Boiling Water Reactor

    International Nuclear Information System (INIS)

    This master thesis describes a Simnon model of a boiling water reactor to be used in simulating faults and disturbances. These faults and disturbanses will be detected by noise analysis. Some methods in identification and noise analysis are also described and are applied on some malfunctions of a servo. A Pascal program for recursive parameter identification was also written and tested. This program is to be used in an expert system for noise analysis on the nuclear power plant Barsebaeck. (author)

  6. Electrochemical response to hydrogen water chemistry at the J.A. FitzPatrick BWR

    International Nuclear Information System (INIS)

    It was the goal of the HWC campaign at the FitzPatrick BWR to determine the hydrogen injection rates required to mitigate IGSCC and IASCC in the reactor internals. Electrochemical sensors were installed at two elevations in one of the local power range monitors (LPRMs). In the summer of 1990 the HWC campaign was conducted. The feedwater hydrogen injection rate was varied from 12 to 90 standard cubic feet/minute (SCFM) and the ECPs from the sensors in the LPRM were measured. The relationship of hydrogen injection versus ECP was determined with specific emphasis on the injection rate required to decrease the ECP to -0.230 V(SHE) at each location in the LPRM. The LPRM lower position, equivalent to the outlet of the lower plenum, required three times more hydrogen injection than previously determined for the recirculation piping system to achieve -0.230 V(SHE). The upper position in the LPRM required far greater hydrogen injection rates to approach the protection potentials. Since completion of the FitzPatrick test, a program with similar objectives was conducted at an overseas BWR. It was found that in the high radiation environment of the core bypass newly designed platinum sensors performed quite adequately as reversible reference electrodes. These results provide a possible approach for protection of key reactor structurals with minimum hydrogen injection and low main steam line dose rates

  7. Development and Testing of CTF to Support Modeling of BWR Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Salko, Robert K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wysocki, Aaron [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Collins, Benjamin S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Godfrey, Andrew T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gosdin, Chris [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria [North Carolina State Univ., Raleigh, NC (United States)

    2016-01-29

    This milestone supports developing and assessing COBRA-TF (CTF) for the modeling of boiling water reactors (BWRs). This is achieved in three stages. First, a new preprocessor utility that is capable of handling BWR-specic design elements (e.g., channel boxes and large water rods) is developed. A previous milestone (L3:PHI.CTF.P12.01) led to the development of this preprocessor capability for single assembly models. This current milestone expands this utility so that it is applicable to multi-assembly BWR models that can be modeled in either serial or parallel. The second stage involves making necessary modications to CTF so that it can execute these new models. Specically, this means implementing an outer-iteration loop, specic to BWR models, that equalizes the pressure loss over all assemblies in the core (which are not connected due to the channel boxes) by adjusting inlet mass ow rate. A third stage involves assessing the standard convergence metrics that are used by CTF to determine when a simulation is steady-state. The nal stage has resulted in the implementation of new metrics in the code that give a better indication of how steady the solution is at convergence. This report summarizes these eorts and provides a demonstration of CTF's BWR-modeling capabilities. CASL-U-2016-1030-000

  8. Technology, safety and costs of decommissioning a reference boiling water reactor power station: Comparison of two decommissioning cost estimates developed for the same commercial nuclear reactor power station

    International Nuclear Information System (INIS)

    This study presents the results of a comparison of a previous decommissioning cost study by Pacific Northwest Laboratory (PNL) and a recent decommissioning cost study of TLG Engineering, Inc., for the same commercial nuclear power reactor station. The purpose of this comparative analysis on the same plant is to determine the reasons why subsequent estimates for similar plants by others were significantly higher in cost and external occupational radiation exposure (ORE) than the PNL study. The primary purpose of the original study by PNL (NUREG/CR-0672) was to provide information on the available technology, the safety considerations, and the probable costs and ORE for the decommissioning of a large boiling water reactor (BWR) power station at the end of its operating life. This information was intended for use as background data and bases in the modification of existing regulations and in the development of new regulations pertaining to decommissioning activities. It was also intended for use by utilities in planning for the decommissioning of their nuclear power stations. The TLG study, initiated in 1987 and completed in 1989, was for the same plant, Washington Public Supply System's Unit 2 (WNP-2), that PNL used as its reference plant in its 1980 decommissioning study. Areas of agreement and disagreement are identified, and reasons for the areas of disagreement are discussed. 31 refs., 3 figs., 22 tabs

  9. Comparison of depletion results for a boiling water reactor fuel element with CASMO and SCALE 6.1 (TRITON/NEWT)

    Energy Technology Data Exchange (ETDEWEB)

    Mesado, C.; Morera, D.; Miro, R.; Barrachina, T.; Verdu, G., E-mail: cmesado@isirym.upv.es, E-mail: dmorera@isirym.upv.es, E-mail: rmiro@isirym.upv.es, E-mail: tbarrachina@isirym.upv.es, E-mail: gverdu@isirym.upv.es [Universitat Politecnica de Valencia (UPV), Valencia (Spain). Institute for the Industrial, Radiophysical and Environmental Safety; Concejal, Alberto, E-mail: acbe@iberdrola.es [Iberdrola Ingenieria y Construcion, S.A.U, Madrid (Spain); Soler, Amparo, E-mail: asoler@iberdrola.es [SEA Propulsion S. L., Madrid (Spain); Melara, Jose, E-mail: j.melara@iberdrola.es [Iberdrola Generacion Nuclear, Madrid (Spain)

    2013-07-01

    In this work, the results of depletion calculations with CASMO and SCALE 6.1 (TRITON) are compared. To achieve it, a region of a Boiling Water Reactor (BWR) fuel element is modeled, using both codes. To take into account different operating conditions, the simulations are repeated with different void fraction, ranging from null void fraction to a void fraction closed to one. Special care was used to keep in mind that the homogenization of the materials and the two group approach was the same in both codes. Additionally, KENO-VI and MCDANCOFF modules are used. The k-effective calculated by KENO-VI is used to ensure that the starting point was correct and MCDANCOFF module is used to calculate the Dancoff factors in order to improve the model accuracy. To validate the whole process, a comparison of k{sub eff}, and cross-sections collapsed and homogenized is shown. The results show a very good agreement, with an average error around the 1.75%. Furthermore, an automatic process for translating CASMO data to SCALE input decks was developed. The reason for the translation is the fact that SCALE's TRITON module is a new code very powerful and continuously being developed. Thus, great advantage can be taken from the current and future SCALE features. This is hoped to produce more realistic models, and hence, increase the accuracy of neutronic libraries. (author)

  10. Liquid-cooled nuclear reactor, especially a boiling water reactor

    International Nuclear Information System (INIS)

    A nuclear reactor with a special arrangement of fuel rods in the core is designed. Each fuel element has its shaft which is made of sheets, has the same cross section as the fuel element and protrudes at least the length of the control rod above the reactor core. Made of a zirconium alloy in the core area and of stainless steel above it, the shaft is equipped with channels for sliding the rods in and out and serves to spatially secure the position of the rods. Coolant flow is provided by the chimney effect. The shaft can conveniently enclose the control rod drive. It can also serve to bear the water separator. Moreover, it can constitute a part of the casing which surrounds the fuel rods and keeps the fuel in an intimate contact with the coolant; the other part of this casing is constituted by inserted sheets which can conveniently have the shape of angles. The walls of neighboring shafts form a compartment accommodating a neutron absorber plate. (M.D.). 11 figs

  11. Analysis of mixed oxide fuel behavior under reduced moderation boiling water reactor conditions with FRAPCON-EP

    International Nuclear Information System (INIS)

    FRAPCON-EP models have been extended to better represent mixed oxide steady state fuel behavior under the Reduced moderation Boiling Water Reactor (RBWR) conditions. RBWR fuel is designed to operate with higher peak burnup, linear heat rate, and fast neutron fluence compared to typical LWRs. Therefore, assessment of fuel behavior is a critical task for its core performance. The fuel pellet radial power profile is calculated based on plutonium radial variation and edge peaking due to resonance absorption of neutrons. It is found that the edge power peak is much smaller than in typical LWRs due to the harder neutron spectrum. The oxygen potential directly affects fuel thermal conductivity and fission gas diffusivity. Plutonium migration towards the high temperature may potentially lead to power peaks at the central radial locations. The selected fuel thermal conductivity model for mixed oxides accounts for the oxygen-to-metal ratio variation, burnup effects due to fission product precipitates, radiation damage and porosity. In addition, Zircaloy-2 cladding corrosion/hydrogen pickup models in FRAPCON-3 have been updated to reflect accelerated corrosion/hydriding, due mainly to secondary particle precipitate dissolution. Based on experimental data, acceleration is assumed to occur above 10+26 n/m2 of fast neutron fluence (>1 MeV). Analysis of RBWR fuel was made together with neutron dose calculation using the reference power history. The neutron transport analysis shows that RBWR fuel fast fluence-to-volumetric heat generation ratio is approximately 80 % more than in typical LWRs. Initially, an analysis was performed with traditional Zircaloy-2 and reference mixed oxide fuel pellet with 95 % theoretical density. It was found that accelerated corrosion/hydriding may result at peak burnups as low as 30 MWd/kg. Furthermore, excessive fuel swelling may result in significant cladding strain and axial irradiation growth, which may lead to creep induced fracture as well as

  12. Approaches to enhancing early hydrogen water chemistry for IGSCC mitigation during BWR startups

    International Nuclear Information System (INIS)

    Boiling Water Reactors (BWRs) have been injecting hydrogen into the reactor coolant via the feedwater system for the purpose of controlling primary system intergranular stress corrosion cracking (IGSCC) for over 30 years. However, plant design limitations prevent hydrogen injection until there is sufficient steam flow to support operation of the Steam Jet Air Ejector (SJAE) system, which typically occurs at greater than 5% power. The time from when the reactor coolant temperature is heated up to 200°F (93.3°C) until hydrogen injection starts is counted as time when IGSCC is not mitigated. Laboratory data show that crack growth rates peak at intermediate temperatures. To address this gap, Early Hydrogen Water Chemistry (EHWC) was developed by EPRI/BWRVIP for plants that use GE Hitachi NobleChem™ to lower the electrochemical corrosion potential (ECP) during early startup. A demonstration of EHWC performed at Peach Bottom 3 in October 2011 showed that sufficient hydrogen could be injected, while condenser vacuum was being maintained using the Mechanical Vacuum Pump (MVP), before steam flow was sufficient to place the SJAE system in service, to lower the ECP to a level indicative of IGSCC mitigation. While this demonstration successfully showed that sufficient hydrogen can be injected safely to mitigate IGSCC during early startup when temperature was between 360°F and 460°F (182 – 238°C), a reactor coolant hydrogen:oxidants molar ratio >2 was not achieved during the initial heatup when the temperature reached 200°F (93.3°C). This paper provides the results of a BWRVIP investigation of options to mitigate IGSCC at all temperatures above 200°F (93.3°C) for BWRs that apply noble metals. Options investigated for plants that have applied noble metal include 1) plant capabilities to achieve conditions at which IGSCC can be mitigated from 200°F (93.3°C) and above through the use of hydrogen alone and 2) the use of other agents, including hydrazine or methanol

  13. BWR and PWR chemistry operating experience and perspectives

    International Nuclear Information System (INIS)

    It is well recognized that proper control of water chemistry plays a critical role in ensuring the safe and reliable operation of Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). State-of-the-art water chemistry programs reduce general and localized corrosion of reactor coolant system, steam cycle equipment, and fuel cladding materials; ensure continued integrity of cycle components; and reduce radiation fields. Once a particular nuclear plant component has been installed or plant system constructed, proper water chemistry provides a global tool to mitigate materials degradation problems, thereby reducing the need for costly repairs or replacements. Recognizing the importance of proper chemistry control and the value in understanding the relationship between chemistry guidance and actual operating experience, EPRI continues to collect, monitor, and evaluate operating data from BWRs and PWRs around the world. More than 900 cycles of valuable BWR and PWR operating chemistry data has been collected, including online, startup and shutdown chemistry data over more than 10 years (> 20 years for BWRs). This paper will provide an overview of current trends in BWR and PWR chemistry, focusing on plants in the U.S.. Important chemistry parameters will be highlighted and discussed in the context of the EPRI Water Chemistry Guidelines requirements (i.e., those parameters considered to be of key importance as related to the major goals identified in the EPRI Guidelines: materials integrity; fuel integrity; and minimizing plant radiation fields). Perspectives will be provided in light of recent industry initiatives and changes in the EPRI BWR and PWR Water Chemistry Guidelines. (author)

  14. Report on the BWR owners group radiation protection/ALARA Committee

    International Nuclear Information System (INIS)

    Radiation protection programs at U.S. boiling water reactor (BWR) stations have evolved during the 1980s and early 1990s from a regulatory adherence-based endeavor to a proactive, risk-based radiation protection and prevention mission. The objectives are no longer to merely monitor and document exposure to radiation and radioactive materials. The focus of the current programs is the optimization of radiation protection of occupational workers consistent with the purpose of producing cost-effective electric power. The newly revised 10 CFR 20 defines the term ALARA (as low as reasonably achievable) to take into account the state of technology, the economics of improvements in relation to the state of the technology, and the benefits to the public health and safety. The BWR Owners Group (BWROG) initially formed the Radiation Protection/ALARA Committee in January 1990 to evaluate methods of reducing occupational radiation exposure during refueling outages. Currently, twenty U.S. BWR owner/operators (representing 36 of the operational 37 domestic BWR units), as well as three foreign BWR operators (associate members), have broadened the scope to promote information exchange between BWR radiation protection professionals and develop good practices which will affect optimization of their radiation protection programs. In search of excellence and the challenge of becoming open-quotes World Classclose quotes performers in radiation protection, the BWROG Radiation Protection/ALARA Committee has recently accepted a role in assisting the member utilities in improving radiation protection performance in a cost-effective manner. This paper will summarize the recent activities of this Committee undertaken to execute their role of exchanging information in pursuit of optimizing the improvement of their collective radiation protection performance

  15. Potential uses of high gradient magnetic filtration for high-temperature water purification in boiling water reactors

    International Nuclear Information System (INIS)

    Studies of various high-temperature filter devices indicate a potentially positive impact for high gradient magnetic filtration on boiling water reactor radiation level reduction. Test results on in-plant water composition and impurity crystallography are presented for several typical boiling water reactors (BWRs) on plant streams where high-temperature filtration may be particularly beneficial. An experimental model on the removal of red iron oxide (hematite) from simulated reactor water with a high gradient magnetic filter is presented, as well as the scale-up parameters used to predict the filtration efficiency on various high temperature, in-plant streams. Numerical examples are given to illustrate the crud removal potential of high gradient magnetic filters installed at alternative stream locations under typical, steady-state, plant operating conditions

  16. Flex concept for US-A BWR extended loss of AC power events

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Aoyagi, Y.; Kataoka, K. [Toshiba Corporation, Kawasaki, Kanagawa (Japan); Thomas, S.; Mookhoek, B., E-mail: jim.powers@toshiba.com [Nuclear Innovation North America, Lake Jackson, Texas (United States)

    2015-09-15

    The US-Advanced Boiling Water Reactor (US-A BWR), certified by the US NRC, is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (Stp 3 and 4) Combined License Application (Cola) and incorporates numerous design and technology enhancements for improved safety performance. Nuclear Innovation North America (NINA) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The Stp 3 and 4 project has finished the US NRC technical review of the Cola, and the final safety evaluation report (FSER) is scheduled to be issued by the US NRC in 2015. Following the accident at the Fukushima Dai-ichi plant, the US-A BWR was reviewed for Beyond Design Basis Event (BDBE) safety using industry and regulatory guidance for US NRC Order EA-12-049 Order Modifying Licenses with Regard to Requirements for Mitigation of Beyond Design Basis External Events (BDBEE). By virtue of the design approach, the US-A BWR is capable of providing an indefinite coping period for a station blackout. The use of installed systems with extended coping times is a significant advantage of the US-A BWR compared to most of the plants currently operating in the U.S. In addition, the Stp 3 and 4 design incorporates enhancements consistent with the current US industry Diverse and Flexible Coping Strategies (Flex) initiative. The final technical topic requiring review by the US NRC Advisory Committee on Reactor Safeguards was the Flex Integrated Plan submitted by NINA, and this review was successfully completed. This paper summarizes the progress of the US-A BWR in licensing the Flex Integrated Plan for the project, and describes the technology and features of the US-A BWR design that contribute to safety post-Fukushima. It also provides an informational comparison of the design capabilities of the US-A BWR for extreme external events, and relates these capabilities to re

  17. Flex concept for US-A BWR extended loss of AC power events

    International Nuclear Information System (INIS)

    The US-Advanced Boiling Water Reactor (US-A BWR), certified by the US NRC, is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (Stp 3 and 4) Combined License Application (Cola) and incorporates numerous design and technology enhancements for improved safety performance. Nuclear Innovation North America (NINA) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The Stp 3 and 4 project has finished the US NRC technical review of the Cola, and the final safety evaluation report (FSER) is scheduled to be issued by the US NRC in 2015. Following the accident at the Fukushima Dai-ichi plant, the US-A BWR was reviewed for Beyond Design Basis Event (BDBE) safety using industry and regulatory guidance for US NRC Order EA-12-049 Order Modifying Licenses with Regard to Requirements for Mitigation of Beyond Design Basis External Events (BDBEE). By virtue of the design approach, the US-A BWR is capable of providing an indefinite coping period for a station blackout. The use of installed systems with extended coping times is a significant advantage of the US-A BWR compared to most of the plants currently operating in the U.S. In addition, the Stp 3 and 4 design incorporates enhancements consistent with the current US industry Diverse and Flexible Coping Strategies (Flex) initiative. The final technical topic requiring review by the US NRC Advisory Committee on Reactor Safeguards was the Flex Integrated Plan submitted by NINA, and this review was successfully completed. This paper summarizes the progress of the US-A BWR in licensing the Flex Integrated Plan for the project, and describes the technology and features of the US-A BWR design that contribute to safety post-Fukushima. It also provides an informational comparison of the design capabilities of the US-A BWR for extreme external events, and relates these capabilities to re

  18. The design and use of proficiency based BWR reactor maintenance and refuelling training mockups

    International Nuclear Information System (INIS)

    The purpose of this paper is to describe the ABB experience with the design and use of boiling water reactor training facilities. The training programs were developed and implemented in cooperation with the nuclear utilities. ABB operates two facilities, the ABB ATOM Light Water Reactor Service Center located in Vasteras, Sweden, and the ABB Combustion Engineering Nuclear Operations BWR Training Center located in Chattanooga, Tennessee, USA. The focus of the training centers are reactor maintenance and refueling activities plus the capability to develop and qualify tools, procedures and repair techniques

  19. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    Energy Technology Data Exchange (ETDEWEB)

    Yu, W.; France, D. M.; Routbort, J. L. (Energy Systems)

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  20. Predictions by the proper orthogonal decomposition reduced order methodology regarding non-linear BWR stability

    International Nuclear Information System (INIS)

    Unexpected non-linear boiling water reactor (BWR) instability events in various plants, e.g. LaSalle II in 1988 and Oskarshamn II in 1990 amongst others, emphasize the major safety relevance and the existence of parameter regions with unstable behavior. A detailed description of the complete dynamical non-linear behavior is of paramount importance for BWR operation. An extension of state-of-the-art methodology towards a more general stability description, also applicable in the non-linear region, could lead to a deeper understanding of non-linear BWR stability phenomena. With the intention of a full non-linear stability analysis of the two-phase BWR system, the present paper aims at a general non-linear methodology capable to achieve reliable and numerical stable reduced order models (ROMs), representing the dynamical behavior of an original system based on a small number of transients. Model-specific options and aspects of the proposed methodology are focused on and illustrated by means of a strongly non-linear dynamical system showing complex oscillating behavior. Prediction capability of the proposed methodology is also addressed. (orig.)

  1. Oxidation Effect on Pool Boiling Heat Transfer in Atmospheric Saturated Water

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hong Hyun; Jeong, Uiju; Seo, Gwang Hyeok; Jeun, Gyoodong; Kim, Sung Joong [Hanyang Univ., Seoul (Korea, Republic of)

    2014-10-15

    During the hypothesized severe accidents, however, the modified nature of the oxidized outer surface of RPV may act as a significant heat transfer variable to achieve In-Vessel Retention through External Reactor Vessel Cooling (IVR-ERVC) strategy, which is the one of important mitigation strategies of severe accident to delay occurrence of critical heat flux (CHF). As well understood, the CHF is mainly affected by the two distinctive conditions classified to thermal hydraulic behavior of fluid system and surface characteristics. In this regard, a CHF test considering oxidation effect on the pool boiling heat transfer of the RPV outer surface has been proposed to evaluate realistic thermal margin of IVR-ERVC strategy. In this study, pool boiling heat transfer experiment was conducted under the condition of atmospheric saturated water. Oxidized surface characteristics were quantitatively evaluated with measurement of contact angle and roughness. In this study, oxide layer formation on the heated surface was investigated and experimentally simulated to find out its effect on the pool boiling CHF. Several SS316L substrates were oxidized in the corrosive environment under the condition of high temperature with different oxidation periods. Local pitting corrosion was observed on the heating surface in 5 days of short-term oxidation but a fully oxidized surface with somewhat uniform thickness, 1. Pool boiling heat transfer tests with the bare and oxidized heaters were conducted and major findings are summarized as follows: 1. Wettability in terms of the receding angle of the oxidized surface is enhanced regardless of the oxidation period. 2. Average roughness between the oxidized surfaces is almost the same in the range of nano-scale. 3. Effect of wettability and surface roughness on the CHF was negligible in the locally oxidized surface, which may be attributed to the presence of the disconnected porous channel. Unlike the local oxidation, fully oxidized surface shows

  2. An assessment of BWR [boiling water reactor] Mark III containment challenges, failure modes, and potential improvements in performance

    International Nuclear Information System (INIS)

    This report describes risk-significant challenges posed to Mark III containment systems by severe accidents as identified for Grand Gulf. Design similarities and differences between the Mark III plants that are important to containment performance are summarized. The accident sequences responsible for the challenges and the postulated containment failure modes associated with each challenge are identified and described. Improvements are discussed that have the potential either to prevent or delay containment failure, or to mitigate the offsite consequences of a fission product release. For each of these potential improvements, a qualitative analysis is provided. A limited quantitative risk analysis is provided for selected potential improvements. 21 refs., 5 figs., 46 tabs

  3. Simulation of the aspersion system of the core low pressure (LPCS) for a boiling water reactor (BWR) based on RELAP

    International Nuclear Information System (INIS)

    The present work presents the modeling and simulation of the aspersion system to low pressure of reactor of the nuclear power plant of Laguna Verde using the nuclear code RELAP/SCDAP. The objective of the emergency systems inside a nuclear reactor is the cooling of the core, nor caring the performance of any other emergency system in the case of an accident design base for coolant loss. To obtain a simulation of the system is necessary to have a model based on their main components, pipes, pumps, valves, etc. This article describes the model for the simulation of the main line and the test line for the HPCS. At the moment we have the simulation of the reactor vessel and their systems associated to the nuclear power plant of Laguna Verde, this work will allow to associate the emergency system model LPCS to the vessel model. The simulation of the vessel and the emergency systems will allow knowing the behavior of the reactor in the stage of the coolant loos, giving the possibility to analyze diverse scenarios. The general model will provide an auxiliary tool for the training in classroom and at distance in the operation of nuclear power plants. (Author)

  4. A meta-analysis of public compliance to boil water advisories.

    Science.gov (United States)

    Vedachalam, Sridhar; Spotte-Smith, Kyra T; Riha, Susan J

    2016-05-01

    Water utilities that generally provide continuous and reliable service to their customers may sometimes issue an advisory notification when service is interrupted or water quality is compromised. When the contamination is biological, utilities or the local public health agencies issue a 'boil water advisory' (BWA). The public health effectiveness of a BWA depends strongly on an implicit public understanding and compliance. In this study, a meta-analysis of 11 articles that investigated public compliance to BWA notifications was conducted. Awareness of BWA was moderately high, except in situations involving extreme weather. Reported rates of compliance were generally high, but when rate of awareness and non-compliant behavior such as brushing teeth were factored in, the median effective compliance rate was found to be around 68 percent. This does not include situations where people forgot to boil water for some part of the duration, or ingested contaminated water after the BWA was issued but before they became aware of the notification. The two-thirds compliance rate is thus an over-estimate. Results further suggest that timeliness of receipt, content of the advisory, and number of sources reporting the advisory have a significant impact on public response and compliance. This analysis points to improvements in the phrasing and content of BWA notices that could result in greater compliance, and recommends the use of a standard protocol to limit recall bias and capture the public response accurately. PMID:26938499

  5. Oscillate Boiling

    CERN Document Server

    Li, Fenfang; Nguyen, Dang Minh; Ohl, Claus-Dieter

    2016-01-01

    We report about an intriguing boiling regime occurring for small heaters embedded on the boundary in subcooled water. The microheater is realized by focusing a continuous wave laser beam to about $10\\,\\mu$m in diameter onto a 165\\,nm-thick layer of gold, which is submerged in water. After an initial vaporous explosion a single bubble oscillates continuously and repeatably at several $100\\,$kHz. The microbubble's oscillations are accompanied with bubble pinch-off leading to a stream of gaseous bubbles into the subcooled water. The self-driven bubble oscillation is explained with a thermally kicked oscillator caused by the non-spherical collapses and by surface pinning. Additionally, Marangoni stresses induce a recirculating streaming flow which transports cold liquid towards the microheater reducing diffusion of heat along the substrate and therefore stabilizing the phenomenon to many million cycles. We speculate that this oscillate boiling regime may allow to overcome the heat transfer thresholds observed dur...

  6. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian J [ORNL; Marshall, William BJ J [ORNL; Martinez-Gonzalez, Jesus S [ORNL

    2015-05-01

    Oak Ridge National Laboratory (ORNL) and the US Nuclear Regulatory Commission (NRC) have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation systems (often referred to as casks) and spent fuel pools (SFPs). This work is divided into two main phases. The first phase investigated the applicability of peak reactivity methods currently used in SFPs to transportation and storage casks and the validation of reactivity calculations and spent fuel compositions within these methods. The second phase focuses on extending BUC beyond peak reactivity. This paper documents the analysis of the effects of control blade insertion history, and moderator density and burnup axial profiles for extended BWR BUC.

  7. Experimental Research on Water Boiling Heat Transfer on Horizontal Copper Rod Surface at Sub-Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Li-Hua Yu

    2015-09-01

    Full Text Available In recent years, water (R718 as a kind of natural refrigerant—which is environmentally-friendly, safe and cheap—has been reconsidered by scholars. The systems of using water as the refrigerant, such as water vapor compression refrigeration and heat pump systems run at sub-atmospheric pressure. So, the research on water boiling heat transfer at sub-atmospheric pressure has been an important issue. There are many research papers on the evaporation of water, but there is a lack of data on the characteristics at sub-atmospheric pressures, especially lower than 3 kPa (the saturation temperature is 24 °C. In this paper, the experimental research on water boiling heat transfer on a horizontal copper rod surface at 1.8–3.3 kPa is presented. Regression equations of the boiling heat transfer coefficient are obtained based on the experimental data, which are convenient for practical application.

  8. Instrumentation availability during severe accidents for a boiling water reactor with a Mark I containment

    International Nuclear Information System (INIS)

    In support of the US Nuclear Regulatory Commission Accident Management Research Program, the availability of instruments to supply accident management information during a broad range of severe accidents is evaluated for a Boiling Water Reactor with a Mark I containment. Results from this evaluation include: (1) the identification of plant conditions that would impact instrument performance and information needs during severe accidents; (2) the definition of envelopes of parameters that would be important in assessing the performance of plant instrumentation for a broad range of severe accident sequences; and (3) assessment of the availability of plant instrumentation during severe accidents

  9. Calculations of severe accident progression in the General Electric Simplified Boiling Water Reactor

    International Nuclear Information System (INIS)

    General Electric is designing a new nuclear power plant: the Simplified Boiling Water Reactor (SBWR). The SBWR is a passive plant in which the core cooling and decay heat removal safety systems are driven by gravity. To model the plant response to severe accidents, MAAP-SBWR, an advanced version of the Modular Accident Analysis Program (MAAP), has been developed. The main feature of the new code is a flexible containment model. The challenges in modeling the SBWR, the code structure and models, and a sample application to the SBWR are discussed

  10. The effects of aging on Boiling Water Reactor core isolation cooling system

    International Nuclear Information System (INIS)

    A study was performed to assess the effects of aging on the Reactor Core Isolation Cooling system in commercial Boiling Water Reactors. This study is part of the Nuclear Plant Aging Research program sponsored by the US Nuclear Regulatory Commission. The failure data, from national databases, as well as plant specific data were reviewed and analyzed to understand the effects of aging on the RCIC system. This analysis identified important components that should receive the highest priority in terms of aging management. The aging characterization provided information on the effects of aging on component failure frequency, failure modes, and failure causes

  11. Burnout in the boiling of water and freon-113 on tubes with annular fins

    International Nuclear Information System (INIS)

    This paper presents the results of numerical calculations of burnout heat flux associated with the boiling of Freon-113 and water on an annular fin of constant thickness which have been approximated by simple analytical relations. These are used to calculate the critical burnout parameters of tubes with an annular fin assembly. The calculated data may be used for the analysis of tubes with an annular fin assembly over a wide range of variation of the thermophysical properties of the material and geometrical parameters of the fin assembly

  12. Production induced boiling and cold water entry in the Cerro Prieto geothermal reservoir indicated by chemical and physical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Grant, M.A. (DSIR, Wellington, New Zealand); Truesdell, A.H.; Manon, A.

    1981-01-01

    Chemical and physical data suggest that the relatively shallow western part of the Cerro Prieto reservoir is bounded below by low permeability rocks, and above and at the sides by an interface with cooler water. There is no continuous permeability barrier around or immediately above the reservoir. Permeability within the reservoir is dominantly intergranular. Mixture with cooler water rather than boiling is the dominant cooling process in the natural state, and production causes displacement of hot water by cooler water, not by vapor. Local boiling occurs near most wells in response to pressure decreases, but no general vapor zone has formed.

  13. A method of simulating voids in experimental studies of boiling water reactors

    International Nuclear Information System (INIS)

    The coolant density in boiling water reactors may vary from 3 at pressures up to 1000 p.s.i. In order to study the effect of reduced water density on reactivity in unpressurized experimental systems, the effective water density is reduced by packing small beads of highly expanded polystyrene into the fuel clusters and flooding the interstices with water. Coolant densities of from 0.4 to 0.6 gm/cm3 may be produced with the introduction of only about 0.4 gm/cm3 of non-hydrogeneous material. This memorandum describes the production, properties and handling of polystyrene beads and the tests carried out to establish the validity of the technique. (author)

  14. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - models and correlations

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.; Mallen, A.N.; Neymotin, L.Y.

    1998-03-01

    This document describes the major modifications and improvements made to the modeling of the RAMONA-3B/MOD0 code since 1981, when the code description and assessment report was completed. The new version of the code is RAMONA-4B. RAMONA-4B is a systems transient code for application to different versions of Boiling Water Reactors (BWR) such as the current BWR, the Advanced Boiling Water Reactor (ABWR), and the Simplified Boiling Water Reactor (SBWR). This code uses a three-dimensional neutron kinetics model coupled with a multichannel, non-equilibrium, drift-flux, two-phase flow formulation of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients and instability issues. Chapter 1 is an overview of the code`s capabilities and limitations; Chapter 2 discusses the neutron kinetics modeling and the implementation of reactivity edits. Chapter 3 is an overview of the heat conduction calculations. Chapter 4 presents modifications to the thermal-hydraulics model of the vessel, recirculation loop, steam separators, boron transport, and SBWR specific components. Chapter 5 describes modeling of the plant control and safety systems. Chapter 6 presents and modeling of Balance of Plant (BOP). Chapter 7 describes the mechanistic containment model in the code. The content of this report is complementary to the RAMONA-3B code description and assessment document. 53 refs., 81 figs., 13 tabs.

  15. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - models and correlations

    International Nuclear Information System (INIS)

    This document describes the major modifications and improvements made to the modeling of the RAMONA-3B/MOD0 code since 1981, when the code description and assessment report was completed. The new version of the code is RAMONA-4B. RAMONA-4B is a systems transient code for application to different versions of Boiling Water Reactors (BWR) such as the current BWR, the Advanced Boiling Water Reactor (ABWR), and the Simplified Boiling Water Reactor (SBWR). This code uses a three-dimensional neutron kinetics model coupled with a multichannel, non-equilibrium, drift-flux, two-phase flow formulation of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients and instability issues. Chapter 1 is an overview of the code's capabilities and limitations; Chapter 2 discusses the neutron kinetics modeling and the implementation of reactivity edits. Chapter 3 is an overview of the heat conduction calculations. Chapter 4 presents modifications to the thermal-hydraulics model of the vessel, recirculation loop, steam separators, boron transport, and SBWR specific components. Chapter 5 describes modeling of the plant control and safety systems. Chapter 6 presents and modeling of Balance of Plant (BOP). Chapter 7 describes the mechanistic containment model in the code. The content of this report is complementary to the RAMONA-3B code description and assessment document. 53 refs., 81 figs., 13 tabs

  16. Conceptual design and safety characteristics of the natural circulation boiling water reactor HSBWR-600

    International Nuclear Information System (INIS)

    The HSBWR (Hitachi Small BWR) with a rated capacity of 600 MW electricity has been conceptually designed. The components and systems are simplified by adopting natural circulation and the passive ECCS, and eliminating steam separators. The volume of the reactor building is about 50% of that for current BWRs with the same rated capacity, and the construction period is 32-36 months until commercial operation. The major safety systems are: (1) an accumulated water injection system as an ECCS; (2) an outer pool, which stands outside of the steel primary containment vessel, as a long term cooling system after LOCAs; and (3) a steam driven reactor core isolation cooling system for high pressure water injection. The grace period is one day for core cooling and 3 days for the containment vessel heat removal. The infinite grace period for core cooling is also available as an option. LOCA analysis showed that the core will always be covered by a two-phase mixture, resulting in no core heat-up. The fundamental experiments and analyses showed sufficient capability of the outer pool for long term heat removal. (author). 12 refs, 17 figs, 3 tabs

  17. Water level instrumentation simulation

    International Nuclear Information System (INIS)

    Through simulation, evaluations of system performance can be made to increase efficiency, reduce costs, enhance safety and provide effective training. A full function simulation for evaluating water level measurement requires modeling the physical process, the process instrumentation response and where appropriate, the human input/response. This paper examines a full function application simulating the primary system water level in a Boiling Water Reactor (BWR). The physical processes associated with BWR vessel level response are modeled with the Modular Accident Analysis Program (MAAP). The MAAP code is used as the basis for providing primary system and containment thermal-hydraulic response to a compendium of expected plant transients. The BWR vessel level instruments is modeled with the FAI developed Instrumentation PACkage (IPAC). With the thermal-hydraulic input from MAAP, the IPAC software models the various phenomena associated with water level measurements including the effects due to: (1) instrument channel calibration, (2) instrument drift and (3) containment (drywell) environmental effects. This paper discusses the IPAC models (instrumentation components) along with the factors which influence the mass balance of water in the downcomer region. A comparison of the BWR vessel water level complete simulation package to data from a simulated BWR plant transient culminates the discussion of this paper. The full function simulation package presented in this paper, enables a software-based representation of the BWR vessel level to be evaluated under various hypothetical plant conditions including normal, accident, and severe accident events. (author)

  18. Effect of subcooling and wall thickness on pool boiling from downward-facing curved surfaces in water

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Glebov, A.G. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-09-01

    Quenching experiments were performed to investigate the effects of water subcooling and wall thickness on pool boiling from a downward-facing curved surface. Experiments used three copper sections of the same diameter (50.8 mm) and surface radius (148 mm), but different thickness (12.8, 20 and 30 mm). Local and average pool boiling curves were obtained at saturation and 5 K, 10 K, and 14 K subcooling. Water subcooling increased the maximum heat flux, but decreased the corresponding wall superheat. The minimum film boiling heat flux and the corresponding wall superheat, however, increased with increased subcooling. The maximum and minimum film boiling heat fluxes were independent of wall thickness above 20 mm and Biot Number > 0.8, indicating that boiling curves for the 20 and 30 thick sections were representative of quasi steady-state, but not those for the 12.8 mm thick section. When compared with that for a flat surface section of the same thickness, the data for the 12.8 mm thick section showed significant increases in both the maximum heat flux (from 0.21 to 0.41 MW/m{sup 2}) and the minimum film boiling heat flux (from 2 to 13 kW/m{sup 2}) and about 11.5 K and 60 K increase in the corresponding wall superheats, respectively.

