WorldWideScience

Sample records for bwr boiling water

  1. Process inherent ultimate safety/boiling-water reactor PIUS/BWR

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.

    1985-01-01

    This document is a series of viewgraphs on: design basis of PIUS/BWR, definition of PIUS/BWR, mechanisms of safe shutdown and afterheat cooling, advantages of PIUS/BWR, and research and development requirements. (DLC)

  2. Calculation of releases of radioactive materials in gaseous and liquid effluents from boiling water reactors (BWR-GALE Code)

    Energy Technology Data Exchange (ETDEWEB)

    Bangart, R.L.; Bell, L.G.; Boegli, J.S.; Burke, W.C.; Lee, J.Y.; Minns, J.L.; Stoddart, P.G.; Weller, R.A.; Collins, J.T.

    1978-12-01

    The calculational procedures described in the report reflect current NRC staff practice. The methods described will be used in the evaluation of applications for construction permits and operating licenses docketed after January 1, 1979, until this NUREG is revised as a result of additional staff review. The BWR-GALE (Boiling Water Reactor Gaseous and Liquid Effluents) Code is a computerized mathematical model for calculating the release of radioactive material in gaseous and liquid effluents from boiling water reactors (BWRs). The calculations are based on data generated from operating reactors, field tests, laboratory tests, and plant-specific design considerations incorporated to reduce the quantity of radioactive materials that may be released to the environment.

  3. Cracks propagation by stress corrosion cracking in conditions of Boiling Water Reactor (BWR); Propagacion de grietas por corrosion bajo esfuerzo en condiciones de reactor de agua hirviente (BWR)

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes C, P

    2003-07-01

    This work presents the results of the assays carried out in the Laboratory of Hot Cells of the National Institute of Nuclear Research (ININ) to a type test tube Compact Tension (CT), built in steel austenitic stainless type 304L, simulating those conditions those that it operates a Boiling Water Reactor (BWR), at temperature 288 C and pressure of 8 MPa, to determine the speed to which the cracks spread in this material that is of the one that different components of a reactor are made, among those that it highlights the reactor core vessel. The application of the Hydrogen Chemistry of the Water is presented (HWC) that is one alternative to diminish the corrosion effect low stress in the component, this is gets controlling the quantity of oxygen and of hydrogen as well as the conductivity of the water. The rehearsal is made following the principles of the Mechanics of Elastic Lineal Fracture (LEFM) that considers a crack of defined size with little plastic deformation in the tip of this; the measurement of crack advance is continued with the technique of potential drop of direct current of alternating signal, this is contained inside the standard Astm E-647 (Method of Test Standard for the Measurement of Speed of Growth of Crack by fatigue) that is the one that indicates us as carrying out this test. The specifications that should complete the test tubes that are rehearsed as for their dimensions, it forms, finish and determination of mechanical properties (tenacity to the fracture mainly) they are contained inside the norm Astm E-399, the one which it is also based on the principles of the fracture mechanics. The obtained results were part of a database to be compared with those of other rehearsals under different conditions, Normal Chemistry of the Water (NWC) and it dilutes with high content of O{sub 2}; to determine the conditions that slow more the phenomena of stress corrosion cracking, as well as the effectiveness of the used chemistry and of the method of

  4. Estimating boiling water reactor decommissioning costs: A user`s manual for the BWR Cost Estimating Computer Program (CECP) software. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bierschbach, M.C. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-06-01

    Nuclear power plant licensees are required to submit to the US Nuclear Regulatory Commission (NRC) for review their decommissioning cost estimates. This user`s manual and the accompanying Cost Estimating Computer Program (CECP) software provide a cost-calculating methodology to the NRC staff that will assist them in assessing the adequacy of the licensee submittals. The CECP, designed to be used on a personal computer, provides estimates for the cost of decommissioning boiling water reactor (BWR) power stations to the point of license termination. Such cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial costs; and manpower costs. In addition to costs, the CECP also calculates burial volumes, person-hours, crew-hours, and exposure person-hours associated with decommissioning.

  5. Boiling water reactors with uranium-plutonium mixed oxide fuel. Report 5: Analysis of the reactivity coefficients and the stability of a BWR loaded with MOx fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demaziere, C. [CEA Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires

    2000-01-01

    This report is a part of the project titled 'Boiling Water Reactors With Uranium-Plutonium Mixed Oxide (MOx) Fuel'. The aim of this study is to model the impact of a core loading pattern containing MOx bundles upon the main characteristics of a BWR (reactivity coefficients, stability, etc.). For this purpose, the Core Management System (CMS) codes of Studsvik Scandpower are used. This package is constituted by CASMO-4/TABLES-3/SIMULATE-3. It has been shown in previous reports that these codes are able to accurately represent and model MOx bundles. This report is thus devoted to the study of BWR cores loaded (partially or totally) with MOx bundles. The plutonium quality used is the Pu type 2016 (mostly Pu-239, 56 %, and Pu-240, 26 %), but a variation of the plutonium isotopic vector was also investigated, in case of a partial MOx loading. One notices that the reactivity coefficients do not present significant changes in comparison with a full UOx loading. Nevertheless, two main problems arise: the shutdown margin at BOC is lower than 1 % and the stability to in-phase oscillations is slightly decreased. (The SIMULATE-3 version used for this study does not contain the latest MOx enhancements described in literature, since these code developments have not been provided to the department. Nevertheless, as the nominal average enrichment of the MOx bundles is 5.41 % (total amount of plutonium), which can still be considered as a relatively low enrichment, the accuracy of the CMS codes is acceptable without the use of the MOx improvements for this level of Pu enrichment.

  6. Simulation of the automatic depressurization system (Ads) for a boiling water reactor (BWR) based on RELAP; Simulacion del sistema de despresurizacion automatica (ADS) para un reactor de agua en ebullicion (BWR) basado en RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez G, C.; Chavez M, C., E-mail: ces.raga@gmail.com [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-10-15

    The automatic depressurization system (Ads) of the boiling water reactor (BWR) like part of the emergency cooling systems is designed to liberate the vapor pressure of the reactor vessel, as well as the main vapor lines. At the present time in the Engineering Faculty, UNAM personnel works in the simulation of the Laguna Verde reactor based on the nuclear code RELAP/SCADAP and in the incorporation to the same of the emergency cooling systems. The simulation of the emergency cooling systems began with the inclusion of two hydrodynamic volumes, one source and another drain, and the incorporation of the initiation logic for each emergency system. In this work is defined and designed a simplified model of Ads of the reactor, considering a detail level based on the main elements that compose it. As tool to implement the proposed model, the RELAP code was used. The simulated main functions of Ads are centered in the quick depressurization of the reactor by means of the vapor discharge through the relief/safety valves to the suppression pool, and, in the event of break of the main vapor line, the reduction of the vessel pressure operates for that the cooling systems of the core to low pressure (Lpcs and Lpci) they can begin their operation. (Author)

  7. An assessment of BWR (boiling water reactor) Mark-II containment challenges, failure modes, and potential improvements in performance

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, D.L.; Jones, K.R.; Dallman, R.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA)); Wagner, K.C. (Science Applications International Corp., Albuquerque, NM (USA))

    1990-07-01

    This report assesses challenges to BWR Mark II containment integrity that could potentially arise from severe accidents. Also assessed are some potential improvements that could prevent core damage or containment failure, or could mitigate the consequences of such failure by reducing the release of fission products to the environment. These challenges and improvements are analyzed via a limited quantitative risk/benefit analysis of a generic BWR/4 reactor with Mark II containment. Point estimate frequencies of the dominant core damage sequences are obtained and simple containment event trees are constructed to evaluate the response of the containment to these severe accident sequences. The resulting containment release modes are then binned into source term release categories, which provide inputs to the consequence analysis. The output of the consequences analysis is used to construct an overall base case risk profile. Potential improvements and sensitivities are evaluated by modifying the event tree spilt fractions, thus generating a revised risk profile. Several important sensitivity cases are examined to evaluate the impact of phenomenological uncertainties on the final results. 75 refs., 25 figs., 65 tabs.

  8. Estimating boiling water reactor decommissioning costs. A user`s manual for the BWR Cost Estimating Computer Program (CECP) software: Draft report for comment

    Energy Technology Data Exchange (ETDEWEB)

    Bierschbach, M.C. [Pacific Northwest Lab., Richland, WA (United States)

    1994-12-01

    With the issuance of the Decommissioning Rule (July 27, 1988), nuclear power plant licensees are required to submit to the U.S. Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. This user`s manual and the accompanying Cost Estimating Computer Program (CECP) software provide a cost-calculating methodology to the NRC staff that will assist them in assessing the adequacy of the licensee submittals. The CECP, designed to be used on a personal computer, provides estimates for the cost of decommissioning BWR power stations to the point of license termination. Such cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial costs; and manpower costs. In addition to costs, the CECP also calculates burial volumes, person-hours, crew-hours, and exposure person-hours associated with decommissioning.

  9. Boiling-Water Reactor internals aging degradation study. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Luk, K.H. [Oak Ridge National Lab., TN (United States)

    1993-09-01

    This report documents the results of an aging assessment study for boiling water reactor (BWR) internals. Major stressors for BWR internals are related to unsteady hydrodynamic forces generated by the primary coolant flow in the reactor vessel. Welding and cold-working, dissolved oxygen and impurities in the coolant, applied loads and exposures to fast neutron fluxes are other important stressors. Based on results of a component failure information survey, stress corrosion cracking (SCC) and fatigue are identified as the two major aging-related degradation mechanisms for BWR internals. Significant reported failures include SCC in jet-pump holddown beams, in-core neutron flux monitor dry tubes and core spray spargers. Fatigue failures were detected in feedwater spargers. The implementation of a plant Hydrogen Water Chemistry (HWC) program is considered as a promising method for controlling SCC problems in BWR. More operating data are needed to evaluate its effectiveness for internal components. Long-term fast neutron irradiation effects and high-cycle fatigue in a corrosive environment are uncertainty factors in the aging assessment process. BWR internals are examined by visual inspections and the method is access limited. The presence of a large water gap and an absence of ex-core neutron flux monitors may handicap the use of advanced inspection methods, such as neutron noise vibration measurements, for BWR.

  10. Stability monitoring for boiling water reactors

    Science.gov (United States)

    Cecenas-Falcon, Miguel

    1999-11-01

    A methodology is presented to evaluate the stability properties of Boiling Water Reactors based on a reduced order model, power measurements, and a non-linear estimation technique. For a Boiling Water Reactor, the feedback reactivity imposed by the thermal-hydraulics has an important effect in the system stability, where the dominant contribution to this feedback reactivity is provided by the void reactivity. The feedback reactivity is a function of the operating conditions of the system, and cannot be directly measured. However, power measurements are relatively easy to obtain from the nuclear instrumentation and process computer, and are used in conjunction with a reduced order model to estimate the gain of the thermal-hydraulics feedback using an Extended Kalman Filter. The reduced order model is obtained by estimating the thermal-hydraulic transfer function from the frequency-domain BWR code LAPUR, and the stability properties are evaluated based on the pair of complex conjugate eigenvalues. Because of the recursive nature of the Kalman Filter, an estimate of the decay ratio is generated every sampling time, allowing continuous estimation of the stability parameters. A test platform based on a nuclear-coupled boiling channel is developed to validate the capability of the BWR stability monitoring methodology. The thermal-hydraulics for the boiling channel is modeled and coupled with neutron kinetics to analyze the non-linear dynamics of the closed-loop system. The model uses point kinetics to study core-wide oscillations, and normalized modal kinetics are introduced to study out-of-phase oscillations. The coolant flow dynamics is dominant in the power fluctuations observed by in-core nuclear instrumentation, and additive white noise is added to the solution for the channel flow in the thermal-hydraulic model to generate noisy power time series. The operating conditions of the channel can be modified to accommodate a wide range of stability conditions

  11. Experimental simulation of the water cooling of corium spread over the floor of a BWR containment

    Energy Technology Data Exchange (ETDEWEB)

    Morage, F.; Lahey, R.T. Jr.; Podowski, M.Z. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1995-09-01

    This paper is concerned with an experimental investigation of the cooling effect of water collected on the surface of corium released onto the floor of a BWR drywell. In the present experiments, the actual reactor materials were replaced by simulant materials. Specifically, the results are shown for Freon-11 film boiling over liquid Wood`s metal spread above a solid porous surface through which argon gas was injected. An analysis of the obtained experimental data revealed that the actual film boiling heat transfer between a molten pool of corium and the water above the pool should be more efficient than predicted by using standard correlations for boiling over solid surfaces. This effect will be further augmented by the gas released due to the ablation of concrete floor beneath the corium and percolating towards its upper surface and into through the water layer above.

  12. BWR Assembly Optimization for Minor Actinide Recycling

    Energy Technology Data Exchange (ETDEWEB)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  13. BWR Steam Dryer Alternating Stress Assessment Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Morante, R. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hambric, S. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ziada, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-01

    This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).

  14. Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

  15. Gas bubbling-enhanced film boiling of Freon-11 on liquid metal pools. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Greene, G.A.

    1985-01-01

    In the analysis of severe core damage accidents in LWRs, a major driving force which must be considered in evaluating containment loading and fission product transport is the ex-vessel interaction between molten core debris and structural concrete. Two computer codes have been developed for this purpose, the CORCON-MOD2 model of ex-vessel, core concrete interactions and the VANESA model for aerosol generation and fission product release as a result of molten core-concrete interactions. Under a wide spectrum of reactor designs and accident sequences, it is possible for water to come into contact with the molten core debris and form a coolant pool overlying the core debris which is attacking the concrete. As the concrete decomposes, noncondensable gases are released, which bubble through the melt and across the boiling interface, affecting the liquid-liquid boiling process. Currently, the CORCON code includes the classical Berenson model for film boiling over a horizontal flat plate for this phenomenon. The objectives of this activity are to investigate the influence of transverse noncondensable gas flux on the magnitude of the stable liquid-liquid film boiling heat flux and develop a gas flux-enhanced, liquid-liquid film boiling model for incorporation into the CORCON-MOD2 computer code to replace or modify the Berenson model.

  16. Analysis of the magnetic corrosion product deposits on a boiling water reactor cladding

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, Andrey [Paul Scherrer Institut, Villigen (Switzerland); Degueldre, Claude, E-mail: claude.degueldre@psi.ch [Paul Scherrer Institut, Villigen (Switzerland); Kaufmann, Wilfried [Kernkraftwerk Leibstadt, Leibstadt (Switzerland)

    2013-01-15

    The buildup of corrosion product deposits (CRUD) on the fuel cladding of the boiling water reactor (BWR) before and after zinc injection has been investigated by applying local experimental analytical techniques. Under the BWR water chemistry conditions, Zn addition together with the presence of Ni and Mn induce the formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}] spinel solid solutions. X-ray absorption spectroscopy (XAS) revealed inversion ratios of cation distribution in spinels deposited from the solid solution. Based on this information, a two-site ferrite spinel solid solution model is proposed. Electron probe microanalysis (EPMA) and extended X-ray absorption fine structure (EXAFS) findings suggest the zinc-rich ferrite spinels formation on BWR fuel cladding mainly at lower pin. - Graphical Abstract: Analysis of spinels in corrosion product deposits on boiling water reactor fuel rod. Combining EPMA and XAFS results: schematic representation of the ferrite spinels in terms of the end members and their extent of inversion. Note that the ferrites are represented as a surface between the normal (upper plane, M[Fe{sub 2}]O{sub 4}) and the inverse (lower plane, Fe[MFe]O{sub 4}). Actual compositions red Black-Small-Square for the specimen at low elevation (810 mm), blue Black-Small-Square for the specimen at mid elevation (1800 mm). The results have an impact on the properties of the CRUD material. Highlights: Black-Right-Pointing-Pointer Buildup of corrosion product deposits on fuel claddings of a boiling water reactor (BWR) are investigated. Black-Right-Pointing-Pointer Under BWR water conditions, Zn addition with Ni and Mn induced formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}]. Black-Right-Pointing-Pointer X-Ray Adsorption Spectroscopy (XAS) revealed inversion of cations in spinel solid solutions. Black-Right-Pointing-Pointer Zinc-rich ferrite spinels are formed on BWR fuel cladding mainly at lower pin elevations.

  17. Oxygen suppression in boiling water reactors. Quarterly report 3, April 1-June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Burley, E.L.

    1978-12-01

    Boiling water reactors (BWR's) generally use high purity, no-additive feedwater. The primary recirculating coolant is neutral pH and contains 100 to 300 ppB oxygen and stoichiometrically related dissolved hydrogen. However, oxygenated water increases austenitic stainless steel susceptibility to intergranular stress-corrosion cracking (IGSCC) when other requisite factors such as stress and sensitization are present. Thus, reduction or elimination of the oxygen in BWR water may preclude cracking incidents. This program is to perform an in-depth engineering evaluation of the potential suppression additives supported by critical experiments where required to resolve substantive uncertainties. On the basis of the engineering evaluation, the optimum oxygen suppression technique will be selected and a specific BWR plant recommended for an extended (3-year) plant demonstration experiment.

  18. Mitigation strategies of intergranular corrosion in systems of reactors of water boiling (BWR). Combined action of the chemistry of the hydrogen and the oxygen; Estrategias de mitigacion de la corrosion intergranular en sistemas de reactores de agua en ebullicion (BWR). Accion combinada de la quimica del hidrogeno y del oxigeno

    Energy Technology Data Exchange (ETDEWEB)

    Verdugo, M.

    2015-07-01

    Inter-Granular Stress Corrosion cracking (IGSCC) in austenitic stainless steel and in austenitic nickel-based alloys has been the subject of many studies the aim of which was to resolve one of the main problems faced by BWR nuclear power plants since the 1960s. This corrosion phenomenon is the result of the combined action of three factors: sensitization of the material, high local stresses and an aggressive medium. This paper deals with these factors separately and analyzes the oxidative chemistry of BWR reactors (aggressivity of the medium) as one the main causes if IGSCC. (Author)

  19. Improving the neutronic characteristics of a boiling water reactor by using uranium zirconium hydride fuel instead of uranium dioxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, Ahmed Abdelghafar [Higher Technological Institute, Ramadan (Egypt)

    2016-06-15

    The present work discusses two different models of boiling water reactor (BWR) bundle to compare the neutronic characteristics of uranium dioxide (UO{sub 2}) and uranium zirconium hydride (UZrH{sub 1.6}) fuel. Each bundle consists of four assemblies. The BWR assembly fueled with UO{sub 2} contains 8 × 8 fuel rods while that fueled with UZrH{sub 1.6} contains 9 × 9 fuel rods. The Monte Carlo N-Particle Transport code, based on the Mont Carlo method, is used to design three dimensional models for BWR fuel bundles at typical operating temperatures and pressure conditions. These models are used to determine the multiplication factor, pin-by-pin power distribution, axial power distribution, thermal neutron flux distribution, and axial thermal neutron flux. The moderator and coolant (water) are permitted to boil within the BWR core forming steam bubbles, so it is important to calculate the reactivity effect of voiding at different values. It is found that the hydride fuel bundle design can be simplified by eliminating water rods and replacing the control blade with control rods. UZrH{sub 1.6} fuel improves the performance of the BWR in different ways such as increasing the energy extracted per fuel assembly, reducing the uranium ore, and reducing the plutonium accumulated in the BWR through burnup.

  20. Pool Boiling of Hydrocarbon Mixtures on Water

    Energy Technology Data Exchange (ETDEWEB)

    Boee, R.

    1996-09-01

    In maritime transport of liquefied natural gas (LNG) there is a risk of spilling cryogenic liquid onto water. The present doctoral thesis discusses transient boiling experiments in which liquid hydrocarbons were poured onto water and left to boil off. Composition changes during boiling are believed to be connected with the initiation of rapid phase transition in LNG spilled on water. 64 experimental runs were carried out, 14 using pure liquid methane, 36 using methane-ethane, and 14 using methane-propane binary mixtures of different composition. The water surface was open to the atmosphere and covered an area of 200 cm{sup 2} at 25 - 40{sup o}C. The heat flux was obtained by monitoring the change of mass vs time. The void fraction in the boiling layer was measured with a gamma densitometer, and a method for adapting this measurement concept to the case of a boiling cryogenic liquid mixture is suggested. Significant differences in the boil-off characteristics between pure methane and binary mixtures revealed by previous studies are confirmed. Pure methane is in film boiling, whereas the mixtures appear to enter the transitional boiling regime with only small amounts of the second component added. The results indicate that the common assumption that LNG will be in film boiling on water because of the high temperature difference, may be questioned. Comparison with previous work shows that at this small scale the results are influenced by the experimental apparatus and procedures. 66 refs., 76 figs., 28 tabs.

  1. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  2. 44 BWR Waste Package Loading Curve Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Scaglione

    2001-11-05

    The objective of this calculation is to evaluate the required minimum burnup as a function of average initial boiling water reactor (BWR) assembly enrichment that would permit loading of fuel into a potential 44 BWR waste package (WP). The potential WP design is illustrated in Attachment I. The scope of this calculation covers a range of initial enrichments from 1.5 through 5.0 weight percent U-235, and a burnup range of 0 through 50 GWd/mtU.

  3. Feasibility study of boiling water reactor core based on thorium-uranium fuel concept

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779, Col Narvarte, 03020 Mexico D.F. (Mexico); Francois Lacouture, Juan Luis; Martin del Campo, Cecilia [Universidad Nacional Autonoma de Mexico, Facultad de Ingenieria, Paseo Cuauhnahuac 8532, Jiutepec, Mor. (Mexico); Espinosa-Paredes, Gilberto [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana Iztapalapa, Apartado Postal 55-534, Mexico D.F. 09340 (Mexico)], E-mail: gepe@xanum.uam.mx

    2008-01-15

    The design of a boiling water reactor (BWR) equilibrium core using the thorium-uranium (blanket-seed) concept in the same integrated fuel assembly is presented in this paper. The lattice design uses the thorium conversion capability to {sup 233}U in a BWR spectrum. A core design was developed to achieve an equilibrium cycle of one effective full power year in a standard BWR with a reload of 104 fuel assemblies designed with an average {sup 235}U enrichment of 7.5 w/o in the seed sub-lattice. The main core operating parameters were obtained. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The economic analysis shows that the fuel cycle cost of the proposed core design can be competitive with a standard uranium core design. Finally, a comparison of the toxicity of the spent fuel showed that the toxicity is lower in the thorium cycle than in other fuel cycles (UO{sub 2} and MOX uranium and plutonium) in the case of the once through cycle for light water reactors (LWR)

  4. Simulation of the injection system of cooling water to low pressure (Lpci) for a boiling water reactor (BWR) based on RELAP; Simulacion del sistema de inyeccion de agua de refrigeracion a baja presion (LPCI) para un reactor de agua en ebullicion (BWR) basado en RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Delgado C, R. A.; Lopez S, E.; Chavez M, C., E-mail: renedelgado2015@hotmail.com [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-10-15

    The present article describes the modeling and simulation of the Injection System of Cooling Water to Low Pressure (Lpci) for the nuclear power plant of Laguna Verde. Is very important to be able to predict the behavior of the nuclear plant in the case of an emergency stop, and while nearer to the reality are the results of a simulation, better is the safety protocol that can be devised. In the Engineering Faculty of the UNAM at the present is had logical models of the safety systems, but due to the nature of the same, these simulations do not provide of the quantity of enough information to be able to reproduce with more accuracy the behavior of the Lpci in the case of a severe accident. For this reason, the RELAP code was used for the flows modeling, components and structures of heat transfers in relation to the system Lpci. The modeling of the components is carried out with base on technical information of the nuclear plant and the results will be corroborated with information in reference documents as the Rasp (the Reactor analysis support package) and the Fsar (Final safety analysis report) for the nuclear power plant of Laguna Verde. (Author)

  5. Passive gamma analysis of the boiling-water-reactor assemblies

    Science.gov (United States)

    Vo, D.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Schwalbach, P.; Sjöland, A.; Tobin, S.; Trellue, H.; Vaccaro, S.

    2016-09-01

    This research focused on the analysis of a set of stationary passive gamma measurements taken on the spent nuclear fuel assemblies from a boiling water reactor (BWR) using pulse height analysis data acquisition. The measurements were performed on 25 different BWR assemblies in 2014 at Sweden's Central Interim Storage Facility for Spent Nuclear Fuel (Clab). This study was performed as part of the Next Generation of Safeguards Initiative-Spent Fuel project to research the application of nondestructive assay (NDA) to spent fuel assemblies. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay (NDA) measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. The final objective of this project is to quantify the capability of several integrated NDA instruments to meet the aforementioned goals using the combined signatures of neutrons, gamma rays, and heat. This report presents a selection of the measured data and summarizes an analysis of the results. Specifically, trends in the count rates measured for spectral lines from the following isotopes were analyzed as a function of the declared burnup and cooling time: 137Cs, 154Eu, 134Cs, and to a lesser extent, 106Ru and 144Ce. From these measured count rates, predictive algorithms were developed to enable the estimation of the burnup and cooling time. Furthermore, these algorithms were benchmarked on a set of assemblies not included in the standard assemblies set used by this research team.

  6. Passive gamma analysis of the boiling-water-reactor assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Vo, D., E-mail: ducvo@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM (United States); Favalli, A. [Los Alamos National Laboratory, Los Alamos, NM (United States); Grogan, B. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Jansson, P. [Uppsala University, Uppsala (Sweden); Liljenfeldt, H. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mozin, V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Schwalbach, P. [European Atomic Energy Community (EURATOM), Luxemburg (Luxembourg); Sjöland, A. [Swedish Nuclear Fuel and Waste Management Company, Stockholm (Sweden); Tobin, S.; Trellue, H. [Los Alamos National Laboratory, Los Alamos, NM (United States); Vaccaro, S. [European Atomic Energy Community (EURATOM), Luxemburg (Luxembourg)

    2016-09-11

    This research focused on the analysis of a set of stationary passive gamma measurements taken on the spent nuclear fuel assemblies from a boiling water reactor (BWR) using pulse height analysis data acquisition. The measurements were performed on 25 different BWR assemblies in 2014 at Sweden's Central Interim Storage Facility for Spent Nuclear Fuel (Clab). This study was performed as part of the Next Generation of Safeguards Initiative–Spent Fuel project to research the application of nondestructive assay (NDA) to spent fuel assemblies. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay (NDA) measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. The final objective of this project is to quantify the capability of several integrated NDA instruments to meet the aforementioned goals using the combined signatures of neutrons, gamma rays, and heat. This report presents a selection of the measured data and summarizes an analysis of the results. Specifically, trends in the count rates measured for spectral lines from the following isotopes were analyzed as a function of the declared burnup and cooling time: {sup 137}Cs, {sup 154}Eu, {sup 134}Cs, and to a lesser extent, {sup 106}Ru and {sup 144}Ce. From these measured count rates, predictive algorithms were developed to enable the estimation of the burnup and cooling time. Furthermore, these algorithms were benchmarked on a set of assemblies not included in the standard assemblies set used by this research team.

  7. Technical support to the Nuclear Regulatory Commission for the boiling water reactor blowdown heat transfer program

    Energy Technology Data Exchange (ETDEWEB)

    Rice, R.E.

    1976-09-01

    Results are presented of studies conducted by Aerojet Nuclear Company (ANC) in FY 1975 to support the Nuclear Regulatory Commission (NRC) on the boiling water reactor blowdown heat transfer (BWR-BDHT) program. The support provided by ANC is that of an independent assessor of the program to ensure that the data obtained are adequate for verification of analytical models used for predicting reactor response to a postulated loss-of-coolant accident. The support included reviews of program plans, objectives, measurements, and actual data. Additional activity included analysis of experimental system performance and evaluation of the RELAP4 computer code as applied to the experiments.

  8. ROSA-III base test series for a large break loss-of-coolant accident in a boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tasaka, K.; Abe, N.; Anoda, Y.; Koizumi, Y.; Shiba, M.

    1982-05-01

    The rig of safety assessment (ROSA)-III facility is a volumetrically scaled (1/424) boiling water reactor (BWR) system with an electrically heated core designed for integral loss-of-coolant accident (LOCA) and emergency core cooling system (ECCS) tests. It is confirmed from the experimental results obtained so far that the ROSA-III test facility can simulate major aspects of a BWR LOCA, such as boiling transition by lowering of the mixture level in the core, rewetting by the lower plenum flashing, and final quenching by the ECCS. The overall agreement between the calculated results by the RELAP5/ MOD0 code and the experimental results is good; however, the calculated lower plenum flashing rewetted the whole core and the calculated cladding temperature considerably underpredicts the measured value at the upper part of the core.

  9. Simulation of the aspersion system of the core at high pressure (HPCS) for a boiling water reactor (BWR) based on RELAP; Simulacion del sistema de aspersion del nucleo alta presion (HPCS) para un reactor de agua en ebullicion (BWR) basado en RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Vargas O, D.; Chavez M, C., E-mail: danmirnyi@gmail.com [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-10-15

    A high-priority topic for the nuclear industry is the safety, consequently a nuclear power plant should have the emergency systems of cooling of the core (ECCS), designed exclusively to enter in operation in the event of an accident with coolant loss, including the design base accident. The objective of the aspersion system of the core at high pressure (HPCS) is to provide in an autonomous way the cooling to the core maintaining for if same the coolant inventory even when a small break is presented that does not allow the depressurization of the reactor and also avoiding excessive temperatures that affect the shielding of the fuel. The present work describes the development of the model and the simulation of the HPCS using the RELAP/SCDAP code. During the process simulation, for the setting in march of the system HPCS in an accident with coolant loss is necessary to implement the main components of the system taking into account what unites them, the main pump, the filled pump, the suction and injection valves, pipes and its water sources that can be condensed storage tanks and the suppression pool. The simulation of this system will complement the model with which counts the Analysis Laboratory in Nuclear Reactors Engineering of the UNAM regarding to the nuclear power plant of Laguna Verde which does not have a detailed simulation of the emergency cooling systems. (Author)

  10. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.

  11. Camera Inspection Arm for Boiling Water Reactors - 13330

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Scott; Rood, Marc [S.A. Technology, 3985 S. Lincoln Ave, Loveland, CO 80537 (United States)

    2013-07-01

    Boiling Water Reactor (BWR) outage maintenance tasks can be time-consuming and hazardous. Reactor facilities are continuously looking for quicker, safer, and more effective methods of performing routine inspection during these outages. In 2011, S.A. Technology (SAT) was approached by Energy Northwest to provide a remote system capable of increasing efficiencies related to Reactor Pressure Vessel (RPV) internal inspection activities. The specific intent of the system discussed was to inspect recirculation jet pumps in a manner that did not require manual tooling, and could be performed independently of other ongoing inspection activities. In 2012, SAT developed a compact, remote, camera inspection arm to create a safer, more efficient outage environment. This arm incorporates a compact and lightweight design along with the innovative use of bi-stable composite tubes to provide a six-degree of freedom inspection tool capable of reducing dose uptake, reducing crew size, and reducing the overall critical path for jet pump inspections. The prototype camera inspection arm unit is scheduled for final testing in early 2013 in preparation for the Columbia Generating Station refueling outage in the spring of 2013. (authors)

  12. Stability analysis on natural circulation boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Peter

    1999-05-01

    The purpose of the study is a stability analysis of the simplified boiling water reactor concept. A fluid dynamics code, DYNOS, was developed and successfully validated against FRIGG and DESIRE data and a stability benchmark on the Ringhals 1 forced circulation BWR. Three simplified desings were considered in the analysis: The SWRIOOO by Siemens and the SBWR and ESBWR from the General Electric Co. For all three design operational characteristics, i.e. power versus flow rate maps, were calculated. The effects which different geometric and operational parameters, such as the riser height, inlet subcooling etc., have on the characteristics have been investigated. Dynamic simulations on the three simplified design revealed the geysering and the natural circulation oscillations modes only. They were, however, only encountered at pressure below 0.6 MPa. Stability maps for all tree simplified BWRs were calculated and plotted. The study concluded that a fast pressurisation of the reactor vessel is necessary to eliminate the possibility of geysering or natural circulation oscillations mode instability. (au) 26 tabs., 88 ills.

  13. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices.

  14. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part I: BWR/NWC conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S.; Seifert, H.P. [Paul Scherrer Institute, PSI, Villigen (Switzerland); Devrient, B.; Roth, A. [Framatome ANP GmbH, Erlangen (Germany); Ehrnsten, U. [VTT Industrial Systems, Espoo (Finland); Ernestova, M.; Zamboch, M. [Nuclear Research Institute, NRI, Rez (Czech Republic); Foehl, J.; Weissenberg, T. [Staatliche Materialpruefungsanstalt, MPA, Stuttgart (Germany); Gomez-Briceno, D.; Lapena, J. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, CIEMAT, Madrid (Spain)

    2004-07-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWR) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It was focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of EAC crack growth behaviour/mechanism of LAS in high-temperature water under steady-state power operation (constant load) and transient operating conditions (e.g., start-up/shut-down, transients in water chemistry and load). Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurised water reactor (VVER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (VVER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarises the most important crack growth results obtained under simulated BWR/NWC conditions. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  15. Modeling and numerical simulation of oscillatory two-phase flows, with application to boiling water nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, M.P. [Instituto de Estudos Avancados - CTA, Sao Paolo (Brazil); Podowski, M.Z. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1995-09-01

    This paper is concerned with the analysis of dynamics and stability of boiling channels and systems. The specific objectives are two-fold. One of them is to present the results of a study aimed at analyzing the effects of various modeling concepts and numerical approaches on the transient response and stability of parallel boiling channels. The other objective is to investigate the effect of closed-loop feedback on stability of a boiling water reactor (BWR). Various modeling and computational issues for parallel boiling channels are discussed, such as: the impact of the numerical discretization scheme for the node containing the moving boiling boundary on the convergence and accuracy of computations, and the effects of subcooled boiling and other two-phase flow phenomena on the predictions of marginal stability conditions. Furthermore, the effects are analyzed of local loss coefficients around the recirculation loop of a boiling water reactor on stability of the reactor system. An apparent paradox is explained concerning the impact of changing single-phase losses on loop stability. The calculations have been performed using the DYNOBOSS computer code. The results of DYNOBOSS validation against other computer codes and experimental data are shown.

  16. The Development of Nufreq-N AN Analytical Model for the Stability Analysis of Nuclear Coupled Density-Wave Oscillations in Boiling Water Nuclear Reactors.

    Science.gov (United States)

    Park, Goon Cherl

    A state-of-the-art one-dimensional thermal-hydraulic model has been developed to be used for the linear analysis of nuclear-coupled density-wave oscillations in a boiling water nuclear reactor (BWR). The model accounts for phasic slip, distributed spacers, subcooled boiling, space/time -dependent power distributions and distributed heated wall dynamics. In addition to a parallel channel stability analysis, a detailed model was derived for the BWR loop analysis of both the natural and forced circulation modes of operation. In its final form, this model constitutes a multi -input, multi-output(MIMO) linear system, which features a general nodal neutron kinetics model. Kinetics parameters for use in the kinetics model have been obtained by utilizing self-consistent nodal data and power distributions. The stability characteristics of a typical BWR/4 has been investigated with the Nyquist criterion. The computer implementation of this model, NUFREQ -N, was used for the parametric study of a typical BWR/4 and comparisons were made with existing in-core and out -of-core data. Also, NUFREQ-N was used to analyze the expected stability characteristics of a typical BWR/4. The parametric results revealed important factors influencing BWR stability margin. It was found that NUFREQ -N generally agreed well with out-of-core data. This was especially true for the predicted power-to-flow transfer function, which is the most important transfer function in thermal-hydraulic stability analysis. In the stability analysis of a typical BWR/4 it was found that it is very important to use accurate models of thermal-hydraulic and neutron kinetic phenomena. Moreover, the accuracy of the nuclear input data is extremely important.

  17. Design of a boiling water reactor core based on an integrated blanket-seed thorium-uranium concept

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Carrera, Alejandro [Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Mor. (Mexico); Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779, Col. Narvarte, 03020 Mexico, D.F. (Mexico); Francois, Juan Luis [Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Mor. (Mexico)]. E-mail: jlfl@fi-b.unam.mx; Martin-del-Campo, Cecilia [Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Mor. (Mexico); Espinosa-Paredes, Gilberto [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana, Avenida San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico, D.F. (Mexico)

    2005-04-15

    This paper is concerned with the design of a boiling water reactor (BWR) equilibrium core using thorium as a nuclear material in an integrated blanket-seed (BS) assembly. The integrated BS concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned out in a once-through cycle. The idea behind the lattice design is to use the thorium conversion capability in a BWR spectrum, taking advantage of the {sup 233}U build-up. A core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average {sup 235}U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the fuel assembly.

  18. Mark I 1/5-scale boiling water reactor pressure suppression experiment. Quick-look report for test numbers 1. 0(a) and 1. 0(b) performed on March 4 and 8, 1977

    Energy Technology Data Exchange (ETDEWEB)

    McCauley, E.W.; Pitts, J.H.

    1977-03-16

    The experimental results obtained from pressure suppression experiment numbers 1.0(a) and 1.0(b) that were performed on the Lawrence Livermore Laboratory's /sup 1///sub 5/-scale boiling water reactor (BWR) Mark I pressure suppression experimental facility are summarized.

  19. Recent trends in the mitigation of the IGSCC through modifications in the water chemistry of BWR reactors; Tendencias recientes en la mitigacion del IGSCC mediante modificaciones en la quimica del agua de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Robles, E.F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    During the last years, the Nuclear Power stations had been that to adequate or to modify the parameters and operational conditions, attempting to maintain and to safeguard the integrity and functionality of its components and systems, as well as the personnel safety involved in its operation. In a Boiling water reactor (BWR), the chemical control of the water, constitutes one of the fundamental aspects to get a sure and reliable operation, having as main objectives: (a) The protection of the reactor vessel, of the structural materials of the same one and of the pipes and components of those recirculation systems against the Intergranular stress corrosion phenomena (IGSCC); (b) To guarantee the integrity of the nuclear fuel minimizing the corrosion phenomena in the fuel elements; and (c) The reduction of the operational dose of the personnel involved directly in the operation and maintenance by means of the control of the activated corrosion products. (Author)

  20. Models and Stability Analysis of Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    John Dorning

    2002-04-15

    We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model that includes: space-time modal neutron kinetics based on spatial w-modes; single- and two-phase flow in parallel boiling channels; fuel rod heat conduction dynamics; and a simple model of the recirculation loop. The BR model is represented by a set of time-dependent nonlinear ordinary differential equations, and is studied as a dynamical system using the modern bifurcation theory and nonlinear dynamical systems analysis. We first determine the stability boundary (SB) - or Hopf bifurcation set- in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value; then we transform the SB to the practical power-flow map used by BWR operating engineers and regulatory agencies. Using this SB, we show that the normal operating point at 100% power is very stable, that stability of points on the 100% rod line decreases as the flow rate is reduced, and that operating points in the low-flow/high-power region are least stable. We also determine the SB that results when the modal kinetics is replaced by simple point reactor kinetics, and we thereby show that the first harmonic mode does not have a significant effect on the SB. However, we later show that it nevertheless has a significant effect on stability because it affects the basin of attraction of stable operating points. Using numerical simulations we show that, in the important low-flow/high-power region, the Hopf bifurcation that occurs as the SB is crossed is subcritical; hence, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line at points in the low-flow/high-power region. Numerical simulations are also performed to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is

  1. Neutron transport with the method of characteristics for 3-D full core boiling water reactor applications

    Science.gov (United States)

    Thomas, Justin W.

    2006-12-01

    The Numerical Nuclear Reactor (NNR) is a code suite that is being developed to provide high-fidelity multi-physics capability for the analysis of light water nuclear reactors. The focus of the work here is to extend the capability of the NNR by incorporation of the neutronics module, DeCART, for Boiling Water Reactor (BWR) applications. The DeCART code has been coupled to the NNR fluid mechanics and heat transfer module STAR-CD for light water reactor applications. The coupling has been accomplished via an interface program, which is responsible for mapping the STAR-CD and DeCART meshes, managing communication, and monitoring convergence. DeCART obtains the solution of the 3-D Boltzmann transport equation by performing a series of 2-D modular ray tracing-based method of characteristics problems that are coupled within the framework of 3-D coarse-mesh finite difference. The relatively complex geometry and increased axial heterogeneity found in BWRs are beyond the modeling capability of the original version of DeCART. In this work, DeCART is extended in three primary areas. First, the geometric capability is generalized by extending the modular ray tracing scheme and permitting an unstructured mesh in the global finite difference kernel. Second, numerical instabilities, which arose as a result of the severe axial heterogeneity found in BWR cores, have been resolved. Third, an advanced nodal method has been implemented to improve the accuracy of the axial flux distribution. In this semi-analytic nodal method, the analytic solution to the transverse-integrated neutron diffusion equation is obtained, where the nonhomogeneous neutron source was first approximated by a quartic polynomial. The successful completion of these three tasks has allowed the application of the coupled DeCART/STAR-CD code to practical BWR problems.

  2. Mark I 1/5-scale boiling water reactor pressure suppression experiment facility report

    Energy Technology Data Exchange (ETDEWEB)

    Altes, R.G.; Pitts, J.H.; Ingraham, R.F.; Collins, E.K.; McCauley, E.W.

    1977-10-11

    An accurate Mark I /sup 1///sub 5/-scale, boiling water reactor (BWR), pressure suppression facility was designed and constructed at Lawrence Livermore Laboratory (LLL) in 11 months. Twenty-seven air tests using the facility are described. Cost was minimized by utilizing equipment borrowed from other LLL programs. The total value of borrowed equipment exceeded the program's budget of $2,020,000. Substantial flexibility in the facility was used to permit independent variation in the drywell pressure-time history, initial pressure in the drywell and toroidal wetwells, initial toroidal wetwell water level and downcomer length, vent line flow resistance, and vent line flow asymmetry. The two- and three-dimensional sectors of the toroidal wetwell provided significant data.

  3. Simulation of the Lower Head Boiling Water Reactor Vessel in a Severe Accident

    Directory of Open Access Journals (Sweden)

    Alejandro Nuñez-Carrera

    2012-01-01

    Full Text Available The objective of this paper is the simulation and analysis of the BoilingWater Reactor (BWR lower head during a severe accident. The COUPLE computer code was used in this work to model the heatup of the reactor core material that slumps in the lower head of the reactor pressure vessel. The prediction of the lower head failure is an important issue in the severe accidents field, due to the accident progression and the radiological consequences that are completely different with or without the failure of the Reactor Pressure Vessel (RPV. The release of molten material to the primary containment and the possibility of steam explosion may produce the failure of the primary containment with high radiological consequences. Then, it is important to have a detailed model in order to predict the behavior of the reactor vessel lower head in a severe accident. In this paper, a hypothetical simulation of a Loss of Coolant Accident (LOCA with simultaneous loss of off-site power and without injection of cooling water is presented with the proposal to evaluate the temperature distribution and heatup of the lower part of the RPV. The SCDAPSIM/RELAP5 3.2 code was used to build the BWR model and conduct the numerical simulation.

  4. Study of plutonium disposition using existing GE advanced Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ``Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs.

  5. Automatic boiling water reactor loading pattern design using ant colony optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.-D. [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 30013, Taiwan (China); Nuclear Engineering Division, Institute of Nuclear Energy Research, No. 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China)], E-mail: jdwang@iner.gov.tw; Lin Chaung [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 30013, Taiwan (China)

    2009-08-15

    An automatic boiling water reactor (BWR) loading pattern (LP) design methodology was developed using the rank-based ant system (RAS), which is a variant of the ant colony optimization (ACO) algorithm. To reduce design complexity, only the fuel assemblies (FAs) of one eight-core positions were determined using the RAS algorithm, and then the corresponding FAs were loaded into the other parts of the core. Heuristic information was adopted to exclude the selection of the inappropriate FAs which will reduce search space, and thus, the computation time. When the LP was determined, Haling cycle length, beginning of cycle (BOC) shutdown margin (SDM), and Haling end of cycle (EOC) maximum fraction of limit for critical power ratio (MFLCPR) were calculated using SIMULATE-3 code, which were used to evaluate the LP for updating pheromone of RAS. The developed design methodology was demonstrated using FAs of a reference cycle of the BWR6 nuclear power plant. The results show that, the designed LP can be obtained within reasonable computation time, and has a longer cycle length than that of the original design.

  6. Remarks on boiling water reactor stability analysis. Pt. 1. Theory and application of bifurcation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Carsten; Hurtado, Antonio [Technische Univ. Dresden (Germany). Chair of Hydrogen and Nuclear Energy; Schuster, Roland [Kernkraftwerk Brunsbuettel GmbH und Co. oHG, Brunsbuettel (Germany); Lukas, Bernard [EnBW Kernkraft GmbH, Philippsburg (Germany). Kernkraftwerk Philippsburg; Aguirre, Carlos [Kernkraftwerk Leibstadt AG, Aargau (Switzerland); Hennig, Dieter

    2012-11-15

    Modern theoretical methods for analysing the stability behaviour of Boiling Water Reactors (BWRs) are relatively reliable. The analysis is performed by comprehensive validated system codes comprising 3D core models and one-dimensional thermal-hydraulic parallel channel models in the frequency (linearized models) or time domain. Nevertheless the spontaneous emergence of stable or unstable periodic orbits as solutions of the coupled nonlinear differential equations determining the stability properties of the coupled thermal-hydraulic and neutron kinetic (highly) nonlinear BWR system is a surprising phenomenon, and it is worth thinking about the mathematical background controlling such behaviour. In particular the coexistence of different types of solutions, such as the coexistence of unstable limit cycles and stable fixed points, are states of stability, not all nuclear engineers are familiar with. Hence the part I of this paper is devoted to the mathematical background of linear and nonlinear stability analysis and introduces a novel efficient approach to treat the nonlinear BWR stability behaviour with both system codes and so-called (advanced) reduced order models (ROMs). The efficiency of this approach, called the RAM-ROM method, will be demonstrated by some results of stability analyses for different power plants. (orig.)

  7. Recirculation pump discharge line break tests at ROSA-III for a boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, M.; Anoda, Y.; Kumamaru, H.; Nakamura, H.; Shiba, M.; Tasaka, K.

    1985-08-01

    Three loss-of-coolant accident (LOCA) tests were conducted at the Rig of Safety Assessment (ROSA)-III test facility, which simulates boiling water reactor (BWR)/6-251 with a volumetric scaling factor of 1/424. The fundamental features of the recirculation pump discharge line break LOCA and the effects of break areas on the features are investigated. It has been confirmed experimentally that the LOCA phenomena in the discharge line break are analogous to those in the suction line break with the same effective choking flow area, which is a sum of the least choking flow areas along the break flow paths and controls the system pressure responses. In general, the maximum effective choking flow area is (A /SUB j/ + A /SUB p/ ) for discharge line breaks and (A /SUB j/ + A /SUB o/ ) for suction line breaks, where A /SUB j/ , A /SUB p/ , and A /SUB o/ are the flow areas of the jet pump drive nozzles, the main recirculation pump discharge nozzle, and the break, respectively. The similarity between the ROSA-III test and a BWR LOCA has been confirmed in the key phenomena by the analyses using the RELAP5/MOD1 code. An atypical behavior is observed in the fuel rod surface temperature transient in the early phase of blowdown due to the limitation of the ROSA-III initial core power.

  8. Experimental study of the effect of void reactivity feedback on the behavior of the scaled model boiling water reactor

    Science.gov (United States)

    Meftah, Khaled

    A Scaled Model Boiling Water Reactor (SMBWR) model uses low pressure (i.e., 0.095 MPa) water in a heated channel 0.5 meters in length with four electrically heated fuel simulator rods. The axial void profile in the channel is measured using conductivity probes and the power to the heaters is modulated according to the void fraction to simulate void reactivity feedback. The steam from the heated channel is passed through a valve that reduces the pressure to 0.012 MPa where the steam is condensed in conditions similar to those found in a conventional BWR condenser. The feedwater flow rate, heater power, and instrumentation in the facility are controlled and monitored through a Quadra 950 computer running LabVIEW software. The void fraction signals are analyzed to identify the different flow regimes and determine the vapor velocity in the SMBWR channel using features of the probability density function and power spectral density. The void coefficient of reactivity is modified in the BWR scale model through the LabVIEW interface and the effect on the behavior of the channel is directly observed. The system response is reported for abrupt stepwise pressure changes and abrupt stepwise power changes. The response is typical of that expected for a BWR. The void reactivity feedback effect is also examined by analyzing the frequency response of the channel void fraction at steady state.

  9. Self-Sustaining Thorium Boiling Water Reactors

    Directory of Open Access Journals (Sweden)

    Ehud Greenspan

    2012-10-01

    Full Text Available A thorium-fueled water-cooled reactor core design approach that features a radially uniform composition of fuel rods in stationary fuel assembly and is fuel-self-sustaining is described. This core design concept is similar to the Reduced moderation Boiling Water Reactor (RBWR proposed by Hitachi to fit within an ABWR pressure vessel, with the following exceptions: use of thorium instead of depleted uranium for the fertile fuel; elimination of the internal blanket; and elimination of absorbers from the axial reflectors, while increasing the length of the fissile zone. The preliminary analysis indicates that it is feasible to design such cores to be fuel-self-sustaining and to have a comfortably low peak linear heat generation rate when operating at the nominal ABWR power level of nearly 4000 MWth. However, the void reactivity feedback tends to be too negative, making it difficult to have sufficient shutdown reactivity margin at cold zero power condition. An addition of a small amount of plutonium from LWR used nuclear fuel was found effective in reducing the magnitude of the negative void reactivity effect and enables attaining adequate shutdown reactivity margin; it also flattens the axial power distribution. The resulting design concept offers an efficient incineration of the LWR generated plutonium in addition to effective utilization of thorium. Additional R&D is required in order to arrive at a reliable practical and safe design.

  10. Evaluation of PWR and BWR pin cell benchmark results

    Energy Technology Data Exchange (ETDEWEB)

    Pijlgroms, B.J.; Gruppelaar, H.; Janssen, A.J. (Unit Nuclear Energy, Netherlands Energy Research Foundation ECN, Petten (Netherlands)); Hoogenboorm, J.E.; De Leege, P.F.A. (International Reactor Institute IRI, University of Leiden, Leiden (Netherlands)); Van de Voet, J.; Verhagen, F.C.M. (KEMA NV, Arnhem (Netherlands))

    1992-01-01

    In order to carry out reliable reactor core calculations for a boiled water reactor (BWR) or a pressurized water reactor (PWR) first reactivity calculations have to be carried out for which several calculation programs are available. The purpose of the title project is to exchange experiences to improve the knowledge of this reactivity calculations. In a large number of institutes reactivity calculations of PWR and BWR pin cells were executed by means of available computer codes. Results are compared. It is concluded that the variations in the calculated results are problem dependent. Part of the results is satisfactory. However, further research is necessary.

  11. Design of a boiling water reactor equilibrium core using thorium-uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Francois, J-L.; Nunez-Carrera, A.; Espinosa-Paredes, G.; Martin-del-Campo, C.

    2004-10-06

    In this paper the design of a Boiling Water Reactor (BWR) equilibrium core using thorium is presented; a heterogeneous blanket-seed core arrangement concept was adopted. The design was developed in three steps: in the first step two different assemblies were designed based on the integrated blanket-seed concept, they are the blanket-dummy assembly and the blanket-seed assembly. The integrated blanketseed concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned-out in a once-through cycle. In the second step, a core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average 235U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the assembly. In the third step an in-house code was developed to evaluate the thorium equilibrium core under transient conditions. A stability analysis was also performed. Regarding the stability analysis, five operational states were analyzed; four of them define the traditional instability region corner of the power-flow map and the fifth one is the operational state for the full power condition. The frequency and the boiling length were calculated for each operational state. The frequency of the analyzed operational states was similar to that reported for BWRs; these are close to the unstable region that occurs due to the density wave oscillation phenomena in some nuclear power plants. Four transient analyses were also performed: manual SCRAM, recirculation pumps trip, main steam isolation valves closure and loss of feed water. The results of these transients are

  12. ROSA-III double-ended break test series for a loss-of-coolant accident in a boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tasaka, K.; Anoda, Y.; Koizumi, Y.; Kumamaru, H.; Nakamura, H.; Shiba, M.; Suzuki, M.; Yonomoto, T.

    1985-01-01

    The Rig of Safety Assessment (ROSA) III facility is a volumetrically scaled (1/424) boiling water reactor (BWR) system with an electrically heated core designed for integral loss-of-coolant accident (LOCA) and emergency-core-cooling-system (ECCS) tests. Experimental results obtained so far confirm that the severest single failure assumption in ECCS is the high-pressure core spray system failure even in a large-break LOCA in a BWR. The measured peak cladding temperature was well below the present safety criterion of 1473 K, even with the single failure assumption in ECCS, and the effectiveness of ECCS for core cooling during a double-ended-break LOCA has been confirmed. The overall agreement between the results calculated by the RELAP4/MOD6/U4/J3 computer code and the experimental results is good. The similarity between the ROSA-III test and a BWR LOCA has been confirmed through the comparison of calculated results for the ROSA-III facility and a BWR system.

  13. Passive Gamma Analysis of the Boiling-Water-Reactor Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Duc Ta [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-31

    Passive gamma analysis can be used to determine BU and CT of BWR assembly. The analysis is somewhat more complicated and less effective than similar method for PWR assemblies. From the measurements along the lengths of the BWR1 and BWR9 assemblies, there are hints that we may be able to use their information to help improve the model functions for better results.

  14. A bifurcation analysis of boiling water reactor on large domain of parametric spaces

    Science.gov (United States)

    Pandey, Vikas; Singh, Suneet

    2016-09-01

    The boiling water reactors (BWRs) are inherently nonlinear physical system, as any other physical system. The reactivity feedback, which is caused by both moderator density and temperature, allows several effects reflecting the nonlinear behavior of the system. Stability analyses of BWR is done with a simplified, reduced order model, which couples point reactor kinetics with thermal hydraulics of the reactor core. The linear stability analysis of the BWR for steady states shows that at a critical value of bifurcation parameter (i.e. feedback gain), Hopf bifurcation occurs. These stable and unstable domains of parametric spaces cannot be predicted by linear stability analysis because the stability of system does not include only stability of the steady states. The stability of other dynamics of the system such as limit cycles must be included in study of stability. The nonlinear stability analysis (i.e. bifurcation analysis) becomes an indispensable component of stability analysis in this scenario. Hopf bifurcation, which occur with one free parameter, is studied here and it formulates birth of limit cycles. The excitation of these limit cycles makes the system bistable in the case of subcritical bifurcation whereas stable limit cycles continues in an unstable region for supercritical bifurcation. The distinction between subcritical and supercritical Hopf is done by two parameter analysis (i.e. codimension-2 bifurcation). In this scenario, Generalized Hopf bifurcation (GH) takes place, which separates sub and supercritical Hopf bifurcation. The various types of bifurcation such as limit point bifurcation of limit cycle (LPC), period doubling bifurcation of limit cycles (PD) and Neimark-Sacker bifurcation of limit cycles (NS) have been identified with the Floquet multipliers. The LPC manifests itself as the region of bistability whereas chaotic region exist because of cascading of PD. This region of bistability and chaotic solutions are drawn on the various

  15. Improved neutron kinetics for coupled three-dimensional boiling water reactor analysis

    Science.gov (United States)

    Akdeniz, Bedirhan

    The need for a more accurate method of modelling cross section variations for off-nominal core conditions is becoming an important issue with the increased use of coupled three-dimensional (3-D) thermal-hydraulics/neutronics simulations. In traditional reactor core analysis, thermal reactor core calculations are customarily performed with 3-D two-group nodal diffusion methods. Steady-state multi-group transport theory calculations on heterogeneous single assembly domains subject to reflective boundary conditions are normally used to prepare the equivalent two-group spatially homogenized nodal parameters. For steady-state applications, the equivalent nodal parameters are theoretically well-defined; but, for transient applications, the definition of the nodal kinetics parameters, in particular, delayed neutron precursor data is somewhat unclear. The fact that delayed neutrons are emitted at considerably lower energies than prompt neutrons and that this difference cannot be accounted for in a two-group representation is of particular concern. To compensate for this inherent deficiency of the two-group model a correction is applied to the nodal values of the delayed neutron fractions; however, the adequacy of this correction has never been tested thoroughly for Boiling Water Reactor (BWR) applications, especially where the instantaneous thermal-hydraulic conditions play an important role on the core neutron kinetics calculations. This thesis proposes a systematic approach to improve the 3-D neutron kinetics modelling in coupled BWR transient calculations by developing, implementing and validating methods for consistent generation of neutron kinetics and delayed neutron data for such coupled thermal-hydraulics/neutronics simulations.

  16. Cold neutron tomography of annular coolant flow in a double subchannel model of a boiling water reactor

    Science.gov (United States)

    Kickhofel, J. L.; Zboray, R.; Damsohn, M.; Kaestner, A.; Lehmann, E. H.; Prasser, H.-M.

    2011-09-01

    Dryout of the liquid coolant film on fuel pins at the top of boiling water reactor (BWR) cores constitutes the type of heat transfer crisis relevant for the conditions of high void fractions. It is a limiting factor in the thermal power, and therefore the economy, of BWRs. Ongoing research on multiphase annular flow, specifically the liquid film thickness, is fundamental not only to nuclear reactor safety and operation but also to that of evaporators, condensers, and pipelines in a general industrial context. We have performed cold neutron tomography of adiabatic air water annular flow in a scaled up model of the subchannel geometry found in BWR fuel assemblies today. All imaging has been performed at the ICON beamline at the neutron spallation source SINQ at the Paul Scherrer Institut in Switzerland. Neutron tomography is shown to excel in investigating the interactions of air water two phase flows with spacer vanes of different geometry. The high resolution, high contrast measurements provide spatial distributions of the coolant on top of the surfaces of the spacer, including the vanes, and in the subchannel downstream of the spacers.

  17. Construction of the advanced boiling water reactor in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Natsume, Nobuo; Noda, Hiroshi [Tokyo Electric Power Co. (Japan). Nuclear Power Plant Construction Dept.

    1996-07-01

    The Advanced Boiling Reactor (ABWR) has been developed with international cooperation between Japan and the US as the generation of plants for the 1990s and beyond. It incorporates the best BWR technologies from the world in challengeable pursuit of improved safety and reliability, reduced construction and operating cost, reduced radiation exposure and radioactive waste. Tokyo Electric Power Company (MPCO) decided to apply the first ABWRs to unit No. 6 and 7 of Kashiwazaki-Kariwa nuclear power station (K-6 and 7). These units are scheduled to commence commercial operation in December 1996 and July 1997 respectively. Particular attention is given in this discussion to the construction period from rock inspection for the reactor building to commercial operation, which is to be achieved in only 52 months through innovative and challenging construction methods. To date, construction work is advancing ahead of the original schedule. This paper describes not only how to shorten the construction period by adoption of a variety of new technologies, such as all-weather construction method and large block module construction method, but also how to check and test the state of the art technologies during manufacturing and installation of new equipment for K-6 and 7.

  18. Defluoridation of drinking water by boiling with brushite and calcite.

    Science.gov (United States)

    Larsen, M J; Pearce, E I F

    2002-01-01

    Existing methods for defluoridating drinking water involve expensive high technology or are slow, inefficient and/or unhygienic. A new method is now suggested, encompassing brushite and calcite suspension followed by boiling. Our aim was to examine the efficiency of the method and the chemical reactions involved. Brushite, 0.3-0.5 g, and an equal weight of calcite were suspended in 1 litre water containing 5-20 ppm fluoride. The suspensions were boiled in an electric kettle, left to cool and the calcium salts to sediment. Solution ion concentrations were determined and sediments were examined by X-ray diffraction. In distilled water initially containing 5, 10 and 20 ppm fluoride the concentration was reduced to 0.06, 0.4 and 5.9 ppm, respectively. Using Aarhus tap water which contained 2.6 mmol/l calcium the final concentrations were 1.2, 2.5 and 7.7 ppm, respectively, and runs without calcite gave results similar to those with calcite. Without boiling the fluoride concentration remained unaltered, as did the brushite and calcite salts, despite occasional agitation by hand. All solutions were supersaturated with respect to fluorapatite and hydroxyapatite and close to saturation with respect to brushite. Boiling produced well-crystallised apatite and traces of calcite, while boiling of brushite alone left a poorly crystallised apatite. We conclude that boiling a brushite/calcite suspension rapidly converts the two salts to apatite which incorporates fluoride if present in solution, and that this process may be exploited to defluoridate drinking water.