  19. Development of a dynamic model of a BWR nuclear power plant

    International Nuclear Information System (INIS)

    A dynamic model of a nuclear power plant, including a boiling water reactor, high- and low-pressure turbines, moisture separator, reheater, condenser, feedwater heaters and feedwater pump, was developed. The model is one-dimensional except for the nuclear part of the reactor, which is based on the point kinetics equation, and the condenser model and feedwater pump model. It has been used to study different transients occuring during normal operating conditions and for evaluating the control systems of a BWR nuclear power plant. Particular emphasis was laid on the reactor pressure control system and the recirculation flow control system. (author)

  20. Flow boiling heat transfer of ammonia/water mixture in a plate heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Taboas, Francisco [Universidad de Cordoba, Campus de Rabanales, Edificio Leonardo da Vinci, 14014 Cordoba (Spain); Valles, Manel; Bourouis, Mahmoud; Coronas, Alberto [CREVER - Universitat Rovira i Virgili, Av. Paisos Catalans No. 26, 43007 Tarragona (Spain)

    2010-06-15

    The objective of this work is to contribute to the development of plate heat exchangers as desorbers for ammonia/water absorption refrigeration machines driven by waste heat or solar energy. In this study, saturated flow boiling heat transfer and the associated frictional pressure drop of ammonia/water mixture flowing in a vertical plate heat exchanger is experimentally investigated. Experimental data is presented to show the effects of heat flux between 20 and 50 kW m{sup -2}, mass flux between 70 and 140 kg m{sup -2} s{sup -1}, mean vapour quality from 0.0 to 0.22 and pressure between 7 and 15 bar, for ammonia concentration between 0.42 and 0.62. The results show that for the selected operating conditions, the boiling heat transfer coefficient is highly dependent on the mass flux, whereas the influence of heat flux and pressure are negligible mainly at higher vapour qualities. The pressure drop increases with increasing mass flux and quality. However, the pressure drop is independent of the imposed heat flux. (author)

  1. Evaluation of the Safety Systems in the Next Generation Boiling Water Reactor

    Science.gov (United States)

    Cheng, Ling

    The thesis evaluates the safety systems in the next generation boiling water reactor by analyzing the main steam line break loss of coolant accident performed in the Purdue university multi-dimensional test assembly (PUMA). RELAP5 code simulations, both for the PUMA main steam line break (MSLB) case and for the simplified boiling water reactor (SBWR) MSLB case have been utilized to compare with the experiment data. The comparison shows that RELAP5 is capable to perform the safety analysis for SBWR. The comparison also validates the three-level scaling methodology applied to the design of the PUMA facility. The PUMA suppression pool mixing and condensation test data have been studied to give the detailed understanding on this important local phenomenon. A simple one dimensional integral model, which can reasonably simulate the mixing process inside suppression pool have been developed and the comparison between the model prediction and the experiment data demonstrates the model can be utilized for analyzing the suppression pool mixing process.

  2. Numerical simulation and artificial neural network modeling of natural circulation boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Garg, A. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Sastry, P.S. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Pandey, M. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India)]. E-mail: manmohan@iitg.ac.in; Dixit, U.S. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Gupta, S.K. [Atomic Energy Regulatory Board, Mumbai 400085 (India)

    2007-02-15

    Numerical simulation of natural circulation boiling water reactor is important in order to study its performance for different designs and under various off-design conditions. Numerical simulations can be performed by using thermal-hydraulic codes. Very fast numerical simulations, useful for extensive parametric studies and for solving design optimization problems, can be achieved by using an artificial neural network (ANN) model of the system. In the present work, numerical simulations of natural circulation boiling water reactor have been performed with RELAP5 code for different values of design parameters and operational conditions. Parametric trends observed have been discussed. The data obtained from these simulations have been used to train artificial neural networks, which in turn have been used for further parametric studies and design optimization. The ANN models showed error within {+-}5% for all the simulated data. Two most popular methods, multilayer perceptron (MLP) and radial basis function (RBF) networks, have been used for the training of ANN model. Sequential quadratic programming (SQP) has been used for optimization.

  3. Analysis of cracked core spray piping from the Quad Cities Unit 2 boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Diercks, D.R.; Gaitonde, S.M.

    1982-09-01

    The results of a metallurgical analysis of leaking cracks detected in the core spray injection piping of Commonwealth Edison Company's Quad Cities Unit 2 Boiling Water Reactor are described. The cracks were present in a welded 105/sup 0/ elbow assembly in the line, and were found to be caused by intergranular stress corrosion cracking associated with the probable presence of dissolved oxygen in the reactor cooling water and the presence of grain boundary sensitization and local residual stresses induced by welding. The failure is unusual in several respects, including the very large number of cracks (approximately 40) present in the failed component, the axial orientation of the cracks, and the fact that at least one crack completely penetrated a circumferential weld. Virtually all of the cracking occurred in forged material, and the microstructural evidence presented suggests that the orientation of the cracks was influenced by the presence of axially banded delta ferrite in the microstructure of the forged components.

  4. Searching for full power control rod patterns in a boiling water reactor using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Jose Luis [Departamento Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Ocoyoacac, Edo. de Mexico (Mexico)]. E-mail: jlmt@nuclear.inin.mx; Ortiz, Juan Jose [Departamento Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Ocoyoacac, Edo. de Mexico (Mexico)]. E-mail: jjortiz@nuclear.inin.mx; Requena, Ignacio [Departamento Ciencias Computacion e I.A. ETSII, Informatica, Universidad de Granada, C. Daniel Saucedo Aranda s/n. 18071 Granada (Spain)]. E-mail: requena@decsai.ugr.es; Perusquia, Raul [Departamento Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Ocoyoacac, Edo. de Mexico (Mexico)]. E-mail: rpc@nuclear.inin.mx

    2004-11-01

    One of the most important questions related to both safety and economic aspects in a nuclear power reactor operation, is without any doubt its reactivity control. During normal operation of a boiling water reactor, the reactivity control of its core is strongly determined by control rods patterns efficiency. In this paper, GACRP system is proposed based on the concepts of genetic algorithms for full power control rod patterns search. This system was carried out using LVNPP transition cycle characteristics, being applied too to an equilibrium cycle. Several operation scenarios, including core water flow variation throughout the cycle and different target axial power distributions, are considered. Genetic algorithm fitness function includes reactor security parameters, such as MLHGR, MCPR, reactor k{sub eff} and axial power density.

  5. Nickel Catalyzed Conversion of Cyclohexanol into Cyclohexylamine in Water and Low Boiling Point Solvents

    Directory of Open Access Journals (Sweden)

    Yunfei Qi

    2016-04-01

    Full Text Available Nickel is found to demonstrate high performance in the amination of cyclohexanol into cyclohexylamine in water and two solvents with low boiling points: tetrahydrofuran and cyclohexane. Three catalysts, Raney Ni, Ni/Al2O3 and Ni/C, were investigated and it is found that the base, hydrogen, the solvents and the support will affect the activity of the catalyst. In water, all the three catalysts achieved over 85% conversion and 90% cyclohexylamine selectivity in the presence of base and hydrogen at a high temperature. In tetrahydrofuran and cyclohexane, Ni/Al2O3 exhibits better activity than Ni/C under optimal conditions. Ni/C was stable during recycling in aqueous ammonia, while Ni/Al2O3 was not due to the formation of AlO(OH.

  6. Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 1. Investigation and evaluation of stress corrosion cracking in piping of boiling water reactor plants

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    IGSCC in BWR piping is occurring owing to a combination of material, environment, and stress factors, each of which can affect both the initiation of a stress-corrosion crack and the rate of its subsequent propagation. In evaluating long-term solutions to the problem, one needs to consider the effects of each of the proposed remedial actions. Mitigating actions to control IGSCC in BWR piping must be designed to alleviate one or more of the three synergistic factors: sensitized material, the convention BWR environment, and high tensile stresses. Because mitigating actions addressing each of these factors may not be fully effective under all anticipated operating conditions, mitigating actions should address two and preferably all three of the causative factors; e.g., material plus some control of water chemistry, or stress reversal plus controlled water chemistry.

  7. Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 1. Investigation and evaluation of stress corrosion cracking in piping of boiling water reactor plants

    International Nuclear Information System (INIS)

    IGSCC in BWR piping is occurring owing to a combination of material, environment, and stress factors, each of which can affect both the initiation of a stress-corrosion crack and the rate of its subsequent propagation. In evaluating long-term solutions to the problem, one needs to consider the effects of each of the proposed remedial actions. Mitigating actions to control IGSCC in BWR piping must be designed to alleviate one or more of the three synergistic factors: sensitized material, the convention BWR environment, and high tensile stresses. Because mitigating actions addressing each of these factors may not be fully effective under all anticipated operating conditions, mitigating actions should address two and preferably all three of the causative factors; e.g., material plus some control of water chemistry, or stress reversal plus controlled water chemistry

  8. Experimental study of mass boiling in a porous medium model

    International Nuclear Information System (INIS)

    This manuscript presents a pore-scale experimental study of convective boiling heat transfer in a two-dimensional porous medium. The purpose is to deepen the understanding of thermohydraulics of porous media saturated with multiple fluid phases, in order to enhance management of severe accidents in nuclear reactors. Indeed, following a long-lasting failure in the cooling system of a pressurized water reactor (PWR) or a boiling water reactor (BWR) and despite the lowering of the control rods that stops the fission reaction, residual power due to radioactive decay keeps heating up the core. This induces water evaporation, which leads to the drying and degradation of the fuel rods. The resulting hot debris bed, comparable to a porous heat-generating medium, can be cooled down by reflooding, provided a water source is available. This process involves intense boiling mechanisms that must be modelled properly. The experimental study of boiling in porous media presented in this thesis focuses on the influence of different pore-scale boiling regimes on local heat transfer. The experimental setup is a model porous medium made of a bundle of heating cylinders randomly placed between two ceramic plates, one of which is transparent. Each cylinder is a resistance temperature detector (RTD) used to give temperature measurements as well as heat generation. Thermal measurements and high-speed image acquisition allow the effective heat exchanges to be characterized according to the observed local boiling regimes. This provides precious indications precious indications for the type of correlations used in the non-equilibrium macroscopic model used to model reflooding process. (author)

  9. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, K. [Kobe Univ. of Mercantile Marine (Japan); Shiotsu, M.; Sakurai, A. [Kyoto Univ. (Japan)

    1995-09-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q{sub max}, on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q{sub o}e{sup t/T}, with periods, {tau}, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q{sub max}. Two main mechanisms of q{sub max} exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q{sub max} for long period range belonging to the former mechanism becomes longer and the q{sub max}mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q{sub max} for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling.

  10. Heat transfer and critical heat flux of subcooled water flow boiling in a short horizontal tube

    International Nuclear Information System (INIS)

    The steady-state turbulent heat transfer (THT) due to exponentially increasing heat inputs with various exponential periods (Q=Q0exp(t/τ), τ=6.55 to 21.81 s) were systematically measured with the flow velocities, u, of 4.15, 7.05, 10.07 and 13.50 m/s by an experimental water loop flow. Measurements were made on a 6 mm inner diameter, a 59.2 mm effective length and a 0.4 mm thickness of HORIZONTAL Platinum (Pt) circular test tube. The relation between the steady-state turbulent heat transfer and the flow velocity were clarified. The steady state nucleate boiling heat transfer (NBHT) and the steady state critical heat fluxes (CHFs) of the subcooled water flow boiling for HORIZONTAL SUS304 circular test tube were systematically measured with the flow velocities (u=3.94 to 13.86 m/s), the inlet subcoolings (ΔTsub,in=81.30 to 147.94 K), the inlet pressures (Pin=786.29 to 960.93 kPa) and the increasing heat input (Q0 exp(t/τ), τ=8.36 s). The HORIZONTAL SUS304 test tube of inner diameter (d=6 mm), heated length (L=59.4 mm), effective length (Leff=48.4 mm), L/d (=9.9), Leff/d (=8.06) and wall thickness (δ=0.5 mm) with surface roughness (Ra=3.89 μm) was used in this work. The NBHT and the steady state CHFs of the subcooled water flow boiling for the HORIZONTAL SUS304 test tube were clarified at the flow velocities u ranging from 3.94 to 13.86 m/s. The steady-state THT data, the NBHT ones and the steady state CHF ones were compared with the values calculated by authors' THT correlation, their NBHT ones and their transient CHF ones against outlet and inlet subcoolings based on the experimental data for the VERTICAL circular test tubes with the flow velocities u ranging from 4.0 to 42.4 m/s. The influences of test tube orientation on the THT, the NBHT and the subcooled flow boiling CHF are investigated into details and the widely and precisely predictable correlations of the THT, the NBHT and the transient CHFs against outlet and inlet subcoolings in a short

  11. Numerical investigation of water-based nanofluid subcooled flow boiling by three-phase Euler-Euler, Euler-Lagrange approach

    Science.gov (United States)

    Valizadeh, Ziba; Shams, Mehrzad

    2016-08-01

    A numerical scheme for simulating the subcooled flow boiling of water and water-based nanofluids was developed. At first, subcooled flow boiling of water was simulated by the Eulerian multiphase scheme. Then the simulation results were compared with previous experimental data and a good agreement was observed. In the next step, subcooled flow boiling of water-based nanofluid was modeled. In the previous studies in this field, the nanofluid assumed as a homogeneous liquid and the two-phase scheme was used to simulate its boiling. In the present study, a new scheme was used to model the nanofluid boiling. In this scheme, to model the nanofluid flow boiling, three phases, water, vapor and nanoparticles were considered. The Eulerian-Eulerian approach was used for modeling water-vapor interphase and Eulerian-Lagrangian scheme was selected to observe water-nanoparticle interphase behavior. The results from the nanofluid boiling modeling were validated with an experimental investigation. The results of the present work and experimental data were consistent. The addition of 0.0935 % volume fraction of nanoparticles in pure liquid boiling flow increases the vapor volume fraction at the outlet almost by 40.7 %. The results show the three-phase model is a good approach to simulate the nanofluid boiling flow.

  12. Development of jet pump inspection equipments in BWR

    International Nuclear Information System (INIS)

    This paper describes development of the remotely operated equipments for jet pump ultrasonic testing (UT) in boiling water reactors (BWRs) to enhance the availability of operating nuclear power plants. Stress corrosion cracking (SCC) in the reactor internals has been a major concern in the BWR in recent years. The developed equipments can accomplish the appropriate positioning precision as an application of the Toshiba phased array immersion UT technique and enhance the jet pump inspection performance with a shorter duration and reducing the load for the installation of them. Three types of inspection equipments are developed to cover the outside and inside of the jet pump inlet mixer and the diffuser without disassembling the inlet mixer and the outside of the jet pump riser elbow. Their configurations and specifications are shown in the paper respectively. (author)

  13. Performance of Charcoal Cookstoves for Haiti Part 1: Results from the Water Boiling Test

    Energy Technology Data Exchange (ETDEWEB)

    Booker, Kayje; Han, Tae Won; Granderson, Jessica; Jones, Jennifer; Lsk, Kathleen; Yang, Nina; Gadgil, Ashok

    2011-06-01

    In April 2010, a team of scientists and engineers from Lawrence Berkeley National Lab (LBNL) and UC Berkeley, with support from the Darfur Stoves Project (DSP), undertook a fact-finding mission to Haiti in order to assess needs and opportunities for cookstove intervention. Based on data collected from informal interviews with Haitians and NGOs, the team, Scott Sadlon, Robert Cheng, and Kayje Booker, identified and recommended stove testing and comparison as a high priority need that could be filled by LBNL. In response to that recommendation, five charcoal stoves were tested at the LBNL stove testing facility using a modified form of version 3 of the Shell Foundation Household Energy Project Water Boiling Test (WBT). The original protocol is available online. Stoves were tested for time to boil, thermal efficiency, specific fuel consumption, and emissions of CO, CO{sub 2}, and the ratio of CO/CO{sub 2}. In addition, Haitian user feedback and field observations over a subset of the stoves were combined with the experiences of the laboratory testing technicians to evaluate the usability of the stoves and their appropriateness for Haitian cooking. The laboratory results from emissions and efficiency testing and conclusions regarding usability of the stoves are presented in this report.

  14. Conceptual design of a self-sustainable pressurized water reactor with boiling channels

    International Nuclear Information System (INIS)

    Parametric studies have been performed on a seed-blanket Th-U233 fuel configuration in a pressurized water reactor (PWR) with boiling channels to achieve high conversion ratio. Previous studies on seed-blanket concepts required substantial reduction of the core power density in order to operate under nominal PWR system conditions. Boiling flow regime in the seed area allows better heat removal, which in turn, may potentially allow increasing the power density of the core. In addition, the reduced moderation improves the breeding performance. A 2-dimensional design optimization study was carried out with BOXER and SERPENT codes in order to determine the most attractive fuel assembly configuration that would ensure breeding. Effects of various parameters, such as void fraction, blanket fuel form, number of seed pins and their dimensions, on the conversion ratio were examined. The obtained results, for which the power density was set to 104 W/cc, created a map of designs with their corresponding fissile inventory ratio (FIR) values. It was found that several options have the potential to achieve the main objective - a self-sustainable Thorium fuel cycle in PWRs without significant reduction in the core power density. (author)

  15. High burnup (41 - 61 GWd/tU) BWR fuel behavior under reactivity initiated accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takehiko; Kusagaya, Kazuyuki; Yoshinaga, Makio; Uetsuka, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    High burnup boiling water reactor (BWR) fuel was pulse irradiated in the Nuclear Safety Research Reactor (NSRR) to investigate fuel behavior under cold startup reactivity initiated accident (RIA) conditions. Temperature, deformation, failure, and fission gas release behavior under the simulated RIA condition was studied in the tests. Fuel failure due to pellet-cladding mechanical interaction (PCMI) did not occur in the tests with typical domestic BWR fuel at burnups up to 56 GWd/tU, because they had limited cladding embrittlement due to hydrogen absorption of about 100 ppm or less. However, the cladding failure occurred in tests with fuel at a burnup of 61 GWd/tU, in which the peak hydrogen content in the cladding was above 150 ppm. This type of failure was observed for the first time in BWR fuels. The cladding failure occurred at fuel enthalpies of 260 to 360 J/g (62 to 86 cal/g), which were higher than the PCMI failure thresholds decided by the Japanese Nuclear Safety Commission. From post-test examinations of the failed fuel, it was found that the crack in the BWR cladding progressed in a manner different from the one in PWR cladding failed in earlier tests, owing to its more randomly oriented hydride distribution. Because of these differences, the BWR fuel was judged to have failed at hydrogen contents lower than those of the PWR fuel. Comparison of the test results with code calculations revealed that the PCMI failure was caused by thermal expansion of pellets, rather than by the fission gas expansion in the pellets. The gas expansion, however, was found to cause large cladding hoop deformation later after the cladding temperature escalated. (author)

  16. Analyses of Instability Events in the Peach Bottom-2 BWR Using Thermal-Hydraulic and 3D Neutron Kinetic Coupled Codes Technique

    Directory of Open Access Journals (Sweden)

    Antonella Lombardi Costa

    2008-01-01

    Full Text Available Boiling water reactor (BWR instabilities may occur when, starting from a stable operating condition, changes in system parameters bring the reactor towards an unstable region. In order to design more stable and safer core configurations, experimental and theoretical studies about BWR stability have been performed to characterise the phenomenon and to predict the conditions for its occurrence. In this work, contributions to the study of BWR instability phenomena are presented. The RELAP5/MOD3.3 thermal-hydraulic (TH system code and the PARCS-2.4 3D neutron kinetic (NK code were coupled to simulate BWR transients. Different algorithms were used to calculate the decay ratio (DR and the natural frequency (NF from the power oscillation predicted by the transient calculations as two typical parameters used to provide a quantitative description of instabilities. The validation of the code model set up for the Peach Bottom Unit 2 BWR plant is performed against low-flow stability tests (LFSTs. The four series of LFST have been performed during the first quarter of 1977 at the end of cycle 2 in Pennsylvania. The tests were intended to measure the reactor core stability margins at the limiting conditions used in design and safety analyses.

  17. Void Reactivity Effects in the Second Charge of the Halden Boiling Water Reactor

    International Nuclear Information System (INIS)

    The reactivity effect of voids caused by boiling inside the coolant channels in the second fuel charge of the Halden Boiling Heavy Water Reactor has been measured both in void-simulated zero-power experiments and under actual power conditions. The void-simulated experiments consisted of measuring the reactivity effect of introducing void columns inside thin-walled tubes to various depths. The tubes were placed at different positions between die stringers in a single 7-rod cluster element practically identical with the normal second-charge fuel elements. This experiment enables an investigation of the reactivity dependence upon void fraction, and also the reactivity dependence of steam-bubble position in the coolant channel. The experiment was carried out in the Norwegian zero-power facility NORA, with a core consisting of 36 second-charge elements and with a lattice geometry identical to the one in HBWR. The temperature dependence of the void effect was investigated in a zero-power experiment with the 100 fuel-element core of HBWR. In a single fuel element the water level inside the coolant channel was depressed to various depths, and the reactivity effect of this perturbation was measured at different temperatures in the temperature interval 50°C-220°C. The power void reactivity has been measured in HBWR as a function of nuclear power at different moderator temperatures between 150°C and 230°C at powers up to about 16 MW at the highest temperature. The power-void reactivity coefficient is an important quantity in determining the dynamic behaviour of a boiling- water reactor. The theoretical determination of this quantity is, however, complicated by the fact that knowledge about the void distribution in the core is required. The detailed power-void distribution is not easily amenable to experimental determination, and accordingly the void-simulated experiments represent a better case for testing the reactor physics calculation of void effects. Preliminary

  18. Analysis CFD for the hydrogen transport in the primary containment of a BWR; Analisis CFD para el transporte de hidrogeno en la contencion primaria de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez P, D. A.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Edificio 9, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Gomez T, A. M., E-mail: guerreroazteca_69@hotmail.com [ININ, Departamento de Sistemas Nucleares, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    This study presents a qualitative and quantitative comparison among the CFD GASFLOW and OpenFOAM codes which are related with the phenomenon of hydrogen transport and other gases in the primary containment of a Boiling Water Reactor (BWR). GASFLOW is a commercial license code that is well validated and that was developed in Germany for the analysis of the gases transport in containments of nuclear reactors. On the other hand, OpenFOAM is an open source code that offers several evaluation solvers for different types of phenomena; in this case, the solver reacting-Foam is used to analyze the hydrogen transport inside the primary containment of the BWR. The results that offer the solver reacting-Foam of OpenFOAM are evaluated in the hydrogen transport calculation and the results are compared with those of the program of commercial license GASFLOW to see if is viable the use of the open source code in the case of the hydrogen transport in the primary containment of a BWR. Of the obtained results so much quantitative as qualitative some differences were identified between both codes, the differences (with a percentage of maximum error of 4%) in the quantitative results are small and they are considered acceptable for this analysis type, also, these differences are attributed mainly to the used transport models, considering that OpenFOAM uses a homogeneous model and GASFLOW uses a heterogeneous model. (Author)

  19. BWR Servicing and Refueling Improvement Program: Phase I summary report

    International Nuclear Information System (INIS)

    Under the U.S. Department of Energy sponsorship, General Electric Co. (GE) undertook a study of boiling water reactor (BWR) refueling outages for the purpose of recommending the development and demonstration of critical path time savings improvements. The Tennessee Valley Authority (TVA) joined the study as a subcontractor, providing monitoring assistance and making the Browns Ferry Site available for improvement demonstrations. Agreement was also reached with Georgia Power Co., Power Authority of the State of New York, and Commonwealth Edison Co. for monitoring and data collection at Hatch 1, FitzPatrick, and Quad Cities 1 nuclear plants, respectively. The objective was to identify, develop, and demonstrate improved refueling, maintenance, and inspection procedures and equipment. The improvements recommended in this study are applicable to BWR nuclear plants currently in operation as well as those in the design and construction phases. The recommendations and outage information can be used as a basis to plan and conduct the first outages of new plants and to improve the planning and facilities of currently operating plants. Many of the recommendations can readily be incorporated in plants currently in the design and construction phases as well as in the design of future plants. Many of these recommended improvements can be implemented immediately by utilities without further technical development

  20. BWR Servicing and Refueling Improvement Program: Phase I summary report

    Energy Technology Data Exchange (ETDEWEB)

    Perry, D.R.

    1978-09-01

    Under the U.S. Department of Energy sponsorship, General Electric Co. (GE) undertook a study of boiling water reactor (BWR) refueling outages for the purpose of recommending the development and demonstration of critical path time savings improvements. The Tennessee Valley Authority (TVA) joined the study as a subcontractor, providing monitoring assistance and making the Browns Ferry Site available for improvement demonstrations. Agreement was also reached with Georgia Power Co., Power Authority of the State of New York, and Commonwealth Edison Co. for monitoring and data collection at Hatch 1, FitzPatrick, and Quad Cities 1 nuclear plants, respectively. The objective was to identify, develop, and demonstrate improved refueling, maintenance, and inspection procedures and equipment. The improvements recommended in this study are applicable to BWR nuclear plants currently in operation as well as those in the design and construction phases. The recommendations and outage information can be used as a basis to plan and conduct the first outages of new plants and to improve the planning and facilities of currently operating plants. Many of the recommendations can readily be incorporated in plants currently in the design and construction phases as well as in the design of future plants. Many of these recommended improvements can be implemented immediately by utilities without further technical development.

  1. Final environmental statement for La Crosse Boiling Water Reactor: (Docket No. 50-409)

    International Nuclear Information System (INIS)

    A Final Environmental Statement for the Dairyland Power Cooperative for the conversion from a provisional to a full-term operating license for the La Crosse Boiling Water Reactor, located in Vernon County, Wisconsin, has been prepared by the Office of Nuclear Reactor Regulation. This statement provides a summary of environmental impacts and adverse effects of operation of the facility, and a consideration of principal alternatives (including removal of LACBWR from service, alternative cooling methodology, and alternative waste treatment systems). Also included are the comments of federal, state, and local governmental agencies and certain non-governmental organizations on the La Crosse Draft Environmental Statement and staff responses to these comments. After weighing environmental, economic, and technical benefits and liabilities, the staff recommends conversion from a provisional operating license to a full-term operating license, subject to specific environmental protection limitations. An operational monitoring program shall be established as part of the Environmental Technical Specifications. 64 refs., 20 figs., 48 tabs

  2. Replacement of outboard main steam isolation valves in a boiling water reactor plant

    Energy Technology Data Exchange (ETDEWEB)

    Schlereth, J.R.; Pennington, D.

    1996-12-01

    Most Boiling Water Reactor plants utilize wye pattern globe valves for main steam isolation valves for both inboard and outboard isolation. These valves have required a high degree of maintenance attention in order to pass the plant local leakage rate testing (LLRT) requirements at each outage. Northern States Power made a decision in 1993 to replace the outboard valves at it`s Monticello plant with double disc gate valves. The replacement of the outboard valves was completed during the fall outage in 1994. During the spring outage in April of 1996 the first LLRT testing was performed with excellent results. This presentation will address the decision process, time requirements and planning necessary to accomplish the task as well as the performance results and cost effectiveness of replacing these components.

  3. Optimal axial enrichment distribution of the boiling water reactor fuel under the Haling strategy

    International Nuclear Information System (INIS)

    The axial enrichment distribution of boiling water reactor fuel is optimized to improve uranium utilization subject to constraints on thermal margins. It is assumed that the reactor is operated under the Haling strategy, so that determination of the enrichment distribution can be decoupled from the poison management. This nonlinear optimization problem is solved using a method of approximation programming, where each iteration step is formulated in terms of linear goal programming to handle infeasible problems. The core is represented by an axial one-dimensional model. The average enrichment of a two-region fuel can be slightly reduced by increasing the enrichment of the lower half rather than the upper half. The optimal solutions for a 24-region fuel, in which the enrichments of indivdual nodes can differ from one another, display double-humped enrichment distributions. The natural uranium blanket design is also investigated, and it is concluded that blanketed fuel is practically optimal using the Haling strategy

  4. Experimental investigations on load reduction in the pressure suppression system of boiling water reactors

    International Nuclear Information System (INIS)

    For the load specification of pressure suppression systems in boiling water reactors the periodic pressure pulses from a condensation phenomenon, called chugging, are of great importance. The research indicates, that the chugging mechanism is mainly induced by the BORDA-effect at the sharp edge of the vent pipe outlet. Based on these insights, simple vent pipe outlet mitigators are developed and tested, which effect in a passive mode a significant reduction of the dynamic pressure pulses from this condensation phenomenon. The results also yield the proof of multivent effect, of time window for single chugging event occurrence at a multivent configuration and the assurance of the reproducibility of this dynamic condensation phase. (orig.)

  5. Fuel performance in the Barsebeck boiling water reactors (Unit 1 and 2)

    International Nuclear Information System (INIS)

    Sydkraft is the largest privately owned utility in Sweden. It serves about 20% of the Swedish population with about 12 TWh of electric power per year, of which 64% is nuclear (1978 figures). The two identical 590 MWE ASEA-ATOM boiling water reactors in Barsebeck have been in operation since 1975 and 1977 respectively. Fission product activity in the primary circuits and in the off-gas systems is extremely low and indicate a near perfect fuel condition. Operating restrictions limiting the effect of pellet cladding interaction have been in use since initial start-up and testing. A few events involving rapid power increases above the preconditioned power level have occurred without causing fuel failures. It is believed that an analysis of power reactor operational transients, which did not cause fuel failures, can be useful to design more adequate and less conservative rules for the operation of nuclear reactor cores

  6. Simulator evaluation of the Boiling Water Reactor Owners' Group (BWROG) graphics display system (GDS)

    International Nuclear Information System (INIS)

    This report describes the evaluation of a Graphic Display System (GDS). The GDS was developed by the Boiling Water Reactor Owners' Group (BWROG) to aid control room operators in detecting abnormal operating conditions, assessing the safety status of the plant, executing corrective action and monitoring plant response. The objective of the evaluation was to obtain recommendations for improving the usefulness of the GDS and to assess its usefulness under simulated accident operating conditions. The GDS presented 19 operator selectable displays on a high resolution color CRT monitor. The displays included safety function status, key parameters in bar and trend formats, and two-dimensional limits plots associated with the execution of symptom-based emergency procedures. Almost all of the operators, 94%, considered the GDS to be a useful device. The GDS was considered to be more useful for complex transients than for more straightforward events or routine operation

  7. SWR 1000: an advanced boiling water reactor with passive safety features

    International Nuclear Information System (INIS)

    The SWR 1000, an advanced BWR, is being developed by Siemens under contract from Germany's electric utilities and with the support of European partners. The project is currently in the basic design phase to be concluded in mid-1999 with the release of a site-independent safety report and costing analysis. The development goals for the project encompass competitive costs, use of passive safety systems to further reduce probabilities of occurrence of severe accidents, assured control of accidents so no emergency response actions for evacuation of the local population are needed, simplification of plant systems based on operator experience, and planning and design based on German codes, standards and specifications put forward by the Franco-German Reactor Safety Commission for future nuclear power plants equipped with PWRs, as well as IAEA specifications and the European Utility Requirements. These goals led to a plant concept with a low power density core, with large water inventories stored above the core inside the reactor pressure vessel, in the pressure suppression pool, and in other locations. All accident situations arising from power operation can be controlled by passive safety features without rise in core temperature and with a grace period of more than three days. In addition, postulated core melt is controlled by passive equipment. All new passive systems have been successfully tested for function and performance using large-scale components in experimental testing facilities at PSI in Switzerland and at the Juelich Research Centre in Germany. In addition to improvements of the safety systems, the plant's operating systems have been simplified based on operating experience. The design's safety concept, simplified operating systems and 48 months construction time yield favourable plant construction costs. The level of concept maturity required to begin offering the SWR 1000 on the power generation market is anticipated to be reached, as planned in the year

  8. Ultrasonic flaw detection and sizing methods for cracks in the nozzle corner area at boiling water reactor vessels

    International Nuclear Information System (INIS)

    The demonstration of inservice inspection methods with ultrasound for the nozzel inner corner at boiling water reactor pressure vessels has shown that a detectability of cracks with a depth in the range of 5-10 mm is possible if optimal inspection parameters are chosen. The investigations concerning the choice of the optimal parameters is presented

  9. Ultrasonic flaw detection and sizing methods for cracks in the nozzle corner area at boiling water reactor vessels

    International Nuclear Information System (INIS)

    The demonstration of inservice inspection methods with ultrasound for the nozzle inner corner at boiling water reactor pressure vessels has shown that a detectability of cracks with a depth in the range of 5 - 10 mm is possible if optimal inspection parameters are chosen. The investigations concerning the choice of the optimal parameters is presented. 4 refs

  10. Utilization of the SMART v2.1 monitor to calculate the stability of a boiling water reactor

    International Nuclear Information System (INIS)

    The nuclear reactor stability is very important in the shutdown and start-up of the boiling water reactor, because in these situations, working conditions are close to the unstable zone. For this reason, the Thermohydraulic and Nuclear Engineering Group, together with IBERDROLA, spend several years carrying out a monitor to analyze the stability of these reactors.

  11. 10 CFR Appendix A to Part 52 - Design Certification Rule for the U.S. Advanced Boiling Water Reactor

    Science.gov (United States)

    2010-01-01

    ...) of 10 CFR 50.34—Post-Accident Sampling for Boron, Chloride, and Dissolved Gases; and 3. Paragraph (f... design feature in the generic DCD are governed by the requirements in 10 CFR 50.109. Generic changes that... design certification for the U.S. Advanced Boiling Water Reactor (ABWR) design, in accordance with 10...

  12. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    International Nuclear Information System (INIS)

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior

  13. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    Energy Technology Data Exchange (ETDEWEB)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior.