  19. A Compilation of Boiling Water Reactor Operational Experience for the United Kingdom's Office for Nuclear Regulation's Advanced Boiling Water Reactor Generic Design Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Timothy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Liao, Huafei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    United States nuclear power plant Licensee Event Reports (LERs), submitted to the United States Nuclear Regulatory Commission (NRC) under law as required by 10 CFR 50.72 and 50.73 were evaluated for reliance to the United Kingdom’s Health and Safety Executive – Office for Nuclear Regulation’s (ONR) general design assessment of the Advanced Boiling Water Reactor (ABWR) design. An NRC compendium of LERs, compiled by Idaho National Laboratory over the time period January 1, 2000 through March 31, 2014, were sorted by BWR safety system and sorted into two categories: those events leading to a SCRAM, and those events which constituted a safety system failure. The LERs were then evaluated as to the relevance of the operational experience to the ABWR design.

  20. Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    Douglas M. Gerstner

    2009-05-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 “flux traps” (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop’s temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation.

  1. 76 FR 14437 - Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of...

    Science.gov (United States)

    2011-03-16

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of... GE Hitachi Nuclear Energy (GEH) for the economic simplified boiling water reactor (ESBWR)...

  2. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Science.gov (United States)

    2012-01-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors..., ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors.''...

  3. BWR ASSEMBLY SOURCE TERMS FOR WASTE PACKAGE DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    T.L. Lotz

    1997-02-15

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide boiling water reactor (BWR) assembly radiation source term data for use during Waste Package (WP) design. The BWR assembly radiation source terms are to be used for evaluation of radiolysis effects at the WP surface, and for personnel shielding requirements during assembly or WP handling operations. The objectives of this evaluation are to generate BWR assembly radiation source terms that bound selected groupings of BWR assemblies, with regard to assembly average burnup and cooling time, which comprise the anticipated MGDS BWR commercial spent nuclear fuel (SNF) waste stream. The source term data is to be provided in a form which can easily be utilized in subsequent shielding/radiation dose calculations. Since these calculations may also be used for Total System Performance Assessment (TSPA), with appropriate justification provided by TSPA, or radionuclide release rate analysis, the grams of each element and additional cooling times out to 25 years will also be calculated and the data included in the output files.

  4. Calculation system for physical analysis of boiling water reactors; Modelisation des phenomenes physiques specifiques aux reacteurs a eau bouillante, notamment le couplage neutronique-thermohydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Bouveret, F

    2001-07-01

    Although Boiling Water Reactors generate a quarter of worldwide nuclear electricity, they have been only little studied in France. A certain interest now shows up for these reactors. So, the aim of the work presented here is to contribute to determine a core calculation methodology with CEA (Commissariat a l'Energie Atomique) codes. Vapour production in the reactor core involves great differences in technological options from pressurised water reactor. We analyse main physical phenomena for BWR and offer solutions taking them into account. BWR fuel assembly heterogeneity causes steep thermal flux gradients. The two dimensional collision probability method with exact boundary conditions makes possible to calculate accurately the flux in BWR fuel assemblies using the APOLLO-2 lattice code but induces a very long calculation time. So, we determine a new methodology based on a two-level flux calculation. Void fraction variations in assemblies involve big spectrum changes that we have to consider in core calculation. We suggest to use a void history parameter to generate cross-sections libraries for core calculation. The core calculation code has also to calculate the depletion of main isotopes concentrations. A core calculation associating neutronics and thermal-hydraulic codes lays stress on points we still have to study out. The most important of them is to take into account the control blade in the different calculation stages. (author)

  5. Critical discharge of initially subcooled water through slits. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Amos, C N; Schrock, V E

    1983-09-01

    This report describes an experimental investigation into the critical flow of initially subcooled water through rectangular slits. The study of such flows is relevant to the prediction of leak flow rates from cracks in piping, or pressure vessels, which contain sufficient enthalpy that vaporization will occur if they are allowed to expand to the ambient pressure. Two new analytical models, which allow for the generation of a metastable liquid phase, are developed. Experimental results are compared with the predictions of both these new models and with a Fanno Homogeneous Equilibrium Model.

  6. Spent fuel data base: commercial light water reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel.

  7. Experimental and analytical study of stability characteristics of natural circulation boiling water reactors during startup transient

    Science.gov (United States)

    Woo, Kyoungsuk

    Two-phase natural circulation loops are unstable at low pressure operating conditions. New reactor design relying on natural circulation for both normal and abnormal core cooling is susceptible to different types of flow instabilities. In contrast to forced circulation boiling water reactor (BWR), natural circulation BWR is started up without recirculation pumps. The tall chimney placed on the top of the core makes the system susceptible to flashing during low pressure start-up. In addition, the considerable saturation temperature variation may induce complicated dynamic behavior driven by thermal non-equilibrium between the liquid and steam. The thermal-hydraulic problems in two-phase natural circulation systems at low pressure and low power conditions are investigated through experimental methods. Fuel heat conduction, neutron kinetics, flow kinematics, energetics and dynamics that govern the flow behavior at low pressure, are formulated. A dimensionless analysis is introduced to obtain governing dimensionless groups which are groundwork of the system scaling. Based on the robust scaling method and start-up procedures of a typical natural circulation BWR, the simulation strategies for the transient with and without void reactivity feedback is developed. Three different heat-up rates are applied to the transient simulations to study characteristics of the stability during the start-up. Reducing heat-up rate leads to increase in the period of flashing-induced density wave oscillation and decrease in the system pressurization rate. However, reducing the heat-up rate is unable to completely prevent flashing-induced oscillations. Five characteristic regions of stability are discovered at low pressure conditions. They are stable single-phase, flashing near the separator, intermittent oscillation, sinusoidal oscillation and low subcooling stable regions. Stability maps were acquired for system pressures ranging 100 kPa to 400 kPa. According to experimental investigation

  8. An A BWR demonstration simulator for training and developing technical staff

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Yonezawa, H.; Aoyagi, Y.; Kataoka, K., E-mail: jim.powers@toshiba.com [Toshiba Corporation, Kawasaki, Kanagawa (Japan)

    2015-09-15

    The US-Advanced Boiling Water Reactor (A BWR), certified by the US NRC, is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. Toshiba has developed a Demonstration Simulator of the A BWR control room that provides a realistic experience for training and education on BWR principles and operations fundamentals. The Demonstration Simulator is located in the Toshiba America Nuclear Energy (Tane) office in Charlotte, North Carolina and is composed of standard office computer equipment set up in a specific arrangement that is representative of the layout of an A BWR control room. The Demonstration Simulator is not intended for licensed operator training, but can provide a framework for encouraging entry level technically oriented nuclear workers to enter the operations field; strengthening the linkage between university energy field curricula and real-life application of theory; and, improving understanding of integrated plant operations for developing station technical staff. This paper describes the A BWR Demonstration Simulator and its applications for training and educating future nuclear workers. (Author)

  9. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  10. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 1: Main report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  11. Numerical Evaluation of Fluid Mixing Phenomena in Boiling Water Reactor Using Advanced Interface Tracking Method

    Science.gov (United States)

    Yoshida, Hiroyuki; Takase, Kazuyuki

    Thermal-hydraulic design of the current boiling water reactor (BWR) is performed with the subchannel analysis codes which incorporated the correlations based on empirical results including actual-size tests. Then, for the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) core, an actual size test of an embodiment of its design is required to confirm or modify such correlations. In this situation, development of a method that enables the thermal-hydraulic design of nuclear reactors without these actual size tests is desired, because these tests take a long time and entail great cost. For this reason, we developed an advanced thermal-hydraulic design method for FLWRs using innovative two-phase flow simulation technology. In this study, a detailed Two-Phase Flow simulation code using advanced Interface Tracking method: TPFIT is developed to calculate the detailed information of the two-phase flow. In this paper, firstly, we tried to verify the TPFIT code by comparing it with the existing 2-channel air-water mixing experimental results. Secondary, the TPFIT code was applied to simulation of steam-water two-phase flow in a model of two subchannels of a current BWRs and FLWRs rod bundle. The fluid mixing was observed at a gap between the subchannels. The existing two-phase flow correlation for fluid mixing is evaluated using detailed numerical simulation data. This data indicates that pressure difference between fluid channels is responsible for the fluid mixing, and thus the effects of the time average pressure difference and fluctuations must be incorporated in the two-phase flow correlation for fluid mixing. When inlet quality ratio of subchannels is relatively large, it is understood that evaluation precision of the existing two-phase flow correlations for fluid mixing are relatively low.

  12. Propagation of cracks by stress corrosion in conditions of BWR type reactor; Propagacion de grietas por corrosion bajo esfuerzo en condiciones de reactor de agua en ebullicion (BWR)

    Energy Technology Data Exchange (ETDEWEB)

    Merino C, F.J. [ININ, 52045 Estado de Mexico (Mexico); Fuentes C, P. [ITT, Metepec, Estado de Mexico (Mexico)]. E-mail: fjmc@nuclear.inin.mx

    2004-07-01

    In this work, the obtained results when applying the Hydrogen Chemistry to a test tube type Compact Tension (CT), built in austenitic stainless steel 304l, simulating the conditions to those that it operates a Boiling Water Reactor (BWR), temperature 288 C and pressure of 8 MPa are presented. With the application of this water chemistry, seeks to be proven the diminution of the crack propagation speed. (Author)

  13. A BWR licensing experience in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J.; Ogura, C. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Arai, K. [Toshiba Corporation, Yokohama, Kanagawa (Japan); Thomas, S.; Mookhoek, B., E-mail: jim.powers@toshiba.com [Nuclear Innovation North America, Lake Jackson, Texas (United States)

    2015-09-15

    The US-Advanced Boiling Water Reactor (A BWR), certified by the United States Nuclear Regulatory Commission (US NRC), is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (STP3-4) Combined License Application (Cola). Nuclear Innovation North America (Nina) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The STP3-4 project has finished the US NRC technical review of the Cola through the final meeting of the Advisory Committee on Reactor Safeguards (ACRS), and the Final Safety Evaluation Report (FSER) is scheduled to be issued by the US NRC in the middle of 2015. The next steps are to support the Mandatory Hearing process, and voting by the NRC commissioners on the motion to grant the Combined License, which is scheduled beginning of 2016 according to US NRC schedule as of March 30, 2015. This paper summarizes the history and progress of the US-A BWR licensing, including the experiences of the Licensee, Nina, and Toshiba as the Epc team worked through the Code of Federal Regulations Title 10 (10-Cfr) Part 52 process, and provides some perspectives on how the related licensing material would also be of value within a 10-Cfr Part 50, two-step process to minimize schedule and financial risks which could arise from ongoing technical developments and regulatory reviews. (Author)

  14. Fuel lattice design in a boiling water reactor using an ant-colony-based system

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Jose Luis, E-mail: joseluis.montes@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Estado de Mexico, CP 52750 (Mexico); Facultad de Ciencias, Universidad Autonoma del Estado de Mexico (Mexico); Francois, Juan-Luis, E-mail: juan.luis.francois@gmail.com [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, Jiutepec, Mor., CP 62550 (Mexico); Ortiz, Juan Jose, E-mail: juanjose.ortiz@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Estado de Mexico, CP 52750 (Mexico); Martin-del-Campo, Cecilia, E-mail: cecilia.martin.del.campo@gmail.com [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, Jiutepec, Mor., CP 62550 (Mexico); Perusquia, Raul, E-mail: raul.perusquia@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Estado de Mexico, CP 52750 (Mexico)

    2011-06-15

    Research highlights: > We present an ant-colony-based system for BWR fuel lattice design and optimization. > Assessment of candidate solutions at 0.0 MWd/kg {sup 235}U seems to have a limited scope. > Suitable heuristic rules enable more realistic fuel lattice designs. > The election of the objective has a large impact in CPU time. > ACS enables an important decrease of the initial average U-235 enrichment. - Abstract: This paper presents a new approach to deal with the boiling water reactor radial fuel lattice design. The goal is to optimize the distribution of both, the fissionable material, and the reactivity control poison material inside the fuel lattice at the beginning of its life. An ant-colony-based system was used to search for either: the optimum location of the poisoned pin inside the lattice, or the U{sup 235} enrichment and Gd{sub 2}O{sub 3} concentrations. In the optimization process, in order to know the parameters of the candidate solutions, the neutronic simulator CASMO-4 transport code was used. A typical 10 x 10 BWR fuel lattice with an initial average U{sup 235} enrichment of 4.1%, used in the current operation of Laguna Verde Nuclear Power Plant was taken as a reference. With respect to that reference lattice, it was possible to decrease the average U{sup 235} enrichment up to 3.949%, this obtained value represents a decrease of 3.84% with respect to the reference U{sup 235} enrichment; whereas, the k-infinity was inside the {+-}100 pcm's range, and there was a difference of 0.94% between the local power peaking factor and the lattice reference value. Particular emphasis was made on defining the objective function which is used for making the assessment of candidate solutions. In a typical desktop personal computer, about four hours of CPU time were necessary for the algorithm to fulfill the goals of the optimization process. The results obtained with the application of the implemented system showed that the proposed approach represents a

  15. Validation and Application of the Thermal Hydraulic System Code TRACE for Analysis of BWR Transients

    Directory of Open Access Journals (Sweden)

    V. H. Sánchez

    2012-01-01

    Full Text Available The Karlsruhe Institute of Technology (KIT is participating on (Code Applications and Maintenance Program CAMP of the US Nuclear Regulatory Commission (NRC to validate TRACE code for LWR transient analysis. The application of TRACE for the safety assessment of BWR requires a throughout verification and validation using experimental data from separate effect and integral tests but also using plant data. The validation process is normally focused on safety-relevant phenomena for example, pressure drop, void fraction, heat transfer, and critical power models. The purpose of this paper is to validate selected BWR-relevant TRACE-models using both data of bundle tests such as the (Boiling Water Reactor Full-Size Fine-Mesh Bundle Test BFBT and plant data recorded during a turbine trip event (TUSA occurred in a Type-72 German BWR plant. For the validation, TRACE models of the BFBT bundle and of the BWR plant were developed. The performed investigations have shown that the TRACE code is appropriate to describe main BWR-safety-relevant phenomena (pressure drop, void fraction, and critical power with acceptable accuracy. The comparison of the predicted global BWR plant parameters for the TUSA event with the measured plant data indicates that the code predictions are following the main trends of the measured parameters such as dome pressure and reactor power.

  16. Diffusion bonded matrix of HGMF applied for BWR condensate water purification

    Energy Technology Data Exchange (ETDEWEB)

    Soda, Fumitaka; Yukawa, Takao; Ito, Kazuyuki

    1984-03-01

    A high Gradient Magnetic Filter (HGMF) applied to the purification of power plant primary water has recently attracted much attention. In the application of HGMF to the water treatment of power plants, especially nuclear power plants, reliabillties of matrix (filtering medium) as well as removal performance for cruds (insoluble corrosion products) are considered to be important factors. To satisfy these factors, a new filtering medium named Diffision Bonded Matrix (DBM) has been developed and the test results are reported. Filtering efficiency and mechanical stiffness of DBM were examined using HGMF pilot test units consisting of 160 mm diameters x 240 mm length filter. The filtering velocity and the magnetic flux density used in this test were 800 m/h 5 kG, respectively. The filtering efficiencies and of 85-100% were obtained for artificial cruds for DBM. The DBM indicated slightly better filtering efficiency than for conventional wool matrix under the same filtering and matrix conditions. The DBM kept its original mechanical properties and very few pieces of fibers were broken off while the conventional wool matrix lost its volume elasticities and the considerable amount of fibers was broken off during the test operation. The results described here demonstrated the applicability of DBM for treatment of BWR primary water by High Gradient Magnetic Filter.

  17. In-plant material test experience under hydrogen water chemistry at a Japanese BWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Masami; Koshiishi, Masato; Kato, Takahiko [Hitachi Ltd., Ibaraki (Japan). Hitachi Works; Abe, Ayumi; Sekiguchi, Masahiko; Takiguchi, Hideki

    1999-07-01

    Hydrogen injection technology has been applied to Japanese domestic aged BWR plants since 1994 to mitigate corrosive environment regarding Intergranular Stress Corrosion Cracking (IGSCC) of Reactor Internals (RINs). The Tsuruga Unit-1 plant has also been operated with this technology since 1997, considering suppression of radiation increase in the main steam piping system besides mitigation of corrosive environment in the reactor; the hydrogen injection rate in the feed water was about 0.5 ppm. In order to confirm the effects of the hydrogen injection on suppression of SCC susceptibility of the RIN materials, several in-plant material tests have been conducted using the reactor water clean up system (RWCU). Cyclic-Slow Strain Rate Tensile (C-SSRT) test, Slow Strain Rate Tensile (SSRT) test and Compact Tension (CT) test were performed in the test facilities which were installed at the sampling line from the RWCU. Evaluation of SCC life by means of the C-SSRT test was the first application as an accelerated SCC test for in-plant material tests. It was confirmed that the hydrogen injection in the feed water has a good mitigation effects on IGSCC performance of the RIN materials. Results will be discussed from a viewpoint of the test condition such as total oxidant, ECP, conductivity and loading/unloading. (author)

  18. Nuclear-coupled thermal-hydraulic stability analysis of boiling water reactors

    Science.gov (United States)

    Karve, Atul A.

    We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model we developed from: the space-time modal neutron kinetics equations based on spatial omega-modes, the equations for two-phase flow in parallel boiling channels, the fuel rod heat conduction equations, and a simple model for the recirculation loop. The model is represented as a dynamical system comprised of time-dependent nonlinear ordinary differential equations, and it is studied using stability analysis, modern bifurcation theory, and numerical simulations. We first determine the stability boundary (SB) in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value and then transform the SB to the practical power-flow map. Using this SB, we show that the normal operating point at 100% power is very stable, stability of points on the 100% rod line decreases as the flow rate is reduced, and that points are least stable in the low-flow/high-power region. We also determine the SB when the modal kinetics is replaced by simple point reactor kinetics and show that the first harmonic mode has no significant effect on the SB. Later we carry out the relevant numerical simulations where we first show that the Hopf bifurcation, that occurs as a parameter is varied across the SB is subcritical, and that, in the important low-flow/high-power region, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line. Hence, a point on the 100% rod line in the low-flow/high-power region, although stable, may nevertheless be a point at which a BWR should not be operated. Numerical simulations are then done to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is determined that the NRC requirement of DR loop model that we develop is studied by carrying

  19. Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [ORNL; Poore III, Willis P [ORNL

    2015-01-01

    The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Mark I plant for those instrumentation systems considered most important for accident management purposes.

  20. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL

    2016-01-01

    A technical basis for peak reactivity boiling water reactor (BWR) burnup credit (BUC) methods was recently generated, and the technical basis for extended BWR BUC is now being developed. In this paper, a number of effects related to extended BWR BUC are analyzed, including three major operational effects in BWRs: the coolant density axial distribution, the use of control blades during operation, and the axial burnup profile. Specifically, uniform axial moderator density profiles are analyzed and compared to previous results and an additional temporal fidelity study combing moderator density profiles for three different fuel assemblies is presented. Realistic control blade histories and cask criticality results are compared to previously generated constructed control blade histories. Finally, a preliminary study of the axial burnup profile is provided.

  1. Vertical Drop of 44-BWR Waste Package With Lifting Collars

    Energy Technology Data Exchange (ETDEWEB)

    A.K. Scheider

    2005-08-23

    The objective of this calculation is to determine the structural response of a waste package (WP) dropped flat on its bottom from a specified height. The WP used for that purpose is the 44-Boiling Water Reactor (BWR) WP. The scope of this document is limited to reporting the calculation results in terms of stress intensities. The Uncanistered Waste Disposal Container System is classified as Quality Level 1 (Ref. 4, page 7). Therefore, this calculation is subject to the requirements of the Quality Assurance Requirements and Description (Ref. 16). AP-3. 12Q, Design Calculations and Analyses (Ref. 11) is used to perform the calculation and develop the document. The information provided by the sketches attached to this calculation is that of the potential design of the type of 44-BWR WP considered in this calculation and provides the potential dimensions and materials for that design.

  2. Flow boiling of water on nanocoated surfaces in a microchannel

    CERN Document Server

    Phan, Hai Trieu; Marty, Philippe; Colasson, Stéphane; Gavillet, Jérôme

    2010-01-01

    Experiments were performed to study the effects of surface wettability on flow boiling of water at atmospheric pressure. The test channel is a single rectangular channel 0.5 mm high, 5 mm wide and 180 mm long. The mass flux was set at 100 kg/m2 s and the base heat flux varied from 30 to 80 kW/m2. Water enters the test channel under subcooled conditions. The samples are silicone oxide (SiOx), titanium (Ti), diamond-like carbon (DLC) and carbon-doped silicon oxide (SiOC) surfaces with static contact angles of 26{\\deg}, 49{\\deg}, 63{\\deg} and 103{\\deg}, respectively. The results show significant impacts of surface wettability on heat transfer coefficient.

  3. Water flow boiling behaviors in hydrophilic and hydrophobic microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chiwoong; Yu, Dongin; Kim, Moohwan [Pohang University of Science and Technology (Korea, Republic of). Dept. of Mechanical Engineering

    2009-07-01

    The wettability is one of issues on two-phase flow in a microchannel. However, previous studies of wettability effect on two-phase flow have conducted only isothermal condition. Moreover, most studies have used conventional micro/mini-tubes due to difficulties of their fabrication. The objective of our study is to understand the wettability effect on flow boiling in a rectangular microchannel. In the first, new micro-electro-mechanical-system (MEMS) fabrication technique was developed to obtain a single glass rectangular microchannel and localized six micro heaters. A photosensitive glass was used as base material. The photosensitive glass is hydrophilic, so the hydrophobic microchannel was prepared by coating SAM, flow boiling experiments were conducted in hydrophilic and hydrophobic microchannels with micro heaters. The experiment range was the mass flux of 25 and 75 kg/m{sup 2}s, the heat flux of 30 - 430 k W/m2 and quality of 0 - 0.3. A working fluid was de-ionized and degassed water. The local heat transfer coefficient was evaluated at the local micro heater section. Also, flow regimes in the microchannel were visualized by using a high-speed camera with a long-distance microscope. Heat transfer was analyzed with visualization results. Heat transfer in the hydrophobic microchannel was enhanced by higher nucleation site density and delayed local dryout. The pressure drop in the hydrophobic microchannel was higher than that in the hydrophilic microchannel. (author)

  4. Behavior of irradiated BWR fuel under reactivity-initiated-accident conditions; Results of tests FK-1, -2 and -3

    OpenAIRE

    2004-01-01

    Boiling water reactor (BWR) fuels with burnups of 41 to 45 GWd/tU were pulse-irradiated in the Nuclear Safety Research Reactor (NSRR) to investigate fuel behavior under cold startup reactivity-initiated-accident (RIA) conditions. BWR fuel segment rods of 8times8BJ (STEP I) type from Fukushima-Daiichi Unit 3 nuclear power plant were refabricated into short test rods, and they were subjected to prompt enthalpy insertion from 293 to 607 J/g (70 to 145 cal/g) within about 20 ms. The fuel cladding...

  5. 77 FR 38338 - Dairyland Power Cooperative; La Crosse Boiling Water Reactor Exemption From Certain Security...

    Science.gov (United States)

    2012-06-27

    ... COMMISSION Dairyland Power Cooperative; La Crosse Boiling Water Reactor Exemption From Certain Security Requirements 1.0 Background The La Crosse Boiling Water Reactor (LACBWR) is owned and was operated by the Dairyland Power Cooperative (DPC). The LACBWR was a nuclear power plant of nominal 50 Mw electrical...

  6. 77 FR 27097 - LaCrosse Boiling Water Reactor, Exemption From Certain Requirements, Vernon County, WI

    Science.gov (United States)

    2012-05-08

    ... COMMISSION LaCrosse Boiling Water Reactor, Exemption From Certain Requirements, Vernon County, WI AGENCY...) requesting exemptions from certain security requirements in Title 10 of the Code Federal Regulations (10 CFR) 73.55, for the LaCrosse Boiling Water Reactor (LACBWR). This Environmental Assessment (EA) has...

  7. High conversion pressurized water reactor with boiling channels

    Energy Technology Data Exchange (ETDEWEB)

    Margulis, M., E-mail: maratm@post.bgu.ac.il [The Unit of Nuclear Engineering, Ben Gurion University of the Negev, POB 653, Beer Sheva 84105 (Israel); Shwageraus, E., E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom)

    2015-10-15

    Highlights: • Conceptual design of partially boiling PWR core was proposed and studied. • Self-sustainable Th–{sup 233}U fuel cycle was utilized in this study. • Seed-blanket fuel assembly lattice optimization was performed. • A coupled Monte Carlo, fuel depletion and thermal-hydraulics studies were carried out. • Thermal–hydraulic analysis assured that the design matches imposed safety constraints. - Abstract: Parametric studies have been performed on a seed-blanket Th–{sup 233}U fuel configuration in a pressurized water reactor (PWR) with boiling channels to achieve high conversion ratio. Previous studies on seed-blanket concepts suggested substantial reduction in the core power density is needed in order to operate under nominal PWR system conditions. Boiling flow regime in the seed region allows more heat to be removed for a given coolant mass flow rate, which in turn, may potentially allow increasing the power density of the core. In addition, reduced moderation improves the breeding performance. A two-dimensional design optimization study was carried out with BOXER and SERPENT codes in order to determine the most attractive fuel assembly configuration that would ensure breeding. Effects of various parameters, such as void fraction, blanket fuel form, number of seed pins and their dimensions, on the conversion ratio were examined. The obtained results, for which the power density was set to be 104 W/cm{sup 3}, created a map of potentially feasible designs. It was found that several options have the potential to achieve end of life fissile inventory ratio above unity, which implies potential feasibility of a self-sustainable Thorium fuel cycle in PWRs without significant reduction in the core power density. Finally, a preliminary three-dimensional coupled neutronic and thermal–hydraulic analysis for a single seed-blanket fuel assembly was performed. The results indicate that axial void distribution changes drastically with burnup. Therefore

  8. Stability prediction of continuous surveillance in BWR reactor; Predictor de estabilidad para la vigilancia continua de un reactor tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Tofino Gomez, Y.

    2006-07-01

    As result of the susceptibility of the Boiling Water Reactors (BWR) to suffer from power instabilities, the program LIP has been developed (LAPUR Input Preprocessor), which automatically determines the decay ratio (DR), as stability margin indication. For DR calculation, LAPUR program is a good predictive alternative: a fast execution for an acceptable precision. LAPUR demands a complex input, dependent on the instantaneous core configuration, requiring an exhaustive control of its generation. LIP, with a modular character, automatically generates the input from the core monitoring system, CAPRICORE (based on Simulate-3), obtaining the DR during the operation. This tool can accelerate the start-up maneuvers and other transients, increasing the plant availability. (Author)

  9. Boiling water reactors with Uranium-Plutonium mixed oxide fuel. Report 1: Accuracy of the nuclide concentrations calculated by CASMO-4

    Energy Technology Data Exchange (ETDEWEB)

    Demaziere, C. [CEA Centre d' Etudes de Cadarache, Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires

    1999-07-01

    This report is a part of the project titled 'Boiling Water Reactors With Uranium-Plutonium Mixed Oxide (MOx) Fuel'. The aim of this study is to model the impact of a core loading pattern containing MOx bundles upon the main characteristics of a BWR (reactivity coefficients, stability, etc.). The tools that are available to perform a modeling in the Department of Reactor Physics in Chalmers are CASMO-4/TABLES-3/SIMULATE-3 from Studsvik of America. These CMS (Core Management System) programs have been extensively compared with both measurements and reference codes. Nevertheless some data are proprietary in particular the comparison of the calculated nuclide concentrations versus experiments (because of the cost of this kind of experimental study). This is why this report describes such a comparative investigation carried out with a General Electric 7x7 BWR bundle. Unfortunately, since some core history parameters were unknown, a lot of hypotheses have been adopted. This invokes sometimes a significant discrepancy in the results without being able to determine the origin of the differences between calculations and experiments. Yet one can assess that, except for four nuclides - Plutonium-238, Curium-243, Curium-244 and Cesium-135 - for which the approximate power history (history effect) can be invoked, the accuracy of the calculated nuclide concentrations is rather good if one takes the numerous approximations into account.

  10. Calculations of the effect of boiling water on bitumen production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Kantzas, A. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering]|[Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory; McGee, B. [E-T Energy Limited, Calgary, AB (Canada)

    2006-07-01

    Alberta's vast resources of heavy oil and bitumen are playing an increasing role as a main resource for crude oil. Thermal recovery methods for heavy oil and bitumen include steam injection and steam flooding in which thermal energy is given to the oil to reduce its viscosity and allow it to flow towards a production spot. A viable alternative to steam injection is the electromagnetic heating method for heavy oil and bitumen reservoirs. Electromagnetic heating transfers heat to heavy oil reservoirs based on electromagnetic energy and can be used in situations where steam injection may not work well. The process can also be used to preheat the reservoir before steam injection. This study examined the possible displacement mechanisms of such processes with particular focus on the physics of boiling water in porous media as a potential displacement agent for heavy oil and bitumen. It is very possible that water could vaporize while being electrically heated and the vaporized water could push more heavy oil or bitumen out of reservoir. As such, higher oil recovery could be expected due to water vaporization. The role of water vaporization during electrical heating process was examined and a methodology to estimate the magnitude of incremental oil recovery was developed based on simple conceptual models with numerical simulators and illustrative experiments. The primary contributors of this process appear to be a combination of drainage, imbibition, viscosity reduction and gas expansion. The study showed that the expansion of water into steam could very efficiently flush oil out of pore spaces. It was concluded that water vaporization inside the reservoir can be an additional driving force for heavy oil or bitumen production, and that this alternative to steam injection can offer energy savings for the recovery process. 10 refs., 4 tabs., 6 figs., 1 appendix.

  11. Assessment of the Prony's method for BWR stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Villafuerte, Javier, E-mail: javier.ortiz@inin.gob.m [Gerencia de Ciencias Aplicadas, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Edo. Mexico 52750 (Mexico); Castillo-Duran, Rogelio, E-mail: rogelio.castillo@inin.gob.m [Gerencia de Ciencias Aplicadas, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Edo. Mexico 52750 (Mexico); Palacios-Hernandez, Javier C., E-mail: javier.palacios@inin.gob.m [Gerencia de Ciencias Aplicadas, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Edo. Mexico 52750 (Mexico)

    2011-05-15

    Highlights: This paper describes a method to determine the degree of stability of a BWR. Performance comparison between Prony's and common AR techniques is presented. Benchmark data and actual BWR transient data are used for comparison. DR and f results are presented and discussed. The Prony's method is shown to be a robust technique for BWR stability. - Abstract: It is known that Boiling Water Reactors are susceptible to present power oscillations in regions of high power and low coolant flow, in the power-flow operational map. It is possible to fall in one of such instability regions during reactor startup, since both power and coolant flow are being increased but not proportionally. One other possibility for falling into those areas is the occurrence of a trip of recirculation pumps. Stability monitoring in such cases can be difficult, because the amount or quality of power signal data required for calculation of the stability key parameters may not be enough to provide reliable results in an adequate time range. In this work, the Prony's Method is presented as one complementary alternative to determine the degree of stability of a BWR, through time series data. This analysis method can provide information about decay ratio and oscillation frequency from power signals obtained during transient events. However, so far not many applications in Boiling Water Reactors operation have been reported and supported to establish the scope of using such analysis for actual transient events. This work presents first a comparison of decay ratio and frequency oscillation results obtained by Prony's method and those results obtained by the participants of the Forsmark 1 and 2 Boiling Water Reactor Stability Benchmark using diverse techniques. Then, a comparison of decay ratio and frequency oscillation results is performed for four real BWR transient event data, using Prony's method and two other techniques based on an autoregressive modeling. The four

  12. Effect of boiling regime on melt stream breakup in water

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B.W.; Gabor, J.D.; Cassulo, J.C.

    1986-01-01

    A study has been performed examining the breakup and mixing behavior of an initially coherent stream of high-density melt as it flows downward through water. This work has application to the quenching of molten core materials as they drain downward during a postulated severe reactor accident. The study has included examination of various models of breakup distances based upon interfacial instabilities dominated either by liquid-liquid contact or by liquid-vapor contact. A series of experiments was performed to provide a data base for assessment of the various modeling approaches. The experiments involved Wood's metal (T/sub m/ = 73/sup 0/C, rho = 9.2 g/cm/sup 3/, d/sub j/ = 20 mm) poured into a deep pool of water. The temperature of the water and wood's metal were varied to span the range from single-phase, liquid-liquid contact to the film boiling regime. Experiment results showed that breakup occurred largely as a result of the spreading and entrainment from the leading edge of the jet. However, for streams of sufficient lengths a breakup length could be discerned at which there was no longer a coherent central core of the jet to feed the leading edge region. The erosion of the vertical trailing column is by Kelvin-Helmoltz instabilities and related disengagement of droplets from the jet into the surrounding fluid. For conditions of liquid-liquid contact, the breakup length has been found to be about 20 jet diameters; when substantial vapor is produced at the interface due to heat transfer from the jet to the water, the breakup distance was found to range to as high as 50 jet diameters. The former values are close to the analytical prediction of Taylor, whereas the latter values are better predicted by the model of Epstein and Fauske.

  13. Ex-vessel Steam Explosion Analysis for Pressurized Water Reactor and Boiling Water Reactor

    OpenAIRE

    Matjaž Leskovar; Mitja Uršič

    2016-01-01

    A steam explosion may occur during a severe accident, when the molten core comes into contact with water. The pressurized water reactor and boiling water reactor ex-vessel steam explosion study, which was carried out with the multicomponent three-dimensional Eulerian fuel–coolant interaction code under the conditions of the Organisation for Economic Co-operation and Development (OECD) Steam Explosion Resolution for Nuclear Applications project reactor exercise, is presented and discussed. In ...

  14. Aging study of boiling water reactor high pressure injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Conley, D.A.; Edson, J.L.; Fineman, C.F. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  15. Modeling and measurement of boiling point elevation during water vaporization from aqueous urea for SCR applications

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Ho Jin; Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of)

    2016-03-15

    Understanding of water vaporization is the first step to anticipate the conversion process of urea into ammonia in the exhaust stream. As aqueous urea is a mixture and the urea in the mixture acts as a non-volatile solute, its colligative properties should be considered during water vaporization. The elevation of boiling point for urea water solution is measured with respect to urea mole fraction. With the boiling-point elevation relation, a model for water vaporization is proposed underlining the correction of the heat of vaporization of water in the urea water mixture due to the enthalpy of urea dissolution in water. The model is verified by the experiments of water vaporization as well. Finally, the water vaporization model is applied to the water vaporization of aqueous urea droplets. It is shown that urea decomposition can begin before water evaporation finishes due to the boiling-point elevation.

  16. Applied methods for mitigation of damage by stress corrosion in BWR type reactors; Metodos aplicados para la mitigacion del dano por corrosion bajo esfuerzo en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez C, R.; Diaz S, A.; Gachuz M, M.; Arganis J, C. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencia de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    The Boiling Water nuclear Reactors (BWR) have presented stress corrosion problems, mainly in components and pipes of the primary system, provoking negative impacts in the performance of energy generator plants, as well as the increasing in the radiation exposure to personnel involucred. This problem has caused development of research programs, which are guided to find solution alternatives for the phenomena control. Among results of greater relevance the control for the reactor water chemistry stands out particularly in the impurities concentration and oxidation of radiolysis products; as well as the supervision in the materials selection and the stresses levels reduction. The present work presents the methods which can be applied to diminish the problems of stress corrosion in BWR reactors. (Author)

  17. In-air PIXE for analyzing heavy metals in water boiled in pans

    Science.gov (United States)

    Tomita, M.; Haruyama, Y.; Saito, M.

    1993-04-01

    The release rates of heavy metals from pans were measured for boiling water as well as for an acidic solution prior to an investigation on the release or sorption of trace elements due to cooking of food by boiling. The boiled samples were condensed and analyzed by means of in-air PIXE. The release of heavy metals was measured for five kinds of pans. For all pans the release rates were considerably more increased by boiling of a 5% solution of acetic acid. Furthermore it was found that by using the alumina coated aluminum pan (alumina pan) the respective release rates of Fe, Cu and Zn were all less than 50 μg per 100 cm 2 of the pan surface dipped in the solution, and that monitoring of the contents of aluminum in the boiled solution enabled the estimation of the contribution of metal elements from the pan wall.

  18. Benchmark calculation for radioactivity inventory using MAXS library based on JENDL-4.0 and JEFF-3.0/A for decommissioning BWR plants

    Directory of Open Access Journals (Sweden)

    Tanaka Ken-ichi

    2016-01-01

    Full Text Available We performed benchmark calculation for radioactivity activated in a Primary Containment Vessel (PCV of a Boiling Water Reactor (BWR by using MAXS library, which was developed by collapsing with neutron energy spectra in the PCV of the BWR. Radioactivities due to neutron irradiation were measured by using activation foil detector of Gold (Au and Nickel (Ni at thirty locations in the PCV. We performed activation calculations of the foils with SCALE5.1/ORIGEN-S code with irradiation conditions of each foil location as the benchmark calculation. We compared calculations and measurements to estimate an effectiveness of MAXS library.

  19. Validation of SCALE (SAS2H) Isotopic Predictions for BWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, O.W.

    1998-01-01

    Thirty spent fuel samples obtained from boiling-water-reactor (BWR) fuel pins have been modeled at Oak Ridge National Laboratory using the SAS2H sequence of the SCALE code system. The SAS2H sequence uses transport methods combined with the depletion and decay capabilities of the ORIGEN-S code to estimate the isotopic composition of fuel as a function of its burnup history. Results of these calculations are compared with chemical assay measurements of spent fuel inventories for each sample. Results show reasonable agreement between measured and predicted isotopic concentrations for important actinides; however, little data are available for most fission products considered to be important for spent fuel concerns (e.g., burnup credit, shielding, source-term calculations, etc.). This work is a follow-up to earlier works that studied the ability to predict spent fuel compositions in pressurized-water-reactor (PWR) fuel pins. Biases and uncertainties associated with BWR isotopic predictions are found to be larger than those of PWR calculations. Such behavior is expected, as the operation of a BWR is significantly more complex than that of a PWR plant, and in general the design of a BWR has a more heterogeneous configuration than that of a PWR. Nevertheless, this work shows that the simple models employed using SAS2H to represent such complexities result in agreement to within 5% (and often less than 1%) or less for most nuclides important for spent fuel applications. On the other hand, however, the set of fuel samples analyzed represent a small subset of the BWR fuel population, and results reported herein may not be representative of the full population of BWR spent fuel.

  20. Validation of SCALE (SAS2H) isotopic predictions for BWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, O.W.; DeHart, M.D.

    1998-09-01

    Thirty spent fuel samples obtained from boiling-water-reactor (BWR) fuel pins have been modeled at Oak Ridge National Laboratory using the SAS2H sequence of the SCALE code system. The SAS2H sequence uses transport methods combined with the depletion and decay capabilities of the ORIGEN-S code to estimate the isotopic composition of fuel as a function of its burnup history. Results of these calculations are compared with chemical assay measurements of spent fuel inventories for each sample. Results show reasonable agreement between measured and predicted isotopic concentrations for important actinides; however, little data are available for most fission products considered to be important for spent fuel concerns (e.g., burnup credit, shielding, source-term calculations, etc.). This work is a follow-up to earlier works that studied the ability to predict spent fuel compositions in pressurized-water-reactor (PWR) fuel pins. Biases and uncertainties associated with BWR isotopic predictions are found to be larger than those of PWR calculations. Such behavior is expected, as the operation of a BWR is significantly more complex than that of a PWR plant, and in general the design of a BWR has a more heterogeneous configuration than that of a PWR. Nevertheless, this work shows that the simple models employed using SAS2H to represent such complexities result in agreement to within 5% (and often less than 1%) or less for most nuclides important for spent fuel applications. On the other hand, however, the set of fuel samples analyzed represent a small subset of the BWR fuel population, and results reported herein may not be representative of the full population of BWR spent fuel.

  1. Pressure suppression containment system for boiling water reactor

    Science.gov (United States)

    Gluntz, Douglas M.; Nesbitt, Loyd B.

    1997-01-01

    A system for suppressing the pressure inside the containment of a BWR following a postulated accident. A piping subsystem is provided which features a main process pipe that communicates the wetwell airspace to a connection point downstream of the guard charcoal bed in an offgas system and upstream of the main bank of delay charcoal beds which give extensive holdup to offgases. The main process pipe is fitted with both inboard and outboard containment isolation valves. Also incorporated in the main process pipe is a low-differential-pressure rupture disk which prevents any gas outflow in this piping whatsoever until or unless rupture occurs by virtue of pressure inside this main process pipe on the wetwell airspace side of the disk exceeding the design opening (rupture) pressure differential. The charcoal holds up the radioactive species in the noncondensable gas from the wetwell plenum by adsorption, allowing time for radioactive decay before the gas is vented to the environs.

  2. Development and Testing of CTF to Support Modeling of BWR Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Salko, Robert K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wysocki, Aaron [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Collins, Benjamin S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Godfrey, Andrew T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gosdin, Chris [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria [North Carolina State Univ., Raleigh, NC (United States)

    2016-01-29

    This milestone supports developing and assessing COBRA-TF (CTF) for the modeling of boiling water reactors (BWRs). This is achieved in three stages. First, a new preprocessor utility that is capable of handling BWR-specic design elements (e.g., channel boxes and large water rods) is developed. A previous milestone (L3:PHI.CTF.P12.01) led to the development of this preprocessor capability for single assembly models. This current milestone expands this utility so that it is applicable to multi-assembly BWR models that can be modeled in either serial or parallel. The second stage involves making necessary modications to CTF so that it can execute these new models. Specically, this means implementing an outer-iteration loop, specic to BWR models, that equalizes the pressure loss over all assemblies in the core (which are not connected due to the channel boxes) by adjusting inlet mass ow rate. A third stage involves assessing the standard convergence metrics that are used by CTF to determine when a simulation is steady-state. The nal stage has resulted in the implementation of new metrics in the code that give a better indication of how steady the solution is at convergence. This report summarizes these eorts and provides a demonstration of CTF's BWR-modeling capabilities. CASL-U-2016-1030-000

  3. Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    Science.gov (United States)

    González-Robles, E.; Serrano-Purroy, D.; Sureda, R.; Casas, I.; de Pablo, J.

    2015-10-01

    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO2 spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%. One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAPc) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel.

  4. Impact of Reactor Operating Parameters on Cask Reactivity in BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Betzler, Benjamin R [ORNL; Ade, Brian J [ORNL

    2017-01-01

    This paper discusses the effect of reactor operating parameters used in fuel depletion calculations on spent fuel cask reactivity, with relevance for boiling-water reactor (BWR) burnup credit (BUC) applications. Assessments that used generic BWR fuel assembly and spent fuel cask configurations are presented. The considered operating parameters, which were independently varied in the depletion simulations for the assembly, included fuel temperature, bypass water density, specific power, and operating history. Different operating history scenarios were considered for the assembly depletion to determine the effect of relative power distribution during the irradiation cycles, as well as the downtime between cycles. Depletion, decay, and criticality simulations were performed using computer codes and associated nuclear data within the SCALE code system. Results quantifying the dependence of cask reactivity on the assembly depletion parameters are presented herein.

  5. Flex concept for US-A BWR extended loss of AC power events

    Energy Technology Data Exchange (ETDEWEB)

    Powers, J. [Toshiba America Nuclear Energy, Charlotte, North Carolina (United States); Aoyagi, Y.; Kataoka, K. [Toshiba Corporation, Kawasaki, Kanagawa (Japan); Thomas, S.; Mookhoek, B., E-mail: jim.powers@toshiba.com [Nuclear Innovation North America, Lake Jackson, Texas (United States)

    2015-09-15

    The US-Advanced Boiling Water Reactor (US-A BWR), certified by the US NRC, is a third generation, evolutionary boiling water reactor design which is the reference for the South Texas Project Units 3 and 4 (Stp 3 and 4) Combined License Application (Cola) and incorporates numerous design and technology enhancements for improved safety performance. Nuclear Innovation North America (NINA) is the License Applicant for this new build project, and Toshiba is the selected primary technology contractor. The Stp 3 and 4 project has finished the US NRC technical review of the Cola, and the final safety evaluation report (FSER) is scheduled to be issued by the US NRC in 2015. Following the accident at the Fukushima Dai-ichi plant, the US-A BWR was reviewed for Beyond Design Basis Event (BDBE) safety using industry and regulatory guidance for US NRC Order EA-12-049 Order Modifying Licenses with Regard to Requirements for Mitigation of Beyond Design Basis External Events (BDBEE). By virtue of the design approach, the US-A BWR is capable of providing an indefinite coping period for a station blackout. The use of installed systems with extended coping times is a significant advantage of the US-A BWR compared to most of the plants currently operating in the U.S. In addition, the Stp 3 and 4 design incorporates enhancements consistent with the current US industry Diverse and Flexible Coping Strategies (Flex) initiative. The final technical topic requiring review by the US NRC Advisory Committee on Reactor Safeguards was the Flex Integrated Plan submitted by NINA, and this review was successfully completed. This paper summarizes the progress of the US-A BWR in licensing the Flex Integrated Plan for the project, and describes the technology and features of the US-A BWR design that contribute to safety post-Fukushima. It also provides an informational comparison of the design capabilities of the US-A BWR for extreme external events, and relates these capabilities to re

  6. Test Plan for the Boiling Water Reactor Dry Cask Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis . These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing the internal convection through greater canister helium pressure. These same vertical, canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern vertical, canistered dry cask systems. The BWR cask simulator (BCS) has been designed in detail for both the above-ground and below-ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 deg C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the

  7. Non normal modal analysis of oscillations in boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Antola, Roberto, E-mail: roberto.suarez@miem.gub.uy [Ministerio de Industria, Energia y Mineria (MIEM), Montevideo (Uruguay); Flores-Godoy, Jose-Job, E-mail: job.flores@ibero.mx [Universidad Iberoamericana (UIA), Mexico, DF (Mexico). Dept. de Fisica Y Matematicas

    2013-07-01

    The first objective of the present work is to construct a simple reduced order model for BWR stability analysis, combining a two nodes nodal model of the thermal hydraulics with a two modes modal model of the neutronics. Two coupled non-linear integral-differential equations are obtained, in terms of one global (in phase) and one local (out of phase) power amplitude, with direct and cross feedback reactivities given as functions of thermal hydraulics core variables (void fractions and temperatures). The second objective is to apply the effective life time approximation to further simplify the nonlinear equations. Linear approximations for the equations of the amplitudes of the global and regional modes are derived. The linearized equation for the amplitude of the global mode corresponds to a decoupled and damped harmonic oscillator. An analytical closed form formula for the damping coefficient, as a function of the parameters space of the BWR, is obtained. The coefficient changes its sign (with the corresponding modification in the decay ratio) when a stability boundary is crossed. This produces a supercritical Hopf bifurcation, with the steady state power of the reactor as the bifurcation parameter. However, the linearized equation for the amplitude of the regional mode corresponds always to an over-damped and always coupled (with the amplitude of the global mode) harmonic oscillator, for every set of possible values of core parameters (including the steady state power of the reactor) in the framework of the present mathematical model. The equation for the above mentioned over damped linear oscillator is closely connected with a non-normal operator. Due to this connection, there could be a significant transient growth of some solutions of the linear equation. This behavior allows a significant shrinking of the basin of attraction of the equilibrium state. The third objective is to apply the above approach to partially study the stability of the regional mode and

  8. Microlayer formation characteristics in pool isolated bubble boiling of water

    Science.gov (United States)

    Yabuki, Tomohide; Nakabeppu, Osamu

    2016-10-01

    Investigation of microlayer formation characteristics is important for developing a reliable nucleate boiling heat transfer model based on accurate physical mechanisms. Although formation mechanisms of the thin liquid film in two-phase flow of confined spaces, such as micro-tubes and closely positioned parallel plates, have been thoroughly studied, microlayer formation mechanisms of pool boiling have been sparsely studied. In a previous study (Yabuki and Nakabeppu in Int J Heat Mass Transf 76:286-297, 2014; Int J Heat Mass Transf 100:851-860, 2016), the spatial distribution of initial microlayer thickness under pool boiling bubbles was calculated by transient heat conduction analysis using the local wall temperature measured with a MEMS sensor. In this study, the hydrodynamic characteristics of microlayer formation in pool boiling were investigated using the relationship between derived initial microlayer thickness and microlayer formation velocity determined by transient local heat flux data. The trend of microlayer thickness was found to change depending on the thickness of the velocity boundary layer outside the bubble foot. When the boundary layer thickness was thin, the initial microlayer thickness was determined by the boundary layer thickness, and the initial microlayer thickness proportionally increased with increasing boundary layer thickness. On the other hand, when the boundary layer was thick, the initial microlayer thickness decreased with increasing boundary layer thickness. In this thick boundary layer region, the momentum balance in the dynamic meniscus region became important, in addition to the boundary layer thickness, and the microlayer thickness, made dimensionless using boundary layer thickness, correlated with the Bond number.

  9. Predictions by the proper orthogonal decomposition reduced order methodology regarding non-linear BWR stability

    Energy Technology Data Exchange (ETDEWEB)

    Prill, Dennis; Class, Andreas G. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). AREVA Nuclear Professional School (ANPS)

    2013-07-01

    Unexpected non-linear boiling water reactor (BWR) instability events in various plants, e.g. LaSalle II in 1988 and Oskarshamn II in 1990 amongst others, emphasize the major safety relevance and the existence of parameter regions with unstable behavior. A detailed description of the complete dynamical non-linear behavior is of paramount importance for BWR operation. An extension of state-of-the-art methodology towards a more general stability description, also applicable in the non-linear region, could lead to a deeper understanding of non-linear BWR stability phenomena. With the intention of a full non-linear stability analysis of the two-phase BWR system, the present paper aims at a general non-linear methodology capable to achieve reliable and numerical stable reduced order models (ROMs), representing the dynamical behavior of an original system based on a small number of transients. Model-specific options and aspects of the proposed methodology are focused on and illustrated by means of a strongly non-linear dynamical system showing complex oscillating behavior. Prediction capability of the proposed methodology is also addressed. (orig.)

  10. Numerical Analysis of Lead-Bismuth-Water Direct Contact Boiling Heat Transfer

    Science.gov (United States)

    Yamada, Yumi; Takahashi, Minoru

    Direct contact boiling heat transfer of sub-cooled water with lead-bismuth eutectic (Pb-Bi) was investigated for the evaluation of the performance of steam generation in direct contact of feed water with primary Pb-Bi coolant in upper plenum above the core in Pb-Bi-cooled direct contact boiling water fast reactor. An analytical two-fluid model was developed to estimate the heat transfer numerically. Numerical results were compared with experimental ones for verification of the model. The overall volumetric heat transfer coefficient was calculated from heat exchange rate in the chimney. It was confirmed that the calculated results agreed well with the experimental result.

  11. Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions

    Science.gov (United States)

    Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha

    2016-09-01

    Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale

  12. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian J [ORNL; Marshall, William BJ J [ORNL; Martinez-Gonzalez, Jesus S [ORNL

    2015-05-01

    Oak Ridge National Laboratory (ORNL) and the US Nuclear Regulatory Commission (NRC) have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation systems (often referred to as casks) and spent fuel pools (SFPs). This work is divided into two main phases. The first phase investigated the applicability of peak reactivity methods currently used in SFPs to transportation and storage casks and the validation of reactivity calculations and spent fuel compositions within these methods. The second phase focuses on extending BUC beyond peak reactivity. This paper documents the analysis of the effects of control blade insertion history, and moderator density and burnup axial profiles for extended BWR BUC.

  13. Branch-and-Bound algorithm applied to uncertainty quantification of a Boiling Water Reactor Station Blackout

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Joseph, E-mail: joseph.nielsen@inl.gov [Idaho National Laboratory, 1955 N. Fremont Avenue, P.O. Box 1625, Idaho Falls, ID 83402 (United States); University of Idaho, Department of Mechanical Engineering and Nuclear Engineering Program, 1776 Science Center Drive, Idaho Falls, ID 83402-1575 (United States); Tokuhiro, Akira [University of Idaho, Department of Mechanical Engineering and Nuclear Engineering Program, 1776 Science Center Drive, Idaho Falls, ID 83402-1575 (United States); Hiromoto, Robert [University of Idaho, Department of Computer Science, 1776 Science Center Drive, Idaho Falls, ID 83402-1575 (United States); Tu, Lei [University of Idaho, Department of Mechanical Engineering and Nuclear Engineering Program, 1776 Science Center Drive, Idaho Falls, ID 83402-1575 (United States)

    2015-12-15

    state. Dynamic PRA (DPRA) methods provide a more rigorous analysis of complex dynamic systems. Unfortunately DPRA methods introduce issues associated with combinatorial explosion of states. This paper presents a methodology to address combinatorial explosion using a Branch-and-Bound algorithm applied to Dynamic Event Trees (DET), which utilize LENDIT (L – Length, E – Energy, N – Number, D – Distribution, I – Information, and T – Time) as well as a set theory to describe system, state, resource, and response (S2R2) sets to create bounding functions for the DET. The optimization of the DET in identifying high probability failure branches is extended to create a Phenomenological Identification and Ranking Table (PIRT) methodology to evaluate modeling parameters important to safety of those failure branches that have a high probability of failure. The PIRT can then be used as a tool to identify and evaluate the need for experimental validation of models that have the potential to reduce risk. In order to demonstrate this methodology, a Boiling Water Reactor (BWR) Station Blackout (SBO) case study is presented.

  14. Analysis of migrants from nylon 6 packaging films into boiling water.

    Science.gov (United States)

    Barkby, C T; Lawson, G

    1993-01-01

    Ultra-violet spectrophotometry (UV), high performance liquid chromatography (HPLC) and liquid chromatography coupled to mass spectroscopy (LC-MS) were used to identify and quantify oligomers extracted with boiling water from two different nylon 6 films used in boil-in-bag food packaging. The results indicated the loss of up to 1.5% of the original nylon film weight, into the boiling water, as caprolactam and cyclic oligomers up to the nonamer. Extraction time, thickness and type of film used, were found to be parameters which affected the levels of these migrants. These results will be relevant to situations in which food is cooked in the water used to heat the pouch contents.

  15. Cautions required for the boiling test of a silver-water nanofluid

    Science.gov (United States)

    Zareshahi, Hassan; Emami-Meibodi, Majid; Behjat, Abbas

    2016-12-01

    Various experimental works have been reported on boiling of nanofluids, and some contradictory data are reported in this case in the literature. Systematic errors in experiments may be one of the factors causing a significant gap in the data. In this paper, boiling of Ag-water nanofluid is studied empirically. A NiCr wire is used for the experiments. According to UV-Vis absorption spectra data, Ag-water nanofluid changes during the tests. Since the electrical resistance-temperature relationship for the NiCr test section changes during the experiments, the wire temperature cannot be determined by this method. This can be accounted for by the presence of a porous nanoparticle layer created through particle deposition during nucleate boiling.

  16. Heat Transfer From Electrically Heated Nichrome Wires to Boiling Water at Different Pressures

    Directory of Open Access Journals (Sweden)

    Devi Dayal

    1968-01-01

    Full Text Available Boiling curves for nucleate and film boiling have been drawn for nichrome of three sizes in distilled and degasified water at saturation temperatures under five different sub-atmospheric vapour pressure. It has been observed that (i for the same Q/A (heat transfer, Delta Theta (excess of wire temperature over saturation point of water decreases with pressure in both nucleate and film boiling ranges, (ii Both Q/A max. and Delta Theta/SubC show a rapid decrease with pressure but these variations become more gradual at higher pressures, and (iii Q/A max. and Delta Theta/SubC increase with wire size at all pressures; increase in Delta Theta/SubC however, becomes less conspicuous at higher pressures approaching one atmosphere.

  17. Computation of boiling water on circular finned tubes

    Energy Technology Data Exchange (ETDEWEB)

    Fan, C.C.; Liaw, S.P. [National Taiwan Ocean Univ., Keelung (Taiwan, Province of China). Dept. of Mechanical and Marine Engineering

    1999-04-01

    This study investigates the maximum heat transfer rate and the critical temperature of circular finned tubes in a boiling liquid. The analysis is conducted numerically by solving a two-dimensional heat conduction equation in a steady state. The dependence between heat flux and the temperature at the inner wall of the tube is quantified. Varying the width, height, and pitch of fins, an optimal finned tube with efficient heat transfer rate can be obtained. In the theoretical approach the successive over relaxation (S.O.R.) accompanied with Multi-grid scheme is used. The local heat transfer rates are assumed to follow power-law-type temperature dependence. The initial guess at very high temperatures or so-called a cooling process is also executed in a same way. The results reveal that increasing either the width or the height of a fin increases the total heat transfer rate.

  18. Oxide evolution on Alloy X-750 in simulated BWR environment

    Science.gov (United States)

    Tuzi, Silvia; Göransson, Kenneth; Rahman, Seikh M. H.; Eriksson, Sten G.; Liu, Fang; Thuvander, Mattias; Stiller, Krystyna

    2016-12-01

    In order to simulate the environment experienced by spacer grids in a boiling water reactor (BWR), specimens of the Ni-based Alloy X-750 were exposed to a water jet in an autoclave at a temperature of 286 °C and a pressure of 80 bar. The oxide microstructure of specimens exposed for 2 h, 24 h, 168 h and 840 h has been investigated mainly using electron microscopy. The specimens suffer mass loss due to dissolution during exposure. At the same time a complex layered oxide develops. After the longest exposure the oxide consists of two outer spinel layers consisting of blocky crystals, one intermediate layer of nickel oxide interspersed with Ti-rich oxide needles, and an inner layer of oxidized base metal. The evolution of the oxide leading up to this structure is discussed and a model is presented.

  19. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - models and correlations

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.; Mallen, A.N.; Neymotin, L.Y.

    1998-03-01

    This document describes the major modifications and improvements made to the modeling of the RAMONA-3B/MOD0 code since 1981, when the code description and assessment report was completed. The new version of the code is RAMONA-4B. RAMONA-4B is a systems transient code for application to different versions of Boiling Water Reactors (BWR) such as the current BWR, the Advanced Boiling Water Reactor (ABWR), and the Simplified Boiling Water Reactor (SBWR). This code uses a three-dimensional neutron kinetics model coupled with a multichannel, non-equilibrium, drift-flux, two-phase flow formulation of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients and instability issues. Chapter 1 is an overview of the code`s capabilities and limitations; Chapter 2 discusses the neutron kinetics modeling and the implementation of reactivity edits. Chapter 3 is an overview of the heat conduction calculations. Chapter 4 presents modifications to the thermal-hydraulics model of the vessel, recirculation loop, steam separators, boron transport, and SBWR specific components. Chapter 5 describes modeling of the plant control and safety systems. Chapter 6 presents and modeling of Balance of Plant (BOP). Chapter 7 describes the mechanistic containment model in the code. The content of this report is complementary to the RAMONA-3B code description and assessment document. 53 refs., 81 figs., 13 tabs.

  20. LOCA air-injection loads in BWR Mark II pressure suppression containment systems

    Energy Technology Data Exchange (ETDEWEB)

    Kukita, Y.; Shiba, M. (Japan Atomic Energy Research Inst., Tokai, Ibaraki); Namatame, K. (Institute of Nuclear Safety, Tokyo (Japan))

    1984-02-01

    Large-scale blowdown tests were conducted to investigate the thermal-hydrodynamic response of a boiling-water reactor (BWR) Mark II pressure suppression containment system to a postulated loss-of-coolant accident. This paper presents the test results on the early blowdown transients, where air in the drywell is injected into the pressure suppression pool and induces various hydrodynamic loads onto the containment pressure boundary and internal structures. The test data are compared to predictions by analytical models used for the licensing evaluation of the hydrodynamic loads to assess these models.