  14. Intelligent information data base of flow boiling characteristics in once-through steam generator for integrated type marine water reactor

    International Nuclear Information System (INIS)

    Valuable experimental knowledge with flow boiling characteristics of the helical-coil type once-through steam generator was converted into an intelligent information data base program. The program was created as a windows application using the Visual Basic. Main functions of the program are as follows: (1) steady state flow boiling analysis of any helical-coil type once-through steam generator, (2) analysis and comparison with the experimental data, (3) reference and graph display of the steady state experimental data, (4) reference of the flow instability experimental data and display of the instability threshold correlated by each parameter, (5) summary of the experimental apparatus. (6) menu bar such as a help and print. In the steady state analysis, the region lengths of subcooled boiling, saturated boiling, and super-heating, and the temperature and pressure distributions etc. for secondary water calculated. Steady state analysis results agreed well with the experimental data, with the exception of the pressure drop at high mass velocity. The program will be useful for the design of not only the future integrated type marine water reactor but also the small sized water reactor with helical-coil type steam generator

  15. The Effect of Different Boiling and Filtering Devices on the Concentration of Disinfection By-Products in Tap Water

    Directory of Open Access Journals (Sweden)

    Glòria Carrasco-Turigas

    2013-01-01

    Full Text Available Disinfection by-products (DBPs are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4 (chloroform (TCM, bromodichloromethane (BDCM, dibromochloromethane (DBCM, and bromoform (TBM, MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97% and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies.

  16. Boils (Furunculosis)

    Science.gov (United States)

    ... boil starts to drain, wash the area with antibacterial soap and apply some triple antibiotic ointment and a ... avoid spreading the infection to others. Use an antibacterial soap on boil-prone areas when showering, and dry ...

  17. Status report: Intergranular stress corrosion cracking of BWR core shrouds and other internal components

    International Nuclear Information System (INIS)

    On July 25, 1994, the US Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 94-03 to obtain information needed to assess compliance with regulatory requirements regarding the structural integrity of core shrouds in domestic boiling water reactors (BWRs). This report begins with a brief description of the safety significance of intergranular stress corrosion cracking (IGSCC) as it relates to the design and function of BWR core shrouds and other internal components. It then presents a brief history of shroud cracking events both in the US and abroad, followed by an indepth summary of the industry actions to address the issue of IGSCC in BWR core shrouds and other internal components. This report summarizes the staff's basis for issuing GL 94-03, as well as the staff's assessment of plant-specific responses to GL 94-03. The staff is continually evaluating the licensee inspection programs and the results from examinations of BWR core shrouds and other internal components. This report is representative of submittals to and evaluations by the staff as of September 30, 1995. An update of this report will be issued at a later date

  18. Status report: Intergranular stress corrosion cracking of BWR core shrouds and other internal components

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    On July 25, 1994, the US Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 94-03 to obtain information needed to assess compliance with regulatory requirements regarding the structural integrity of core shrouds in domestic boiling water reactors (BWRs). This report begins with a brief description of the safety significance of intergranular stress corrosion cracking (IGSCC) as it relates to the design and function of BWR core shrouds and other internal components. It then presents a brief history of shroud cracking events both in the US and abroad, followed by an indepth summary of the industry actions to address the issue of IGSCC in BWR core shrouds and other internal components. This report summarizes the staff`s basis for issuing GL 94-03, as well as the staff`s assessment of plant-specific responses to GL 94-03. The staff is continually evaluating the licensee inspection programs and the results from examinations of BWR core shrouds and other internal components. This report is representative of submittals to and evaluations by the staff as of September 30, 1995. An update of this report will be issued at a later date.

  19. Analysis CFD for the hydrogen transport in the primary containment of a BWR

    International Nuclear Information System (INIS)

    This study presents a qualitative and quantitative comparison among the CFD GASFLOW and OpenFOAM codes which are related with the phenomenon of hydrogen transport and other gases in the primary containment of a Boiling Water Reactor (BWR). GASFLOW is a commercial license code that is well validated and that was developed in Germany for the analysis of the gases transport in containments of nuclear reactors. On the other hand, OpenFOAM is an open source code that offers several evaluation solvers for different types of phenomena; in this case, the solver reacting-Foam is used to analyze the hydrogen transport inside the primary containment of the BWR. The results that offer the solver reacting-Foam of OpenFOAM are evaluated in the hydrogen transport calculation and the results are compared with those of the program of commercial license GASFLOW to see if is viable the use of the open source code in the case of the hydrogen transport in the primary containment of a BWR. Of the obtained results so much quantitative as qualitative some differences were identified between both codes, the differences (with a percentage of maximum error of 4%) in the quantitative results are small and they are considered acceptable for this analysis type, also, these differences are attributed mainly to the used transport models, considering that OpenFOAM uses a homogeneous model and GASFLOW uses a heterogeneous model. (Author)

  20. Effect of thermal-hydraulic feedback on the BWR rod drop accident

    International Nuclear Information System (INIS)

    An important design-basis accident for boiling water reactors (BWR's) is the rod drop accident (RDA). This accident is defined to be a rapid reactor transient caused by an accidental drop (out of the core) of the highest-worth control rod at various conditions ranging from cold start-up to about 10% of rated power. For most BWR designs the highest worth rod is normally situated at the center of the core. Despite the fact that the chance of a RDA in extremely unlikely, the consequence of the RDA is of concern because of the potential for damage to fuel rods. Neglecting moderator feedback during the RDA is a poor assumption because energy is deposited in the fuel over a 3 to 4 second time period and hence there is time for heat to be conducted to the coolant. This may tend to ameliorate the accident considerably. Evaluation of the thermal-hydraulic feedback effect on the RDS in a BWR has been scarce in the literature. The object of this paper is to demonstrate the beneficial effect of thermal-hydraulic feedback in the RDA

  1. Entrainment and deposition modeling of liquid films with applications for BWR fuel rod dryout

    Science.gov (United States)

    Ratnayake, Ruwan Kumara

    While best estimate computer codes provide the licensing basis for nuclear power facilities, they also serve as analytical tools in overall plant and component design procedures. An ideal best estimate code would comprise of universally applicable mechanistic models for all its components. However, due to the limited understanding in these specific areas, many of the models and correlations used in these codes reflect high levels of empiricism. As a result, the use of such models is strictly limited to the range of parameters within which the experiments have been conducted. Disagreements between best estimate code predictions and experimental results are often explained by the mechanistic inadequacies of embedded models. Significant mismatches between calculated and experimental critical power values are common observations in the analyses of Boiling Water Reactors (BWR). Based on experimental observations and calculations, these mismatches are attributed to the additional entrainment and deposition caused by spacer grids in BWR fuel assemblies. In COBRA-TF (Coolant Boiling in Rod Arrays-Two Fluid); a state of the art industrial best estimate code, these disagreements are hypothesized to occur due the absence of an appropriate spacer grid model. In this thesis, development of a suitably detailed spacer grid model and integrating it to COBRA-TF is documented. The new spacer grid model is highly mechanistic so that the applicability of it is not seriously affected by geometric variations in different spacer grid designs. COBRA-TF (original version) simulations performed on single tube tests and BWR rod bundles with spacer grids showed that single tube predictions were more accurate than those of the rod bundles. This observation is understood to arise from the non-availability of a suitable spacer grid model in COBRA-TF. Air water entrainment experiments were conducted in a test section simulating two adjacent BWR sub channels to visualize the flow behavior at

  2. Environmentally-Assisted Cracking of Low-Alloy Reactor Pressure Vessel Steels under Boiling Water Reactor Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P.; Ritter, S

    2002-02-01

    The present report summarizes the experimental work performed by PSI on the environmentally-assisted cracking (EAC) of low-alloy steels (LAS) in the frame of the RIKORR-project during the period from January 2000 to August 2001. Within this project, the EAC crack growth behaviour of different low-alloy reactor pressure vessel (RPV) steels, weld filler and weld heat-affected zone materials is investigated under simulated transient and steady-state BWR/NWC power operation conditions. The EAC crack growth behaviour of different low-alloy RPV steels was characterized by slow rising load (SRL) / low-frequency corrosion fatigue (LFCF) and constant load tests with pre-cracked fracture mechanics specimens in oxygenated high-temperature water at temperatures of either 288, 250, 200 or 150 C. These tests revealed the following important interim results: Under low-flow and highly oxidizing (ECP >= 100 mV SHE) conditions, the ASME XI 'wet' reference fatigue crack growth curve could be significantly exceeded by cyclic fatigue loading at low frequencies (<0.001 Hz), at high and low load-ratios R, and by ripple loading near to DKth fatigue thresholds. The BWR VIP 60 SCC disposition lines may be significantly or slightly exceeded (even in steels with a low sulphur content) in the case of small load fluctuations at high load ratios (ripple loading) or at intermediate temperatures (200 -250 C) in RPV materials, which show a distinct susceptibility to dynamic strain ageing (DSA). (author)

  3. Environmentally-Assisted Cracking of Low-Alloy Reactor Pressure Vessel Steels under Boiling Water Reactor Conditions

    International Nuclear Information System (INIS)

    The present report summarizes the experimental work performed by PSI on the environmentally-assisted cracking (EAC) of low-alloy steels (LAS) in the frame of the RIKORR-project during the period from January 2000 to August 2001. Within this project, the EAC crack growth behaviour of different low-alloy reactor pressure vessel (RPV) steels, weld filler and weld heat-affected zone materials is investigated under simulated transient and steady-state BWR/NWC power operation conditions. The EAC crack growth behaviour of different low-alloy RPV steels was characterized by slow rising load (SRL) / low-frequency corrosion fatigue (LFCF) and constant load tests with pre-cracked fracture mechanics specimens in oxygenated high-temperature water at temperatures of either 288, 250, 200 or 150 C. These tests revealed the following important interim results: Under low-flow and highly oxidizing (ECP >= 100 mV SHE) conditions, the ASME XI 'wet' reference fatigue crack growth curve could be significantly exceeded by cyclic fatigue loading at low frequencies (<0.001 Hz), at high and low load-ratios R, and by ripple loading near to DKth fatigue thresholds. The BWR VIP 60 SCC disposition lines may be significantly or slightly exceeded (even in steels with a low sulphur content) in the case of small load fluctuations at high load ratios (ripple loading) or at intermediate temperatures (200 -250 C) in RPV materials, which show a distinct susceptibility to dynamic strain ageing (DSA). (author)

  4. Effect of Water Chemistry Variations on Corrosion of Zr-Alloys for BWR Applications

    International Nuclear Information System (INIS)

    Two reference water chemistry conditions (60 ppb Zn and 60 μg/cm2 Pt/Rh with either 500 ppb O2 and 500 ppb H2O2, or 150 ppb H2) were chosen for testing at 300 deg. C in refreshed autoclaves. For each reference water chemistry, the potential effects due to three chemical impurities of interest to BWRs (33 ppm Na, 10 ppm Li, and 10 ppm EHC fluid) were evaluated. Zircaloy-2 and GNF-Ziron (a Zr-based alloy with higher Fe additions than Zircaloy-2) cladding tubes were tested and the effects of tubing process variation and pre-filming were investigated. Tested channel materials included Zircaloy-2, Zircaloy-4, GNF-Ziron and NSF (a Zr-based alloy with Sn, Nb and Fe additions). The corrosion weight gain and hydrogen absorption were measured up to 12 months of exposure for a given water chemistry condition. Tests under 150 ppb H2 based water chemistry, with or without chemical impurities, generally resulted in greater amounts of corrosion after 12 month exposure compared with 500 ppb O2 and 500 ppb H2O2 based water chemistries. Of the added chemical impurities, only 33 ppm Na addition produced slightly increased corrosion. Under various test conditions, the presence of a thin pre-film resulted in some initial corrosion benefits, but the benefits were no longer evident after 12 months exposure; however, slight hydrogen benefits remained. For GNF-Ziron cladding, hydrogen absorption was generally lower compared with similarly processed Zircaloy-2 under 150 ppb H2 based water chemistry, when corrosion was generally higher. Of the channel material tested, NSF developed the lowest level of hydrogen absorption, particularly under 150 ppb H2 based water chemistries. (authors)

  5. Safety System Design Concept and Performance Evaluation for a Long Operating Cycle Simplified Boiling Water Reactor

    International Nuclear Information System (INIS)

    The long operating cycle simplified boiling water reactor is a reactor concept that pursues both safety and the economy by employing a natural circulation reactor core without a refueling, a passive decay heat removal, and an integrated building for the reactor and turbine. Throughout the entire spectrum of the design basis accident, the reactor core is kept covered by the passive emergency core cooling system. The decay heat is removed by the conventional active low-pressure residual heat removal system. As for a postulated severe accident, the suppression pool water floods the lower part of the reactor pressure vessel (RPV) in the case when core damage occurs, and the in-vessel retention that keeps the melt inside the RPV is achieved by supplying the coolant. The containment adopts a parallel-double-steel-plate structure similar to a hull structure, which contains coolant between the inner and outer walls to absorb the heat transferred from the inside of the containment. Consequently, the containment structure functions as a passive containment cooling system (PCCS) to remove the decay heat in case of an accident. This paper describes the PCCS performance evaluation by using TRAC code to show one of the characteristic plant features. The core damage frequency for internal events was also evaluated to examine the safety level of the plant and to show the adequacy of the safety system design

  6. Feasibility study of core management system by data communication for boiling water reactors

    International Nuclear Information System (INIS)

    Core management system by data communication has been designed and proposed for more efficient operation of BWR plants by faster transmission and centralized management of information system comprises three kinds of computers: process computer for monitoring purpose at reactor site, center computer for administration purpose at head office and large scientific computer for planning and evaluation purpose. The process and the large computers are connected to the center computer by data transmission line. To demonstrate the feasibility of such a system, operating history evaluation system, which is one of the subsystems of the core management system has been developed along the above concept. Application to the evaluation of operating history of a commercial BWR shows a great deal of merits. Quick response and considerably large amount of reduction of manpower can be expected by data communication and minimized intervention of human labor. Visual display is also found to be very useful to understand the core characteristics

  7. BWR plant-to-fleet water chemistry trends -- Past and present

    International Nuclear Information System (INIS)

    Good water chemistry control is important for the integrity and satisfactory performance of BWRs. A historical review of selected chemistry performance indicators (e.g., conductivity) illustrates the improved chemistry control today relative to that in the past as well as the ability to evaluate these operational indicators

  8. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Appendices. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Appendices are presented concerning the evaluations of decommissioning financing alternatives; reference site description; reference BWR facility description; radiation dose rate and concrete surface contamination data; radionuclide inventories; public radiation dose models and calculated maximum annual doses; decommissioning methods; generic decommissioning information; immediate dismantlement details; passive safe storage, continuing care, and deferred dismantlement details; entombment details; demolition and site restoration details; cost estimating bases; public radiological safety assessment details; and details of alternate study bases.

  9. Coolability of degraded core under reflooding conditions in Nordic boiling water reactors

    International Nuclear Information System (INIS)

    Present work is part of the first phase of subproject RAK-2.1 of the new Nordic Co-operative Reactor Safety Program, NKS. The first phase comprises reflooding calculations for the boiling water reactors (BWRs) TVO I/II in Finland and Forsmark 3 in Sweden, as a continuation of earlier severe accident analyses which were made in the SIK-2 project. The objective of the core reflooding studies is to evaluate when and how the core is still coolable with water and what are the probable consequences of water cooling. In the following phase of the RAK-2.1 project, recriticality studies will be performed. Conditions for recriticality might occur if control rods have melted away with the fuel rods intact in a shape that critical conditions can be created in reflooding with insufficiently borated water. Core coolability was investigated for two reference plants, TVO I/II and Forsmark 3. The selected accident cases were anticipated station blackout with or without successful depressurization of reactor coolant system (RCS). The effects of the recovery of emergency core cooling (ECC) were studied by varying the starting time of core reflooding. The start of ECC systems were assigned to reaching a maximum cladding temperature: 1400 K, 1600 K, 1800 K and 2000 K in the core. Cases with coolant injection through the downcomer were studied for TVO I/II and both downcomer injection and core top spray were investigated for Forsmark 3. Calculations with three different computer codes: MAAP 4, MELCOR 1.8.3 and SCDA/RELAP5/MOD 3.1 for the basis for the presented reflooding studies. Presently, and experimental programme on core reflooding phenomena has been started in Kernforschungszentrum Karlsruhe in QUENCH test facility. (EG) 17 refs

  10. Effect of two impurities and zinc on stress corrosion cracking of stainless steel and nickel alloys in BWR environments

    International Nuclear Information System (INIS)

    Boiling water reactors (BWRs) operate with very high purity water with only small additions of dissolved hydrogen and, most recently, noble metals. However, even operation with very low conductivity water (e.g., 0.07 μS/cm) coolant will not prevent intergranular stress corrosion cracking (IGSCC) of sensitized stainless steel and nickel alloys under atypical oxygenated conditions. The presence of certain impurities dissolved in the coolant can dramatically increase the propensity of this most insidious form of environmentally-assisted cracking. The goal of this paper is to present the effect of effect of chloride and sulfate plus zinc on the IGSCC propensities of BWR piping and reactor internals under both oxygenated, i.e., normal water chemistry (NWC) and deoxygenated, i.e., hydrogen water chemistry (HWC) conditions. While it is well documented the sulfate and chloride are particularly aggressive in promoting IGSCC of BWR structural materials, several anions such as chromate and nitrate have little impact while of zinc added as zinc oxide appears to be beneficial. To emphasize the effect of impurities on the structural integrity of BWR components in perspective, the BWR fleet's most severe documented water chemistry transient, where the conductivity reached on 232 μS/cm with 21.2 ppm chloride and 93.8 ppm sulfate, will be presented. For example, on-line real-time crack growth rate measurements using the highly accurate reversing DC potential drop technique revealed a crack growth rate increase by almost a factor of 300 for an Alloy 182 weld metal compact tension fracture mechanics specimen during this raw water transient. The recommendations for subsequent plant inspection and start up after this transient will also be discussed where the value of real time crack growth rate monitoring cannot be overemphasized. (author)

  11. Pool Boiling Behavior and Critical Heat Flux on Zircaloy and SiC Claddings in Deionized Water under Atmospheric Pressure

    International Nuclear Information System (INIS)

    Recently several researches on SiC material as an alternative of the nuclear fuel cladding have been conducted. From a fundamental point of view, Snead et al. did an extensive investigation on SiC properties. Their work revealed non-irradiated and irradiated material properties. In addition to the existing literature data, they even added new data, particularly in the high-temperature irradiation regime. Moreover, Carpenter has studied performance of a SiC fuel cladding in his Ph. D. thesis. With extensive in-core tests at MITR-II, his works showed the effects of cladding design for monolith and triplex types. He concluded that manufacturing techniques of the SiC cladding affected corrosion rates and swelling behavior after irradiation. For more practical nuclear applications, oxidation rates of a SiC cladding was investigated with a comparison assessment of those of a zircaloy-4 cladding. Lee et al. adopted an oxidation process under the conditions of the Loss of Coolant Accidents (LOCA) in LWRs. They found that SiC oxidation rates were greatly lower than those of zircaloy-4. In order to demonstrate the superiority of SiC cladding in terms of thermal performance, in this study pool boiling heat transfer experiments were carried out in a pool of saturated deionized water (DI water) at atmospheric pressure. For a comparison study, zircaloy-4 claddings, which are current fuel claddings in LWRs, were used as a reference case. Not only measuring nucleate boiling heat transfer coefficient (NBHTC) and critical heat flux (CHF) but also observing boiling behavior of both the claddings were conducted. In this study, pool boiling heat transfer experiments with zircaloy and SiC heaters were carried out. Comparison of the CHF and nucleate boiling heat transfer of the zircaloy-4 and SiC cladding were compared. Specifically, sophisticated high-speed photographs of nucleate boiling, the CHF, and film boiling phenomena were captured. · Structural integrity of the SiC heaters was

  12. Measurement on the effect of sound wave in upper plenum of boiling water reactor

    International Nuclear Information System (INIS)

    In recent years, the power uprate of Boiling Water Reactors have been conducted at several existing power plants as a way to improve plant economy. In one of the power uprated plants (117.8% uprates) in the United States, the steam dryer breakages due to fatigue fracture occurred. It is conceivable that the increased steam flow passing through the branches caused a self-induced vibration with the propagation of sound wave into the steam-dome. The resonance among the structure, flow and the pressure fluctuation resulted in the breakages. To understand the basic mechanism of the resonance, previous researches were done by a point measurement of the pressure and by a phase averaged measurement of the flow, while it was difficult to detect the interaction among them by the conventional method. In this study, Dynamic Particle Image Velocimetry (PIV) System was applied to investigate the effect of sound on natural convection and forced convection. Especially, when the phases of acoustic sources were different, various acoustic wave effects were checked. (author)

  13. Non linear analysis of out of phase oscillations in boiling water reactors

    International Nuclear Information System (INIS)

    Out of phase oscillations have been observed recently in many boiling water reactors during stability tests and also in start-up conditions. Many authors have attempted to explain these regional oscillations, but the explanations given are not complete. In this paper, we develop a non-linear phenomenological model that can explain, both in phase and out of phase oscillations. The neutronic loop has been described on the basis of an expansion in terms of λ-modes. Furthermore, for a semiquantitative representation of the dynamics, reduced order model have been obtained reducing the number of regions, modes and energy groups considered in the problem. In this line, we propose a model that qualitatively explains the dynamic behavior of these oscillations verifying that in phase oscillations only appear when the azimuthal model has not enough thermal-hydraulic feedback to overcome the eigenvalue separation and also, that it is possible that self-sustained out of phase oscillations arise due to the different thermal-hydraulic properties of the two reactor core lobes, if the modal reactivities have appropriate feedback gains. (author)

  14. New strategies of reloads design and models of control bars in boiling water reactors

    International Nuclear Information System (INIS)

    In this work the results obtained when analyzing new strategies in the reload designs of nuclear fuel and models of control bars, for boiling water reactors are presented. The idea is to analyze the behaviour of the reactor during an operation cycle, when the heuristic rules are not used (commonly used by expert engineers in both designs). Specifically was analyzed the rule of low leak and the load strategy Control Cell Core for the design of a fuel reload. In a same way was analyzed the rule of prohibiting the use of the intermediate positions in the control bars, as well as the construction of bar models based on load strategies type Control Cell Core. In the first analysis a balance and transition cycle were used. For the second analysis only a transition cycle was used, firstly with the reloads designed in the first analysis and later on with reloads built by other methods. For the simulation of the different configurations proposed in both cases, was used the code Simulate-3. To obtain the designs in both studies, the heuristic techniques or neural networks and taboo search were used. The obtained results show that it can be omitted of some rules used in the ambit for the mentioned designs and even so to obtain good results. To carry out this investigation was used Dell work station under Li nux platform. (Author)

  15. Enhancement of CHF water subcooled flow boiling in tubes using helically coiled wires

    Science.gov (United States)

    Celata, G. P.; Cumo, M.; Mariani, A.

    1994-01-01

    The present paper reports the results of an experimental investigation about the occurrence of the critical heat flux (CHF) in subcooled flow boiling of water, carried out to ascertain the influence of thermal hydraulic parameters on CHF under conditions typical of themronuclear fusion divertor thermal hydraulic design. Helically coiled wires were used as turbulence promoters to enhance the CHF with respect to the smooth channel. Geometric characteristics of stainless steel 304 Type test sections were: 6.0 and 8.0 mm i.d., 0.25 mm wal thickness, 0.1 and 0.15 m heated length, horizontal and vertical (upflow) position. Test sections were uniformly heated using d.c. current. A maximum CHF of about 30 MW/sq m was reached with smooth tubes under the following conditions: T(sub in) = 30 C, p = 4.6 MPa, u = 10 m/s, D = 8.0 mm, L = 0.1 m. Helically coiled wires (d = 1.0 mm, pitch = 20.0 mm) allowed an increase of the CHF up to 50%, with reference to smooth channels, coupled with a moderate increase of pressure drop (down to 25%). Pressure revealed a negative effect on the efficiency of turbulence promoters. No observable influence of the channel orientation was detected.

  16. Physical insight in the burnout region of water-subcooled flow boiling

    International Nuclear Information System (INIS)

    The present paper reports the results of a visualization study of the burnout in subcooled flow boiling of water, with square cross-section annular geometry (formed by a central heater rod contained in a duct characterised by a square cross-section). In order to obtain clear pictures of the flow phenomena, he coolant velocity is in the range 3-9 m.s-1 and the resulting heat flux is in the range 7-13 MW.m-2. From video images (single frames were taken with a light exposure of 1 μs) the following general behaviour of vapour bubbles was observed: when the rate of bubble generation is increasing, with bubbles growing in the superheated layer close to the heating wall, their coalescence produces a sort of elongated bubble called a vapour blanket. One of the main features of the vapour blanket is that it is rooted to the nucleation site on the heated surface. Bubble dimensions, as well as those of the hot spots, are given as a function of thermal-hydraulic tested conditions. (authors)

  17. On-line test of power distribution prediction system for boiling water reactors

    International Nuclear Information System (INIS)

    A power distribution prediction system for boiling water reactors has been developed and its on-line performance test has proceeded at an operating commercial reactor. This system predicts the power distribution or thermal margin in advance of control rod operations and core flow rate change. This system consists of an on-line computer system, an operator's console with a color cathode-ray tube, and plant data input devices. The main functions of this system are present power distribution monitoring, power distribution prediction, and power-up trajectory prediction. The calculation method is based on a simplified nuclear thermal-hydraulic calculation, which is combined with a method of model identification to the actual reactor core state. It has been ascertained by the on-line test that the predicted power distribution (readings of traversing in-core probe) agrees with the measured data within 6% root-mean-square. The computing time required for one prediction calculation step is less than or equal to 1.5 min by an HIDIC-80 on-line computer

  18. Confinement by Carbon Nanotubes Drastically Alters the Boiling and Critical Behavior of Water Droplets

    OpenAIRE

    Chaban, Vitaly V.; Prezhdo, Victor V.; Prezhdo, Oleg V.

    2012-01-01

    Vapor pressure grows rapidly above the boiling temperature, and past the critical point liquid droplets disintegrate. Our atomistic simulations show that this sequence of events is reversed inside carbon nanotubes (CNT). Droplets disintegrate first and at low temperature, while pressure remains small. The droplet disintegration temperature is independent of the CNT diameter. In contrast, depending on CNT diameter, a temperature that is much higher than the bulk boiling temperature is required...

  19. Burnout in subcooled flow boiling of water. A visual experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Celata, G.P.; Mariani, A.; Zummo, G. [ENEA, Engineering Div., National Institute of Thermal Fluid-Dynamics, Rome (Italy); Cumo, M. [University of Rome la Sapienza, Rome (Italy)

    2000-12-01

    The objective of the present work is to perform a photographic study of the burnout in highly subcooled flow boiling, in order to provide a qualitative description of the flow pattern under different conditions of boiling regime: ONB (onset of nucleate boiling), subcooled flow boiling and thermal crisis. In particular, the flow visualisation is focused on the phenomena occurring on the heated wall during the thermal crisis up to the physical burnout of the heater. Vapour bubble parameters are measured from flow images recorded, while the wall temperature is measured with an indirect method, by recording the heater elongation during all flow regimes studied. The combination of bubble parameters and wall temperature measurements as well as direct observations of the flow pattern, for all flow regimes, are collected in graphs which provide a useful global point of view of boiling phenomena, especially during boiling crisis. Under these conditions, a detailed analysis of the mechanisms leading to the critical heat flux is reported, and the so called events sequence, from thermal crisis occurrence up to heater burnout, is illustrated. (authors)

  20. Burnout in subcooled flow boiling of water. A visual experimental study

    International Nuclear Information System (INIS)

    The objective of the present work is to perform a photographic study of the burnout in highly subcooled flow boiling, in order to provide a qualitative description of the flow pattern under different conditions of boiling regime: ONB (onset of nucleate boiling), subcooled flow boiling and thermal crisis. In particular, the flow visualisation is focused on the phenomena occurring on the heated wall during the thermal crisis up to the physical burnout of the heater. Vapour bubble parameters are measured from flow images recorded, while the wall temperature is measured with an indirect method, by recording the heater elongation during all flow regimes studied. The combination of bubble parameters and wall temperature measurements as well as direct observations of the flow pattern, for all flow regimes, are collected in graphs which provide a useful global point of view of boiling phenomena, especially during boiling crisis. Under these conditions, a detailed analysis of the mechanisms leading to the critical heat flux is reported, and the so called events sequence, from thermal crisis occurrence up to heater burnout, is illustrated. (authors)

  1. Application of water jet peening on BWR reactor internals with cracked surfaces

    International Nuclear Information System (INIS)

    Water Jet Peening (WJP) has been widely applied to Japanese nuclear power plants since 1999, as an approved mechanical mitigation technique against stress corrosion cracking (SCC) on materials used for nuclear reactors. Existing laboratory experience and analysis indicated that WJP had no negative impact on pre-existing cracks, such as crack propagation during its application, although there was no field experience of applying WJP on cracked surfaces. Recently, The Japan Atomic Power Company (JAPC) and Hitachi-GE Nuclear Energy, Ltd. (HGNE) have successfully applied WJP on cracked surfaces, where the cracks left as is with the requirement that they should be inspected for sizing by UT periodically to monitor the each crack propagation according to the regulator's direction. (author)

  2. Recent observations on the evolution of secondary-phase particles in zircaloy-2 under irradiation in a BWR to high burn-up

    Energy Technology Data Exchange (ETDEWEB)

    Abolhassani, S.; Graber, T.; Gavillet, D.; Groeschel, F

    2000-07-01

    The influence of radiation on the corrosion of the fuel claddings in a Light Water Reactor (LWR) has been the subject of many investigations, and different aspects of the overall phenomena have been studied by different techniques. Analysis of the evolution of Secondary-Phase Particles (SPPs) for different periods of immersion of the cladding in the reactor enables the rate of corrosion to the structure of the material to be correlated. In the case of Zircaloy-2 in a Boiling Water Reactor (BWR), SPPs are dissolved under irradiation, and their dissolution affects the rate of oxidation and other correlated phenomena. In recent studies, the Zircaloy-2 in claddings loaded in the Leibstadt BWR are analysed after one, three and five cycles. Results are presented, and give an account of the changes which occurred in the materials under irradiation. (authors)

  3. BWR Source Term Generation and Evaluation

    International Nuclear Information System (INIS)

    This calculation is a revision of a previous calculation (Ref. 7.5) that bears the same title and has the document identifier BBAC00000-01717-0210-000061. The purpose of this revision is to remove TBV (to-be-verified) -41 10 associated with the output files of the previous version (Ref. 7.30). The purpose of this and the previous calculation is to generate source terms for a representative boiling water reactor (BWR) spent nuclear fuel (SNF) assembly for the first one million years after the SNF is discharged from the reactors. This calculation includes an examination of several ways to represent BWR assemblies and operating conditions in SAS2H in order to quantify the effects these representations may have on source terms. These source terms provide information characterizing the neutron and gamma spectra in particles per second, the decay heat in watts, and radionuclide inventories in curies. Source terms are generated for a range of burnups and enrichments (see Table 2) that are representative of the waste stream and stainless steel (SS) clad assemblies. During this revision, it was determined that the burnups used for the computer runs of the previous revision were actually about 1.7% less than the stated, or nominal, burnups. See Section 6.6 for a discussion of how to account for this effect before using any source terms from this calculation. The source term due to the activation of corrosion products deposited on the surfaces of the assembly from the coolant is also calculated. The results of this calculation support many areas of the Monitored Geologic Repository (MGR), which include thermal evaluation, radiation dose determination, radiological safety analyses, surface and subsurface facility designs, and total system performance assessment. This includes MGR items classified as Quality Level 1, for example, the Uncanistered Spent Nuclear Fuel Disposal Container (Ref. 7.27, page 7). Therefore, this calculation is subject to the requirements of the Quality

  4. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Classification of decommissioning wastes. Addendum 2

    International Nuclear Information System (INIS)

    The radioactive wastes expected to result from decommissioning of the reference boiling water reactor power station are reviewed and classified in accordance with 10 CFR 61. The 18,949 cubic meters of waste from DECON are classified as follows: Class A, 97.5%; Class B, 2.0%; Class C, 0.3%. About 0.2% (47 cubic meters) of the waste would be generally unacceptable for disposal using near-surface disposal methods

  5. Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-30

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.

  6. Absence of genotoxic activity from milk and water boiled in microwave oven in somatic cells from Drosophila melanogaster

    International Nuclear Information System (INIS)

    This paper reports an experiment for evaluation of the possible genotoxic effects of food prepared in a microwave oven, through the mutation test and somatic recombination, in wings of Drosophila melanogaster. Two crossing have been performed: a standard cross-ST and a high bioactivation cross - HB resulting in marked trans -heterozygote descendents (MH) and balanced heterozygotes (BH). The 72 hours larvas were fed with water and milk boiled both in the microwave oven and in the traditional way. The MH individual wings were analyzed, where the spots can be induced either by mutation or mitotic recombination. The experiment presented negative results related to the genotoxic effects of the water and milk boiled using the microwave oven, in MH descendents of both crossing. Therefore, under these experimental conditions, genotoxic activity were not presented by milk and water boiled in the microwave oven. However, an extensive study using different techniques is necessary to investigate the action of the food prepared in the microwave oven on the genetic material

  7. Two-phase flow in the upper plenum of a boiling water nuclear reactor

    International Nuclear Information System (INIS)

    The end part of the Emergency Core Spray System (ECSS) of the Boiling Water Reactors (BWRs) at Forsmark Nuclear Power Plant (NPP) is situated in the Upper Plenum. It consists of a pipe network equipped with water injection nozzles. In case of Lost-of-Coolant Accidents (LOCAs), the ECSS should maintain the core covered by water and, at the same time, rapidly cool and decompress the reactor by means of cold water injection. In similar reactors, some welds belonging to the ECSS support have, after a period of time, shown crack indications. Inspection, repair or replacement of these welds is time consuming and expensive. For this reason, it has now been decided to permanently remove the end part of the ECSS and to replace it by water injection in the Downcomer. However, this removal should not be accompanied by undesirable effects like an increase in the moisture of the steam used for operating the turbines. To investigate the effect of this removal on the steam moisture, a CFD analysis of the two-phase flow in the Upper Plenum of Unit 3, with and without ECSS, has been carried out by means of a two-phase Euler model in FLUENT 6.0. The inlet conditions are given by an analysis of the core kinetics and thermal hydraulics by mean of the POLCA-code. The outlet conditions, i. e. the steam separator pressure drops, are given by empirical correlations from the experiments carried out at the SNORRE facility. The predicted the mass flow-rates to each separator, together with empirical correlations for the moisture content of the steam leaving the separators and the steam dryer, indicate a slight decrease in the steam moisture when the ECSS is removed. Also, a minor decrease in pressure losses over the Upper Plenum is achieved with this removal. On the other hand, rounding the sharp edges of the inlet openings to the steam separators at the shroud cover may give a large reduction in pressure losses

  8. Coolant Density and Control Blade History Effects in Extended BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian J [ORNL; Marshall, William BJ J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Martinez-Gonzalez, Jesus S [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the US Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (keff) calculations and predicted spent fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date investigating some aspects of extended BUC. (The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper.) Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC: (1) the effect of axial void profile and (2) the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of a modern operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. Although a single cycle does not provide complete data, the data obtained are sufficient to determine the primary effects and to identify conservative modeling approaches. These data were used in a study of the effect of axial void profile. The first stage of the study was determination of the necessary moderator density temporal fidelity in depletion modeling. After the required temporal fidelity was established, multiple void profiles were used to examine the effect on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied was control blade history. Control blades are inserted in

  9. BWR type nuclear reactor

    International Nuclear Information System (INIS)

    Purpose: To simplify the structure of an emergency core cooling system while suppressing the flow out of coolants upon rapture accidents in a coolant recycling device of BWR type reactors. Constitution: Recirculation pumps are located at a position higher than the reactor core in a pressure vessel, and the lower plenum is bisected vertically by a partition plate. Further, a gas-liquid separator is surrounded with a wall and the water level at the outer side of the wall is made higher than the water level in the inside of the wall. In this structure, coolants are introduced from the upper chamber in the lower plenum into the reactor core, and the steams generated in the reactor core are separated in the gas-liquid separator, whereby the separated liquid is introduced as coolants by way of the inner chamber into the lower chamber of the lower plenum and further sent by way of the outer chamber into the reactor core. Consequently, idle rotation of the recycling pumps due to the flow-in of saturated water is prevented and loss of coolants in the reactor core can also be prevented upon raptures in the pipeway and the driving section of the pump connected to the pressure vessel and in the bottom of the pressure vessel. (Horiuchi, T.)

  10. Performance studies of a new core cooling monitor in a boiling water reactor

    International Nuclear Information System (INIS)

    The paper describes the performance studies of a new core cooling monitor (electrical cylindrical heater) for BWRs. Such a detector has been successfully tested at various elevations, including the lower plenum, in the Barsebaeck nuclear power plant under normal operating conditions, and also in various environments in a 160 bar loop (with sudden uncoveries) and in the laboratory (up to 1265 C). It can be operated in two modes: the core cooling mode and the temperature mode, where it actually acts as a thermometer. It currently appears ready for implementation in BWR installations. (orig.)

  11. Effects of hydrogen water chemistry on corrosion fatigue behavior of cold-worked 304L stainless steel in simulated BWR coolant environments

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, M.F., E-mail: mfchiang@iner.gov.tw [Institute of Nuclear Energy Research, Division of Nuclear Fuels and Materials, Lungtan, Taoyuan 325, Taiwan (China); Young, M.C.; Huang, J.Y. [Institute of Nuclear Energy Research, Division of Nuclear Fuels and Materials, Lungtan, Taoyuan 325, Taiwan (China)

    2011-04-15

    Corrosion fatigue behavior of stainless steel 304L (SS304L) in a simulated BWR coolant with hydrogen injection was investigated. Hydrogen water chemistry slightly mitigated the corrosion fatigue degradation of the as-received SS304L specimens, but, on the contrary, it slightly increased the corrosion fatigue crack growth rates (CFCGRs) of the cold-worked specimens. All the CFCGR-tested specimens showed similar fracture features, except for the amounts of deposited corrosion debris. The results indicated that decreasing the oxygen concentration of water environment is not an effective measure to suppress the fatigue crack growth rate of cold-worked SS304L. The CFCGRs of the SS304L were determined by an interaction between corrosion, oxide-induced crack closure and cold work in corrosive environments. At a specific level of reduction, cold work could enhance the corrosion fatigue resistance of SS304 both in the air-saturated and HWC coolant environments.

  12. Effects of hydrogen water chemistry on corrosion fatigue behavior of cold-worked 304L stainless steel in simulated BWR coolant environments

    Science.gov (United States)

    Chiang, M. F.; Young, M. C.; Huang, J. Y.

    2011-04-01

    Corrosion fatigue behavior of stainless steel 304L (SS304L) in a simulated BWR coolant with hydrogen injection was investigated. Hydrogen water chemistry slightly mitigated the corrosion fatigue degradation of the as-received SS304L specimens, but, on the contrary, it slightly increased the corrosion fatigue crack growth rates (CFCGRs) of the cold-worked specimens. All the CFCGR-tested specimens showed similar fracture features, except for the amounts of deposited corrosion debris. The results indicated that decreasing the oxygen concentration of water environment is not an effective measure to suppress the fatigue crack growth rate of cold-worked SS304L. The CFCGRs of the SS304L were determined by an interaction between corrosion, oxide-induced crack closure and cold work in corrosive environments. At a specific level of reduction, cold work could enhance the corrosion fatigue resistance of SS304 both in the air-saturated and HWC coolant environments.

  13. Determination of local boiling in light water reactors by correlation of the neutron noise

    International Nuclear Information System (INIS)

    The power limit of swimming-pool type reactors depends on the phenomenon of the appearance of burn-out. In order to determine this limit we have attempted to detect the local boiling which usually occurs before the burn out. Local boiling has been simulated by an electrically heated plate placed in the core of the reactor Siloette. The study of local boiling, which is based on the properties of the correlation functions for the neutron noise of detectors placed in the core, shows that a privileged frequency occurs in the power spectrum of the noise. It is intended in the future to determine the influence of various parameters on this characteristic frequency. (author)

  14. Study of Pu consumption in advanced light water reactors: Evaluation of GE advanced boiling water reactor plants - compilation of Phase 1B task reports

    International Nuclear Information System (INIS)

    This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval

  15. Study of Pu consumption in advanced light water reactors: Evaluation of GE advanced boiling water reactor plants - compilation of Phase 1B task reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-15

    This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.

  16. Numerical thermal analysis of water's boiling heat transfer based on a turbulent jet impingement on heated surface

    Science.gov (United States)

    Toghraie, D.

    2016-10-01

    In this study, a numerical method for simulation of flow boiling through subcooled jet on a hot surface with 800 °C has been presented. Volume fraction (VOF) has been used to simulate boiling heat transfer and investigation of the quench phenomena through fluid jet on a hot horizontal surface. Simulation has been done in a fixed Tsub=55 °C, Re=5000 to Re=50,000 and also in different Tsub =Tsat -Tf between 10 °C and 95 °C. The effect of fluid jet velocity and subcooled temperature on the rewetting temperature, wet zone propagation, cooling rate and maximum heat flux has been investigated. The results of this study show that by increasing the velocity of fluid jet of water, convective heat transfer coefficient at stagnation point increases. More ever, by decreasing the temperature of the fluid jet, convective heat transfer coefficient increases.

  17. A dry-spot model for the prediction of critical heat flux in water boiling in bubbly flow regime

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Sang Jun; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents a prediction of critical heat flux (CHF) in bubbly flow regime using dry-spot model proposed recently by authors for pool and flow boiling CHF and existing correlations for forced convective heat transfer coefficient, active site density and bubble departure diameter in nucleate boiling region. Without any empirical constants always present in earlier models, comparisons of the model predictions with experimental data for upward flow of water in vertical, uniformly-heated round tubes are performed and show a good agreement. The parametric trends of CHF have been explored with respect to variations in pressure, tube diameter and length, mass flux and inlet subcooling. 16 refs., 6 figs., 1 tab. (Author)

  18. PWR and BWR spent fuel assembly gamma spectra measurements

    Science.gov (United States)

    Vaccaro, S.; Tobin, S. J.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Hu, J.; Schwalbach, P.; Sjöland, A.; Trellue, H.; Vo, D.

    2016-10-01

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative-Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  19. Physicochemical and Sensory Properties of Boiled Prosopis africana Seed Endosperm Macerated in Various Ethanol-water Mixtures

    Directory of Open Access Journals (Sweden)

    James E. Obiegbuna

    2013-09-01

    Full Text Available The processing of boiled Prosopis africana endosperm for better utilization using ethanol-water mixtures was explored. Prosopis africana seeds were boiled for 5 h to softness and the endosperm fraction separated from the kernel (cotyledon and the hull. The endosperm was divided into five equal parts which were individually macerated in absolute (Abs ethanol, 80, 60 and 40% ethanol in water prior to sun-drying (32±2°C, 3 days. The fifth sample, which served as control, was left untreated with ethanol. The samples were ground using a hand milling machine and analyzed for the proximate composition, water and oil absorption capacities, foaming capacity and foam stability, bulk density, emulsion activity and stability, colour preference, texture preference and overall acceptability. The results revealed that treatment of the endosperm significantly affected the moisture, protein, fat, ash and carbohydrate contents; water and oil absorption capacities, foaming capacity and foam stability; and the sensory properties. The moisture and protein contents, oil absorption capacity, foam stability, appearance, texture and overall acceptability of endosperm treated with 40% ethanol in water differed significantly (p<0.05 from that treated with absolute ethanol. There was also significant (p<0.05 differences in moisture, protein and carbohydrate contents, oil absorption capacity and foam stability of the 40% ethanol in water treated endosperm and the control. Slightly above 40% ethanol in water (50-60% should be used to macerate Prosopis africana endosperm to reduce the cost of using absolute ethanol.

  20. Measurement of void fraction in flow boiling of ZnO–water nanofluids using image processing technique

    Energy Technology Data Exchange (ETDEWEB)

    Rana, K.B., E-mail: kunj.216@gmail.com [Department of Mechanical Engineering, Malaviya National Institute of Technology, Jaipur (India); Agrawal, G.D.; Mathur, J. [Department of Mechanical Engineering, Malaviya National Institute of Technology, Jaipur (India); Puli, U. [Faculty of Mechanical Engineering, Department of Technical Education, Government of Andhra Pradesh, Hyderabad (India)

    2014-04-01

    Highlights: • Void fraction during flow boiling of nanofluids measured using optical techniques. • Bubble behavior of nanofluids was investigated and compared with water. • Nanofluids showed lower void fraction as compared to water. • Void fraction decreases with increasing nanoparticle concentration and flow rate. • Void fraction increases with heat flux and axial location of heated length. - Abstract: In recent years, nanofluids have been an active area of research in many engineering applications, especially for nuclear reactor safety systems due to their enhanced thermal properties as a coolant. In this study, experiments were performed in subcooled flow boiling of water and ZnO–water nanofluids with different nanoparticle concentrations (0.001–0.01 vol.%) in horizontal annulus at heat fluxes varying from 100 to 550 kW/m{sup 2} and flow rates from 0.1 to 0.175 lps at 1 bar inlet pressure and constant subcooling of 20 °C to determine the void fraction by image processing technique. Parametric effects of nanoparticle volume fraction, heat flux, flow rate and axial location of heater rod on void fraction were studied. Bubble images during flow boiling were captured with high speed visualization and analyzed by National Instruments IMAQ Vision Builder 6.1 image processing software. Results show that void fraction decreases up to 86% with the use of nanofluid in place of water and it also decreases with increasing nanoparticle concentration and flow rate, whereas increase in heat flux and axial location of heater rod have opposite effect.

  1. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - user's manual

    International Nuclear Information System (INIS)

    This document is the User's Manual for the Boiling Water Reactor (BWR), and Simplified Boiling Water Reactor (SBWR) systems transient code RAMONA-4B. The code uses a three-dimensional neutron-kinetics model coupled with a multichannel, nonequilibrium, drift-flux, phase-flow model of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients. Chapter 1 gives an overview of the code's capabilities and limitations; Chapter 2 describes the code's structure, lists major subroutines, and discusses the computer requirements. Chapter 3 is on code, auxillary codes, and instructions for running RAMONA-4B on Sun SPARC and IBM Workstations. Chapter 4 contains component descriptions and detailed card-by-card input instructions. Chapter 5 provides samples of the tabulated output for the steady-state and transient calculations and discusses the plotting procedures for the steady-state and transient calculations. Three appendices contain important user and programmer information: lists of plot variables (Appendix A) listings of input deck for sample problem (Appendix B), and a description of the plotting program PAD (Appendix C). 24 refs., 18 figs., 11 tabs

  2. Analysis of assemblies exchange in the core of a reactor BWR; Analisis del intercambio de ensambles en el nucleo de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Kauil U, J. S. [Universidad Autonoma de Yucatan, Facultad de Ingenieria, Av. Industrias no contaminantes por Anillo Periferico Norte s/n, Apdo. Postal 150 Cordemex, Merida, Yucatan (Mexico); Fuentes M, L.; Castillo M, J. A.; Ortiz S, J. J.; Perusquia del Cueto, R., E-mail: san_dino@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    The performance of the core of a boiling water reactor (BWR) was evaluated when two assemblies are exchanged during the fuel reload in erroneous way. All with the purpose of analyzing the value of the neutrons effective multiplication factor and the thermal limits for an exchange of assemblies. In their realization the mentioned study was based in a transition cycle of the Unit 1 of the nuclear power plant of Laguna Verde. The obtained results demonstrate that when carrying out an exchange between two fuel assemblies in erroneous way, with regard to the original reload, the changes in the neutrons effective multiplication factor do not present a serious problem, unless the exchange has been carried out among a very burnt assembly with one fresh, where this last is taken to the periphery. (Author)

  3. Source term attenuation by water in the Mark I boiling water reactor drywell

    International Nuclear Information System (INIS)

    Mechanistic models of aerosol decontamination by an overlying water pool during core debris/concrete interactions and spray removal of aerosols from a Mark I drywell atmosphere are developed. Eighteen uncertain features of the pool decontamination model and 19 uncertain features of the model for the rate coefficient of spray removal of aerosols are identified. Ranges for values of parameters that characterize these uncertain features of the models are established. Probability density functions for values within these ranges are assigned according to a set of rules. A Monte Carlo uncertainty analysis of the decontamination factor produced by water pools 30 and 50 cm deep and subcooled 0--70 K is performed. An uncertainty analysis for the rate constant of spray removal of aerosols is done for water fluxes of 0.25, 0.01, and 0.001 cm3 H2O/cm2-s and decontamination factors of 1.1, 2, 3.3, 10, 100, and 1000

  4. Forced convective boiling heat transfer of water in vertical rectangular narrow channel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chong, E-mail: chenchong_2012@163.com; Gao, Pu-zhen, E-mail: gaopuzhen@hrbeu.edu.cn; Tan, Si-chao; Chen, Han-ying; Chen, Xian-bing

    2015-09-15

    Highlights: • Chen correlation cannot well predict the coefficient of rectangular channel. • Kim and Mudawar correlation is the best one among the Chen type correlations. • Lazarek and Black correlation predicted 7.0% of data within the ±30% error band. • The new correlation can well predict the coefficient with a small MAE of 14.4%. - Abstract: In order to research the characteristics of boiling flows in a vertical rectangular narrow channel, a series of convective boiling heat transfer experiments are performed. The test section is made of stainless steel with an inner diameter of 2 × 40 mm and heated length of 1100 mm. The 3194 experimental data points are obtained for a heat flux range of 10–700 kW/m{sup 2}, a mass flux range of 200–2400 kg/m{sup 2} s, a system pressure range of 0.1–2.5 MPa, and a quality range of 0–0.8. Eighteen prediction models are used to predict the flow boiling heat transfer coefficient of the rectangular narrow channel and the predicted value is compared against the database including 3194 data points, the results show that Chen type correlations and Lazarek and Black type correlations are not suitable for the rectangular channel very much. The Kim and Mudawar correlation is the best one among the 18 models. A new correlation is developed based on the superposition concept of nucleate boiling and convective boiling. the new correlation is shown to provide a good prediction against the database, evidenced by an overall MAE of 14.4%, with 95.2% and 98.6% of the data falling within ±30% and ±35% error bands, respectively.

  5. Forced convective boiling heat transfer of water in vertical rectangular narrow channel

    International Nuclear Information System (INIS)

    Highlights: • Chen correlation cannot well predict the coefficient of rectangular channel. • Kim and Mudawar correlation is the best one among the Chen type correlations. • Lazarek and Black correlation predicted 7.0% of data within the ±30% error band. • The new correlation can well predict the coefficient with a small MAE of 14.4%. - Abstract: In order to research the characteristics of boiling flows in a vertical rectangular narrow channel, a series of convective boiling heat transfer experiments are performed. The test section is made of stainless steel with an inner diameter of 2 × 40 mm and heated length of 1100 mm. The 3194 experimental data points are obtained for a heat flux range of 10–700 kW/m2, a mass flux range of 200–2400 kg/m2 s, a system pressure range of 0.1–2.5 MPa, and a quality range of 0–0.8. Eighteen prediction models are used to predict the flow boiling heat transfer coefficient of the rectangular narrow channel and the predicted value is compared against the database including 3194 data points, the results show that Chen type correlations and Lazarek and Black type correlations are not suitable for the rectangular channel very much. The Kim and Mudawar correlation is the best one among the 18 models. A new correlation is developed based on the superposition concept of nucleate boiling and convective boiling. the new correlation is shown to provide a good prediction against the database, evidenced by an overall MAE of 14.4%, with 95.2% and 98.6% of the data falling within ±30% and ±35% error bands, respectively

  6. Pre-study of dynamic loads on the internals caused by a large pipe break in a BWR; Foerstudie av stroemningsinducerade laster paa interndelar vid brott i huvudcirkulationskretsarna i BWR

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkiewicz, Jerzy; Lindgren, Anders [Det Norske Veritas Nuclear Technology AB, Stockholm (Sweden)

    2002-12-01

    Det Norske Veritas Nuclear Technology has performed a literature study of dynamic load on a BWR (Boiling Water Reactor) internals caused by a large pipe break. The goal of the study was to improve the knowledge about the physics of phenomena occurring in the RPV (Reactor Pressure Vessel) after pipe break in the main circulation system and also to make a review of calculation methods, models and computer programs including their capabilities when calculating the dynamic loads. The report presents description of relevant parts of a BWR, initial and boundary conditions, and phenomena determining the loads - rapid depressurization and propagation of pressure wave (including none-equilibrium). Furthermore, the report generally describes possible methodologies for calculating the dynamic loads on internals after the pipe break and the experiences from calculations the dynamic loads with different methods (computer programs) including comparisons with experimental data. Fluid-Structure Interaction methodology and its importance for calculation of dynamic loads on reactor internals is discussed based on experimental data. A very intensive research program for studying and calculating the dynamic loads on internals after pipe breaks has been performed in USA and Germany during the seventies and the eighties. Several computer programs have been developed and a number of large-scale experiments have been performed to calibrate the calculation methods. In spite of the fact that all experiments were performed for PWR several experiences should be valid also for BWR. These experiences, connected mainly to capabilities of computer programs calculating dynamic loads, are discussed in the report.

  7. Assessment of hydrogen combustion effects in the BWR/6 - Mark III Standard Plant

    International Nuclear Information System (INIS)

    This report discusses General Electric's study of potential hydrogen combustion effects on the Standard Mark III containment during postulated severe accidents. This study was performed as part of the Probabilistic Risk Assessment of the BWR/6 - Mark III Standard Plant. The methodology of determining the accident event sequence and modeling of the Boiling Water Reactor core response, including hydrogen generation by metal-water reaction, is described. Combustion of hydrogen released to the containment is analyzed and effects on the Mark III containment system are assessed. It is concluded that even for those cases where containment integrity may be lost, the containment function (i.e., limiting offsite doses) is maintained by the drywell and suppression pool

  8. Pre-study of dynamic loads on the internals caused by a large pipe break in a BWR

    International Nuclear Information System (INIS)

    Det Norske Veritas Nuclear Technology has performed a literature study of dynamic load on a BWR (Boiling Water Reactor) internals caused by a large pipe break. The goal of the study was to improve the knowledge about the physics of phenomena occurring in the RPV (Reactor Pressure Vessel) after pipe break in the main circulation system and also to make a review of calculation methods, models and computer programs including their capabilities when calculating the dynamic loads. The report presents description of relevant parts of a BWR, initial and boundary conditions, and phenomena determining the loads - rapid depressurization and propagation of pressure wave (including none-equilibrium). Furthermore, the report generally describes possible methodologies for calculating the dynamic loads on internals after the pipe break and the experiences from calculations the dynamic loads with different methods (computer programs) including comparisons with experimental data. Fluid-Structure Interaction methodology and its importance for calculation of dynamic loads on reactor internals is discussed based on experimental data. A very intensive research program for studying and calculating the dynamic loads on internals after pipe breaks has been performed in USA and Germany during the seventies and the eighties. Several computer programs have been developed and a number of large-scale experiments have been performed to calibrate the calculation methods. In spite of the fact that all experiments were performed for PWR several experiences should be valid also for BWR. These experiences, connected mainly to capabilities of computer programs calculating dynamic loads, are discussed in the report

  9. Impact of modeling Choices on Inventory and In-Cask Criticality Calculations for Forsmark 3 BWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Gonzalez, Jesus S. [Univ. Politecnica de Madrid (Spain); Ade, Brian J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bowman, Stephen M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marshall, William BJ J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Simulation of boiling water reactor (BWR) fuel depletion poses a challenge for nuclide inventory validation and nuclear criticality safety analyses. This challenge is due to the complex operating conditions and assembly design heterogeneities that characterize these nuclear systems. Fuel depletion simulations and in-cask criticality calculations are affected by (1) completeness of design information, (2) variability of operating conditions needed for modeling purposes, and (3) possible modeling choices. These effects must be identified, quantified, and ranked according to their significance. This paper presents an investigation of BWR fuel depletion using a complete set of actual design specifications and detailed operational data available for five operating cycles of the Swedish BWR Forsmark 3 reactor. The data includes detailed axial profiles of power, burnup, and void fraction in a very fine temporal mesh for a GE14 (10×10) fuel assembly. The specifications of this case can be used to assess the impacts of different modeling choices on inventory prediction and in-cask criticality, specifically regarding the key parameters that drive inventory and reactivity throughout fuel burnup. This study focused on the effects of the fidelity with which power history and void fraction distributions are modeled. The corresponding sensitivity of the reactivity in storage configurations is assessed, and the impacts of modeling choices on decay heat and inventory are addressed.

  10. Verification of the Advanced Nodal Method on BWR Core Analyses by Whole-Core Heterogeneous Transport Calculations

    International Nuclear Information System (INIS)

    Recent boiling water reactor (BWR) core and fuel designs have become more sophisticated and heterogeneous to improve fuel cycle cost, thermal margin, etc. These improvements, however, tend to lead to a strong interference effect among fuel assemblies, and it my cause some inaccuracies in the BWR core analyses by advanced nodal codes. Furthermore, the introduction of mixed-oxide (MOX) fuel will lead to a much stronger interference effect between MOX and UO2 fuel assemblies. However, the CHAPLET multiassembly characteristics transport code was developed recently to solve two-dimensional cell-heterogeneous whole-core problems efficiently, and its results can be used as reference whole-core solutions to verify the accuracy of nodal core calculations. In this paper, the results of nodal core calculations were compared with their reference whole-core transport solutions to verify their accuracy (in keff, assembly power and pin power via pin power reconstruction) of the advanced nodal method on both UO2 and MOX BWR whole-core analyses. Especially, it was investigated if there were any significant differences in the accuracy between MOX and UO2 results

  11. Experimental investigation of control absorber blade effects in a modern 10x10 BWR assembly

    Energy Technology Data Exchange (ETDEWEB)

    Jatuff, F.; Grimm, P.; Murphy, M.; Luethi, A.; Seiler, R.; Joneja, O.; Meister, A.; Geemert, R. van; Brogli, R.; Chawla, R. [Paul Scherrer Inst., CH-5232 Villigen PSI (Switzerland); Williams, T. [EGL Laufenburg (Switzerland); Helmersson, S. [Westinghouse Atom (Sweden)

    2001-03-01

    The accurate estimation of reactor physics parameters related to the presence of cruciform absorber blades. In Boiling Water Reactors (BWR) is important for safety assessment, and for achieving a flexible operation during the cycle. Characteristics which are affected strongly include the power distribution for controlled core regions and its impact on linear heat generation rate margins, as well as the build-up of plutonium, and its influence on core excess reactivity and the reactivity worth of the shutdown system. PSI and the Swiss Nuclear Utilities (UAK) are conducting an experimental reactor physics programme related to modern Light Water Reactor (LWR) fuel assemblies, as employed in the Swiss nuclear power plants: the so-called. LWR-PROTEUS Phase I project. A significant part of this project has been devoted to the characterization of highly heterogeneous BWR fuel elements in the presence of absorber blades. The paper presents typical results for the performance of modern lattice codes in the estimation of controlled assembly reaction rate distributions, the sensitivity to the geometrical and material characterization, and a preliminary comparison of reflected-test-zone calculations with experimental reaction rate distributions measured in a Westinghouse SVEA-96+ assembly under full-density water moderation conditions in the presence of Westinghouse boron-carbide absorber blades. (author)

  12. Once-through thorium fuel cycle evaluation for TVA's Browns Ferry-3 Boiling Water Reactor

    International Nuclear Information System (INIS)

    This report documents benchmark evaluations to test thorium lattice predictive methods and neutron cross sections against available data and summarizes specific evaluations of the once-through thorium cycle when applied to the Browns Ferry-3 BWR. It was concluded that appreciable uncertainties in thorium cycle nuclear data cloud the ability to reliably predict the fuel cycle performance and that power reactor irradiations of ThO2 rods in BWRs are desirable to resolve uncertainties. Benchmark evaluations indicated that the ENDF/B-IV data used in the evaluations should cause an underprediction of U-233/ThO2 fuel reactivity, and, therefore, the results of the preliminary evaluations completed under the program should be conservative

  13. Performance studies of a new core cooling monitor in a boiling water reactor

    International Nuclear Information System (INIS)

    Performance studies of a new type of core cooling monitors have been carried out in the Barsebaeck Nuclear Power Station during the operation periods 1988-10-04 to 1989-07-05, 1989-08-03 to 1990-09-05 and 1990-09-28 to 1991-07-04. The results showed that the monitors, which were placed inside the reactor core, are very sensitive to variations of the reactor operating conditions, and that 34 months of irradiation did not influence the signals from the monitors. Experiments were also carried out in a 160 bar loop, where sudden uncovers of the monitors were achieved by decreasing the liquid level of the coolant surrounding the monitors. The experiments included the pressures of 5, 20, 50, 70 and 155 bar, and the responses to uncover were in the ranges between 11 and 82 mV/sec or a total step change of 2 V at typical BWR conditions. This is of the order of two decades higher than the responses from monitors based on thermocouple readings. The monitors can be operated in two modes, the core cooling mode and the temperature mode. In the former mode the electrical current is 3-4 A, and in the latter mode, where the monitor actually serves as a thermometer, the current is in the order of 50-100 mA. In the laboratory the monitors have been studied for temperatures up to 1265 deg. C, which is very useful in case of a severe reactor accident. Thus, during such events the temperatures in the reactor core could be followed up to this level and the monitors could also be used to activate certain safety equipment. The function as well as the design of the instrument is verified in laboratory experiments, computer calculations and reactor tests and is now ready for implementation in the BWR instrumentation. In summary: 1. The proposed monitor can operate in two modes; the core cooling mode and the temperature mode. 2. Laboratory studies have shown that the responses to uncover are two decades higher than signals from monitors based on thermocouple readings. 3. No effects of

  14. A one dimensional model for the Laguna Verde boiling water reactor

    International Nuclear Information System (INIS)

    This paper presents a BWR model that includes the reactor vessel, two independent recirculation loops, the steam line, the reactor protection system and the pressure and feedwater control systems. The model has one-dimensional core thermalhydraulics and can handle reverse flow in the recirculation loops. Its point-kinetics core approximation has provided excellent results for all the steady state and operational transient conditions analyzed. Other features include a decay heat module, a heat transfer module with one node for the fuel and another for the cladding, some emergency systems, and all the valves associated with the steam lines. The modelling takes into account all the necessary details, while maintaining simplicity in the mathematical aspects: resulting in a flexible code with friendly interactive capabilities. Some specific transients run for the Laguna Verde Nuclear Power Plant are presented

  15. Comparing Simulation Results with Traditional PRA Model on a Boiling Water Reactor Station Blackout Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Zhegang Ma; Diego Mandelli; Curtis Smith

    2011-07-01

    A previous study used RELAP and RAVEN to conduct a boiling water reactor station black-out (SBO) case study in a simulation based environment to show the capabilities of the risk-informed safety margin characterization methodology. This report compares the RELAP/RAVEN simulation results with traditional PRA model results. The RELAP/RAVEN simulation run results were reviewed for their input parameters and output results. The input parameters for each simulation run include various timing information such as diesel generator or offsite power recovery time, Safety Relief Valve stuck open time, High Pressure Core Injection or Reactor Core Isolation Cooling fail to run time, extended core cooling operation time, depressurization delay time, and firewater injection time. The output results include the maximum fuel clad temperature, the outcome, and the simulation end time. A traditional SBO PRA model in this report contains four event trees that are linked together with the transferring feature in SAPHIRE software. Unlike the usual Level 1 PRA quantification process in which only core damage sequences are quantified, this report quantifies all SBO sequences, whether they are core damage sequences or success (i.e., non core damage) sequences, in order to provide a full comparison with the simulation results. Three different approaches were used to solve event tree top events and quantify the SBO sequences: “W” process flag, default process flag without proper adjustment, and default process flag with adjustment to account for the success branch probabilities. Without post-processing, the first two approaches yield incorrect results with a total conditional probability greater than 1.0. The last approach accounts for the success branch probabilities and provides correct conditional sequence probabilities that are to be used for comparison. To better compare the results from the PRA model and the simulation runs, a simplified SBO event tree was developed with only four

  16. Study of Pu consumption in Advanced Light Water Reactors. Evaluation of GE Advanced Boiling Water Reactor plants

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-13

    Timely disposal of the weapons plutonium is of paramount importance to permanently safeguarding this material. GE`s 1300 MWe Advanced Boiling Water Reactor (ABWR) has been designed to utilize fill] core loading of mixed uranium-plutonium oxide fuel. Because of its large core size, a single ABWR reactor is capable of disposing 100 metric tons of plutonium within 15 years of project inception in the spiking mode. The same amount of material could be disposed of in 25 years after the start of the project as spent fuel, again using a single reactor, while operating at 75 percent capacity factor. In either case, the design permits reuse of the stored spent fuel assemblies for electrical energy generation for the remaining life of the plant for another 40 years. Up to 40 percent of the initial plutonium can also be completely destroyed using ABWRS, without reprocessing, either by utilizing six ABWRs over 25 years or by expanding the disposition time to 60 years, the design life of the plants and using two ABWRS. More complete destruction would require the development and testing of a plutonium-base fuel with a non-fertile matrix for an ABWR or use of an Advanced Liquid Metal Reactor (ALMR). The ABWR, in addition, is fully capable of meeting the tritium target production goals with already developed target technology.

  17. Transient behavior of natural circulation for boiling two-phase flow - experimental results

    International Nuclear Information System (INIS)

    The safety of current light water reactors (LWRs) is too dependent on active engineered safety features to enhance their reliability greatly. Many concepts have been proposed for the next generation of LWRs in which passive safety functions are pursued. A natural-circulation boiling water reactor (BWR), such as the simplified BWR SBWR, is one such proposal. From the viewpoint of core stability, the power density of natural-circulation BWRs is lower than that of current BWRs and their fuel pin length is shorter, so that reactor diameter is larger. Moreover, the size of a reactor vessel is limited by the ability of the present machine, and its output power may be lower than 600 MW(electric). As Japan is a relatively small country, it is difficult to find reactor sites, and Japanese electric power companies are not inclined to introduce small or medium-sized reactors. If the merits of eliminating circulation pumps are truly understood, however, it seems that a series of power generators will be supported by industry and natural-circulation BWRs may thus be introduced in Japan. The purpose of this paper is to introduce a discussion on the merits and drawbacks of natural-circulation BWRs. The thermohydraulic behavior of developing processes of natural circulation in boiling two-phase flow has been investigated experimentally by simulating normal and abnormal start-up conditions

  18. CFD predictions of standby liquid control system mixing in lower plenum of a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Christopher, E-mail: christopher.boyd@nrc.gov; Skarda, Raymond, E-mail: Raymond.skarda@nrc.gov

    2014-11-15

    Highlights: • Computational fluid dynamics analysis of BWR lower plenum. • Mixing and stratification of the standby liquid control system injection. • Scoping study highlights the expected flow paths and limitations of experiments. - Abstract: During an anticipated transient without scram (ATWS) scenario in certain boiling water reactor (BWR) systems, a standby liquid control system (SLCS) is used to inject a sodium pentaborate solution into the reactor system in order to quickly shut down (scram) the reactor without the use of the control rods. Some BWR designs utilize a SLCS that injects through a set of nozzles on a vertical pipe in the peripheral region of the lower plenum of the reactor vessel. During the scenario, system water levels are reduced and natural circulation flow rates down through the jet pump nozzles and up into the core are a small fraction of the rated system flow. It is during this period that the SLCS flows are considered. This work outlines some initial scoping studies completed by the staff at the Nuclear Regulatory Commission (NRC). An attempt at benchmarking the computational fluid dynamics (CFD) approach using a set of available test data from a small facility is outlined. Due to our lack of information related to specific details of the facility geometry along with the limited data available from the test, the benchmark exercise produced only a qualitative basis for selecting turbulence models and mesh density. A CFD model simulating a full-scale reactor system is developed for the lower plenum of a representative BWR/4 design and SLCS flows and mixing are studied under a range of flow conditions. The full-scale BWR simulation builds upon the lessons learned from the benchmark exercise. One challenge for this work is the large size of the domain and the relatively small size of the geometric details such as flow passages and gaps. The geometry is simplified to make meshing feasible by eliminating some of the small features. The

  19. Concept of the core for a small-to-medium-sized BWR that does not use control rods during normal operation

    International Nuclear Information System (INIS)

    A small-to-medium-sized boiling water reactor (BWR) with a natural circulation system is being developed for countries where initial investment funds for construction are limited and electricity transmission networks have not been fully constructed. To lighten operators' work load, a core that does not use control rods during normal operation (control rod-free core) was developed by using a neutronics calculation system coupled with core flow evaluation. The control rod-free core had large core power fluctuation with conventional burnable poison design. The target of core power fluctuation was set to less than 10% and was achieved by optimization of burnable poison arrangement. (author)

  20. Investigations on the extremely low retention of 131I by an iodine filter of a boiling water reactor

    International Nuclear Information System (INIS)

    An extremely low retention was observed of the I-131 contained in the exhaust air, by an iodine filter of a boiling water reactor. After filling the filter with fresh KI impregnated activated carbon (8-12 mesh), the decontamination factor dropped to about 1 within a few days. The extremely low retention of the I-131 was due to the occurrence of unidentified I-131 species in high proportions. By increasing the residence time to about 1 s and using a KI impregnated activated carbon of a smaller size, a somewhat higher retention can be achieved

  1. Air scaling and modeling studies for the 1/5-scale mark I boiling water reactor pressure suppression experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lai, W.; McCauley, E.W.

    1978-01-04

    Results of table-top model experiments performed to investigate pool dynamics effects due to a postulated loss-of-coolant accident (LOCA) for the Peach Bottom Mark I boiling water reactor containment system guided subsequent conduct of the 1/5-scale torus experiment and provided new insight into the vertical load function (VLF). Pool dynamics results were qualitatively correct. Experiments with a 1/64-scale fully modeled drywell and torus showed that a 90/sup 0/ torus sector was adequate to reveal three-dimensional effects; the 1/5-scale torus experiment confirmed this.

  2. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.; Henley, D.R. (Argonne National Lab., IL (USA)); Manion, W.J.; Gordon, J.W. (Nuclear Energy Services, Inc., Danbury, CT (USA))

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs.

  3. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs

  4. Preliminary phenomena identification and ranking tables for simplified boiling water reactor Loss-of-Coolant Accident scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, P.G.; Rohatgi, U.S.; Jo, J.H.; Slovik, G.C.