  1. 77 FR 38339 - Dairyland Power Cooperative, La Crosse Boiling Water Reactor Exemption From Certain Security...

    Science.gov (United States)

    2012-06-27

    ... COMMISSION Dairyland Power Cooperative, La Crosse Boiling Water Reactor Exemption From Certain Security... Dairyland Power Cooperative (DPC). The LACBWR was a nuclear power plant of nominal 50 Mw electrical output... from the regulations in part 73 as it determines are authorized by law and will not endanger life...

  2. Experimental and numerical stability investigations on natural circulation boiling water reactors

    NARCIS (Netherlands)

    Marcel, C.P.

    2007-01-01

    The stability of natural circulation boiling water reactors is investigated with a strong emphasis on experiments. Two different facilities are used for such a task: the GENESIS facility (to which a void reactivity feedback system is artificially added) and the CIRCUS facility. In addition, numerica

  3. Pool boiling heat transfer of deionized and degassed water in packed-perforated copper beads

    Science.gov (United States)

    Wen, Mao-Yu; Jang, Kuang-Jang; Ho, Ching-Yen

    2016-11-01

    Nucleate pool boiling with porous media made of perforated copper beads as the enhanced structure is conducted in saturated, deionized and degassed water. Data are taken at an atmospheric pressure (saturation temperature of 100 °C) and at heat fluxes from 4500 to 72,300 W/m2 while increasing the heat flux. The bead-packed structure is heated on the bottom. The layer of loose particles on the heated surface is free to move under the action of bulk liquid convection and vapor nucleation. The effects of the weight (number), size and layers of the free particles are experimentally explored using copper particles for different copper bead diameters which were 2, 3, 4 and 5 mm. The boiling enhancement is closely related to the particle weight, size and layers, and the heat flux applied. The results show that free particles are presented to have a distinct advantage in boiling heat transfer, resulting in an average increase in the heat transfer coefficient of 126 % relative to the flat plate without particles. In order to obtain insight into the fluid boiling phenomena, flow visualization is also made to observe the detailed fluid boiling characteristics of the copper particles present. The visualizations show that bubble nucleation preferentially occurs at the narrow corner cavities formed between the free particles and the heated surface.

  4. Pool boiling of distilled water over tube bundle with variable heat flux

    Science.gov (United States)

    Swain, Abhilas; Mohanty, Rajiva Lochan; Das, Mihir Kumar

    2017-02-01

    The experimental investigation of saturated pool boiling heat transfer of distilled water over plain tube bundle, under uniform and varying heat flux condition along the height are presented in this article. Experiments are carried out under various heat flux configurations applied to rows of tube bundles and pitch distance to diameter ratios of 1.25, 1.6 and 1.95. The wall superheats and pool boiling heat transfer coefficients over individual rows are determined. The pool boiling heat transfer coefficients for variable heat flux and uniform heat flux conditions are compared. The results indicate that the bundle effect is found to exist for uniform as well as variable heat flux under all operating conditions in the present investigation. The variable heat flux resulted in range of wall superheat being highest for decreasing heat flux from bottom to top and lowest for increasing heat flux from bottom to top.

  5. Analysis CFD for the hydrogen transport in the primary containment of a BWR; Analisis CFD para el transporte de hidrogeno en la contencion primaria de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez P, D. A.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Edificio 9, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Gomez T, A. M., E-mail: guerreroazteca_69@hotmail.com [ININ, Departamento de Sistemas Nucleares, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    This study presents a qualitative and quantitative comparison among the CFD GASFLOW and OpenFOAM codes which are related with the phenomenon of hydrogen transport and other gases in the primary containment of a Boiling Water Reactor (BWR). GASFLOW is a commercial license code that is well validated and that was developed in Germany for the analysis of the gases transport in containments of nuclear reactors. On the other hand, OpenFOAM is an open source code that offers several evaluation solvers for different types of phenomena; in this case, the solver reacting-Foam is used to analyze the hydrogen transport inside the primary containment of the BWR. The results that offer the solver reacting-Foam of OpenFOAM are evaluated in the hydrogen transport calculation and the results are compared with those of the program of commercial license GASFLOW to see if is viable the use of the open source code in the case of the hydrogen transport in the primary containment of a BWR. Of the obtained results so much quantitative as qualitative some differences were identified between both codes, the differences (with a percentage of maximum error of 4%) in the quantitative results are small and they are considered acceptable for this analysis type, also, these differences are attributed mainly to the used transport models, considering that OpenFOAM uses a homogeneous model and GASFLOW uses a heterogeneous model. (Author)

  6. Flow visualization and study of CHF enhancement in pool boiling with Al2O3 - Water nano-fluids

    Directory of Open Access Journals (Sweden)

    Hegde Ramakrishna N.

    2012-01-01

    Full Text Available Pool boiling heat transfer characteristics of Al2O3-Water nanofluids is studied experimentally using a NiCr test wire of 36 SWG diameter. The experimental work mainly concentrated on i change of Critical Heat Flux(CHF with different volume concentrations of nanofluid ii flow visualization of pool boiling using a fixed concentration of nanofluid at different heat flux values. The experimental work revealed an increase in CHF value of around 48% and flow visualization helped in studying the pool boiling behaviour of nanofluid. Out of the various reasons which could affect the CHF enhancement, surface roughness plays a major role in pool boiling heat transfer.

  7. An assessment of BWR (boiling water reactor) Mark III containment challenges, failure modes, and potential improvements in performance

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, J.A.; Pafford, D.J.; Kelly, D.L.; Jones, K.R.; Dallman, F.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1991-01-01

    This report describes risk-significant challenges posed to Mark III containment systems by severe accidents as identified for Grand Gulf. Design similarities and differences between the Mark III plants that are important to containment performance are summarized. The accident sequences responsible for the challenges and the postulated containment failure modes associated with each challenge are identified and described. Improvements are discussed that have the potential either to prevent or delay containment failure, or to mitigate the offsite consequences of a fission product release. For each of these potential improvements, a qualitative analysis is provided. A limited quantitative risk analysis is provided for selected potential improvements. 21 refs., 5 figs., 46 tabs.

  8. Investigation of water films on fuel rods in boiling water reactors using neutron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lanthen, Jonas

    2006-09-15

    In a boiling water reactor, thin films of liquid water around the fuel rods play a very important role in cooling the fuel, and evaporation of the film can lead to fuel damage. If the thickness of the water film could be measured accurately the reactor operation could be both safer and more economical. In this thesis, the possibility to use neutron tomography, to study thin water films on fuel rods in an experimental nuclear fuel set-up, has been investigated. The main tool for this has been a computer simulation software. The simulations have shown that very thin water films, down to around 20 pm, can be seen on fuel rods in an experimental set-up using neutron tomography. The spatial resolution needed to obtain this result is around 300 pm. A suitable detector system for this kind of experiment would be plastic fiber scintillators combined with a CCD camera. As a neutron source it would be possible to use a D-D neutron generator, which generates neutrons with energies of 2.5 MeV. Using a neutron generator with a high enough neutron yield and a detector with high enough detection efficiency, a neutron tomography to measure thin water films should take no longer than 25 - 30 minutes.

  9. Difference Of Evaporation and Boiling for Heterogeneous Water Droplets in a High-Temperature Gas

    Directory of Open Access Journals (Sweden)

    Legros Jean Claude

    2015-01-01

    Full Text Available Experimental investigation of vapor formation was carried out on water droplets on fixed graphite substrate and heterogeneous droplets (containing solid single inclusions when heating in high-temperature gas. High-speed video shooting (up to 105 frames per second, optical method (Particle Image Velocimetry and TEMA Automotive software were used. We revealed two phase change mechanisms of heterogeneous liquid droplets. Effect of evaporation and boiling on evaporation times of water droplets was determined.

  10. BWR Servicing and Refueling Improvement Program: Phase I summary report

    Energy Technology Data Exchange (ETDEWEB)

    Perry, D.R.

    1978-09-01

    Under the U.S. Department of Energy sponsorship, General Electric Co. (GE) undertook a study of boiling water reactor (BWR) refueling outages for the purpose of recommending the development and demonstration of critical path time savings improvements. The Tennessee Valley Authority (TVA) joined the study as a subcontractor, providing monitoring assistance and making the Browns Ferry Site available for improvement demonstrations. Agreement was also reached with Georgia Power Co., Power Authority of the State of New York, and Commonwealth Edison Co. for monitoring and data collection at Hatch 1, FitzPatrick, and Quad Cities 1 nuclear plants, respectively. The objective was to identify, develop, and demonstrate improved refueling, maintenance, and inspection procedures and equipment. The improvements recommended in this study are applicable to BWR nuclear plants currently in operation as well as those in the design and construction phases. The recommendations and outage information can be used as a basis to plan and conduct the first outages of new plants and to improve the planning and facilities of currently operating plants. Many of the recommendations can readily be incorporated in plants currently in the design and construction phases as well as in the design of future plants. Many of these recommended improvements can be implemented immediately by utilities without further technical development.

  11. BWR online monitoring system based on noise analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Villafuerte, Javier [Departamento de Sistemas Nucleares, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, Ocoyoacac, Edo. de Mexico, 52750 (Mexico)]. E-mail: jov@nuclear.inin.mx; Castillo-Duran, Rogelio [Departamento de Sistemas Nucleares, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, Ocoyoacac, Edo. de Mexico, 52750 (Mexico)]. E-mail: rcd@nuclear.inin.mx; Alonso, Gustavo [Departamento de Sistemas Nucleares, Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca S/N, Ocoyoacac, Edo. de Mexico, 52750 (Mexico)]. E-mail: galonso@nuclear.inin.mx; Calleros-Micheland, Gabriel [Central Nuclear de Laguna Verde, Comision Federal de Electricidad, Carr. Cardel-Nautla, km. 42.5, Alto Lucero, Veracruz (Mexico)]. E-mail: gcm9acpp@cfe.gob.mx

    2006-11-15

    A monitoring system for during operation early detection of an anomaly and/or faulty behavior of equipment and systems related to the dynamics of a boiling water reactor (BWR) has been developed. The monitoring system is based on the analysis of the 'noise' or fluctuations of a signal from a sensor or measurement device. An efficient prime factor algorithm to compute the fast Fourier transform allows the continuous, real-time comparison of the normalized power spectrum density function of the signal against previously stored reference patterns in a continuously evolving matrix. The monitoring system has been successfully tested offline. Four examples of the application of the monitoring system to the detection and diagnostic of faulty equipment behavior are presented in this work: the detection of two different events of partial blockage at the jet pump inlet nozzle, miss-calibration of a recirculation mass flow sensor, and detection of a faulty data acquisition card. The events occurred at the two BWR Units of the Laguna Verde Nuclear Power Plant. The monitoring system and its possible coupling to the data and processing information system of the Laguna Verde Nuclear Power Plant are described. The signal processing methodology is presented along with the introduction of the application of the evolutionary matrix concept for determining the base signature of reactor equipment or component and the detection of off normal operation conditions.

  12. Using largest Lyapunov exponent to confirm the intrinsic stability of boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gavilian-Moreno, Carlos [Iberdrola Generacion, S.A., Cofrentes Nuclear Power Plant, Project Engineering Department, Paraje le Plano S/N, Valencia (Spain); Espinosa-Paredes, Gilberto [Area de ingeniera en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Mexico city (Mexico)

    2016-04-15

    The aim of this paper is the study of instability state of boiling water reactors with a method based in largest Lyapunov exponents (LLEs). Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the LLE. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. This method was applied to a set of signals from several nuclear power plant (NPP) reactors under commercial operating conditions that experienced instabilities events, apparently each of a different nature. Laguna Verde and Forsmark NPPs with in-phase instabilities, and Cofrentes NPP with out-of-phases instability. This study presents the results of intrinsic instability in the boiling water reactors of three NPPs. In the analyzed cases the limit cycle was not reached, which implies that the point of equilibrium exerts influence and attraction on system evolution.

  13. BOILING OF WATER AND ORGANIC LIQUIDS ON LOW-TEMPERATURE POROUS SURFACES OF HEAT PIPES

    OpenAIRE

    Шаповал, Андрій Андрійович; Панов, Євген Миколайович; Сауліна, Юлія Валеріївна; Романчук, Борис Васильович; Трубійчук, Р. П.

    2015-01-01

    The experimental study results of the influence of porous metal fiber structures on the intensity of two-phase heat transfer of water and acetone boiling on porous surfaces in conditions of free movement and capillary transport of liquids are presented in the article. The experiments were realized using specially designed experimental installation simulated the operating conditions of heat pipes and thermosyphons. Such conditions are typical for two-phase heat transfer devices – heat pipes an...

  14. Status report: Intergranular stress corrosion cracking of BWR core shrouds and other internal components

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    On July 25, 1994, the US Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 94-03 to obtain information needed to assess compliance with regulatory requirements regarding the structural integrity of core shrouds in domestic boiling water reactors (BWRs). This report begins with a brief description of the safety significance of intergranular stress corrosion cracking (IGSCC) as it relates to the design and function of BWR core shrouds and other internal components. It then presents a brief history of shroud cracking events both in the US and abroad, followed by an indepth summary of the industry actions to address the issue of IGSCC in BWR core shrouds and other internal components. This report summarizes the staff`s basis for issuing GL 94-03, as well as the staff`s assessment of plant-specific responses to GL 94-03. The staff is continually evaluating the licensee inspection programs and the results from examinations of BWR core shrouds and other internal components. This report is representative of submittals to and evaluations by the staff as of September 30, 1995. An update of this report will be issued at a later date.

  15. Production of tyramine by Enterococcus faecalis strains in water-boiled salted duck.

    Science.gov (United States)

    Liu, Fang; Du, Lihui; Xu, Weiyan; Wang, Daoying; Zhang, Muhan; Zhu, Yongzhi; Xu, Weimin

    2013-05-01

    The potential to produce biogenic amines was investigated with 15 Lactococcus lactis and 15 Enterococcus faecalis strains isolated from water-boiled salted duck. The production of biogenic amines from the isolated strains grown in de Man Rogosa Sharpe broth containing precursor amino acids was determined by thin-layer chromatography and high-performance liquid chromatography. None of the L. lactis strains produced any biogenic amines, whereas 12 strains of E. faecalis produced tyramine and b -phenylethylamine. PCR assays were used to detect the presence of tyrosine decarboxylase genes in all of the isolated strains. Only the 12 biogenic amine-producing Enterococcus strains had a 924-bp fragment characteristic for the tyrosine decarboxylase gene. The comparison of the amplified partial tyrDC gene sequences of the 12 positive Enterococcus strains revealed 99% similarity within the same species. The tyramine production of the sterilized water-boiled salted duck inoculated with E. faecalis R612Z1 increased significantly during storage. This study reveals that the isolated E. faecalis strains can produce tyramine and β-phenylethylamine in the medium; however, they can only produce tyramine in water-boiled salted duck.

  16. Entrainment and deposition modeling of liquid films with applications for BWR fuel rod dryout

    Science.gov (United States)

    Ratnayake, Ruwan Kumara

    While best estimate computer codes provide the licensing basis for nuclear power facilities, they also serve as analytical tools in overall plant and component design procedures. An ideal best estimate code would comprise of universally applicable mechanistic models for all its components. However, due to the limited understanding in these specific areas, many of the models and correlations used in these codes reflect high levels of empiricism. As a result, the use of such models is strictly limited to the range of parameters within which the experiments have been conducted. Disagreements between best estimate code predictions and experimental results are often explained by the mechanistic inadequacies of embedded models. Significant mismatches between calculated and experimental critical power values are common observations in the analyses of Boiling Water Reactors (BWR). Based on experimental observations and calculations, these mismatches are attributed to the additional entrainment and deposition caused by spacer grids in BWR fuel assemblies. In COBRA-TF (Coolant Boiling in Rod Arrays-Two Fluid); a state of the art industrial best estimate code, these disagreements are hypothesized to occur due the absence of an appropriate spacer grid model. In this thesis, development of a suitably detailed spacer grid model and integrating it to COBRA-TF is documented. The new spacer grid model is highly mechanistic so that the applicability of it is not seriously affected by geometric variations in different spacer grid designs. COBRA-TF (original version) simulations performed on single tube tests and BWR rod bundles with spacer grids showed that single tube predictions were more accurate than those of the rod bundles. This observation is understood to arise from the non-availability of a suitable spacer grid model in COBRA-TF. Air water entrainment experiments were conducted in a test section simulating two adjacent BWR sub channels to visualize the flow behavior at

  17. The Effect of Different Boiling and Filtering Devices on the Concentration of Disinfection By-Products in Tap Water

    OpenAIRE

    Glòria Carrasco-Turigas; Villanueva, Cristina M.; Fernando Goñi; Panu Rantakokko; Nieuwenhuijsen, Mark J.

    2013-01-01

    Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-conta...

  18. Studying heat transfer enhancement for water boiling on a surface with micro- and nanorelief

    Science.gov (United States)

    Kuzma-Kichta, Yu. A.; Lavrikov, A. V.; Shustov, M. V.; Chursin, P. S.; Chistyakova, A. V.; Zvonarev, Yu. A.; Zhukov, V. M.; Vasil'eva, L. T.

    2014-03-01

    We present the results from a study of heat transfer enhancement for bulk water boiling at atmospheric pressure on a surface with micro- and nanorelief, including a relief formed from silicon carbide and aluminum oxide nanoparticles. Horizontally oriented steel tube 1.2 mm in diameter and copper plate 15 × 3 mm in size were selected as test sections. The process was recorded by means of a video camera, and the values of heat transfer, critical heat fluxes, and contact angles were measured. The use of surface with micro- and nanorelief makes it possible to obtain a significantly higher critical heat flux and boiling heat transfer coefficient owing to a change of surface wettability. The results of investigations can find use in compact heat exchangers, refrigerating plants, heat pipes, in the mirrors of high-capacity lasers, in the targets and resonators of charged particle accelerators and for external cooling of reactor vessels under emergency conditions.

  19. Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 1. Investigation and evaluation of stress corrosion cracking in piping of boiling water reactor plants

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    IGSCC in BWR piping is occurring owing to a combination of material, environment, and stress factors, each of which can affect both the initiation of a stress-corrosion crack and the rate of its subsequent propagation. In evaluating long-term solutions to the problem, one needs to consider the effects of each of the proposed remedial actions. Mitigating actions to control IGSCC in BWR piping must be designed to alleviate one or more of the three synergistic factors: sensitized material, the convention BWR environment, and high tensile stresses. Because mitigating actions addressing each of these factors may not be fully effective under all anticipated operating conditions, mitigating actions should address two and preferably all three of the causative factors; e.g., material plus some control of water chemistry, or stress reversal plus controlled water chemistry.

  20. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    Energy Technology Data Exchange (ETDEWEB)

    Yu, W.; France, D. M.; Routbort, J. L. (Energy Systems)

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  1. Oscillate Boiling

    CERN Document Server

    Li, Fenfang; Nguyen, Dang Minh; Ohl, Claus-Dieter

    2016-01-01

    We report about an intriguing boiling regime occurring for small heaters embedded on the boundary in subcooled water. The microheater is realized by focusing a continuous wave laser beam to about $10\\,\\mu$m in diameter onto a 165\\,nm-thick layer of gold, which is submerged in water. After an initial vaporous explosion a single bubble oscillates continuously and repeatably at several $100\\,$kHz. The microbubble's oscillations are accompanied with bubble pinch-off leading to a stream of gaseous bubbles into the subcooled water. The self-driven bubble oscillation is explained with a thermally kicked oscillator caused by the non-spherical collapses and by surface pinning. Additionally, Marangoni stresses induce a recirculating streaming flow which transports cold liquid towards the microheater reducing diffusion of heat along the substrate and therefore stabilizing the phenomenon to many million cycles. We speculate that this oscillate boiling regime may allow to overcome the heat transfer thresholds observed dur...

  2. Coolant Density and Control Blade History Effects in Extended BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian J [ORNL; Marshall, William BJ J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Martinez-Gonzalez, Jesus S [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the US Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (keff) calculations and predicted spent fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date investigating some aspects of extended BUC. (The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper.) Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC: (1) the effect of axial void profile and (2) the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of a modern operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. Although a single cycle does not provide complete data, the data obtained are sufficient to determine the primary effects and to identify conservative modeling approaches. These data were used in a study of the effect of axial void profile. The first stage of the study was determination of the necessary moderator density temporal fidelity in depletion modeling. After the required temporal fidelity was established, multiple void profiles were used to examine the effect on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied was control blade history. Control blades are inserted in

  3. Experimental Research on Water Boiling Heat Transfer on Horizontal Copper Rod Surface at Sub-Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Li-Hua Yu

    2015-09-01

    Full Text Available In recent years, water (R718 as a kind of natural refrigerant—which is environmentally-friendly, safe and cheap—has been reconsidered by scholars. The systems of using water as the refrigerant, such as water vapor compression refrigeration and heat pump systems run at sub-atmospheric pressure. So, the research on water boiling heat transfer at sub-atmospheric pressure has been an important issue. There are many research papers on the evaporation of water, but there is a lack of data on the characteristics at sub-atmospheric pressures, especially lower than 3 kPa (the saturation temperature is 24 °C. In this paper, the experimental research on water boiling heat transfer on a horizontal copper rod surface at 1.8–3.3 kPa is presented. Regression equations of the boiling heat transfer coefficient are obtained based on the experimental data, which are convenient for practical application.

  4. Model of hydrogen-flame interactions with water droplets. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, A.E.

    1982-06-01

    A computer model is developed to study the effects of water droplets on laminar hydrogen deflagrations. The model provides a one-dimensional, transient hydrogen-flame capability using a kinetic chemistry mechanism involving a group of thirteen reactions. Transport equations are solved for mass, thermal energy, and individual species for the gas mixture along with equations for droplet continuity, thermal energy, and size. Calculations show significant cooling of stoichiometric flames for small droplet sizes (20 micron diameters).

  5. Production induced boiling and cold water entry in the Cerro Prieto geothermal reservoir indicated by chemical and physical measurements

    Science.gov (United States)

    Grant, M.A.; Truesdell, A.H.; Manon, M.A.

    1984-01-01

    Chemical and physical data suggest that the relatively shallow, western part of the Cerro Prieto reservoir is bounded below by low permeability rocks, and above and at the sides by an interface with cooler water. There is no continuous permeability barrier around or immediately above the reservoir. Permeability within the reservoir is dominantly intergranular. Mixture with cooler water rather than boiling is the dominant cooling process in the natural state, and production causes displacement of hot water by cooler water, not by vapour. Local boiling occurs near most wells in response to pressure decreases, but no general vapour zone has formed. ?? 1984.

  6. Production induced boiling and cold water entry in the Cerro Prieto geothermal reservoir indicated by chemical and physical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Grant, M.A. (DSIR, Wellington, New Zealand); Truesdell, A.H.; Manon, A.

    1981-01-01

    Chemical and physical data suggest that the relatively shallow western part of the Cerro Prieto reservoir is bounded below by low permeability rocks, and above and at the sides by an interface with cooler water. There is no continuous permeability barrier around or immediately above the reservoir. Permeability within the reservoir is dominantly intergranular. Mixture with cooler water rather than boiling is the dominant cooling process in the natural state, and production causes displacement of hot water by cooler water, not by vapor. Local boiling occurs near most wells in response to pressure decreases, but no general vapor zone has formed.

  7. Heat Transfer in Film Boiling from Electrically Heated Nichrome Wire to Boiling Water at Different Pressure-II

    Directory of Open Access Journals (Sweden)

    Devi Dayal

    1969-01-01

    Full Text Available Values of film thickness in film boiling have been computed for three different sizes of nichrome wires at five different sub-atmospheric pressures. The values of alpha , total heat transmission co-efficient, ac heat transmission co-efficient due to conduction through the vapour film and alpha R, heat transmission co-efficient due to radiation, have been calculated. The values of film thickness were found to decrease with external pressure, but were found to increase slightly with the radius of the wire. alpha & alpha c both increase with rise of pressure but decrease with the radius of the radius of the heated wire. Alpha R shows a minimum value at a pressure of 15 cm. of Hg. in the case of all the wire sizes. The radiation loss alpha R is much smaller than conduction loss alpha. "

  8. Effect of subcooling and wall thickness on pool boiling from downward-facing curved surfaces in water

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Glebov, A.G. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-09-01

    Quenching experiments were performed to investigate the effects of water subcooling and wall thickness on pool boiling from a downward-facing curved surface. Experiments used three copper sections of the same diameter (50.8 mm) and surface radius (148 mm), but different thickness (12.8, 20 and 30 mm). Local and average pool boiling curves were obtained at saturation and 5 K, 10 K, and 14 K subcooling. Water subcooling increased the maximum heat flux, but decreased the corresponding wall superheat. The minimum film boiling heat flux and the corresponding wall superheat, however, increased with increased subcooling. The maximum and minimum film boiling heat fluxes were independent of wall thickness above 20 mm and Biot Number > 0.8, indicating that boiling curves for the 20 and 30 thick sections were representative of quasi steady-state, but not those for the 12.8 mm thick section. When compared with that for a flat surface section of the same thickness, the data for the 12.8 mm thick section showed significant increases in both the maximum heat flux (from 0.21 to 0.41 MW/m{sup 2}) and the minimum film boiling heat flux (from 2 to 13 kW/m{sup 2}) and about 11.5 K and 60 K increase in the corresponding wall superheats, respectively.

  9. Effects of hydrogen water chemistry on corrosion fatigue behavior of cold-worked 304L stainless steel in simulated BWR coolant environments

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, M.F., E-mail: mfchiang@iner.gov.tw [Institute of Nuclear Energy Research, Division of Nuclear Fuels and Materials, Lungtan, Taoyuan 325, Taiwan (China); Young, M.C.; Huang, J.Y. [Institute of Nuclear Energy Research, Division of Nuclear Fuels and Materials, Lungtan, Taoyuan 325, Taiwan (China)

    2011-04-15

    Corrosion fatigue behavior of stainless steel 304L (SS304L) in a simulated BWR coolant with hydrogen injection was investigated. Hydrogen water chemistry slightly mitigated the corrosion fatigue degradation of the as-received SS304L specimens, but, on the contrary, it slightly increased the corrosion fatigue crack growth rates (CFCGRs) of the cold-worked specimens. All the CFCGR-tested specimens showed similar fracture features, except for the amounts of deposited corrosion debris. The results indicated that decreasing the oxygen concentration of water environment is not an effective measure to suppress the fatigue crack growth rate of cold-worked SS304L. The CFCGRs of the SS304L were determined by an interaction between corrosion, oxide-induced crack closure and cold work in corrosive environments. At a specific level of reduction, cold work could enhance the corrosion fatigue resistance of SS304 both in the air-saturated and HWC coolant environments.

  10. Effects of hydrogen water chemistry on corrosion fatigue behavior of cold-worked 304L stainless steel in simulated BWR coolant environments

    Science.gov (United States)

    Chiang, M. F.; Young, M. C.; Huang, J. Y.

    2011-04-01

    Corrosion fatigue behavior of stainless steel 304L (SS304L) in a simulated BWR coolant with hydrogen injection was investigated. Hydrogen water chemistry slightly mitigated the corrosion fatigue degradation of the as-received SS304L specimens, but, on the contrary, it slightly increased the corrosion fatigue crack growth rates (CFCGRs) of the cold-worked specimens. All the CFCGR-tested specimens showed similar fracture features, except for the amounts of deposited corrosion debris. The results indicated that decreasing the oxygen concentration of water environment is not an effective measure to suppress the fatigue crack growth rate of cold-worked SS304L. The CFCGRs of the SS304L were determined by an interaction between corrosion, oxide-induced crack closure and cold work in corrosive environments. At a specific level of reduction, cold work could enhance the corrosion fatigue resistance of SS304 both in the air-saturated and HWC coolant environments.

  11. PWR and BWR spent fuel assembly gamma spectra measurements

    Science.gov (United States)

    Vaccaro, S.; Tobin, S. J.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Hu, J.; Schwalbach, P.; Sjöland, A.; Trellue, H.; Vo, D.

    2016-10-01

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative-Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  12. Heat transfer correlation development and assessment: a summary and assessment of return to nucleate boiling phenomena during blowdown tests conducted at the Idaho National Engineering Laboratory (INEL). [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, A. M.; Tolman, E. L.

    1979-04-01

    The data are presented which were obtained in Loss-of-Coolant Experiments (LOCE) at Idaho National Engineering Laboratory (INEL) which demonstrate the presence of cladding rewetting after the critical heat flux has been exceeded as a viable cooling mechanism during the blowdown phase of a LOCE. A brief review of the mechanisms associated with the boiling crisis and rewetting is also provided. The relevance of INEL LOCE rewetting data to nuclear reactor licensing Evaluation Model Requirements is considered, and the conclusion is made that the elimination of rewetting and return to nucleate boiling (RNB) in Evaluation Models represents a definite conservatism.

  13. Effect of boiling water carcass immersion on aerobic bacteria counts of poultry skin and processed ground poultry meat.

    Science.gov (United States)

    Tompkins, N M; Avens, J S; Kendall, P A; Salman, M D

    2008-06-01

    This study was conducted to determine the relationship between bacteria destruction on poultry carcass skin and bacteria in raw ground poultry meat from the same carcasses. Immersion time in boiling water of broiler chicken whole carcasses required for maximum reduction of naturally occurring aerobic bacterial count on skin was measured. Treatments for chicken carcasses consisted of immersion in boiling water (approximately 95 degrees C) for 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4 min. Four skin samples taken following treatment and three taken from subsequently ground carcass meat were analyzed for total aerobic plate counts (APC). Analysis of the data indicated a linear increase in bacterial destruction on skin with increased boiling water immersion time from 0 to 4 min. Reduction of skin bacteria to less than 1 log10 occurred at 3 min carcass immersion or longer. The analysis also indicated that treatment with boiling water and removal of skin was effective in reducing bacterial counts in ground meat to similar levels at all treatment times from 0.5 to 4.0 min. Findings from this study indicated that a boiling water immersion intervention and removal of skin could reduce subsequent bacteria contamination of ground meat. This intervention could minimize the risk of pathogen-contaminated primary processed poultry carcasses used in further processing.

  14. Numerical simulation and artificial neural network modeling of natural circulation boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Garg, A. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Sastry, P.S. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Pandey, M. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India)]. E-mail: manmohan@iitg.ac.in; Dixit, U.S. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Gupta, S.K. [Atomic Energy Regulatory Board, Mumbai 400085 (India)

    2007-02-15

    Numerical simulation of natural circulation boiling water reactor is important in order to study its performance for different designs and under various off-design conditions. Numerical simulations can be performed by using thermal-hydraulic codes. Very fast numerical simulations, useful for extensive parametric studies and for solving design optimization problems, can be achieved by using an artificial neural network (ANN) model of the system. In the present work, numerical simulations of natural circulation boiling water reactor have been performed with RELAP5 code for different values of design parameters and operational conditions. Parametric trends observed have been discussed. The data obtained from these simulations have been used to train artificial neural networks, which in turn have been used for further parametric studies and design optimization. The ANN models showed error within {+-}5% for all the simulated data. Two most popular methods, multilayer perceptron (MLP) and radial basis function (RBF) networks, have been used for the training of ANN model. Sequential quadratic programming (SQP) has been used for optimization.

  15. Pre-study of dynamic loads on the internals caused by a large pipe break in a BWR; Foerstudie av stroemningsinducerade laster paa interndelar vid brott i huvudcirkulationskretsarna i BWR

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkiewicz, Jerzy; Lindgren, Anders [Det Norske Veritas Nuclear Technology AB, Stockholm (Sweden)

    2002-12-01

    Det Norske Veritas Nuclear Technology has performed a literature study of dynamic load on a BWR (Boiling Water Reactor) internals caused by a large pipe break. The goal of the study was to improve the knowledge about the physics of phenomena occurring in the RPV (Reactor Pressure Vessel) after pipe break in the main circulation system and also to make a review of calculation methods, models and computer programs including their capabilities when calculating the dynamic loads. The report presents description of relevant parts of a BWR, initial and boundary conditions, and phenomena determining the loads - rapid depressurization and propagation of pressure wave (including none-equilibrium). Furthermore, the report generally describes possible methodologies for calculating the dynamic loads on internals after the pipe break and the experiences from calculations the dynamic loads with different methods (computer programs) including comparisons with experimental data. Fluid-Structure Interaction methodology and its importance for calculation of dynamic loads on reactor internals is discussed based on experimental data. A very intensive research program for studying and calculating the dynamic loads on internals after pipe breaks has been performed in USA and Germany during the seventies and the eighties. Several computer programs have been developed and a number of large-scale experiments have been performed to calibrate the calculation methods. In spite of the fact that all experiments were performed for PWR several experiences should be valid also for BWR. These experiences, connected mainly to capabilities of computer programs calculating dynamic loads, are discussed in the report.

  16. Impact of modeling Choices on Inventory and In-Cask Criticality Calculations for Forsmark 3 BWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Gonzalez, Jesus S. [Univ. Politecnica de Madrid (Spain); Ade, Brian J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bowman, Stephen M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marshall, William BJ J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Simulation of boiling water reactor (BWR) fuel depletion poses a challenge for nuclide inventory validation and nuclear criticality safety analyses. This challenge is due to the complex operating conditions and assembly design heterogeneities that characterize these nuclear systems. Fuel depletion simulations and in-cask criticality calculations are affected by (1) completeness of design information, (2) variability of operating conditions needed for modeling purposes, and (3) possible modeling choices. These effects must be identified, quantified, and ranked according to their significance. This paper presents an investigation of BWR fuel depletion using a complete set of actual design specifications and detailed operational data available for five operating cycles of the Swedish BWR Forsmark 3 reactor. The data includes detailed axial profiles of power, burnup, and void fraction in a very fine temporal mesh for a GE14 (10×10) fuel assembly. The specifications of this case can be used to assess the impacts of different modeling choices on inventory prediction and in-cask criticality, specifically regarding the key parameters that drive inventory and reactivity throughout fuel burnup. This study focused on the effects of the fidelity with which power history and void fraction distributions are modeled. The corresponding sensitivity of the reactivity in storage configurations is assessed, and the impacts of modeling choices on decay heat and inventory are addressed.

  17. Development of a fuzzy logic method to build objective functions in optimization problems: application to BWR fuel lattice design

    Energy Technology Data Exchange (ETDEWEB)

    Martin-del-Campo, C.; Francois, J.L.; Barragan, A.M. [Universidad Nacional Autonoma de Mexico - Facultad de Ingenieria (Mexico); Palomera, M.A. [Universidad Nacional Autonoma de Mexico - Instituto de Investigaciones en Matematicas Aplicadas y Sistema, Mexico, D. F. (Mexico)

    2005-07-01

    In this paper we develop a methodology based on the use of the Fuzzy Logic technique to build multi-objective functions to be used in optimization processes applied to in-core nuclear fuel management. As an example, we selected the problem of determining optimal radial fuel enrichment and gadolinia distributions in a typical 'Boiling Water Reactor (BWR)' fuel lattice. The methodology is based on the use of the mathematical capability of Fuzzy Logic to model nonlinear functions of arbitrary complexity. The utility of Fuzzy Logic is to map an input space into an output space, and the primary mechanism for doing this is a list of if-then statements called rules. The rules refer to variables and adjectives that describe those variables and, the Fuzzy Logic technique interprets the values in the input vectors and, based on the set of rules assigns values to the output vector. The methodology was developed for the radial optimization of a BWR lattice where the optimization algorithm employed is Tabu Search. The global objective is to find the optimal distribution of enrichments and burnable poison concentrations in a 10*10 BWR lattice. In order to do that, a fuzzy control inference system was developed using the Fuzzy Logic Toolbox of Matlab and it has been linked to the Tabu Search optimization process. Results show that Tabu Search combined with Fuzzy Logic performs very well, obtaining lattices with optimal fuel utilization. (authors)

  18. Searching for full power control rod patterns in a boiling water reactor using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Jose Luis [Departamento Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Ocoyoacac, Edo. de Mexico (Mexico)]. E-mail: jlmt@nuclear.inin.mx; Ortiz, Juan Jose [Departamento Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Ocoyoacac, Edo. de Mexico (Mexico)]. E-mail: jjortiz@nuclear.inin.mx; Requena, Ignacio [Departamento Ciencias Computacion e I.A. ETSII, Informatica, Universidad de Granada, C. Daniel Saucedo Aranda s/n. 18071 Granada (Spain)]. E-mail: requena@decsai.ugr.es; Perusquia, Raul [Departamento Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Ocoyoacac, Edo. de Mexico (Mexico)]. E-mail: rpc@nuclear.inin.mx

    2004-11-01

    One of the most important questions related to both safety and economic aspects in a nuclear power reactor operation, is without any doubt its reactivity control. During normal operation of a boiling water reactor, the reactivity control of its core is strongly determined by control rods patterns efficiency. In this paper, GACRP system is proposed based on the concepts of genetic algorithms for full power control rod patterns search. This system was carried out using LVNPP transition cycle characteristics, being applied too to an equilibrium cycle. Several operation scenarios, including core water flow variation throughout the cycle and different target axial power distributions, are considered. Genetic algorithm fitness function includes reactor security parameters, such as MLHGR, MCPR, reactor k{sub eff} and axial power density.

  19. Nickel Catalyzed Conversion of Cyclohexanol into Cyclohexylamine in Water and Low Boiling Point Solvents

    Directory of Open Access Journals (Sweden)

    Yunfei Qi

    2016-04-01

    Full Text Available Nickel is found to demonstrate high performance in the amination of cyclohexanol into cyclohexylamine in water and two solvents with low boiling points: tetrahydrofuran and cyclohexane. Three catalysts, Raney Ni, Ni/Al2O3 and Ni/C, were investigated and it is found that the base, hydrogen, the solvents and the support will affect the activity of the catalyst. In water, all the three catalysts achieved over 85% conversion and 90% cyclohexylamine selectivity in the presence of base and hydrogen at a high temperature. In tetrahydrofuran and cyclohexane, Ni/Al2O3 exhibits better activity than Ni/C under optimal conditions. Ni/C was stable during recycling in aqueous ammonia, while Ni/Al2O3 was not due to the formation of AlO(OH.

  20. Analysis of cracked core spray piping from the Quad Cities Unit 2 boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Diercks, D.R.; Gaitonde, S.M.

    1982-09-01

    The results of a metallurgical analysis of leaking cracks detected in the core spray injection piping of Commonwealth Edison Company's Quad Cities Unit 2 Boiling Water Reactor are described. The cracks were present in a welded 105/sup 0/ elbow assembly in the line, and were found to be caused by intergranular stress corrosion cracking associated with the probable presence of dissolved oxygen in the reactor cooling water and the presence of grain boundary sensitization and local residual stresses induced by welding. The failure is unusual in several respects, including the very large number of cracks (approximately 40) present in the failed component, the axial orientation of the cracks, and the fact that at least one crack completely penetrated a circumferential weld. Virtually all of the cracking occurred in forged material, and the microstructural evidence presented suggests that the orientation of the cracks was influenced by the presence of axially banded delta ferrite in the microstructure of the forged components.

  1. Analysis of assemblies exchange in the core of a reactor BWR; Analisis del intercambio de ensambles en el nucleo de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Kauil U, J. S. [Universidad Autonoma de Yucatan, Facultad de Ingenieria, Av. Industrias no contaminantes por Anillo Periferico Norte s/n, Apdo. Postal 150 Cordemex, Merida, Yucatan (Mexico); Fuentes M, L.; Castillo M, J. A.; Ortiz S, J. J.; Perusquia del Cueto, R., E-mail: san_dino@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    The performance of the core of a boiling water reactor (BWR) was evaluated when two assemblies are exchanged during the fuel reload in erroneous way. All with the purpose of analyzing the value of the neutrons effective multiplication factor and the thermal limits for an exchange of assemblies. In their realization the mentioned study was based in a transition cycle of the Unit 1 of the nuclear power plant of Laguna Verde. The obtained results demonstrate that when carrying out an exchange between two fuel assemblies in erroneous way, with regard to the original reload, the changes in the neutrons effective multiplication factor do not present a serious problem, unless the exchange has been carried out among a very burnt assembly with one fresh, where this last is taken to the periphery. (Author)

  2. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, K. [Kobe Univ. of Mercantile Marine (Japan); Shiotsu, M.; Sakurai, A. [Kyoto Univ. (Japan)

    1995-09-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q{sub max}, on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q{sub o}e{sup t/T}, with periods, {tau}, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q{sub max}. Two main mechanisms of q{sub max} exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q{sub max} for long period range belonging to the former mechanism becomes longer and the q{sub max}mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q{sub max} for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling.

  3. Measurement of wetted area fraction in subcooled pool boiling of water using infrared thermography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungdae, E-mail: hdkims@khu.ac.kr [Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Kyung Hee University, Youngin, Gyeonggi 446-701 (Korea, Republic of); Park, Youngjae [Kyung Hee University, Youngin, Gyeonggi 446-701 (Korea, Republic of); Buongiorno, Jacopo, E-mail: jacopo@mit.edu [Massachusetts Institute of Technology, Cambridge, Massachusetts (United States)

    2013-11-15

    The wetted area fraction in subcooled pool boiling of water at atmospheric pressure is measured using the DEPIcT (DEtection of Phase by Infrared Thermography) technique. DEPIcT exploits the contrast in infrared (IR) light emissions between wet and dry areas on the surface of an IR-transparent heater to visualize the instantaneous distribution of the liquid and gas phases in contact with the heater surface. In this paper time-averaged wetted area fraction data in nucleate boiling are reported as functions of heat flux (from 30% up to 100% of the Critical Heat Flux) and subcooling (ΔT{sub sub} = 0, 5, 10, 30 and 50 °C). The results show that the wetted area fraction monotonically decreases with increasing heat flux and increases with increasing subcooling: both trends are expected. The range of time-averaged wetted area fractions is from 90%, at low heat flux and high subcooling, to 50% at high heat flux (right before CHF) and low subcooling. It is also shown that the dry areas are periodically rewetted by liquid sloshing on the surface at any subcooling and heat flux; however, the dry areas expand irreversibly at CHF.

  4. Performance of Charcoal Cookstoves for Haiti Part 1: Results from the Water Boiling Test

    Energy Technology Data Exchange (ETDEWEB)

    Booker, Kayje; Han, Tae Won; Granderson, Jessica; Jones, Jennifer; Lsk, Kathleen; Yang, Nina; Gadgil, Ashok

    2011-06-01

    In April 2010, a team of scientists and engineers from Lawrence Berkeley National Lab (LBNL) and UC Berkeley, with support from the Darfur Stoves Project (DSP), undertook a fact-finding mission to Haiti in order to assess needs and opportunities for cookstove intervention. Based on data collected from informal interviews with Haitians and NGOs, the team, Scott Sadlon, Robert Cheng, and Kayje Booker, identified and recommended stove testing and comparison as a high priority need that could be filled by LBNL. In response to that recommendation, five charcoal stoves were tested at the LBNL stove testing facility using a modified form of version 3 of the Shell Foundation Household Energy Project Water Boiling Test (WBT). The original protocol is available online. Stoves were tested for time to boil, thermal efficiency, specific fuel consumption, and emissions of CO, CO{sub 2}, and the ratio of CO/CO{sub 2}. In addition, Haitian user feedback and field observations over a subset of the stoves were combined with the experiences of the laboratory testing technicians to evaluate the usability of the stoves and their appropriateness for Haitian cooking. The laboratory results from emissions and efficiency testing and conclusions regarding usability of the stoves are presented in this report.

  5. Environmentally-Assisted Cracking of Low-Alloy Reactor Pressure Vessel Steels under Boiling Water Reactor Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P.; Ritter, S

    2002-02-01

    The present report summarizes the experimental work performed by PSI on the environmentally-assisted cracking (EAC) of low-alloy steels (LAS) in the frame of the RIKORR-project during the period from January 2000 to August 2001. Within this project, the EAC crack growth behaviour of different low-alloy reactor pressure vessel (RPV) steels, weld filler and weld heat-affected zone materials is investigated under simulated transient and steady-state BWR/NWC power operation conditions. The EAC crack growth behaviour of different low-alloy RPV steels was characterized by slow rising load (SRL) / low-frequency corrosion fatigue (LFCF) and constant load tests with pre-cracked fracture mechanics specimens in oxygenated high-temperature water at temperatures of either 288, 250, 200 or 150 C. These tests revealed the following important interim results: Under low-flow and highly oxidizing (ECP >= 100 mV SHE) conditions, the ASME XI 'wet' reference fatigue crack growth curve could be significantly exceeded by cyclic fatigue loading at low frequencies (<0.001 Hz), at high and low load-ratios R, and by ripple loading near to DKth fatigue thresholds. The BWR VIP 60 SCC disposition lines may be significantly or slightly exceeded (even in steels with a low sulphur content) in the case of small load fluctuations at high load ratios (ripple loading) or at intermediate temperatures (200 -250 C) in RPV materials, which show a distinct susceptibility to dynamic strain ageing (DSA). (author)

  6. Effect of nanostructure on rapid boiling of water on a hot copper plate: a molecular dynamics study

    Science.gov (United States)

    Fu, Ting; Mao, Yijin; Tang, Yong; Zhang, Yuwen; Yuan, Wei

    2016-08-01

    Molecular dynamic simulations are performed to study the effects of nanostructure on rapid boiling of water that is suddenly heated by a hot copper plate. The results show that the nanostructure has significant effects on energy transfer from solid copper plate to liquid water and phase change process from liquid water to vapor. The liquid water on the solid surface rapidly boil after contacting with an extremely hot copper plate and consequently a cluster of liquid water moves upward during phase change. The temperature of the water film when it separates from solid surface and its final temperature when the system is at equilibrium strongly depend on the size of the nanostructure. These temperatures increase with increasing size of nanostructure. Furthermore, a non-vaporized molecular layer is formed on the surface of the copper plate even continuous heat flux is passing into water domain through the plate.

  7. Replacement of outboard main steam isolation valves in a boiling water reactor plant

    Energy Technology Data Exchange (ETDEWEB)

    Schlereth, J.R.; Pennington, D.

    1996-12-01

    Most Boiling Water Reactor plants utilize wye pattern globe valves for main steam isolation valves for both inboard and outboard isolation. These valves have required a high degree of maintenance attention in order to pass the plant local leakage rate testing (LLRT) requirements at each outage. Northern States Power made a decision in 1993 to replace the outboard valves at it`s Monticello plant with double disc gate valves. The replacement of the outboard valves was completed during the fall outage in 1994. During the spring outage in April of 1996 the first LLRT testing was performed with excellent results. This presentation will address the decision process, time requirements and planning necessary to accomplish the task as well as the performance results and cost effectiveness of replacing these components.

  8. The D&D of the Experimental Boiling Water Reactor (EBWR)

    Energy Technology Data Exchange (ETDEWEB)

    Fellhauer, C.R.; Boling, L.E.; Yule, T.J.; Bhattacharyya, S.K.

    1996-03-01

    Argonne National Laboratory has completed the D&D of the Experimental Boiling Water Reactor. The Project consisted of decontaminating and for packaging as radioactive waste the reactor vessel and internals, contaminated piping systems, miscellaneous tanks, pumps, and associated equipment. The D&D work involved dismantling process equipment and associated plumbing, ductwork drain lines, etc., performing size reduction of reactor vessel internals in the fuel pool, packaging and manifesting all radioactive and mixed waste, and performing a thorough survey of the facility after the removal of activated and contaminated material. Non-radioactive waste was disposed of in the ANL-E landfill or recycled. In January 1996 the EBWR facility was formally decommissioned and transferred from EM-40 to EM-30. This paper will discuss the details of this ten year effort.

  9. The challenge of improving boiling: lessons learned from a randomized controlled trial of water pasteurization and safe storage in Peru.

    Science.gov (United States)

    Heitzinger, K; Rocha, C A; Quick, R E; Montano, S M; Tilley, D H; Mock, C N; Carrasco, A J; Cabrera, R M; Hawes, S E

    2016-07-01

    Boiling is the most common method of household water treatment in developing countries; however, it is not always effectively practised. We conducted a randomized controlled trial among 210 households to assess the effectiveness of water pasteurization and safe-storage interventions in reducing Escherichia coli contamination of household drinking water in a water-boiling population in rural Peru. Households were randomized to receive either a safe-storage container or a safe-storage container plus water pasteurization indicator or to a control group. During a 13-week follow-up period, households that received a safe-storage container and water pasteurization indicator did not have a significantly different prevalence of stored drinking-water contamination relative to the control group [prevalence ratio (PR) 1·18, 95% confidence interval (CI) 0·92-1·52]. Similarly, receipt of a safe-storage container alone had no effect on prevalence of contamination (PR 1·02, 95% CI 0·79-1·31). Although use of water pasteurization indicators and locally available storage containers did not increase the safety of household drinking water in this study, future research could illuminate factors that facilitate the effective use of these interventions to improve water quality and reduce the risk of waterborne disease in populations that boil drinking water.

  10. TRACE Model for Simulation of Anticipated Transients Without Scram in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Cheng L. Y.; Baek J.; Cuadra,A.; Aronson, A.; Diamond, D.; Yarsky, P.

    2013-11-10

    A TRACE model has been developed for using theTRACE/PARCS computational package [1, 2] to simulate anticipated transients without scram (ATWS) events in a boiling water reactor (BWR). The model represents a BWR/5 housed in a Mark II containment. The reactor and the balance of plant systems are modeled in sufficient detail to enable the evaluation of plant responses and theeffectiveness of automatic and operator actions tomitigate this beyond design basis accident.The TRACE model implements features thatfacilitate the simulation of ATWS events initiated by turbine trip and closure of the main steam isolation valves (MSIV). It also incorporates control logic to initiate actions to mitigate the ATWS events, such as water levelcontrol, emergency depressurization, and injection of boron via the standby liquid control system (SLCS). Two different approaches have been used to model boron mixing in the lower plenum of the reactor vessel: modulate coolant flow in the lower plenum by a flow valve, and use control logic to modular.

  11. Can we remove iodine-131 from tap water in Japan by boiling? - Experimental testing in response to the Fukushima Daiichi Nuclear Power Plant accident.

    Science.gov (United States)

    Tagami, K; Uchida, S

    2011-08-01

    Iodine-131 concentrations in tap water higher than 100 BqL(-1) were reported by several local governments in Japan following the Fukushima Daiichi Nuclear Power Plant accident. Some individuals in the emergency-response community recommended the boiling of tap water to remove iodine-131. However, the tap water boiling tests in this study showed no iodine-131 loss from the tap water with either short-term boiling (1-10 min) or prolonged boiling (up to 30 min) resulting in up to 3-fold volume reductions. In this situation, boiling was shown to be not effective in removing iodine-131 from tap water; indeed even higher concentrations may result from the liquid-volume reduction accompanying this process.

  12. 78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors

    Science.gov (United States)

    2013-10-24

    ... COMMISSION Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors AGENCY... Commission (NRC) is issuing a new regulatory guide (RG), 1.79.1, ``Initial Test Program of Emergency Core... System (ADAMS): You may access publicly available documents online in the NRC Library at...

  13. 10 CFR Appendix A to Part 52 - Design Certification Rule for the U.S. Advanced Boiling Water Reactor

    Science.gov (United States)

    2010-01-01

    ... design certification for the U.S. Advanced Boiling Water Reactor (ABWR) design, in accordance with 10 CFR... appendix. B. Generic technical specifications means the information, required by 10 CFR 50.36 and 50.36a... for the intended application. H. All other terms in this appendix have the meaning set out in 10...

  14. Boiling water reactor in a prestressed reinforced concrete vessel for an atomic central heating-and-power plant

    Energy Technology Data Exchange (ETDEWEB)

    Tokarev, Yu.I.; Sokolov, I.N.; Skvortsov, S.A.; Sidorov, A.M.; Krauze, L.V.

    1978-04-01

    The possibility of using a boiling water reactor in a prestressed reinforced concrete vessel for an atomic central heating-and-power plant (CHPP) was considered, with design features of the reactor intended for a two-purpose plant. A prestressed reinforced concrete vessel and integral arrangement of the primary circuit ensured reliability of the atomic CHPP using various CHPP flowsheets.

  15. Flow Boiling Heat Transfer in Two-Phase Micro Channel Heat Sink at Low Water Mass Flux

    Science.gov (United States)

    Kuznetsov, Vladimir V.; Shamirzaev, Alisher S.

    2009-08-01

    Boiling heat transfer at water flow with low mass flux in heat sink which contained rectangular microchannels was studied. The stainless steel heat sink contained ten parallel microchannels with a size of 640 × 2050 μm in cross-section with typical wall roughness of 10-15 μm. The local flow boiling heat transfer coefficients were measured at mass velocity of 17 and 51 kg/m2s, heat flux on 30 to 150 kW/m2 and vapor quality of up to 0.8 at pressure in the channels closed to atmospheric one. It was observed that Kandlikar nucleate boiling correlation is in good agreement with the experimental data at mass flow velocity of 85 kg/m2s. At smaller mass flux the Kandlikar model and Zhang, Hibiki and Mishima model demonstrate incorrect trend of heat transfer coefficients variation with vapor quality.

  16. Remarks on boiling water reactor stability analysis. Pt. 2. Stability monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Carsten; Hennig, Dieter; Hurtado, Antonio [Technische Univ. Dresden (Germany). Chair of Hydrogen and Nuclear Energy; Schuster, Roland [Kernkraftwerk Brunsbuettel GmbH und Co. oHG, Brunsbuettel (Germany); Lukas, Bernard [EnBW Kernkraft GmbH, Philippsburg (Germany). Kernkraftwerk Philippsburg; Aguirre, Carlos [Kernkraftwerk Leibstadt AG, Aargau (Switzerland)

    2012-12-15

    In part 1 of this article we explained the partly relative complex solution manifold of the differential equations describing the stability behaviour of a BWR, in particular the coexistence of different types of solutions, such as the coexistence of unstable limit cycles and stable fixed points are of interest from the operational safety point of view. The part 2 is devoted to the surveillance of the stability behaviour. We summarize some stability monitoring methods and suggest to support stability tests by RAM-ROM analyses in order to reveal in advance the stability 'landscape' of the BWR in a parameter region high sensitive for appearing of linear unstable states. The analysis of an especial stability test, performed at NPP Leibstadt (KKL), makes it clear that the measurement results can only be interpreted by application of bifurcation analysis. (orig.)

  17. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Appendices. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Appendices are presented concerning the evaluations of decommissioning financing alternatives; reference site description; reference BWR facility description; radiation dose rate and concrete surface contamination data; radionuclide inventories; public radiation dose models and calculated maximum annual doses; decommissioning methods; generic decommissioning information; immediate dismantlement details; passive safe storage, continuing care, and deferred dismantlement details; entombment details; demolition and site restoration details; cost estimating bases; public radiological safety assessment details; and details of alternate study bases.

  18. The effect of different boiling and filtering devices on the concentration of disinfection by-products in tap water.

    Science.gov (United States)

    Carrasco-Turigas, Glòria; Villanueva, Cristina M; Goñi, Fernando; Rantakokko, Panu; Nieuwenhuijsen, Mark J

    2013-01-01

    Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97%) and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies.

  19. The Effect of Different Boiling and Filtering Devices on the Concentration of Disinfection By-Products in Tap Water

    Directory of Open Access Journals (Sweden)

    Glòria Carrasco-Turigas

    2013-01-01

    Full Text Available Disinfection by-products (DBPs are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4 (chloroform (TCM, bromodichloromethane (BDCM, dibromochloromethane (DBCM, and bromoform (TBM, MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97% and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies.

  20. Safety/relief valve quencher loads: evaluation for BWR Mark II and III containments

    Energy Technology Data Exchange (ETDEWEB)

    Su, T.M.

    1982-10-01

    Boiling water reactor (BWR) plants are equipped with safety/relief valves (SRVs) to protect the reactor from overpressurization. Plant operational transients, such as turbine trips, will actuate the SRV. Once the SRV opens, the air column within the partially submerged discharge line is compressed by the high-pressure steam released from the reactor. The compressed air discharged into the suppression pool produces high-pressure bubbles. Oscillatory expansion and contraction of these bubbles create hydrodynamic loads on the containment structures, piping, and equipment inside containment. This report presents the results of the staff's evaluation of SRV loads. The evaluation, however, is limited to the quencher devices used in Mark II and III containments. With respect to Mark I containments, the SRV acceptance criteria are presented in NUREG-0661 issued July 1980. The staff acceptance criteria for SRV loads for Mark II and III containments are presented in this report.

  1. Development of a parametric containment event tree model for a severe BWR accident

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, T. [OTO-Consulting Ay, Helsinki (Finland)

    1995-04-01

    A containment event tree (CET) is built for analysis of severe accidents at the TVO boiling water reactor (BWR) units. Parametric models of severe accident progression and fission product behaviour are developed and integrated in order to construct a compact and self-contained Level 2 PSA model. The model can be easily updated to correspond to new research results. The analyses of the study are limited to severe accidents starting from full-power operation and leading to core melting, and are focused mainly on the use and effects of the dedicated severe accident management (SAM) systems. Severe accident progression from eight plant damage states (PDS), involving different pre-core-damage accident evolution, is examined, but the inclusion of their relative or absolute probabilities, by integration with Level 1, is deferred to integral safety assessments. (33 refs., 5 figs., 7 tabs.).

  2. Crack growth rate in core shroud horizontal welds using two models for a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Arganis Juárez, C.R., E-mail: carlos.arganis@inin.gob.mx; Hernández Callejas, R.; Medina Almazán, A.L.

    2015-05-15

    Highlights: • Two models were used to predict SCC growth rate in a core shroud of a BWR. • A weld residual stress distribution with 30% stress relaxation by neutron was used. • Agreement is shown between the measurements of SCC growth rate and the predictions. • Slip–oxidation model is better at low fluences and empirical model at high fluences. - Abstract: An empirical crack growth rate correlation model and a predictive model based on the slip–oxidation mechanism for Stress Corrosion Cracking (SCC) were used to calculate the crack growth rate in a BWR core shroud. In this study, the crack growth rate was calculated by accounting for the environmental factors related to aqueous environment, neutron irradiation to high fluence and the complex residual stress conditions resulting from welding. In estimating the SCC behavior the crack growth measurements data from a Boiling Water Reactor (BWR) plant are referred to, and the stress intensity factor vs crack depth throughout thickness is calculated using a generic weld residual stress distribution for a core shroud, with a 30% stress relaxation induced by neutron irradiation. Quantitative agreement is shown between the measurements of SCC growth rate and the predictions of the slip–oxidation mechanism model for relatively low fluences (5 × 10{sup 24} n/m{sup 2}), and the empirical model predicted better the SCC growth rate than the slip–oxidation model for high fluences (>1 × 10{sup 25} n/m{sup 2}). The relevance of the models predictions for SCC growth rate behavior depends on knowing the model parameters.

  3. Transient and stability analysis of a BWR core with thorium-uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779 Col. Narvarte, 03020 Mexico, DF (Mexico); Espinosa-Paredes, Gilberto [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico, DF (Mexico)], E-mail: gepe@xanum.uam.mx; Francois, Juan-Luis [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, 62550 Jiutepec Mor. (Mexico)

    2008-08-15

    The kinetic response of a boiling water reactor (BWR) equilibrium core using thorium as a nuclear material, in an integrated blanket-seed assembly, is presented in this work. Additionally an in-house code was developed to evaluate this core under steady state and transient conditions including a stability analysis. The code has two modules: (a) the time domain module for transient analysis and (b) the frequency domain module for stability analysis. The thermal-hydraulic process is modeled by a set of five equations, considering no homogeneous flow with drift-flux approximation and non-equilibrium thermodynamic. The neutronic process is calculated with a point kinetics model. Typical BWR reactivity effects are considered: void fraction, fuel temperature, moderator temperature and control rod density. Collapsed parameters were included in the code to represent the core using an average fuel channel. For the stability analysis, in the frequency domain, the transfer function is determined by applying Laplace-transforming to the calculated pressure drop perturbations in each of the considered regions where a constant total pressure drop was considered. The transfer function was used to study the system response in the frequency domain when an inlet flow perturbation is applied. The results show that the neutronic behavior of the core with thorium uranium fuel is similar to a UO{sub 2} core, even during transient conditions. The stability and transient analysis show that the thorium-uranium fuel can be operated safely in current BWRs.