    1998-04-01

    For three potential Loss-of-Coolant Accident (LOCA) scenarios in the General Electric Simplified Boiling Water Reactors (SBWR) a set of Phenomena Identification and Ranking Tables (PIRT) is presented. The selected LOCA scenarios are typical for the class of small and large breaks generally considered in Safety Analysis Reports. The method used to develop the PIRTs is described. Following is a discussion of the transient scenarios, the PIRTs are presented and discussed in detailed and in summarized form. A procedure for future validation of the PIRTs, to enhance their value, is outlined. 26 refs., 25 figs., 44 tabs.

  5. A simultaneous observation of bubble growth and microlayer behavior for an isolated boiling regime of saturated water

    International Nuclear Information System (INIS)

    The bubble growth rate and microlayer behavior were simultaneously visualized for an isolated boiling regime of saturated water. The increase rate of the bubble volume dropped sharply when the microlayer was totally depleted. However, the contribution of the superheated liquid layer evaporation to the bubble volume increase was comparable to or even higher than that of the microlayer evaporation during the time when the microlayer evaporation was active. The microlayer under the coalesced bubble was much thicker than that under single isolated bubble. (author)

  6. BWR type nuclear power plant and operation method therefor and method of forming oxide membrane on the surface of the constitutional member in contact with water

    International Nuclear Information System (INIS)

    In a BWR type nuclear power plant, an oxide membrane is formed on the surface of the constitutional members of a reactor primary system to be in contact with water while keeping the reactor water at a pH of 7.5 or less based on a room temperature and keeping a temperature of reactor water at 250degC or higher for 250 hours or more and then adding alkaline water to control the pH within a range of from 7.5 to 9.0 based on the room temperature and keeping the reactor water temperature to 250degC or higher for 100 hours or more. This process is conducted during the reactor shut down state and during the operation period from the time of the reactor shut down state to the time of the rated power operation state of the electric power generator. Then, a corrosion resistant oxide membrane with less involvement of radioactive ions can be formed, thereby enabling to improve corrosion resistance of nuclear fuel elements and suppressing the dose rate on the surface of pipelines of a primary coolant system, accordingly, operator's radiation dose rate can be reduced upon periodical inspection. (N.H.)

  7. TRACE Model for Simulation of Anticipated Transients Without Scram in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Cheng L. Y.; Baek J.; Cuadra,A.; Aronson, A.; Diamond, D.; Yarsky, P.

    2013-11-10

    A TRACE model has been developed for using theTRACE/PARCS computational package [1, 2] to simulate anticipated transients without scram (ATWS) events in a boiling water reactor (BWR). The model represents a BWR/5 housed in a Mark II containment. The reactor and the balance of plant systems are modeled in sufficient detail to enable the evaluation of plant responses and theeffectiveness of automatic and operator actions tomitigate this beyond design basis accident.The TRACE model implements features thatfacilitate the simulation of ATWS events initiated by turbine trip and closure of the main steam isolation valves (MSIV). It also incorporates control logic to initiate actions to mitigate the ATWS events, such as water levelcontrol, emergency depressurization, and injection of boron via the standby liquid control system (SLCS). Two different approaches have been used to model boron mixing in the lower plenum of the reactor vessel: modulate coolant flow in the lower plenum by a flow valve, and use control logic to modular.

  8. Experimental and Thermalhydraulic Code Assessment of the Transient Behavior of the Passive Condenser System in an Advanced Boiling Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S.T. Revankar; W. Zhou; Gavin Henderson

    2008-07-08

    The main goal of the project was to study analytically and experimentally the condensation heat transfer for the passive condenser system such as GE Economic Simplified Boiling Water Reactor (ESBWR). The effect of noncondensable gas in condenser tube and the reduction of secondary pool water level to the condensation heat transfer coefficient was the main focus in this research. The objectives of this research were to : 1) obtain experimental data on the local and tube averaged condensation heat transfer rates for the PCCS with non-condensable and with change in the secondary pool water, 2) assess the RELAP5 and TRACE computer code against the experimental data, and 3) develop mathematical model and ehat transfer correlation for the condensation phenomena for system code application. The project involves experimentation, theoretical model development and verification, and thermal- hydraulic codes assessment.

  9. Experimental and Thermalhydraulic Code Assessment of the Transient Behavior of the Passive Condenser System in an Advanced Boiling Water Reactor

    International Nuclear Information System (INIS)

    The main goal of the project was to study analytically and experimentally the condensation heat transfer for the passive condenser system such as GE Economic Simplified Boiling Water Reactor (ESBWR). The effect of noncondensable gas in condenser tube and the reduction of secondary pool water level to the condensation heat transfer coefficient was the main focus in this research. The objectives of this research were to: (1) obtain experimental data on the local and tube averaged condensation heat transfer rates for the PCCS with non-condensable and with change in the secondary pool water, (2) assess the RELAP5 and TRACE computer code against the experimental data, and (3) develop mathematical model and heat transfer correlation for the condensation phenomena for system code application. The project involves experimentation, theoretical model development and verification, and thermal-hydraulic codes assessment

  10. BWR core thermal-hydraulic stability in anticipated transients without SCRAM

    International Nuclear Information System (INIS)

    The potential exists for core thermal hydraulic density wave oscillations to occur in the boiling water reactor (BWR) during anticipated transients without scram (ATWS) events. Conditions which may lead to oscillations in ATWS result either from recirculation pump trip (RPT) from appropriate ATWS signals, or from the failure to scram during core oscillations. A program to evaluate these scenarios will assess the adequacy of the system design and emergency operating procedures relative to the reactor system performance. Evaluation of ATWS events with oscillations is extremely complex, and defining the bases for the analyses is critical to the success of the program. Accurate analysis requires detailed modeling of the sequence of events, the plant configuration, and initial conditions

  11. Development of a parametric containment event tree model for a severe BWR accident

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, T. [OTO-Consulting Ay, Helsinki (Finland)

    1995-04-01

    A containment event tree (CET) is built for analysis of severe accidents at the TVO boiling water reactor (BWR) units. Parametric models of severe accident progression and fission product behaviour are developed and integrated in order to construct a compact and self-contained Level 2 PSA model. The model can be easily updated to correspond to new research results. The analyses of the study are limited to severe accidents starting from full-power operation and leading to core melting, and are focused mainly on the use and effects of the dedicated severe accident management (SAM) systems. Severe accident progression from eight plant damage states (PDS), involving different pre-core-damage accident evolution, is examined, but the inclusion of their relative or absolute probabilities, by integration with Level 1, is deferred to integral safety assessments. (33 refs., 5 figs., 7 tabs.).

  12. Safety/relief valve quencher loads: evaluation for BWR Mark II and III containments

    Energy Technology Data Exchange (ETDEWEB)

    Su, T.M.

    1982-10-01

    Boiling water reactor (BWR) plants are equipped with safety/relief valves (SRVs) to protect the reactor from overpressurization. Plant operational transients, such as turbine trips, will actuate the SRV. Once the SRV opens, the air column within the partially submerged discharge line is compressed by the high-pressure steam released from the reactor. The compressed air discharged into the suppression pool produces high-pressure bubbles. Oscillatory expansion and contraction of these bubbles create hydrodynamic loads on the containment structures, piping, and equipment inside containment. This report presents the results of the staff's evaluation of SRV loads. The evaluation, however, is limited to the quencher devices used in Mark II and III containments. With respect to Mark I containments, the SRV acceptance criteria are presented in NUREG-0661 issued July 1980. The staff acceptance criteria for SRV loads for Mark II and III containments are presented in this report.

  13. Burnout experiment in subcooled forced-convection boiling of water for beam dumps of a high power neutral beam injector

    International Nuclear Information System (INIS)

    Experimental studies were made on burnout heat flux in highly subcooled forced-convection boiling of water for the design of beam dumps of a high power neutral beam injector for Japan Atomic Energy Research Institute Tokamak-60. These dumps are composed of many circular tubes with two longitudinal fins. The tube was irradiated with nonuniformly distributed hydrogen ion beams of 120 to 200 kW for as long as 10 s. The coolant water was circulated at flow velocities of 3 to 7.5 m/s at exit pressures of 0.4 to 0.9 MPa. The burnout and film-boiling data were obtained at local heat fluxes of 8 to 15 MW/m2. These values were as high as 2.5 times larger than those for the circumferentially uniform heat flux case with the same parameters. These data showed insensitivity to local subcooling as well as to pressure, and simple burnout correlations were derived. From these results, the beam dumps have been designed to receive energetic beam fluxes of as high as 5 MW/m2 with a margin of a factor of 2 for burnout

  14. Modelling of subcooled boiling in ATHLET and application in water cooled research reactors

    International Nuclear Information System (INIS)

    A model is implemented to describe the thermodynamic nonequilibrium effects in subcooled boiling regime. The aim is to simulate void distribution and thermodynamic instability, which is practicularly pronounced in research reactors due to high power densities and low system pressures, and to include the influence of the steam formed in this boiling regime on the neutron balance. The model developed considers the competing effects of vaporization and condensation during subcooled boiling. It describes the rate of bubble generation on superheated surfaces and the subsequent condensation of steam in the subcooled liquid. The installed model is validated by postcalculations of two extensive series of experiments. The extended and verified program is used to simulate the Juelich research reactor FRJ-2. For this purpose, a full-scale simulation model of the entire plant is developed ensuring, in particular, a precise reproduction of the geometry and the arrangement of the annular fuel element cooling channels. The modelled reactor plant is first used to simulate normal reactor operation. The resulting steady-state temperature and pressure distributions assuming a thermal power of 23 MW show good agreement with real operating data. Safety investigations are conducted to examine plant behaviour under design-basis accident conditions. This includes failure of all three main coolent pumps with proper and delayed reactor scram. In both cases, the simulation shows that the fuel elements are not endangered in any phase of the transient, although in the event of a delayed scram initial signs of parallel channel instability due to steam formation in the central fuel element are to be observed which, however, only prevails for a short period of 30 ms. (orig./HP)

  15. Development of a water boil-off spent-fuel calorimeter system

    International Nuclear Information System (INIS)

    A calorimeter system was developed to measure decay heat generation rates of unmodified spent fuel assemblies from commercial nuclear reactors. The system was designed, fabricated, and successfully tested using the following specifications: capacity of one BWR or PWR spent fuel assembly; decay heat generation range 0.1 to 2.5 kW; measurement time of < 12 h; and an accuracy of +-10% or better. The system was acceptance tested using a dc reference heater to simulate spent fuel assembly heat generation rates. Results of these tests indicated that the system could be used to measure heat generation rates between 0.5 and 2.5 kW within +- 5%. Measurements of heat generation rates of approx. 0.1 kW were obtained within +- 15%. The calorimeter system has the potential to permit measurements of heat generation rates of spent fuel assemblies and other devices in the 12- to 14-kW range. Results of calorimetry of a Turkey Point spent fuel assembly indicated that the assembly was generating approx. 1.55 kW

  16. In-situ Observation of Boiling Dynamics on Fuel Cladding Surface in Non-pressurized Water Using Acoustic Emission Method

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kaige; Baek, Seung Heon; Shim, Hee-Sang; Hur, Do Haeng; Lee, Deok Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In the PWR primary coolant system, a phenomenon of axial offset anomaly (AOA) can be caused due to accumulated boron hide out in porous CRUD deposition on the fuel cladding surface. Up to now, the CRUD deposition has been well known to be driven by subcooled nucleate boiling (SNB) on the cladding surface based on large scale experimental work. Therefore, monitoring and evaluation of the SNB-phenomenon is an important approach to study the CRUD deposition. Many attempts have been made to study the SNB and CRUD deposition using thermal hydraulic or model calculation. However, a comprehensive understanding of the SNB during CRUD deposition is still far from being realized. Acoustic emission (AE) technique, as an in-situ nondestructive evaluation (NDE) method, has been widely used to monitor the boiling activity in containers and pipes. Accordingly, this work aimed to investigate the exact AE characteristics of SNB-phenomenon on the fuel cladding surface at atmospheric pressure, with the purpose of providing an experimental groundwork for the AE investigation on SNB in high-temperature pressurized coolant system. In this study, we conducted an in-situ experimental observation of the bubble dynamic of SNB in non-pressurized water at atmospheric pressure using AE method. The AE of heater noise was confirmed to cluster between 8 and 26 khz. Three AE groups were detected during the boiling process in the Snob zones. AE group 1 and 3 seemed to be the results of bubble growth and collapse, while bubble departure from the cladding surface was reasonably associated with an isolated AE group 2.

  17. Evaluation of the radial design of fuel cells in an operation cycle of a BWR reactor

    International Nuclear Information System (INIS)

    This work is continuation of one previous in the one that the application of the optimization technique called Tabu search to the radial design of fuel cells of boiling water reactors (BWR, Boiling Water Reactor) is presented. The objective function used in the optimization process only include neutron parameters (k-infinite and peak of radial power) considering the cell at infinite media. It was obtained to reduce the cell average enrichment completing the characteristics of reactivity of an original cell. The objective of the present work is to validate the objective function that was used for the radial design of the fuel cell (test cell), analyzing the operation of a one cycle of the reactor in which fuels have been fresh recharged that contain an axial area with the nuclear database of the cell designed instead of the original cell. For it is simulated it with Cm-Presto the cycle 10 of the reactor operation of the Unit 1 of the Nuclear Power station of Laguna Verde (U1-CNLV). For the cycle evaluation its were applied so much the simulation with the Haling strategy, as the simulation of the one cycle with control rod patterns and they were evaluated the energy generation and several power limits and reactivity that are used as design parameters in fuel reloads of BWR reactors. The results at level of an operation cycle of the reactor, show that the objective function used in the optimization and radial design of the cell is adequate and that it can induce to one good use of the fuel. (Author)

  18. Experimental study of void behavior in a suppression pool of a boiling water reactor during the blowdown period of a loss of coolant accident

    Science.gov (United States)

    Rassame, Somboon

    The possible failure of an Emergency Core Cooling System (ECCS) train due to a large amount of entrained gas in the ECCS pump suction piping in a Loss of Coolant Accident (LOCA) is one of the potential engineering problems faced in a Boiling Water Reactor (BWR) power plant. To analyze potential gas intrusion into the ECCS pump suction piping, the study of void behavior in the Suppression Pool (SP) during the LOCA is necessary. The void fraction distribution and void penetration are considered as the key parameters in the problem analysis. Two sets of experiments, namely, steady-state tests and transient tests were conducted using the Purdue University Multi-Dimensional Integral Test Assembly for ESBWR application (PUMA-E) to study void behavior in the SP during the blowdown. The design of the test apparatus used is based on the scaling analysis from a prototypical BWR containment (MARK-I) with consideration of the downcomer size, the SP water level, and the downcomer water submergence depth. Several instruments were installed to obtain the required experimental data, such as inlet gas volumetric flow, void fraction, pressure, and temperature. For the steady-state tests, the air was injected through a downcomer pipe in the SP in order to simulate the physical phenomena in the SP during the initial blowdown of LOCA. Thirty tests were performed with two different downcomer sizes (0.076 and 0.102 m), various air volumetric flow rates or flux (0.003 to 0.153 m3/s or 0.5 to 24.7 m/s), initial downcomer void conditions (fully filled with water, partially void, and completely void) and air velocity ramp rates (one to two seconds). Two phases of the experiment were observed, namely, the initial phase and the quasi-steady phase. The initial phase produced the maximum void penetration depth; and the quasi-steady phase showed less void penetration with oscillation in the void penetration. The air volumetric flow rate was found to have a minor effect on the void fraction

  19. Contribution to the multidimensional modelling of convective high pressure boiling flows for pressurised water reactors

    International Nuclear Information System (INIS)

    This study is a contribution to the modelling of multidimensional high pressure boiling flows relative to PWR. Numerical simulation of such two-phase flows is considered to be an interesting way for the DNB understanding. The first part of this study exposes a two-dimensional steady state two-phase flows model able to predict velocity and temperature profiles in tube. The mixture balanced equations are used with the eddy diffusivity concept to close the turbulent transport terms. The second part is devoted to the development of the model in the general two dimensional case. Contrary to the steady state model, this model is independent of experimental data and implies the use of an original local homogeneous relaxation model (HRM). The results obtained from the comparison with the data bank DEBORA reveals that in a mixture approach two sub models are sufficient to obtain a physical good description of turbulent boiling flows. Some limitations appear at conditions close to DNB conditions. The turbulent closures and the relaxation time in the HRM model have been clearly identified as the most important and sensitive parameters in the model. (author)

  20. An assessment of in-tube flow boiling correlations for ammonia-water mixtures and their influence on heat exchanger size

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Modi, Anish; Jensen, Jonas Kjær;

    2016-01-01

    on the required heat exchanger size (surface area)is investigated during numerical design. For this purpose, two case studies related to the use of the Kalina cycle are considered: a flue gas based heat recovery boiler for acombined cycle power plant and a hot oil based boiler for a solar thermal power plant......Heat transfer correlations for pool and flow boiling are indispensable for boiler design. The correlations for predicting in-tube flow boiling heat transfer ofammonia-water mixtures are not well established in the open literature and there is a lack of experimental measurements for the full range...... of composition, vapor qualities, fluid conditions, etc. This paper presents a comparison of several flow boiling heat transfer prediction methods (correlations) for ammonia-water mixtures. Firstly, these methods are reviewed and compared at various fluid conditions. The methods include: (1) the ammonia-water...

  1. Semi-automated proper orthogonal decomposition reduced order model non-linear analysis for future BWR stability

    International Nuclear Information System (INIS)

    Highlights: • Techniques within the field of ROMing based on POD are reviewed regarding “well-behaved” applications. • A systematic, general, mostly automated, reduction methodology based on POD is derived. • It is applicable for many classes of dynamical problems including the envisioned BWR application. • Robustness of this approach is demonstrated by a “pathological” test example. • The derived ROM accurately predicts dynamics of transients not included in the data set. - Abstract: Thermal–hydraulic coupling between power, flow rate and density, intensified by neutronics feedback are the main drivers determining the stability behavior of a boiling water reactor (BWR). High-power low-flow conditions in connection with unfavorable power distributions can lead the BWR system into unstable regions where power oscillations can be triggered. This important threat to operational safety requires careful analysis for proper understanding. Current design rules assure admissible operation conditions by exclusion regions determined by numerical calculations and analytical methods based on non-linear states for specific transients. Analyzing an exhaustive parameter space of the non-linear BWR system becomes feasible with methodologies based on reduced order models (ROMs), saving computational cost and improving the physical understanding. A new self-contained methodology is developed, based on the general general proper orthogonal decomposition (POD) reduction technique. It is mostly automated, applicable for generic partial differential equation (PDE) systems, and reduces them in a grid-free manner to a small ordinary differential equation (ODE) system able to capture even non-linear dynamics. This allows a much more extensive analysis of the represented physical system. Symbolic mathematical manipulations are performed automatically by Mathematica routines. A novel and general calibration roadmap is proposed which simplifies choices on specific POD

  2. Boiling of subcooled water in forced convection; Ebullition locale de l'eau en convection forcee

    Energy Technology Data Exchange (ETDEWEB)

    Ricque, R.; Siboul, R. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1970-07-01

    As a part of a research about water cooled high magnetic field coils, an experimental study of heat transfer and pressure drop is made with the following conditions: local boiling in tubes of small diameters (2 and 4 mm), high heat fluxes (about 1000 W/cm{sup 2}), high coolant velocities (up to 25 meters/s), low outlet absolute pressures (below a few atmospheres). Wall temperatures are determined with a good accuracy, because very thin tubes are used and heat losses are prevented. Two regimes of boiling are observed: the establishment regime and the established boiling regime and the inception of each regime is correlated. Important delays on boiling inception are also observed. The pressure drop is measured; provided the axial temperature distribution of the fluid and the axial distributions of the wall temperatures, in other words the axial distribution of the heat transfer coefficients under boiling and non boiling conditions, at the same heat flux or the same wall temperatures, are taken in account, then total pressure drop can be correlated, but probably under certain limits of void fraction only. Using the same parameters, it seems possible to correlate the experimental values on critical heat flux obtained previously, which show very important effect of length and hydraulic diameter of the test sections. (authors) [French] Dans le cadre d'une etude sur le refroidissement par l'eau des bobines electromagnetiques a champ intense, on etudie experimentalement l'echange thermique et la perte de pression avec ebullition locale a la paroi dans des tubes de petit diametre (2 et 4 mm), a flux thermique eleve (environ 1000 W/cm{sup 2}), pour des vitesses de circulation elevees (jusqu'a 25 m/s) et des pressions basses (quelques atmospheres). La paroi des tubes etant tres mince et les fuites thermiques etant annulees, les temperatures de paroi sont determinees de facon assez precise. On distingue deux phases dans l'ebullition locale; la phase d

  3. Optimum structural properties for an anode current collector used in a polymer electrolyte membrane water electrolyzer operated at the boiling point of water

    Science.gov (United States)

    Li, Hua; Fujigaya, Tsuyohiko; Nakajima, Hironori; Inada, Akiko; Ito, Kohei

    2016-11-01

    This study attempts to optimize the properties of the anode current collector of a polymer electrolyte membrane water electrolyzer at high temperatures, particularly at the boiling point of water. Different titanium meshes (4 commercial ones and 4 modified ones) with various properties are experimentally examined by operating a cell with each mesh under different conditions. The average pore diameter, thickness, and contact angle of the anode current collector are controlled in the ranges of 10-35 μm, 0.2-0.3 mm, and 0-120°, respectively. These results showed that increasing the temperature from the conventional temperature of 80 °C to the boiling point could reduce both the open circuit voltage and the overvoltages to a large extent without notable dehydration of the membrane. These results also showed that decreasing the contact angle and the thickness suppresses the electrolysis overvoltage largely by decreasing the concentration overvoltage. The effect of the average pore diameter was not evident until the temperature reached the boiling point. Using operating conditions of 100 °C and 2 A/cm2, the electrolysis voltage is minimized to 1.69 V with a hydrophilic titanium mesh with an average pore diameter of 21 μm and a thickness of 0.2 mm.

  4. Nuclear coupled flow instability study for natural circulation BWR startup transient

    International Nuclear Information System (INIS)

    Natural circulation Boiling Water Reactor (BWR) startup transient was investigated in Purdue University Multidimensional Test Assembly (PUMA) facility based on a natural circulation BWR design. Strategy and results of the experiments, which consider the effects of void-reactivity and fuel heat conduction time constant, are discussed. Total reactivity is treated to be composed of two components: external reactivity due to control rod motion and void-reactivity. A detailed analysis for heat conduction problem is performed to derive dimensionless groups. Based on area-averaged heat conduction equations for pellet and clad regions, Fourier and Biot numbers are derived to simulate wall heat flux response. Power transient, which has been used for startup transient investigation without void-reactivity feedback is used to derive the control rod reactivity. Twelve conductivity probes are used to measure local void fraction inside core at three axial locations. The local void-fraction data is used to calculate volume average void fraction, which is used to calculate the voil-reactivity. A real-time Point Kinetic Model solver is implemented to PUMA heater power control program to determine power transient during startup. The results demonstrate that the inclusion of void-reactivity feedback worsen the scenario for startup instabilities and may cause large amplitude neutron flux oscillations. (author)

  5. Final results of the XR2-1 BWR metallic melt relocation experiment

    International Nuclear Information System (INIS)

    This report documents the final results of the XR2-1 boiling water reactor (BWR) metallic melt relocation experiment, conducted at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission. The objective of this experiment was to investigate the material relocation processes and relocation pathways in a dry BWR core following a severe nuclear reactor accident such as an unrecovered station blackout accident. The imposed test conditions (initial thermal state and the melt generation rates) simulated the conditions for the postulated accident scenario and the prototypic design of the lower core test section (in composition and in geometry) ensured that thermal masses and physical flow barriers were modeled adequately. The experiment has shown that, under dry core conditions, the metallic core materials that melt and drain from the upper core regions can drain from the core region entirely without formation of robust coherent blockages in the lower core. Temporary blockages that suspended pools of molten metal later melted, allowing the metals to continue draining downward. The test facility and instrumentation are described in detail. The test progression and results are presented and compared to MERIS code analyses. 6 refs., 55 figs., 4 tabs

  6. Transient and stability analysis of a BWR core with thorium-uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779 Col. Narvarte, 03020 Mexico, DF (Mexico); Espinosa-Paredes, Gilberto [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico, DF (Mexico)], E-mail: gepe@xanum.uam.mx; Francois, Juan-Luis [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, 62550 Jiutepec Mor. (Mexico)

    2008-08-15

    The kinetic response of a boiling water reactor (BWR) equilibrium core using thorium as a nuclear material, in an integrated blanket-seed assembly, is presented in this work. Additionally an in-house code was developed to evaluate this core under steady state and transient conditions including a stability analysis. The code has two modules: (a) the time domain module for transient analysis and (b) the frequency domain module for stability analysis. The thermal-hydraulic process is modeled by a set of five equations, considering no homogeneous flow with drift-flux approximation and non-equilibrium thermodynamic. The neutronic process is calculated with a point kinetics model. Typical BWR reactivity effects are considered: void fraction, fuel temperature, moderator temperature and control rod density. Collapsed parameters were included in the code to represent the core using an average fuel channel. For the stability analysis, in the frequency domain, the transfer function is determined by applying Laplace-transforming to the calculated pressure drop perturbations in each of the considered regions where a constant total pressure drop was considered. The transfer function was used to study the system response in the frequency domain when an inlet flow perturbation is applied. The results show that the neutronic behavior of the core with thorium uranium fuel is similar to a UO{sub 2} core, even during transient conditions. The stability and transient analysis show that the thorium-uranium fuel can be operated safely in current BWRs.

  7. Comparison of metaheuristic optimization techniques for BWR fuel reloads pattern design

    International Nuclear Information System (INIS)

    Highlights: ► This paper shows a performance comparison of several optimization techniques for fuel reload in BWR. ► Genetic Algorithms, Neural Networks, Tabu Search and several Ant Algorithms were used. ► All optimization techniques were executed under same conditions: objective function and an equilibrium cycle. ► Fuel bundles with minor actinides were loaded into the core. ► Tabu search and Ant System were the best optimization technique for the studied problem. -- Abstract: Fuel reload pattern optimization is a crucial fuel management activity in nuclear power reactors. Along the years, a lot of work has been done in this area. In particular, several metaheuristic optimization techniques have been applied with good results for boiling water reactors (BWRs). In this paper, a comparison of different metaheuristics: genetic algorithms, tabu search, recurrent neural networks and several ant colony optimization techniques, were applied, in order to evaluate their performance. The optimization of an equilibrium core of a BWR, loaded with mixed oxide fuel composed of plutonium and minor actinides, was selected to be optimized. Results show that the best average values are obtained with the recurrent neural networks technique, meanwhile the best fuel reload was obtained with tabu search. However, according to the number of objective functions evaluated, the two fastest optimization techniques are tabu search and Ant System.

  8. An intermediate break BWR LOCA test (RUN 991) at ROSA-III

    International Nuclear Information System (INIS)

    Double failures on the emergency-core-cooling systems (ECCSs) can be resulted in a case of loss-of-coolant accident (LOCA) of a boiling water reactor (BWR) by assuming an ECCS line break and the single failure criterion on another ECCS. In the Rig-of-Safety Assessment (ROSA)-III program, two BWR LOCA simulation tests with intermediate break areas were performed to experimentally study influences of the ECCS double failures on core cooling phenomena. As there was no break unit in the ROSA-III ECCS lines, two break locations were selected above and below the ECCS line elevation. Namely, one is a main steam line (MSL) break test of RUN 992 which was previously reported. Another one is a single-ended jet pump drive line (JPDL) break test of RUN 991. And this break location effect on the system responses was briefly studied in a report of JAERI 1307. This report presents precise experiment results of RUN 991 with respect to the core cooling phenomena related to transient system mass and also presents additional findings on the influences of ECCS double failures in some intermediate break LOCA tests including above two tests. (author)

  9. Final results of the XR2-1 BWR metallic melt relocation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gauntt, R.O.; Humphries, L.L.

    1997-08-01

    This report documents the final results of the XR2-1 boiling water reactor (BWR) metallic melt relocation experiment, conducted at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission. The objective of this experiment was to investigate the material relocation processes and relocation pathways in a dry BWR core following a severe nuclear reactor accident such as an unrecovered station blackout accident. The imposed test conditions (initial thermal state and the melt generation rates) simulated the conditions for the postulated accident scenario and the prototypic design of the lower core test section (in composition and in geometry) ensured that thermal masses and physical flow barriers were modeled adequately. The experiment has shown that, under dry core conditions, the metallic core materials that melt and drain from the upper core regions can drain from the core region entirely without formation of robust coherent blockages in the lower core. Temporary blockages that suspended pools of molten metal later melted, allowing the metals to continue draining downward. The test facility and instrumentation are described in detail. The test progression and results are presented and compared to MERIS code analyses. 6 refs., 55 figs., 4 tabs.

  10. Crack growth rate in core shroud horizontal welds using two models for a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Arganis Juárez, C.R., E-mail: carlos.arganis@inin.gob.mx; Hernández Callejas, R.; Medina Almazán, A.L.

    2015-05-15

    Highlights: • Two models were used to predict SCC growth rate in a core shroud of a BWR. • A weld residual stress distribution with 30% stress relaxation by neutron was used. • Agreement is shown between the measurements of SCC growth rate and the predictions. • Slip–oxidation model is better at low fluences and empirical model at high fluences. - Abstract: An empirical crack growth rate correlation model and a predictive model based on the slip–oxidation mechanism for Stress Corrosion Cracking (SCC) were used to calculate the crack growth rate in a BWR core shroud. In this study, the crack growth rate was calculated by accounting for the environmental factors related to aqueous environment, neutron irradiation to high fluence and the complex residual stress conditions resulting from welding. In estimating the SCC behavior the crack growth measurements data from a Boiling Water Reactor (BWR) plant are referred to, and the stress intensity factor vs crack depth throughout thickness is calculated using a generic weld residual stress distribution for a core shroud, with a 30% stress relaxation induced by neutron irradiation. Quantitative agreement is shown between the measurements of SCC growth rate and the predictions of the slip–oxidation mechanism model for relatively low fluences (5 × 10{sup 24} n/m{sup 2}), and the empirical model predicted better the SCC growth rate than the slip–oxidation model for high fluences (>1 × 10{sup 25} n/m{sup 2}). The relevance of the models predictions for SCC growth rate behavior depends on knowing the model parameters.

  11. Relations between boiling water test, standard germination test and field emergence of leek (Allium porrum L.) and onion (Allium cepa L.) seeds

    OpenAIRE

    Ismail Guvenc; Haluk C. Kaymak; Sibel Duman

    2012-01-01

    The aim of this study was to determine relations occurring between boiling water test, standard germination test and field emergence of leek (Allium porrum L.) and onion (Allium cepa L.) seeds. In this study, seeds of six lots ('Kalem', 'Ala', 'Ínegöl-A, B, C and D') from three cultivars of leek and seven onion cultivars ('Early Texas Grano' (ETG), 'Panku', 'Storm', 'Banko', 'Aki', 'Kisagün' and 'Banka') seeds were used as plant material and their viability was evaluated in boiling water test...

  12. The synergic impact of the boiling and water radiolysis on the pressurized water reactor fuel cladding's chemical environment

    Energy Technology Data Exchange (ETDEWEB)

    Dobrevski, I.; Zaharieva, N. [Bulgarian Academy of Sciences, Inst. for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    2010-07-01

    By the presence of local boiling at the cladding surfaces of pressurized water reactors (PWRs), including WWER-1000 Units, the behaviors of gases dissolved in water phase (coolant) is strongly influenced by the vapor generation. The increase of vapor partial pressure will reduce the partial pressures of dissolved gases and will cause their stripping out. On the other hand it is known that the hydrogen is added to primary coolant of PWRs, in order to avoid the production of oxidants as radiolysis of water products. It is clear that if boiling strips out dissolved hydrogen, the creation of local oxidizing conditions at the cladding surfaces will be favored. In this case the local production of oxidants will be a result from local processes of water radiolysis, by which not only both oxygen (O{sub 2}) and hydrogen (H{sub 2}), but also hydrogen peroxide (H{sub 2}O{sub 2}) will be produced. While the resulting by water radiolysis hydrogen and oxygen can be stripped out preferentially by boiling, the bigger part of hydrogen peroxide will remain in the wall water phase and will act as an important factor for creation of oxidizing conditions in fuel cladding environment, together with some water radiolytical radicals: ·OH, HO{sub 2}·/ O{sub 2}{sup -}. Summarizing of the above mentioned allows the conclusion that creation of oxidizing conditions in the nuclear fuel cladding environment is not a direct boiling consequence but, in fact, is a result (consequence) of the synergic impact of the boiling- and water radiolysis- processes on the Pressurized Water Reactor fuel cladding surface areas. The PWRs experiences confirm that the density of SNB (sub-cooled nucleate boiling), resp. steaming rate, control the degree of the above mentioned water radiolysis processes. If it is not possible to moderate the steaming rate of the fuel cladding surfaces in PWRs, the only way to avoid the cladding damages caused by the local oxidizing conditions, is the applying of cladding materials

  13. A New Methodology for Early Anomaly Detection of BWR Instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, K. N.

    2005-11-27

    The objective of the performed research is to develop an early anomaly detection methodology so as to enhance safety, availability, and operational flexibility of Boiling Water Reactor (BWR) nuclear power plants. The technical approach relies on suppression of potential power oscillations in BWRs by detecting small anomalies at an early stage and taking appropriate prognostic actions based on an anticipated operation schedule. The research utilizes a model of coupled (two-phase) thermal-hydraulic and neutron flux dynamics, which is used as a generator of time series data for anomaly detection at an early stage. The model captures critical nonlinear features of coupled thermal-hydraulic and nuclear reactor dynamics and (slow time-scale) evolution of the anomalies as non-stationary parameters. The time series data derived from this nonlinear non-stationary model serves as the source of information for generating the symbolic dynamics for characterization of model parameter changes that quantitatively represent small anomalies. The major focus of the presented research activity was on developing and qualifying algorithms of pattern recognition for power instability based on anomaly detection from time series data, which later can be used to formulate real-time decision and control algorithms for suppression of power oscillations for a variety of anticipated operating conditions. The research being performed in the framework of this project is essential to make significant improvement in the capability of thermal instability analyses for enhancing safety, availability, and operational flexibility of currently operating and next generation BWRs.

  14. A New Method for Early Anomaly Detection of BWR Instabilities

    International Nuclear Information System (INIS)

    The objective of the performed research is to develop an early anomaly detection methodology so as to enhance safety, availability, and operational flexibility of Boiling Water Reactor (BWR) nuclear power plants. The technical approach relies on suppression of potential power oscillations in BWRs by detecting small anomalies at an early stage and taking appropriate prognostic actions based on an anticipated operation schedule. The research utilizes a model of coupled (two-phase) thermal-hydraulic and neutron flux dynamics, which is used as a generator of time series data for anomaly detection at an early stage. The model captures critical nonlinear features of coupled thermal-hydraulic and nuclear reactor dynamics and (slow time-scale) evolution of the anomalies as non-stationary parameters. The time series data derived from this nonlinear non-stationary model serves as the source of information for generating the symbolic dynamics for characterization of model parameter changes that quantitatively represent small anomalies. The major focus of the presented research activity was on developing and qualifying algorithms of pattern recognition for power instability based on anomaly detection from time series data, which later can be used to formulate real-time decision and control algorithms for suppression of power oscillations for a variety of anticipated operating conditions. The research being performed in the framework of this project is essential to make significant improvement in the capability of thermal instability analyses for enhancing safety, availability, and operational flexibility of currently operating and next generation BWRs.

  15. Natural heat transfer augmentation in passive advanced BWR plants

    International Nuclear Information System (INIS)

    In the European Simplified Boiling Water Reactor (ESBWR), the long-term post-accident containment pressure is determined by the combination of non condensable gas pressure and steam pressure in the wet well gas space. Since there are no active systems for heat removal in the wet well, energy transmitted to the wet well gas space, by a variety of means, must be removed by passive heat transfer to the walls and suppression pool (SP). The cold suppression pool located below the hotter gas space provides a stable configuration in which convection currents are suppressed thus limiting heat and mass transfer between the gas space and pool. However, heat transfer to the walls results in natural circulation currents that can augment the heat and mass transfer to the pool surface. Using a simplified model, parametric studies are carried out to show that augmentation of the order of magnitude expected can significantly impact the heat and mass transfer to the pool. Additionally a review of available literature in the area of augmentation and mixed convection of this type is presented and indicates the need for additional experimental work in order to develop adequate models for heat and mass transfer augmentation in the configuration of a BWR suppression pool. (author)

  16. Derivation of general scaling criteria for BWR containment tests

    International Nuclear Information System (INIS)

    General top-down scaling criteria for facilities used to study Boiling Water Reactor (BWR) containments including a pressure suppression system are derived, with particular attention to the recent passive BWRS. The criteria are derived by considering the generic processes in classes of containment subsystems (e.g., containment volumes, pools, pipes, etc.). In reactor containments, the thermodynamic behavior of the system (essentially, its pressure history) is linked to its thermal-hydraulic behavior (the flows of mass and energy between volumes). The case of prototypical fluids under prototypical thermodynamic conditions is treated. The study confirms the validity of the (familiar) scaling of power, volumes, horizontal areas in volumes, mass flow rates, and heat transfer areas with a system scale. Important pressure drops and the corresponding flows are controlled by the submergence depth of vents or by hydrostatic pressure differences in connected vessels. The analysis of these processes justify the choice of 1:1 scaling for the pressure drops, vertical heights, submergence depths and level differences. The importance of certain distortions regarding inertial response and transit times is minor

  17. Bubble transport in subcooled flow boiling

    Science.gov (United States)

    Owoeye, Eyitayo James

    Understanding the behavior of bubbles in subcooled flow boiling is important for optimum design and safety in several industrial applications. Bubble dynamics involve a complex combination of multiphase flow, heat transfer, and turbulence. When a vapor bubble is nucleated on a vertical heated wall, it typically slides and grows along the wall until it detaches into the bulk liquid. The bubble transfers heat from the wall into the subcooled liquid during this process. Effective control of this transport phenomenon is important for nuclear reactor cooling and requires the study of interfacial heat and mass transfer in a turbulent flow. Three approaches are commonly used in computational analysis of two-phase flow: Eulerian-Lagrangian, Eulerian-Eulerian, and interface tracking methods. The Eulerian- Lagrangian model assumes a spherical non-deformable bubble in a homogeneous domain. The Eulerian-Eulerian model solves separate conservation equations for each phase using averaging and closure laws. The interface tracking method solves a single set of conservation equations with the interfacial properties computed from the properties of both phases. It is less computationally expensive and does not require empirical relations at the fluid interface. Among the most established interface tracking techniques is the volume-of-fluid (VOF) method. VOF is accurate, conserves mass, captures topology changes, and permits sharp interfaces. This work involves the behavior of vapor bubbles in upward subcooled flow boiling. Both laminar and turbulent flow conditions are considered with corresponding pipe Reynolds number of 0 -- 410,000 using a large eddy simulation (LES) turbulence model and VOF interface tracking method. The study was performed at operating conditions that cover those of boiling water reactors (BWR) and pressurized water reactors (PWR). The analysis focused on the life cycle of vapor bubble after departing from its nucleation site, i.e. growth, slide, lift-off, rise

  18. Annotated bibliography of safety-related occurrences in boiling-water nuclear power plants as reported in 1975

    International Nuclear Information System (INIS)

    The bibliography presented contains 100-word abstracts of reports to the U.S. Nuclear Regulatory Commission concerning operational events that occurred at boiling-water reactor nuclear power plants in 1975. The report includes 1169 abstracts, arranged alphabetically by reactor name and then chronologically for each reactor, that describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. Key-word and permuted-title indexes are provided to facilitate location of the subjects of interest, and tables that summarize the information contained in the bibliography are provided. The information listed in the tables includes instrument failures, equipment failures, system failures, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction). Seven of the unique events that occurred during the year are reviewed in detail

  19. Annotated bibliography of safety-related occurrences in boiling-water nuclear power plants as reported in 1975

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.L.; Gallaher, R.B.

    1976-07-01

    The bibliography presented contains 100-word abstracts of reports to the U.S. Nuclear Regulatory Commission concerning operational events that occurred at boiling-water reactor nuclear power plants in 1975. The report includes 1169 abstracts, arranged alphabetically by reactor name and then chronologically for each reactor, that describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. Key-word and permuted-title indexes are provided to facilitate location of the subjects of interest, and tables that summarize the information contained in the bibliography are provided. The information listed in the tables includes instrument failures, equipment failures, system failures, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction). Seven of the unique events that occurred during the year are reviewed in detail.

  20. Annotated bibliography of safety-related occurrences in boiling-water nuclear power plants as reported in 1976

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.L.; Gallaher, R.B.

    1977-08-02

    This bibliography contains 100-word abstracts of reports to the U.S. Nuclear Regulatory Commission concerning operational events that occurred at boiling-water reactor nuclear power plants in 1976. The report includes 1,253 abstracts that describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. They are arranged alphabetically by reactor name and then chronologically for each reactor. Key-word and permuted-title indexes are provided to facilitate location of the subjects of interest, and tables that summarize the information contained in the bibliography are provided. The information listed in the tables includes instrument failures, equipment failures, system failures, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction). Three of the unique events that occurred during the year are reviewed in detail.

  1. Summary and bibliography of safety-related events at boiling-water nuclear power plants as reported in 1980

    Energy Technology Data Exchange (ETDEWEB)

    McCormack, K.E.; Gallaher, R.B.

    1982-03-01

    This document presents a bibliography that contains 100-word abstracts of event reports submitted to the US Nuclear Regulatory Commission concerning operational events that occurred at boiling-water-reactor nuclear power plants in 1980. The 1547 abstracts included on microfiche in this bibliography describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. These abstracts are arranged alphabetically by reactor name and then chronologically for each reactor. Full-size keyword and permuted-title indexes to facilitate location of individual abstracts are provided following the text. Tables that summarize the information contained in the bibliography are also provided. The information in the tables includes a listing of the equipment items involved in the reported events and the associated number of reports for each item. Similar information is given for the various kinds of instrumentation and systems, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction).

  2. Annotated bibliography of safety-related occurrences in boiling-water nuclear power plants as reported in 1976

    International Nuclear Information System (INIS)

    This bibliography contains 100-word abstracts of reports to the U.S. Nuclear Regulatory Commission concerning operational events that occurred at boiling-water reactor nuclear power plants in 1976. The report includes 1,253 abstracts that describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. They are arranged alphabetically by reactor name and then chronologically for each reactor. Key-word and permuted-title indexes are provided to facilitate location of the subjects of interest, and tables that summarize the information contained in the bibliography are provided. The information listed in the tables includes instrument failures, equipment failures, system failures, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction). Three of the unique events that occurred during the year are reviewed in detail

  3. Experiments about the integrity of BWR relief pipes in postulated radiolysis gas combustion. Scenario No.1. Steam leakages with full lowering of the water level

    International Nuclear Information System (INIS)

    Experiments in a pipe of the original scale, original material, and original quality control were carried out to study the maximum possible loads potentially arising in the combustion of radiolysis gas / nitrogen mixtures in BWR relief pipes with full lowering of the water level. Peak pipe loads resulted for narrow ranges of concentration around 43% N2 (for 0.8 bar initial pressure) and 50% N2 (for 1.6 bar initial pressure), respectively. With these mixtures, ignition of the homogeneous H2/O2/N2 mixture is followed by a deflagration - detonation transition in pre-compressed unburnt gas only a short distance upstream of the end flange. This phenomenon generally occurs when, in the combustion gas studied, the starting distance for detonation transition becomes comparable to the pipe length. No strains higher than 0.2% were measured in any of the experiments. The dynamic pipe load remained in the elastic range in all experiments performed, which also prevented the pipe from being damaged in the course of a test series. The pipe was not subjected to any major axial forces and accelerations in the experiments. This constitutes experimental proof, under conservative boundary conditions, of the integrity of relief pipes even in the case of assumed complete filling with the most adverse radiolysis gas mixture and subsequent combustion. (orig.)

  4. Effectiveness of a Large Number of Control Rods in the Second Charge of the Halden Boiling Water Reactor

    International Nuclear Information System (INIS)

    The reactivity worth of various control-rod configurations has been measured in the second fuel charge of the Halden Boiling Heavy Water Reactor (HBWR) under low power conditions. The second fuel charge of HBWR consists of 7-rod UO2 cluster elements with 1.5% enrichment. A total of 30 control rods is placed in the open positions of the hexagonal fuel-lattice structure. In older to facilitate theoretical comparisons, measurements have been made on symmetrical control-rod configurations only. The experiment consisted of measuring the critical water level for the clean core and with the different rod configurations inserted to various distances from the bottom of the reactor. The temperature dependence of the reactivity worth was investigated by performing measurements, using a ring of 6 control rods, at the three different temperatures 34°C, 150°C and 220°C. Comparisons of the experimentally-determined critical water levels and the calculated critical water levels are presented. The critical water levels are calculated both by a method in which the control rods are homogenized together with fuel and moderator to form a control-rod zone, and also by a heterogeneous method in which the fuel elements and control rods are regarded as line sinks to thermal neutrons and the fuel elements are regarded as line sources of fast neutrons. (author)

  5. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.; Mallen, A.N.; Neymotin, L.Y.

    1998-03-01

    This document is the User`s Manual for the Boiling Water Reactor (BWR), and Simplified Boiling Water Reactor (SBWR) systems transient code RAMONA-4B. The code uses a three-dimensional neutron-kinetics model coupled with a multichannel, nonequilibrium, drift-flux, phase-flow model of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients. Chapter 1 gives an overview of the code`s capabilities and limitations; Chapter 2 describes the code`s structure, lists major subroutines, and discusses the computer requirements. Chapter 3 is on code, auxillary codes, and instructions for running RAMONA-4B on Sun SPARC and IBM Workstations. Chapter 4 contains component descriptions and detailed card-by-card input instructions. Chapter 5 provides samples of the tabulated output for the steady-state and transient calculations and discusses the plotting procedures for the steady-state and transient calculations. Three appendices contain important user and programmer information: lists of plot variables (Appendix A) listings of input deck for sample problem (Appendix B), and a description of the plotting program PAD (Appendix C). 24 refs., 18 figs., 11 tabs.

  6. Mass flow rate sensitivity and uncertainty analysis in natural circulation boiling water reactor core from Monte Carlo simulations

    International Nuclear Information System (INIS)

    Our aim was to evaluate the sensitivity and uncertainty of mass flow rate in the core on the performance of natural circulation boiling water reactor (NCBWR). This analysis was carried out through Monte Carlo simulations of sizes up to 40,000, and the size, i.e., repetition of 25,000 was considered as valid for routine applications. A simplified boiling water reactor (SBWR) was used as an application example of Monte Carlo method. The numerical code to simulate the SBWR performance considers a one-dimensional thermo-hydraulics model along with non-equilibrium thermodynamics and non-homogeneous flow approximation, one-dimensional fuel rod heat transfer. The neutron processes were simulated with a point reactor kinetics model with six groups of delayed neutrons. The sensitivity was evaluated in terms of 99% confidence intervals of the mean to understand the range of mean values that may represent the entire statistical population of performance variables. The regression analysis with mass flow rate as the predictor variable showed statistically valid linear correlations for both neutron flux and fuel temperature and quadratic relationship for the void fraction. No statistically valid correlation was observed for the total heat flux as a function of the mass flow rate although heat flux at individual nodes was positively correlated with this variable. These correlations are useful for the study, analysis and design of any NCBWR. The uncertainties were propagated as follows: for 10% change in the mass flow rate in the core, the responses for neutron power, total heat flux, average fuel temperature and average void fraction changed by 8.74%, 7.77%, 2.74% and 0.58%, respectively.

  7. Literature Survey on the Stress Corrosion Cracking of Low-Alloy Steels in High Temperature Water

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P

    2002-02-01

    The present report is a summary of a literature survey on the stress corrosion cracking (SCC) behaviour/ mechanisms in low-alloy steels (LAS) in high-temperature water with special emphasis to primary-pressure-boundary components of boiling water reactors (BWR). A brief overview on the current state of knowledge concerning SCC of low-alloy reactor pressure vessel and piping steels under BWR conditions is given. After a short introduction on general aspects of SCC, the main influence parameter and available quantitative literature data concerning SCC of LAS in high-temperature water are discussed on a phenomenological basis followed by a summary of the most popular SCC models for this corrosion system. The BWR operating experience and service cracking incidents are discussed with respect to the existing laboratory data and background knowledge. Finally, the most important open questions and topics for further experimental investigations are outlined. (author)

  8. Interfacial area transport of steam-water two-phase flow in a vertical annulus at elevated pressures during sub-cooled boiling

    International Nuclear Information System (INIS)

    The interfacial area transport of steam-water two-phase flow in a vertical annulus has been investigated experimentally and theoretically for elevated pressures (a maximum of 1 MPa) during sub-cooled boiling. The modeling of interfacial area transport equation with phase change terms was introduced and discussed along with experimental results. The interfacial area transport equation considered the effects of bubble interaction mechanisms such as bubble breakup and coalescence, as well as, effects of phase change mechanisms such as wall nucleation and condensation for sub-cooled boiling. The benchmark focused on the sensitivity analysis of the constitutive relations that describe the phase change mechanisms. (author)

  9. Thermal-hydraulic instabilities in pressure tube graphite - moderated boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tsiklauri, G.; Schmitt, B.

    1995-09-01

    Thermally induced two-phase instabilities in non-uniformly heated boiling channels in RBMK-1000 reactor have been analyzed using RELAP5/MOD3 code. The RELAP5 model of a RBMK-1000 reactor was developed to investigate low flow in a distribution group header (DGH) supplying 44 fuel pressure tubes. The model was evaluated against experimental data. The results of the calculations indicate that the period of oscillation for the high power tube varied from 3.1s to 2.6s, over the power range of 2.0 MW to 3.0 MW, respectively. The amplitude of the flow oscillation for the high powered tube varied from +100% to -150% of the tube average flow. Reverse flow did not occur in the lower power tubes. The amplitude of oscillation in the subcooled region at the inlet to the fuel region is higher than in the saturated region at the outlet. In the upper fuel region and outlet connectors the flow oscillations are dissipated. The threshold of flow instability for the high powered tubes of a RBMK reactor is compared to Japanese data and appears to be in good agreement.

  10. Development of methodology for early detection of BWR instabilities

    International Nuclear Information System (INIS)

    Full text of publication follows: The objective of the work presented in this paper research, which is supported by the US Department of Energy under the NEER program, is to develop an early anomaly detection methodology in order to enhance safety, availability, and operational flexibility of Boiling Water Reactor (BWR) nuclear power plants. The technical approach relies on suppression of potential power oscillations in BWRs by detecting small anomalies at an early stage and taking appropriate prognostic actions based on an anticipated operation schedule. The model of coupled (two-phase) thermal-hydraulic and neutron flux dynamics, based on the US NRC coupled code TRACE/PARCS, is being utilized as a generator of time series data for anomaly detection at an early stage. The concept of the methodology is based on the fact that nonlinear systems show bifurcation, which is a change in the qualitative behavior as the system parameters vary. Some of these parameters may change on their own accord and account for the anomaly, while certain parameters can be altered in a controlled fashion. The non-linear, non-autonomous BWR system model considered in this research exhibits phenomena at two time scales. Anomalies occur at the slow time scale while the observation of the dynamical behavior, based on which inferences are made, takes place at the fast time scale. It is assumed that: (i) the system behavior is stationary at the fast time scale; and (ii) any observable non-stationary behavior is associated with parametric changes evolving at the slow time scale. The goal is to make inferences about evolving anomalies based on the asymptotic behavior derived from the computer simulation. However, only sufficient changes in the slowly varying parameter may lead to detectable difference in the asymptotic behavior. The need to detect such small changes in parameters and hence early detection of an anomaly motivate the utilized stimulus-response approach. In this approach, the model

  11. BWR radiation buildup control with ionic zinc

    International Nuclear Information System (INIS)

    In 1983 a hypothesis was disclosed which suggested that the presence of ionic zinc in the reactor water of the BWR could reduce radiation buildup. This hypothesis was developed from correlations of plant data, and subsequently, from laboratory experiments which demonstrated clearly that ionic zinc inhibits the corrosion of stainless steel. The benefits of zinc addition have been measured at the Vallecitos Nuclear Center under and EPRI/GE project. Experimentation and analyses have been performed to evaluate the impact of intentional zinc addition on the IGSCC characteristics of primary system materials and on the performance of the nuclear fuel. It has been concluded that no negative effects are expected. The author conclude that the intentional addition of ionic zinc to the BWR reactor water at a concentration of approximately 10 ppb will provide major benefits in controlling the Co-60 buildup on primary system stainless steel surfaces. The intentional addition of zinc is now a qualified technique for use in BWRs

  12. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL; Ade, Brian J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Mertyurek, Ugur [ORNL; Radulescu, Georgeta [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (keff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup

  13. Analysis of Boiling of Water in a Fixed Container Volume--the reason of boiling and the condition without boiling for water in a container with unchangeable volume and the temperature higher than boiling point%关于固定容器中水沸腾的分析——固定容器中的水在温度高于沸点时发生沸腾的原因与不发生沸腾的物理条件

    Institute of Scientific and Technical Information of China (English)

    罗烛红

    2012-01-01

    In real life; the water in a container with fixed volume will boil, as the temperature of water is increased and reaches the boiling point, However, is there a physical conditioin, under which the water in the closed vessel never boils? It is very interesting for teachers and classmates to answer the above question. Motivated by this, in this paper, we do qualitative analysis of the principle on the ebullition of water in the closed vessel and further discuss the physical condition that makes the water still keep liquid state.%从对应态方程出发定性分析在固定体积和升高温度时水沸腾的原因,也探讨了固定体积和温度达到沸点时水不发生沸腾的物理条件.

  14. Development of the radiation models of a BWR type reactor and it facility in the SUN-RAH; Desarrollo de modelos de radiacion de un reactor tipo BWR y su instalacion en el SUN-RAH

    Energy Technology Data Exchange (ETDEWEB)

    Barron A, I. [Facultad de Ingenieria, UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: isbarron@yahoo.com.mx

    2005-07-01

    This work about generation models, transport in processes and radioactive contamination of areas of a BWR central, is an amplification to the project developed in the UNAM to have a support tool in subjects or electric generation courses. It is planned about the implementation of models of radiation generation in a BWR type reactor for complement the functions developed in the University Simulator of Nucleo electric- Boiling water reactor (SUN-RAH) which it has been implemented in Simulink of MatLab and it has a model for the dynamics of one nucleo electric central that presents the main characteristics of the reactor vessel, the recirculation system, steam lines, turbines, generator, condensers and feeding water, defined by the main processes that intervene in the generation of energy of these plants. By this way the radiation monitoring systems for area and process, operate simultaneously with the processes of energy generation, with that is possible to observe the changes that present with respect to the operation conditions of the plant, and likewise to appreciate the radiation transport process through the components of the reactor, steam lines and turbines, for different operation conditions and possible faults that they could be presented during the reactor operation. (Author)

  15. 高校开水房节能型水龙头创新设计%The boiled water room energy-saving tap innovative design

    Institute of Scientific and Technical Information of China (English)

    孙伟一

    2016-01-01

    高校开水房是高校用水系统的重要组成部分,如果高校开水房的水龙头设计不合理,就会导致高校水资源严重浪费。因此,在高校开水房中使用节能型水龙头对于提高水资源的利用效率,减少水资源浪费具有十分重要的意义。本文主要研究了双调节节能型水龙头的设计目的、工作原理以及具体设计方案。%The boiled water room in colleges and universities is an important part of the water system of colleges and universities,colleges and universities if the faucet of boiled water room design is unreasonable,can lead to the serious waste of water resources.Boiled water room in colleges and universities,therefore,use energy-saving tap for improving the utilization efficiency of water resources, reduce the waste of water resources is of great significance.This paper mainly studies the double adjustment and energy-saving tap the design purpose,working principle and concrete design plan.

  16. Development of the radiation models of a BWR type reactor and it facility in the SUN-RAH

    International Nuclear Information System (INIS)

    This work about generation models, transport in processes and radioactive contamination of areas of a BWR central, is an amplification to the project developed in the UNAM to have a support tool in subjects or electric generation courses. It is planned about the implementation of models of radiation generation in a BWR type reactor for complement the functions developed in the University Simulator of Nucleo electric- Boiling water reactor (SUN-RAH) which it has been implemented in Simulink of MatLab and it has a model for the dynamics of one nucleo electric central that presents the main characteristics of the reactor vessel, the recirculation system, steam lines, turbines, generator, condensers and feeding water, defined by the main processes that intervene in the generation of energy of these plants. By this way the radiation monitoring systems for area and process, operate simultaneously with the processes of energy generation, with that is possible to observe the changes that present with respect to the operation conditions of the plant, and likewise to appreciate the radiation transport process through the components of the reactor, steam lines and turbines, for different operation conditions and possible faults that they could be presented during the reactor operation. (Author)

  17. Impact analysis of modifying the composition of the nuclear fuel of a BWR with beryllium oxide; Analisis del impacto de modificar la composicion del combustible nuclear de un BWR con oxido de berilio

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo V, J. M.; Morales S, J. B., E-mail: euqrop@hotmail.com [UNAM, Facultad de Ingenieria, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2013-10-15

    The beryllium oxide (Be O) presents excellent physical properties, especially its high thermal conductivity that contrasts clearly with that of the uranium dioxide (UO{sub 2}) used at the present as fuel in a great number of nuclear plants. The present work models a nuclear reactor cooled by light water in boiling with two external recirculation loops (BWR/5) using the code for the transitory analysis and postulated accidents Trac-B F1, implementing a UO{sub 2} mixture and different fractions of Be O, with the objective of improving the thermal conductivity of the fuel. The numeric results and the realized analyses indicate that when adding a fraction in volume of 10% the central temperature decreases in 30.4% in stationary state, while during the large break loss of coolant accident the peak cladding temperature diminishes in 7%. Although the real interaction of the mixture has not been determined experimentally, the obtained results are promising. (Author)

  18. Hybrid analysis of the simplified boiling water reactor using RAMONA-4B and CASMO-3 computer codes

    Energy Technology Data Exchange (ETDEWEB)

    Vivas, G.F.C.; Hassan, Y.A. [Texas A and M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

    1999-09-01

    An analysis of the simplified boiling water reactor (SBWR) is carried out using the reactor analysis computer program ROMONA-4B in an operational transient scenario, a turbine trip with failure of all the bypass valves. The SBWR model represents the vessel`s internal components, such as flow areas, diameters, and volumes. The one-quarter-core neutron parameters are calculated with the CASMO-3 transport theory lattice physics computer program. The three-dimensional representation of the reactor core uses some standard fuel design parameters, such as a wide central water rod, 8 x 8 lattice, gadolinium rods, etc. The thermal-hydraulic equations are solved with the RAMONA-4B computer program in a closed loop inside the reactor vessel and in 184 parallel channels (including bypass) in the core. Finally, the two-phase coolant and neutronic parameters are calculated in steady state and during the turbine trip transient. The results obtained compare favorably with the standard safety analysis report data.

  19. Overview on stability of natural-circulation-cooled boiling water reactors during start-up. An experimental and modeling analysis

    International Nuclear Information System (INIS)

    This paper provides an overview on numerical and experimental work focused on flashing-induced instabilities. These instabilities may occur in natural circulation two-phase systems when operated at low pressure and low power. Therefore they are of special interest for the start-up phase of natural circulation Boiling Water Reactors. The work presented in this paper has been performed within the framework of the NACUSP project (European-Union Fifth Framework Program). Experiments were carried out on a steam/water natural circulation loop (CIRCUS), built at the Delft University of Technology. Information was gained on the characteristics of the flow oscillations and on the void fraction production during flashing in stationary and transient conditions. A 3-D flow-pattern visualization was achieved by means of advanced instrumentation, namely wire-mesh sensors. On the basis of the experimental results, an assessment of existing drift-flux models was performed for flashing flow. The most suitable drift-flux model was implemented in the 4-equations two-phase model FLOCAL, developed at the Forschungszentrum Rossendorf (FZR, Germany). The model allows for the liquid and steam to be in thermal non-equilibrium and, via drift-flux models, to have different velocities. A detail comparison between simulations and experiments is reported. (author)

  20. Effect of a Sulphate Transient on the EAC Crack Growth Behaviour of Low-Alloy RPV Steels under Simulated BWR Operating Conditions (CASTOC WP 3, PSI Test 1)

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S.; Seifert, H. P

    2002-03-01

    Within the CASTOC-project (5th EU FW programme), the environmentally-assisted crack (EAC) growth behaviour of low-alloy reactor pressure vessel (RPV) steels is experimentally investigated under simulated transient and steady-state boiling water reactor (BWR) power operation conditions by six European laboratories. Within WP 3 of this project, the Paul Scherrer Institut (PSI) investigates the effect of water chemistry transients on the EAC crack growth behaviour under periodical partial unloading (PPU) conditions. The present report is a summary of the first PSI test of WP 3 with a Na{sub 2}SO{sub 4} transient. In the first part of the report, the theoretical background on crack growth mechanisms, crack chemistry, mass transport and water chemistry transients as well as a brief literature survey on other water chemistry transient investigations is given. Furthermore, the experimental equipment and test procedure is presented, followed by a summary of the results of PSI test 1 of WP 3. Finally the results are discussed in detail and compared to literature data. In the first part of the experiment, an actively growing EAC crack was generated by PPU in oxygenated high-temperature, high-purity water (T = 288 {sup o}C, DO = 8 ppm, SO{sub 4}{sup 2-} < 0.6 ppb). Then a sulphate transient was applied. The duration ({approx} 300 h) and the amount of sulphate (SO{sub 4}{sup 2-} = 368 ppb) of the applied sulphate transient conservatively covered all sulphate transients, which might occur in BWR/normal water chemistry (NWC) practice. After the transient, outlet conductivity was lowered from ca. 1 {mu}S/cm to less than 0.15 {mu}S/cm within 2.6 h by a 'two-loop technique'. No accelerating effect of the sulphate transient on the EAC crack growth of both tested fracture mechanics specimens under highly oxidising BWR/NWC conditions was observed, making it impossible to deterrnine incubation or delay times. The EAC crack growth rates (CGR) before, during and after the

  1. Effective Models for Simulation of Thermal Stratification and Mixing Induced by Steam Injection into a Large Pool of Water

    OpenAIRE

    Li, Hua

    2014-01-01

    Steam venting and condensation in a large pool of water creates both a source of heat and a source of momentum. Complex interplay between these two sources leads to either thermal stratification or mixing. If heat source dominates, development of thermal stratification in a Pressure Suppression Pool (PSP) of a Boiling Water Reactor (BWR) increases temperature of the free surface which reduces the steam condensation capacity of the pool and can lead to significant pressure increase in the cont...

  2. Assessment with coupled thermo-mechanical creep analysis of combined CRGT and external vessel cooling efficiency for a BWR

    International Nuclear Information System (INIS)

    In this paper we consider in-vessel stage of a severe core melt accident in a Nordic design Boiling Water Reactor (BWR). Decay-heated pool of corium melt inflicts thermal and mechanical loads on the lower-head vessel wall. Performed thermo-mechanical creep analysis identified two different modes of vessel wall failure: (i) a ‘ballooning’ of the vessel bottom and (ii) a ‘localized creep’ concentrated within the vicinity of the top surface of the melt pool. Next, given the mechanical and thermal loads from the decay-heated melt, external vessel cooling is applied at a specified time. It is found that combined CRGT and external vessel cooling was able to suppress the creep and subsequently prevent vessel wall failure. (author)

  3. Hydrogen water chemistry for BWRs: A status report on the EPRI development program

    International Nuclear Information System (INIS)

    Many boiling water reactors (BWRs) have experienced extensive intergranular stress corrosion cracking (IGSCC) in their austenitic stainless steel reactor coolant system piping, resulting in serious adverse impacts on plant capacity factors, operating and maintenance costs, and personnel radiation exposures. A major research program to provide remedies for BWR pipe cracking was funded by Electric Power Research Institute, General Electric, and the BWR Owners Group for IGSCC Research between 1979 and 1988. Results from this program show that the likelihood of IGSCC depends on reactor water chemistry (particularly on the concentrations of ionic impurities and oxidizing radiolysis products) as well as on material condition and the level of tensile stress. Tests have demonstrated that the concentration of oxidizing radiolysis products in the recirculating reactor water of a BWR can be reduced substantially by injecting hydrogen into the feedwater. Recent plant data show that the use of hydrogen injection can reduce the rate of IGSCC to insignificant levels if the concentration of ionic impurities in the reactor water is kept sufficiently low. This approach to the control of BWR pipe cracking is called hydrogen water chemistry (HWC). This paper presents a review of the results of EPRI's HWC development program from 1980 to the present. In addition, plans for additional work to investigate the feasibility of adapting HWC to protect the BWR vessel and major internal components from potential stress corrosion cracking problems are summarized

  4. The Japanese utilities' requirements for a next century BWR

    International Nuclear Information System (INIS)

    This paper reports on the progress of studies to establish a plant concept for a Boiling Water Reactor (BWR) of the next century. The studies were initiated in 1990 by the Japanese utilities, jointly with NSSS vendors, to investigate evolutionary and long term nuclear power plants. The plant concept is based on the evolution of the ABWR taking advantage of new technology. Fundamental plant philosophies are expressed by the following four desired characteristics: Economical, Benign to human, Simple, Flexible. According to these philosophies, concrete objectives of the plant design are reduction of operating burden and maintenance, increase of safety margin and flexibility to adjust to possible changes in economic circumstances in the years to come. The basic utilities' requirements for the new generation BWR were discussed based on the future social needs and the current operational experiences. Start of operation is to be in the 2010's when the early generation LWRs may need to be replaced. Plant power generation capacity will be about 1500 MWe since this level rating will be achievable by extrapolation of current technology. One important requirement is to achieve power generation costs competitive with other generation methods. An outline of the utilities' requirements follows: Operability; prevent inadvertent reactor scram and engineering safety system actuation due to single failure of normal duty systems or single operator error, achieve same load following capability as ABWR, design for plant availability of up to 90%, achieve plant design life of 60 years, maintain annual inspection period at less than 40 days, reduce maintenance activities in harsh environments, reduce employees' dose to less than that of ABWR, consider 'N+2' design to reduce peak loads during annual inspection. Safety margin; increase grace period for transient and accident events, adopt severe accident countermeasures, keep core damage frequency lower than that of ABWR and conditional

  5. Evaluation of the radial design of fuel cells in an operation cycle of a BWR reactor; Evaluacion del diseno radial de celdas de combustible en un ciclo de operacion de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez C, J.; Martin del Campo M, C. [Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Facultad de Ingenieria, UNAM, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)]. e-mail: jgco@ver.megared.net.mx

    2003-07-01

    This work is continuation of one previous in the one that the application of the optimization technique called Tabu search to the radial design of fuel cells of boiling water reactors (BWR, Boiling Water Reactor) is presented. The objective function used in the optimization process only include neutron parameters (k-infinite and peak of radial power) considering the cell at infinite media. It was obtained to reduce the cell average enrichment completing the characteristics of reactivity of an original cell. The objective of the present work is to validate the objective function that was used for the radial design of the fuel cell (test cell), analyzing the operation of a one cycle of the reactor in which fuels have been fresh recharged that contain an axial area with the nuclear database of the cell designed instead of the original cell. For it is simulated it with Cm-Presto the cycle 10 of the reactor operation of the Unit 1 of the Nuclear Power station of Laguna Verde (U1-CNLV). For the cycle evaluation its were applied so much the simulation with the Haling strategy, as the simulation of the one cycle with control rod patterns and they were evaluated the energy generation and several power limits and reactivity that are used as design parameters in fuel reloads of BWR reactors. The results at level of an operation cycle of the reactor, show that the objective function used in the optimization and radial design of the cell is adequate and that it can induce to one good use of the fuel. (Author)

  6. Neutronically-coupled two-phase flow modeling and numerical solution for application in boiling water nuclear reactors

    International Nuclear Information System (INIS)

    Detailed models of combined core neutronics and BWR recirculation loop thermal-hydraulics have been described. These models have been implemented into the time domain computer code, DYNOBOSS, which has been used for a numerical analysis of the dynamics and stability of closed loop BWR systems. It has been shown that the numerical transient solutions may be very sensitive to the numerical scheme as well as the spatial and temporal discretizations used. The effect of two-phase flow modeling assumptions on the calculated transient response and stability of the closed loop system has been investigated. Phasic slip between the liquid and vapor phases of the two-phase flow models has shown a significant stabilizing effect on the system. Furthermore, it has been shown that the power-to-flow map of BWR systems cannot be used as the only reference to establish unstable operating regions for the system since changes in some parameters which affect considerably the stability of the system may have basically no effect on the operating conditions shown in that map

  7. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Chopra, O. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Gruber, Eugene E. [Argonne National Lab. (ANL), Argonne, IL (United States); Shack, William J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2010-06-01

    The internal components of light water reactors are exposed to high-energy neutron irradiation and high-temperature reactor coolant. The exposure to neutron irradiation increases the susceptibility of austenitic stainless steels (SSs) to stress corrosion cracking (SCC) because of the elevated corrosion potential of the reactor coolant and the introduction of new embrittlement mechanisms through radiation damage. Various nonsensitized SSs and nickel alloys have been found to be prone to intergranular cracking after extended neutron exposure. Such cracks have been seen in a number of internal components in boiling water reactors (BWRs). The elevated susceptibility to SCC in irradiated materials, commonly referred to as irradiation-assisted stress corrosion cracking (IASCC), is a complex phenomenon that involves simultaneous actions of irradiation, stress, and corrosion. In recent years, as nuclear power plants have aged and irradiation dose increased, IASCC has become an increasingly important issue. Post-irradiation crack growth rate and fracture toughness tests have been performed to provide data and technical support for the NRC to address various issues related to aging degradation of reactor-core internal structures and components. This report summarizes the results of the last group of tests on compact tension specimens from the Halden-II irradiation. The IASCC susceptibility of austenitic SSs and heat-affected-zone (HAZ) materials sectioned from submerged arc and shielded metal arc welds was evaluated by conducting crack growth rate and fracture toughness tests in a simulated BWR environment. The fracture and cracking behavior of HAZ materials, thermally sensitized SSs and grain-boundary engineered SSs was investigated at several doses (≤3 dpa). These latest results were combined with previous results from Halden-I and II irradiations to analyze the effects of neutron dose, water chemistry, alloy compositions, and welding and processing conditions on IASCC

  8. Simulation of Thermal Stratification in BWR Suppression Pools with One Dimensional Modeling Method

    International Nuclear Information System (INIS)

    The suppression pool in a boiling water reactor (BWR) plant not only is the major heat sink within the containment system, but also provides the major emergency cooling water for the reactor core. In several accident scenarios, such as a loss-of-coolant accident and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; the pool temperature distribution also affects the NPSHa (available net positive suction head) and therefore the performance of the Emergency Core Cooling System and Reactor Core Isolation Cooling System pumps that draw cooling water back to the core. Current safety analysis codes use zero dimensional (0-D) lumped parameter models to calculate the energy and mass balance in the pool; therefore, they have large uncertainties in the prediction of scenarios in which stratification and mixing are important. While three-dimensional (3-D) computational fluid dynamics (CFD) methods can be used to analyze realistic 3-D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, resulting in a long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code (Berkeley mechanistic MIXing code in C++) has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by one-dimensional (1-D) transient partial differential equations and substructures (such as free or wall jets) are modeled with 1-D integral models. This allows very large reductions in computational effort compared to multi-dimensional CFD modeling. One heat-up experiment performed at the Finland POOLEX facility, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, is used for

  9. Application of the MOVE algorithm for the identification of reduced order models of a core of a BWR type reactor; Aplicacion del algoritmo MOVE para la identificacion de modelos de orden reducido del nucleo de un reactor tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Victoria R, M.A.; Morales S, J.B. [UNAM, DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: angelvr@gmail.com

    2005-07-01

    Presently work is applied the modified algorithm of the ellipsoid of optimal volume (MOVE) to a reduced order model of 5 differential equations of the core of a boiling water reactor (BWR) with the purpose of estimating the parameters that model the dynamics. The viability is analyzed of carrying out an analysis that calculates the global dynamic parameters that determine the stability of the system and the uncertainty of the estimate. The modified algorithm of the ellipsoid of optimal volume (MOVE), is a method applied to the parametric identification of systems, in particular to the estimate of groups of parameters (PSE for their initials in English). It is looked for to obtain the ellipsoid of smaller volume that guarantees to contain the real value of the parameters of the model. The PSE MOVE is a recursive identification method that can manage the sign of noise and to ponder it, the ellipsoid represents an advantage due to its easy mathematical handling in the computer, the results that surrender are very useful for the design of Robust Control since to smaller volume of the ellipsoid, better is in general the performance of the system to control. The comparison with other methods presented in the literature to estimate the reason of decline (DR) of a BWR is presented. (Author)

  10. Experimental studies of boiling heat transfer and dryout in heat generating particulate beds in water at 1 bar

    International Nuclear Information System (INIS)

    Boiling heat transfer and dryout occurring while a liquid permeates a bed of self-heated particulate material are phenomena of relevance to reactor safety since they control the rate of heat removal from beds of core debris. This report presents results from laboratory experiments in which water was the coolant and the particulate material was metal spheres, usually tin-plated iron shot, heated by passing low voltage alternating current laterally through them. The study covered bed depths up to 200 mm, and particle diameters up to 5.0 mm. Values of dryout heat flux obtained for beds of uniform particles are consistent with those obtained elsewhere using different heating methods. Stratified beds in which a layer of fine particles rests upon a bed of coarse particles can reduce the dryout heat flux to below the level appropriate to either particle size alone, and devices which aid the flow of liquid and/or vapour in a bed can greatly increase the dryout heat flux. The data exhibit a high degree of consistency, and thus will prove to be valuable in testing theoretical models. (U.K.)