  4. Analysis of containment venting following a core damage at a BWR Mark I using THALES-2

    Energy Technology Data Exchange (ETDEWEB)

    Widodo, Surip [Nuclear Safety Technology Development Center, National Nuclear Energy Agency (BATAN), Tangerang (Indonesia); Ishikawa, Jun; Muramatsu, Ken [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Sakamoto, Toru [Toshiba Advanced System Co., Kawasaki, Kanagawa (Japan)

    2000-11-01

    Analysis of containment venting following a core damage at a boiling water reactor (BWR) Mark I using THALES-2 was performed. In this analysis, the effect of various parameters, namely, the areas of the vent path, containment venting pressure, and accident sequences on the containment thermodynamic response, and radionuclide transport and release in the containment venting at a BWR was examined. The code THALES-2B developed by the Japan Atomic Energy Research Institute (JAERI) was used in this analysis. The model plant in this analysis was the Browns Ferry plant. From this analysis was found that the 4-inch pipe of containment venting flow path is sufficient to maintain the containment pressure in the specified range if the containment was pressurized by the decay heat power. The entrainment by the pool swelling as well as by the flashing was not occurred during the containment venting. The source terms are not sensitive to the variation of containment venting flow path area. The containment venting pressure operation setting point has important rule in the containment venting. In the containment venting, the source terms are not sensitive to the accident sequence, except for Sr source term. In order to get better understanding on the containment venting strategy, the following analyses are necessary. Analyses of accident sequence which has a high power such as anticipated transient without scram are necessary, as well as analyses of accident sequence which pressurize the containment before the core damage. (author)

  5. Identification and initial assessment of candidate BWR late-phase in-vessel accident management strategies

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, S.A.

    1991-04-15

    Work sponsored by the United States Nuclear Regulatory Commission (USNRC) to identify and perform preliminary assessments of candidate BWR (boiling water reactor) in-vessel accident management strategies was completed at Oak Ridge National Laboratory (ORNL) during fiscal year 1990. Mitigative strategies for containment events have been the subject of a companion study at Brookhaven National Laboratory. The focus of this Oak Ridge effort was the development of new strategies for mitigation of the late phase events, that is, the events that would occur in-vessel after the onset of significant core damage. The work began with an investigation of the current status of BWR in-vessel accident management procedures and proceeded through a preliminary evaluation of several candidate new strategies. The steps leading to the identification of the candidate strategies are described. The four new candidate late-phase (in-vessel) accident mitigation strategies identified by this study and discussed in the report are: (1) keep the reactor vessel depressurized; (2) restore injection in a controlled manner; (3) inject boron if control blade damage has occurred; and (4) containment flooding to maintain core and structural debris in-vessel. Additional assessments of these strategies are proposed.

  6. 78 FR 35990 - All Operating Boiling-Water Reactor Licensees With Mark I And Mark II Containments; Docket Nos...

    Science.gov (United States)

    2013-06-14

    ... regulatory analysis of possible improvements to Mark I and Mark II reliable hardened containment vents, including the option of installing severe accident capable vents. That analysis is available in the NRC's... BWR-Mark I. and 3. Pilgrim Nuclear Power Station BWR-Mark I. Quad Cities Nuclear Power Station,...

  7. A New Methodology for Early Anomaly Detection of BWR Instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, K. N.

    2005-11-27

    The objective of the performed research is to develop an early anomaly detection methodology so as to enhance safety, availability, and operational flexibility of Boiling Water Reactor (BWR) nuclear power plants. The technical approach relies on suppression of potential power oscillations in BWRs by detecting small anomalies at an early stage and taking appropriate prognostic actions based on an anticipated operation schedule. The research utilizes a model of coupled (two-phase) thermal-hydraulic and neutron flux dynamics, which is used as a generator of time series data for anomaly detection at an early stage. The model captures critical nonlinear features of coupled thermal-hydraulic and nuclear reactor dynamics and (slow time-scale) evolution of the anomalies as non-stationary parameters. The time series data derived from this nonlinear non-stationary model serves as the source of information for generating the symbolic dynamics for characterization of model parameter changes that quantitatively represent small anomalies. The major focus of the presented research activity was on developing and qualifying algorithms of pattern recognition for power instability based on anomaly detection from time series data, which later can be used to formulate real-time decision and control algorithms for suppression of power oscillations for a variety of anticipated operating conditions. The research being performed in the framework of this project is essential to make significant improvement in the capability of thermal instability analyses for enhancing safety, availability, and operational flexibility of currently operating and next generation BWRs.

  8. Interfacing systems LOCAs (Loss of Coolant Accidents) at boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Tsong-Lun; Fitzpatrick, R.; Stoyanov, S.

    1987-01-01

    The work presented in this paper was performed by Brookhaven National Laboratory (BNL) in support of Nuclear Regulatory Commission's (NRC) effort towards the resolution of Generic Issue 105 ''Interfacing System Loss of Coolant Accidents (LOCAs) at Boiling Water Reactors (BWRs).'' For BWRs, intersystem LOCA have typically either not been considered in probabilistic risk analyses, or if considered, were judged to contribute little to the risk estimates because of their perceived low frequency of occurrence. However, recent operating experience indicates that the pressure isolation valves (PIVs) in BWRs may not adequately protect against overpressurization of low pressure systems. The objective of this paper is to present the results of a study which analyzed interfacing system LOCA at several BWRs. The BWRs were selected to best represent a spectrum of BWRs in service using industry operating event experience and plant-specific information/configurations. The results presented here include some possible changes in test requirements/practices as well as an evaluation of their reduction potential in terms of core damage frequency (CDF).

  9. Burnout in subcooled flow boiling of water. A visual experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Celata, G.P.; Mariani, A.; Zummo, G. [ENEA, Engineering Div., National Institute of Thermal Fluid-Dynamics, Rome (Italy); Cumo, M. [University of Rome la Sapienza, Rome (Italy)

    2000-12-01

    The objective of the present work is to perform a photographic study of the burnout in highly subcooled flow boiling, in order to provide a qualitative description of the flow pattern under different conditions of boiling regime: ONB (onset of nucleate boiling), subcooled flow boiling and thermal crisis. In particular, the flow visualisation is focused on the phenomena occurring on the heated wall during the thermal crisis up to the physical burnout of the heater. Vapour bubble parameters are measured from flow images recorded, while the wall temperature is measured with an indirect method, by recording the heater elongation during all flow regimes studied. The combination of bubble parameters and wall temperature measurements as well as direct observations of the flow pattern, for all flow regimes, are collected in graphs which provide a useful global point of view of boiling phenomena, especially during boiling crisis. Under these conditions, a detailed analysis of the mechanisms leading to the critical heat flux is reported, and the so called events sequence, from thermal crisis occurrence up to heater burnout, is illustrated. (authors)

  10. Alternative cooling water flow path for RHR heat exchanger and its effect on containment response during extended station blackout for Chinshan BWR-4 plant

    Energy Technology Data Exchange (ETDEWEB)

    Yuann, Yng-Ruey, E-mail: ryyuann@iner.gov.tw

    2016-04-15

    Highlights: • Motivating alternative RHR heat exchanger tube-side flow path and determining required capacity. • Calculate NSSS and containment response during 24-h SBO for Chinshan BWR-4 plant. • RETRAN and GOTHIC models are developed for NSSS and containment, respectively. • Safety relief valve blowdown flow and energy to drywell are generated by RETRAN. • Analyses are performed with and without reactor depressurization, respectively. - Abstract: The extended Station Blackout (SBO) of 24 h has been analyzed with respect to the containment response, in particular the suppression pool temperature response, for the Chinshan BWR-4 plant of MARK-I containment. The Chinshan plant, owned by Taiwan Power Company, has twin units with rated core thermal power of 1840 MW each. The analysis is aimed at determining the required alternative cooling water flow capacity for the residual heat removal (RHR) heat exchanger when its tube-side sea water cooling flow path is blocked, due to some reason such as earthquake or tsunami, and is switched to the alternative raw water source. Energy will be dissipated to the suppression pool through safety relief valves (SRVs) of the main steam lines during SBO. The RETRAN model is used to calculate the Nuclear Steam Supply System (NSSS) response and generate the SRV blowdown conditions, including SRV pressure, enthalpy, and mass flow rate. These conditions are then used as the time-dependent boundary conditions for the GOTHIC code to calculate the containment pressure and temperature response. The shaft seals of the two recirculation pumps are conservatively assumed to fail due to loss of seal cooling and a total leakage flow rate of 36 gpm to the drywell is included in the GOTHIC model. Based on the given SRV blowdown conditions, the GOTHIC containment calculation is performed several times, through the adjustment of the heat transfer rate of the RHR heat exchanger, until the criterion that the maximum suppression pool temperature

  11. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL; Ade, Brian J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Mertyurek, Ugur [ORNL; Radulescu, Georgeta [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (keff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup

  12. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.; Mallen, A.N.; Neymotin, L.Y.

    1998-03-01

    This document is the User`s Manual for the Boiling Water Reactor (BWR), and Simplified Boiling Water Reactor (SBWR) systems transient code RAMONA-4B. The code uses a three-dimensional neutron-kinetics model coupled with a multichannel, nonequilibrium, drift-flux, phase-flow model of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients. Chapter 1 gives an overview of the code`s capabilities and limitations; Chapter 2 describes the code`s structure, lists major subroutines, and discusses the computer requirements. Chapter 3 is on code, auxillary codes, and instructions for running RAMONA-4B on Sun SPARC and IBM Workstations. Chapter 4 contains component descriptions and detailed card-by-card input instructions. Chapter 5 provides samples of the tabulated output for the steady-state and transient calculations and discusses the plotting procedures for the steady-state and transient calculations. Three appendices contain important user and programmer information: lists of plot variables (Appendix A) listings of input deck for sample problem (Appendix B), and a description of the plotting program PAD (Appendix C). 24 refs., 18 figs., 11 tabs.

  13. Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-30

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.

  14. Thermal utilization opportunities with a small-to-medium sized BWR

    Energy Technology Data Exchange (ETDEWEB)

    Konkin, D.; Simonson, C.J.; Dalai, A.K.; Tanino, K.; Guo, H., E-mail: doug.konkin@usask.ca [Univ. of Saskatchewan, Saskatchewan (Canada); Nishida, K.; Mochida, T. [Hitachi-GE Nuclear Energy, Ltd., Ibaraki (Japan); Ikegawa, T.; Kito, K. [Hitachi, Ltd., Ibaraki (Japan); Knudsen, R. [LeanOptions Consulting, Inc., Regina, Saskatchewan (Canada); Aikman, A. [SNC-Lavalin, Saskatoon, Saskatchewan (Canada); Humphries, R. [AMEC, Toronto, Ontario (Canada)

    2014-07-01

    Hitachi-GE Nuclear Energy Ltd. (Hitachi-GE) has developed a conceptual design for a Double MS: Modular Simplified & Medium Small Reactor (DMS) under the sponsorship of The Japan Atomic Power Company. Recent efforts have yielded enhancements for improved safety and reactor core performance. The DMS is an innovative small-to-medium sized Boiling Water Reactor (BWR), which, based only on electricity generation, has been estimated to almost overcome economy of scale concerns when compared to proven conventional Advanced Boiling Water Reactor (ABWR) technologies. In order to make the DMS more attractive, the University of Saskatchewan (U of S), Hitachi-GE and Hitachi Ltd. (Hitachi) have collaborated on a joint research and development (R&D) initiative to study the utilization of heat and steam from the Balance of Plant (BOP) associated with the DMS for thermal utilization (TU) applications. In this paper, the advanced features of the DMS and the individual projects of the R&D program will be described. (author)

  15. Literature Survey on the Stress Corrosion Cracking of Low-Alloy Steels in High Temperature Water

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P

    2002-02-01

    The present report is a summary of a literature survey on the stress corrosion cracking (SCC) behaviour/ mechanisms in low-alloy steels (LAS) in high-temperature water with special emphasis to primary-pressure-boundary components of boiling water reactors (BWR). A brief overview on the current state of knowledge concerning SCC of low-alloy reactor pressure vessel and piping steels under BWR conditions is given. After a short introduction on general aspects of SCC, the main influence parameter and available quantitative literature data concerning SCC of LAS in high-temperature water are discussed on a phenomenological basis followed by a summary of the most popular SCC models for this corrosion system. The BWR operating experience and service cracking incidents are discussed with respect to the existing laboratory data and background knowledge. Finally, the most important open questions and topics for further experimental investigations are outlined. (author)

  16. Study of Pu consumption in advanced light water reactors: Evaluation of GE advanced boiling water reactor plants - compilation of Phase 1B task reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-15

    This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.

  17. A dry-spot model for the prediction of critical heat flux in water boiling in bubbly flow regime

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Sang Jun; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents a prediction of critical heat flux (CHF) in bubbly flow regime using dry-spot model proposed recently by authors for pool and flow boiling CHF and existing correlations for forced convective heat transfer coefficient, active site density and bubble departure diameter in nucleate boiling region. Without any empirical constants always present in earlier models, comparisons of the model predictions with experimental data for upward flow of water in vertical, uniformly-heated round tubes are performed and show a good agreement. The parametric trends of CHF have been explored with respect to variations in pressure, tube diameter and length, mass flux and inlet subcooling. 16 refs., 6 figs., 1 tab. (Author)

  18. Numerical thermal analysis of water's boiling heat transfer based on a turbulent jet impingement on heated surface

    Science.gov (United States)

    Toghraie, D.

    2016-10-01

    In this study, a numerical method for simulation of flow boiling through subcooled jet on a hot surface with 800 °C has been presented. Volume fraction (VOF) has been used to simulate boiling heat transfer and investigation of the quench phenomena through fluid jet on a hot horizontal surface. Simulation has been done in a fixed Tsub=55 °C, Re=5000 to Re=50,000 and also in different Tsub =Tsat -Tf between 10 °C and 95 °C. The effect of fluid jet velocity and subcooled temperature on the rewetting temperature, wet zone propagation, cooling rate and maximum heat flux has been investigated. The results of this study show that by increasing the velocity of fluid jet of water, convective heat transfer coefficient at stagnation point increases. More ever, by decreasing the temperature of the fluid jet, convective heat transfer coefficient increases.

  19. Development of the radiation models of a BWR type reactor and it facility in the SUN-RAH; Desarrollo de modelos de radiacion de un reactor tipo BWR y su instalacion en el SUN-RAH

    Energy Technology Data Exchange (ETDEWEB)

    Barron A, I. [Facultad de Ingenieria, UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: isbarron@yahoo.com.mx

    2005-07-01

    This work about generation models, transport in processes and radioactive contamination of areas of a BWR central, is an amplification to the project developed in the UNAM to have a support tool in subjects or electric generation courses. It is planned about the implementation of models of radiation generation in a BWR type reactor for complement the functions developed in the University Simulator of Nucleo electric- Boiling water reactor (SUN-RAH) which it has been implemented in Simulink of MatLab and it has a model for the dynamics of one nucleo electric central that presents the main characteristics of the reactor vessel, the recirculation system, steam lines, turbines, generator, condensers and feeding water, defined by the main processes that intervene in the generation of energy of these plants. By this way the radiation monitoring systems for area and process, operate simultaneously with the processes of energy generation, with that is possible to observe the changes that present with respect to the operation conditions of the plant, and likewise to appreciate the radiation transport process through the components of the reactor, steam lines and turbines, for different operation conditions and possible faults that they could be presented during the reactor operation. (Author)

  20. Physicochemical and Sensory Properties of Boiled Prosopis africana Seed Endosperm Macerated in Various Ethanol-water Mixtures

    Directory of Open Access Journals (Sweden)

    James E. Obiegbuna

    2013-09-01

    Full Text Available The processing of boiled Prosopis africana endosperm for better utilization using ethanol-water mixtures was explored. Prosopis africana seeds were boiled for 5 h to softness and the endosperm fraction separated from the kernel (cotyledon and the hull. The endosperm was divided into five equal parts which were individually macerated in absolute (Abs ethanol, 80, 60 and 40% ethanol in water prior to sun-drying (32±2°C, 3 days. The fifth sample, which served as control, was left untreated with ethanol. The samples were ground using a hand milling machine and analyzed for the proximate composition, water and oil absorption capacities, foaming capacity and foam stability, bulk density, emulsion activity and stability, colour preference, texture preference and overall acceptability. The results revealed that treatment of the endosperm significantly affected the moisture, protein, fat, ash and carbohydrate contents; water and oil absorption capacities, foaming capacity and foam stability; and the sensory properties. The moisture and protein contents, oil absorption capacity, foam stability, appearance, texture and overall acceptability of endosperm treated with 40% ethanol in water differed significantly (p<0.05 from that treated with absolute ethanol. There was also significant (p<0.05 differences in moisture, protein and carbohydrate contents, oil absorption capacity and foam stability of the 40% ethanol in water treated endosperm and the control. Slightly above 40% ethanol in water (50-60% should be used to macerate Prosopis africana endosperm to reduce the cost of using absolute ethanol.

  1. Technical Specification action statements requiring shutdown. A risk perspective with application to the RHR/SSW systems of a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Mankamo, T. [Avaplan Oy, Espoo (Finland); Kim, I.S.; Samanta, P.K. [Brookhaven National Lab., Upton, NY (United States)

    1993-11-01

    When safety systems fail during power operation, the limiting conditions for operation (LCOs) and associated action statements of technical specifications typically require that the plant be shut down within the limits of allowed outage time (AOT). However, when a system needed to remove decay heat, such as the residual heat removal (RHR) system, is inoperable or degraded, shutting down the plant may not necessarily be preferable, from a risk perspective, to continuing power operation over a usual repair time, giving priority to the repairs. The risk impact of the basic operational alternatives, i.e., continued operation or shutdown, was evaluated for failures in the RHR and standby service water (SSW) systems of a boiling-water reactor (BWR) nuclear power plant. A complete or partial failure of the SSW system fails or degrades not only the RHR system but other front-line safety systems supported by the SSW system. This report presents the methodology to evaluate the risk impact of LCOs and associated AOT; the results of risk evaluation from its application to the RHR and SSW systems of a BWR; the findings from the risk-sensitivity analyses to identify alternative operational policies; and the major insights and recommendations to improve the technical specifications action statements.

  2. Effect of a Sulphate Transient on the EAC Crack Growth Behaviour of Low-Alloy RPV Steels under Simulated BWR Operating Conditions (CASTOC WP 3, PSI Test 1)

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S.; Seifert, H. P

    2002-03-01

    Within the CASTOC-project (5th EU FW programme), the environmentally-assisted crack (EAC) growth behaviour of low-alloy reactor pressure vessel (RPV) steels is experimentally investigated under simulated transient and steady-state boiling water reactor (BWR) power operation conditions by six European laboratories. Within WP 3 of this project, the Paul Scherrer Institut (PSI) investigates the effect of water chemistry transients on the EAC crack growth behaviour under periodical partial unloading (PPU) conditions. The present report is a summary of the first PSI test of WP 3 with a Na{sub 2}SO{sub 4} transient. In the first part of the report, the theoretical background on crack growth mechanisms, crack chemistry, mass transport and water chemistry transients as well as a brief literature survey on other water chemistry transient investigations is given. Furthermore, the experimental equipment and test procedure is presented, followed by a summary of the results of PSI test 1 of WP 3. Finally the results are discussed in detail and compared to literature data. In the first part of the experiment, an actively growing EAC crack was generated by PPU in oxygenated high-temperature, high-purity water (T = 288 {sup o}C, DO = 8 ppm, SO{sub 4}{sup 2-} < 0.6 ppb). Then a sulphate transient was applied. The duration ({approx} 300 h) and the amount of sulphate (SO{sub 4}{sup 2-} = 368 ppb) of the applied sulphate transient conservatively covered all sulphate transients, which might occur in BWR/normal water chemistry (NWC) practice. After the transient, outlet conductivity was lowered from ca. 1 {mu}S/cm to less than 0.15 {mu}S/cm within 2.6 h by a 'two-loop technique'. No accelerating effect of the sulphate transient on the EAC crack growth of both tested fracture mechanics specimens under highly oxidising BWR/NWC conditions was observed, making it impossible to deterrnine incubation or delay times. The EAC crack growth rates (CGR) before, during and after the

  3. Bubble Dynamics for Nucleate Pool Boiling of Water, Ethanol and Methanol Pure Liquids under the Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    samane hamzekhani

    2015-01-01

    Full Text Available Bubble dynamics is the most important sub-phenomenon, which basically affects the nucleate pool boiling heat transfer coefficient. In this research, bubble departure diameter values were experimentally measured for heat fluxes up to 110 kW.m-2. Experiments were carried out for pool boiling of pure liquids, including water, ethanol and methanol on a horizontal smoothed cylinder, at atmospheric pressure. For ethanol and methanol, rigid spherical bubbles with small contact area were observed. The spherical shapes seem to be because of small diameters.For all test fluids, experimental results show that bubble diameter increases with increasing heat flux. Most predictions have a similar trend for increasing bubble diameter versus increasing heat flux. Also, the existing well-known and most common used correlations are comparatively discussedwith the present experimental data. Finally, a new model for the prediction of vapor bubble departure diameter, based on Buckingham theory, in nucleate boiling is proposed, which predicts the experimental data with a satisfactory accuracy.

  4. Impact analysis of modifying the composition of the nuclear fuel of a BWR with beryllium oxide; Analisis del impacto de modificar la composicion del combustible nuclear de un BWR con oxido de berilio

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo V, J. M.; Morales S, J. B., E-mail: euqrop@hotmail.com [UNAM, Facultad de Ingenieria, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2013-10-15

    The beryllium oxide (Be O) presents excellent physical properties, especially its high thermal conductivity that contrasts clearly with that of the uranium dioxide (UO{sub 2}) used at the present as fuel in a great number of nuclear plants. The present work models a nuclear reactor cooled by light water in boiling with two external recirculation loops (BWR/5) using the code for the transitory analysis and postulated accidents Trac-B F1, implementing a UO{sub 2} mixture and different fractions of Be O, with the objective of improving the thermal conductivity of the fuel. The numeric results and the realized analyses indicate that when adding a fraction in volume of 10% the central temperature decreases in 30.4% in stationary state, while during the large break loss of coolant accident the peak cladding temperature diminishes in 7%. Although the real interaction of the mixture has not been determined experimentally, the obtained results are promising. (Author)

  5. Source term attenuation by water in the Mark I boiling water reactor drywell

    Energy Technology Data Exchange (ETDEWEB)

    Powers, D.A. [Sandia National Labs., Albuquerque, NM (United States)

    1993-09-01

    Mechanistic models of aerosol decontamination by an overlying water pool during core debris/concrete interactions and spray removal of aerosols from a Mark I drywell atmosphere are developed. Eighteen uncertain features of the pool decontamination model and 19 uncertain features of the model for the rate coefficient of spray removal of aerosols are identified. Ranges for values of parameters that characterize these uncertain features of the models are established. Probability density functions for values within these ranges are assigned according to a set of rules. A Monte Carlo uncertainty analysis of the decontamination factor produced by water pools 30 and 50 cm deep and subcooled 0--70 K is performed. An uncertainty analysis for the rate constant of spray removal of aerosols is done for water fluxes of 0.25, 0.01, and 0.001 cm{sup 3} H{sub 2}O/cm{sup 2}-s and decontamination factors of 1.1, 2, 3.3, 10, 100, and 1000.

  6. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Chopra, O. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Gruber, Eugene E. [Argonne National Lab. (ANL), Argonne, IL (United States); Shack, William J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2010-06-01

    The internal components of light water reactors are exposed to high-energy neutron irradiation and high-temperature reactor coolant. The exposure to neutron irradiation increases the susceptibility of austenitic stainless steels (SSs) to stress corrosion cracking (SCC) because of the elevated corrosion potential of the reactor coolant and the introduction of new embrittlement mechanisms through radiation damage. Various nonsensitized SSs and nickel alloys have been found to be prone to intergranular cracking after extended neutron exposure. Such cracks have been seen in a number of internal components in boiling water reactors (BWRs). The elevated susceptibility to SCC in irradiated materials, commonly referred to as irradiation-assisted stress corrosion cracking (IASCC), is a complex phenomenon that involves simultaneous actions of irradiation, stress, and corrosion. In recent years, as nuclear power plants have aged and irradiation dose increased, IASCC has become an increasingly important issue. Post-irradiation crack growth rate and fracture toughness tests have been performed to provide data and technical support for the NRC to address various issues related to aging degradation of reactor-core internal structures and components. This report summarizes the results of the last group of tests on compact tension specimens from the Halden-II irradiation. The IASCC susceptibility of austenitic SSs and heat-affected-zone (HAZ) materials sectioned from submerged arc and shielded metal arc welds was evaluated by conducting crack growth rate and fracture toughness tests in a simulated BWR environment. The fracture and cracking behavior of HAZ materials, thermally sensitized SSs and grain-boundary engineered SSs was investigated at several doses (≤3 dpa). These latest results were combined with previous results from Halden-I and II irradiations to analyze the effects of neutron dose, water chemistry, alloy compositions, and welding and processing conditions on IASCC

  7. Simulation of Thermal Stratification in BWR Suppression Pools with One Dimensional Modeling Method

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Ling Zou; Hongbin Zhang

    2014-01-01

    The suppression pool in a boiling water reactor (BWR) plant not only is the major heat sink within the containment system, but also provides the major emergency cooling water for the reactor core. In several accident scenarios, such as a loss-of-coolant accident and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; the pool temperature distribution also affects the NPSHa (available net positive suction head) and therefore the performance of the Emergency Core Cooling System and Reactor Core Isolation Cooling System pumps that draw cooling water back to the core. Current safety analysis codes use zero dimensional (0-D) lumped parameter models to calculate the energy and mass balance in the pool; therefore, they have large uncertainties in the prediction of scenarios in which stratification and mixing are important. While three-dimensional (3-D) computational fluid dynamics (CFD) methods can be used to analyze realistic 3-D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, resulting in a long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code (Berkeley mechanistic MIXing code in C++) has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by one-dimensional (1-D) transient partial differential equations and substructures (such as free or wall jets) are modeled with 1-D integral models. This allows very large reductions in computational effort compared to multi-dimensional CFD modeling. One heat-up experiment performed at the Finland POOLEX facility, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, is used for

  8. Evaluation of the radial design of fuel cells in an operation cycle of a BWR reactor; Evaluacion del diseno radial de celdas de combustible en un ciclo de operacion de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez C, J.; Martin del Campo M, C. [Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Facultad de Ingenieria, UNAM, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)]. e-mail: jgco@ver.megared.net.mx

    2003-07-01

    This work is continuation of one previous in the one that the application of the optimization technique called Tabu search to the radial design of fuel cells of boiling water reactors (BWR, Boiling Water Reactor) is presented. The objective function used in the optimization process only include neutron parameters (k-infinite and peak of radial power) considering the cell at infinite media. It was obtained to reduce the cell average enrichment completing the characteristics of reactivity of an original cell. The objective of the present work is to validate the objective function that was used for the radial design of the fuel cell (test cell), analyzing the operation of a one cycle of the reactor in which fuels have been fresh recharged that contain an axial area with the nuclear database of the cell designed instead of the original cell. For it is simulated it with Cm-Presto the cycle 10 of the reactor operation of the Unit 1 of the Nuclear Power station of Laguna Verde (U1-CNLV). For the cycle evaluation its were applied so much the simulation with the Haling strategy, as the simulation of the one cycle with control rod patterns and they were evaluated the energy generation and several power limits and reactivity that are used as design parameters in fuel reloads of BWR reactors. The results at level of an operation cycle of the reactor, show that the objective function used in the optimization and radial design of the cell is adequate and that it can induce to one good use of the fuel. (Author)

  9. Comparing Simulation Results with Traditional PRA Model on a Boiling Water Reactor Station Blackout Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Zhegang Ma; Diego Mandelli; Curtis Smith

    2011-07-01

    A previous study used RELAP and RAVEN to conduct a boiling water reactor station black-out (SBO) case study in a simulation based environment to show the capabilities of the risk-informed safety margin characterization methodology. This report compares the RELAP/RAVEN simulation results with traditional PRA model results. The RELAP/RAVEN simulation run results were reviewed for their input parameters and output results. The input parameters for each simulation run include various timing information such as diesel generator or offsite power recovery time, Safety Relief Valve stuck open time, High Pressure Core Injection or Reactor Core Isolation Cooling fail to run time, extended core cooling operation time, depressurization delay time, and firewater injection time. The output results include the maximum fuel clad temperature, the outcome, and the simulation end time. A traditional SBO PRA model in this report contains four event trees that are linked together with the transferring feature in SAPHIRE software. Unlike the usual Level 1 PRA quantification process in which only core damage sequences are quantified, this report quantifies all SBO sequences, whether they are core damage sequences or success (i.e., non core damage) sequences, in order to provide a full comparison with the simulation results. Three different approaches were used to solve event tree top events and quantify the SBO sequences: “W” process flag, default process flag without proper adjustment, and default process flag with adjustment to account for the success branch probabilities. Without post-processing, the first two approaches yield incorrect results with a total conditional probability greater than 1.0. The last approach accounts for the success branch probabilities and provides correct conditional sequence probabilities that are to be used for comparison. To better compare the results from the PRA model and the simulation runs, a simplified SBO event tree was developed with only four

  10. Application of the MOVE algorithm for the identification of reduced order models of a core of a BWR type reactor; Aplicacion del algoritmo MOVE para la identificacion de modelos de orden reducido del nucleo de un reactor tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Victoria R, M.A.; Morales S, J.B. [UNAM, DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: angelvr@gmail.com

    2005-07-01

    Presently work is applied the modified algorithm of the ellipsoid of optimal volume (MOVE) to a reduced order model of 5 differential equations of the core of a boiling water reactor (BWR) with the purpose of estimating the parameters that model the dynamics. The viability is analyzed of carrying out an analysis that calculates the global dynamic parameters that determine the stability of the system and the uncertainty of the estimate. The modified algorithm of the ellipsoid of optimal volume (MOVE), is a method applied to the parametric identification of systems, in particular to the estimate of groups of parameters (PSE for their initials in English). It is looked for to obtain the ellipsoid of smaller volume that guarantees to contain the real value of the parameters of the model. The PSE MOVE is a recursive identification method that can manage the sign of noise and to ponder it, the ellipsoid represents an advantage due to its easy mathematical handling in the computer, the results that surrender are very useful for the design of Robust Control since to smaller volume of the ellipsoid, better is in general the performance of the system to control. The comparison with other methods presented in the literature to estimate the reason of decline (DR) of a BWR is presented. (Author)

  11. Assessment of water hammer effects on boiling water nuclear reactor core dynamics

    Directory of Open Access Journals (Sweden)

    Bousbia-Salah Anis

    2007-01-01

    Full Text Available Complex phenomena, as water hammer transients, occurring in nuclear power plants are still not very well investigated by the current best estimate computational tools. Within this frame work, a rapid positive reactivity addition into the core generated by a water hammer transient is considered. The numerical simulation of such phenomena was carried out using the coupled RELAP5/PARCS code. An over all data comparison shows good agreement between the calculated and measured core pressure wave trends. However, the predicted power response during the excursion phase did not correctly match the experimental tendency. Because of this, sensitivity studies have been carried out in order to identify the most influential parameters that govern the dynamics of the power excursion. After investigating the pressure wave amplitude and the void feed back responses, it was found that the disagreement between the calculated and measured data occurs mainly due to the RELAP5 low void condensation rate which seems to be questionable during rapid transients. .

  12. Study of Pu consumption in Advanced Light Water Reactors. Evaluation of GE Advanced Boiling Water Reactor plants

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-13

    Timely disposal of the weapons plutonium is of paramount importance to permanently safeguarding this material. GE`s 1300 MWe Advanced Boiling Water Reactor (ABWR) has been designed to utilize fill] core loading of mixed uranium-plutonium oxide fuel. Because of its large core size, a single ABWR reactor is capable of disposing 100 metric tons of plutonium within 15 years of project inception in the spiking mode. The same amount of material could be disposed of in 25 years after the start of the project as spent fuel, again using a single reactor, while operating at 75 percent capacity factor. In either case, the design permits reuse of the stored spent fuel assemblies for electrical energy generation for the remaining life of the plant for another 40 years. Up to 40 percent of the initial plutonium can also be completely destroyed using ABWRS, without reprocessing, either by utilizing six ABWRs over 25 years or by expanding the disposition time to 60 years, the design life of the plants and using two ABWRS. More complete destruction would require the development and testing of a plutonium-base fuel with a non-fertile matrix for an ABWR or use of an Advanced Liquid Metal Reactor (ALMR). The ABWR, in addition, is fully capable of meeting the tritium target production goals with already developed target technology.

  13. Minor Actinides Loading Optimization for Proliferation Resistant Fuel Design - BWR

    Energy Technology Data Exchange (ETDEWEB)

    G. S. Chang; Hongbin Zhang

    2009-09-01

    One approach to address the United States Nuclear Power (NP) 2010 program for the advanced light water reactor (LWR) (Gen-III+) intermediate-term spent fuel disposal need is to reduce spent fuel storage volume while enhancing proliferation resistance. One proposed solution includes increasing burnup of the discharged spent fuel and mixing minor actinide (MA) transuranic nuclides (237Np and 241Am) in the high burnup fuel. Thus, we can reduce the spent fuel volume while increasing the proliferation resistance by increasing the isotopic ratio of 238Pu/Pu. For future advanced nuclear systems, MAs are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. A typical boiling water reactor (BWR) fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of adding MAs (237Np and/or 241Am) to enhance proliferation resistance and improve fuel cycle performance for the intermediate-term goal of future nuclear energy systems. However, adding MAs will increase plutonium production in the discharged spent fuel. In this work, the Monte-Carlo coupling with ORIGEN-2.2 (MCWO) method was used to optimize the MA loading in the UO2 fuel such that the discharged spent fuel demonstrates enhanced proliferation resistance, while minimizing plutonium production. The axial averaged MA transmutation characteristics at different burnup were compared and their impact on neutronics criticality and the ratio of 238Pu/Pu discussed.

  14. Preliminary phenomena identification and ranking tables for simplified boiling water reactor Loss-of-Coolant Accident scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, P.G.; Rohatgi, U.S.; Jo, J.H.; Slovik, G.C.

    1998-04-01

    For three potential Loss-of-Coolant Accident (LOCA) scenarios in the General Electric Simplified Boiling Water Reactors (SBWR) a set of Phenomena Identification and Ranking Tables (PIRT) is presented. The selected LOCA scenarios are typical for the class of small and large breaks generally considered in Safety Analysis Reports. The method used to develop the PIRTs is described. Following is a discussion of the transient scenarios, the PIRTs are presented and discussed in detailed and in summarized form. A procedure for future validation of the PIRTs, to enhance their value, is outlined. 26 refs., 25 figs., 44 tabs.

  15. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.; Henley, D.R. (Argonne National Lab., IL (USA)); Manion, W.J.; Gordon, J.W. (Nuclear Energy Services, Inc., Danbury, CT (USA))

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs.

  16. Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure - main report. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.; McDuffie, P.N.

    1996-07-01

    The NRC staff is in need of updated bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2), which is a boiling water reactor (BWR), located at Richland, Washington, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a {open_quotes}green field{close_quotes} condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low- level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities. Sensitivity of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances is also examined.

  17. Experimental and Thermalhydraulic Code Assessment of the Transient Behavior of the Passive Condenser System in an Advanced Boiling Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S.T. Revankar; W. Zhou; Gavin Henderson

    2008-07-08

    The main goal of the project was to study analytically and experimentally the condensation heat transfer for the passive condenser system such as GE Economic Simplified Boiling Water Reactor (ESBWR). The effect of noncondensable gas in condenser tube and the reduction of secondary pool water level to the condensation heat transfer coefficient was the main focus in this research. The objectives of this research were to : 1) obtain experimental data on the local and tube averaged condensation heat transfer rates for the PCCS with non-condensable and with change in the secondary pool water, 2) assess the RELAP5 and TRACE computer code against the experimental data, and 3) develop mathematical model and ehat transfer correlation for the condensation phenomena for system code application. The project involves experimentation, theoretical model development and verification, and thermal- hydraulic codes assessment.

  18. In-situ Observation of Boiling Dynamics on Fuel Cladding Surface in Non-pressurized Water Using Acoustic Emission Method

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kaige; Baek, Seung Heon; Shim, Hee-Sang; Hur, Do Haeng; Lee, Deok Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In the PWR primary coolant system, a phenomenon of axial offset anomaly (AOA) can be caused due to accumulated boron hide out in porous CRUD deposition on the fuel cladding surface. Up to now, the CRUD deposition has been well known to be driven by subcooled nucleate boiling (SNB) on the cladding surface based on large scale experimental work. Therefore, monitoring and evaluation of the SNB-phenomenon is an important approach to study the CRUD deposition. Many attempts have been made to study the SNB and CRUD deposition using thermal hydraulic or model calculation. However, a comprehensive understanding of the SNB during CRUD deposition is still far from being realized. Acoustic emission (AE) technique, as an in-situ nondestructive evaluation (NDE) method, has been widely used to monitor the boiling activity in containers and pipes. Accordingly, this work aimed to investigate the exact AE characteristics of SNB-phenomenon on the fuel cladding surface at atmospheric pressure, with the purpose of providing an experimental groundwork for the AE investigation on SNB in high-temperature pressurized coolant system. In this study, we conducted an in-situ experimental observation of the bubble dynamic of SNB in non-pressurized water at atmospheric pressure using AE method. The AE of heater noise was confirmed to cluster between 8 and 26 khz. Three AE groups were detected during the boiling process in the Snob zones. AE group 1 and 3 seemed to be the results of bubble growth and collapse, while bubble departure from the cladding surface was reasonably associated with an isolated AE group 2.

  19. Analysis of a German BWR core with TRACE/PARCS using different cross section sets

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, C., E-mail: Christoph.Hartmann@kit.edu [Karlsruhe Inst. of Tech. (KIT), Inst. for Neutron Physics and Reactor Technology (INR), Eggenstein-Leopoldshafen (Germany); Westinghouse Electric Germany GmbH, Mannheim (Germany); Sanchez, V.H. [Karlsruhe Inst. of Tech. (KIT), Inst. for Neutron Physics and Reactor Technology (INR), Eggenstein-Leopoldshafen (Germany); Tietsch, W. [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2011-07-01

    'Full text:' Coupled Thermal-hydraulic/Neutron-kinetic (TH/NK) simulations of Boiling Water Reactor transients require well validated and accurate simulation tools as well as appropriate cross sections (XS) libraries depending on the individual thermal hydraulic state parameters. Problem-dependent XS-sets for 3D core simulations are being generated mainly by well validated, fast running and user-friendly lattice codes such as Casco and Helios. At research institutions and universities, alternative tools to the commercial ones with full access to the source code as well as moderate cost are urgently needed. The Scale system is being developed and improved for lattice physics calculations of real core loading of Light Water Reactors (LWR). It represents a promising alternative to the commercial lattice codes. At Karlsruhe Institute of Technology (Kit) a computational route based on Scale/Triton/Newt for BWR core loading is under development. The generated XS-data sets have to be transformed in PMAXS-format for use in the reactor dynamic code PARCS. This task is performed by the module GenPMAXS being developed and tested at the Michigan University. To verify the computational route, a BWR fuel assembly depletion problem was calculated by PARCS and compared to the CASMO results. Since the SCALE/TRITON XS-file does actually not contain all required neutronic data, FORTRAN routines have been developed to incorporate the missing data e.g. the yields of Iodine, Xenon and Promethium into the XS-data sets in the PMAXS-format. The comparison of the results obtained with PARCS (using the corrected PMAXS file) and CASMO for the depletion problem exhibited a good agreement. Consequently, this approach was followed for the generation of a complete XS-set for a real BWR core to be used in subsequent transient analysis. Then 3D neutronic and thermal hydraulic core model were elaborated for a TRACE/PARCS analysis. The thermal hydraulic model is based on the 3D VESSEL

  20. Prediction of the stability of BWR reactors during the start-up process; Prediccion de la estabilidad de reactores BWR durante el proceso de arranque

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz E, J.A.; Castillo D, R. [ININ, Km. 36.5 Carretera Mexico-Toluca, 52045 Salazar, Estado de Mexico (Mexico); Blazquez M, J.B. [Centro de Investigaciones Energetics, Medioambientales y Tecnologicas, Av Complutense 22, 28040 Madrid (Spain)

    2004-07-01

    The Boiling Water Reactors (BWR) are susceptible of uncertainties of power when they are operated to low flows of coolant (W) and high powers (P), being presented this situation mainly in the start-up process. The start-up process could be made but sure if the operator knew the value of the stability index Decay reason (Dr) before going up power and therefore to guarantee the stability. The power and the flow are constantly measures, the index Dr could also be considered its value in real time. The index Dr depends on the power, flow and many other values, such as, the distribution of the flow axial and radial neutronic, the temperature of the feeding water, the fraction of holes and other thermohydraulic and nuclear parameters. A simple relationship of Dr is derived leaving of the pattern reduced of March-Leuba, where three independent variables are had that are the power, the flow and a parameter that it contains the rest of the phenomenology, that is to say all the other quantities that affect the value of Dr. This relationship developed work presently and verified its prediction with data of start-up of commercial reactors could be used for the design of a practical procedure practice of start-up, what would support to the operator to prevent this type of events of uncertainty. (Author)

  1. Boiling of subcooled water in forced convection; Ebullition locale de l'eau en convection forcee

    Energy Technology Data Exchange (ETDEWEB)

    Ricque, R.; Siboul, R. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1970-07-01

    As a part of a research about water cooled high magnetic field coils, an experimental study of heat transfer and pressure drop is made with the following conditions: local boiling in tubes of small diameters (2 and 4 mm), high heat fluxes (about 1000 W/cm{sup 2}), high coolant velocities (up to 25 meters/s), low outlet absolute pressures (below a few atmospheres). Wall temperatures are determined with a good accuracy, because very thin tubes are used and heat losses are prevented. Two regimes of boiling are observed: the establishment regime and the established boiling regime and the inception of each regime is correlated. Important delays on boiling inception are also observed. The pressure drop is measured; provided the axial temperature distribution of the fluid and the axial distributions of the wall temperatures, in other words the axial distribution of the heat transfer coefficients under boiling and non boiling conditions, at the same heat flux or the same wall temperatures, are taken in account, then total pressure drop can be correlated, but probably under certain limits of void fraction only. Using the same parameters, it seems possible to correlate the experimental values on critical heat flux obtained previously, which show very important effect of length and hydraulic diameter of the test sections. (authors) [French] Dans le cadre d'une etude sur le refroidissement par l'eau des bobines electromagnetiques a champ intense, on etudie experimentalement l'echange thermique et la perte de pression avec ebullition locale a la paroi dans des tubes de petit diametre (2 et 4 mm), a flux thermique eleve (environ 1000 W/cm{sup 2}), pour des vitesses de circulation elevees (jusqu'a 25 m/s) et des pressions basses (quelques atmospheres). La paroi des tubes etant tres mince et les fuites thermiques etant annulees, les temperatures de paroi sont determinees de facon assez precise. On distingue deux phases dans l'ebullition locale; la phase d

  2. Thermohydraulic stability coupled to the neutronic in a BWR; Estabilidad termohidraulica acoplada a la neutronica en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Calleros M, G.; Zapata Y, M.; Gomez H, R.A.; Mendez M, A. [Comision Federal de Electricidad, Central Nucleoelectrica de Laguna Verde, Carretera Cardel-Nautla Km. 42.5, Mpio. Alto Lucero, Veracruz (Mexico); Castlllo D, R. [ININ, Carretera Mexico-Toluca Km 36.5, La Marquesa, Estado de Mexico (Mexico)]. e-mail: gcm9acpp@cfe.gob.mx

    2006-07-01

    In a BWR type reactor the phenomenon of the nuclear fission is presented, in which are liberated in stochastic form neutrons, originating that the population of the same ones varies in statistic form around a mean value. This variation will cause that when the neutron flow impacts on the neutron detectors, its are had as a result neutron flow signals with fluctuations around an average value. In this article it is shown that it conforms it lapses the time, this variations in the neutron flow (and therefore, in the flow signal due only to the fission), they presented oscillations inside a stable range, which won't be divergent. Considering that the BWR is characterized because boiling phenomena are presented, which affect the moderation of the neutrons, additional variations will be had in the signal coming from the neutron detectors, with relationship to the fission itself, which will be influenced by the feedback of the moderator's reactivity and of the temperature of the fuel pellet. Also, as the BWR it has coupled control systems to maintain the coolant level one and of the thermal power of the reactor, for each control action it was affected the neutron population. This means that the reactor could end up straying of a stable state condition. By it previously described, the study of the thermohydraulic stability coupled to the neutronic is complex. In this work it is shown the phenomenology, the mathematical models and the theoretical behavior associated to the stability of the BWR type reactor; the variables that affect it are identified, the models that reproduce the behavior of the thermohydraulic stability coupled to the neutronic, the way to maintain stable the reactor and the instrumentation that can settle to detect and to suppress uncertainties is described. In particular, is make reference to the evolution of the methods to maintain the stability of the reactor and the detection system and suppression of uncertainties implemented in the

  3. Optimum structural properties for an anode current collector used in a polymer electrolyte membrane water electrolyzer operated at the boiling point of water

    Science.gov (United States)

    Li, Hua; Fujigaya, Tsuyohiko; Nakajima, Hironori; Inada, Akiko; Ito, Kohei

    2016-11-01

    This study attempts to optimize the properties of the anode current collector of a polymer electrolyte membrane water electrolyzer at high temperatures, particularly at the boiling point of water. Different titanium meshes (4 commercial ones and 4 modified ones) with various properties are experimentally examined by operating a cell with each mesh under different conditions. The average pore diameter, thickness, and contact angle of the anode current collector are controlled in the ranges of 10-35 μm, 0.2-0.3 mm, and 0-120°, respectively. These results showed that increasing the temperature from the conventional temperature of 80 °C to the boiling point could reduce both the open circuit voltage and the overvoltages to a large extent without notable dehydration of the membrane. These results also showed that decreasing the contact angle and the thickness suppresses the electrolysis overvoltage largely by decreasing the concentration overvoltage. The effect of the average pore diameter was not evident until the temperature reached the boiling point. Using operating conditions of 100 °C and 2 A/cm2, the electrolysis voltage is minimized to 1.69 V with a hydrophilic titanium mesh with an average pore diameter of 21 μm and a thickness of 0.2 mm.

  4. Modeling and validation of a mechanistic tool (MEFISTO) for the prediction of critical power in BWR fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Adamsson, Carl, E-mail: carl.adamsson@psi.ch [Westinghouse Electric Sweden, SE-721 63, Vaesteras (Sweden); Le Corre, Jean-Marie, E-mail: lecorrjm@westinghouse.com [Westinghouse Electric Sweden, SE-721 63, Vaesteras (Sweden)

    2011-08-15

    Highlights: > The MEFISTO code efficiently and accurately predicts the dryout event in a BWR fuel bundle, using a mechanistic model. > A hybrid approach between a fast and robust sub-channel analysis and a three-field two-phase analysis is adopted. > MEFISTO modeling approach, calibration, CPU usage, sensitivity, trend analysis and performance evaluation are presented. > The calibration parameters and process were carefully selected to preserve the mechanistic nature of the code. > The code dryout prediction performance is near the level of fuel-specific empirical dryout correlations. - Abstract: Westinghouse is currently developing the MEFISTO code with the main goal to achieve fast, robust, practical and reliable prediction of steady-state dryout Critical Power in Boiling Water Reactor (BWR) fuel bundle based on a mechanistic approach. A computationally efficient simulation scheme was used to achieve this goal, where the code resolves all relevant field (drop, steam and multi-film) mass balance equations, within the annular flow region, at the sub-channel level while relying on a fast and robust two-phase (liquid/steam) sub-channel solution to provide the cross-flow information. The MEFISTO code can hence provide highly detailed solution of the multi-film flow in BWR fuel bundle while enhancing flexibility and reducing the computer time by an order of magnitude as compared to a standard three-field sub-channel analysis approach. Models for the numerical computation of the one-dimensional field flowrate distributions in an open channel (e.g. a sub-channel), including the numerical treatment of field cross-flows, part-length rods, spacers grids and post-dryout conditions are presented in this paper. The MEFISTO code is then applied to dryout prediction in BWR fuel bundle using VIPRE-W as a fast and robust two-phase sub-channel driver code. The dryout power is numerically predicted by iterating on the bundle power so that the minimum film flowrate in the bundle

  5. An assessment of in-tube flow boiling correlations for ammonia-water mixtures and their influence on heat exchanger size

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Modi, Anish; Jensen, Jonas Kjær;

    2016-01-01

    on the required heat exchanger size (surface area)is investigated during numerical design. For this purpose, two case studies related to the use of the Kalina cycle are considered: a flue gas based heat recovery boiler for acombined cycle power plant and a hot oil based boiler for a solar thermal power plant......Heat transfer correlations for pool and flow boiling are indispensable for boiler design. The correlations for predicting in-tube flow boiling heat transfer ofammonia-water mixtures are not well established in the open literature and there is a lack of experimental measurements for the full range...... of composition, vapor qualities, fluid conditions, etc. This paper presents a comparison of several flow boiling heat transfer prediction methods (correlations) for ammonia-water mixtures. Firstly, these methods are reviewed and compared at various fluid conditions. The methods include: (1) the ammonia...

  6. Prediction of Critical Heat Flux for Saturated Flow Boiling Water in Vertical Narrow Rectangular Channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gil Sik; Jeong, Yong Hun [KAIST, Daejeon (Korea, Republic of); Chang, Soon Heung [Handong Univ., Pohang (Korea, Republic of)

    2015-12-15

    There is an increasing need to understand the thermal-hydraulic phenomena, including the critical heat flux (CHF), in narrow rectangular channels and consider these in system design. The CHF mechanism under a saturated flow boiling condition involves the depletion of the liquid film of an annular flow. To predict this type of CHF, the previous representative liquid film dryout models (LFD models) were studied, and their shortcomings were reviewed, including the assumption that void fraction or quality is constant at the boundary condition for the onset of annular flow (OAF). A new LFD model was proposed based on the recent constitutive correlations for the droplet deposition rate and entrainment rate. In addition, this LFD model was applied to predict the CHF in vertical narrow rectangular channels that were uniformly heated. The predicted CHF showed good agreement with 284 pieces of experimental data, with a mean absolute error of 18. 1 % and root mean square error of 22.9 %.

  7. Optimization of fuel cells for BWR based in Tabu modified search; Optimizacion de celdas de combustible para BWR basada en busqueda Tabu modificada

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo M, C.; Francois L, J.L. [Facultad de Ingenieria, UNAM, Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico); Palomera P, M.A. [Facultad de Ingenieria, UNAM, Posgrado en Ingenieria en Computacion, Circuito exterior s/n, Ciudad Universitaria, Mexico, D.F. (Mexico)]. e-mail: cmcm@fi-b.unam.mx

    2004-07-01

    The advances in the development of a computational system for the design and optimization of cells for assemble of fuel of Boiling Water Reactors (BWR) are presented. The method of optimization is based on the technique of Tabu Search (Tabu Search, TS) implemented in progressive stages designed to accelerate the search and to reduce the time used in the process of optimization. It was programed an algorithm to create the first solution. Also for to diversify the generation of random numbers, required by the technical TS, it was used the Makoto Matsumoto function obtaining excellent results. The objective function has been coded in such a way that can adapt to optimize different parameters like they can be the enrichment average or the peak factor of radial power. The neutronic evaluation of the cells is carried out in a fine way by means of the HELIOS simulator. In the work the main characteristics of the system are described and an application example is presented to the design of a cell of 10x10 bars of fuel with 10 different enrichment compositions and gadolinium content. (Author)

  8. SUN-RAH: a nucleoelectric BWR university simulator based in reduced order models; SUN-RAH: simulador universitario de nucleoelectrica BWR basado en modelos de orden reducido

    Energy Technology Data Exchange (ETDEWEB)

    Morales S, J.B.; Lopez R, A.; Sanchez B, A.; Sanchez S, R.; Hernandez S, A. [DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: jms0620@yahoo.com

    2003-07-01

    The development of a simulator that allows to represent the dynamics of a nucleo electric central, with nuclear reactor of the BWR type, using reduced order models is presented. These models present the characteristics defined by the dominant poles of the system (1) and most of those premature operation transitories in a power station can be reproduced with considerable fidelity if the models are identified with data of plant or references of a code of better estimate like RAMONA, TRAC (2) or RELAP. The models of the simulator are developments or own simplifications starting from the physical laws and retaining the main terms. This work describes the objective of the project and the general specifications of the University student of Nucleo electric simulator with Boiling Water Reactor type (SUN-RAH) as well as the finished parts that fundamentally are the nuclear reactor, the one of steam supply (NSSS), the plant balance (BOP), the main controllers of the plant and the implemented graphic interfaces. The pendent goals as well as the future developments and applications of SUN-RAH are described. (Author)

  9. Annotated bibliography of safety-related occurrences in boiling-water nuclear power plants as reported in 1976

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.L.; Gallaher, R.B.

    1977-08-02

    This bibliography contains 100-word abstracts of reports to the U.S. Nuclear Regulatory Commission concerning operational events that occurred at boiling-water reactor nuclear power plants in 1976. The report includes 1,253 abstracts that describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. They are arranged alphabetically by reactor name and then chronologically for each reactor. Key-word and permuted-title indexes are provided to facilitate location of the subjects of interest, and tables that summarize the information contained in the bibliography are provided. The information listed in the tables includes instrument failures, equipment failures, system failures, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction). Three of the unique events that occurred during the year are reviewed in detail.

  10. Summary and bibliography of safety-related events at boiling-water nuclear power plants as reported in 1980

    Energy Technology Data Exchange (ETDEWEB)

    McCormack, K.E.; Gallaher, R.B.

    1982-03-01

    This document presents a bibliography that contains 100-word abstracts of event reports submitted to the US Nuclear Regulatory Commission concerning operational events that occurred at boiling-water-reactor nuclear power plants in 1980. The 1547 abstracts included on microfiche in this bibliography describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. These abstracts are arranged alphabetically by reactor name and then chronologically for each reactor. Full-size keyword and permuted-title indexes to facilitate location of individual abstracts are provided following the text. Tables that summarize the information contained in the bibliography are also provided. The information in the tables includes a listing of the equipment items involved in the reported events and the associated number of reports for each item. Similar information is given for the various kinds of instrumentation and systems, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction).

  11. Annotated bibliography of safety-related occurrences in boiling-water nuclear power plants as reported in 1975

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.L.; Gallaher, R.B.

    1976-07-01

    The bibliography presented contains 100-word abstracts of reports to the U.S. Nuclear Regulatory Commission concerning operational events that occurred at boiling-water reactor nuclear power plants in 1975. The report includes 1169 abstracts, arranged alphabetically by reactor name and then chronologically for each reactor, that describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. Key-word and permuted-title indexes are provided to facilitate location of the subjects of interest, and tables that summarize the information contained in the bibliography are provided. The information listed in the tables includes instrument failures, equipment failures, system failures, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction). Seven of the unique events that occurred during the year are reviewed in detail.

  12. Performance of iron-chromium-aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions

    Science.gov (United States)

    Zhong, Weicheng; Mouche, Peter A.; Han, Xiaochun; Heuser, Brent J.; Mandapaka, Kiran K.; Was, Gary S.

    2016-03-01

    Iron-chromium-aluminum (FeCrAl) coatings deposited on Zircaloy 2 (Zy2) and yttria-stabilized zirconia (YSZ) by magnetron sputtering have been tested with respect to oxidation weight gain in high-temperature steam. In addition, autoclave testing of FeCrAl-coated Zy2 coupons under pressure-temperature-dissolved oxygen coolant conditions representative of a boiling water reactor (BWR) environment has been performed. Four different FeCrAl compositions have been tested in 700 °C steam; compositions that promote alumina formation inhibited oxidation of the underlying Zy2. Parabolic growth kinetics of alumina on FeCrAl-coated Zy2 is quantified via elemental depth profiling. Autoclave testing under normal BWR operating conditions (288 °C, 9.5 MPa with normal water chemistry) up to 20 days demonstrates observable weight gain over uncoated Zy2 simultaneously exposed to the same environment. However, no FeCrAl film degradation was observed. The 900 °C eutectic in binary Fe-Zr is addressed with the FeCrAl-YSZ system.

  13. Mass flow rate sensitivity and uncertainty analysis in natural circulation boiling water reactor core from Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, Gilberto, E-mail: gepe@xanum.uam.m [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco, 186, Col. Vicentina, Mexico D.F., 09340 (Mexico); Verma, Surendra P. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Priv. Xochicalco s/no., Col Centro, Apartado Postal 34, Temixco 62580 (Mexico); Vazquez-Rodriguez, Alejandro [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco, 186, Col. Vicentina, Mexico D.F., 09340 (Mexico); Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Doctor Barragan 779, Col. Narvarte, Mexico D.F. 03020 (Mexico)

    2010-05-15

    Our aim was to evaluate the sensitivity and uncertainty of mass flow rate in the core on the performance of natural circulation boiling water reactor (NCBWR). This analysis was carried out through Monte Carlo simulations of sizes up to 40,000, and the size, i.e., repetition of 25,000 was considered as valid for routine applications. A simplified boiling water reactor (SBWR) was used as an application example of Monte Carlo method. The numerical code to simulate the SBWR performance considers a one-dimensional thermo-hydraulics model along with non-equilibrium thermodynamics and non-homogeneous flow approximation, one-dimensional fuel rod heat transfer. The neutron processes were simulated with a point reactor kinetics model with six groups of delayed neutrons. The sensitivity was evaluated in terms of 99% confidence intervals of the mean to understand the range of mean values that may represent the entire statistical population of performance variables. The regression analysis with mass flow rate as the predictor variable showed statistically valid linear correlations for both neutron flux and fuel temperature and quadratic relationship for the void fraction. No statistically valid correlation was observed for the total heat flux as a function of the mass flow rate although heat flux at individual nodes was positively correlated with this variable. These correlations are useful for the study, analysis and design of any NCBWR. The uncertainties were propagated as follows: for 10% change in the mass flow rate in the core, the responses for neutron power, total heat flux, average fuel temperature and average void fraction changed by 8.74%, 7.77%, 2.74% and 0.58%, respectively.

  14. Thermal-hydraulic instabilities in pressure tube graphite - moderated boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tsiklauri, G.; Schmitt, B.

    1995-09-01

    Thermally induced two-phase instabilities in non-uniformly heated boiling channels in RBMK-1000 reactor have been analyzed using RELAP5/MOD3 code. The RELAP5 model of a RBMK-1000 reactor was developed to investigate low flow in a distribution group header (DGH) supplying 44 fuel pressure tubes. The model was evaluated against experimental data. The results of the calculations indicate that the period of oscillation for the high power tube varied from 3.1s to 2.6s, over the power range of 2.0 MW to 3.0 MW, respectively. The amplitude of the flow oscillation for the high powered tube varied from +100% to -150% of the tube average flow. Reverse flow did not occur in the lower power tubes. The amplitude of oscillation in the subcooled region at the inlet to the fuel region is higher than in the saturated region at the outlet. In the upper fuel region and outlet connectors the flow oscillations are dissipated. The threshold of flow instability for the high powered tubes of a RBMK reactor is compared to Japanese data and appears to be in good agreement.

  15. Analysis by the Monte Carlo method of doses around the pool of storage of the control rods irradiated in a BWR reactor; Analisis mediante el metodo de Monte Carlo de las dosis alrededor de la piscina de almacenamiento de las barras de control irradiadas en un reactror BWR

    Energy Technology Data Exchange (ETDEWEB)

    Rodenas, J.; Gallardo, S.

    2011-07-01

    The control rods of a boiling water reactor (BWR) are subject to a neutron flux and thus become activated during their stay in the reactor core. Activation occurs especially in the stainless steel components and impurities. The activity generated results in a dose around the bar, while it le unimportant in the reactor, but to be taken into account when removed f ron it. The bars drawn are stored on hangers placed in the storage pools of spent fuel f ron the plant. Each hanger 12 accommodates control rods and are arranged so that at least three meters of water abode the heads of the control rods. The dose received by potentially exposed workers who are in the vicinity of the storage must be calculated to ensure adequate protection of the came. This dose can be decreased significantly by changing the arrangement of the bars on hangers.