  11. Final safety evaluation report related to the certification of the Advanced Boiling Water Reactor design. Supplement 1

    International Nuclear Information System (INIS)

    This report supplements the final safety evaluation report (FSER) for the US Advanced Boiling Water Reactor (ABWR) standard design. The FSER was issued by the US Nuclear Regulatory Commission (NRC) staff as NUREG-1503 in July 1994 to document the NRC staff's review of the US ABWR design. The US ABWR design was submitted by GE Nuclear Energy (GE) in accordance with the procedures of Subpart B to Part 52 of Title 10 of the Code of Federal Regulations. This supplement documents the NRC staff's review of the changes to the US ABWR design documentation since the issuance of the FSER. GE made these changes primarily as a result of first-of-a-kind-engineering (FOAKE) and as a result of the design certification rulemaking for the ABWR design. On the basis of its evaluations, the NRC staff concludes that the confirmatory issues in NUREG-1503 are resolved, that the changes to the ABWR design documentation are acceptable, and that GE's application for design certification meets the requirements of Subpart B to 10 CFR Part 52 that are applicable and technically relevant to the US ABWR design

  12. Effects of storage temperature on tyramine production by Enterococcus faecalis R612Z1 in water-boiled salted ducks.

    Science.gov (United States)

    Liu, Fang; Du, Lihui; Wu, Haihong; Wang, Daoying; Zhu, Yongzhi; Geng, Zhiming; Zhang, Muhan; Xu, Weimin

    2014-10-01

    Tyramine production by Enterococcus faecalis R612Z1 in water-boiled salted ducks was evaluated during storage at different temperatures. The results showed that E. faecalis R612Z1 could produce tyramine in meat samples when the storage temperature was no less than 4°C. The E. faecalis R612Z1 counts of the meat samples reached 10(8) CFU/g on day 7 at 4°C and on day 4 at 10°C. However, the tyramine content of the meat samples stored at 10°C increased to 23.73 μg/g (on day 10), which was greater than the level in the samples stored at 4°C (7.56 μg/g). Reverse transcription quantitative PCR detection of the expression level of the tyrDC gene in E. faecalis R612Z1 in the meat samples revealed no significant changes at different storage temperatures. Thus, the changes in tyramine production of E. faecalis R612Z1 may be due to the different enzymatic activities at different storage temperatures.

  13. Analysis of cracked core spray injection line piping from the Quad Cities Units 1 and 2 boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Diercks, D.R.

    1983-12-01

    Elbow assemblies and adjacent piping from the loops A and B core spray injection lines of Quad Cities Units 1 and 2 Boiling Water Reactors have been examined in order to determine the nature and causes of coolant leakages and flaw indications detected during hydrostatic tests and subsequent ultrasonic inspections. The elbow assemblies were found to contain multiple intergranular cracks in the weld heat-affected zones. The cracking was predominantly axial in orientation in the forged elbow and wedge components, whereas mixed axial and circumferential cracking was seen in the wrought piping pieces. In at least two instances, axial cracks completely penetrated the circumferential weld joining adjacent components. Based upon the observations made in the present study, the failures were attributed to intergranular stress corrosion cracking caused by the weld-induced sensitized microstructure and residual stresses present; dissolved oxygen in the reactor coolant apparently served as the corrosive species. The predominantly axial orientation of the cracks present in the forged components is believed to be related to the banded microstructure present in these components. The metallographic studies reported are supplemented by x-radiography, chemical analysis and mechanical test results, determinations of the degree of sensitization present, and measurements of weld metal delta ferrite content.

  14. Effect of moderator density distribution of annular flow on fuel assembly neutronic characteristics in boiling water reactor cores

    International Nuclear Information System (INIS)

    The effect of the moderator density distribution of annular flow on the fuel assembly neutronic characteristics in a boiling water nuclear reactor was investigated using the SRAC95 code system. For the investigation, a model of annular flow for fuel assembly calculation was utilized. The results of the assembly calculation with the model (Method 1) and those of the fuel assembly calculation with the uniform void fraction distribution (Method 2) were compared. It was found that Method 2 underestimates the infinite multiplication factor in the fuel assembly including the gadolinia rod (type 1 assembly). This phenomenon is explained by the fact that the capture rate in the thermal energy region in gadolinia fuel is estimated to be smaller when the liquid film of annular flow at the fuel rod surface is considered. A burnup calculation was performed under the condition of a void fraction of 65% and a volumetric fraction of the liquid film in liquid phase of 1. It is found that Method 2 underestimates the infinite multiplication factor in comparison to Method 1 in the early stage of burnup, and that Method 2 becomes to overestimate the factor after a certain degree of burnup. This is because Method 2 overestimates the depletion rate of the gadolinia. (author)

  15. Azcaxalli: A system based on Ant Colony Optimization algorithms, applied to fuel reloads design in a Boiling Water Reactor

    International Nuclear Information System (INIS)

    This paper presents some results of the implementation of several optimization algorithms based on ant colonies, applied to the fuel reload design in a Boiling Water Reactor. The system called Azcaxalli is constructed with the following algorithms: Ant Colony System, Ant System, Best-Worst Ant System and MAX-MIN Ant System. Azcaxalli starts with a random fuel reload. Ants move into reactor core channels according to the State Transition Rule in order to select two fuel assemblies into a 1/8 part of the reactor core and change positions between them. This rule takes into account pheromone trails and acquired knowledge. Acquired knowledge is obtained from load cycle values of fuel assemblies. Azcaxalli claim is to work in order to maximize the cycle length taking into account several safety parameters. Azcaxalli's objective function involves thermal limits at the end of the cycle, cold shutdown margin at the beginning of the cycle and the neutron effective multiplication factor for a given cycle exposure. Those parameters are calculated by CM-PRESTO code. Through the Haling Principle is possible to calculate the end of the cycle. This system was applied to an equilibrium cycle of 18 months of Laguna Verde Nuclear Power Plant in Mexico. The results show that the system obtains fuel reloads with higher cycle lengths than the original fuel reload. Azcaxalli results are compared with genetic algorithms, tabu search and neural networks results.

  16. Azcaxalli: A system based on Ant Colony Optimization algorithms, applied to fuel reloads design in a Boiling Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel-Estrada, Jaime, E-mail: jaime.esquivel@fi.uaemex.m [Facultad de Ingenieria, Universidad Autonoma del Estado de Mexico, Cerro de Coatepec S/N, Toluca de Lerdo, Estado de Mexico 50000 (Mexico); Instituto Nacional de Investigaciones Nucleares, Carr. Mexico Toluca S/N, Ocoyoacac, Estado de Mexico 52750 (Mexico); Ortiz-Servin, Juan Jose, E-mail: juanjose.ortiz@inin.gob.m [Instituto Nacional de Investigaciones Nucleares, Carr. Mexico Toluca S/N, Ocoyoacac, Estado de Mexico 52750 (Mexico); Castillo, Jose Alejandro; Perusquia, Raul [Instituto Nacional de Investigaciones Nucleares, Carr. Mexico Toluca S/N, Ocoyoacac, Estado de Mexico 52750 (Mexico)

    2011-01-15

    This paper presents some results of the implementation of several optimization algorithms based on ant colonies, applied to the fuel reload design in a Boiling Water Reactor. The system called Azcaxalli is constructed with the following algorithms: Ant Colony System, Ant System, Best-Worst Ant System and MAX-MIN Ant System. Azcaxalli starts with a random fuel reload. Ants move into reactor core channels according to the State Transition Rule in order to select two fuel assemblies into a 1/8 part of the reactor core and change positions between them. This rule takes into account pheromone trails and acquired knowledge. Acquired knowledge is obtained from load cycle values of fuel assemblies. Azcaxalli claim is to work in order to maximize the cycle length taking into account several safety parameters. Azcaxalli's objective function involves thermal limits at the end of the cycle, cold shutdown margin at the beginning of the cycle and the neutron effective multiplication factor for a given cycle exposure. Those parameters are calculated by CM-PRESTO code. Through the Haling Principle is possible to calculate the end of the cycle. This system was applied to an equilibrium cycle of 18 months of Laguna Verde Nuclear Power Plant in Mexico. The results show that the system obtains fuel reloads with higher cycle lengths than the original fuel reload. Azcaxalli results are compared with genetic algorithms, tabu search and neural networks results.

  17. Comparison of the antitumor activity of polysaccharides extracted by boiling water and enzyme assistance from Ganoderma lucidum

    Institute of Scientific and Technical Information of China (English)

    Xu Chunhua; Zhang Chenju; Tian Zhenle; Zheng Huihua; Yu Xiaobing

    2014-01-01

    Polysaccharides are the most important pharmacologically active constituents of Ganoderma lu-cidum. In this work,polysaccharides were extracted from Ganoderma lucidum with boiling water method and enzyme assisted method. The human liver hepatocellular carcinoma cell line HepG2 was used to compare the an-titumor effect of the two kinds of extraction with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-mide (MTT) test. Both of these two kinds of Ganoderma lucidum polysaccharides reduced cell viability of can-cer cell HepG2 in a dose and time-dependent manner. At low concentrations,there was no significant difference in the effectiveness of L1 and L2;while at concentrations over 0.8μg/mL,the difference in the effectiveness of L2 in comparison to L1 became significant. At the concentrations of 3.2μg/mL,the cancer cells were almost killed in 2 d.

  18. Conceptual design of a passive moderator cooling system for a pressure tube type natural circulation boiling water cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukesh [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Pal, Eshita, E-mail: eshi.pal@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Nayak, Arun K.; Vijayan, Pallipattu K. [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2015-09-15

    Highlights: • Passive moderator cooling system is designed to cool moderator passively during SBO. • PMCS is a system of two natural circulation loops, coupled via a heat exchanger. • RELAP5 analyses show that PMCS maintains moderator within safe limits for 7 days. - Abstract: The recent Fukushima accident has raised strong concern and apprehensions about the safety of reactors in case of a prolonged Station Black Out (SBO) continuing for several days. In view of this, a detailed study was performed simulating this condition in Advanced Heavy Water Reactor. In this study, a novel concept of moderator cooling by passive means has been introduced in the reactor design. The Passive Moderator Cooling System (PMCS) consists of a shell and tube heat exchanger designed to remove 2 MW heat from the moderator inside Calandria. The heat exchanger is located at a suitable elevation from the Calandria of the reactor, such that the hot moderator rises due to buoyancy into the heat exchanger and upon cooling from shell side water returns to Calandria forming a natural circulation loop. The shell side of the heat exchanger is also a natural circulation loop connected to an overhead large water reservoir, namely the GDWP. The objective of the PMCS is to remove the heat from the moderator in case of an SBO and maintaining its temperature below the permissible safe limit (100 °C) for at least 7 days. The paper first describes the concept of the PMCS. The concept has been assessed considering a prolonged SBO for at least 7 days, through an integrated analysis performed using the code RELAP5/MOD3.2 considering all the major components of the reactor. The analysis shows that the PMCS is able to maintain the moderator temperature below boiling conditions for 7 days.

  19. Application of the MOVE algorithm for the identification of reduced order models of a core of a BWR type reactor

    International Nuclear Information System (INIS)

    Presently work is applied the modified algorithm of the ellipsoid of optimal volume (MOVE) to a reduced order model of 5 differential equations of the core of a boiling water reactor (BWR) with the purpose of estimating the parameters that model the dynamics. The viability is analyzed of carrying out an analysis that calculates the global dynamic parameters that determine the stability of the system and the uncertainty of the estimate. The modified algorithm of the ellipsoid of optimal volume (MOVE), is a method applied to the parametric identification of systems, in particular to the estimate of groups of parameters (PSE for their initials in English). It is looked for to obtain the ellipsoid of smaller volume that guarantees to contain the real value of the parameters of the model. The PSE MOVE is a recursive identification method that can manage the sign of noise and to ponder it, the ellipsoid represents an advantage due to its easy mathematical handling in the computer, the results that surrender are very useful for the design of Robust Control since to smaller volume of the ellipsoid, better is in general the performance of the system to control. The comparison with other methods presented in the literature to estimate the reason of decline (DR) of a BWR is presented. (Author)

  20. Reduced scale simulations of boiling water reactor pool swell: some limitations to the scaling laws

    International Nuclear Information System (INIS)

    Several potential sources of misscaling in reduced scale experimental tests have been systematically investigated. Increases in the enthalpy in-flux during pool swell increase resultant uploads; slight boundary flexibility due to small air bubbles attached to the pool walls or true fluid structure interaction can increase peak pool boundary loads; the presence of water vapor in the wetwell airspace can either increase or decrease pool swell uploads, depending on the vapor fraction initially present. 14 refs

  1. Approach and Development of Effective Models for Simulation of Thermal Stratification and Mixing Induced by Steam Injection into a Large Pool of Water

    OpenAIRE

    Hua Li; Walter Villanueva; Pavel Kudinov

    2014-01-01

    Steam venting and condensation in a large pool of water can lead to either thermal stratification or thermal mixing. In a pressure suppression pool (PSP) of a boiling water reactor (BWR), consistent thermal mixing maximizes the capacity of the pool while the development of thermal stratification can reduce the steam condensation capacity of the pool which in turn can lead to pressure increase in the containment and thereafter the consequences can be severe. Advanced modeling and simulation of...

  2. BWR fuel performance

    International Nuclear Information System (INIS)

    The General Electric experience base on BWR fuel includes over 29,000 fuel assemblies which contain 1,600,000 fuel rods. Over the last five years, design, process and operating changes have been introduced which have had major effects in improving fuel performance. Monitoring this fuel performance in BWRs has been accomplished through cooperative programs between GE and utilities. Activities such as plant fission product monitoring, fuel sipping and fuel and channel surveillance programs have jointly contributed to the value of this extensive experience base. The systematic evaluation of this data has established well-defined fuel performance trends which provide the assurance and confidence in fuel reliability that only actual operating experience can provide

  3. Header feedwater supply and power distribution stability in channel boiling water cooled reactors

    International Nuclear Information System (INIS)

    Boundaries of radial-azimuthal instability of the reactor neutron field during the supply of all feedwater and a part of it (25%) to downtake pipes of the separating drum (75% of feedwater come to distributive group headers) are found out for NPP with a RBMK type reactor. Results of computer calculation of the transient process at NPP caused by 2% step increase of nominal pressure in a head collector of a feedwater electric pump are also presented for comparison of the above methods of feed-water supply. Calculation is carried out according to the OKA program with provision for the control system of the reactor total power. It is shown that the boundary of ''mean period'' instability does not change but the reserve in respect to the ''fast'' space instability slightly increases when header feedwater supply at NPP from RBMK is used. It is noted that requirements to the pressure regulator system quick action in a separating drum are increased when the header feedwater supply is used. This fact is explained by the fact that considerable pressure drop in a separating drum occurs during some accidents (for example, at false operation of the emergensy protective system)

  4. Communication, perception and behaviour during a natural disaster involving a 'Do Not Drink' and a subsequent 'Boil Water' notice: a postal questionnaire study

    Directory of Open Access Journals (Sweden)

    Knapton Olivia

    2010-10-01

    Full Text Available Abstract Background During times of public health emergencies, effective communication between the emergency response agencies and the affected public is important to ensure that people protect themselves from injury or disease. In order to investigate compliance with public health advice during natural disasters, we examined consumer behaviour during two water notices that were issued as a result of serious flooding. During the summer of 2007, 140,000 homes in Gloucestershire, United Kingdom, that are supplied water from Mythe treatment works, lost their drinking water for up to 17 days. Consumers were issued a 'Do Not Drink' notice when the water was restored, which was subsequently replaced with a 'Boil Water' notice. The rare occurrence of two water notices provided a unique opportunity to compare compliance with public health advice. Information source use and other factors that may affect consumer perception and behaviour were also explored. Method A postal questionnaire was sent to 1,000 randomly selected households. Chi-square, ANOVA, MANOVA and generalised estimating equation (with and without prior factor analysis were used for quantitative analysis. Results In terms of information sources, we found high use of and clear preference for the local radio throughout the incident, but family/friends/neighbours also proved crucial at the onset. Local newspapers and the water company were associated with clarity of advice and feeling informed, respectively. Older consumers and those in paid employment were particularly unlikely to read the official information leaflets. We also found a high degree of confusion regarding which notice was in place at which time, with correct recall varying between 23.2%-26.7%, and a great number of consumers believed two notices were in place simultaneously. In terms of behaviour, overall non-compliance levels were significantly higher for the 'Do Not Drink' notice (62.9% compared to the 'Boil Water' notice (48

  5. Prediction of the stability of BWR reactors during the start-up process; Prediccion de la estabilidad de reactores BWR durante el proceso de arranque

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz E, J.A.; Castillo D, R. [ININ, Km. 36.5 Carretera Mexico-Toluca, 52045 Salazar, Estado de Mexico (Mexico); Blazquez M, J.B. [Centro de Investigaciones Energetics, Medioambientales y Tecnologicas, Av Complutense 22, 28040 Madrid (Spain)

    2004-07-01

    The Boiling Water Reactors (BWR) are susceptible of uncertainties of power when they are operated to low flows of coolant (W) and high powers (P), being presented this situation mainly in the start-up process. The start-up process could be made but sure if the operator knew the value of the stability index Decay reason (Dr) before going up power and therefore to guarantee the stability. The power and the flow are constantly measures, the index Dr could also be considered its value in real time. The index Dr depends on the power, flow and many other values, such as, the distribution of the flow axial and radial neutronic, the temperature of the feeding water, the fraction of holes and other thermohydraulic and nuclear parameters. A simple relationship of Dr is derived leaving of the pattern reduced of March-Leuba, where three independent variables are had that are the power, the flow and a parameter that it contains the rest of the phenomenology, that is to say all the other quantities that affect the value of Dr. This relationship developed work presently and verified its prediction with data of start-up of commercial reactors could be used for the design of a practical procedure practice of start-up, what would support to the operator to prevent this type of events of uncertainty. (Author)

  6. Relations between boiling water test, standard germination test and field emergence of leek (Allium porrum L. and onion (Allium cepa L. seeds

    Directory of Open Access Journals (Sweden)

    Ismail Guvenc

    2012-12-01

    Full Text Available The aim of this study was to determine relations occurring between boiling water test, standard germination test and field emergence of leek (Allium porrum L. and onion (Allium cepa L. seeds. In this study, seeds of six lots ('Kalem', 'Ala', 'Ínegöl-A, B, C and D' from three cultivars of leek and seven onion cultivars ('Early Texas Grano' (ETG, 'Panku', 'Storm', 'Banko', 'Aki', 'Kisagün' and 'Banka' seeds were used as plant material and their viability was evaluated in boiling water test (BWT, standard germination test (SGT and field emergence (FE. The percentage of field emergence was evaluated at three sowing times: 20 May (FE-I, 10 June (FE-II and 20 July (FE-III. The mean germination of leek seeds varied from 77.5% to 100.0% and from 36.0% to 61.0% in SGT and BWT, respectively. While the range of results obtained in the boiling water test was from 38.5% to 60.0%, the range of results of the standard germination test was from 81.0% to 100.0% in onion seeds. The range of field emergence was between 18.5% ('Kisagün', FE-III and 72.0% (İnegöl-C', FE-II. Besides, the boiling water test was correlated highly significantly with SGT (r = 0.670**, FE-I (r = 0.923**, FE-II (r = 0.906** and FE-III (r = 0.939** in leek seeds. Similarly, BWT showed positive correlation with SGT (r = 0.568**, FE-I (r = 0.844**, FE-II (r = 0.933** and FE-III (r = 0.858** in onion seeds. In conclusion, the boiling water test is a new and reliable technique to test seed viability and it has a great potential to test rapidly germination and field emergence of leek and onion seeds at different sowing times.

  7. Application of reliability-centered maintenance to boiling water reactor emergency core cooling systems fault-tree analysis

    International Nuclear Information System (INIS)

    Reliability-centered maintenance (RCM) methods are applied to boiling water reactor plant-specific emergency core cooling system probabilistic risk assessment (PRA) fault trees. The RCM is a technique that is system function-based, for improving a preventive maintenance (PM) program, which is applied on a component basis. Many PM programs are based on time-directed maintenance tasks, while RCM methods focus on component condition-directed maintenance tasks. Stroke time test data for motor-operated valves (MOVs) are used to address three aspects concerning RCM: (a) to determine if MOV stroke time testing was useful as a condition-directed PM task; (b) to determine and compare the plant-specific MOV failure data from a broad RCM philosophy time period compared with a PM period and, also, compared with generic industry MOV failure data; and (c) to determine the effects and impact of the plant-specific MOV failure data on core damage frequency (CDF) and system unavailabilities for these emergency systems. The MOV stroke time test data from four emergency core cooling systems [i.e., high-pressure coolant injection (HPCI), reactor core isolation cooling (RCIC), low-pressure core spray (LPCS), and residual heat removal/low-pressure coolant injection (RHR/LPCI)] were gathered from Philadelphia Electric Company's Peach Bottom Atomic Power Station Units 2 and 3 between 1980 and 1992. The analyses showed that MOV stroke time testing was not a predictor for eminent failure and should be considered as a go/no-go test. The failure data from the broad RCM philosophy showed an improvement compared with the PM-period failure rates in the emergency core cooling system MOVs. Also, the plant-specific MOV failure rates for both maintenance philosophies were shown to be lower than the generic industry estimates

  8. Antihyperglycemic and antinociceptive activity evaluation of 'khoyer' prepared from boiling the wood of Acacia catechu in water.

    Science.gov (United States)

    Rahmatullah, Mohammed; Hossain, Maraz; Mahmud, Arefin; Sultana, Nahida; Rahman, Sheikh Mizanur; Islam, Mohammad Rashedul; Khatoon, Mujiba Salma; Jahan, Sharmin; Islam, Fatema

    2013-01-01

    'Khoyer' is prepared by boiling the wood of Acacia catechu in water and then evaporating the resultant brew. The resultant hard material is powdered and chewed with betel leaves and lime with or without tobacco by a large number of the people of Bangladesh as an addictive psycho-stimulating and euphoria-inducing formulation. There are folk medicinal claims that khoyer helps in the relief of pain and is also useful to diabetic patients to maintain normal sugar levels. Thus far no scientific studies have evaluated the antihyperglycemic and antinociceptive effects of khoyer. The present study was carried out to evaluate the possible glucose tolerance efficacy of methanolic extracts of khoyer using glucose-induced hyperglycemic mice, and antinociceptive effects with acetic acid-induced gastric pain models in mice. In antihyperglycemic activity tests, the extract at different doses was administered one hour prior to glucose administration and blood glucose level was measured after two hours of glucose administration (p.o.) using glucose oxidase method. The statistical data indicated the significant oral hypoglycemic activity on glucose-loaded mice at all doses of the extracts tested. Maximum anti-hyperglycemic activity was shown at 400 mg extract per kg body weight, which was less than that of a standard drug, glibenclamide (10 mg/kg body weight). In antinociceptive activity tests, the extract also demonstrated a dose-dependent significant reduction in the number of writhing induced in mice through intraperitoneal administration of acetic acid. Maximum antinociceptive activity was observed at a dose of 400 mg extract per kg body weight, which was greater than that of a standard antinociceptive drug, aspirin, when administered at a dose of 400 mg per kg body weight. The results validate the folk medicinal use of the plant for reduction of blood sugar in diabetic patients, as well as the folk medicinal use for alleviation of pain. PMID:24146493

  9. Experimental boiling heat transfer coefficients in the high temperature generator of a double effect absorption machine for the lithium bromide/water mixture

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, J.D. [Escuela Tecnica Superior Ingenieria Industrial, UNED, c/Juan del Rosal 12, 28040 Madrid (Spain); Izquierdo, M. [Instituto de Ciencias de la Construccion Eduardo Torroja (CSIC), c/Serrano Galvache 4, 28033 Madrid (Spain); Escuela Politecnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganes, Madrid (Spain); Lizarte, R. [Escuela Politecnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganes, Madrid (Spain); Palacios, E. [Escuela Universitaria Ingenieria Tecnica Industrial, Universidad Politecnica de Madrid, C/ Ronda de Valencia 3, 28012 Madrid (Spain); Infante Ferreira, C.A. [Delft University of Technology, Engineering Thermodynamics, Leeghwaterstraat 44, 2628 CA Delft (Netherlands)

    2009-06-15

    The aim of this work is to determine the boiling heat transfer coefficients in the high temperature desorber (HTD) of an air-cooled double effect lithium bromide/water absorption prototype. The HTD is a plate heat exchanger (PHE) with thermal oil on one side, and a lithium bromide solution on the other side. Several experiments were performed with this PHE while the prototype was working with an outdoor dry bulb temperature around 42 C and condensation temperature around 55 C. The registered data allowed to calculate the global heat transfer coefficient and the heat transfer coefficient for the LiBr/water mixture in forced convective boiling. The pressure drop produced by the boiling of the refrigerant has been calculated as well. It has been verified that the largest part of the heat supplied in the generator is required for desorbing the refrigerant (except for the maximum solution mass flow), while the sensible heat varies from 10% to 50% of the total heat supplied. (author)

  10. Effect of boiling in water of barley and buckwheat groats on the antioxidant properties and dietary fiber composition.

    Science.gov (United States)

    Hęś, Marzanna; Dziedzic, Krzysztof; Górecka, Danuta; Drożdżyńska, Agnieszka; Gujska, Elżbieta

    2014-09-01

    In recent years, there has been an ever-increasing interest in the research of polyphenols obtained from dietary sources, and their antioxidative properties. The purpose of this study was to determine the effect of boiling buckwheat and barley groats on the antioxidant properties and dietary fiber composition. Antioxidative properties were investigated using methyl linoleate model system, by assessing the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity and metal chelating activity. The results were compared with butylated hydroxytoluene (BHT). Raw barley and buckwheat groats extracts showed higher DPPH scavenging ability compared to boiled barley and buckwheat groats extracts. Raw barley groats extract exhibited higher antioxidant activity than boiled groats extract in the methyl linoleate emulsion. Higher chelating ability in relation to Fe (II) ions was observed for boiled groats extracts as compared to raw groats extracts. BHT showed small antiradical activity and metal chelating activity, while showing higher antioxidative activity in emulsion system. The analysis of groats extracts using HPLC method showed the presence of rutin, catechin, quercetin, gallic, p-hydroxybenzoic, p-coumaric, o-coumaric, vanillic, sinapic, and ferulic acids. Differences in the content of dietary fiber and its fractions were observed in the examined products. The highest total dietary fiber content was detected in boiled buckwheat groats, while the lowest - in boiled barley groats. The scientific achievements of this research could help consumers to choose those cereal products available on the market, such as barley and buckwheat groats, which are a rich source of antioxidative compounds and dietary fiber. PMID:24938316

  11. Evaluation of the use of color-set geometry during lattice physics constants generation for boiling water reactor simulation

    International Nuclear Information System (INIS)

    Current methods for BWR nuclear design and analysis consist of using lattice physics neutron transport methods to generate the two-group homogenized cross-sections that are then used in a nodal diffusion theory code. The lattice transport solutions are performed for a single assembly with reflective boundary conditions, which is a practical approximation. A method is developed to account for assembly exposure distributions (environment) in the core within the lattice transport calculations with the use of color-sets (2x2) geometry. The loading pattern is examined and an appropriate number of characteristic color-set cells are selected for analysis. Treatment of the co-resident exposed fuel within this method is also presented. The calculation process was followed for a recent BWR cycle design with comparisons being performed on both a lattice and core-wide basis to evaluate the proposed method. The lattice based comparisons show noticeable differences in the pin power distribution predictions, which require further investigation to see how this translates into core performance calculations. The core-wide comparisons show minor differences and are generally in a good agreement, which is expected with this small perturbation. A slight improvement was noticed in the reduction of the power distribution uncertainty. However, given the additional amount of work and computer run time increase, further evaluation, especially of core pin power predictions, is needed to consider this method for production level design and safety analysis calculations. (authors)

  12. Analysis of a German BWR core with TRACE/PARCS using different cross section sets

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, C., E-mail: Christoph.Hartmann@kit.edu [Karlsruhe Inst. of Tech. (KIT), Inst. for Neutron Physics and Reactor Technology (INR), Eggenstein-Leopoldshafen (Germany); Westinghouse Electric Germany GmbH, Mannheim (Germany); Sanchez, V.H. [Karlsruhe Inst. of Tech. (KIT), Inst. for Neutron Physics and Reactor Technology (INR), Eggenstein-Leopoldshafen (Germany); Tietsch, W. [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2011-07-01

    'Full text:' Coupled Thermal-hydraulic/Neutron-kinetic (TH/NK) simulations of Boiling Water Reactor transients require well validated and accurate simulation tools as well as appropriate cross sections (XS) libraries depending on the individual thermal hydraulic state parameters. Problem-dependent XS-sets for 3D core simulations are being generated mainly by well validated, fast running and user-friendly lattice codes such as Casco and Helios. At research institutions and universities, alternative tools to the commercial ones with full access to the source code as well as moderate cost are urgently needed. The Scale system is being developed and improved for lattice physics calculations of real core loading of Light Water Reactors (LWR). It represents a promising alternative to the commercial lattice codes. At Karlsruhe Institute of Technology (Kit) a computational route based on Scale/Triton/Newt for BWR core loading is under development. The generated XS-data sets have to be transformed in PMAXS-format for use in the reactor dynamic code PARCS. This task is performed by the module GenPMAXS being developed and tested at the Michigan University. To verify the computational route, a BWR fuel assembly depletion problem was calculated by PARCS and compared to the CASMO results. Since the SCALE/TRITON XS-file does actually not contain all required neutronic data, FORTRAN routines have been developed to incorporate the missing data e.g. the yields of Iodine, Xenon and Promethium into the XS-data sets in the PMAXS-format. The comparison of the results obtained with PARCS (using the corrected PMAXS file) and CASMO for the depletion problem exhibited a good agreement. Consequently, this approach was followed for the generation of a complete XS-set for a real BWR core to be used in subsequent transient analysis. Then 3D neutronic and thermal hydraulic core model were elaborated for a TRACE/PARCS analysis. The thermal hydraulic model is based on the 3D VESSEL

  13. Analysis of a German BWR core with TRACE/PARCS using different cross section sets

    International Nuclear Information System (INIS)

    'Full text:' Coupled Thermal-hydraulic/Neutron-kinetic (TH/NK) simulations of Boiling Water Reactor transients require well validated and accurate simulation tools as well as appropriate cross sections (XS) libraries depending on the individual thermal hydraulic state parameters. Problem-dependent XS-sets for 3D core simulations are being generated mainly by well validated, fast running and user-friendly lattice codes such as Casco and Helios. At research institutions and universities, alternative tools to the commercial ones with full access to the source code as well as moderate cost are urgently needed. The Scale system is being developed and improved for lattice physics calculations of real core loading of Light Water Reactors (LWR). It represents a promising alternative to the commercial lattice codes. At Karlsruhe Institute of Technology (Kit) a computational route based on Scale/Triton/Newt for BWR core loading is under development. The generated XS-data sets have to be transformed in PMAXS-format for use in the reactor dynamic code PARCS. This task is performed by the module GenPMAXS being developed and tested at the Michigan University. To verify the computational route, a BWR fuel assembly depletion problem was calculated by PARCS and compared to the CASMO results. Since the SCALE/TRITON XS-file does actually not contain all required neutronic data, FORTRAN routines have been developed to incorporate the missing data e.g. the yields of Iodine, Xenon and Promethium into the XS-data sets in the PMAXS-format. The comparison of the results obtained with PARCS (using the corrected PMAXS file) and CASMO for the depletion problem exhibited a good agreement. Consequently, this approach was followed for the generation of a complete XS-set for a real BWR core to be used in subsequent transient analysis. Then 3D neutronic and thermal hydraulic core model were elaborated for a TRACE/PARCS analysis. The thermal hydraulic model is based on the 3D VESSEL

  14. ATRIUMTM Fuel - Continuous Upgrading for High Duty BWR Plants

    International Nuclear Information System (INIS)