  16. BWR: Development and Validation of KERENA reactor; Les REB: Developpement et validation du reacteur KERENA

    Energy Technology Data Exchange (ETDEWEB)

    Diercks, F.; Fuchs, M. [E.ON Kernkraft GmbH (Germany); Erve, M.; Pasler, D. [AREVA (Germany)

    2010-07-01

    KERENA is an advanced boiling water reactor, combining AREVA's and E.ON's expertise. A project was launched to customize the final basic design for this advanced nuclear power plant having a net power output of about 1, 250 MW, a net efficiency of about 37% and a design service life of 60 years. The development takes into account the technical and accumulated operating experience of the project partners. The plant safety concept is based on an optimized combination of a reduced number of proven active safety systems and passive safety systems, utilizing basic laws of physics, such as gravity, enabling them to function without electrical power supplies or activation by powered instrumentation and control systems. Control of a postulated core melt accident is assured with considerable safety margins thanks to passive flooding of the containment for in-vessel melt retention. All passive safety systems are validated in an experimental test program at AREVA, using 1:1 scale test facilities (INKA test facility Karlstein). The KERENA boiling water reactor is compliant with international nuclear codes and standards, and is also designed to withstand the effects of an aircraft crash involving a military aircraft or a large passenger airline. The safety level of the KERENA reactor has been able to be significantly increased compared to existing BWR plants. The advantages of the new safety concept are: -) Reduced susceptibility of safety systems to failures; -) Larger safety margins; -) Good plant behavior in the event of accidents due to the fact that conditions change at a slower rate; -) Grace periods of several days after an accident before operator intervention is required; -) Significantly reduced impact of operator error on reactor safety; -) No need for large-scale emergency response actions such as temporary evacuation or relocation of the neighboring population following a core melt accident. (A.C.)

  17. Simulations of ex-vessel fuel coolant interactions in a Nordic BWR using MC3D code

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, S.; Ma, W. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    Nordic Boiling Water Reactors (BWRs) employ a drywell cavity flooding technique as a nuclear severe accident management strategy. In case of core melt accident where the reactor pressure vessel will fail and the melt will eject from the lower head and fall into a water pool, may be in the form of a continuous jet. It is assumed that the melt jet will fragment, quench and form a coolable debris bed into the water pool. The melt interaction with a water pool may cause an energetic steam explosion which creates a potential risk towards the integrity of containment, leading to fission products release into the atmosphere. The results of the APRI-7 project suggest that the significant damage to containment structures by steam explosion cannot be ruled according to the state-of-the-art knowledge about corresponding accident scenario. In the follow-up project APRI-8 (2012-2016) one of the goals of the KTH research is to resolve the steam explosion energetics (SEE) issue, developing a risk-oriented framework for quantifying conditional threats to containment integrity for a Nordic type BWR. The present study deals with the premixing and explosion phase calculations of a Nordic BWR dry cavity, using MC3D, a multiphase CFD code for fuel coolant interactions. The main goal of the study is the assessment of pressure buildup in the cavity and the impact loading on the side walls. The conditions for the calculations are used from the SERENA-II BWR case exercise. The other objective was to do the sensitivity analysis of the parameters in modeling of fuel coolant interactions, which can help to reduce uncertainty in assessment of steam explosion energetics. The results show that the amount of liquid melt droplets in the water (region of void<0.6) is maximum even before reaching the jet at the bottom. In the explosion phase, maximum pressure is attained at the bottom and the maximum impulse on the wall is at the bottom of the wall. The analysis is carried out using two different

  18. Analysis of Boiling of Water in a Fixed Container Volume--the reason of boiling and the condition without boiling for water in a container with unchangeable volume and the temperature higher than boiling point%关于固定容器中水沸腾的分析——固定容器中的水在温度高于沸点时发生沸腾的原因与不发生沸腾的物理条件

    Institute of Scientific and Technical Information of China (English)

    罗烛红

    2012-01-01

    In real life; the water in a container with fixed volume will boil, as the temperature of water is increased and reaches the boiling point, However, is there a physical conditioin, under which the water in the closed vessel never boils? It is very interesting for teachers and classmates to answer the above question. Motivated by this, in this paper, we do qualitative analysis of the principle on the ebullition of water in the closed vessel and further discuss the physical condition that makes the water still keep liquid state.%从对应态方程出发定性分析在固定体积和升高温度时水沸腾的原因,也探讨了固定体积和温度达到沸点时水不发生沸腾的物理条件.

  19. Implementation of a Newton-Krylov iterative method to address strong non-linear feedback effects in FORMOSA-B BWR core simulator

    Science.gov (United States)

    Kastanya, Doddy Febrian

    A Newton-BICGSTAB solver has been developed to reduce the CPU execution time of the FORMOSA-B boiling water reactor (BWR) core simulator. The new solver treats the strong non-linearities in the problem explicitly using the Newton's method, replacing the traditionally used nested iterative approach. Taking advantage of the higher convergence rate provided by the Newton's method, assuming that a good initial estimate of the unknowns is provided, and utilizing an efficient preconditioned BICGSTAB solver, we have developed a computationally efficient Newton-BICGSTAB solver to evaluate the three-dimensional, two-group neutron diffusion equations coupled with a two-phase flow model within a BWR core simulator. The robustness of the solver has been tested against numerous BWR core configurations and consistent results have been observed each time. The best exact Newton-BICGSTAB solver performance provides an overall speedup of 2.07 to the core simulator, with reference to the traditional approach, i.e. outer (fission-source)-inner (red/black line SOR). When solving the same problem using the traditional approach but with the BICGSTAB solver as the inner iteration solver [traditional (BICGSTAB)], we observed a speedup of 1.85. This means that the Newton-BICGSTAB solver provides an additional 12% increase in the overall speedup over the traditional (BICGSTAB) solver. However, one needs to note that, on average, the exact Newton-BICGSTAB solver provides an overall speedup of around 1.70; whereas, on average, the traditional (BICGSTAB) provides an overall speedup of around 1.60. An investigation on the feasibility of implementing an inexact Newton-BICGSTAB solver indicates that further reduction in the execution time can likely be obtained through this approach. This study shows that the inexact Newton-BICGSTAB solver can provide speedups of 1.73 to 2.10 with respect to the traditional solver.

  20. Corrosion product deposits on boiling-water reactor cladding: Experimental and theoretical investigation of magnetic properties

    Science.gov (United States)

    Orlov, A.; Degueldre, C.; Wiese, H.; Ledergerber, G.; Valizadeh, S.

    2011-09-01

    Recent Eddy current investigations on the cladding of nuclear fuel pins have shown that the apparent oxide layers are falsified due to unexpected magnetic properties of corrosion product deposits. Analyses by Scanning Electron Microscopy (SEM) or Electron Probe Micro Analysis (EPMA) demonstrated that the deposit layer consists of complex 3-d element oxides (Ni, Mn, Fe) along with Zn, since the reactor operates with a Zn addition procedure to reduce buildup of radiation fields on the recirculation system surfaces. The oxides crystallise in ferritic spinel structures. These spinels are well-known for their magnetic behaviour. Since non-magnetic zinc ferrite (ZnFe 2O 4) may become magnetic when doped with even small amounts of Ni and/or Mn, their occurrence in the deposit layer has been analyzed. The magnetic permeability of zinc ferrite, trevorite and jacobsite and their solid solutions are estimated by magnetic moment additivity. From the void history examination, the low elevation sample (810 mm) did not face significant boiling during the irradiation cycles suggesting growth of (Mn0.092+Zn0.752+Fe0.293+)[(Fe1.713+Mn0.032+Ni0.132+)O] crystals with theoretical value of the magnetic permeability for the averaged heterogeneous CRUD layer of 9.5 ± 3. Meanwhile, (Mn0.162+Zn0.552+Fe0.293+)[(Fe1.713+Mn0.042+Ni0.252+)O] crystallizes at the mid elevation (1810 mm) with theoretical magnetic permeability for the CRUD layer of 4.2 ± 1.5 at the investigated azimuthal location. These theoretical data are compared with the magnetic permeability of the corrosion product deposited layers gained from reactor pool side Eddy current (EC) analyses (9.0 ± 1.0 for low and 3.5 ± 1.0 for high elevation). The calculated thicknesses and magnetic permeability values of the deposition layers (estimated by MAGNACROX multifrequency EC method) match together with these estimated using an "ion magnetic moment additivity" model.

  1. The noncondensable gas effects on loss-of-coolant accident steam condensation loads in boiling water reactor pressure suppression pool

    Energy Technology Data Exchange (ETDEWEB)

    Kukita, Y.; Namatame, K.; Shiba, M.; Takeshita, I.

    1983-11-01

    The noncondensable gas effects on the loss-ofcoolant-accident-induced steam condensation loads in the boiling water reactor pressure suppression pool have been investigated with regard to experimental data obtained from a large-scale multivent test program. Previous studies have noted that the presence of the noncondensable gas (air), which initially fills the containment drywell space, stabilizes the direct-contact condensation in the pressure suppression pool and hampers onset of the chugging phenomenon, which induces most significant steam condensation load onto the pool boundary. This was found to be true for the tests with relatively small-break diameters, where the maximum steam mass fluxes in the vent pipe were lower than the upper threshold value for the onset of chugging. However, in the tests with the maximum vent steam mass fluxes moderately higher than the chugging upper threshold value, early depletion of the noncondensable gas tended to result in significant stabilization of steam condensation accompanied by an excursion of temperature of pool water surrounding the vent pipe outlets, which led to a delayed onset of chugging. Due to this combined influence of the noncondensable gas and nonuniform pool temperature, and due to dependence of magnitude of chugging load on the vent steam mass flux, the peak magnitude of the steam condensation load appearing in a blowdown can be very sensitive to the initial and break conditions.

  2. Potential for containment leak paths through electrical penetration assemblies under severe accident conditions. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Sebrell, W.

    1983-07-01

    The leakage behavior of containments beyond design conditions and knowledge of failure modes is required for evaluation of mitigation strategies for severe accidents, risk studies, emergency preparedness planning, and siting. These studies are directed towards assessing the risk and consequences of severe accidents. An accident sequence analysis conducted on a Boiling Water Reactor (BWR), Mark I (MK I), indicated very high temperatures in the dry-well region, which is the location of the majority of electrical penetration assemblies. Because of the high temperatures, it was postulated in the ORNL study that the sealants would fail and all the electrical penetration assemblies would leak before structural failure would occur. Since other containments had similar electrical penetration assemblies, it was concluded that all containments would experience the same type of failure. The results of this study, however, show that this conclusion does not hold for PWRs because in the worst accident sequence, the long time containment gases stabilize to 350/sup 0/F. BWRs, on the other hand, do experience high dry-well temperatures and have a higher potential for leakage.

  3. A conceptual study on large-capacity safety relief valve (SRV) for future BWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Katsumi; Tokunaga, Takashi; Iwanaga, Masakazu; Kurosaki, Toshikazu [Toshiba Corporation, Isogo Nuclear Engineering Center, Yokohama (Japan)

    1999-07-01

    This paper presents a conceptual study of Safety Relief Valve (SRV) which has larger flow capacity than that of the conventional one and a new structure. Maintenance work of SRVs is one of the main concerns for next-generation Boiling Water Reactor (BWR) plants whose thermal power is planned to be increased. Because the number of SRVs increases with the thermal power, their maintenance would become critical during periodic inspections. To decrease the maintenance work, reduction of the number by increasing the nominal flow rate per SRV and a new structure suitable for easier treatment have been investigated. From a parameter survey of the initial and maintenance cost, the optimum capacity has been estimated to be between 180 and 200 kg/s. Primarily because the number of SRVs decreases in inversely proportional to the capacity, the total maintenance work decreases. The new structure of SRV, with an internally mounted actuator, decreases the number of the connecting parts and will make the maintenance work easier. A 1/4-scale model of the new SRV has been manufactured and performance tests have been conducted. The test results satisfied the design target, which shows the feasibility of the new structure. (author)

  4. Estimation of the coolant flow through a natural circulation BWR fuel channel applying and equivalent electrical model

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J.; Morales S, J. B. [UNAM, DEPFI, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, Campus Morelos en IMTA, Jiutepec, Morelos (Mexico); Espinosa P, G., E-mail: julfi_ig@yahoo.com.m [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2010-10-15

    This work presents the design and implementation of an advanced controller for a reduced order model of a BWR reactor core cooled by natural circulating water, which allows real time estimates of coolant flows through fuel assemblies about standard neutron flux strings. Nuclear power plants with boiling water reactors control individual fuel assembly coolant flows by forced circulation using external or internal water pumps and different core support plate orifices. These two elements reduce flow dependency on local channel pressure drops. In BWR reactors using only natural circulation coolant flows, these two elements are not available and therefore individual channel coolant flows are highly dependent in local conditions, such as power distributions and local pressure drops. Therefore it is expected that grater uncertainties in these variables be used during safety, fuel management and other analysis, which in turns may lead to increased operation penalties, such as tighter operating limits. The objective of this work is to asses by computer simulations means to reduce uncertainties in the measurement of fuel assembly coolant flows and eventually the associated penalties. During coolant phase transitions, pressure drops and local power may alter local natural circulation through fuel assemblies and flow estimates can be helped or not by control rod moves. This work presents the construction of an optimal controller for a core flow estimator based on a reduced order model of the coolant going though the reactor vessel components and nuclear core. This model is to be driven by plant signals from standard BWR instrumentation in order to estimate the coolant flows in selected fuel assemblies about a LPRM string. For this purpose an equivalent electrical model has been mathematically developed and numerically tested. The power-flow maps of typical BRW are used as steady state references for this equivalent model. Once these were fully reproduced for steady state

  5. Analysis of pressure oscillations and safety relief valve vibrations in the main steam system of a Boiling Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Galbally, David, E-mail: dgalbally@innomerics.com [Innomerics, Calle San Juan de la Cruz 2, 28223 Madrid (Spain); García, Gonzalo [Alava Ingenieros, Calle Albasanz 16, 28037 Madrid (Spain); Hernando, Jesús; Sánchez, Juan de Dios [Iberdrola, Calle Tomás Redondo 1, 28033 Madrid (Spain); Barral, Marcos [Alava Ingenieros, Calle Albasanz 16, 28037 Madrid (Spain)

    2015-11-15

    Highlights: • We analyze the vibratory response of safety relief valves in the main steam system of a Boiling Water Reactor. • We show that valve internals experience acceleration spikes of more than 20 g. • Spikes are caused by impacts between the valve disc and the seating surface of the valve nozzle. • Resonances occur at higher Strouhal numbers than those reported in the literature for tandem side branches. • Valves experience high vibration levels even for resonances caused by second order hydrodynamic modes. - Abstract: Steam flow inside the main steam lines of a Boiling Water Reactor can generate high-amplitude pressure oscillations due to coupling between the separated shear layer at the mouth of the safety relief valves (SRVs) and the acoustic modes of the side branches where the SRVs are mounted. It is known that certain combinations of flow velocities and main steam line geometries are capable of generating self-excited pressure oscillations with very high amplitudes, which can endanger the structural integrity of main steam system components, such as safety valves, or reactor internals such as steam dryers. However, main steam systems may also experience lower amplitude pressure oscillations due, for example, to coupling of higher order hydrodynamic modes with acoustic cavity modes, or to incipient resonances where the free stream velocity is slightly lower than the critical flow velocity required to develop a stable locked-on acoustic resonance. The amplitude of these pressure oscillations is typically insufficient to cause readily observable structural damage to main steam system components, but may still have subtle effects on safety relief valves. The investigation presented in this article focuses on the characterization of the response of SRVs under the effects of pressure oscillations associated with acoustic excitations that are insufficient to cause structural damage to the valves or associated equipment. It is shown that valve

  6. Oscillate boiling from microheaters

    Science.gov (United States)

    Li, Fenfang; Gonzalez-Avila, S. Roberto; Nguyen, Dang Minh; Ohl, Claus-Dieter

    2017-01-01

    We report about an intriguing boiling regime occurring for small heaters embedded on the boundary in subcooled water. The microheater is realized by focusing a continuous wave laser beam to about 10 μ m in diameter onto a 165-nm-thick layer of gold, which is submerged in water. After an initial vaporous explosion a single bubble oscillates continuously and repeatedly at several 100 kHz albeit with constant laser power input. The microbubble's oscillations are accompanied with bubble pinch-off, leading to a stream of gaseous bubbles in the subcooled water. The self-driven bubble oscillation is explained with a thermally kicked oscillator caused by surface attachment and by the nonspherical collapses. Additionally, Marangoni stresses induce a recirculating streaming flow which transports cold liquid towards the microheater, reducing diffusion of heat along the substrate and therefore stabilizing the phenomenon to many million cycles. We speculate that this oscillate boiling regime may overcome the heat transfer thresholds observed during the nucleate boiling crisis and offers a new pathway for heat transfer under microgravity conditions.

  7. CFD analysis of bubble microlayer and growth in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Owoeye, Eyitayo James, E-mail: msgenius10@ufl.edu; Schubring, DuWanye, E-mail: dlschubring@ufl.edu

    2016-08-01

    Highlights: • A new LES-microlayer model is introduced. • Analogous to the unresolved SGS in LES, analysis of bubble microlayer was performed. • The thickness of bubble microlayer was computed at both steady and transient states. • The macroscale two-phase behavior was captured with VOF coupled with AMR. • Numerical validations were performed for both the micro- and macro-region analyses. - Abstract: A numerical study of single bubble growth in turbulent subcooled flow boiling was carried out. The macro- and micro-regions of the bubble were analyzed by introducing a LES-microlayer model. Analogous to the unresolved sub-grid scale (SGS) in LES, a microlayer analysis was performed to capture the unresolved thermal scales for the micro-region heat transfer by deriving equations for the microlayer thickness at steady and transient states. The phase change at the macro-region was based on Volume-of-Fluid (VOF) interface tracking method coupled with adaptive mesh refinement (AMR). Large Eddy Simulation (LES) was used to model the turbulence characteristics. The numerical model was validated with multiple experimental data from the open literature. This study includes parametric variations that cover the operating conditions of boiling water reactor (BWR) and pressurized water reactor (PWR). The numerical model was used to study the microlayer thickness, growth rate, dynamics, and distortion of the bubble.

  8. Design and analysis of 19 pin annular fuel rod cluster for pressure tube type boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Deokule, A.P., E-mail: abhijit.deokule1986@gmail.com [Homi Bhabha National Institute, Trombay 400 085, Mumbai (India); Vishnoi, A.K.; Dasgupta, A.; Umasankari, K.; Chandraker, D.K.; Vijayan, P.K. [Bhabha Atomic Research Centre, Trombay 400 085, Mumbai (India)

    2014-09-15

    Highlights: • Development of 19 pin annular fuel rod cluster. • Reactor physics study of designed annular fuel rod cluster. • Thermal hydraulic study of annular fuel rod cluster. - Abstract: An assessment of 33 pin annular fuel rod cluster has been carried out previously for possible use in a pressure tube type boiling water reactor. Despite the benefits such as negative coolant void reactivity and larger heat transfer area, the 33 pin annular fuel rod cluster is having lower discharge burn up as compared to solid fuel rod cluster when all other parameters are kept the same. The power rating of this design cannot be increased beyond 20% of the corresponding solid fuel rod cluster. The limitation on the power is not due to physics parameters rather it comes from the thermal hydraulics side. In order to increase power rating of the annular fuel cluster, keeping same pressure tube diameter, the pin diameter was increased, achieving larger inside flow area. However, this reduces the number of annular fuel rods. In spite of this, the power of the annular fuel cluster can be increased by 30% compared to the solid fuel rod cluster. This makes the nineteen pin annular fuel rod cluster a suitable option to extract more power without any major changes in the existing design of the fuel. In the present study reactor physics and thermal hydraulic analysis carried out with different annular fuel rod cluster geometry is reported in detail.

  9. Azcaxalli: A system based on Ant Colony Optimization algorithms, applied to fuel reloads design in a Boiling Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel-Estrada, Jaime, E-mail: jaime.esquivel@fi.uaemex.m [Facultad de Ingenieria, Universidad Autonoma del Estado de Mexico, Cerro de Coatepec S/N, Toluca de Lerdo, Estado de Mexico 50000 (Mexico); Instituto Nacional de Investigaciones Nucleares, Carr. Mexico Toluca S/N, Ocoyoacac, Estado de Mexico 52750 (Mexico); Ortiz-Servin, Juan Jose, E-mail: juanjose.ortiz@inin.gob.m [Instituto Nacional de Investigaciones Nucleares, Carr. Mexico Toluca S/N, Ocoyoacac, Estado de Mexico 52750 (Mexico); Castillo, Jose Alejandro; Perusquia, Raul [Instituto Nacional de Investigaciones Nucleares, Carr. Mexico Toluca S/N, Ocoyoacac, Estado de Mexico 52750 (Mexico)

    2011-01-15

    This paper presents some results of the implementation of several optimization algorithms based on ant colonies, applied to the fuel reload design in a Boiling Water Reactor. The system called Azcaxalli is constructed with the following algorithms: Ant Colony System, Ant System, Best-Worst Ant System and MAX-MIN Ant System. Azcaxalli starts with a random fuel reload. Ants move into reactor core channels according to the State Transition Rule in order to select two fuel assemblies into a 1/8 part of the reactor core and change positions between them. This rule takes into account pheromone trails and acquired knowledge. Acquired knowledge is obtained from load cycle values of fuel assemblies. Azcaxalli claim is to work in order to maximize the cycle length taking into account several safety parameters. Azcaxalli's objective function involves thermal limits at the end of the cycle, cold shutdown margin at the beginning of the cycle and the neutron effective multiplication factor for a given cycle exposure. Those parameters are calculated by CM-PRESTO code. Through the Haling Principle is possible to calculate the end of the cycle. This system was applied to an equilibrium cycle of 18 months of Laguna Verde Nuclear Power Plant in Mexico. The results show that the system obtains fuel reloads with higher cycle lengths than the original fuel reload. Azcaxalli results are compared with genetic algorithms, tabu search and neural networks results.

  10. Effects of storage temperature on tyramine production by Enterococcus faecalis R612Z1 in water-boiled salted ducks.

    Science.gov (United States)

    Liu, Fang; Du, Lihui; Wu, Haihong; Wang, Daoying; Zhu, Yongzhi; Geng, Zhiming; Zhang, Muhan; Xu, Weimin

    2014-10-01

    Tyramine production by Enterococcus faecalis R612Z1 in water-boiled salted ducks was evaluated during storage at different temperatures. The results showed that E. faecalis R612Z1 could produce tyramine in meat samples when the storage temperature was no less than 4°C. The E. faecalis R612Z1 counts of the meat samples reached 10(8) CFU/g on day 7 at 4°C and on day 4 at 10°C. However, the tyramine content of the meat samples stored at 10°C increased to 23.73 μg/g (on day 10), which was greater than the level in the samples stored at 4°C (7.56 μg/g). Reverse transcription quantitative PCR detection of the expression level of the tyrDC gene in E. faecalis R612Z1 in the meat samples revealed no significant changes at different storage temperatures. Thus, the changes in tyramine production of E. faecalis R612Z1 may be due to the different enzymatic activities at different storage temperatures.

  11. Final safety evaluation report related to the certification of the Advanced Boiling Water Reactor design. Supplement 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report supplements the final safety evaluation report (FSER) for the US Advanced Boiling Water Reactor (ABWR) standard design. The FSER was issued by the US Nuclear Regulatory Commission (NRC) staff as NUREG-1503 in July 1994 to document the NRC staff`s review of the US ABWR design. The US ABWR design was submitted by GE Nuclear Energy (GE) in accordance with the procedures of Subpart B to Part 52 of Title 10 of the Code of Federal Regulations. This supplement documents the NRC staff`s review of the changes to the US ABWR design documentation since the issuance of the FSER. GE made these changes primarily as a result of first-of-a-kind-engineering (FOAKE) and as a result of the design certification rulemaking for the ABWR design. On the basis of its evaluations, the NRC staff concludes that the confirmatory issues in NUREG-1503 are resolved, that the changes to the ABWR design documentation are acceptable, and that GE`s application for design certification meets the requirements of Subpart B to 10 CFR Part 52 that are applicable and technically relevant to the US ABWR design.

  12. Study of Boiling Water Resistant PC/PE Alloy Materials%耐水煮PC/PE合金的研究

    Institute of Scientific and Technical Information of China (English)

    申景强; 刘振华; 诸泉; 蒋文真

    2012-01-01

    采用熔融共混工艺路线,选择合适的PC、PE和增容剂(PE-g-GMA)制备了PC/PE合金材料,研究了PE对PC/PE合金力学性能和热变形温度的影响,以及PC/PE合金经240 h水煮后的缺口冲击强度。结果表明当PE含量为5%时,PC/PE合金的综合物性最佳。%PC/PE alloy was prepared through melt blending process by using PC,PE and compatibilizing agents(PE-g-GMA).The effect of PE on mechanical property and heat deflection temperature of PC/PE alloy were studied and notched impact strength of PC/PE alloy after 240 hours in boiling water was characterized.The result showed that PC/PE alloy containing 5 WT% can achieve the best comprehensive properties.

  13. Comparison of the antitumor activity of polysaccharides extracted by boiling water and enzyme assistance from Ganoderma lucidum

    Institute of Scientific and Technical Information of China (English)

    Xu Chunhua; Zhang Chenju; Tian Zhenle; Zheng Huihua; Yu Xiaobing

    2014-01-01

    Polysaccharides are the most important pharmacologically active constituents of Ganoderma lu-cidum. In this work,polysaccharides were extracted from Ganoderma lucidum with boiling water method and enzyme assisted method. The human liver hepatocellular carcinoma cell line HepG2 was used to compare the an-titumor effect of the two kinds of extraction with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-mide (MTT) test. Both of these two kinds of Ganoderma lucidum polysaccharides reduced cell viability of can-cer cell HepG2 in a dose and time-dependent manner. At low concentrations,there was no significant difference in the effectiveness of L1 and L2;while at concentrations over 0.8μg/mL,the difference in the effectiveness of L2 in comparison to L1 became significant. At the concentrations of 3.2μg/mL,the cancer cells were almost killed in 2 d.

  14. Analysis of cracked core spray injection line piping from the Quad Cities Units 1 and 2 boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Diercks, D.R.

    1983-12-01

    Elbow assemblies and adjacent piping from the loops A and B core spray injection lines of Quad Cities Units 1 and 2 Boiling Water Reactors have been examined in order to determine the nature and causes of coolant leakages and flaw indications detected during hydrostatic tests and subsequent ultrasonic inspections. The elbow assemblies were found to contain multiple intergranular cracks in the weld heat-affected zones. The cracking was predominantly axial in orientation in the forged elbow and wedge components, whereas mixed axial and circumferential cracking was seen in the wrought piping pieces. In at least two instances, axial cracks completely penetrated the circumferential weld joining adjacent components. Based upon the observations made in the present study, the failures were attributed to intergranular stress corrosion cracking caused by the weld-induced sensitized microstructure and residual stresses present; dissolved oxygen in the reactor coolant apparently served as the corrosive species. The predominantly axial orientation of the cracks present in the forged components is believed to be related to the banded microstructure present in these components. The metallographic studies reported are supplemented by x-radiography, chemical analysis and mechanical test results, determinations of the degree of sensitization present, and measurements of weld metal delta ferrite content.

  15. Conceptual design of a passive moderator cooling system for a pressure tube type natural circulation boiling water cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukesh [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Pal, Eshita, E-mail: eshi.pal@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Nayak, Arun K.; Vijayan, Pallipattu K. [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2015-09-15

    Highlights: • Passive moderator cooling system is designed to cool moderator passively during SBO. • PMCS is a system of two natural circulation loops, coupled via a heat exchanger. • RELAP5 analyses show that PMCS maintains moderator within safe limits for 7 days. - Abstract: The recent Fukushima accident has raised strong concern and apprehensions about the safety of reactors in case of a prolonged Station Black Out (SBO) continuing for several days. In view of this, a detailed study was performed simulating this condition in Advanced Heavy Water Reactor. In this study, a novel concept of moderator cooling by passive means has been introduced in the reactor design. The Passive Moderator Cooling System (PMCS) consists of a shell and tube heat exchanger designed to remove 2 MW heat from the moderator inside Calandria. The heat exchanger is located at a suitable elevation from the Calandria of the reactor, such that the hot moderator rises due to buoyancy into the heat exchanger and upon cooling from shell side water returns to Calandria forming a natural circulation loop. The shell side of the heat exchanger is also a natural circulation loop connected to an overhead large water reservoir, namely the GDWP. The objective of the PMCS is to remove the heat from the moderator in case of an SBO and maintaining its temperature below the permissible safe limit (100 °C) for at least 7 days. The paper first describes the concept of the PMCS. The concept has been assessed considering a prolonged SBO for at least 7 days, through an integrated analysis performed using the code RELAP5/MOD3.2 considering all the major components of the reactor. The analysis shows that the PMCS is able to maintain the moderator temperature below boiling conditions for 7 days.

  16. Updating of the costs of the nuclear fuels of the equilibrium reloading of the A BWR and EPR reactors; Actualizacion de los costos de combustible nuclear de la recarga de equilibrio de los reactores ABWR y EPR

    Energy Technology Data Exchange (ETDEWEB)

    Ortega C, R.F. [FI-UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: rortega@fi-b.unam.mx

    2008-07-01

    In the last two and a half years, the price of the uranium in the market spot has ascended of US$20.00 dollars by lb U{sub 3O}8 in January, 2005 to a maximum of US$137.00 dollars by Ib U{sub 3}O{sub 8} by the middle of 2007. At the moment this price has been stabilized in US$90.00 dollars by Ib U{sub 3}O{sub 8} such for the market spot, like for the long term contracts. In this work the reasons of this increment are analyzed, as well as their impact in the fuel prices of the balance recharge of the advanced reactors of boiling water (A BWR) and of the advanced water at pressure reactors (EPR). (Author)

  17. Flow Boiling Heat Transfer Enhancement by Using ZnO-Water Nanofluids

    Directory of Open Access Journals (Sweden)

    Om Shankar Prajapati

    2014-01-01

    Full Text Available Nanofluids are liquid suspensions containing nanoparticles that are smaller than 100 nm. There is an increased interest in nanofluids as thermal conductivity of nanofluids is significantly higher than that of the base liquids. ZnO-water nanofluids with volume concentration of ZnO particles varying from 0.0001 to 0.1% were prepared using ultrasonic vibration mixer. Thermal conductivity of the ZnO-water fluids was investigated for different sonication time using thermal property analyzer (KD2 Pro. Thermal conductivity of nanofluids for a given concentration of nanoparticle varies with sonication time. Heat transfer coefficient and pressure drop in an annular test section with variable pressure (1–2.5 bar and heat flux (0–400 kW/m2 at constant mass flux of 400 kg/m2s were studied for samples having maximum thermal conductivity. Surface roughness of the heating rod was also measured before and after the experimentation. The study shows that heat transfer coefficient increases beyond the base fluid with pressure and concentration of ZnO.

  18. Communication, perception and behaviour during a natural disaster involving a 'Do Not Drink' and a subsequent 'Boil Water' notice: a postal questionnaire study

    Directory of Open Access Journals (Sweden)

    Knapton Olivia

    2010-10-01

    Full Text Available Abstract Background During times of public health emergencies, effective communication between the emergency response agencies and the affected public is important to ensure that people protect themselves from injury or disease. In order to investigate compliance with public health advice during natural disasters, we examined consumer behaviour during two water notices that were issued as a result of serious flooding. During the summer of 2007, 140,000 homes in Gloucestershire, United Kingdom, that are supplied water from Mythe treatment works, lost their drinking water for up to 17 days. Consumers were issued a 'Do Not Drink' notice when the water was restored, which was subsequently replaced with a 'Boil Water' notice. The rare occurrence of two water notices provided a unique opportunity to compare compliance with public health advice. Information source use and other factors that may affect consumer perception and behaviour were also explored. Method A postal questionnaire was sent to 1,000 randomly selected households. Chi-square, ANOVA, MANOVA and generalised estimating equation (with and without prior factor analysis were used for quantitative analysis. Results In terms of information sources, we found high use of and clear preference for the local radio throughout the incident, but family/friends/neighbours also proved crucial at the onset. Local newspapers and the water company were associated with clarity of advice and feeling informed, respectively. Older consumers and those in paid employment were particularly unlikely to read the official information leaflets. We also found a high degree of confusion regarding which notice was in place at which time, with correct recall varying between 23.2%-26.7%, and a great number of consumers believed two notices were in place simultaneously. In terms of behaviour, overall non-compliance levels were significantly higher for the 'Do Not Drink' notice (62.9% compared to the 'Boil Water' notice (48

  19. Relations between boiling water test, standard germination test and field emergence of leek (Allium porrum L. and onion (Allium cepa L. seeds

    Directory of Open Access Journals (Sweden)

    Ismail Guvenc

    2012-12-01

    Full Text Available The aim of this study was to determine relations occurring between boiling water test, standard germination test and field emergence of leek (Allium porrum L. and onion (Allium cepa L. seeds. In this study, seeds of six lots ('Kalem', 'Ala', 'Ínegöl-A, B, C and D' from three cultivars of leek and seven onion cultivars ('Early Texas Grano' (ETG, 'Panku', 'Storm', 'Banko', 'Aki', 'Kisagün' and 'Banka' seeds were used as plant material and their viability was evaluated in boiling water test (BWT, standard germination test (SGT and field emergence (FE. The percentage of field emergence was evaluated at three sowing times: 20 May (FE-I, 10 June (FE-II and 20 July (FE-III. The mean germination of leek seeds varied from 77.5% to 100.0% and from 36.0% to 61.0% in SGT and BWT, respectively. While the range of results obtained in the boiling water test was from 38.5% to 60.0%, the range of results of the standard germination test was from 81.0% to 100.0% in onion seeds. The range of field emergence was between 18.5% ('Kisagün', FE-III and 72.0% (İnegöl-C', FE-II. Besides, the boiling water test was correlated highly significantly with SGT (r = 0.670**, FE-I (r = 0.923**, FE-II (r = 0.906** and FE-III (r = 0.939** in leek seeds. Similarly, BWT showed positive correlation with SGT (r = 0.568**, FE-I (r = 0.844**, FE-II (r = 0.933** and FE-III (r = 0.858** in onion seeds. In conclusion, the boiling water test is a new and reliable technique to test seed viability and it has a great potential to test rapidly germination and field emergence of leek and onion seeds at different sowing times.

  20. Experimental boiling heat transfer coefficients in the high temperature generator of a double effect absorption machine for the lithium bromide/water mixture

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, J.D. [Escuela Tecnica Superior Ingenieria Industrial, UNED, c/Juan del Rosal 12, 28040 Madrid (Spain); Izquierdo, M. [Instituto de Ciencias de la Construccion Eduardo Torroja (CSIC), c/Serrano Galvache 4, 28033 Madrid (Spain); Escuela Politecnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganes, Madrid (Spain); Lizarte, R. [Escuela Politecnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganes, Madrid (Spain); Palacios, E. [Escuela Universitaria Ingenieria Tecnica Industrial, Universidad Politecnica de Madrid, C/ Ronda de Valencia 3, 28012 Madrid (Spain); Infante Ferreira, C.A. [Delft University of Technology, Engineering Thermodynamics, Leeghwaterstraat 44, 2628 CA Delft (Netherlands)

    2009-06-15

    The aim of this work is to determine the boiling heat transfer coefficients in the high temperature desorber (HTD) of an air-cooled double effect lithium bromide/water absorption prototype. The HTD is a plate heat exchanger (PHE) with thermal oil on one side, and a lithium bromide solution on the other side. Several experiments were performed with this PHE while the prototype was working with an outdoor dry bulb temperature around 42 C and condensation temperature around 55 C. The registered data allowed to calculate the global heat transfer coefficient and the heat transfer coefficient for the LiBr/water mixture in forced convective boiling. The pressure drop produced by the boiling of the refrigerant has been calculated as well. It has been verified that the largest part of the heat supplied in the generator is required for desorbing the refrigerant (except for the maximum solution mass flow), while the sensible heat varies from 10% to 50% of the total heat supplied. (author)

  1. Prediction of the critical heat flux for saturated upward flow boiling water in vertical narrow rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gil Sik, E-mail: choigs@kaist.ac.kr; Chang, Soon Heung; Jeong, Yong Hoon

    2016-07-15

    A study, on the theoretical method to predict the critical heat flux (CHF) of saturated upward flow boiling water in vertical narrow rectangular channels, has been conducted. For the assessment of this CHF prediction method, 608 experimental data were selected from the previous researches, in which the heated sections were uniformly heated from both wide surfaces under the high pressure condition over 41 bar. For this purpose, representative previous liquid film dryout (LFD) models for circular channels were reviewed by using 6058 points from the KAIST CHF data bank. This shows that it is reasonable to define the initial condition of quality and entrainment fraction at onset of annular flow (OAF) as the transition to annular flow regime and the equilibrium value, respectively, and the prediction error of the LFD model is dependent on the accuracy of the constitutive equations of droplet deposition and entrainment. In the modified Levy model, the CHF data are predicted with standard deviation (SD) of 14.0% and root mean square error (RMSE) of 14.1%. Meanwhile, in the present LFD model, which is based on the constitutive equations developed by Okawa et al., the entire data are calculated with SD of 17.1% and RMSE of 17.3%. Because of its qualitative prediction trend and universal calculation convergence, the present model was finally selected as the best LFD model to predict the CHF for narrow rectangular channels. For the assessment of the present LFD model for narrow rectangular channels, effective 284 data were selected. By using the present LFD model, these data are predicted with RMSE of 22.9% with the dryout criterion of zero-liquid film flow, but RMSE of 18.7% with rivulet formation model. This shows that the prediction error of the present LFD model for narrow rectangular channels is similar with that for circular channels.

  2. Study of the internal heat transfer of the water flow in nucleate boiling; Estudio de la transferencia de calor del flujo interno de agua en ebullicion nucleada

    Energy Technology Data Exchange (ETDEWEB)

    Payan Rodriguez, Luis Alfredo

    2003-09-01

    In this paper the development of a research project oriented to the analysis of the heat transfer of the water flow in nucleate boiling is presented. Here a mathematical model is described to characterize the water flow in boiling condition in vertical tubes by means of which the temperature distributions in the tube wall and in the water flow are obtained, including the calculation of the pressure drop throughout the tube. In addition, a mechanistic model focused to the prediction of the critical heat flow in vertical tubes uniformly heated was modified to be applied in non-uniform heat flow conditions. The proposed mathematical models were used in a case study derived from a real problem in a thermoelectric power plant, where it was required to simulate the process of boiling in fireplace tubes of the steam generator to determine the causes of the faults that happened in a considerable number of tubes. With the obtained results it was possible to establish that the faults in the tubes of the analyzed steam generator were originated because the heat transfer rate in the fireplace reached critical values that caused the deviation of the nucleate boiling to film boiling, causing the diminution of the heat transfer coefficient with the consequent sudden increase in the tube wall temperature. [Spanish] En este trabajo se presenta el desarrollo de un proyecto de investigacion orientado al analisis de la transferencia de calor en flujo de agua en ebullicion nucleada. Aqui se describe un modelo matematico para caracterizar el flujo de agua en ebullicion en tubos verticales mediante el cual se obtienen las distribuciones de temperatura en la pared del tubo y en el flujo de agua, incluyendo el calculo de la caida de presion a lo largo del tubo. Ademas, un modelo mecanistico enfocado a la prediccion del flujo de calor critico en tubos verticales uniformemente calentados fue modificado para aplicarlo en condiciones de flujo de calor no uniforme. Los modelos matematicos

  3. Analysis of the FeCrAl Accident Tolerant Fuel Concept Benefits during BWR Station Blackout Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Kevin R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Iron-chromium-aluminum (FeCrAl) alloys are being considered for fuel concepts with enhanced accident tolerance. FeCrAl alloys have very slow oxidation kinetics and good strength at high temperatures. FeCrAl could be used for fuel cladding in light water reactors and/or as channel box material in boiling water reactors (BWRs). To estimate the potential safety gains afforded by the FeCrAl concept, the MELCOR code was used to analyze a range of postulated station blackout severe accident scenarios in a BWR/4 reactor employing FeCrAl. The simulations utilize the most recently known thermophysical properties and oxidation kinetics for FeCrAl. Overall, when compared to the traditional Zircaloy-based cladding and channel box, the FeCrAl concept provides a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. Finally, due to the slower oxidation kinetics, substantially less hydrogen is generated, and the generation is delayed in time. This decreases the amount of non-condensable gases in containment and the potential for deflagrations to inhibit the accident response.

  4. Comparison of Standard Light Water Reactor Cross-Section Libraries using the United States Nuclear Regulatory Commission Boiling Water Reactor Benchmark Problem

    Science.gov (United States)

    Kulesza, Joel A.; Arzu Alpan, F.

    2016-02-01

    This paper describes a comparison of contemporary and historical light water reactor shielding and pressure vessel dosimetry cross-section libraries for a boiling water reactor calculational benchmark problem. The calculational benchmark problem was developed at Brookhaven National Laboratory by the request of the U. S. Nuclear Regulatory Commission. The benchmark problem was originally evaluated by Brookhaven National Laboratory using the Oak Ridge National Laboratory discrete ordinates code DORT and the BUGLE-93 cross-section library. In this paper, the Westinghouse RAPTOR-M3G three-dimensional discrete ordinates code was used. A variety of cross-section libraries were used with RAPTOR-M3G including the BUGLE93, BUGLE-96, and BUGLE-B7 cross-section libraries developed at Oak Ridge National Laboratory and ALPAN-VII.0 developed at Westinghouse. In comparing the calculated fast reaction rates using the four aforementioned cross-section libraries in the pressure vessel capsule, for six dosimetry reaction rates, a maximum relative difference of 8% was observed. As such, it is concluded that the results calculated by RAPTOR-M3G are consistent with the benchmark and further that the different vintage BUGLE cross-section libraries investigated are largely self-consistent.

  5. Comparison of Standard Light Water Reactor Cross-Section Libraries using the United States Nuclear Regulatory Commission Boiling Water Reactor Benchmark Problem

    Directory of Open Access Journals (Sweden)

    Kulesza Joel A.

    2016-01-01

    Full Text Available This paper describes a comparison of contemporary and historical light water reactor shielding and pressure vessel dosimetry cross-section libraries for a boiling water reactor calculational benchmark problem. The calculational benchmark problem was developed at Brookhaven National Laboratory by the request of the U. S. Nuclear Regulatory Commission. The benchmark problem was originally evaluated by Brookhaven National Laboratory using the Oak Ridge National Laboratory discrete ordinates code DORT and the BUGLE-93 cross-section library. In this paper, the Westinghouse RAPTOR-M3G three-dimensional discrete ordinates code was used. A variety of cross-section libraries were used with RAPTOR-M3G including the BUGLE93, BUGLE-96, and BUGLE-B7 cross-section libraries developed at Oak Ridge National Laboratory and ALPAN-VII.0 developed at Westinghouse. In comparing the calculated fast reaction rates using the four aforementioned cross-section libraries in the pressure vessel capsule, for six dosimetry reaction rates, a maximum relative difference of 8% was observed. As such, it is concluded that the results calculated by RAPTOR-M3G are consistent with the benchmark and further that the different vintage BUGLE cross-section libraries investigated are largely self-consistent.

  6. Explosive boiling?

    NARCIS (Netherlands)

    Limbeek, van M.A.J.; Lhuissier, H.E.; Prosperetti, A.; Sun, C.; Lohse, D.

    2013-01-01

    A liquid drop immersed into a host liquid can be strongly superheated before nucleation of the first vapour bubble occurs. A millimetre-size water drop indeed survives several minutes at T = 170–190 °C at ambient pressure into sunflower or silicon oil. When nucleation eventually occurs, the drop may

  7. Comparison of results for burning with BWR reactors CASMO and SCALE 6.2 (TRITON / NEWT); Comparacion de los resultados de quemado para reactores BWR con CASMO y SCALE 6.2 (TRITON/NEWT)

    Energy Technology Data Exchange (ETDEWEB)

    Mesado, C.; Miro, R.; Barrachina, T.; Verdu, G.

    2014-07-01

    In this paper we compare the results from two codes burned, CASMO and SCALE 6.2 (TRITON). To do this, is simulated all segments corresponding to a boiling water reactor (BWR) using both codes. In addition, to account for different working points, simulations changing the instantaneous variables, these are repeated: void fractions (6 points), fuel temperature (6 points) and control rods (two points), with a total of 72 possible combinations of different instantaneous variables for each segment. After all simulations are completed for each segment, we can reorder the obtained cross sections, as SCALE CASMO both, to create a library of compositions nemtab format. This format is accepted by the neutronic code of nodal diffusion, PARCS v2.7. Finally compares the results obtained with PARCS and with the SIMULATE3 -SIMTAB methodology to level of full reactor. Also, we have made use of the KENO-VI and MCDANCOFF modules belonging to SCALE. The first is a Monte Carlo transport code with which you can validate the value of the multiplier, the second has been used to obtain values of Dancoff factor and increase the accuracy of model SCALE. (Author)

  8. Optimization of fuel cells for BWR using Path Re linking and flexible strategies of solution;Optimizacion de celdas de combustible para BWR empleando Path Relinking y estrategias flexibles de solucion

    Energy Technology Data Exchange (ETDEWEB)

    Castillo M, J. A.; Ortiz S, J. J.; Torres V, M.; Perusquia del Cueto, R., E-mail: alejandro.castillo@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-10-15

    In this work are presented the obtained preliminary results to design nuclear fuel cells for boiling water reactors (BWR) using new strategies. To carry out the cells design some of the used rules in the fuel administration were discarded and other were implemented. The above-mentioned with the idea of making a comparative analysis between the used rules and those implemented here, under the hypothesis that it can be possible to design nuclear fuel cells without using all the used rules and executing the security restrictions that are imposed in these cases. To evaluate the quality of the obtained cells it was taken into account the power pick factor and the infinite multiplication factor, in the same sense, to evaluate the proposed configurations and to obtain the mentioned parameters was used the CASMO-4 code. To optimize the design it is uses the combinatorial optimization technique named Path Re linking and the Dispersed Search as local search method. The preliminary results show that it is possible to implement new strategies for the cells design of nuclear fuel following new rules. (Author)

  9. Light Water Reactor Sustainability Program BWR High-Fluence Material Project: Assessment of the Role of High-Fluence on the Efficiency of HWC Mitigation on SCC Crack Growth Rates

    Energy Technology Data Exchange (ETDEWEB)

    Sebastien Teysseyre

    2014-04-01

    As nuclear power plants age, the increasing neutron fluence experienced by stainless steels components affects the materials resistance to stress corrosion cracking and fracture toughness. The purpose of this report is to identify any new issues that are expected to rise as boiling water reactor power plants reach the end of their initial life and to propose a path forward to study such issues. It has been identified that the efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report summarizes the data available to support this hypothesis and describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. This program plan includes acquisition of irradiated materials, generation of material via irradiation in a test reactor, and description of the test plan. This plan offers three approaches, each with an estimated timetable and budget.

  10. Pool boiling heat transfer of water in porous copper foam%水在开孔泡沫铜中的池沸腾传热特性

    Institute of Scientific and Technical Information of China (English)

    程云; 李菊香; 莫光东

    2013-01-01

    对常温、大气压下水在开孔泡沫铜中池沸腾的传热特性进行了试验研究,观察了开孔泡沫铜中汽泡的生长特性及其变化规律,并与水在光管加热面的池沸腾特性进行了对比.试验结果表明:水在泡沫铜中池沸腾时,汽泡脱离直径和汽泡脱离频率随热通量的增加而不断增大,泡沫铜对水的池沸腾传热具有很好的强化效果.根据试验结果,得到了水在开孔泡沫铜中池沸腾传热的传热系数拟合关联式,为进一步的研究提供了依据.%The pool boiling heat transfer performance of water in porous copper foam was investigated experimentally at room temperature and atmospheric pressure. The growth characteristics of bubble in copper foam with open cells were obtained by visual observation. The results showed that the bubble escape diameters and bubble escape frequency increased with the increase of heat flux, and the enhancement effect of copper foam for pool boiling was obtained by comparing with plain tube. A correlation for water pool boiling heat transfer coefficient in copper foam was obtained, providing a basis to further study.

  11. Development of a water boil-off spent-fuel calorimeter system. [To measure decay heat generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Creer, J.M.; Shupe, J.W. Jr.

    1981-05-01

    A calorimeter system was developed to measure decay heat generation rates of unmodified spent fuel assemblies from commercial nuclear reactors. The system was designed, fabricated, and successfully tested using the following specifications: capacity of one BWR or PWR spent fuel assembly; decay heat generation range 0.1 to 2.5 kW; measurement time of < 12 h; and an accuracy of +-10% or better. The system was acceptance tested using a dc reference heater to simulate spent fuel assembly heat generation rates. Results of these tests indicated that the system could be used to measure heat generation rates between 0.5 and 2.5 kW within +- 5%. Measurements of heat generation rates of approx. 0.1 kW were obtained within +- 15%. The calorimeter system has the potential to permit measurements of heat generation rates of spent fuel assemblies and other devices in the 12- to 14-kW range. Results of calorimetry of a Turkey Point spent fuel assembly indicated that the assembly was generating approx. 1.55 kW.

  12. Prevention of organic iodide formation in BWR`s

    Energy Technology Data Exchange (ETDEWEB)

    Karjunen, T. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Laitinen, T.; Piippo, J.; Sirkiae, P. [VTT Manufacturing Technology (Finland)

    1996-12-01

    During an accident, many different forms of iodine may emerge. Organic iodides, such as methyl iodide and ethyl iodide, are relatively volatile, and thus their appearance leads to increased concentration of gaseous iodine. Since organic iodides are also relatively immune to most accident mitigation measures, such as sprays and filters, they can affect the accident source term significantly even when only a small portion of iodine is in organic form. Formation of organic iodides may not be limited by the amount of organic substances available. Excessive amounts of methane can be produced, for example, during oxidation of boron carbide, which is used in BWR`s as a neutron absorber material. Another important source is cable insulation. In a BWR, a large quantity of cables is placed below the pressure vessel. Thus a large quantity of pyrolyse gases will be produced, should the vessel fail. Organic iodides can be formed as a result of many different reactions, but at least in certain conditions the main reaction takes place between an organic radical produced by radiolysis and elemental iodine. A necessary requirement for prevention of organic iodide production is therefore that the pH in the containment water pools is kept high enough to eliminate formation of elemental iodine. In a typical BWR the suppression pool water is usually unbuffered. As a result, the pH may be dominated by chemicals introduced during an accident. If no system for adding basic chemicals is operable, the main factor affecting pool water pH may be hydrochloric acid released during cable degradation. Should this occur, the conditions could be very favorable for production of elemental iodine and, consequently, formation of organic iodides. Although high pH is necessary for iodine retention, it could have also adverse effects. High pH may, for example, accelerate corrosion of containment materials and alter the characteristics of the solid corrosion products. (author) 6 figs., 1 tab., 13 refs.

  13. Bubble Behavior in Nucleate Boiling Experiment Aboard the Space Shuttle

    OpenAIRE

    Koeln, Justin P.; Boulware, Jeffrey C.; Ban, Heng

    2009-01-01

    Boiling dynamics in microgravity need to be better understood before heat transfer systems based on boiling mechanism can be developed for space applications. This paper presents the results of a nucleate boiling experiment aboard Space Shuttle Endeavor (STS- 108). The experiment utilized nickel-chromium resistance wire to boil water in microgravity, and the data was recorded with a CCD camera and six thermistors. This data was analyzed to determine the behavior of bubble formation, detachmen...

  14. Overview of New Tools to Perform Safety Analysis: BWR Station Black Out Test Case

    Energy Technology Data Exchange (ETDEWEB)

    D. Mandelli; C. Smith; T. Riley; J. Nielsen; J. Schroeder; C. Rabiti; A. Alfonsi; Cogliati; R. Kinoshita; V. Pasucci; B. Wang; D. Maljovec

    2014-06-01

    Dynamic Probabilistic Risk Assessment (DPRA) methodologies couple system simulator codes (e.g., RELAP, MELCOR) with simulation controller codes (e.g., RAVEN, ADAPT). While system simulator codes accurately model system dynamics deterministically, simulation controller codes introduce both deterministic (e.g., system control logic, operating procedures) and stochastic (e.g., component failures, parameter uncertainties) elements into the simulation. Typically, a DPRA is performed by: 1) sampling values of a set of parameters from the uncertainty space of interest (using the simulation controller codes), and 2) simulating the system behavior for that specific set of parameter values (using the system simulator codes). For complex systems, one of the major challenges in using DPRA methodologies is to analyze the large amount of information (i.e., large number of scenarios ) generated, where clustering techniques are typically employed to allow users to better organize and interpret the data. In this paper, we focus on the analysis of a nuclear simulation dataset that is part of the Risk Informed Safety Margin Characterization (RISMC) Boiling Water Reactor (BWR) station blackout (SBO) case study. We apply a software tool that provides the domain experts with an interactive analysis and visualization environment for understanding the structures of such high-dimensional nuclear simulation datasets. Our tool encodes traditional and topology-based clustering techniques, where the latter partitions the data points into clusters based on their uniform gradient flow behavior. We demonstrate through our case study that both types of clustering techniques complement each other in bringing enhanced structural understanding of the data.

  15. Paramagnetism and improved upconversion luminescence properties of NaYF4:Yb,Er/NaGdF4 nanocomposites synthesized by a boiling water seed-mediated route

    Science.gov (United States)

    Yang, Chao-Qing; Li, Ao-Ju; Guo, Wei; Tian, Peng-Hua; Yu, Xiao-Long; Liu, Zhong-Xin; Cao, Yang; Sun, Zhong-Liang

    2016-03-01

    In a route boiling water served as reaction medium, a stoichiometric amount of rare-earth compound and fluoride are put into this system to form α-NaYF4:Yb, Er nuclei. Then prepared sample is heated at elevated temperature to improve the fluorescence intensity, and next a NaGdF4 shell grows on the surface of NaYF4 nuclei. NaYF4:Yb,Er/NaGdF4 core-shell structured upconversion nanoparticles (CSUCNPs) have been successfully synthesized by above route. The use of boiling water decreases the cubic-to-hexagonal phase transition temperature of NaYF4:Yb,Er to 350°C and increases its upconversion (UC) luminescence intensity. A heterogeneous NaGdF4 epitaxially growing on the surface of Ln3+-doped NaYF4 not only improves UC luminescence, but also creates a paramagnetic shell, which can be used as contrast agents in magnetic resonance imaging (MRI). The solution of CSUCNPs shows bright green UC fluorescence under the excitation at 980 nm in a power density only about 50 mW·cm-2. A broad spectrum with a dominant resonance at g of about 2 is observed by the electron paramagnetic resonance (EPR) spectrum of CSUCNPs. Above properties suggest that the obtained CSUCNPs could be potential candidates for dual-mode optical/magnetic bioapplications.

  16. Development of advanced BWR fuel bundle with spectral shift rod - BWR core characteristics with SSR

    Energy Technology Data Exchange (ETDEWEB)

    Hino, T.; Kondo, T.; Chaki, M.; Ohga, Y. [Hitachi-GE Nuclear Energy, Ltd., 1-1, Saiwai-cho, 3-chome, Hitachi-shi, Ibaraki-ken, 317-0073 (Japan); Makigami, T. [Tokyo Electric Power Company Inc., 1-1-3, Uchisaiwai-cho, Chiyoda-ku, Tokyo, 100-0011 (Japan)

    2012-07-01

    The neutron energy spectrum can be varied during an operation cycle to generate and utilize more plutonium from the non-fissile {sup 238}U by changing the void fraction in the core through control of the core coolant flow rate. This operation method, which is called a spectral shift operation, is practiced in BWRs to save natural uranium. A new component called a spectral shift rod (SSR), which is utilized instead of a conventional water rod, has been introduced to amplify the void fraction change and increase the spectral shift effect. In this study, fuel bundle design with the SSR and core design were carried out for the ABWR and the next generation BWR, HP-ABWR (High-Performance ABWR).The core characteristics with the SSR were evaluated and compared with those when using the conventional water rod. Influences of uncertainty of the water level in the SSR on the safety limit minimum critical power ratio (SLMCPR) were considered for evaluation of the uranium saving effect attained by the SSR. As a result, it was found that the amount of natural uranium needed for an operation cycle could be reduced more than 3% with 20% core coolant flow change and more than 5% with 30% core coolant flow change, in the form of increased discharge exposure by using the SSR compared with the conventional water rod use. (authors)

  17. The investigation of boiling crisis of nanofluids

    Directory of Open Access Journals (Sweden)

    Minakov Andrey

    2016-01-01

    Full Text Available Saturated boiling of nanofluids on a cylindrical heater with different diameters is experimentally studied. Studied nanofluids were prepared using distilled water and different metal oxides nanoparticles. The volume concentration of the nanoparticles was changed from 0.05 to 1%. It has been measured that the critical heat flux for nanofluids was much higher than for water. A strong dependence of CHF on the material and size of the nanoparticles and duration of boiling and size of heater was shown.

  18. How To Boil the Perfect Egg

    Institute of Scientific and Technical Information of China (English)

    小雨

    2007-01-01

    A British inventor says he has cracked(破解)the age-old riddle(难题)of how to boil the perfect egg,get rid of(摆脱)the water. Simon Rhymes uses powerful light bulbs instead of boiling water to cook the egg. The gadget(小发明)does the job in six minutes,and then chons off(削)the top of

  19. Indoor Particulate Matter Concentration, Water Boiling Time, and Fuel Use of Selected Alternative Cookstoves in a Home-Like Setting in Rural Nepal

    Directory of Open Access Journals (Sweden)

    Kristen D. Ojo

    2015-07-01

    Full Text Available Alternative cookstoves are designed to improve biomass fuel combustion efficiency to reduce the amount of fuel used and lower emission of air pollutants. The Nepal Cookstove Trial (NCT studies effects of alternative cookstoves on family health. Our study measured indoor particulate matter concentration (PM2.5, boiling time, and fuel use of cookstoves during a water-boiling test in a house-like setting in rural Nepal. Study I was designed to select a stove to be used in the NCT; Study II evaluated stoves used in the NCT. In Study I, mean indoor PM2.5 using wood fuel was 4584 μg/m3, 1657 μg/m3, and 2414 μg/m3 for the traditional, alternative mud brick stove (AMBS-I and Envirofit G-series, respectively. The AMBS-I reduced PM2.5 concentration but increased boiling time compared to the traditional stove (p-values < 0.001. Unlike AMBS-I, Envirofit G-series did not significantly increase overall fuel consumption. In Phase II, the manufacturer altered Envirofit stove (MAES and Nepal Nutrition Intervention Project Sarlahi (NNIPS altered Envirofit stove (NAES, produced lower mean PM2.5, 1573 μg/m3 and 1341 μg/m3, respectively, relative to AMBS-II 3488 μg/m3 for wood tests. The liquid propane gas stove had the lowest mean PM2.5 concentrations, with measurements indistinguishable from background levels. Results from Study I and II showed significant reduction in PM2.5 for all alternative stoves in a controlled setting. In study I, the AMBS-I stove required more fuel than the traditional stove. In contrast, in study II, the MAES and NAES stoves required statistically less fuel than the AMBS-II. Reductions and increases in fuel use should be interpreted with caution because the composition of fuels was not standardized—an issue which may have implications for generalizability of other findings as well. Boiling times for alternative stoves in Study I were significantly longer than the traditional stove—a trade-off that may have implications for

  20. Light Water Reactor Sustainability Program Support and Modeling for the Boiling Water Reactor Station Black Out Case Study Using RELAP and RAVEN

    Energy Technology Data Exchange (ETDEWEB)

    Diego Mandelli; Curtis Smith; Thomas Riley; John Schroeder; Cristian Rabiti; Aldrea Alfonsi; Joe Nielsen; Dan Maljovec; Bie Wang; Valerio Pascucci

    2013-09-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated. In order to evaluate the impact of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the impact of power uprate on the safety of a boiled water reactor system. The case study considered is a loss of off-site power followed by the loss of diesel generators, i.e., a station black out (SBO) event. Analysis is performed by using a thermo-hydraulic code, i.e. RELAP-5, and a stochastic analysis tool currently under development at INL, i.e. RAVEN. Starting from the event tree models contained in SAPHIRE, we built the input file for RELAP-5 that models in great detail system dynamics under SBO conditions. We also interfaced RAVEN with RELAP-5 so that it would be possible to run multiple RELAP-5 simulation runs by changing specific keywords of the input file. We both employed classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. We also employed advanced data analysis and visualization tools that helped us to correlate simulation outcome such as maximum core temperature with a set of input uncertain parameters. Results obtained gave a detailed overview of the issues associated to power uprate for a SBO accident scenario. We were able to quantify how timing of safety related events were impacted by a higher reactor core power. Such insights can provide useful material to the decision makers to perform risk-infomed safety margins management.

  1. Environmentally assisted cracking in light water reactors. Semiannual report July 1996--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K.; Chung, H.M.; Gavenda, D.J. [Argonne National Lab., IL (United States)] [and others

    1997-10-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from July 1996 to December 1996. Topics that have been investigated include (a) fatigue of carbon, low-alloy, and austenitic stainless steels (SSs) used in reactor piping and pressure vessels, (b) irradiation-assisted stress corrosion cracking of Type 304 SS, (c) EAC of Alloy 600, and (d) characterization of residual stresses in welds of boiling water reactor (BWR) core shrouds by numerical models. Fatigue tests were conducted on ferritic and austenitic SSs in water that contained various concentrations of dissolved oxygen to determine whether a slow strain rate applied during various portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Slow-strain-rate-tensile tests were conducted in simulated BWR water at 288 C on SS specimens irradiated to a low fluence in the Halden reactor and the results were compared with similar data from a control-blade sheath and neutron-absorber tubes irradiated in BWRs to the same fluence level. Crack-growth-rate tests were conducted on compact-tension specimens from a low-carbon content heat of Alloy 600 in high-purity oxygenated water at 289 C. Residual stresses and stress intensity factors were calculated for BWR core shroud welds.

  2. Radial optimization of a BWR fuel cell using genetic algorithms; Optimizacion radial de una celda de combustible BWR usando algoritmos geneticos

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo M, C.; Carmona H, R.; Oropeza C, I.P. [UNAM, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)]. e-mail: cmcm@fi-b.unam.mx

    2006-07-01

    The development of the application of the Genetic Algorithms (GA) to the optimization of the radial distribution of enrichment in a cell of fuel of a BWR (Boiling Water Reactor) is presented. The optimization process it was ties to the HELIOS simulator, which is a transport code of neutron simulation of fuel cells that has been validated for the calculation of nuclear banks for BWRs. With heterogeneous radial designs can improve the radial distribution of the power, for what the radial design of fuel has a strong influence in the global design of fuel recharges. The optimum radial distribution of fuel bars is looked for with different enrichments of U{sup 235} and contents of consumable poison. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution of the problem. The optimization process it was coded in 'C' language, it was automated the creation of the entrances to the simulator, the execution of the simulator and the extraction, in the exit of the simulator, of the parameters that intervene in the objective function. The objective function includes four parameters: average enrichment of the cell, average gadolinia concentration of the cell, peak factor of radial power and k-infinite multiplication factor. To be able to calculate the parameters that intervene in the objective function, the one evaluation process of GA was ties to the HELIOS code executed in a Compaq Alpha workstation. It was applied to the design of a fuel cell of 10 x 10 that it can be employee in the fuel assemble designs that are used at the moment in the Laguna Verde Nucleo electric Central. Its were considered 10 different fuel compositions which four contain gadolinia. Three heuristic rules that consist in prohibiting the placement of bars with gadolinia in the ends of the cell, to place the compositions with the smallest enrichment in the corners of the cell and to fix

  3. Full system decontamination experience in BWR

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, N.; Sugai, K.; Katayouse, N.; Fujimori, A.; Iida, K.; Hayashi, K. [Tokyo Electric Power Company, Tokyo (Japan); Kanasaki, T.; Inami, I. [Toshiba Corporation, Yokohama (Japan); Strohmer, F. [Framatome ANP Gmbh, Eelangen (Germany)

    2002-07-01

    At the Fukushima Daiichi Nuclear Power Station unit 3, unit 2, unit 5 and unit 1 of Tokyo Electric Power Company (TEPCO), the replacement of the core shroud and internals has been conducted since 1997 in this order. The welded core internals in operating BWR plants were replaced to improve stress corrosion cracking (SCC) resistance. At present these units are operating smoothly. The developed technology concept is to restore those internals in open air inside the reactor pressure vessel (RPV). To reduce the radiation dose rate inside the RPV, not only a shielding method was applied to cut the radiation from the irradiated structures but also a chemical decontamination method was applied to dissolve the radioactive crud deposited on the surface by using chemical agents. The calculated decontamination factor (DF) at the RPV bottom reached 35-117. As result, the dose rate decreased to approximately 0.1 mSv/h under water. Before and after the installation of the in-vessel shielding, a mechanical cleaning was extensively applied inside the RPV to remove the residual crud as well as the swarf, chips from cutting. As a result, the dose rate at the RPV bottom decreased to ranging from 0.2 to 0.4 mSv/h in air. A working environment for human access, which was better than expected, was established inside the RPV, resulting in 70, 140, 50 and 70 man-Sv (estimated) saving respectively at unit 3 (1F-3), unit 2(1F-2), unit 5(1F-5) and unit 1(1F-1). All four full system decontamination (FSDs) contributed to the successful realization of the core shroud replacement project under the dry condition in RPV.

  4. Optimization study of pressure-swing distillation for the separation process of a maximum-boiling azeotropic system of water-ethylenediamine

    Energy Technology Data Exchange (ETDEWEB)

    Fulgueras, Alyssa Marie; Poudel, Jeeban; Kim, Dong Sun; Cho, Jungho [Kongju National University, Cheonan (Korea, Republic of)

    2016-01-15

    The separation of ethylenediamine (EDA) from aqueous solution is a challenging problem because its mixture forms an azeotrope. Pressure-swing distillation (PSD) as a method of separating azeotropic mixture were investigated. For a maximum-boiling azeotropic system, pressure change does not greatly affect the azeotropic composition of the system. However, the feasibility of using PSD was still analyzed through process simulation. Experimental vapor liquid equilibrium data of water-EDA system was studied to predict the suitability of thermodynamic model to be applied. This study performed an optimization of design parameters for each distillation column. Different combinations of operating pressures for the low- and high-pressure columns were used for each PSD simulation case. After the most efficient operating pressures were identified, two column configurations, low-high (LP+HP) and high-low (HP+ LP) pressure column configuration, were further compared. Heat integration was applied to PSD system to reduce low and high temperature utility consumption.

  5. Design and optimization of a fuel reload of BWR with plutonium and minor actinides; Diseno y optimizacion de una recarga de combustible de BWR con plutonio y actinidos menores

    Energy Technology Data Exchange (ETDEWEB)

    Guzman A, J. R.; Francois L, J. L.; Martin del Campo M, C.; Palomera P, M. A. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, Jiutepec, Morelos 62550 (Mexico)]. e-mail: maestro_juan_rafael@hotmail.com

    2008-07-01

    In this work is designed and optimized a pattern of fuel reload of a boiling water reactor (BWR), whose fuel is compound of uranium coming from the enrichment lines, plutonium and minor actinides (neptunium, americium, curium); obtained of the spent fuel recycling of reactors type BWR. This work is divided in two stages: in the first stage a reload pattern designs with and equilibrium cycle is reached, where the reload lot is invariant cycle to cycle. This reload pattern is gotten adjusting the plutonium content of the assembly for to reach the length of the wished cycle. Furthermore, it is necessary to increase the concentration of boron-10 in the control rods and to introduce gadolinium in some fuel rods of the assembly, in order to satisfy the margin approach of out. Some reactor parameters are presented: the axial profile of power average of the reactor core, and the axial and radial distribution of the fraction of holes, for the one reload pattern in balance. For the design of reload pattern codes HELIOS and CM-PRESTO are used. In the second stage an optimization technique based on genetic algorithms is used, along with certain obtained heuristic rules of the engineer experience, with the intention of optimizing the reload pattern obtained in the first stage. The objective function looks for to maximize the length of the reactor cycle, at the same time as that they are satisfied their limits related to the power and the reactor reactivity. Certain heuristic rules are applied in order to satisfy the recommendations of the fuel management: the strategy of the control cells core, the strategy of reload pattern of low leakage, and the symmetry of a quarter of nucleus. For the evaluation of the parameters that take part in the objective function it simulates the reactor using code CM-PRESTO. Using the technique of optimization of the genetic algorithms an energy of the cycle of 10834.5 MW d/tHM is obtained, which represents 5.5% of extra energy with respect to the

  6. Evaporation, Boiling and Bubbles

    Science.gov (United States)

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  7. Pool boiling heat transfer performance of Newtonian nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Saide; Etemad, Seyed Gholamreza [Isfahan University of Technology, Department of Chemical Engineering, Isfahan (Iran); Thibault, Jules [University of Ottawa, Department of Chemical and Biological Engineering, Ottawa, ON (Canada)

    2009-10-15

    Experimental measurements were carried out on the boiling heat transfer characteristics of {gamma}-Al{sub 2}O{sub 3}/water and SnO{sub 2}/water Newtonian nanofluids. Nanofluids are liquid suspensions containing nanoparticles with sizes smaller than 100 nm. In this research, suspensions with different concentrations of {gamma}-Al{sub 2}O{sub 3} and SnO{sub 2} nanoparticles in water were studied under nucleate pool boiling heat transfer conditions. Results show that nanofluids possess noticeably higher boiling heat transfer coefficients than the base fluid. The boiling heat transfer coefficients depend on the type and concentration of nanoparticles. (orig.)

  8. Aspects of subcooled boiling

    Energy Technology Data Exchange (ETDEWEB)

    Bankoff, S.G. [Northwestern Univ., Evanston, IL (United States)

    1997-12-31

    Subcooled boiling boiling refers to boiling from a solid surface where the bulk liquid temperature is below the saturation temperature (subcooled). Two classes are considered: (1) nucleate boiling, where, for large subcoolings, individual bubbles grow and collapse while remaining attached to the solid wall, and (2) film boiling, where a continuous vapor film separates the solid from the bulk liquid. One mechanism by which subcooled nucleate boiling results in very large surface heat transfer coefficient is thought to be latent heat transport within the bubble, resulting from simultaneous evaporation from a thin residual liquid layer at the bubble base, and condensation at the polar bubble cap. Another is the increased liquid microconvection around the oscillating bubble. Two related problems have been attacked. One is the rupture of a thin liquid film subject to attractive and repulsive dispersion forces, leading to the formation of mesoscopic drops, which then coalesce and evaporate. Another is the liquid motion in the vicinity of an oscillating contact line, where the bubble wall is idealized as a wedge of constant angle sliding on the solid wall. The subcooled film boiling problem has been attacked by deriving a general long-range nonlinear evolution equation for the local thickness of the vapor layer. Linear and weakly-nonlinear stability results have been obtained. A number of other related problems have been attacked.

  9. Neutron activation analysis and activity in the vessel steel of a BWR reactor for their study without radiological risks in microscopy and spectrometry; Analisis de activacion neutronica y actividad en el acero de la vasija de un reactor nuclear tipo BWR para su estudio sin riesgos radiologicos en microscopia y espectrometria

    Energy Technology Data Exchange (ETDEWEB)

    Moranchel, M.; Garcia B, A. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Fisica, Unidad Profesional Adolfo Lopez Mateos, Zacatenco, 07738 Mexico D. F. (Mexico); Longoria G, L. C., E-mail: mmoranchel@ipn.mx [IAEA, Department of Technical Cooperation, Division for Latin America, Room B1109 Wagramerstrasse 5, PO Box 100, A-1400, Vienna (Austria)

    2012-07-01

    The vessel material of nuclear reactors is subject to irradiation damage induced by the bombardment of neutrons coming from the reactor core. Neutrons are classified as fast and thermal, which produce different effects. Fast neutrons cause damage to the material by dislocation or displacement of atoms in the crystal structure, while the effect of thermal neutrons is a nuclear transmutation that can significantly change the properties of the material. The type and intensity of damage is based on the characteristics of the material, the flow of neutrons and the modes of neutrons interaction with the atomic structures of the material, among others. This work, alluding to nuclear transmutation, makes an analysis of neutron activation of all isotopes in a steel boiling water nuclear reactor (BWR) vessel. An analytical expression is obtained in order to model activity of steel, on the basis of the weight percentage of its atomic components. Its activity is theoretically estimated in a witness sample of the same material as that of the vessel, placed within the nuclear reactor since the beginning of its commercial operation in April 1995, up to August 2010. It was theoretically determined that the witness sample, with a 0.56 g mass (1 x 1 x 0.07 cm{sup 3} dimensions or equivalent) does not present a radiological risks during the stage of preparation, observation and analysis of it in electron microscopy and X-ray diffraction equipment s. The theoretical results were checked experimentally by measuring the activity of the sample by means of gamma spectrometry, measurement of the exposure levels around the sample, as well as the induced level to whole body and limbs, using thermo-luminescent dosimetry (TLD). As a result of the theoretical analysis, new chemical elements are predicted, as a result of the activation phenomena and radioactive decay, whose presence can be a fundamental factor of change in the properties of the vessel. This work is a preamble to the

  10. A theoretical model for coupled neutronic-thermohydraulic out-of-phase oscillations in Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bragt, D.D.B. van

    1995-10-01

    A theoretical model for out-of-phase power oscillations in BWRs is proposed. This model describes the dynamic behavior of the neutronic and thermohydraulic subsystems during out-of-phase oscillations, and the coupling of these subsystems via the fuel temperature dynamics and void- and Doppler feedback effects. The zero-power neutron kinetics of the out-of-phase flux density mode is derived by expanding the (time- and space-dependent) neutron flux density in the static solutions of the neutron transport equation. This procedure yields the modal point-kinetic equations for the (first-harmonic) out-of-phase mode. The fuel temperature dynamics is described by a lumped parameter first-order process, characterized by a typical fuel time constant. Using the quasistatic approach, the basic equations of the channel thermohydraulics are derived from the conservation laws of mass and energy and the momentum equation. The momentum equation is coupled with the appropriate boundary condition (constant core pressure drop) for out-of phase oscillations. This procedure yields a set of nonlinear equations describing the dynamic behavior of the boiling boundary, void fraction and mass flux density in the cooling channel. A frequency-domain parametric study confirms that if the out-of-phase mode has a more negative subcriticality, reactor stability increases. On the other hand, a more negative void reactivity coefficient has a destabilizing effect. Besides these two parameters, the fuel time constant was found to be an important parameter determining stability. Where possible, the linearized equations describing the channel thermohydraulics were compare with exact solutions of the governing partial-differential channel equations. This comparison shows that in the frequency range of interest, discrepancies between the proposed quasi-static model and more complicated exact solutions are to be expected. (orig.).

  11. Development of a computer program of fast calculation for the pre design of advanced nuclear fuel 10 x 10 for BWR type reactors; Desarrollo de un program de computo de calculo rapido para el prediseno de celdas de combustible nuclear avanzado 10 x 10 para reactores de agua en ebullicion

    Energy Technology Data Exchange (ETDEWEB)

    Perusquia, R.; Montes, J.L.; Ortiz, J.J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: mrpc@nuclear.inin.mx

    2005-07-01

    In the National Institute of Nuclear Research (ININ) a methodology is developed to optimize the design of cells 10x10 of assemble fuels for reactors of water in boil or BWR. It was proposed a lineal calculation formula based on a coefficients matrix (of the change reason of the relative power due to changes in the enrichment of U-235) for estimate the relative powers by pin of a cell. With this it was developed the computer program of fast calculation named PreDiCeldas. The one which by means of a simple search algorithm allows to minimize the relative power peak maximum of cell or LPPF. This is achieved varying the distribution of U-235 inside the cell, maintaining in turn fixed its average enrichment. The accuracy in the estimation of the relative powers for pin is of the order from 1.9% when comparing it with results of the 'best estimate' HELIOS code. With the PreDiCeldas it was possible, at one minimum time of calculation, to re-design a reference cell diminishing the LPPF, to the beginning of the life, of 1.44 to a value of 1.31. With the cell design with low LPPF is sought to even design cycles but extensive that those reached at the moment in the BWR of the Laguna Verde Central. (Author)

  12. Analysis of high fidelity of a BWR fuel element with COBRA-TF/PARCS codes and TRACE; Analisis de Alta Fidelidad de un Elemento Combustible BWR con los codigos COBRA-TF/PARCS y TRACE

    Energy Technology Data Exchange (ETDEWEB)

    Abarca, A.; Miro, R.; Barrachina, T.; Verdu, G.; Solar, A.; Concejal, A.; Melara, J.; Albendea, M.

    2013-07-01

    It has been modeled a 10 x 10 BWR fuel element, containing 91 fuel rods (81 of 10 partial length and total length) and a great water bar of square section in the central part of it. Such fuel element has been modeled in detail: at the level of sub-channel code COBRA-TF and using parametric models for fuel elements BWR that owns the plant code TRACE. Has been an exercise in comparison of the results obtained by both codes in the simulation of a stationary and a small transient flow injection, highlighting the differences observed.

  13. BWR mechanics and materials technology update

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, E.

    1983-05-01

    This paper discusses technical results obtained from a variety of important programs underway at General Electric's Nuclear Engineering Division. The principal objective of these programs is to qualify and improve BWR product related technologies that fall broadly under the disciplines of Applied Mechanics and Materials Engineering. The paper identifies and deals with current technical issues that are of general importance to the LWR industry albeit the specific focus is directed to the development and qualification of analytical predictive methods and criteria, and improved materials for use in the design of the BWR. In this paper, specific results and accomplishments are summarized to provide a braod perspective of technology advances. Results are presented in sections which discuss: dynamic analysis and modeling; fatigue and fracture evaluation; materials engineering advances; and flow induced vibration.

  14. Nucleate boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Saiz Jabardo, J.M. [Universidade da Coruna (Spain). Escola Politecnica Superior], e-mail: mjabardo@cdf.udc.es

    2009-07-01

    Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 {mu}m and 10.5 {mu}m ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 {mu}m). (author)

  15. Study of intermediate configurations during the fuel reload in BWRs; Estudio de configuraciones intermedias durante la recarga de combustible en BWR's

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes M, L.; Castillo M, J. A.; Ortiz S, J. J.; Perusquia del C, R. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Jacinto C, S., E-mail: luis.fuentes@inin.gob.mx [Universidad Autonoma del Estado de Yucatan, Calle 60 No. 491-A por 57, 97000 Merida, Yucatan (Mexico)

    2012-10-15

    The criticality state of the core of a boiling water reactor (BWR) was evaluated, during the reload process for the intermediate states between the load pattern of cycle end and the beginning of the next, using the information of the load pattern of the operation cycles 13 and 14 of Unit 1 of the nuclear power plant of Laguna Verde. For this evaluation the codes CASMO-4 and Simulate-3 for conditions of the core in cold were used. The strategy consisted on moving assemblies with 4 burned cycles of the reactor core. Later on were re situated the remaining assemblies, placing them in the positions to occupy in the next operation cycle. Finally, was carried out the assemblies load of fresh fuel. In each realized change, it was observing the behavior of the k-effective value that is the parameter used to evaluate the criticality state of each state of the core change. In a second stage, was designed a program that builds in automatic way each one of the intermediate cores and also analyzes the criticality state of the reactor core after each withdrawal, re situated and load of fuel assemblies. (Author)

  16. Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 3, Calculated activity profiles of spent nuclear fuel assembly hardware for boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Short, S.M.; Luksic, A.T.; Schutz, M.E.

    1989-06-01

    Consolidation of spent fuel is under active consideration as the US Department of Energy plans to dispose of spent fuel as required by the Nuclear Waste Policy Act of 1982. During consolidation, the fuel pins are removed from an intact fuel assembly and repackaged into a more compact configuration. After repackaging, approximately 30 kg of residual spent fuel assembly hardware per assembly that is also radioactive and required disposal. Understanding the nature of this secondary waste stream is critical to designing a system that will properly handle, package, store, and dispose of the waste. This report presents a methodology for estimating the radionuclide inventory in irradiated spent fuel hardware. Ratios are developed that allow the use of ORIGEN2 computer code calculations to be applied to regions that are outside the fueled region. The ratios are based on the analysis of samples of irradiated hardware from spent fuel assemblies. The results of this research are presented in three volumes. In Volume 1, the development of scaling factors that can be used with ORIGEN2 calculations to estimate activation of spent fuel assembly hardware is documented. The results from laboratory analysis of irradiated spent-fuel hardware samples are also presented in Volume 1. In Volume 2 and 3, the calculated flux profiles of spent nuclear fuel assemblies are presented for pressurized water reactors and boiling water reactors, respectively. The results presented in Volumes 2 and 3 were used to develop the scaling factors documented in Volume 1.

  17. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mertyurek, Ugur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  18. Qualification of helium measurement system for detection of fuel failures in a BWR

    Science.gov (United States)

    Larsson, I.; Sihver, L.; Loner, H.; Grundin, A.; Helmersson, J.-O.; Ledergerber, G.

    2014-05-01

    There are several methods for surveillance of fuel integrity during the operation of a boiling water reactor (BWR). The detection of fuel failures is usually performed by analysis of grab samples of off-gas and coolant activities, where a measured increased level of ionizing radiation serves as an indication of new failure or degradation of an already existing one. At some nuclear power plants the detection of fuel failures is performed by on-line nuclide specific measurements of the released fission gases in the off-gas system. However, it can be difficult to distinguish primary fuel failures from degradation of already existing failures. In this paper, a helium measuring system installed in connection to a nuclide specific measuring system to support detection of fuel failures and separate primary fuel failures from secondary ones is presented. Helium measurements provide valuable additional information to measurements of the gamma emitting fission gases for detection of primary fuel failures, since helium is used as a fill gas in the fuel rods during fabrication. The ability to detect fuel failures using helium measurements was studied by injection of helium into the feed water systems at the Forsmark nuclear power plant (NPP) in Sweden and at the nuclear power plant Leibstadt (KKL) in Switzerland. In addition, the influence of an off-gas delay line on the helium measurements was examined at KKL by injecting helium into the off-gas system. By using different injection rates, several types of fuel failures with different helium release rates were simulated. From these measurements, it was confirmed that the helium released by a failed fuel can be detected. It was also shown that the helium measurements for the detection of fuel failures should be performed at a sampling point located before any delay system. Hence, these studies showed that helium measurements can be useful to support detection of fuel failures. However, not all fuel failures which occurred at

  19. BWR Refill-Reflood Program, Task 4. 7 - model development: TRAC-BWR component models

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Y K; Parameswaran, V; Shaug, J C

    1983-09-01

    TRAC (Transient Reactor Analysis Code) is a computer code for best-estimate analysis for the thermal hydraulic conditions in a reactor system. The development and assessment of the BWR component models developed under the Refill/Reflood Program that are necessary to structure a BWR-version of TRAC are described in this report. These component models are the jet pump, steam separator, steam dryer, two-phase level tracking model, and upper-plenum mixing model. These models have been implemented into TRAC-B02. Also a single-channel option has been developed for individual fuel-channel analysis following a system-response calculation.

  20. High flux film and transition boiling

    Science.gov (United States)

    Witte, L. C.

    1993-02-01

    An investigation was conducted on the potential for altering the boiling curve through effects of high velocity and high subcooling. Experiments using water and Freon-113 flowing over cylindrical electrical heaters in crossflow were made to see how velocity and subcooling affect the boiling curve, especially the film and transition boiling regions. We sought subcooling levels down to near the freezing points of these two liquids to prove the concept that the critical heat flux and the minimum heat flux could be brought together, thereby averting the transition region altogether. Another emphasis was to gain insight into how the various boiling regions could be represented mathematically on various parts of the heating surface. Motivation for the research grew out of a realization that the effects of very high subcooling and velocity might be to avert the transition boiling altogether so that the unstable part of the boiling curve would not limit the application of high flux devices to temperatures less than the burnout temperatures. Summaries of results from the study are described. It shows that the potential for averting the transition region is good and points the way to further research that is needed to demonstrate the potential.

  1. Evaluation of the reduction of boron-10 in the control rods in the BWR of the Laguna Verde Central, through steady state calculations; Evaluacion de la reduccion del Boro-10 en las barras de control en los BWR de la CLV, mediante calculos en estado estacionario

    Energy Technology Data Exchange (ETDEWEB)

    Montes T, J.L.; Perusquia, R.; Hernandez, J.L.; Ramirez S, J.R. [Departamento de Sistemas Nucleares, ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    One of the more important aspects related with the safety and economy in the operation of a nuclear power reactor, it is without a doubt the control of the reactivity. During the normal operation of a reactor of boiling water (BWR-Boiling Water Reactor), the control of the reactivity in the nucleus it is strongly determined by the efficiency of the control rods. In the case of the Laguna Verde Nuclear power station (CNLV) the nucleus of the reactors has 109 control rods grouped in 4 sets. The CNLV at the moment uses the CCC method (Control Cell Core) in the design of the cycle. With this method only the A2 group is used for the control of the reactivity at full power. With the purpose of quantifying the effect of the decrease of the burnable poison (B{sub 4}C) of the control rods and in particular to the effect due to the postulated lost of 10% of Boron 10, it was carried out a series of calculations of the nucleus in stationary state by means of the system of HELIOS/CM-PRESTO codes. In this work the main derived results of these 3D simulations(three dimensions) of the reactors of the CNLV are presented. It was analyzed the one behavior of the infinite neutron multiplication factor (K{sub infinite}), at fuel assemble cell level used in an equilibrium cycle for the CNLV. It was also analyzed the effect in the shutdown margin (ShutDown Margin- SDM) in cold condition CZP (Cold Zero Power). Its are also included those results of the ARI cases (All Rods In) and SRO (Strong Rod Out). From the cases in condition HFP (Hot Full Power) the behavior of the effective multiplication factor (K{sub eff}) is presented. (Author)

  2. Prediction of nucleate boiling heat transfer on horizontal U-shaped heat exchanger submerged in a pool of water using MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Su [Department of Nuclear Thermal-hydraulic Research, FNC Technology Co., Ltd., 46, Tapsil-ro, Giheung-gu, Yongin-si 446-902, Gyeonggi-do (Korea, Republic of); Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Hong, Soon-Joon [Department of Nuclear Thermal-hydraulic Research, FNC Technology Co., Ltd., 46, Tapsil-ro, Giheung-gu, Yongin-si 446-902, Gyeonggi-do (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2015-12-15

    Highlights: • PAFS has a horizontal U-shaped heat exchanger submerged in a pool. • PASCAL and ATLAS-PAFS experiments were simulated using MARS code. • This study assessed the predictive capability of 15 nucleate boiling correlations on horizontal tubes. • This study investigated heat transfer mechanisms of the heat exchanger and proposed new boiling model. • The proposed boiling model predicted the experimental heat transfer coefficients well. - Abstract: In advanced nuclear power plants, a horizontal U-shaped heat exchanger submerged in a pool is under development as a key equipment of a passive safety system. For the successful design of the heat exchanger and the safety analysis of the nuclear power plant incorporating this passive safety system, the reliable prediction of the nucleate boiling heat transfer on the horizontal parts of the U-shaped tubes is one of the important factors. At present, the best estimate thermal hydraulic analysis codes such as RELAP5 and MARS are used to analyze the nucleate boiling heat transfer on the horizontal U-shaped heat exchanger submerged in a pool; however, it is still not known how to physically model the heat exchanger pool, and which correlations are suitable among the pool boiling and forced convective boiling correlations. To secure the applicable correlation for the heat exchanger, this study assessed 15 nucleate boiling correlations using MARS. To improve the prediction capability of the best estimate code, this study investigated the main heat transfer mechanisms on the horizontal U-shaped heat exchanger submerged in a pool, then proposed a prediction method, and finally developed a nucleate boiling model. From the validation of the proposed model against PAFS (passive auxiliary feedwater system)-related experimental data of PASCAL and ATLAS-PAFS, the proposed boiling model predicted the experimental heat transfer coefficients much better than the default nucleate boiling model by Chen (1966, Ind. Eng. Chem

  3. Validation of the CASMO-4 code against SIMS-measured spatial gadolinium distributions inside a BWR pin

    Energy Technology Data Exchange (ETDEWEB)

    Holzgrewe, F.; Gavillet, D.; Restani, R.; Zimmermann, M.A

    2000-07-01

    The purpose of the present study was to establish a database, useful for the assessment of the predictive capabilities of assembly burnup codes with respect to the depletion of the burnable absorber gadolinium (Gd). An SVEA-96 fuel assembly containing one unique Gd rod, with an initial Gd{sub 2}O{sub 3}-content of 9 wt%, was irradiated for one cycle in a Swiss Boiling Water Reactor (BWR), and then transported to the PSI hotcells for post-irradiation examination. Relative radial and azimuthal Gd distributions were obtained from Secondary Ion Mass Spectrometry (SIMS) at three axial positions. Two perpendicular line scans were performed at each position in order to capture the expected asymmetry in the Gd depletion. Since such high-spatial-resolution experimental data for individual fuel pins are quite rare, they form a valuable basis for the further validation of the calculational methods in reactor physics codes. The goal of this study was to contribute to the validation of the micro-region depletion model of CASMO-4 with respect to its standard application of generating two-group cross sections for the 3-D core simulator SIMULATE-3. The only notable difference to the standard application is a more detailed noding scheme for the Gd pin, required to obtain an improved resolution of the calculated distributions. The comparison of measurements with calculational results was found to be quite insensitive to the axial position, and the agreement was found to be very good for all isotopes investigated. The two important neutron-absorbing isotopes {sup 155} Gd and {sup 157} Gd, in particular, show excellent agreement. In conclusion, the CASMO-4 micro-region depletion model has been demonstrated to accurately predict the evolution of the radial distribution of the burnable absorber gadolinium. (authors)

  4. Experimental study about ONB and subcooled boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Changhong, P.; Myint, A.; Yun, G.; Dounan, J. [State Key Laboratory of Multiphase Flow in power engineering, Department of Nuclear and Thermal Power Engineering, Xian (China)

    2004-07-01

    Water subcooled boiling heat transfer were experimentally investigated in the vertical annuli with narrow gap. Subcooled flow boiling covers the region from the location where the bubbles forms on the wall to the location where the bulk temperature reaches saturated temperature. Three locations in the subcooled flow boiling have been identified by earlier researchers as the onset of nucleate boiling (ONB), the beginning of fully developed boiling, and the location where the thermodynamic quality is zero that is inferred from the enthalpy balance equation. The heat transfer regions are identified as single-phase heat transfer prior to ONB, partial boiling (PB) and fully developed boiling (FDB). In this study, the available models for predicting heat transfer in the different regions and the modified correlation can predict our experimental data: -) the heat flux of ONB can be predicted by the Unal correlation, nevertheless the h{sub FC} is calculated by the modified Dittus-Boelter correlations in the narrow annuli, -) Griffith's method can be modified to identify the beginning of fully develop boiling, -) in the partial boiling region, the heat transfer coefficient can be calculated by h{sub PB} equals (1-a)*h{sub L} + a*h{sub FDB}, and -) in the fully developed region, the correlation for saturated flow boiling can be employed to describe the heat transfer.

  5. Measurement of nucleation site density, bubble departure diameter and frequency in pool boiling of water using high-speed infrared and optical cameras

    Energy Technology Data Exchange (ETDEWEB)

    Gerardi, Craig; Buongiorno, Jacopo; Hu, Lin-wen; McKrell, Thomas [Massachusetts Institute of Technology, Cambridge, MA (United States)], e-mail: jacopo@mit.edu

    2009-07-01

    A high-speed video and IR thermometry based technique has been used to obtain time and space resolved information on bubble nucleation and boiling heat transfer. This approach provides a fundamental and systematic method for investigating nucleate boiling in a very detailed fashion. Data on bubble departure diameter and frequency, growth and wait times, and nucleation site density are measured with relative ease. The data have been compared to the traditional decades-old and poorly-validated nucleate-boiling models and correlations. The agreement between the data and the models is relatively good. This study also shows that new insights into boiling heat transfer mechanisms can be obtained with the present technique. For example, our data and analysis suggest that a large contribution to bubble growth comes from heat transfer through the superheated liquid layer in addition to micro layer evaporation. (author)

  6. Characterization of corrosion layers on irradiated and non-irradiated surfaces in BWR conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kysela, J.; Balek, V.; Zmitko, M.; Brozova, A.; Burda, J. [Nuclear Research Inst., Rez (Czech Republic); Hoffmann, H.; Ruehle, W. [VGB Essen (Germany); Bezdicka, P. [Institute of Inorganic Chemistry, ASCR, Rez (Czech Republic)

    2002-07-01

    Stress corrosion cracking of low-alloyed steel 22NiMoCr37 is evaluated with the goal to determine crack growth rate in irradiated steel under conditions simulating closely conditions of BWR RPV under operation. For the experiment, in pile BWR experimental loop has been built at Nuclear Research Institute, Rez. During the experiment, specimens are loaded by cyclic and constant load. Crack growth is monitored by means of potential drop measurement and COD. Corrosion layers formed on specimens in reactor water loop exposed to BWR primary water chemistry and radiation were studied. Two sets of specimens were placed in loop channels. One set of specimens was situated in reactor conditions and the second set out of reactor, other parameters like water chemistry (e.g. concentration of hydrogen, oxygen and conductivity), temperature and flow rate were identical. By means of this an effect of radiation could be studied. The differences in chemical composition, structure and microstructure of corrosion products were characterized by SEM and X-ray powder diffractometry. The differences in microstructure of corrosion layer formed under different conditions were observed. (authors)

  7. Development of high-adhesion and boiling water-resistant glass paint%高附着耐水煮玻璃漆的研制

    Institute of Scientific and Technical Information of China (English)

    刘忠; 沈球旺; 周荣华; 崔岳崧

    2009-01-01

    合成了玻璃环氧底漆,讨论了附着力促进剂、树脂和固化剂种类及用量对涂料性能的影响.结果表明,以1.5%3-缩水甘油醚氧基丙基三甲氧基硅烷为附着力促进剂,以E-20环氧树脂为成膜物、腰果壳油改性酚醛胺为固化剂制成底漆,配合丙烯酸聚氨酯黑面漆,获得了高附着,耐水煮的玻璃漆.%An epoxy primer used on glass was synthesized, and the effects of categories and dosages of adhesion promoters, resins and curing agents were discussed. The results showed that a glass paint with high adhesion and boiling water resistance is obtained when acrylic polyurethane black top paint is combined with the primer prepared with 1.5% of 3-glycidoxypropyltrimethoxysilane as adhesion promoter, E-20 epoxy resin as film-forming material and cashew nut oil modified phenolic aldehyde amine as curing agent.

  8. Physical insight in the burnout region of water-subcooled flow boiling; Etude par visualisation de l`ebullition convective sous-refroidie de l`eau

    Energy Technology Data Exchange (ETDEWEB)

    Piero Celata, G.; Cumo, M.; Mariani, A.; Zummo, G. [ENEA, Rome (Italy). National Institute of Thermal-Fluid Dynamics

    1998-06-01

    The present paper reports the results of a visualization study of the burnout in subcooled flow boiling of water, with square cross-section annular geometry (formed by a central heater rod contained in a duct characterised by a square cross-section). In order to obtain clear pictures of the flow phenomena, he coolant velocity is in the range 3-9 m.s{sup -1} and the resulting heat flux is in the range 7-13 MW.m{sup -2}. From video images (single frames were taken with a light exposure of 1 {mu}s) the following general behaviour of vapour bubbles was observed: when the rate of bubble generation is increasing, with bubbles growing in the superheated layer close to the heating wall, their coalescence produces a sort of elongated bubble called a vapour blanket. One of the main features of the vapour blanket is that it is rooted to the nucleation site on the heated surface. Bubble dimensions, as well as those of the hot spots, are given as a function of thermal-hydraulic tested conditions. (authors) 21 refs.

  9. Two-dimensional DORT discrete ordinates X-Y geometry neutron flux calculations for the Halden Heavy Boiling Water Reactor core configurations

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.

    1990-07-01

    Results are reported for two-dimensional discrete ordinates, X-Y geometry calculations performed for seven Halden Heavy Boiling Water Reactor core configurations. The calculations were performed in support of an effort to reassess the neutron fluence received by the reactor vessel. Nickel foil measurement data indicated considerable underprediction of fluences by the previously used multigroup removal- diffusion method. Therefore, calculations by a more accurate method were deemed appropriate. For each core configuration, data are presented for (1) integral fluxes in the core and near the vessel wall, (2) neutron spectra at selected locations, (3) isoflux contours superimposed on the geometry models, (4) plots of the geometry models, and (5) input for the calculations. The initial calculations were performed with several mesh sizes. Comparisons of the results from these calculations indicated that the uncertainty in the calculated fluxes should be less than 10%. However, three-dimensional effects (such as axial asymmetry in the fuel loading) could contribute to much greater uncertainty in the calculated neutron fluxes. 7 refs., 22 figs., 11 tabs.

  10. Development of an Input Model to MELCOR 1.8.5 for the Oskarshamn 3 BWR

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Lars [Lentek, Nykoeping (Sweden)

    2006-05-15

    An input model has been prepared to the code MELCOR 1.8.5 for the Swedish Oskarshamn 3 Boiling Water Reactor (O3). This report describes the modelling work and the various files which comprise the input deck. Input data are mainly based on original drawings and system descriptions made available by courtesy of OKG AB. Comparison and check of some primary system data were made against an O3 input file to the SCDAP/RELAP5 code that was used in the SARA project. Useful information was also obtained from the FSAR (Final Safety Analysis Report) for O3 and the SKI report '2003 Stoerningshandboken BWR'. The input models the O3 reactor at its current state with the operating power of 3300 MW{sub th}. One aim with this work is that the MELCOR input could also be used for power upgrading studies. All fuel assemblies are thus assumed to consist of the new Westinghouse-Atom's SVEA-96 Optima2 fuel. MELCOR is a severe accident code developed by Sandia National Laboratory under contract from the U.S. Nuclear Regulatory Commission (NRC). MELCOR is a successor to STCP (Source Term Code Package) and has thus a long evolutionary history. The input described here is adapted to the latest version 1.8.5 available when the work began. It was released the year 2000, but a new version 1.8.6 was distributed recently. Conversion to the new version is recommended. (During the writing of this report still another code version, MELCOR 2.0, has been announced to be released within short.) In version 1.8.5 there is an option to describe the accident progression in the lower plenum and the melt-through of the reactor vessel bottom in more detail by use of the Bottom Head (BH) package developed by Oak Ridge National Laboratory especially for BWRs. This is in addition to the ordinary MELCOR COR package. Since problems arose running with the BH input two versions of the O3 input deck were produced, a NONBH and a BH deck. The BH package is no longer a separate package in the new 1

  11. Thermodynamics of Flow Boiling Heat Transfer

    Science.gov (United States)

    Collado, F. J.

    2003-05-01

    Convective boiling in sub-cooled water flowing through a heated channel is essential in many engineering applications where high heat flux needs to be accommodated. It has been customary to represent the heat transfer by the boiling curve, which shows the heat flux versus the wall-minus-saturation temperature difference. However it is a rather complicated problem, and recent revisions of two-phase flow and heat transfer note that calculated values of boiling heat transfer coefficients present many uncertainties. Quite recently, the author has shown that the average thermal gap in the heated channel (the wall temperature minus the average temperature of the coolant) was tightly connected with the thermodynamic efficiency of a theoretical reversible engine placed in this thermal gap. In this work, whereas this correlation is checked again with data taken by General Electric (task III) for water at high pressure, a possible connection between this wall efficiency and the reversible-work theorem is explored.

  12. Evaluation on the heat removal capacity of the first wall for water cooled breeder blanket of CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kecheng, E-mail: jiangkecheng@ipp.ac.cn; Cheng, Xiaoman; Chen, Lei; Huang, Kai; Ma, Xuebin; Liu, Songlin

    2016-02-15

    Highlights: • Heat removal capacity of the FW is evaluated under BWR, PWR and He coolant inlet conditions. • Heat transfer property of the gas–liquid two phase and the two boiling crises are analyzed. • Heat removal capacity of water is larger than helium coolant. - Abstract: The water cooled ceramic breeder blanket (WCCB) is being researched for Chinese Fusion Engineering Test Reactor (CFETR). As an important component of the blanket, the FW should satisfy with the thermal requirements in any case. In this paper, three parameters including the heat removal capacity, coolant pressure drop as well as the temperature rise of the FW were investigated under different coolant velocity and heat flux from the plasma. Using the same first wall structure, two main water cooled schemes including Boiling Water Reactor (BWR, 7 MPa pressure and 265 °C temperature inlet) and Pressurized Water Reactor (PWR, 15 MPa pressure and 285 °C temperature inlet) conditions are discussed in the thermal hydraulic calculation. For further research, the thermal hydraulic characteristics of using helium as coolant (8 MPa pressure, 300 °C temperature inlet) are also explored to provide CFETR blanket design with more useful data supports. Without regard to the outlet coolant condition requirements of the blanket, the results indicate that the ultimate heat flux that the FW can resist is 2.2 MW/m{sup 2} at velocity of 5 m/s for BWR, 2.0 MW/m{sup 2} at velocity of 5 m/s for PWR and 0.87 MW/m{sup 2} for helium at velocity 100 m/s under the chosen operation condition. The detrimental departure from nucleate boiling (DNB) crisis would occur at the velocity of 1 m/s under the heat flux of 3 MW/m{sup 2} and dry out crisis appears at the velocity of less than 0.2 m/s with the heat flux of more than 1 MW/m{sup 2} for BWR. The further blanket/FW optimization design is provided with more useful data references according to the abundant calculation results.

  13. Inhibition of IgE-dependent Mouse Triphasic Cutaneous Reaction by a Boiling Water Fraction Separated from Mycelium of Phellinus linteus

    Directory of Open Access Journals (Sweden)

    Naoki Inagaki

    2005-01-01

    Full Text Available Phellinus linteus, a mushroom, contains constituents that exhibit potent antitumor effects through activating immune cells. Recently, anti-inflammatory and anti-allergic properties of P. linteus extracts have also been implicated. In the present study, therefore, we separated the constituents of mycelium of P. linteus into five fractions—chloroform-soluble (CF, ethyl acetate-soluble (EA, methanol-soluble (AE, water-soluble (WA and boiling water-soluble (BW fractions—and examined their suppressive effects on the IgE-dependent mouse triphasic cutaneous reaction. The triphasic reaction was induced in the ear of BALB/c mice passively sensitized with anti-dinitrophenol IgE by painting with 2,4-dinitrofluorobenzene 24 h later. Ear swelling appeared triphasically with peak responses at 1 h, 24 h and 8 days after the challenge. ME, WA and BW given orally at a dose of 100 mg kg−1 significantly inhibited the first and second phase ear swelling, and BW also inhibited the third phase response. CF only inhibited the second phase. The inhibition by BW was the most potent and almost dose-dependent at doses of 30–300 mg kg−1. BW also inhibited vascular permeability increase caused by passive cutaneous anaphylaxis and histamine, and ear swelling caused by tumor necrosis factor-α. In contrast, BW apparently potentiated the production of interleukin-4 and interferon-γ from anti-CD3-stimulated mouse splenocytes. These results indicate that BW derived from mycelium of P. linteus contains some constituents with anti-allergic as well as immunopotentiating properties.

  14. Inhibition of IgE-dependent mouse triphasic cutaneous reaction by a boiling water fraction separated from mycelium of Phellinus linteus.

    Science.gov (United States)

    Inagaki, Naoki; Shibata, Tomonori; Itoh, Tomokazu; Suzuki, Tomohiro; Tanaka, Hiroyuki; Nakamura, Tomoyuki; Akiyama, Yukihito; Kawagishi, Hirokazu; Nagai, Hiroichi

    2005-09-01

    Phellinus linteus, a mushroom, contains constituents that exhibit potent antitumor effects through activating immune cells. Recently, anti-inflammatory and anti-allergic properties of P. linteus extracts have also been implicated. In the present study, therefore, we separated the constituents of mycelium of P. linteus into five fractions-chloroform-soluble (CF), ethyl acetate-soluble (EA), methanol-soluble (AE), water-soluble (WA) and boiling water-soluble (BW) fractions-and examined their suppressive effects on the IgE-dependent mouse triphasic cutaneous reaction. The triphasic reaction was induced in the ear of BALB/c mice passively sensitized with anti-dinitrophenol IgE by painting with 2,4-dinitrofluorobenzene 24 h later. Ear swelling appeared triphasically with peak responses at 1 h, 24 h and 8 days after the challenge. ME, WA and BW given orally at a dose of 100 mg kg significantly inhibited the first and second phase ear swelling, and BW also inhibited the third phase response. CF only inhibited the second phase. The inhibition by BW was the most potent and almost dose-dependent at doses of 30-300 mg kg. BW also inhibited vascular permeability increase caused by passive cutaneous anaphylaxis and histamine, and ear swelling caused by tumor necrosis factor-alpha. In contrast, BW apparently potentiated the production of interleukin-4 and interferon-gamma from anti-CD3-stimulated mouse splenocytes. These results indicate that BW derived from mycelium of P. linteus contains some constituents with anti-allergic as well as immunopotentiating properties.

  15. Absence of genotoxic activity from milk and water boiled in microwave oven in somatic cells from Drosophila melanogaster; Ausencia da atividade genotoxica do leite e agua, fervidos com microondas, em celulas somaticas de Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Cristina das Dores. E-mail: crisddias@yahoo.com.br

    2003-07-01

    This paper reports an experiment for evaluation of the possible genotoxic effects of food prepared in a microwave oven, through the mutation test and somatic recombination, in wings of Drosophila melanogaster. Two crossing have been performed: a standard cross-ST and a high bioactivation cross - HB resulting in marked trans -heterozygote descendents (MH) and balanced heterozygotes (BH). The 72 hours larvas were fed with water and milk boiled both in the microwave oven and in the traditional way. The MH individual wings were analyzed, where the spots can be induced either by mutation or mitotic recombination. The experiment presented negative results related to the genotoxic effects of the water and milk boiled using the microwave oven, in MH descendents of both crossing. Therefore, under these experimental conditions, genotoxic activity were not presented by milk and water boiled in the microwave oven. However, an extensive study using different techniques is necessary to investigate the action of the food prepared in the microwave oven on the genetic material.

  16. Simulation of the aspersion system of the core low pressure (LPCS) for a boiling water reactor (BWR) based on RELAP; Simulacion del sistema de aspersion del nucleo a baja presion (LPCS) para un reactor de agua en ebullicion (BWR) basado en RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Membrillo G, O. E.; Chavez M, C., E-mail: garzo1012@gmail.com [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-10-15

    The present work presents the modeling and simulation of the aspersion system to low pressure of reactor of the nuclear power plant of Laguna Verde using the nuclear code RELAP/SCDAP. The objective of the emergency systems inside a nuclear reactor is the cooling of the core, nor caring the performance of any other emergency system in the case of an accident design base for coolant loss. To obtain a simulation of the system is necessary to have a model based on their main components, pipes, pumps, valves, etc. This article describes the model for the simulation of the main line and the test line for the HPCS. At the moment we have the simulation of the reactor vessel and their systems associated to the nuclear power plant of Laguna Verde, this work will allow to associate the emergency system model LPCS to the vessel model. The simulation of the vessel and the emergency systems will allow knowing the behavior of the reactor in the stage of the coolant loos, giving the possibility to analyze diverse scenarios. The general model will provide an auxiliary tool for the training in classroom and at distance in the operation of nuclear power plants. (Author)

  17. Estimate of radiation-induced steel embrittlement in the BWR core shroud and vessel wall from reactor-grade MOX/UOX fuel for the nuclear power plant at Laguna Verde, Veracruz, Mexico

    Science.gov (United States)

    Vickers, Lisa Rene

    The government of Mexico has expressed interest to utilize the Laguna Verde boiling water reactor (BWR) nuclear power plant for the disposition of reprocessed spent uranium oxide (UOX) fuel in the form of reactor-grade mixed-oxide (MOX) fuel. MOX fuel would replace spent UOX fuel as a fraction in the core from 18--30% depending on the fuel loading cycle. MOX fuel is expected to increase the neutron fluence, flux, fuel centerline temperature, reactor core pressure, and yield higher energy neutrons. There is concern that a core with a fraction of MOX fuel (i.e., increased 239Pu wt%) would increase the radiation-induced steel embrittlement within the core shroud and vessel wall as compared to only conventional, enriched UOX fuel in the core. The evaluation of radiation-induced steel embrittlement within the core shroud and vessel wall is a concern because of the potentially adverse affect to plant and public safety, environment, and operating life of the reactor. This dissertation provides computational results of the neutron fluence, flux, energy spectrum, and radiation damage displacements per atom per second (dpa-s-1) in steel within the core shroud and vessel wall of the Laguna Verde Unit 1 BWR. The results were computed using the nuclear data processing code NJOY99 and the continuous energy Monte Carlo Neutral Particle transport code MCNP4B. The MCNP4B model of the reactor core was for maximum core loading fractions of ⅓ MOX and ⅔ UOX reactor-grade fuel in an equilibrium core. The primary conclusion of this dissertation was that the addition of the maximum fraction of ⅓ MOX fuel to the LV1 BWR core did significantly accelerate the radiation-induced steel embrittlement such that without mitigation of steel embrittlement by periodic thermal annealing or reduction in operating parameters such as, neutron fluence, core temperature and pressure, it posed a potentially adverse affect to the plant and public safety, environment, and operating life of the reactor.

  18. Corrosion and Corrosion Control in Light Water Reactors

    Science.gov (United States)

    Gordon, Barry M.

    2013-08-01

    Serious corrosion problems have plagued the light water reactor (LWR) industry for decades. The complex corrosion mechanisms involved and the development of practical engineering solutions for their mitigation will be discussed in this article. After a brief overview of the basic designs of the boiling water reactor (BWR) and pressurized water reactor (PWR), emphasis will be placed on the general corrosion of LWR containments, flow-accelerated corrosion of carbon steel components, intergranular stress corrosion cracking (IGSCC) in BWRs, primary water stress corrosion cracking (PWSCC) in PWRs, and irradiation-assisted stress corrosion cracking (IASCC) in both systems. Finally, the corrosion future of both plants will be discussed as plants extend their period of operation for an additional 20 to 40 years.

  19. Numerical Investigation of Boiling

    Science.gov (United States)

    Sagan, Michael; Tanguy, Sebastien; Colin, Catherine

    2012-11-01

    In this work, boiling is numerically investigated, using two phase flow direct numerical simulation based on a level set / Ghost Fluid method. Nucleate boiling implies both thermal issue and multiphase dynamics issues at different scales and at different stages of bubble growth. As a result, the different phenomena are investigated separately, considering their nature and the scale at which they occur. First, boiling of a static bubble immersed in an overheated liquid is analysed. Numerical simulations have been performed at different Jakob numbers in the case of strong density discontinuity through the interface. The results show a good agreement on bubble radius evolution between the theoretical evolution and numerical simulation. After the validation of the code for the Scriven test case, interaction of a bubble with a wall is studied. A numerical method taking into account contact angle is evaluated by comparing simulations of the spreading of a liquid droplet impacting on a plate, with experimental data. Then the heat transfer near the contact line is investigated, and simulations of nucleate boiling are performed considering different contact angles values. Finally, the relevance of including a model to take into account the evaporation of the micro layer is discussed.

  20. Heat transfer effect of an extended surface in downward-facing subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Abdul R., E-mail: khan@vis.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Erkan, Nejdet, E-mail: erkan@vis.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki, 319-1188 (Japan); Okamoto, Koji, E-mail: okamoto@n.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki, 319-1188 (Japan)

    2015-12-15

    Highlights: • Compare downward-facing flow boiling results from bare and extended surfaces. • Upstream and downstream temperatures were measured on the extended surface. • Downstream temperatures exceed upstream temperatures for all flow rates. • Bubble accumulation occurs downstream on extended surface. • Extended surface heat transfer lower than bare surface as flow rate reduced. - Abstract: New BWR containment designs are considering cavity flooding as an accident management strategy. Unlike the PWR, the BWR has many Control Rod Guide Tube (CRGT) penetrations in the lower head. During a severe accident scenario with core melt in the lower plenum along with cavity flooding, the penetrations may affect the heat transfer on the ex-vessel surface and disrupt fluid flow during the boiling process. A small-scale experiment was performed to investigate the issues existing in downward-facing boiling phenomenon with an extended surface. The results were compared with a bare (flat) surface. The mass flux of 244 kg/m{sup 2} s, 215 kg/m{sup 2} s, and 177 kg/m{sup 2} s were applied in this study. CHF conditions were observed only for the 177 kg/m{sup 2} s case. The boiling curves for both types of surfaces and all flow rates were obtained. The boiling curves for the highest flow rate showed lower surface temperatures for the extended surface experiments when compared to the bare surface. The downstream location on the extended surface yielded the highest surface temperatures as the flow rate was reduced. The bubble accumulation and low velocity in the wake produced by flow around the extended surface was believed to have caused the elevated temperatures in the downstream location. Although an extended surface may enhance the overall heat transfer, a reduction in the local heat transfer was observed in the current experiments.

  1. Contact Angle Effects in Boiling Heat Transfer

    OpenAIRE

    Urquiola, Erwin; Fujita, Yasunobu

    2002-01-01

    This paper reports boiling experiments with pure water and surfactant solutions of SDS on horizontal heating surface. The static contact angle, rather than the surface tension value, was found to be the leading factor for the results and probably its prev

  2. The entropy balance for boiling flow

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Francisco-Javier E-mail: fjk@posta.unizar.es

    2001-10-01

    Subcooled forced convection boiling of water is recognized as one of the best means of accommodating the very high heat fluxes that plasma facing components of fusion reactors have to withstand. The boiling curve, giving the wall temperature in function of the applied flux and flow conditions, is essential for the design of such cooling configurations. In this paper, a new entropy balance for subcooled boiling flow, which allows the wall temperature to be obtained, is presented and successfully compared with experimental data from the Joint US-EURATOM R and D Program. The derivation of this entropy balance is based on a new strict application of the Reynolds theorem to multiphase flows recently proposed by the author.

  3. Crack growth behaviour of low alloy steels for pressure boundary components under transient light water reactor operating conditions (CASTOC)

    Energy Technology Data Exchange (ETDEWEB)

    Foehl, J.; Weissenberg, T. [Materialpruefungsanstalt, Univ. Stuttgart (Germany); Gomez-Briceno, D.; Lapena, J. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT) (Spain); Ernestova, M.; Zamboch, M. [Nuclear Research Inst. (NRI) (Czech Republic); Seifert, H.P.; Ritter, S. [Paul Scherrer Inst. (PSI) (Switzerland); Roth, A.; Devrient, B. [Framatome ANP GmbH (F ANP) (Germany); Ehrnsten, U. [Technical Research Centre of Finland (VTT) (Finland)

    2004-07-01

    The CASTOC project addresses environmentally assisted cracking (EAC) phenomena in low alloy steels used for pressure boundary components in both Western type boiling water reactors (BWR) and Russian type pressurised water reactors (VVER). It comprises the four work packages (WP): inter-laboratory comparison test (WP1); EAC behaviour under static load (WP2), EAC behaviour under cyclic load and load transients (WP3); evaluation of the results with regard to their relevance for components in practice (WP4). The use of sophisticated test facilities and measurement techniques for the on-line detection of crack advances have provided a more detailed understanding of the mechanisms of environmentally assisted cracking and provided quantitative data of crack growth rates as a function of loading events and time, respectively. The effect of several major parameters controlling EAC was investigated with particular emphasis on the transferability of the results to components in service. The obtained crack growth rate data were reflected on literature data and on commonly applied prediction curves as presented in the appropriate Code. At relevant stress intensity factors it could be shown that immediate cessation of growing cracks occurs after changing from cyclic to static load in high purity oxygenated BWR water and oxygen-free VVER water corresponding to steady state operation conditions. Susceptibility to environmentally assisted cracking under static load was observed for a heat affected zone material in oxygenated high purity water and also in base materials during a chloride transient representing BWR water condition below Action Level 1 of the EPRI Water Chemistry Guidelines according to the lectrical conductivity of the water but in the range of Action Level 2 according to the content of chlorides. Time based crack growth was also observed in one Russian type base material in oxygenated VVER water and in one Western type base material in oxygenated high purity BWR

  4. Effect of a Chloride Transient on the EAC Crack Growth Behaviour of Low-Alloy RPV Steels under Simulated BWR Operating Conditions (CASTOC WP 3, PSI Test 2)

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S.; Seifert, H.-P

    2002-11-01

    Within the CASTOC-project (5{sup t}h EU FW programme), the environmentally-assisted crack (EAC) growth behaviour of low-alloy reactor pressure vessel (RPV) steels is experimentally investigated under simulated transient and steady-state boiling water reactor (BWR) power operation conditions by six European laboratories. The present report is a summary of the second test of working package (WP) 3 with a NaCl transient, performed at Paul Scherrer Institut (PSI). In the first part of the experiment, an actively growing EAC crack with a crack growth rate (CGR) in the range of the 'low-sulphur SCC line' of the GE-model was generated by periodical partial unloading (PPU) in oxygenated high-temperature, high-purity water (T = 288 {sup o}C, DO = 8 ppm). Then a chloride transient of 49 ppb Cl{sup -} was applied for {approx}40 h. After this transient, the load level was reduced and the loading conditions were changed to pure cyclic loading. Thereupon a second transient with a chloride concentration of 49 ppb was applied. In both RPV steels, the first chloride transient of 49 ppb Cl{sup -} resulted in an acceleration of the EAC crack growth by more than one order of magnitude and in fast, stationary SCC crack growth during the constant load phase of the PPU cycles at K{sub I} values < 60 MPa.m{sup 1/2}. 3 h after adding chloride to the high-purity water, the EAC CGR started to increase in the high-sulphur RPV steel during the constant load phase of a PPU cycle and after 20 h a stationary EAC CGR value in the range of the 'high-sulphur SCC curve' of the GE-model was reached. After 5 h in high-purity water, the crack growth began to slow down after a partial unloading cycle and 15 h later it reached again a stationary CGR value in the range of the 'low-sulphur SCC curve' of the GE-model. The second chloride transient did not result in an acceleration of the crack growth in both investigated specimens. This was explained by crack closure effects

  5. LBB application in Swedish BWR design

    Energy Technology Data Exchange (ETDEWEB)

    Kornfeldt, H.; Bjoerk, K.O.; Ekstroem, P. [ABB Atom, Vaesteras (Sweden)

    1997-04-01

    The protection against dynamic effects in connection with potential pipe breaks has been implemented in different ways in the development of BWR reactor designs. First-generation plant designs reflect code requirements in effect at that time which means that no piping restraint systems were designed and built into those plants. Modern designs have, in contrast, implemented full protection against damage in connection with postulated pipe breaks, as required in current codes and regulations. Moderns standards and current regulatory demands can be met for the older plants by backfitting pipe whip restraint hardware. This could lead to several practical difficulties as these installations were not anticipated in the original plant design and layout. Meeting the new demands by analysis would in this situation have great advantages. Application of leak-before-break criteria gives an alternative opportunity of meeting modem standards in reactor safety design. Analysis takes into account data specific to BWR primary system operation, actual pipe material properties, piping loads and leak detection capability. Special attention must be given to ensure that the data used reflects actual plant conditions.