    AREVA NP is a supplier of nuclear fuel assemblies and associated core components to Boiling Water Reactors worldwide, representing today more than 60 000 fuel assemblies. Since first delivered in 1992, ATRIUMTM10 fuel assemblies have now been supplied to a total of 32 BWR plants in the US, Europe, and Asia resulting in an operating experience over 20 000 fuel assemblies. Among them, the latest versions are ATRIUMTM 10XP and ATRIUMTM 10XM fuel assemblies which have been delivered to several utilities worldwide. During six years of operation experience reaching a maximum fuel assembly burnup of 66 MWd/kgU, no fuel failure of ATRIUMTM 10XP/XM occurred. Regular upgrading of the fuel assemblies' reliability and performance has been made possible thanks to AREVA NP's continuous improvement process and the 'Zero tolerance for failure' program. In this frame, the in-core behavior follow-up, manufacturing experience feedback and customer expectations are the bases for setting improvement management objectives. As an example, most fuel rod failures observed in the past years resulted from debris fretting and Pellet Cladding Interaction (PCI) generally caused by Missing Pellet Surface. To address these issues, the development of the Improved FUELGUARDTM debris filter was initiated and completed while implementation of chamfered pellets and Cr doped fuel will address PCI aspects. In the case of fuel channel bow issue, efforts to ensure dimensional stability at high burnup levels and under challenging corrosion environments have been done resulting in material recommendations and process developments. All the described solutions will strongly support the INPO goal of 'Zero fuel failures by 2010'. In a longer perspective, the significant trend in nuclear fuel operation is to increase further the discharge burnup and/or to increase the reactor power output. In the majority of nuclear power plants worldwide, strong efforts in power up-rating were made and are still ongoing. Most

  15. Thermohydraulic stability coupled to the neutronic in a BWR

    International Nuclear Information System (INIS)

    In a BWR type reactor the phenomenon of the nuclear fission is presented, in which are liberated in stochastic form neutrons, originating that the population of the same ones varies in statistic form around a mean value. This variation will cause that when the neutron flow impacts on the neutron detectors, its are had as a result neutron flow signals with fluctuations around an average value. In this article it is shown that it conforms it lapses the time, this variations in the neutron flow (and therefore, in the flow signal due only to the fission), they presented oscillations inside a stable range, which won't be divergent. Considering that the BWR is characterized because boiling phenomena are presented, which affect the moderation of the neutrons, additional variations will be had in the signal coming from the neutron detectors, with relationship to the fission itself, which will be influenced by the feedback of the moderator's reactivity and of the temperature of the fuel pellet. Also, as the BWR it has coupled control systems to maintain the coolant level one and of the thermal power of the reactor, for each control action it was affected the neutron population. This means that the reactor could end up straying of a stable state condition. By it previously described, the study of the thermohydraulic stability coupled to the neutronic is complex. In this work it is shown the phenomenology, the mathematical models and the theoretical behavior associated to the stability of the BWR type reactor; the variables that affect it are identified, the models that reproduce the behavior of the thermohydraulic stability coupled to the neutronic, the way to maintain stable the reactor and the instrumentation that can settle to detect and to suppress uncertainties is described. In particular, is make reference to the evolution of the methods to maintain the stability of the reactor and the detection system and suppression of uncertainties implemented in the Laguna Verde

  16. Study of the internal heat transfer of the water flow in nucleate boiling; Estudio de la transferencia de calor del flujo interno de agua en ebullicion nucleada

    Energy Technology Data Exchange (ETDEWEB)

    Payan Rodriguez, Luis Alfredo

    2003-09-01

    In this paper the development of a research project oriented to the analysis of the heat transfer of the water flow in nucleate boiling is presented. Here a mathematical model is described to characterize the water flow in boiling condition in vertical tubes by means of which the temperature distributions in the tube wall and in the water flow are obtained, including the calculation of the pressure drop throughout the tube. In addition, a mechanistic model focused to the prediction of the critical heat flow in vertical tubes uniformly heated was modified to be applied in non-uniform heat flow conditions. The proposed mathematical models were used in a case study derived from a real problem in a thermoelectric power plant, where it was required to simulate the process of boiling in fireplace tubes of the steam generator to determine the causes of the faults that happened in a considerable number of tubes. With the obtained results it was possible to establish that the faults in the tubes of the analyzed steam generator were originated because the heat transfer rate in the fireplace reached critical values that caused the deviation of the nucleate boiling to film boiling, causing the diminution of the heat transfer coefficient with the consequent sudden increase in the tube wall temperature. [Spanish] En este trabajo se presenta el desarrollo de un proyecto de investigacion orientado al analisis de la transferencia de calor en flujo de agua en ebullicion nucleada. Aqui se describe un modelo matematico para caracterizar el flujo de agua en ebullicion en tubos verticales mediante el cual se obtienen las distribuciones de temperatura en la pared del tubo y en el flujo de agua, incluyendo el calculo de la caida de presion a lo largo del tubo. Ademas, un modelo mecanistico enfocado a la prediccion del flujo de calor critico en tubos verticales uniformemente calentados fue modificado para aplicarlo en condiciones de flujo de calor no uniforme. Los modelos matematicos

  17. Hydrogen uptake of BWR fuel rods. Power history effects at long irradiation times

    International Nuclear Information System (INIS)

    AREVA LTP (Low Temperature Process) Zircaloy-2 cladding for Boiling Water Reactors (BWR) in both RXA (Recrystallized Annealed) and CWSR (Cold Worked Stress Relieved) metallurgical states, has an optimized microstructure with an optimum size of SPP (Secondary Phase Particles) that has reduced the nodular corrosion to a minimum while maintaining a good uniform corrosion performance with acceptable hydrogen pickup. Classically hydrogen uptake is described by the Hydrogen Pick-Up Fraction (HPUF), which is the ratio of the hydrogen generated by uniform oxidation that is eventually picked up by the metal to the total hydrogen generated by oxidation. In the past, the hydrogen uptake database showed a low HPUF with hydrogen concentration close to the saturation value of the metal at operating temperature and correspondingly little hydride formation. The hydrogen concentration was correlated with irradiation time via the HPUF (at an almost constant corrosion and hydrogen production rate). Recently, some significantly higher hydrogen concentration values (300 wppm and more) have been measured for medium and high burnup rods. This effect was also observed on four AREVA fuel rods from BWR (Boiling Water Reactors). This prompted a thorough analysis of the hydrogen pickup database as well as material and environmental factors influencing corrosion and hydrogen uptake. The most important outcome of the investigation was that a low power – low steam condition is associated with increased hydrogen pickup. The linear power is a proxy variable for low heat flux and low steam quality in the coolant, which were identified as important parameters for physical processes that could explain the enhanced hydrogen uptake in some cases. The paper will present the database of the enhanced hydrogen uptake measured in European power reactors and demonstrate the effect of power history on the uptake process. Power histories with high hydrogen uptake included extended low power periods later in

  18. Thermohydraulic stability coupled to the neutronic in a BWR; Estabilidad termohidraulica acoplada a la neutronica en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Calleros M, G.; Zapata Y, M.; Gomez H, R.A.; Mendez M, A. [Comision Federal de Electricidad, Central Nucleoelectrica de Laguna Verde, Carretera Cardel-Nautla Km. 42.5, Mpio. Alto Lucero, Veracruz (Mexico); Castlllo D, R. [ININ, Carretera Mexico-Toluca Km 36.5, La Marquesa, Estado de Mexico (Mexico)]. e-mail: gcm9acpp@cfe.gob.mx

    2006-07-01

    In a BWR type reactor the phenomenon of the nuclear fission is presented, in which are liberated in stochastic form neutrons, originating that the population of the same ones varies in statistic form around a mean value. This variation will cause that when the neutron flow impacts on the neutron detectors, its are had as a result neutron flow signals with fluctuations around an average value. In this article it is shown that it conforms it lapses the time, this variations in the neutron flow (and therefore, in the flow signal due only to the fission), they presented oscillations inside a stable range, which won't be divergent. Considering that the BWR is characterized because boiling phenomena are presented, which affect the moderation of the neutrons, additional variations will be had in the signal coming from the neutron detectors, with relationship to the fission itself, which will be influenced by the feedback of the moderator's reactivity and of the temperature of the fuel pellet. Also, as the BWR it has coupled control systems to maintain the coolant level one and of the thermal power of the reactor, for each control action it was affected the neutron population. This means that the reactor could end up straying of a stable state condition. By it previously described, the study of the thermohydraulic stability coupled to the neutronic is complex. In this work it is shown the phenomenology, the mathematical models and the theoretical behavior associated to the stability of the BWR type reactor; the variables that affect it are identified, the models that reproduce the behavior of the thermohydraulic stability coupled to the neutronic, the way to maintain stable the reactor and the instrumentation that can settle to detect and to suppress uncertainties is described. In particular, is make reference to the evolution of the methods to maintain the stability of the reactor and the detection system and suppression of uncertainties implemented in the

  19. Optimization of fuel cells for BWR based in Tabu modified search; Optimizacion de celdas de combustible para BWR basada en busqueda Tabu modificada

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo M, C.; Francois L, J.L. [Facultad de Ingenieria, UNAM, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico); Palomera P, M.A. [Facultad de Ingenieria, UNAM, Posgrado en Ingenieria en Computacion, Circuito exterior s/n, Ciudad Universitaria, Mexico, D.F. (Mexico)]. e-mail: cmcm@fi-b.unam.mx

    2004-07-01

    The advances in the development of a computational system for the design and optimization of cells for assemble of fuel of Boiling Water Reactors (BWR) are presented. The method of optimization is based on the technique of Tabu Search (Tabu Search, TS) implemented in progressive stages designed to accelerate the search and to reduce the time used in the process of optimization. It was programed an algorithm to create the first solution. Also for to diversify the generation of random numbers, required by the technical TS, it was used the Makoto Matsumoto function obtaining excellent results. The objective function has been coded in such a way that can adapt to optimize different parameters like they can be the enrichment average or the peak factor of radial power. The neutronic evaluation of the cells is carried out in a fine way by means of the HELIOS simulator. In the work the main characteristics of the system are described and an application example is presented to the design of a cell of 10x10 bars of fuel with 10 different enrichment compositions and gadolinium content. (Author)

  20. SUN-RAH: a nucleoelectric BWR university simulator based in reduced order models; SUN-RAH: simulador universitario de nucleoelectrica BWR basado en modelos de orden reducido

    Energy Technology Data Exchange (ETDEWEB)

    Morales S, J.B.; Lopez R, A.; Sanchez B, A.; Sanchez S, R.; Hernandez S, A. [DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: jms0620@yahoo.com

    2003-07-01

    The development of a simulator that allows to represent the dynamics of a nucleo electric central, with nuclear reactor of the BWR type, using reduced order models is presented. These models present the characteristics defined by the dominant poles of the system (1) and most of those premature operation transitories in a power station can be reproduced with considerable fidelity if the models are identified with data of plant or references of a code of better estimate like RAMONA, TRAC (2) or RELAP. The models of the simulator are developments or own simplifications starting from the physical laws and retaining the main terms. This work describes the objective of the project and the general specifications of the University student of Nucleo electric simulator with Boiling Water Reactor type (SUN-RAH) as well as the finished parts that fundamentally are the nuclear reactor, the one of steam supply (NSSS), the plant balance (BOP), the main controllers of the plant and the implemented graphic interfaces. The pendent goals as well as the future developments and applications of SUN-RAH are described. (Author)

  1. BWR type reactor

    International Nuclear Information System (INIS)

    In a coolant circulation in BWR type reactors, since the mixed stream of steam fluid undergoes a great resistance, the pressure loss due to the flow rate distribution when the coolants flow from the upper plenum into the stand pipe is increased upon passing stand pipe. Also in the spontaneous recycling reactor, pressure loss is still left upon passing the swirling blade of a gas-liquid separator. In view of the above, a plurality of vertical members each having a lower end opened to a gas-liquid two phase boundary and an upper end directly suspended from a steam dryer to the gas-liquid separator. The liquid droplets from the 2-phase boundary heated in the reactor core and formed into a mixed gas-liquid 2-phase stream is directed in the vertical direction accompanied with the steam. The liquid droplets spontaneously fallen by gravity from greater ones successively and the droplets in the steam abutted against the vertical member are fallen as a liquid membrane. Thus, the gas-liquid separation is conducted, the dry steam is directly flown into the steam dryer, thereby capable of providing a gas-liquid separator having gas-liquid separation performance with lower loss than usual. (N.H.)

  2. Modeling and validation of a mechanistic tool (MEFISTO) for the prediction of critical power in BWR fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Adamsson, Carl, E-mail: carl.adamsson@psi.ch [Westinghouse Electric Sweden, SE-721 63, Vaesteras (Sweden); Le Corre, Jean-Marie, E-mail: lecorrjm@westinghouse.com [Westinghouse Electric Sweden, SE-721 63, Vaesteras (Sweden)

    2011-08-15

    Highlights: > The MEFISTO code efficiently and accurately predicts the dryout event in a BWR fuel bundle, using a mechanistic model. > A hybrid approach between a fast and robust sub-channel analysis and a three-field two-phase analysis is adopted. > MEFISTO modeling approach, calibration, CPU usage, sensitivity, trend analysis and performance evaluation are presented. > The calibration parameters and process were carefully selected to preserve the mechanistic nature of the code. > The code dryout prediction performance is near the level of fuel-specific empirical dryout correlations. - Abstract: Westinghouse is currently developing the MEFISTO code with the main goal to achieve fast, robust, practical and reliable prediction of steady-state dryout Critical Power in Boiling Water Reactor (BWR) fuel bundle based on a mechanistic approach. A computationally efficient simulation scheme was used to achieve this goal, where the code resolves all relevant field (drop, steam and multi-film) mass balance equations, within the annular flow region, at the sub-channel level while relying on a fast and robust two-phase (liquid/steam) sub-channel solution to provide the cross-flow information. The MEFISTO code can hence provide highly detailed solution of the multi-film flow in BWR fuel bundle while enhancing flexibility and reducing the computer time by an order of magnitude as compared to a standard three-field sub-channel analysis approach. Models for the numerical computation of the one-dimensional field flowrate distributions in an open channel (e.g. a sub-channel), including the numerical treatment of field cross-flows, part-length rods, spacers grids and post-dryout conditions are presented in this paper. The MEFISTO code is then applied to dryout prediction in BWR fuel bundle using VIPRE-W as a fast and robust two-phase sub-channel driver code. The dryout power is numerically predicted by iterating on the bundle power so that the minimum film flowrate in the bundle

  3. Development of high performance catalyst for off-gas treatment system in BWR

    International Nuclear Information System (INIS)

    A high performance catalyst for off-gas treatment system in boiling water reactor (BWR) has been developed. The hydrogen concentration in the outlets of off-gas recombiners increased at several BWR plants in Japan. These phenomena were caused by deactivation of catalysts for the recombiners, and we assumed two types of deactivation mechanisms. The first cause was an increase of the amount of boehmite in the catalyst support due to alternation of the manufacturing process. The other cause was catalysts being poisoned by cyclic siloxanes that were introduced from the silicone sealant used in the upstream of the off-gas recombiners. The catalysts were manufactured by Pt adhering on alumina support. The conventional catalyst (CAT-A) used the aqueous solution of the chloroplatinic acid for adhesion of Pt. A dechlorination process by autoclave was applied to prevent the equipment at the downstream of the recombiners from stress corrosion cracking, but this process caused the support material to transform into boehmite. The boehmite-rich catalysts were deactivated more easily by organic silicon than gamma alumina-rich catalysts. Therefore, the CAT-A was replaced at many Japanese BWR plants by the improved catalyst (CAT-B), and their support was transformed into more stable gamma alumina by heating at 500degC. However, the siloxanes keep being detected in the off-gas though the source of siloxane had been removed and there still remain possibilities to deactivate the catalysts. Therefore, we have been developing high performance catalyst (CAT-C) that has higher activity and durability against poisoning. We investigated the properties of CAT-C by performance tests and instrumental analyses. The dependency of thermal output of nuclear reactor, and durability against siloxane poisoning were investigated. We found that CAT-C showed higher performance and better properties than CAT-B did. Moreover, we have been developing a modeling method to evaluate the hydrogen recombination

  4. A rule-based expert system for control rod pattern of boiling water reactors by hovering around haling exposure shape

    International Nuclear Information System (INIS)

    Feasible strategies for automatic BWR control rod pattern generation have been implemented in a rule-based expert system. These strategies are majorly based on a concept for which exposure distributions are hovering around the Haling exposure distribution through a cycle while radial and axial power distributions are dominantly controlled by some abstracted factors indicating the desired distributions. The system can either automatically generate expert-level control rod patterns or search for criteria-satisfied patterns originated from user's input. It has successfully been demonstrated by generating control rod patterns for the the 1775 MWth Chinshan plant in Unit I Cycle 13 alternate loading pattern and Unit 2 Cycle 8 but with longer cycle length. All rod patterns for two cycles result in all-rod-out at EOC and no violation against the four criteria. The demonstrations show that the system is considerably good in choosing initial trial rod patterns and adjusting rod patterns to satisfy the design criteria. (author)

  5. Theoretical investigation of the local and global components of the neutron-noise fields in a boiling water reactor

    International Nuclear Information System (INIS)

    In view of recent experimental work the neutron noise in a BWR is believed to be separable into a local and a global component. It is the existence of the local component which makes possible the measurement of steam-velocity by correlating the signals of axially placed incore neutron detectors. The authors use a one-dimensional (axial) model of the core and solve the two group diffusion equations satisfied by the neutron-noise. The solution is shown to be composed of two terms which can be identified as the theoretical counterparts of the components found in experiments. The properties of the two terms are discussed in the special case of an axially propagating disturbance of the moderator density (steam content). (Auth.)

  6. Closeout of IE Bulletin 79-12: short-period scrams at boiling-water reactors. Final report

    International Nuclear Information System (INIS)

    IE Circular 77-07 was issued on April 14, 1977 because of the occurrence of short period scram events at Dresden Unit 2 on December 28, 1976 and at Monticello on February 23, 1977. The circular advised BWR plants to revise their control rod withdrawal sequences and operating procedures to reduce the likelihood of future short period scrams. However, similar events continued to occur. These included events at Oyster Creek on December 14, 1978; at Browns Ferry Unit 1 on January 18, 1979; and at Hatch Unit 1 on January 31, 1979. As a result of these events, IE Bulletin 79-12 was issued on May 31, 1979. This bulletin required a written response from licensees of GE-designed BWRs regarding specific actions listed in the bulletin. All of the licensees responded in a satisfactory manner. No similar events have been reported since IE Bulletin 79-12 was issued

  7. Comparison of Standard Light Water Reactor Cross-Section Libraries using the United States Nuclear Regulatory Commission Boiling Water Reactor Benchmark Problem

    Science.gov (United States)

    Kulesza, Joel A.; Arzu Alpan, F.

    2016-02-01

    This paper describes a comparison of contemporary and historical light water reactor shielding and pressure vessel dosimetry cross-section libraries for a boiling water reactor calculational benchmark problem. The calculational benchmark problem was developed at Brookhaven National Laboratory by the request of the U. S. Nuclear Regulatory Commission. The benchmark problem was originally evaluated by Brookhaven National Laboratory using the Oak Ridge National Laboratory discrete ordinates code DORT and the BUGLE-93 cross-section library. In this paper, the Westinghouse RAPTOR-M3G three-dimensional discrete ordinates code was used. A variety of cross-section libraries were used with RAPTOR-M3G including the BUGLE93, BUGLE-96, and BUGLE-B7 cross-section libraries developed at Oak Ridge National Laboratory and ALPAN-VII.0 developed at Westinghouse. In comparing the calculated fast reaction rates using the four aforementioned cross-section libraries in the pressure vessel capsule, for six dosimetry reaction rates, a maximum relative difference of 8% was observed. As such, it is concluded that the results calculated by RAPTOR-M3G are consistent with the benchmark and further that the different vintage BUGLE cross-section libraries investigated are largely self-consistent.

  8. Comparison of Standard Light Water Reactor Cross-Section Libraries using the United States Nuclear Regulatory Commission Boiling Water Reactor Benchmark Problem

    Directory of Open Access Journals (Sweden)

    Kulesza Joel A.

    2016-01-01

    Full Text Available This paper describes a comparison of contemporary and historical light water reactor shielding and pressure vessel dosimetry cross-section libraries for a boiling water reactor calculational benchmark problem. The calculational benchmark problem was developed at Brookhaven National Laboratory by the request of the U. S. Nuclear Regulatory Commission. The benchmark problem was originally evaluated by Brookhaven National Laboratory using the Oak Ridge National Laboratory discrete ordinates code DORT and the BUGLE-93 cross-section library. In this paper, the Westinghouse RAPTOR-M3G three-dimensional discrete ordinates code was used. A variety of cross-section libraries were used with RAPTOR-M3G including the BUGLE93, BUGLE-96, and BUGLE-B7 cross-section libraries developed at Oak Ridge National Laboratory and ALPAN-VII.0 developed at Westinghouse. In comparing the calculated fast reaction rates using the four aforementioned cross-section libraries in the pressure vessel capsule, for six dosimetry reaction rates, a maximum relative difference of 8% was observed. As such, it is concluded that the results calculated by RAPTOR-M3G are consistent with the benchmark and further that the different vintage BUGLE cross-section libraries investigated are largely self-consistent.

  9. Performance of iron-chromium-aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions

    Science.gov (United States)

    Zhong, Weicheng; Mouche, Peter A.; Han, Xiaochun; Heuser, Brent J.; Mandapaka, Kiran K.; Was, Gary S.

    2016-03-01

    Iron-chromium-aluminum (FeCrAl) coatings deposited on Zircaloy 2 (Zy2) and yttria-stabilized zirconia (YSZ) by magnetron sputtering have been tested with respect to oxidation weight gain in high-temperature steam. In addition, autoclave testing of FeCrAl-coated Zy2 coupons under pressure-temperature-dissolved oxygen coolant conditions representative of a boiling water reactor (BWR) environment has been performed. Four different FeCrAl compositions have been tested in 700 °C steam; compositions that promote alumina formation inhibited oxidation of the underlying Zy2. Parabolic growth kinetics of alumina on FeCrAl-coated Zy2 is quantified via elemental depth profiling. Autoclave testing under normal BWR operating conditions (288 °C, 9.5 MPa with normal water chemistry) up to 20 days demonstrates observable weight gain over uncoated Zy2 simultaneously exposed to the same environment. However, no FeCrAl film degradation was observed. The 900 °C eutectic in binary Fe-Zr is addressed with the FeCrAl-YSZ system.

  10. Observations on flow boiling CHF and post-CHF heat transfer of water in a short vertical tube at low pressure and quality

    International Nuclear Information System (INIS)

    A heat transfer system of high thermal conductance with temperature controlled, indirect Joule heating has been designed to perform steady-state measurements of the complete boiling curve of subcooled water at forced convective conditions and low pressure. The test section essentially consists of a hollow copper cylinder of 5 cm length and 3.2 cm O.D. with 10 coaxially inserted stainless steel tubes of .3 cm O.D. that serve as the heater elements. Water flows in the vertical upward direction through the inner circular bore of 1 cm diameter. The d.c. power supply to the resistance heaters is controlled by an electronic feedback system such that a weighted average of temperatures measured close the heat transfer surface is steadily adjusted to a preset reference temperature. The experimental setup has been installed into a low pressure water loop and used to acquire complete boiling curves of water at atmospheric pressure for entrance subcoolings in the range of 2.5-400C and mass flow rates in the range of 137-600 kg/m2s. The results reveal the principal effects of inlet subcooling, mass flux, distance from inlet, and surface material. It is noted that there might be strong effects of upstream history on CHF and post-CHF heat transfer. At high mass flux, occurence of an ''inverse rewetting front'' has been observed

  11. Analysis by the Monte Carlo method of doses around the pool of storage of the control rods irradiated in a BWR reactor; Analisis mediante el metodo de Monte Carlo de las dosis alrededor de la piscina de almacenamiento de las barras de control irradiadas en un reactror BWR

    Energy Technology Data Exchange (ETDEWEB)

    Rodenas, J.; Gallardo, S.

    2011-07-01

    The control rods of a boiling water reactor (BWR) are subject to a neutron flux and thus become activated during their stay in the reactor core. Activation occurs especially in the stainless steel components and impurities. The activity generated results in a dose around the bar, while it le unimportant in the reactor, but to be taken into account when removed f ron it. The bars drawn are stored on hangers placed in the storage pools of spent fuel f ron the plant. Each hanger 12 accommodates control rods and are arranged so that at least three meters of water abode the heads of the control rods. The dose received by potentially exposed workers who are in the vicinity of the storage must be calculated to ensure adequate protection of the came. This dose can be decreased significantly by changing the arrangement of the bars on hangers.

  12. Explosive boiling?

    NARCIS (Netherlands)

    Limbeek, van M.A.J.; Lhuissier, H.E.; Prosperetti, A.; Sun, C.; Lohse, D.

    2013-01-01

    A liquid drop immersed into a host liquid can be strongly superheated before nucleation of the first vapour bubble occurs. A millimetre-size water drop indeed survives several minutes at T = 170–190 °C at ambient pressure into sunflower or silicon oil. When nucleation eventually occurs, the drop may

  13. Planned experimental studies on natural-circulation and stability performance of boiling water reactors in four experimental facilities and first results (NACUSP)

    International Nuclear Information System (INIS)

    Within the 5th Euratom framework programme the NACUSP project focuses on natural-circulation and stability characteristics of Boiling Water Reactors (BWRs). This paper gives an overview of the research to be performed. Moreover, it shows the first results obtained by one of the four experimental facilities involved. Stability boundaries are given for the low-power low-pressure operating range, measured in the CIRCUS facility. The experiments are meant to serve as a future validation database for thermohydraulic system codes to be applied for the design and operation of BWRs

  14. Development and validation of models for simulation of supercritical carbon dioxide Brayton cycles and application to self-propelling heat removal systems in boiling water reactors

    OpenAIRE

    Venker, Jeanne

    2015-01-01

    The objective of the current work was to develop a model that is able to describe the transient behavior of supercritical carbon dioxide (sCO2) Brayton cycles, to be applied to self-propelling residual heat removal systems in boiling water reactors. The developed model has been implemented into the thermohydraulic system code ATHLET. By means of this improved ATHLET version, novel residual heat removal systems, which are based on closed sCO2 Brayton cycles, can be assessed as a retrofit measu...

  15. Pool boiling heat transfer of water in porous copper foam%水在开孔泡沫铜中的池沸腾传热特性

    Institute of Scientific and Technical Information of China (English)

    程云; 李菊香; 莫光东

    2013-01-01

    对常温、大气压下水在开孔泡沫铜中池沸腾的传热特性进行了试验研究,观察了开孔泡沫铜中汽泡的生长特性及其变化规律,并与水在光管加热面的池沸腾特性进行了对比.试验结果表明:水在泡沫铜中池沸腾时,汽泡脱离直径和汽泡脱离频率随热通量的增加而不断增大,泡沫铜对水的池沸腾传热具有很好的强化效果.根据试验结果,得到了水在开孔泡沫铜中池沸腾传热的传热系数拟合关联式,为进一步的研究提供了依据.%The pool boiling heat transfer performance of water in porous copper foam was investigated experimentally at room temperature and atmospheric pressure. The growth characteristics of bubble in copper foam with open cells were obtained by visual observation. The results showed that the bubble escape diameters and bubble escape frequency increased with the increase of heat flux, and the enhancement effect of copper foam for pool boiling was obtained by comparing with plain tube. A correlation for water pool boiling heat transfer coefficient in copper foam was obtained, providing a basis to further study.

  16. Simulations of ex-vessel fuel coolant interactions in a Nordic BWR using MC3D code

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, S.; Ma, W. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    Nordic Boiling Water Reactors (BWRs) employ a drywell cavity flooding technique as a nuclear severe accident management strategy. In case of core melt accident where the reactor pressure vessel will fail and the melt will eject from the lower head and fall into a water pool, may be in the form of a continuous jet. It is assumed that the melt jet will fragment, quench and form a coolable debris bed into the water pool. The melt interaction with a water pool may cause an energetic steam explosion which creates a potential risk towards the integrity of containment, leading to fission products release into the atmosphere. The results of the APRI-7 project suggest that the significant damage to containment structures by steam explosion cannot be ruled according to the state-of-the-art knowledge about corresponding accident scenario. In the follow-up project APRI-8 (2012-2016) one of the goals of the KTH research is to resolve the steam explosion energetics (SEE) issue, developing a risk-oriented framework for quantifying conditional threats to containment integrity for a Nordic type BWR. The present study deals with the premixing and explosion phase calculations of a Nordic BWR dry cavity, using MC3D, a multiphase CFD code for fuel coolant interactions. The main goal of the study is the assessment of pressure buildup in the cavity and the impact loading on the side walls. The conditions for the calculations are used from the SERENA-II BWR case exercise. The other objective was to do the sensitivity analysis of the parameters in modeling of fuel coolant interactions, which can help to reduce uncertainty in assessment of steam explosion energetics. The results show that the amount of liquid melt droplets in the water (region of void<0.6) is maximum even before reaching the jet at the bottom. In the explosion phase, maximum pressure is attained at the bottom and the maximum impulse on the wall is at the bottom of the wall. The analysis is carried out using two different

  17. Measurement methods for surface oxides on SUS 316L in simulated light water reactor coolant environments using synchrotron XRD and XRF

    International Nuclear Information System (INIS)

    Highlights: ► Non-destructive characterization of surface oxide on austenitic stainless steels. ► The layer structures of surface oxides were measured by ex situ XRD and XRF. ► An autoclave was newly designed for in situ X-ray diffraction measurements. ► Instability of hematite was investigated by in situ measurements. -- Abstract: Synchrotron X-ray diffraction (XRD) and X-ray fluorescent (XRF) measurement techniques have been used for non-destructive characterization of surface oxide films on Type 316L austenitic stainless steels that were exposed to simulated primary water environments of pressurized water reactors (PWR) and boiling water reactors (BWR). The layer structures of the surface spinel oxides were revealed ex situ after oxidation by measurements made as a function of depth. The layer structure of spinel oxides formed in simulated PWR primary water should normally be different from that formed in simulated BWR water. After oxidation in the simulated BWR environment, the spinel oxide was observed to contain NiFe2O4 at shallow depths, and FeCr2O4 and Fe3O4 at deeper depths. By contrast, after oxidation in the simulated PWR primary water environment, a Fe3O4 type spinel was observed near the surface and FeCr2O4 type spinel near the interface with the metal substrate. Furthermore, by in situ measurements during oxidation in the simulated BWR environment, it was also demonstrated that the ratio between spinel and hematite Fe2O3 can be changed depending on the water condition such as BWR normal water chemistry or BWR hydrogen water chemistry

  18. Measurement methods for surface oxides on SUS 316L in simulated light water reactor coolant environments using synchrotron XRD and XRF

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masashi, E-mail: m-wat@fri.niche.tohoku.ac.jp [New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8577 (Japan); Yonezawa, Toshio, E-mail: t-yonezawa@fri.niche.tohoku.ac.jp [New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8577 (Japan); Shobu, Takahisa [Japan Atomic Energy Agency, Sayoh 679-5184 (Japan); Shoji, Tetsuo [New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8577 (Japan)

    2013-03-15

    Highlights: ► Non-destructive characterization of surface oxide on austenitic stainless steels. ► The layer structures of surface oxides were measured by ex situ XRD and XRF. ► An autoclave was newly designed for in situ X-ray diffraction measurements. ► Instability of hematite was investigated by in situ measurements. -- Abstract: Synchrotron X-ray diffraction (XRD) and X-ray fluorescent (XRF) measurement techniques have been used for non-destructive characterization of surface oxide films on Type 316L austenitic stainless steels that were exposed to simulated primary water environments of pressurized water reactors (PWR) and boiling water reactors (BWR). The layer structures of the surface spinel oxides were revealed ex situ after oxidation by measurements made as a function of depth. The layer structure of spinel oxides formed in simulated PWR primary water should normally be different from that formed in simulated BWR water. After oxidation in the simulated BWR environment, the spinel oxide was observed to contain NiFe{sub 2}O{sub 4} at shallow depths, and FeCr{sub 2}O{sub 4} and Fe{sub 3}O{sub 4} at deeper depths. By contrast, after oxidation in the simulated PWR primary water environment, a Fe{sub 3}O{sub 4} type spinel was observed near the surface and FeCr{sub 2}O{sub 4} type spinel near the interface with the metal substrate. Furthermore, by in situ measurements during oxidation in the simulated BWR environment, it was also demonstrated that the ratio between spinel and hematite Fe{sub 2}O{sub 3} can be changed depending on the water condition such as BWR normal water chemistry or BWR hydrogen water chemistry.

  19. Secondary pool boiling effects

    Science.gov (United States)

    Kruse, C.; Tsubaki, A.; Zuhlke, C.; Anderson, T.; Alexander, D.; Gogos, G.; Ndao, S.

    2016-02-01

    A pool boiling phenomenon referred to as secondary boiling effects is discussed. Based on the experimental trends, a mechanism is proposed that identifies the parameters that lead to this phenomenon. Secondary boiling effects refer to a distinct decrease in the wall superheat temperature near the critical heat flux due to a significant increase in the heat transfer coefficient. Recent pool boiling heat transfer experiments using femtosecond laser processed Inconel, stainless steel, and copper multiscale surfaces consistently displayed secondary boiling effects, which were found to be a result of both temperature drop along the microstructures and nucleation characteristic length scales. The temperature drop is a function of microstructure height and thermal conductivity. An increased microstructure height and a decreased thermal conductivity result in a significant temperature drop along the microstructures. This temperature drop becomes more pronounced at higher heat fluxes and along with the right nucleation characteristic length scales results in a change of the boiling dynamics. Nucleation spreads from the bottom of the microstructure valleys to the top of the microstructures, resulting in a decreased surface superheat with an increasing heat flux. This decrease in the wall superheat at higher heat fluxes is reflected by a "hook back" of the traditional boiling curve and is thus referred to as secondary boiling effects. In addition, a boiling hysteresis during increasing and decreasing heat flux develops due to the secondary boiling effects. This hysteresis further validates the existence of secondary boiling effects.

  20. Development of a computer program of fast calculation for the pre design of advanced nuclear fuel 10 x 10 for BWR type reactors

    International Nuclear Information System (INIS)

    In the National Institute of Nuclear Research (ININ) a methodology is developed to optimize the design of cells 10x10 of assemble fuels for reactors of water in boil or BWR. It was proposed a lineal calculation formula based on a coefficients matrix (of the change reason of the relative power due to changes in the enrichment of U-235) for estimate the relative powers by pin of a cell. With this it was developed the computer program of fast calculation named PreDiCeldas. The one which by means of a simple search algorithm allows to minimize the relative power peak maximum of cell or LPPF. This is achieved varying the distribution of U-235 inside the cell, maintaining in turn fixed its average enrichment. The accuracy in the estimation of the relative powers for pin is of the order from 1.9% when comparing it with results of the 'best estimate' HELIOS code. With the PreDiCeldas it was possible, at one minimum time of calculation, to re-design a reference cell diminishing the LPPF, to the beginning of the life, of 1.44 to a value of 1.31. With the cell design with low LPPF is sought to even design cycles but extensive that those reached at the moment in the BWR of the Laguna Verde Central. (Author)