  6. The law of stable equilibrium and the entropy-based boiling curve for flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Collado, F.J. [Universidad de Zaragoza (Spain). Dpto. Ingenieria Mecanica Motores Termicos

    2005-05-01

    Convective flow boiling in sub-cooled fluids is recognized as one of the few means of accommodating very high heat fluxes. There are many available correlations for predicting the inner wall temperature of the heated duct in the several regimes of the empirical Nukiyama boiling curve, although unfortunately there is no physical fundamentals of such curve. Recently, the author has shown that the classical entropy balance could contain key information about boiling heat transfer. So, it was found that the average thermal gap in the heated channel (the inner wall temperature minus the average temperature of the coolant fluid) was strongly correlated with the efficiency of a theoretical reversible engine placed in this thermal gap. From this new correlation, a new boiling curve plotting the wall temperature versus the average fluid temperature was derived and successfully checked against low- and high-pressure water data. This curve suggested a new and simple definition of the critical heat flux (CHF) namely, the value of the coolant average temperature at the maximum. In this work, after briefly reviewing the entropy balance of a non-equilibrium boiling flow and its relationship with the thermodynamic average temperature and the law of stable equilibrium (LSE), the possibilities of the new approach for the design of flow boiling cooling systems are highlighted. Finally, the strong correlation found between the reversible engine efficiency and the thermal driving force is verified again, now with high-pressure refrigerant 22 (R-22) data. (author)

  7. Boiling local heat transfer enhancement in minichannels using nanofluids.

    Science.gov (United States)

    Chehade, Ali Ahmad; Gualous, Hasna Louahlia; Le Masson, Stephane; Fardoun, Farouk; Besq, Anthony

    2013-03-18

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance.

  8. Environmentally assisted cracking in light water reactors. Semiannual report, April--September 1991: Volume 13

    Energy Technology Data Exchange (ETDEWEB)

    Kassner, T F; Ruther, W E; Chung, H M; Hicks, P D; Hins, A G; Park, J Y; Soppet, W K; Shack, W J [Argonne National Lab., IL (United States)

    1992-03-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking in high water reactors during the six months from April 1991 through September 1991. Topics that have been investigated during this period include (1) fatigue and stress corrosion cracking (SCC) of low-alloy steel used in piping and in steam generator and reactor pressure vessels; (2) role of chromate and sulfate in simulated boiling water reactor (BWR) water on SCC of sensitized Type 304 SS; and (3) radiation-induced segregation (RIS) and irradiation-assisted SCC of Type 304 SS after accumulation of relatively high fluence. Fatigue data were obtained on medium-S-content A533-Gr B and A106-Gr B steels in high-purity (HP) deoxygenated water, in simulated pressurized water reactor (PWR) water, and in air. Crack-growth-rates (CGRs) of composite specimens of A533-Gr B/Inconel-182/Inconel-600 (plated with nickel) and homogeneous specimens of A533-Gr B were determined under small- amplitude cyclic loading in HP water with {approx} 300 ppb dissolved oxygen. CGR tests on sensitized Type 304 SS indicate that low chromate concentrations in BWR water (25--35 ppb) may actually have a beneficial effect on SCC if the sulfate concentration is below a critical level. Microchemical and microstructural changes in HP and commercial-purity Type 304 SS specimens from control-blade absorber tubes used in two operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy, and slow-strain,rate- tensile tests were conducts on tubular specimens in air and in simulated BWR water at 289{degrees}C.

  9. Experimental study of the hydrodynamic instabilities occurring in boiling-water reactors; Etude experimentale des instabilites hydrodynamiques survenant dans les reacteurs nucleaires a ebullition

    Energy Technology Data Exchange (ETDEWEB)

    Fabreca, S. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-10-01

    The subjects is an experimental out-of pile loop study of the hydrodynamic oscillations occurring in boiling-water reactors. The study was carried out at atmospheric pressure and at pressure of about 8 atmospheres, in channels heated electrically by a constant and uniform specified current. In the test at 8 atmospheres the channel was a round tube of approximately 6 mm interior diameter. At 1 atmosphere a ring-section channel was used, 10 * 20 mm in diameter, with an inner heating tube and an outer tube of pyrex. It was possible to operate with natural convection and also with forced convection with test-channel by-pass. The study consists of 3 parts: 1. Preliminary determination of the laws governing pressure-drop during boiling. 2. Determination of the fronts at which oscillation appears, within a wide range of the parameters involved. 3. A descriptive study of the oscillations and measurement of the periods. The report gives the oscillation fronts with natural and forced convection for various values of the singular pressure drop at the channel inlet and for various riser lengths. The results are presented in non-dimensional form, which is available, in first approximation, for all geometric scales and for all fluids. Besides the following points were observed: - the wall (nature and thickness) can be an important factor ; - oscillation can occur in a horizontal channel. (author) [French] II a ete effectue une etude experimentale, en boucle hors-pile, des oscillations hydrodynamiques survenant dans les reacteurs a ebullition. L'etude a ete effectuee a la pression atmospherique et a une pression voisine de 8 atmospheres dans des canaux chauffes electriquement a puissance imposee constante et uniforme. Dans les essais a 8 atmospheres le canal etait un tube circulaire de diametre interieur 6 mm environ. A 1 atmosphere le canal etait de section annulaire 10 * 20 mm avec un tube interieur chauffant et un tube exterieur en pyrex. Le fonctionnement etait possible

  10. Boiling flow through diverging microchannel

    Indian Academy of Sciences (India)

    V S Duryodhan; S G Singh; Amit Agrawal

    2013-12-01

    An experimental study of flow boiling through diverging microchannel has been carried out in this work, with the aim of understanding boiling in nonuniform cross-section microchannel. Diverging microchannel of 4° of divergence angle and 146 m hydraulic diameter (calculated at mid-length) has been employed for the present study with deionised water as working fluid. Effect of mass flux (118–1182 kg/m2-s) and heat flux (1.6–19.2 W/cm2) on single and two-phase pressure drop and average heat transfer coefficient has been studied. Concurrently, flow visualization is carried out to document the various flow regimes and to correlate the pressure drop and average heat transfer coefficient to the underlying flow regime. Four flow regimes have been identified from the measurements: bubbly, slug, slug–annular and periodic dry-out/rewetting. Variation of pressure drop with heat flux shows one maxima which corresponds to transition from bubbly to slug flow. It is shown that significantly large heat transfer coefficient (up to 107 kW/m2-K) can be attained for such systems, for small pressure drop penalty and with good flow stability.

  11. Decontamination of the reactor pressure vessel and further internals and auxiliary systems in the German boiling water reactor Isar-1; Dekontamination des RDB inkl. der Einbauten wie Dampftrockner und Wasserabscheider sowie der angeschlossenen Hilfssysteme im deutschen Siedewasserreaktor ISAR 1

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Michael; Sempere Belda, Luis; Basu, Ashim; Topf, Christian [AREVA GmbH, Erlangen (Germany). Abt. Chemistry Services; Erbacher, Thomas; Hiermer, Thomas; Schnurr, Bernhard; Appeldorn, Thomas van [E.ON Kernkraft GmbH, Kernkraftwerk ISAR, Essenbach (Germany). Abt. Maschinentechnik; Volkmann, Christian [ESG Engineering Services GmbH, Greifswald (Germany)

    2015-12-15

    The German nuclear power plant ISAR 1 (KKI 1), a 878 MWe boiling water reactor of KWU design, was shut down on March 17{sup th}, 2011. With the objective to minimize the plants activity inventory accompanied by the reduction of contact dose rates of systems and components the project 'decontamination of the RPV incl. steam dryer and water separator and the connected auxiliary systems' was implemented in the first quarter of 2015. One major focus within the project was the specific in-situ decontamination of the steam dryer.

  12. Geysering in boiling channels

    Energy Technology Data Exchange (ETDEWEB)

    Aritomi, Masanori; Takemoto, Takatoshi [Tokyo Institute of Technology, Tokyo (Japan); Chiang, Jing-Hsien [Japan NUS Corp. Ltd., Toyko (Japan)] [and others

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  13. Subcooled boiling of nano-particle suspensions on Pt wires

    Institute of Scientific and Technical Information of China (English)

    LI Chunhui; WANG Buxuan; PENG Xiaofeng

    2004-01-01

    An experimental investigation is conducted to explore the subcooled boiling characteristics of nano-particle suspensions on Pt wires. Some phenomena are observed for the boiling of water-SiO2 nano-particle suspensions on Pt wires. The experiments show that there exist not any evident differences for boiling of pure water and of nano-particle suspensions at high heat fluxes. However, bubble overlap phenomenon can be easily found for nano-particle suspensions at low heat fluxes, which probably results from the increase of the attracter force between bubbles and of the bubble mass.

  14. Environmentally-assisted cracking behaviour in the transition region of an Alloy182/SA 508 Cl.2 dissimilar metal weld joint in simulated boiling water reactor normal water chemistry environment

    Science.gov (United States)

    Seifert, H. P.; Ritter, S.; Shoji, T.; Peng, Q. J.; Takeda, Y.; Lu, Z. P.

    2008-08-01

    The stress corrosion cracking (SCC) and corrosion fatigue behaviour perpendicular and parallel to the fusion line in the transition region between the Alloy 182 Nickel-base weld metal and the adjacent SA 508 Cl.2 low-alloy reactor pressure vessel (RPV) steel of a simulated dissimilar metal weld joint was investigated under boiling water reactor normal water chemistry conditions. A special emphasis was placed to the question whether a fast growing interdendritic SCC crack in the highly susceptible Alloy 182 weld metal can easily cross the fusion line and significantly propagate into the adjacent low-alloy RPV steel. Cessation of interdendritic SCC crack growth was observed in high-purity or sulphate-containing oxygenated water under constant or periodical partial unloading conditions for those parts of the crack front, which reached the fusion line. In chloride containing water, on the other hand, the interdendritic SCC crack in the Alloy 182 weld metal very easily crossed the fusion line and further propagated with a very high rate as a transgranular crack into the heat-affected zone and base metal of the adjacent low-alloy steel. The observed SCC cracking behaviour at the interface correlates excellently with the field experience of such dissimilar metal weld joints, where SCC cracking was usually confined to the Alloy 182 weld metal.

  15. Boiling incipience and convective boiling of neon and nitrogen

    Science.gov (United States)

    Papell, S. S.; Hendricks, R. C.

    1977-01-01

    Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. This design precludes nucleate boiling in the flow channels as they are too small to handle vapor flow. Consequently, it was necessary to determine boiling incipience under the operating conditions of the magnet system. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of plus or minus 15 percent

  16. Effect of Loading Transients on the EAC Crack Growth Behaviour of Low-Alloy RPV Steels under Simulated BWR Operating Conditions (CASTOC WP 3, PSI Tests 3 and 4)

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S.; Seifert, H.-P

    2003-04-01

    Within the CASTOC-project (5{sup t}h EU FW programme), the environmentally-assisted crack (EAC) growth behaviour of low-alloy reactor pressure vessel (RPV) steels is experimentally investigated under simulated transient and steady-state boiling water reactor (BWR) power operation conditions by six European laboratories. The present report is a summary of the third and fourth test of working package (WP) 3 with loading transients, performed at Paul Scherrer Institut (PSI). Two different low-alloy steels (20 MnMoNi 5 5, 0.015 wt.% S and 22 NiMoCr 3 7, 0.007 wt. %S) were investigated in oxygenated high-temperature, high-purity water (T = 240 {sup o}C, DO = 400 ppb) in a daisy chain at two different load ratios (R = 0.8 and 0.2). In the first part of the experiments, asymmetrical saw tooth loading with different rise times {delta}t{sub R} of the load and different loading frequencies were applied. Then the loading conditions were changed to an asymmetrical trapezoid waveform loading (periodical partial unloading, PPU) and the hold time {delta}t{sub H} at maximum load was varied. In the final phase of WP 3 PSI tests 3 and 4 the SCC behaviour was investigated under constant load. With decreasing loading frequency the corrosion fatigue (CF) crack advance per cycle {delta}a/{delta}N{sub EAC} of material A increased. Sustained EAC crack growth could be maintained down to low frequencies of 10{sup -5} Hz. The time-based crack growth rate (CGR) da/dt{sub EAC} decreased with decreasing frequency. In material B no effect of the loading frequency could be resolved. Up to a hold time of 1 h at maximum constant load the CGR da/dt{sub EAC} seemed to be independent of the hold time. Above hold times of 1 h the CGR decreased and dropped down to CGR values in the range or below the BWR VIP 60 SCC disposition lines. This behaviour was observed in both investigated materials. The cycle-based CGR {delta}a/{delta}N{sub EAC} remained approximately constant with increasing hold time. The

  17. Thermal-hydraulic performance of convective boiling jet array impingement

    Science.gov (United States)

    Jenkins, R.; De Brún, C.; Kempers, R.; Lupoi, R.; Robinson, A. J.

    2016-09-01

    Jet impingement boiling is investigated with regard to heat transfer and pressure drop performance using a novel laser sintered 3D printed jet impingement manifold design. Water was the working fluid at atmospheric pressure with inlet subcooling of 7oC. The convective boiling performance of the impinging jet system was investigated for a flat copper target surface for 2700≤Re≤5400. The results indicate that the heat transfer performance of the impinging jet is independent of Reynolds number for fully developed boiling. Also, the investigation of nozzle to plate spacing shows that low spacing delays the onset of nucleate boiling causing a superheat overshoot that is not observed with larger gaps. However, no sensitivity to the gap spacing was measured once boiling was fully developed. The assessment of the pressure drop performance showed that the design effectively transfers heat with low pumping power requirements. In particular, owing to the insensitivity of the heat transfer to flow rate during fully developed boiling, the coefficient of performance of jet impingement boiling in the fully developed boiling regime deteriorates with increased flow rate due to the increase in pumping power flux.

  18. Influence of Pressure on Stable Film Boiling of Subcooled Liquid

    Science.gov (United States)

    Zabirov, A. R.; Yagov, V. V.; Kaban'kov, O. N.; Leksin, M. A.; Kanin, P. K.

    2016-11-01

    Film boiling of subcooled liquids is an integral part of the hardening process. Understanding of the mechanisms underlying film boiling is important for modeling processes in atomic power engineering and cryogenic technology. Stationary processes of film boiling of subcooled liquids under conditions of their free motion near cylindrical heaters, just as subcooled liquid turbulent flow past high-temperature surfaces, represent quite a different type of process. In cooling metal spheres heated to a high temperature by a subcooled water, a special regime of film boiling is observed (microbubble boiling) distinguished by high intensity of heat transfer. Such a regime has not been revealed up to now for nonaqueous liquids. The paper presents new experimental data on heat transfer regimes in cooling nickel spheres in subcooled isopropanol and perfluorohexane at pressures of up to 1 MPa. It has been established that stable film boiling is the main regime of heat transfer that accounts for the larger part of the total time of cooling. The regimes of highly intensive film boiling heat transfer were not observed in the entire range of operational parameters even in the case of extreme subcoolings of liquid below their saturation temperature (to 170 K). The intensity of heat transfer in stable film boiling increases noticeably with subcooling of a chilling liquid.

  19. Behaviour of the reactivity for BWR fuel cells; Comportamiento de la reactividad para celdas de combustible BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J. A.; Alonso, G.; Delfin, A.; Vargas, S. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E., E-mail: galonso@inin.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, U. P. Adolfo Lopez Mateos, Col. Lindavista, 07738 Mexico D. F. (Mexico)

    2011-11-15

    In this work the behaviour of the reactivity of a fuel assembly type BWR was studied, the objective is to obtain some expressions that consider the average enrichment of U-235 and the gadolinium concentration like a function of the fuel cells burnt. Also, the applicability of the lineal reactivity model was analyzed for fuel cells type BWR. The analysis was carried out with the CASMO-4 code. (Author)

  20. BWR/5 Pressure-Suppression Pool Response during an SBO

    Directory of Open Access Journals (Sweden)

    Javier Ortiz-Villafuerte

    2013-01-01

    Full Text Available RELAP/SCDAPSIM Mod 3.4 has been used to simulate a station blackout occurring at a BWR/5 power station. Further, a simplified model of a wet well and dry well has been added to the NSSS model to study the response of the primary containment during the evolution of this accident. The initial event leading to severe accident was considered to be a LOOP with simultaneous scram. The results show that RCIC alone can keep the core fully covered, but even in this case about 30% of the original liquid water inventory in the PSP is vaporized. During the SBO, without RCIC, this inventory is reduced about 5% more within six hours. Further, a significant pressure rise occurs in containment at about the time when a sharp increase of heat generation occurs in RPV due to cladding oxidation. Failure temperature of fuel clad is also reached at this point. As the accident progresses, conditions for containment venting can be reached in about nine hours, although there still exists considerable margin before reaching containment design pressure. Detailed information of accident progress in reactor vessel and containment is presented and discussed.

  1. Application of the wavelet ridges method for the estimation of the decay ratio in Boiling Water Reactors; Atomos para el desarrollo de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Prieto G, A.; Espinosa P, G. [UAM-I, 09340 Mexico D.F. (Mexico)

    2008-07-01

    A wavelet ridges application is proposed as a simple method to determine the evolution of the linear stability parameters of a BWR NPP using neutronic noise signals. The wavelets ridges are used to track the instantaneous frequencies contained in a signal and to estimate the Decay Ratio (DR). The first step of the method consists of de noising the analyzed signals by Discrete Wavelet Transform (DWT) to reduce the interference of high-frequency noise and concentrate the analysis in the band where crucial frequencies are presented. Next, is computation of the wavelet ridges by Continuous Wavelet Transform (CWT) to obtain the modulus maxima from the normalized scalogram of the signal. In general, associations with these wavelets ridges can be used to compute instantaneous frequency contained in the signal and the DR evolution with the measurement. To study the performance of the wavelet ridges method, by computing the evolution of the linear stability parameters, both simulated and real neutronic signals were considered. The simulated signal is used to validate methodically and to study some features of the wavelet ridges method. To demonstrate the method applicability a real neutronic signal from the instability event in Laguna Verde was analyzed. The investigations show that most of the local energies of the signal are concentrated in the wavelet ridges and DR variations of the signals were observed along the measurements. (Author)

  2. Study of instabilities in phase by using the tool {sup D}ynamics{sup :} analysis of the evolution space temporary of the waves of density in channels of reactors BWR; Estudio de las Inestabilidades en Fase Mediante la Herramienta Dinamics: analisis de la Evolucion Espacio Temporal de las Ondas de Densidad en Canales de Reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Cobo, J. L.; Escriva, R.; Merino, R.; Melara, J.

    2013-07-01

    This paper presents the basics of Dynamics V2 to code It allows calculations of stability for oscillations in phase in BWR reactors in the time domain. The equations of the model are exposed and is the integration of the equations. The model can be used in a large number of nodes thrust for the calculations to an acceptable computational cost, it has simplified dynamics of recirculation loop and the code has been incorporated the Oscillation in phase boundary conditions. The code incorporates the equations of boiling sub-cooled which allows to make more realistic calculations as well as subroutines to calculate the subroutines-based properties of the MATPRO and ASME.

  3. Modeling vertical loads in pools resulting from fluid injection. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lai, W.; McCauley, E.W.

    1978-06-15

    Table-top model experiments were performed to investigate pressure suppression pool dynamics effects due to a postulated loss-of-coolant accident (LOCA) for the Peachbottom Mark I boiling water reactor containment system. The results guided subsequent conduct of experiments in the /sup 1///sub 5/-scale facility and provided new insight into the vertical load function (VLF). Model experiments show an oscillatory VLF with the download typically double-spiked followed by a more gradual sinusoidal upload. The load function contains a high frequency oscillation superimposed on a low frequency one; evidence from measurements indicates that the oscillations are initiated by fluid dynamics phenomena.

  4. Recent performance experience with US light water reactor self-actuating safety and relief valves

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, C.G.

    1996-12-01

    Over the past several years, there have been a number of operating reactor events involving performance of primary and secondary safety and relief valves in U.S. Light Water Reactors. There are several different types of safety and relief valves installed for overpressure protection of various safety systems throughout a typical nuclear power plant. The following discussion is limited to those valves in the reactor coolant systems (RCS) and main steam systems of pressurized water reactors (PWR) and in the RCS of boiling water reactors (BWR), all of which are self-actuating having a setpoint controlled by a spring-loaded disk acting against system fluid pressure. The following discussion relates some of the significant recent experience involving operating reactor events or various testing data. Some of the more unusual and interesting operating events or test data involving some of these designs are included, in addition to some involving a number of similar events and those which have generic applicability.

  5. Fuel design with low peak of local power for BWR reactors with increased nominal power; Diseno de un combustible con bajo pico de potencia local para reactores BWR con potencia nominal aumentada

    Energy Technology Data Exchange (ETDEWEB)

    Perusquia C, R.; Montes, J.L.; Hernandez, J.L.; Ortiz, J.J.; Castillo, A. [ININ, 52750 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: mrpc@nuclear.inin.mx

    2006-07-01

    The Federal Commission of Electricity recently announcement the beginning of the works related with the increase of the power to 120% of the original nominal one in the Boiling Water Reactors (BWR) of the Laguna Verde Central (CLV): In the National Institute of Nuclear Research (ININ) are carried out studies of the impact on the design of the recharge of derived fuel of this increase. One of the main effects of the power increase type that it is promoting, is the increment of the flow of generated vapor, what takes, to a bigger fraction of vacuum in the core presenting increased values of the maximum fraction to the limit, so much of the ratio of lineal heat generation (XFLPD) as of the ratio of critic power (MFLCPR). In the made studies, it is found that these fractions rise lineally with the increase of the nominal power. Considering that the reactors of the CLV at the moment operate to 105% of the original nominal power, it would imply an increment of the order of 13.35% in the XFLPD and in the MFLCPR operating to a nominal power of 120% of the original one. This would propitiate bigger problems to design appropriately the fuel cycle and the necessity, almost unavoidable, of to resort to a fuel assembly type more advanced for the recharges of the cores. As option, in the ININ the feasibility of continuing using the same type of it fuel assembles that one has come using recently in the CLV, the type GE12 is analyzed. To achieve it was outlined to diminish the peak factor of local power (LPPF) of the power cells that compose the fuel recharge in 13.35%. It was started of a fuel design previously used in the recharge of the unit 1 cycle 12 and it was re-design to use it in the recharge design of the cycle 13 of the unit 1, considering an increase to 120% of the original power and the same requirements of cycle extension. For the re-design of the fuel assembly cell it was used the PreDiCeldas computer program developed in the ININ. It was able to diminish the LPPF

  6. Status update of the BWR cask simulator

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The performance of commercial nuclear spent fuel dry storage casks are typically evaluated through detailed numerical analysis of the system's thermal performance. These modeling efforts are performed by the vendor to demonstrate the performance and regulatory compliance and are independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Numerous studies have been previously conducted. Recent advances in dry storage cask designs have moved the storage location from above ground to below ground and significantly increased the maximum thermal load allowed in a cask in part by increasing the canister helium pressure. Previous cask performance validation testing did not capture these parameters. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern dry casks. These modern cask designs utilize elevated helium pressure in the sealed canister or are intended for subsurface storage. The BWR cask simulator (BCS) has been designed in detail for both the above ground and below ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below ground storage configurations

  7. A citation-based assessment of the performance of U.S. boiling water reactors following extended power up-rates

    Science.gov (United States)

    Heidrich, Brenden J.

    Nuclear power plants produce 20 percent of the electricity generated in the U.S. Nuclear generated electricity is increasingly valuable to a utility because it can be produced at a low marginal cost and it does not release any carbon dioxide. It can also be a hedge against uncertain fossil fuel prices. The construction of new nuclear power plants in the U.S. is cautiously moving forward, restrained by high capital costs. Since 1998, nuclear utilities have been increasing the power output of their reactors by implementing extended power up-rates. Power increases of up to 20 percent are allowed under this process. The equivalent of nine large power plants has been added via extended power up-rates. These up-rates require the replacement of large capital equipment and are often performed in concert with other plant life extension activities such as license renewals. This dissertation examines the effect of these extended power up-rates on the safety performance of U.S. boiling water reactors. Licensing event reports are submitted by the utilities to the Nuclear Regulatory Commission, the federal nuclear regulator, for a wide range of abnormal events. Two methods are used to examine the effect of extended power up-rates on the frequency of abnormal events at the reactors. The Crow/AMSAA model, a univariate technique is used to determine if the implementation of an extended power up-rate affects the rate of abnormal events. The method has a long history in the aerospace industry and in the military. At a 95-percent confidence level, the rate of events requiring the submission of a licensing event report decreases following the implementation of an extended power up-rate. It is hypothesized that the improvement in performance is tied to the equipment replacement and refurbishment that is performed as part of the up-rate process. The reactor performance is also analyzed using the proportional hazards model. This technique allows for the estimation of the effects of

  8. Steady State Vapor Bubble in Pool Boiling

    Science.gov (United States)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-02-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  9. 利用DISLab传感器探究水的沸点与大气压强的关系%Exploring on the relation between boiling point of water and atmospheric pressure using DISLab

    Institute of Scientific and Technical Information of China (English)

    陈剑峰

    2016-01-01

    针对“密闭气体压强与温度间的关系”实验的不足,将DISLab 应用到实验中,通过 DISLab 的压强传感器和温度传感器可以直接精确地读出密闭气体的压强和温度,直观地显示出“压强减少、水的沸点降低”及“压强升高、水的沸点升高”的规律。%Aiming at the deficiency of the experiment of the relation between pressure and temper-ature of sealed gas,a method using DISLab was put forward.By using pressure sensor and tempera-ture sensor,the pressure and temperature could be read directly.It was showed that the lower the pressure,the lower the boiling point of water and the higher the pressure,the higher the boiling point of water.

  10. EFFECTS OF LOCALIZED AQUIFER BOILING ON FLUID PRODUCTION AT CERRO PRIETO.

    Science.gov (United States)

    Truesdell, Alfred H.; D'Amore, Franco; Nieva, David

    1984-01-01

    Localized aquifer boiling in the shallow two-phase reservoir of Cerro Prieto has produced excess steam and increased electrical output. Unfortunately it has also caused near-well mineral deposition that has decreased permeability and fluid flow. Inflow of cold water has limited the extent of aquifer boiling and permeability loss. The deeper reservoir at Cerro Prieto may need injection of cold water to decrease boiling and prevent loss of production. Refs.

  11. An overview of the BWR ECCS strainer blockage issues

    Energy Technology Data Exchange (ETDEWEB)

    Serkiz, A.W.; Marshall, M.L. Jr.; Elliott, R. [Nuclear Regulatory Commission, Washington, DC (United States)

    1996-03-01

    This Paper provides a brief overview of actions taken in the mid 1980s to resolve Unresolved Safety Issue (USI) A-43, {open_quotes}Containment Emergency Sump Performance,{close_quotes} and their relationship to the BWR strainer blockage issue; the importance of insights gained from the Barseback-2 (a Swedish BWR) incident in 1992 and from ECCS strainer testing and inspections at the Perry nuclear power plant in 1992 and 1993; an analysis of an US BWR/4 with a Mark I containment; an international community sharing of knowledge relevant to ECCS strainer blockage, additional experimental programs; and identification of actions needed to resolve the strainer blockage issue and the status of such efforts.

  12. New insight from noble gas and stable isotopes of geothermal/hydrothermal fluids at Caviahue-Copahue Volcanic Complex: Boiling steam separation and water-rock interaction at shallow depth

    Science.gov (United States)

    Roulleau, Emilie; Tardani, Daniele; Sano, Yuji; Takahata, Naoto; Vinet, Nicolas; Bravo, Francisco; Muñoz, Carlos; Sanchez, Juan

    2016-12-01

    We measured noble gas and stable isotopes of the geothermal and hydrothermal fluids of the Caviahue-Copahue Volcanic Complex (CCVC), one of the most important geothermal systems in Argentina/Chile, in order to provide new insights into fluid circulation and origin. With the exception of Anfiteatro and Chancho-co geothermal systems, mantle-derived helium dominates in the CCVC fluids, with measured 3He/4He ratios up to 7.86Ra in 2015. Their positive δ15N is an evidence for subducted sediment-derived nitrogen, which is commonly observed in subduction settings. Both He-N2-Ar composition and positive correlation between δD-H2O and δ18O-H2O suggest that the fluids from Anfiteatro and Chancho-co (and partly from Pucon-Mahuida as well, on the southern flank of Copahue volcano) represent a meteoric water composition with a minor magmatic contribution. The Ne, Kr and Xe isotopic compositions are entirely of atmospheric origin, but processes of boiling and steam separation have led to fractionation of their elemental abundances. We modeled the CCVC fluid evolution using Rayleigh distillation curves, considering an initial air saturated geothermal water (ASGW) end-member at 250 and 300 °C, followed by boiling and steam separation at lower temperatures (from 200 °C to 150 °C). Between 2014 and 2015, the CCVC hydrogen and oxygen isotopes shifted from local meteoric water-dominated to andesitic water-dominated signature. This shift is associated with an increase of δ13C values and Stotal, HCl and He contents. These characteristics are consistent with a change in the gas ascent pathway between 2014 and 2015, which in turn induced higher magmatic-hydrothermal contribution in the fluid signature. The composition of the magmatic source of the CCVC fluids is: 3He/4He = 7.7Ra, δ15N = + 6‰, and δ13C = - 6.5‰. Mixing models between air-corrected He and N suggest the involvement of 0.5% to 5% of subducted sediments in the magmatic source. The magmatic sulfur isotopic

  13. Enhanced Droplet Control by Transition Boiling

    Science.gov (United States)

    Grounds, Alex; Still, Richard; Takashina, Kei

    2012-10-01

    A droplet of water on a heated surface can levitate over a film of gas produced by its own evaporation in the Leidenfrost effect. When the surface is prepared with ratchet-like saw-teeth topography, these droplets can self-propel and can even climb uphill. However, the extent to which the droplets can be controlled is limited by the physics of the Leidenfrost effect. Here, we show that transition boiling can be induced even at very high surface temperatures and provide additional control over the droplets. Ratchets with acute protrusions enable droplets to climb steeper inclines while ratchets with sub-structures enable their direction of motion to be controlled by varying the temperature of the surface. The droplets' departure from the Leidenfrost regime is assessed by analysing the sound produced by their boiling. We anticipate these techniques will enable the development of more sophisticated methods for controlling small droplets and heat transfer.

  14. Development and validation of advanced CFD models for detailed predictions of void distribution in a BWR bundle

    Science.gov (United States)

    Neykov, Boyan

    In recent years, a commonly adopted approach is to use Computational Fluid Dynamics (CFD) codes as computational tools for simulation of different aspects of the nuclear reactor thermal-hydraulic performance where high-resolution and high-fidelity modeling is needed. Within the framework of this PhD work, the CFD code STAR-CD [1] is used for investigations of two phase flow in air-water systems as well as boiling phenomena in simple pipe geometry and in a Boiling Water Reactor (BWR) fuel assembly. Based on the two-fluid Eulerian solver, improvements of the STAR-CD code in the treatment of the drag, lift and wall lubrication forces in a dispersed two phase flow at high vapor (gas) phase fractions are investigated and introduced. These improvements constitute a new two phase modeling framework for STAR-CD, which has been shown to be superior as compared to the default models in STAR-CD. The conservation equations are discretized using the finite-volume method and solved using a solution procedure is based on Pressure Implicit with Splitting of Operators (PISO) algorithm, adapted to the solution of the two-fluid model. The improvements in the drag force modeling include investigation and integration of models with dependence on both void fraction and bubble diameter. The set of the models incorporated into STAR-CD is selected based on an extensive literature review focused on two phase systems with high vapor fractions. The research related to the modeling of wall lubrication force is focused on the validation of the already existing model in STAR-CD. The major contribution of this research is the development and implementation of an improved correlation for the lift coefficient used in the lift force formula. While a variety of correlations for the lift coefficient can be found in the open literature, most of those were derived from experiments conducted at low vapor (gas) phase fractions and are not applicable to the flow conditions existing in the BWRs. Therefore

  15. Film boiling of mercury droplets

    Science.gov (United States)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. For these data, diffusion from the upper surface of the drop is a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  16. Numerical simulation of boron injection in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Tinoco, Hernan, E-mail: htb@forsmark.vattenfall.s [Forsmarks Kraftgrupp AB, SE-742 03 Osthammar (Sweden); Buchwald, Przemyslaw [Reactor Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Frid, Wiktor, E-mail: wiktor@reactor.sci.kth.s [Reactor Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden)

    2010-02-15

    The present study constitutes a first step to understand the process of boron injection, transport and mixing in a BWR. It consists of transient CFD simulations of boron injection in a model of the downcomer of Forsmark's Unit 3 containing about 6 million elements. The two cases studied are unintentional start of boron injection under normal operation and loss of offsite power with partial ATWS leaving 10% of the core power uncontrolled. The flow conditions of the second case are defined by means of an analysis with RELAP5, assuming boron injection start directly after the first ECCS injection. Recent publications show that meaningful conservative results may be obtained for boron or thermal mixing in PWRs with grids as coarse as that utilized here, provided that higher order discretization schemes are used to minimize numerical diffusion. The obtained results indicate an apparently strong influence of the scenario in the behavior of the injection process. The normal operation simulation shows that virtually all boron solution flows down to the Main Recirculation Pump inlet located directly below the boron inlet nozzle. The loss of offsite power simulation shows initially a spread of the boron solution over the entire sectional area of the lower part of the downcomer filled with colder water. This remaining effect of the ECCS injection lasts until all this water has left the downcomer. Above this region, the boron injection jet develops in a vertical streak, eventually resembling the injection of the normal operation scenario. Due to the initial spread, this boron injection will probably cause larger temporal and spatial concentration variations in the core. In both cases, these variations may cause reactivity transients and fuel damage due to local power escalation. To settle this issue, an analysis using an extended model containing the downcomer, the MRPs and the Lower Plenum will be carried out. Also, the simulation time will be extended to a scale of

  17. Modelling of the dynamics of the vessel and circuits of recirculation of a BWR type nucleo electric as part of the SUN-RAH university simulator; Modelado de la dinamica de la vasija y circuitos de recirculacion de una nucleoelectrica tipo BWR como parte del simulador universitario SUN-RAH

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez S, R.A. [DEPFI, Campus Morelos, en IMTA, Jiutepec, Morelos (Mexico)]. e-mail: rsanchez_15@yahoo.com.mx

    2003-07-01

    In the present project, the development of a model for the dynamics of the process of energy transport generated in the nuclear fuel until the main steam lines of a nucleo electric central with BWR type nuclear reactor, using mathematical models of reduced order is presented. These models present the main characteristics of the reactor vessel and of the recirculation system, defined by the main phenomena that intervene in those physical processes. Likewise, the objective of the general project of the one University student nucleo electric simulator with Boiling Water Reactor (SUN-RAH) for later on to establish the modeling equations for each part of the nuclear reactor as well as of the load pursuit system. Also, its were described the graphic interfaces implemented in an three layers architecture in which the different measuring variables are presented in the monitor. It fits signalize that the advantage presented by the University student nucleo electric simulator is the possibility to carry out changes in the magnitudes of those different variables that intervene in the physical processes made in the one reactor and in the recirculation system in execution time of the same one. Of same way, the creation of a graphic intuitive interface, friendly, and designed with the same technology with the one that the video games are programmed in the present time. Besides all the above mentioned, the pending goals inside of the project are exposed, as well as the developments in construction process or conceptualized to be included in future versions of the simulator. Finally its are thinking about possible scenarios of applications of SUN-RAH, as well as their reaches. (Author)

  18. Study of rapid transient explosive boiling under short-pulsed laser heating

    Institute of Scientific and Technical Information of China (English)

    JIN Renxi; HUAI Xiulan; LIU Dengying

    2004-01-01

    Using acetone, ethanol, water and acetone-water mixture as test liquids, the rapid transient explosive boiling (RTEB) taking place under short-pulsed laser heating is observed in experiment. The behaviors of temperature variation are investigated via transient temperature measurement. The vapor bubble behaviors of RTEB are captured by high-speed photography, and the difference between RTEB and normal boiling is analyzed. The boiling heat transfer of RTEB is also discussed. It shows that the character of RTEB is far different from normal boiling.

  19. A Mechanistic Approach for the Prediction of Critical Power in BWR Fuel Bundles

    Science.gov (United States)

    Chandraker, Dinesh Kumar; Vijayan, Pallipattu Krishnan; Sinha, Ratan Kumar; Aritomi, Masanori

    The critical power corresponding to the Critical Heat Flux (CHF) or dryout condition is an important design parameter for the evaluation of safety margins in a nuclear fuel bundle. The empirical approaches for the prediction of CHF in a rod bundle are highly geometric specific and proprietary in nature. The critical power experiments are very expensive and technically challenging owing to the stringent simulation requirements for the rod bundle tests involving radial and axial power profiles. In view of this, the mechanistic approach has gained momentum in the thermal hydraulic community. The Liquid Film Dryout (LFD) in an annular flow is the mechanism of CHF under BWR conditions and the dryout modeling has been found to predict the CHF quite accurately for a tubular geometry. The successful extension of the mechanistic model of dryout to the rod bundle application is vital for the evaluation of critical power in the rod bundle. The present work proposes the uniform film flow approach around the rod by analyzing individual film of the subchannel bounded by rods with different heat fluxes resulting in different film flow rates around a rod and subsequently distributing the varying film flow rates of a rod to arrive at the uniform film flow rate as it has been found that the liquid film has a strong tendency to be uniform around the rod. The FIDOM-Rod code developed for the dryout prediction in BWR assemblies provides detailed solution of the multiple liquid films in a subchannel. The approach of uniform film flow rate around the rod simplifies the liquid film cross flow modeling and was found to provide dryout prediction with a good accuracy when compared with the experimental data of 16, 19 and 37 rod bundles under BWR conditions. The critical power has been predicted for a newly designed 54 rod bundle of the Advanced Heavy Water Reactor (AHWR). The selected constitutive models for the droplet entrainment and deposition rates validated for the dryout in tube were

  20. Enhanced heat transfer in confined pool boiling

    NARCIS (Netherlands)

    Rops, C.M.; Lindken, R.; Velthuis, J.F.M.; Westerweel, J.

    2009-01-01

    We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found

  1. High flux film and transition boiling

    Energy Technology Data Exchange (ETDEWEB)

    Witte, L.C.

    1990-01-01

    This report is a bench-scale experiment on transition boiling. The author gives a detailed description on experimental apparatus and conditions. The visual observed boiling phenomena; nucleate boiling and film boiling, and the effect of heat transfer are also elucidated. 10 refs., 11 figs., 1 tab.

  2. Film boiling on vertical surfaces.

    Science.gov (United States)

    Suryanarayana, N. V.; Merte, H., Jr.

    1972-01-01

    Film boiling of a saturated liquid on a vertical surface is analyzed to determine the local heat-transfer rates as a function of height and heater-surface superheat. Experiments show that the laminar-flow model is inadequate. A turbulent-vapor-flow model is used, and the influence of the interfacial oscillations is incorporated on a semiempirical basis. Measurements of local film boiling were obtained with a transient technique using saturated liquid nitrogen.

  3. BWR stability using a reducing dynamical model; Estabilidad de un BWR con un modelo dinamico reducido

    Energy Technology Data Exchange (ETDEWEB)

    Ballestrin Bolea, J. M.; Blazquez Martinez, J. B.

    1990-07-01

    BWR stability can be treated with reduced order dynamical models. When the parameters of the model came from dynamical models. When the parameters of the model came from experimental data, the predictions are accurate. In this work an alternative derivation for the void fraction equation is made, but remarking the physical structure of the parameters. As the poles of power/reactivity transfer function are related with the parameters, the measurement of the poles by other techniques such as noise analysis will lead to the parameters, but the system of equations is non-linear. Simple parametric calculation of decay ratio are performed, showing why BWRs become unstable when they are operated at low flow and high power. (Author)

  4. Evaluation of PWR and BWR pin cell benchmark results

    Energy Technology Data Exchange (ETDEWEB)

    Pijlgroms, B.J.; Gruppelaar, H.; Janssen, A.J. (Netherlands Energy Research Foundation (ECN), Petten (Netherlands)); Hoogenboom, J.E.; Leege, P.F.A. de (Interuniversitair Reactor Inst., Delft (Netherlands)); Voet, J. van der (Gemeenschappelijke Kernenergiecentrale Nederland NV, Dodewaard (Netherlands)); Verhagen, F.C.M. (Keuring van Electrotechnische Materialen NV, Arnhem (Netherlands))

    1991-12-01

    Benchmark results of the Dutch PINK working group on PWR and BWR pin cell calculational benchmark as defined by EPRI are presented and evaluated. The observed discrepancies are problem dependent: a part of the results is satisfactory, some other results require further analysis. A brief overview is given of the different code packages used in this analysis. (author). 14 refs., 9 figs., 30 tabs.

  5. The Advanced BWR Nuclear Plant: Safe, economic nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Redding, J.R. [GE Nuclear Energy, San Jose, CA (United States)

    1994-12-31

    The safety and economics of Advanced BWR Nuclear Power Plants are outlined. The topics discussed include: ABWR Programs: status in US and Japan; ABWR competitiveness: safety and economics; SBWR status; combining ABWR and SBWR: the passive ABWR; and Korean/GE partnership.

  6. High level disinfection of a home care device; to boil or not to boil?

    Science.gov (United States)

    Winthrop, K L; Homestead, N

    2012-03-01

    We developed a percutaneous electrical transducer for home therapy of chronic pain, a device that requires high level disinfection between uses. The utility of boiling water to provide high level disinfection was evaluated by inoculating transducer pads with potential skin pathogens (Staphylococcus aureus, Mycobacterium terrae, Pseudomonas aeruginosa, Candida albicans) and subjecting them to full immersion in water boiling at 4200 feet elevation (95 °C). Log10 reductions in colony-forming units (cfu) at 10 min were 7.1, >6.3 and >5.5 for S. aureus, P. aeruginosa and C. albicans, respectively, but only 4.6 for M. terrae. At 15 min the reductions had increased to 7.5, >6.8, >6.6 and >7.5 cfu, respectively.

  7. Revisiting the structure of the anti-neoplastic glucans of Mycobacterium bovis Bacille Calmette-Guerin. Structural analysis of the extracellular and boiling water extract-derived glucans of the vaccine substrains.

    Science.gov (United States)

    Dinadayala, Premkumar; Lemassu, Anne; Granovski, Pierre; Cérantola, Stéphane; Winter, Nathalie; Daffé, Mamadou

    2004-03-26

    The attenuated strain of Mycobacterium bovis Bacille Calmette-Guérin (BCG), used worldwide to prevent tuberculosis and leprosy, is also clinically used as an immunotherapeutic agent against superficial bladder cancer. An anti-tumor polysaccharide has been isolated from the boiling water extract of the Tice substrain of BCG and tentatively characterized as consisting primarily of repeating units of 6-linked-glucosyl residues. Mycobacterium tuberculosis and other mycobacterial species produce a glycogen-like alpha-glucan composed of repeating units of 4-linked glucosyl residues substituted at some 6 positions by short oligoglucosyl units that also exhibits an anti-tumor activity. Therefore, the impression prevails that mycobacteria synthesize different types of anti-neoplastic glucans or, alternatively, the BCG substrains are singular in producing a unique type of glucan that may confer to them their immunotherapeutic property. The present study addresses this question through the comparative analysis of alpha-glucans purified from the extracellular materials and boiling water extracts of three vaccine substrains. The polysaccharides were purified, and their structural features were established by mono- and two-dimensional NMR spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of the enzymatic and chemical degradation products of the purified compounds. The glucans isolated by the two methods from the three substrains of BCG were shown to exhibit identical structural features shared with the glycogen-like alpha-glucan of M. tuberculosis and other mycobacteria. Incidentally, we observed an occasional release of dextrans from Sephadex columns that may explain the reported occurrence of 6-substituted alpha-glucans in mycobacteria.

  8. Structural integrity and management of aging in internal components of BWR reactors; Integridad estructural y manejo del envejecimiento en componentes internos de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Arganis J, C.R. [Instituto Nacional de Investigaciones Nucleares, Km 36.5 Carretera Mexico, Toluca Salazar Edo. de Mexico (Mexico)]. E-mail: craj@nuclear.inin.mx

    2004-07-01

    Presently work the bases to apply structural integrity and the handling of the aging of internal components of the pressure vessel of boiling water reactors of water are revised and is carried out an example of structural integrity in the horizontal welding H4 of the encircling one of the core of a reactor, taking data reported in the literature. It is also revised what is required to carry out the handling program or conduct of the aging (AMP). (Author)

  9. Possibilities with OHWC. Development and application of ECP-simulation in Swedish BWRs; Moejligheter med OHWC. Utveckling och tillaempning av ECP-simulering i svenska BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lundgren, K. [ALARA Engineering, Skultuna (Sweden); Wikmark, G. [Advanced Nuclear Technology, Uppsala (Sweden)

    2000-02-01

    Hydrogen injection (HWC) to boiling water reactors has been used for two decades in Sweden, in order to reduce the impact of pipe cracking. The effect of HWC is to establish a sufficiently reducing environment in the systems to protect and hence mitigate the growth of existing stress corrosion cracks. Some disadvantages of HWC have been identified. One is the transitional increase of the dose rate of the main steam lines by up to seven times, another the corrosion release of systems with carbon steel components as a result of the reducing chemistry. In some cases, especially in the USA, an elevated activity build-up has been observed in a few plants in connection to the application of HWC. There is also a fear for increased hydrogen pick-up in fuel cladding and fuel channels by HWC operation. The hydrogen pick-up is already today in many cases limiting for fuel life. The objective of the current work has been to investigate the conditions by application of so called Optimised HWC. This implies a HWC operation with lower hydrogen addition rates than normally used. For this purpose, a computer model in order to simulate the radiolysis chemistry and the ECP (electrochemical corrosion potentials) in BWR systems has been developed. A previously developed radiolysis code, BwrChem, as well as a hydrogen peroxide decomposition code for piping, PEROX, have hence been equipped with ECP calculation modules. The ECP calculation algorithms have been based on fundamental electrochemical theory. The new model has been applied to simulate the radiolysis conditions in a large number of locations in typical BWRs. For the simulation, the external mechanical pump plant Barsebaeck-1 and the internal pump plant Forsmark-1 have been used. A wide range of hydrogen injection rates, down to 0. 1 ppm in the feed water, have been studied. The electrochemical model based on fundamental theory required adequate fundamental parameters. Significant effort has been used to scrutinise and evaluate

  10. Experimental analysis of nanofluid pool boiling heat transfer in copper bead packed porous layers

    Science.gov (United States)

    Chen, Wei; Wang, Ji

    2017-03-01

    Coupling the nanofluid as working fluid and the copper beads packed porous structure on heating surface were employed to enhance the pool boiling heat transfer by changing the fluid properties with the adjunction of nanoparticles in liquid and altering the heating surface with a bead porous layer. Due to the higher thermal conductivity, the copper beads served as an extended heating surface and the boiling nucleation sites rose, but the flow resistance increased. The CuO-water and SiO2-water nanofluids as well as the pure water were respectively employed as working fluids in the pool boiling experiments. Comparing with the base fluid of water, the higher thermal conductivity and lower surface tension occur in the nanofluids and those favor the boiling heat transfer, but the higher viscosity and density of nanofluids serve as deteriorative factors. So, the concentration region of the nanofluids should be chosen properly. The maximum relative error between the collected experimental data of the pure water on a flat surface and the theoretical prediction of pool boiling using the Rohsenow correlation was less than 12 %. The comparisons of the pool boiling heat transfer characteristics were also conducted between the pure water and the nanofluids respectively on the horizontal flat surface and on the heating surface packed with a copper bead porous layer. Besides, the boiling bubble generation, integration and departure have a great affect on the pool boiling and were recorded with a camera in the bead stacked porous structures at different heat flux.

  11. CHF Phenomena by Photographic Study of Boiling Behavior due to Transient Heat Inputs

    Directory of Open Access Journals (Sweden)

    Jongdoc Park

    2012-01-01

    Full Text Available The transient boiling heat transfer characteristics in a pool of water and highly wetting liquids such as ethanol and FC-72 due to an exponentially increasing heat input of various rates were investigated using the 1.0 mm diameter experimental heater shaped in a horizontal cylinder for wide ranges of pressure and subcooling. The trend of critical heat flux (CHF values in relation to the periods was divided into three groups. The CHF belonging to the 1st group with a longer period occurs with a fully developed nucleate boiling (FDNB heat transfer process. For the 2nd group with shorter periods, the direct transition to film boiling from non boiling occurs as an explosive boiling. The direct boiling transition at the CHF from non-boiling regime to film boiling occurred without a heat flux increase. It was confirmed that the initial boiling behavior is significantly affected by the property and the wettability of the liquid. The photographic observations on the vapor bubble behavior during transitions to film boiling were performed using a high-speed video camera system.

  12. Marangoni heat transfer in subcooled nucleate pool boiling

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, S.; Robinson, T.; Judd, R.L. [McMaster University, Hamilton, ON (Canada). Dept. of Mechanical Engineering

    2004-11-01

    The liquid motion induced by surface tension variation, termed the Marangoni effect, and its contribution to boiling heat transfer has been an issue of much controversy. Boiling heat transfer theory, although acknowledging its existence, considers its contribution to heat transfer to be insignificant in comparison with buoyancy induced convection. However, recent microgravity experiments have shown that although the boiling mechanism in a reduced gravity environment is different, the corresponding heat transfer rates are similar to those obtained under normal gravity conditions, raising questions about the validity of the assumption. An experimental investigation was performed in which distilled water was gradually heated to boiling conditions on a copper heater surface at four different levels of subcooling. Photographic investigation of the bubbles appearing on the surface was carried out in support of the measurements. The results obtained indicate that Marangoni convection associated with the bubbles formed by the air dissolved in the water which emerged from solution when the water was heated sufficiently, significantly influenced the heat transfer rate in subcooled nucleate pool boiling. A heat transfer model was developed in order to explain the phenomena observed. (author)

  13. Research on the Characters of Boiling Heat Transfer from High Temperature Sphere to Water%高温球体与水的沸腾传热特性研究

    Institute of Scientific and Technical Information of China (English)

    沈正祥; 李金柱; 吕中杰; 黄风雷

    2013-01-01

    With the purpose of investigating the characteristics of heat transfer between high temperature liquid and water,the film boiling process from hot sphere surface was analyzed by an improved boiling model and free surface tracking method.The results show that,when the temperature of sphere is constant,the film thickness increases from stagnation point of particle,the temperature contribution decreases with non-linear posture and the velocity contribution is parabolic in film.With the increase of initial temperature of sphere,both the film thickness and peak value of vapor velocity raise,while the overall heat transfer coefficient decreases.Meanwhile,the numerical technique captures the evolution of instability at interface and the process of bubble growing,which reveal the dynamic process of boiling clearly.%为研究高温流体与水的传热特性,采用理论分析与自由界面追踪数值技术对高温球体表面的沸腾传热过程进行研究,得到球体表面传热特性的变化规律.分析结果表明,当球体温度不变时,蒸气膜层厚度自前滞点往后逐渐增大,膜层内温度呈非线性分布降低,速率呈抛物型分布.当球体温度提高时蒸气膜层厚度变大,相应的蒸气速率峰值也变大,球面传热系数却变小.数值仿真结果显示了气-液界面上不稳定性波动发展和气泡成长过程,较为真实地反映出沸腾传热的动态过程.

  14. BWR refill-reflood program: core spray distribution experimental task plan

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, T.

    1981-02-01

    An experimental task plan for the BWR/4 core spray task of the Refill-Reflood Test Program is presented. The test program will provide core spray distribution data for a 30 degree sector of the BWR/4 and 5-218 design. This design uses different nozzle types and different sparger elevations than the BWR/6-218 design which was tested previously. Test parameter ranges are specified; individual tests are defined; and measurement and data utilization plans are defined.

  15. Surface boiling of superheated liquid

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-01-01

    A basic vaporization mechanism that possibly affects the qualitative and quantitative prediction of the consequences of accidental releases of hazardous superheated liquids was experimentally and analytically investigated. The studies are of relevance for the instantaneous failure of a containment vessel filled with liquefied gas. Even though catastrophical vessel failure is a rare event, it is considered to be a major technological hazard. Modeling the initial phase of depressurisation and vaporization of the contents is an essential step for the subsequent analysis of the spread and dispersion of the materials liberated. There is only limited understanding of this inertial expansion stage of the superheated liquid, before gravity and atmospheric turbulence begin to dominate the expansion. This work aims at a better understanding of the vaporization process and to supply more precise source-term data. It is also intended to provide knowledge for the prediction of the behavior of large-scale releases by the investigation of boiling on a small scale. Release experiments with butane, propane, R-134a and water were conducted. The vaporization of liquids that became superheated by sudden depressurisation was studied in nucleation-site-free glass receptacles. Several novel techniques for preventing undesired nucleation and for opening the test-section were developed. Releases from pipes and from a cylindrical geometry allowed both linear one-dimensional, and radial-front two-dimensional propagation to be investigated. Releases were made to atmospheric pressure over a range of superheats. It was found that, above a certain superheat temperature, the free surface of the metastable liquid rapidly broke up and ejected a high-velocity vapor/liquid stream. The zone of intense vaporization and liquid fragmentation proceeded as a front that advanced into the test fluids. No nucleation of bubbles in the bulk of the superheated liquid was observed. (author) figs., tabs., refs.

  16. Optimized clearing work concept for the BWR containment; Optimiertes Raeumungskonzept fuer SWR-Sicherheitsbehaelter

    Energy Technology Data Exchange (ETDEWEB)

    Kraps, Uwe [AREVA NP GmbH (Germany)

    2012-11-01

    Based on the experiences of reactor dismantling in the NPPs Wuergasse, Obrigheim and Stade an optimized clearing work concept for the BWR containment including the reactor pressure vessel and the biological shield was developed. The concept is focused on the safety objective, the reduction of the collective dose and the reduction of the execution time. Precondition for the decommissioning license was up to now the removal of fuel elements from the reactor; due to the significantly increased period until fulfillment of this premises concepts are developed that can be performed with simultaneous reduction of the radiological inventories and the fire loads. The most important step of the guideline of the concept is the transition from hot to cold. The in-situ disassembling of the reactor internals can be performed with decreased water level in the reactor pressure vessel, with following water treatment and complete shutdown of operational systems. This status allows an accelerated further dismantling of the plant.

  17. Estimation of dose rate around the spent control rods of a BWR; Estimacion de la rapidez de dosis alrededor de las barras de control gastadas de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Cancino P, G.

    2016-10-01

    The energy can come from fossil renewable sources (solar (natural gas, oil), wind, hydro, tidal, geothermal, biomass, bio energy and nuclear. Nuclear power can be obtained by fission reactions and fusion (still under investigation) atomic nuclei. Fission, is a partition of a very heavy nucleus (Uranium 235, for example) into two lighter nuclei. Much of the world's electric power is generated from the energy released by fission processes. In a nuclear power reactor, light water as the BWR, there are many important elements that allow safe driving operation, one of them are the elements or control systems, the burnable poison or neutron absorber inherently allow control power reactor. The control rods, which consist mostly of stainless steel and absorbing elements (such as boron carbide, hafnium, cadmium, among others) of thermal neutrons is able to initiate, regulate or stop the reactor power. These, due to the use of depleted burned or absorbing material and therefore reach their lifespan, which can be 15 years or have other values depending on the manufacturer. Control rods worn should be removed, stored or confined in expressly places. Precisely at this stage arises the importance of knowing their radiological condition to manipulate safely and without incident to the people health responsible for conducting these proceedings state arises. This thesis consists in the estimation of the dose rate in spent control rod made of boron carbide, from a typical BWR reactor. It will be estimated by direct radiation measurements with measurement equipment for radiotherapy ionization chamber, in six spent control rods, which were taken at different reactor operating cycles and are in a spent fuel pool. Using bracket electromechanical and electronic equipment for positioning and lifting equipment for radiation measurement around the control rod in the axial and radial arrangement for proper scanning. Finally will be presented a graphic corresponding to the dose

  18. Influence of iron and nickel species upon activity buildup under simulated BWR conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bjornsson, S.; Chen, J. [Studsvik Nuclear AB, Nykoping (Sweden); Lejon, J. [OKG AB, Oskarshamn (Sweden); Granath, G. [Ringhals AB, Varobacka (Sweden); Tanse-Larsson, M. [Forsmarks Kraftgrupp AB, Osthammar (Sweden)

    2010-07-01

    Activity build-up in BWR systems are of importance for service- and maintenance work performed at the plants. Minimizing the activity build-up is desirable for minimizing doses of personnel at the plants. Numerous studies have been carried out in this important field to understand the activity uptake mechanisms. This paper studied the possible role of Fe(II/III) and Ni(II) impurities in reactor water in activity uptake on stainless steel surfaces. The study was carried out by using a test loop with simulated BWR water containing Fe(II/III), Ni(II) and Co-60 marked Co(II) species of varied concentration and 500 ppb O{sub 2}. The test tube section in the loop system was pre-exposed type 316L stainless steel material. The microstructures of the formed oxide films were examined with high resolution electron microscopy (FE-SEM and FE-TEM). The activity monitoring on the test section showed that injection of 10 ppb Ni(II) and 0.1 ppb Fe(II/III) in the water with 0.1 ppb Co(II) was capable of stopping completely activity uptake. When Co(II) addition in the loop was stopped no activity return to the water could be seen. In another exposure test, injection of combined 2 ppb Fe(II/III) and 0.5∼10 ppb Ni(II) profoundly increased activity uptake on the test section with a maximum in activity buildup at 5 ppb Ni(II). When Co(II) addition in the loop was stopped a slight activity return was seen. The observed differences as seen in the two tests are discussed in view of the microstructures of the oxide films formed. (author)

  19. Experimental investigations concerning the possible effect of dynamic strain ageing on environmentally-assisted cracking of low alloy steels in oxygenated high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Roth, A.; Devrient, B. [Framatome ANP GmbH, Erlangen (Germany); Haenninen, H. [Helsinki Univ. of Tech. (Finland); Bruemmer, G. [Hamburgische Electricitaets-Werke AG, Hamburg (Germany); Ilg, U. [EnBW Kraftwerke AG (Germany); Widera, M. [RWE Power AG, Regenerative Stromerzeugung, Essen (Germany); Hofmann, H. [VGB PowerTech e.V., Essen (Germany); Wachter, O. [E.ON Kernkraft GmbH (Germany)

    2003-07-01

    Service experience has revealed cracks due to environmentally-assisted cracking (EAC) in welds of the feedwater piping system of a boiling water reactor (BWR). Two slightly different low alloy steel (LAS) weld filler metals were used in the system of concern, however, only one of them was affected by cracking. To achieve an improved understanding, a laboratory study was initiated to investigate the crack growth behavior of the two relevant weld filler metals in an oxygenated high-temperature water (HTW) environment representing BWR normal water chemistry (NWC) under sequences of cyclic and constant load. Despite the basic similarities in the nominal chemical composition of both weld filler alloys, the crack growth behaviors revealed significant differences. This could not be explained based on the material's sulphur content, which is known to have a pronounced effect on EAC. To elucidate the observed behavior, studies concerning dynamic strain aging (DSA) have been initiated. DSA has been recently suspected to be another parameter that may influence EAC of LAS in HTW. A reasonable coincidence was observed between the susceptibility to DSA exhibited by slow strain rate tensile tests (SSRT) in air and by internal friction measurements with measured free nitrogen contents on the one hand and with the EAC behavior observed in service and in laboratory experiments on the other hand. (orig.)

  20. Experimental result of BWR post-CHF tests. Critical heat flux and post-CHF heat transfer coefficient. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tadashi; Anoda, Yoshinari [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iwaki, Chikako [Toshiba Corp., Tokyo (Japan)

    2002-02-01

    Authors performed post-CHF experiments under wider pressure ranges of 2 MPa - 18 MPa, wider mass flux ranges of 33 kg/m{sup 2}s - 1651 kg/m{sup 2}s and wider superheat of heaters up to 500 K in comparison to experimental ranges at previous post-CHF experiments. Data on boiling transition, critical heat flux and post-CHF heat transfer coefficient were obtained. Used test section was 4x4-rod bundle with heaters, which diameter and length were the same as those of BWR nuclear fuels. As the result of the experiments, it was found that the boiling transition occurred just below several grid spacers, and that the fronts of the boiling transition region proceeded lower with increase of heated power. Heat transfer was due to nucleate boiling above grid spacers, while it was due to film boiling below grid spacers. Consequently, critical heat flux is affected on the distance from the grid spacers. Critical heat flux above the grid spacers was about 15% higher than that below the grid spacers, by comparing them under the same local condition. Heat transfer by steam turbulent flow was dominant to post-CHF heat transfer, when superheat of heaters was sufficiently high. Then, post-CHF heat transfer coefficient was predicted with heat transfer correlations for single-phase flow. On the other hand, when superhead of heaters was not sufficiently high, post-CHF heat transfer coefficient was higher than the prediction with heat transfer correlations for single-phase flow. Mass flux effect on post-CHF heat transfer coefficient was described by standardization of post-CHF heat transfer coefficient with the prediction for single-phase flow. However, pressure effect, superheat effect and effect of position were not described. Authors clarified that those effects could be described with functions of heater temperature and position. Post-CHF heat transfer coefficient was lowest just blow the grid spacers, and it increased with the lower positions. It increased by about 30% in one span of

  1. Inspection of Pool Boiling with Superhydrophilic and Superhydrophobic Coating

    Energy Technology Data Exchange (ETDEWEB)

    Son, Gyumin; Moon, Sung Bo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    In conventional nuclear power plants, increasing critical heat flux (CHF) margin by converting existing parts is economically meaningful since it means overall energy production increase without building additional power plants. There were researches to enhance margin from the very beginning of the commercialization of nuclear power plants and many efforts have led to current model of plants, optimized for both safety and production efficiency. Examples are mixing vane which is actually applied to plants nowadays, using nanofluids to enhance heat transfer coefficient (HTC), trying porous surfaces and so on. Takata et al. studied effects of surface wettability by using hydrophobic coating and observed enhanced nucleate boiling at coated surface regions. Betz et al. experimented superhydrophilic (SHPi), superhydrophobic (SHPo), and superbiphilic surfaces. Results indicate heat transfer coefficient enhancement due to increase of nucleation sites by hydrophobic regions and constrained diameter of growing bubbles by hydrophilic regions. Although it would be rough to apply their concept to real reactor coolant surface wall, understanding the possibility of enhanced boiling is meaningful. In this paper, SHPi and SHPo coatings were applied to wire at traditional pool boiling experiment by Nukiyama. By observing altered CHF margin and nucleate boiling, the effects of each coating and their tendencies are discussed. SHPi, SHPo and bare wire's pool boiling was investigated and their boiling graphs were discussed. SHPi shows enhancement in CHF while SHPo's case is more complicated since there were variables like partial CHF or micro scale bubbles. Additional experiment could be comparing HTC, checking whether hydrophobic wire's nucleate boiling enhancement can exceed the decreased CHF margin. More sophisticated method to remove unwanted bubbles should be considered such as using degassed water.

  2. Study of film boiling collapse behavior during vapor explosion

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Masahiro; Yamano, Norihiro; Sugimoto, Jun [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Abe, Yutaka; Adachi, Hiromichi; Kobayashi, Tomoyoshi

    1996-06-01

    Possible large scale vapor explosions are safety concern in nuclear power plants during severe accident. In order to identify the occurrence of the vapor explosion and to estimate the magnitude of the induced pressure pulse, it is necessary to investigate the triggering condition for the vapor explosion. As a first step of this study, scooping analysis was conducted with a simulation code based on thermal detonation model. It was found that the pressure at the collapse of film boiling much affects the trigger condition of vapor explosion. Based on this analytical results, basic experiments were conducted to clarify the collapse conditions of film boiling on a high temperature solid ball surface. Film boiling condition was established by flooding water onto a high temperature stainless steel ball heated by a high frequency induction heater. After the film boiling was established, the pressure pulse generated by a shock tube was applied to collapse the steam film on the ball surface. As the experimental boundary conditions, materials and size of the balls, magnitude of pressure pulse and initial temperature of the carbon and stainless steel balls were varied. The transients of pressure and surface temperature were measured. It was found that the surface temperature on the balls sharply decreased when the pressure wave passed through the film on balls. Based on the surface temperature behavior, the film boiling collapse pattern was found to be categorized into several types. Especially, the pattern for stainless steel ball was categorized into three types; no collapse, collapse and reestablishment after collapse. It was thus clarified that the film boiling collapse behavior was identified by initial conditions and that the pressure required to collapse film boiling strongly depended on the initial surface temperature. The present results will provide a useful information for the analysis of vapor explosions based on the thermal detonation model. (J.P.N.)

  3. Analysis and treatment of the water gushing and sand boiling of certain pit excavation in Tianjin%天津某基坑开挖涌水冒砂原因分析及处理

    Institute of Scientific and Technical Information of China (English)

    焦志亮; 符亚兵; 唐海明; 曹会

    2013-01-01

    本文以天津某深基坑工程为例,简述了该深基坑场地周围的工程地质及水文地质条件,并简单介绍了基坑支护及降水设计方案.在基坑开挖过程中,针对出现的涌水冒砂问题进行了原因分析.采用“疏导为主,封堵为辅”的指导理念,采取“分散收集,集中排出”的解决方案,并指出施工顺序在整个工程中的重要性.最终解决了该基坑的涌水冒砂问题,使得工程后续工作顺利正常地进行.通过该实例,简单总结了深基坑降水施工过程中的注意事项及遇到同类问题时的处理措施.%Taking certain deep pit excavation in Tianjin as the example, the engineering geological and hydrogeological conditions of the deep foundation pit and the design scheme of the pit retaining and watering are briefly introduced. During the excavation of the foundation pit, the reasons of the water gushing and sand boiling at the pit bottom are analyzed. The guiding philosophy "diverting as the main means, blocking as the secondary means" is adopted, and the solution scheme "decentralized collection, centralized discharge" is taken. The importance of the construction sequence in the whole project is pointed out. Finally the water gushing and sand boiling of the foundation pit are solved, which ensure the follow-up work smoothly and normally. Through the example, the precautions and measures to deal with the similar problems during the construction of the deep foundation pit are briefly summarized.

  4. Evaluation of PWR and BWR pin cell benchmark results

    Energy Technology Data Exchange (ETDEWEB)

    Pilgroms, B.J.; Gruppelaar, H.; Janssen, A.J. (Netherlands Energy Research Foundation (ECN), Petten (Netherlands)); Hoogenboom, J.E.; Leege, P.F.A. de (Interuniversitair Reactor Inst., Delft (Netherlands)); Voet, J. van der (Gemeenschappelijke Kernenergiecentrale Nederland NV, Dodewaard (Netherlands)); Verhagen, F.C.M. (Keuring van Electrotechnische Materialen NV, Arnhem (Netherlands))

    1991-12-01

    Benchmark results of the Dutch PINK working group on the PWR and BWR pin cell calculational benchmark as defined by EPRI are presented and evaluated. The observed discrepancies are problem dependent: a part of the results is satisfactory, some other results require further analysis. A brief overview is given of the different code packages used in this analysis. (author). 14 refs.; 9 figs.; 30 tabs.

  5. Latest experiences in inspecting the inside of BWR vessel shields

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, R.; Gonzalez, E.

    2001-07-01

    In the last few years, the owners of BWR nuclear power plants have been forced to address new fuel shield inspection requirements, TECNATOM has responded to this situation by launching the TEIDE projects, which include development of an inspection machine and the corresponding Non-Destructive Tests to examine the inside of this shield. With these projects, TECNATOM has performed more than 12 fuel shield inspections in different countries. This article describes the experience gained in the last three years. (Author)

  6. Unsteady heat transfer during subcooled film boiling

    Science.gov (United States)

    Yagov, V. V.; Zabirov, A. R.; Lexin, M. A.

    2015-11-01

    Cooling of high-temperature bodies in subcooled liquid is of importance for quenching technologies and also for understanding the processes initiating vapor explosion. An analysis of the available experimental information shows that the mechanisms governing heat transfer in these processes are interpreted ambiguously; a more clear-cut definition of the Leidenfrost temperature notion is required. The results of experimental observations (Hewitt, Kenning, and previous investigations performed by the authors of this article) allow us to draw a conclusion that there exists a special mode of intense heat transfer during film boil- ing of highly subcooled liquid. For revealing regularities and mechanisms governing intense transfer of energy in this process, specialists of Moscow Power Engineering Institute's (MPEI) Department of Engineering Thermal Physics conduct systematic works aimed at investigating the cooling of high-temperature balls made of different metals in water with a temperature ranging from 20 to 100°C. It has been determined that the field of temperatures that takes place in balls with a diameter of more than 30 mm in intense cooling modes loses its spherical symmetry. An approximate procedure for solving the inverse thermal conductivity problem for calculating the heat flux density on the ball surface is developed. During film boiling, in which the ball surface temperature is well above the critical level for water, and in which liquid cannot come in direct contact with the wall, the calculated heat fluxes reach 3-7 MW/m2.

  7. Acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor from autoregressive models

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Issa Cherif [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Bose, Tanmoy [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Pekpe, Komi Midzodzi, E-mail: midzodzi.pekpe@univ-lille1.fr [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Cassar, Jean-Philippe [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Mohanty, A.R. [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Paumel, Kévin [CEA, DEN, Nuclear Technology Department, F-13108 Saint-Paul-lez-Durance (France)

    2014-10-15

    Highlights: • The work deals with sodium boiling detection in a liquid metal fast breeder reactor. • The authors choose to use acoustic data instead of thermal data. • The method is designed to not to be disturbed by the environment noises. • A real time boiling detection methods are proposed in the paper. - Abstract: This paper deals with acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor (LMFBR) based on auto regressive (AR) models which have low computational complexities. Some authors have used AR models for sodium boiling or sodium–water reaction detection. These works are based on the characterization of the difference between fault free condition and current functioning of the system. However, even in absence of faults, it is possible to observe a change in the AR models due to the change of operating mode of the LMFBR. This sets up the delicate problem of how to distinguish a change in operating mode in absence of faults and a change due to presence of faults. In this paper we propose a new approach for boiling detection based on the estimation of AR models on sliding windows. Afterwards, classification of the models into boiling or non-boiling models is made by comparing their coefficients by two statistical methods, multiple linear regression (LR) and support vectors machines (SVM). The proposed approach takes into account operating mode information in order to avoid false alarms. Experimental data include non-boiling background noise data collected from Phenix power plant (France) and provided by the CEA (Commissariat à l’Energie Atomique et aux énergies alternatives, France) and boiling condition data generated in laboratory. High boiling detection rates as well as low false alarms rates obtained on these experimental data show that the proposed method is efficient for boiling detection. Most importantly, it shows that the boiling phenomenon introduces a disturbance into the AR models that can be clearly detected.

  8. Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian J [ORNL; Gauld, Ian C [ORNL

    2011-10-01

    in MOX fuel is generally obtained from reprocessed irradiated nuclear fuel, whereas weapons-grade plutonium is obtained from decommissioned nuclear weapons material and thus has a different plutonium (and other actinides) concentration. Using MOX fuel instead of UOX fuel has potential impacts on the neutronic performance of the nuclear fuel and the design of the nuclear fuel must take these differences into account. Each of the plutonium sources (RG and WG) has different implications on the neutronic behavior of the fuel because each contains a different blend of plutonium nuclides. The amount of heat and the number of neutrons produced from fission of plutonium nuclides is different from fission of {sup 235}U. These differences in UOX and MOX do not end at discharge of the fuel from the reactor core - the short- and long-term storage of MOX fuel may have different requirements than UOX fuel because of the different discharged fuel decay heat characteristics. The research documented in this report compares MOX and UOX fuel during storage and disposal of the fuel by comparing decay heat rates for typical pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies with and without weapons-grade (WG) and reactor-grade (RG) MOX fuel.

  9. Hysteresis of boiling for different tunnel-pore surfaces

    Directory of Open Access Journals (Sweden)

    Pastuszko Robert

    2015-01-01

    Full Text Available Analysis of boiling hysteresis on structured surfaces covered with perforated foil is proposed. Hysteresis is an adverse phenomenon, preventing high heat flux systems from thermal stabilization, characterized by a boiling curve variation at an increase and decrease of heat flux density. Experimental data were discussed for three kinds of enhanced surfaces: tunnel structures (TS, narrow tunnel structures (NTS and mini-fins covered with the copper wire net (NTS-L. The experiments were carried out with water, R-123 and FC-72 at atmospheric pressure. A detailed analysis of the measurement results identified several cases of type I, II and III for TS, NTS and NTS-L surfaces.

  10. Changes of enthalpy slope in subcooled flow boiling

    Science.gov (United States)

    Collado, Francisco J.; Monné, Carlos; Pascau, Antonio

    2006-03-01

    Void fraction data in subcooled flow boiling of water at low pressure measured by General Electric in the 1960s are analyzed following the classical model of Griffith et al. (in Proceedings of ASME-AIChE heat transfer conference, #58-HT-19, 1958). In addition, a new proposal for analyzing one-dimensional steady flow boiling is used. This is based on the physical fact that if the two phases have different velocities, they cannot cover the same distance—the control volume length—in the same time. So a slight modification of the heat balance is suggested, i.e., the explicit inclusion of the vapor liquid velocity ratio or slip ratio as scaling time factor between the phases, which is successfully checked against the data. Finally, the prediction of void fraction using correlations of the net rate of change of vapor enthalpy in the fully developed regime of subcooled flow boiling is explored.

  11. Boiling heat transfer on fins – experimental and numerical procedure

    Directory of Open Access Journals (Sweden)

    Orzechowski T.

    2014-03-01

    Full Text Available The paper presents the research methodology, the test facility and the results of investigations into non-isothermal surfaces in water boiling at atmospheric pressure, together with a discussion of errors. The investigations were conducted for two aluminium samples with technically smooth surfaces and thickness of 4 mm and 10 mm, respectively. For the sample of lower thickness, on the basis of the surface temperature distribution measured with an infrared camera, the local heat flux and the heat transfer coefficient were determined and shown in the form of a boiling curve. For the thicker sample, for which 1-D model cannot be used, numerical calculations were conducted. They resulted in obtaining the values of the local heat flux on the surface the invisible to the infrared, camera i.e. on the side on which the boiling of the medium proceeds.

  12. Changes of enthalpy slope in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Francisco J.; Monne, Carlos [Universidad de Zaragoza-CPS, Departamento de Ingenieria Mecanica-Motores Termicos, Zaragoza (Spain); Pascau, Antonio [Universidad de Zaragoza-CPS, Departamento de Ciencia de los Materiales y Fluidos-Mecanica de Fluidos, Zaragoza (Spain)

    2006-03-01

    Void fraction data in subcooled flow boiling of water at low pressure measured by General Electric in the 1960s are analyzed following the classical model of Griffith et al. (in Proceedings of ASME-AIChE heat transfer conference, 58-HT-19, 1958). In addition, a new proposal for analyzing one-dimensional steady flow boiling is used. This is based on the physical fact that if the two phases have different velocities, they cannot cover the same distance - the control volume length - in the same time. So a slight modification of the heat balance is suggested, i.e., the explicit inclusion of the vapor-liquid velocity ratio or slip ratio as scaling time factor between the phases, which is successfully checked against the data. Finally, the prediction of void fraction using correlations of the net rate of change of vapor enthalpy in the fully developed regime of subcooled flow boiling is explored. (orig.)

  13. An efficient modeling method for thermal stratification simulation in a BWR suppression pool

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Ling Zou; Hongbin Zhang; Hua Li; Walter Villanueva; Pavel Kudinov

    2012-09-01

    The suppression pool in a BWR plant not only is the major heat sink within the containment system, but also provides major emergency cooling water for the reactor core. In several accident scenarios, such as LOCA and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; and the pool temperature distribution also affects the NPSHa (Available Net Positive Suction Head) and therefore the performance of the pump which draws cooling water back to the core. Current safety analysis codes use 0-D lumped parameter methods to calculate the energy and mass balance in the pool and therefore have large uncertainty in prediction of scenarios in which stratification and mixing are important. While 3-D CFD methods can be used to analyze realistic 3D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, therefore long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by 1-D transient partial differential equations and substructures such as free or wall jets are modeled with 1-D integral models. This allows very large reductions in computational effort compared to 3-D CFD modeling. The POOLEX experiments at Finland, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, are used for validation. GOTHIC lumped parameter models are used to obtain boundary conditions for BMIX++ code and CFD simulations. Comparison between the BMIX++, GOTHIC, and CFD calculations against the POOLEX experimental data is discussed in detail.

  14. Development boiling to sprinkled tube bundle

    Directory of Open Access Journals (Sweden)

    Kracík Petr

    2016-01-01

    Full Text Available This paper presents results of a studied heat transfer coefficient at the surface of a sprinkled tube bundle where boiling occurs. Research in the area of sprinkled exchangers can be divided into two major parts. The first part is research on heat transfer and determination of the heat transfer coefficient at sprinkled tube bundles for various liquids, whether boiling or not. The second part is testing of sprinkle modes for various tube diameters, tube pitches and tube materials and determination of individual modes’ interface. All results published so far for water as the falling film liquid apply to one to three tubes for which the mentioned relations studied are determined in rigid laboratory conditions defined strictly in advance. The sprinkled tubes were not viewed from the operational perspective where there are more tubes and various modes may occur in different parts with various heat transfer values. The article focuses on these processes. The tube is located in a low-pressure chamber where vacuum is generated using an exhauster via ejector. The tube consists of smooth copper tubes of 12 mm diameter placed horizontally one above another.

  15. Development boiling to sprinkled tube bundle

    Science.gov (United States)

    Kracík, Petr; Pospíšil, Jiří

    2016-03-01

    This paper presents results of a studied heat transfer coefficient at the surface of a sprinkled tube bundle where boiling occurs. Research in the area of sprinkled exchangers can be divided into two major parts. The first part is research on heat transfer and determination of the heat transfer coefficient at sprinkled tube bundles for various liquids, whether boiling or not. The second part is testing of sprinkle modes for various tube diameters, tube pitches and tube materials and determination of individual modes' interface. All results published so far for water as the falling film liquid apply to one to three tubes for which the mentioned relations studied are determined in rigid laboratory conditions defined strictly in advance. The sprinkled tubes were not viewed from the operational perspective where there are more tubes and various modes may occur in different parts with various heat transfer values. The article focuses on these processes. The tube is located in a low-pressure chamber where vacuum is generated using an exhauster via ejector. The tube consists of smooth copper tubes of 12 mm diameter placed horizontally one above another.

  16. Electrochemistry of Water-Cooled Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, Dgiby; Urquidi-Macdonald, Mirna; Pitt, Jonathan

    2006-08-08

    This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or "radiation fields" around the primary loop and the vessel, as a function of the operating parameters and the water chemistry.

  17. New strategies of reloads design and models of control bars in boiling water reactors; Nuevas estrategias de diseno de recargas y de patrones de barras de control en reactores de agua en ebullicion

    Energy Technology Data Exchange (ETDEWEB)

    Castillo M, J. A.; Ortiz S, J. J.; Perusquia del Cueto, R., E-mail: alejandro.castillo@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    In this work the results obtained when analyzing new strategies in the reload designs of nuclear fuel and models of control bars, for boiling water reactors are presented. The idea is to analyze the behaviour of the reactor during an operation cycle, when the heuristic rules are not used (commonly used by expert engineers in both designs). Specifically was analyzed the rule of low leak and the load strategy Control Cell Core for the design of a fuel reload. In a same way was analyzed the rule of prohibiting the use of the intermediate positions in the control bars, as well as the construction of bar models based on load strategies type Control Cell Core. In the first analysis a balance and transition cycle were used. For the second analysis only a transition cycle was used, firstly with the reloads designed in the first analysis and later on with reloads built by other methods. For the simulation of the different configurations proposed in both cases, was used the code Simulate-3. To obtain the designs in both studies, the heuristic techniques or neural networks and taboo search were used. The obtained results show that it can be omitted of some rules used in the ambit for the mentioned designs and even so to obtain good results. To carry out this investigation was used Dell work station under Li nux platform. (Author)

  18. Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy

    Science.gov (United States)

    Freeburg, Eric Thomas

    Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed

  19. Modeling acid-gas generation from boiling chloride brines

    Directory of Open Access Journals (Sweden)

    Sonnenthal Eric

    2009-11-01

    Full Text Available Abstract Background This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Results Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150°C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. Conclusion The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual

  20. Experimental Investigation on Pool Boiling Heat Transfer With Ammonium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Mr.P. Atcha Rao

    2015-11-01

    Full Text Available We have so many applications related to Pool Boiling. The Pool Boiling is mostly useful in arid areas to produce drinking water from impure water like sea water by distillation process. It is very difficult to distill the only water which having high surface tension. The surface tension is important factor to affect heat transfer enhancement in pool boiling. By reducing the surface tension we can increase the heat transfer rate in pool boiling. From so many years we are using surfactants domestically. It is proven previously by experiments that the addition of little amount of surfactant reduces the surface tension and increase the rate of heat transfer. There are different groups of surfactants. From those I‟m conducting experimentation with anionic surfactant Ammonium Dodecyl Sulfate (ADS, which is most human friendly and three times best soluble than Sodium Dodecyl Sulfate, to test the heat transfer enhancement.

  1. Experimental study on convective boiling heat transfer in narrow-gap annulus tubes

    Institute of Scientific and Technical Information of China (English)

    LI Bin; ZHAO Jian-Fu; ZHOU Fang-De; TANG Ze-Mei; HU Wen-Rui

    2004-01-01

    Since convective boiling or highly subcooled single-phase forced convection in micro-channels is an effective cooling mechanism with a wide range of applications, more experimental and theoretical studies are required to explain and verify the forced convection heat transfer phenomenon in narrow channels. In this experimental study, we model the convective boiling behavior of water with low latent heat substance Freon 113 (R-113), with the purpose of saving power consumption and visualizing experiments. Both heat transfer and pressure drop characteristics were measured in subcooled and saturated concentric narrow gap forced convection boiling. Data were obtained to qualitatively identify the effects of gap size, pressure, flow rate and wall superheat on boiling regimes and the transition between various regimes. Some significant differences from unconfined forced convection boiling were found,and also, the flow patterns in narrow vertical annulus tubes have been studied quantitatively.

  2. Kohonen mapping of the crack growth under fatigue loading conditions of stainless steels in BWR environments and of nickel alloys in PWR environments

    Science.gov (United States)

    Urquidi-Macdonald, Mirna

    2008-09-01

    In this study, crack growth rate data under fatigue loading conditions generated by Argonne National Laboratories and published in 2006 were analyzed [O.K. Chopra, B. Alexandreanu, E.E. Gruber, R.S. Daum, W.J. Shack, Argonne National Laboratory, NUREG CR 6891-series ANL 04/20, Crack Growth Rates of Austenitic Stainless Steel Weld Heat Affected Zone in BWR Environments, January, 2006; B. Alexandreanu, O.K. Chopra, H.M. Chung, E.E. Gruber, W.K. Soppet, R.W. Strain, W.J. Shack, Environmentally Assisted Cracking in Light Water Reactors, vol. 34 in the NUREG/CR-4667 series annual report of Argonne National Laboratory program studies for Calendar (Annual Report 2003). Manuscript Completed: May 2005, Date Published: May 2006], and reported by DoE [B. Alexandreanu, O.K. Chopra, W.J. Shack, S. Crane, H.J. Gonzalez, NRC, Crack Growth Rates and Metallographic Examinations of Alloy 600 and Alloy 82/182 from Field Components and Laboratory Materials Tested in PWR Environments, NUREG/CR-6964, May 2008]. The data collected were measured on austenitic stainless steels in BWR (boiling water reactor) environments and on nickel alloys in PWR (pressurized water reactor) environments. The data collected contained information on material composition, temperature, conductivity of the environment, oxygen concentration, irradiated sample information, weld information, electrochemical potential, load ratio, rise time, hydrogen concentration, hold time, down time, maximum stress intensity factor ( Kmax), stress intensity range (Δ Kmax), crack length, and crack growth rates (CGR). Each position on that Kohonen map is called a cell. A Kohonen map clusters vectors of information by 'similarities.' Vectors of information were formed using the metal composition, followed by the environmental conditions used in each experiments, and finally followed by the crack growth rate (CGR) measured when a sample of pre-cracked metal is set in an environment and the sample is cyclically loaded. Accordingly

  3. Boiling process in oil coolers on porous elements

    Directory of Open Access Journals (Sweden)

    Genbach Alexander A.

    2016-01-01

    Full Text Available Holography and high-speed filming were used to reveal movements and deformations of the capillary and porous material, allowing to calculate thermo-hydraulic characteristics of boiling liquid in the porous structures. These porous structures work at the joint action of capillary and mass forces, which are generalised in the form of dependences used in the calculation for oil coolers in thermal power plants (TPP. Furthermore, the mechanism of the boiling process in porous structures in the field of mass forces is explained. The development process of water steam formation in the mesh porous structures working at joint action of gravitational and capillary forces is investigated. Certain regularities pertained to the internal characteristics of boiling in cells of porous structure are revealed, by means of a holographic interferometry and high-speed filming. Formulas for calculation of specific thermal streams through thermo-hydraulic characteristics of water steam formation in mesh structures are obtained, in relation to heat engineering of thermal power plants. This is the first calculation of heat flow through the thermal-hydraulic characteristics of the boiling process in a reticulated porous structure obtained by a photo film and holographic observations.

  4. Experimental demonstration of contaminant removal from fractured rock by boiling.

    Science.gov (United States)

    Chen, Fei; Liu, Xiaoling; Falta, Ronald W; Murdoch, Lawrence C

    2010-08-15

    This study was conducted to experimentally demonstrate removal of a chlorinated volatile organic compound from fractured rock by boiling. A Berea sandstone core was contaminated by injecting water containing dissolved 1,2-DCA (253 mg/L) and sodium bromide (144 mg/L). During heating, the core was sealed except for one end, which was open to the atmosphere to simulate an open fracture. A temperature gradient toward the outlet was observed when boiling occurred in the core. This indicates that steam was generated and a pressure gradient developed toward the outlet, pushing steam vapor and liquid water toward the outlet. As boiling occurred, the concentration of 1,2-DCA in the condensed effluent peaked up to 6.1 times higher than the injected concentration. When 38% of the pore volume of condensate was produced, essentially 100% of the 1,2-DCA was recovered. Nonvolatile bromide concentration in the condensate was used as an indicator of the produced steam quality (vapor mass fraction) because it can only be removed as a solute, and not as a vapor. A higher produced steam quality corresponds to more concentrated 1,2-DCA removal from the core, demonstrating that the chlorinated volatile compound is primarily removed by partitioning into vapor phase flow. This study has experimentally demonstrated that boiling is an effective mechanism for CVOC removal from the rock matrix.

  5. Prony's method application for BWR instabilities characterization

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Rogelio, E-mail: rogelio.castillo@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Ramírez, J. Ramón, E-mail: ramon.ramirez@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Alonso, Gustavo, E-mail: gustavo.alonso@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico); Instituto Politecnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Ortiz-Villafuerte, Javier, E-mail: javier.ortiz@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México 52750 (Mexico)

    2015-04-01

    Highlights: • Prony's method application for BWR instability events. • Several BWR instability benchmark are assessed using this method. • DR and frequency are obtained and a new parameter is proposed to eliminate false signals. • Adequate characterization of in-phase and out-of-phase events is obtained. • The Prony's method application is validated. - Abstract: Several methods have been developed for the analysis of reactor power signals during BWR power oscillations. Among them is the Prony's method, its application provides the DR and the frequency of oscillations. In this paper another characteristic of the method is proposed to determine the type of oscillations that can occur, in-phase or out-of-phase. Prony's method decomposes a given signal in all the frequencies that it contains, therefore the DR of the fundamental mode and the first harmonic are obtained. To determine the more dominant pole of the system a normalized amplitude W of the system is calculated, which depends on the amplitude and the damping coefficient. With this term, it can be analyzed which type of oscillations is present, if W of the fundamental mode frequency is the greater, the type of oscillations is in-phase, if W of the first harmonic frequency is the greater, the type of oscillations is out-of-phase. The method is applied to several stability benchmarks to assess its validity. Results show the applicability of the method as an alternative analysis method to determine the type of oscillations occurred.

  6. Characterization of 14C in Swedish light water reactors.

    Science.gov (United States)

    Magnusson, Asa; Aronsson, Per-Olof; Lundgren, Klas; Stenström, Kristina

    2008-08-01

    This paper presents the results of a 4-y investigation of 14C in different waste streams of both boiling water reactors (BWRs) and pressurized water reactors (PWRs). Due to the potential impact of 14C on human health, minimizing waste and releases from the nuclear power industry is of considerable interest. The experimental data and conclusions may be implemented to select appropriate waste management strategies and practices at reactor units and disposal facilities. Organic and inorganic 14C in spent ion exchange resins, process water systems, ejector off-gas and replaced steam generator tubes were analyzed using a recently developed extraction method. Separate analysis of the chemical species is of importance in order to model and predict the fate of 14C within process systems as well as in dose calculations for disposal facilities. By combining the results of this investigation with newly calculated production rates, mass balance assessments were made of the 14C originating from production in the coolant. Of the 14C formed in the coolant of BWRs, 0.6-0.8% was found to be accumulated in the ion exchange resins (core-specific production rate in the coolant of a 2,500 MWth BWR calculated to be 580 GBq GW(e)(-1) y(-1)). The corresponding value for PWRs was 6-10% (production rate in a 2,775 MWth PWR calculated to be 350 GBq GW(e)(-1) y(-1)). The 14C released with liquid discharges was found to be insignificant, constituting less than 0.5% of the production in the coolant. The stack releases, routinely measured at the power plants, were found to correspond to 60-155% of the calculated coolant production, with large variations between the BWR units.

  7. Optimization of fuel rod enrichment distribution for BWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Yasushi; Hida, Kazuki; Sakurada, Koichi; Yamamoto, Munenari [Toshiba Corp., Kawasaki, Kanagawa (Japan). Nuclear Engineering Lab.

    1996-09-01

    A practical method was developed for determining the optimum fuel enrichment distribution within a boiling water reactor fuel assembly. The method deals with two different optimization problems, i.e. the combinatorial optimization problem of grouping fuel rods into a given number of rod groups with the same enrichment, and the problem of determining an optimal enrichment for each fuel rod under the resultant rod-grouping pattern. In solving these problems, the primary goal is to minimize a predefined objective function over a given exposure period. The objective function used here is defined by the linear combination C{sub 1}X + C{sub 2}X{sub G}, where X and X{sub G} stand, respectively, for control variables giving constraint to the local power peaking factor and the gadolinium rod power. C{sub 1} and C{sub 2} are user-definable weighting factors to accommodate design preferences. The algorithm for solving this combinatorial optimization problem starts by finding the optimal enrichment vector without any rod-grouping, and promising candidates of rod-grouping patterns are found by exhaustive enumeration based on the resulting fuel enrichment ordering. This latter problem is solved using the method of approximation programming. A practical application is shown for a contemporary 8 x 8 Pu mixed-oxide fuel assembly with 10 gadolinium-poisoned rods. (author)

  8. 鸡肉水汆丸子品质影响因素浅析%Analysis of Influencing Factors on Qualities of Water-boiled Chicken Meatballs

    Institute of Scientific and Technical Information of China (English)

    胡二坤; 李亚欣

    2014-01-01

    影响水汆丸子品质的因素有馅料中淀粉的含量、拌馅料时的加水量以及蛋清的量等,在单因素试验的基础上,采用正交试验设计,对上述三个影响因素进行了综合试验,得出鸡肉水汆丸子的最佳配方为:淀粉添加量30%、蛋清添加量10%、水添加量为20%。%In this paper, the amount of corn starch and the addition of water and whey protein were studied in order to determine the effect of those factors on the qualities of chicken meatballs. On the basis of single factor , orthogonal tests were designed to obtain the optimum parameters. The optimum conditions were as follows: the con-centration of corn starch 30%, the addition of whey protein 10%, and the water 20%. The results indicated that conditions of chicken meatballs would be applied value in the food industry and the family food-cooking.

  9. Quantification of the ex-vessel severe accident risks for the Swedish boiling water reactors. A scoping study performed for the APRI project

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, T.; Dinh, T.N.; Bui, V.A.; Sehgal, B.R. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Systems Technology

    1995-07-01

    Results of a scoping study to quantify the ex-vessel severe accident risks for the Swedish BWRs are reported. The study considers that a pool of water is established in the containment prior to vessel failure, as prescribed by the accident management scheme for the newer Swedish BWRs. The integrated methodology developed and employed combines probabilistic and deterministic treatment of the various melt-structure-water interaction processes occurring in sequence. The potential steam explosion, and the melt attack on the containment basemat, are treated with enveloping analyses. Uncertain parameters in the models and the initial conditions are treated with Monte Carlo simulations. Independent models are developed for melt coolability and possible attack on the concrete basemat. It is found that, with current models, the melt discharge scenarios, in which a large amount of accumulated melt may be released from the vessel, could subject the containment to large steam explosion loads. However, the uncertainties are so large that no definite conclusion can be drawn. The assessment of ex-vessel core debris coolability is disturbed by similar phenomenological uncertainties. Presently, coolability of the core debris can not be demonstrated. 133 refs.

  10. Numerical analysis on pool boiling using user defined function

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Sung Uk; Jeon, Byong Guk; Kim, Seok; Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    PAFS (passive auxiliary feedwater system) adopted in the APR+ (Advanced Power Reactor Plus) of Korea is one such application. When PAFS is activated with an actuation signal, steam from the steam generator passes through heat exchanger tubes submerged in a water tank of the PAFS. Outside these heat exchanger tubes, nucleate boiling phenomena appears. In the present work, a numerical study is reported on three-dimensional transient state pool boiling of water having an immersed heat source. The velocity vector fields during the decrease in the water level are numerically investigated in a pool, and the accuracy of the results is checked by comparing the experimental results conducted using the PIV techniques by Kim et al. These numerical results can be used as basic research data for an analysis and prediction of the natural circulation phenomena in the cooling tank of the passive safety system in a nuclear power plant.

  11. Instability in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2016-01-01

    This Brief addresses the phenomena of instability in flow boiling in microchannels occurring in high heat flux electronic cooling. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to “Critical Heat Flux in Flow Boiling in Microchannels,” and "Heat Transfer and Pressure Drop in Flow Boiling in Microchannels,"by the same author team, this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  12. Gamma heated subassembly for sodium boiling experiments

    Energy Technology Data Exchange (ETDEWEB)

    Artus, S.C.

    1975-01-01

    The design of a system to boil sodium in an LMFBR is examined. This design should be regarded as a first step in a series of boiling experiments. The reactor chosen for the design of the boiling apparatus is the Experimental Breeder Reactor-II (EBR-II), located at the National Reactor Testing Station in Idaho. Criteria broadly classified as design objectives and design requirements are discussed.

  13. Detecting long-range correlation with detrended fluctuation analysis: Application to BWR stability

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, Gilberto [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, DF 09340 (Mexico)]. E-mail: gepe@xanum.uam.mx; Alvarez-Ramirez, Jose [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, DF 09340 (Mexico); Vazquez, Alejandro [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, DF 09340 (Mexico)

    2006-11-15

    The aim of this paper is to explore the application of detrended fluctuation analysis (DFA) to study boiling water reactor stability. DFA is a scaling method commonly used for detecting long-range correlations in non-stationary time series. This method is based on the random walk theory and was applied to neutronic power signal of Forsmark stability benchmark. Our results shows that the scaling properties breakdown during unstable oscillations.

  14. Duality of boiling systems and uncertainty phenomena

    Institute of Scientific and Technical Information of China (English)

    柴立合; 彭晓峰; 王补宣

    2000-01-01

    Interactions among dry patches at high heat flux are theoretically analyzed. The high heat flux boiling experiments on metal plate wall with different materials and thickness are correspondingly conducted. The duality of boiling system, i.e. hydrodynamic performance and self-organized performance is identified. A unified explanation of hydrodynamic models and dry patches models is given. The scatter and uncertainty in boiling data can be mainly attributed to the intrinsic duality, but not the sole surface effects. The present experimental results explain why the deviation point at high flux boiling is seen only on occasion and why the self-organization of dry patches is often ignored in available literature.

  15. Neutron dosimetry. Environmental monitoring in a BWR type reactor; Dosimetria de neutrones. Monitoreo ambiental en un reactor del tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Tavera D, L.; Camacho L, M.E

    1991-01-15

    The measurements carried out on reactor dosimetry are applied mainly to the study on the effects of the radiation in 108 materials of the reactor; little is on the environmental dosimetry outside of the primary container of BWR reactors. In this work the application of a neutron spectrometer formed by plastic detectors of nuclear traces manufactured in the ININ, for the environmental monitoring in penetrations around the primary container of the unit I of the Laguna Verde central is presented. The neutron monitoring carries out with purposes of radiological protection, during the operational tests of the reactor. (Author)

  16. A Matrix Method of Analyzing the Thermodynamic System of Advance Boiling Water Reactor Nuclear Power Unit%先进型沸水堆核电机组热经济性矩阵分析方法

    Institute of Scientific and Technical Information of China (English)

    冉鹏; 李庚生; 廖丹; 朱伟平

    2010-01-01

    根据先进型沸水堆(advance boiling water reactor,ABWR)核电机组热力系统的结构特点,基于热力系统等效热降分析方法和矩阵方法,确定其主、辅系统的划分原则以及辅助汽水成分划分原则,对先进型沸水堆各种汽水成分进行归并处理,构建表达规则的先进型沸水堆核电机组汽水分布方程填写规则,推导出适合先进型沸水堆核电机组热力系统热经济性分析的通用矩阵方法,并给出该类型核电机组辅助汽水成分对热经济性影响的表达方式.该矩阵全面反映了先进犁沸水堆核电机组热力系统主系统和各种辅助系统对机组热经济性的影响状况,每个子矩阵物理意义明确、规律性强,可使先进型沸水堆核电机组热力系统的整体计算和局部分析变得清晰、简单,适合于计算机程序化,并通过实例对该方法进行了验证.

  17. Development of a mechanistic model for forced convection subcooled boiling

    Science.gov (United States)

    Shaver, Dillon R.

    The focus of this work is on the formulation, implementation, and testing of a mechanistic model of subcooled boiling. Subcooled boiling is the process of vapor generation on a heated wall when the bulk liquid temperature is still below saturation. This is part of a larger effort by the US DoE's CASL project to apply advanced computational tools to the simulation of light water reactors. To support this effort, the formulation of the dispersed field model is described and a complete model of interfacial forces is formulated. The model has been implemented in the NPHASE-CMFD computer code with a K-epsilon model of turbulence. The interfacial force models are built on extensive work by other authors, and include novel formulations of the turbulent dispersion and lift forces. The complete model of interfacial forces is compared to experiments for adiabatic bubbly flows, including both steady-state and unsteady conditions. The same model is then applied to a transient gas/liquid flow in a complex geometry of fuel channels in a sodium fast reactor. Building on the foundation of the interfacial force model, a mechanistic model of forced-convection subcooled boiling is proposed. This model uses the heat flux partitioning concept and accounts for condensation of bubbles attached to the wall. This allows the model to capture the enhanced heat transfer associated with boiling before the point of net generation of vapor, a phenomenon consistent with existing experimental observations. The model is compared to four different experiments encompassing flows of light water, heavy water, and R12 at different pressures, in cylindrical channels, an internally heated annulus, and a rectangular channel. The experimental data includes axial and radial profiles of both liquid temperature and vapor volume fraction, and the agreement can be considered quite good. The complete model is then applied to simulations of subcooled boiling in nuclear reactor subchannels consistent with the

  18. Enhanced convective and film boiling heat transfer by surface gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.; Greene, G.A. (Brookhaven National Lab., Upton, NY (United States)); Irvine, T.F., Jr. (State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering)

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured (0 to 8.5 cm/s), the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  19. Enhanced convective and film boiling heat transfer by surface gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.; Greene, G.A. [Brookhaven National Lab., Upton, NY (United States); Irvine, T.F., Jr. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus_minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured [0 to 8.5 cm/s], the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  20. System control model of a turbine for a BWR; Modelo del sistema de control de una turbina para un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Vargas O, Y. [Universidad del Valle de Mexico, Campus Toluca, Av. Las Palmas No. 136, Col. San Jorge Pueblo Nuevo, 52140 Metepec, Estado de Mexico (Mexico); Amador G, R.; Ortiz V, J.; Castillo D, R.; Delfin L, A. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)], e-mail: rodolfo.amador@inin.gob.mx

    2009-10-15

    In this work is presented a design of a control system of a turbine for a nuclear power plant with a BWR like energy source. The model seeks to implement later on at thermal hydraulics code of better estimate RELAP/SCDAPSIM. The model is developed for control and protection of turbine, and the consequent protection to the BWR, considering that the turbine control could be employed for one or several turbines in series. The quality of present designs of control pattern of turbine it is that it considers the parameters more important in the operation of a turbine besides that is has incorporated at control the secondary parameters that will be activated originally as true when the turbine model is substituted by a model more detailed. The development of control model of a turbine will be good in short and medium term to realize analysis about the operation of turbine with different operation conditions, of vapor extraction specific steps of turbine to feed other equipment s, besides analyzing the separate effect and integrated effect. (Author)

  1. Studies of fragileness in steels of vessels of BWR reactors; Estudios de fragilizacion en aceros de vasija de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Robles, E.F.; Balcazar, M.; Alpizar, A.M.; Calderon, B.E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The structural materials with those that are manufactured the pressure vessels of the BWR reactors, suffer degradation in its mechanical properties mainly to the damage taken place by the fast neutrons (E > 1 MeV) coming from the reactor core. Its are experimentally studied those mechanisms of neutron damage in this material type, by means of the irradiation of steel vessel in experimental reactors to age them quickly. Alternatively it is simulated the neutron damage by means of irradiation of steel with heavy ions. In this work those are shown first results of the damage induced by irradiation from a similar steel to the vessel of a BWR reactor. The irradiation was carried out with fast neutrons (E > 1 MeV, fluence of 1.45 x 10{sup 18} n/cm{sup 2}) in the TRIGA MARK lll reactor and separately with Ni{sup +3} ions in a Tandetrom accelerator, E = 4.8 MeV and range of the ionic flow of 0.1 to 53 iones/A{sup 2}. (Author)

  2. Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Joong; McKrell, Tom [Nuclear Science and Engineering Department, Massachusetts Institute of Technology (United States); Buongiorno, Jacopo, E-mail: jacopo@mit.ed [Nuclear Science and Engineering Department, Massachusetts Institute of Technology (United States); Hu Linwen [Nuclear Reactor Laboratory, Massachusetts Institute of Technology (United States)

    2010-05-15

    A nanofluid is a colloidal suspension of nano-scale particles in water, or other base fluids. Previous pool boiling studies have shown that nanofluids can improve the critical heat flux (CHF) by as much as 200%. In a previous paper, we reported on subcooled flow boiling CHF experiments with low concentrations of alumina, zinc oxide, and diamond nanoparticles in water (<=0.1% by volume) at atmospheric pressure, which revealed a substantial CHF enhancement (approx40-50%) at the highest mass flux (G = 2500 kg/m{sup 2} s) and concentration (0.1 vol.%) for all nanoparticle materials (). In this paper, we focus on the flow boiling heat transfer coefficient data collected in the same tests. It was found that for comparable test conditions the values of the nanofluid and water heat transfer coefficient are similar (within +-20%). The heat transfer coefficient increased with mass flux and heat flux for water and nanofluids alike, as expected in flow boiling. A confocal microscopy-based examination of the test section revealed that nanoparticle deposition on the boiling surface occurred during nanofluid boiling. Such deposition changes the number of micro-cavities on the surface, but also changes the surface wettability. A simple model was used to estimate the ensuing nucleation site density changes, but no definitive correlation between the nucleation site density and the heat transfer coefficient data could be found.

  3. Bubble and boundary layer behaviour in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Sattelmayer, Thomas [Lehrstuhl fuer Thermodynamik, Technische Universitaet Muenchen, 85747 Garching (Germany)

    2006-03-15

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The horizontal orientated test-section consists of a rectangular channel with a one side heated copper strip and good optical access. Various optical observation techniques were applied to study the bubble behaviour and the characteristics of the fluid phase. The bubble behaviour was recorded by the high-speed cinematography and by a digital high resolution camera. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, the bubbles were automatically analysed and the bubble size, bubble lifetime, waiting time between two cycles were evaluated. Due to the huge number of observed bubbles a statistical analysis was performed and distribution functions were derived. Using a two-dimensional cross-correlation algorithm, the averaged axial phase boundary velocity profile could be extracted. In addition, the fluid phase velocity profile was characterised by means of the particle image velocimetry (PIV) for the single phase flow as well as under subcooled flow boiling conditions. The results indicate that the bubbles increase the flow resistance. The impact on the flow exceeds by far the bubbly region and it depends on the magnitude of the boiling activity. Finally, the ratio of the averaged phase boundary velocity and of the averaged fluid velocity was evaluated for the bubbly region. (authors)

  4. Transient boiling crisis of cryogenic liquids

    NARCIS (Netherlands)

    Deev, [No Value; Kharitonov, VS; Kutsenko, KV; Lavrukhin, AA

    2004-01-01

    This paper introduces a new physical model of boiling crisis under rapid increase of power on the heated surface. The calculation of the time interval of the transition to film boiling in cryogenic liquids was carried out depending on heat flux and pressure. The obtained results are in good agreemen

  5. Boiling turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Lakkaraju, R.

    2013-01-01

    A fundamental understanding of liquid-vapor phase transitions, mainly boiling phenomenon, is essential due to its omnipresence in science and technology. In industries, many empirical correlations exist on the heat transport to get an optimized and efficient thermal design of the boiling equipment.

  6. A simplified model of decontamination by BWR steam suppression pools

    Energy Technology Data Exchange (ETDEWEB)

    Powers, D.A.

    1997-05-01

    Phenomena that can decontaminate aerosol-laden gases sparging through steam suppression pools of boiling water reactors during reactor accidents are described. Uncertainties in aerosol properties, aerosol behavior within gas bubbles, and bubble behavior in plumes affect predictions of decontamination by steam suppression pools. Uncertainties in the boundary and initial conditions that are dictated by the progression of severe reactor accidents and that will affect predictions of decontamination by steam suppression pools are discussed. Ten parameters that characterize boundary and initial condition uncertainties, nine parameters that characterize aerosol property and behavior uncertainties, and eleven parameters that characterize uncertainties in the behavior of bubbles in steam suppression pools are identified. Ranges for the values of these parameters and subjective probability distributions for parametric values within the ranges are defined. These uncertain parameters are used in Monte Carlo uncertainty analyses to develop uncertainty distributions for the decontamination that can be achieved by steam suppression pools and the size distribution of aerosols that do emerge from such pools. A simplified model of decontamination by steam suppression pools is developed by correlating features of the uncertainty distributions for total decontamination factor, DF(total), mean size of emerging aerosol particles, d{sub p}, and the standard deviation of the emerging aerosol size distribution, {sigma}, with pool depth, H. Correlations of the median values of the uncertainty distributions are suggested as the best estimate of decontamination by suppression pools. Correlations of the 10 percentile and 90 percentile values of the uncertainty distributions characterize the uncertainty in the best estimates. 295 refs., 121 figs., 113 tabs.

  7. Experimental investigation on partial pool boiling heat transfer in pure liquids

    Directory of Open Access Journals (Sweden)

    Fazel Seyed Ali Alavi

    2016-01-01

    Full Text Available Saturated partial pool boiling heat transfer has been experimentally investigated on a horizontal rod heater. The boiling liquids are including water and ethanol. The heating section is made by various materials including SS316, copper, aluminum and brass. Experiments have been performed at several degrees of surface roughness ranging between 30 and 360 micrometer average vertical deviation. The measurements are including boiling heat transfer coefficient, bubble departing diameter and frequency and also nucleation site density. The data have been compared to major existing correlations. It is shown that experimental data do not match with major correlations at the entire range of experiments with acceptable accuracy. In this article, the boiling heat transfer area has been divided in two complementary areas, the induced forced convection area and the boiling affected area. Based on two dimensionless groups, including Eötvös and Roshko numbers, a semi-empirical model have been proposed to predict the boiling heat transfer coefficient. It is shown that the proposed model provides improved performance in prediction of the boiling heat transfer coefficient in comparison with to existing correlations.

  8. Self-Sustaining Thorium Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States); Gorman, Phillip M. [Univ. of California, Berkeley, CA (United States); Bogetic, Sandra [Univ. of California, Berkeley, CA (United States); Seifried, Jeffrey E. [Univ. of California, Berkeley, CA (United States); Zhang, Guanheng [Univ. of California, Berkeley, CA (United States); Varela, Christopher R. [Univ. of California, Berkeley, CA (United States); Fratoni, Massimiliano [Univ. of California, Berkeley, CA (United States); Vijic, Jasmina J. [Univ. of California, Berkeley, CA (United States); Downar, Thomas [Univ. of Michigan, Ann Arbor, MI (United States); Hall, Andrew [Univ. of Michigan, Ann Arbor, MI (United States); Ward, Andrew [Univ. of Michigan, Ann Arbor, MI (United States); Jarrett, Michael [Univ. of Michigan, Ann Arbor, MI (United States); Wysocki, Aaron [Univ. of Michigan, Ann Arbor, MI (United States); Xu, Yunlin [Univ. of Michigan, Ann Arbor, MI (United States); Kazimi, Mujid [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Shirvan, Koroush [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Mieloszyk, Alexander [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Todosow, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, Nicolas [Brookhaven National Lab. (BNL), Upton, NY (United States); Cheng, Lap [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-03-15

    The primary objectives of this project are to: Perform a pre-conceptual design of a core for an alternative to the Hitachi proposed fuel-self- sustaining RBWR-AC, to be referred to as a RBWR-Th. The use of thorium fuel is expected to assure negative void coefficient of reactivity (versus positive of the RBWR-AC) and improve reactor safety; Perform a pre-conceptual design of an alternative core to the Hitachi proposed LWR TRU transmuting RBWR-TB2, to be referred to as the RBWR-TR. In addition to improved safety, use of thorium for the fertile fuel is expected to improve the TRU transmutation effectiveness; Compare the RBWR-Th and RBWR-TR performance against that of the Hitachi RBWR core designs and sodium cooled fast reactor counterparts - the ARR and ABR; and, Perform a viability assessment of the thorium-based RBWR design concepts to be identified along with their associated fuel cycle, a technology gap analysis, and a technology development roadmap. A description of the work performed and of the results obtained is provided in this Overview Report and, in more detail, in the Attachments. The major findings of the study are summarized.

  9. Appliance & Analysis of Enhanced Pool Boiling Heat Transfer for Horizontal Tube in Water Jacket Heater%水平管强化池沸腾传热在水套炉中的应用分析

    Institute of Scientific and Technical Information of China (English)

    苏海鹏

    2011-01-01

    油气集输换热设备中,更多关注的是强化对流传热的研究和应用,而对于管外强化沸腾换热关注较少。在介绍池沸腾传热相关理论一般性原理的基础上,分析了影响池沸腾传热的主要因素。通过改良换热管外表面结构型式,在换热管表面形成凹凸或多孔的结构,这种结构下沸腾传热提高了一个数量级。选择合适的外界压力能够强化管外沸腾传热,提高了管外换热系数。最后讨论了池沸腾传热计算的有关问题。%The convection heat transfer enhancement were researched and applied widely on heat exchange equipment in oil - gas gathering and transportation. Based on the general principles of pool boiling heat transfer theory, the main influenced factors to pool boiling were analyzed. The outside wall of tube was changed to make it concave - convex or porous surface, the pool boiling heat transfer was enhanced by an order of magnitude. Correct design pressure could make the pool boiling enhancing and improving the heat transfer coefficient outside horizontal tube. Finally, the pool boiling heat transfer calculation was discussed.

  10. Connected analysis nuclear-thermo-hydraulic of parallel channels of a BWR reactor using distributed computation; Analisis acoplado nuclear-termohidraulico de canales paralelos de un reactor BWR empleando computacion distribuida

    Energy Technology Data Exchange (ETDEWEB)

    Campos Gonzalez, Rina Margarita

    2007-07-15

    developed work only concentrates in the reactor core, but taking advantage of the modularity that PVM offers, it is possible to add component such as separators and steam dryers, lines of steam and feed water to obtain a model of a complete closed circuit. The applications concentrate mainly in the training of personnel in the phenomenology of the BWR, and as an investigation tool in the study of the dynamics of BWR reactors. The oscillations out of phase study presents challenges at the moment as are the explanation of the variation of the neutral line with time, non azimuthal but axial oscillations out of phase, etc. So far a first model oriented in this direction is at hand. [Spanish] Este trabajo consiste en la integracion de tres modelos desarrollados previamente los cuales se encuentran ampliamente descritos en la literatura: modelo del canal termohidraulico, modelo de la neutronica modal y el modelo de los lazos de recirculacion. La herramienta utilizada para este acoplamiento de modelos es el sistema PVM, Parallel Virtual Machine, que permitio paralelizar el modelo mediante el concepto de computacion distribuida. La finalidad de hacer este acoplamiento de modelos es la de obtener una herramienta mas completa que represente mejor la configuracion real y la fenomenologia del nucleo de un reactor BWR, obteniendo asi mejores resultados. Ademas mantener la flexibilidad de mejorar el modelo resultante en cualquier momento, ya que los modelos muy complejos o sofisticados resultan dificiles de mejorar siendo imposible modificar las ecuaciones que utilizan y pueden incluir variables que no son de importancia primaria en el problema tratado o que enmascaren relaciones entre variables debido al exceso de resultados. Tambien el mantener la flexibilidad de agregar modelos de componentes o sistemas del reactor BWR, todo esto dependiendo de las necesidades del modelado. Se eligio a la planta sueca Ringhals para caracterizar el modelo acoplado resultante por contar con un Benchmark

  11. Pressure gradients and boiling as mechanisms for localizing ore in porphyry systems

    Science.gov (United States)

    Cunningham, Charles G.

    1978-01-01

    . Boiling of a hydrothermal fluid in the porphyry environment affects light stable isotopes. Hydrogen is preferentially fractionated into the vapor phase from water boiling below 223°C; above this temperature deuterium is selectively enriched in the vapor phase. In certain environments boiling creates a vapor-dominated system in which the condensate is swept away by meteoric waters and the H/D in the residual fluids is progressively increased through time. 

  12. Design study of water chemistry control system for IASCC irradiation test

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Yuichiro; Ide, Hiroshi; Nabeya, Hideaki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tsukada, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    In relation to the aging of Light Water Reactor (LWR), the Irradiation Assisted Stress Corrosion Cracking (IASCC) has been regarded as a significant and urgent issue for the reliability of in-core components of LWR, and the irradiation research on the IASCC is now under schedule. With the progress of the irradiation research on reactor materials, well-controlled environment conditions during irradiation testing are required. Especially for irradiation testing of IASCC studies, water chemistry control is essential in addition to the control of neutron fluence and irradiation temperature. According to these requirements, at the Japan Atomic Energy Research Institute (JAERI), an irradiation testing facility that simulates in-core environment of Boiling Water Reactor (BWR) has been designed to be installed in the Japan Materials Testing Reactor (JMTR). This facility is composed of the Saturated Temperature Capsules (SATCAP) that are installed into the JMTR's core to irradiate material specimens, the Water Control Unit that is able to supply high-temperature and high-pressure chemical controlled water to SATCAP, and other components. This report describes the design study of water chemistry control system of the Water Control Unit. The design work has been performed in the fiscal year 1999. (author)

  13. Pool boiling on rectangular fins with tunnel-pore structure

    Directory of Open Access Journals (Sweden)

    Pastuszko A.

    2013-04-01

    Full Text Available Complex experimental investigations were conducted in the area of pool boiling heat transfer on extended surfaces with internal tunnels limited by perforated foil. The experiments were carried out for water and R-123 at atmospheric pressure. The tunnel surfaces were fabricated from 0.05 – 0.1 mm thick perforated copper foil (pore diameters: 0.3, 0.4, 0.5 mm sintered with mini-fins formed by 5 and 10 mm high rectangular fins and horizontal inter-fin surface. The effect of the main fin height, pore diameters and tunnel pitch on nucleate pool boiling was examined. Substantial enhancement of heat transfer coefficient was observed for the investigated surfaces. The highest increase in the heat transfer coefficient was obtained for the 10 mm high fins – about 50kW/m2K for water and 15 kW/m2K for R-123. The investigated surfaces showed boiling heat transfer coefficients similar to those of existing tunnel-pore structures.

  14. Boiling heat transfer in horizontal and inclined rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Morcos, S.M.; Mobarak, A.; Hilal, M.; Mohareb, M.R. (Cairo Univ. (Egypt))

    1987-05-01

    The present experimental investigation is concerned with boiling heat transfer of water inside both horizontal and inclined rectangular channels under a relatively low heat flux. These configurations simulate the absorber channel of line-focus solar concentrations under boiling conditions. The experimental facility includes electrically heated aluminum rectangular channels with aspect ratios of 2.67 and 0.37. The experimental results of the two-phase Nusselt number for the two aspect ratios and for the inclination angles 0, 15, 30, and 45 deg were correlated in terms of a ratio of the two-phase to the liquid-phase Reynolds number for the forced-convection vaporization region. The proposed correlations agree well with previous investigations. In the present work, classifications of the various flow patterns were made by direct observation through a glass window at the end of the test section.

  15. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    Science.gov (United States)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  16. Boiling heat transfer on single phosphor bronze and copper mesh microstructures

    Directory of Open Access Journals (Sweden)

    Orman Łukasz J.

    2014-03-01

    Full Text Available The paper presents experimental results of boiling heat transfer of distilled water and ethyl alcohol on surfaces covered with single layers of wire mesh structures made of phosphor bronze and copper. For each material two kinds of structures have been considered (higher and lower in order to determine the impact of the height of the structure on boiling heat transfer. The wire diameter of the copper meshes was 0,25 mm and 0,32 mm, while of the bronze meshes: 0,20 mm and 0,25 mm. The structures had the same mesh aperture (distance between the wires – 0,50 mm for copper and 0,40 for bronze but different wire diameter and, consequently, different height of the layers. The tests have been performed under ambient pressure in the pool boiling mode. The obtained results indicate a visible impact of the layer height on the boiling heat transfer performance of the analysed microstructures.

  17. An Experimental Study of Boiling in Reduced and Zero Gravity Fields

    Science.gov (United States)

    Usiskin, C. M.; Siegel, R.

    1961-01-01

    A pool boiling apparatus was mounted on a counterweighted platform which could be dropped a distance of nine feet. By varying the size of the counterweight, the effective gravity field on the equipment was adjusted between zero and unity. A study of boiling burnout in water indicated that a variation in the critical heat flux according to the one quarter power of gravity was reasonable. A consideration of the transient burnout process was necessary in order to properly interpret the data. A photographic study of nucleate boiling showed how the velocity of freely rising vapor bubbles decreased as gravity was reduced. The bubble diameters at the time of breakoff from the heated surface were found to vary inversely as gravity to the 1/3.5 power. Motion pictures were taken to illustrate both nucleate and film boiling in the low gravity range.

  18. Computational multi-fluid dynamics predictions of critical heat flux in boiling flow

    Energy Technology Data Exchange (ETDEWEB)

    Mimouni, S., E-mail: stephane.mimouni@edf.fr; Baudry, C.; Guingo, M.; Lavieville, J.; Merigoux, N.; Mechitoua, N.

    2016-04-01

    Highlights: • A new mechanistic model dedicated to DNB has been implemented in the Neptune-CFD code. • The model has been validated against 150 tests. • Neptune-CFD code is a CFD tool dedicated to boiling flows. - Abstract: Extensive efforts have been made in the last five decades to evaluate the boiling heat transfer coefficient and the critical heat flux in particular. Boiling crisis remains a major limiting phenomenon for the analysis of operation and safety of both nuclear reactors and conventional thermal power systems. As a consequence, models dedicated to boiling flows have being improved. For example, Reynolds Stress Transport Model, polydispersion and two-phase flow wall law have been recently implemented. In a previous work, we have evaluated computational fluid dynamics results against single-phase liquid water tests equipped with a mixing vane and against two-phase boiling cases. The objective of this paper is to propose a new mechanistic model in a computational multi-fluid dynamics tool leading to wall temperature excursion and onset of boiling crisis. Critical heat flux is calculated against 150 tests and the mean relative error between calculations and experimental values is equal to 8.3%. The model tested covers a large physics scope in terms of mass flux, pressure, quality and channel diameter. Water and R12 refrigerant fluid are considered. Furthermore, it was found that the sensitivity to the grid refinement was acceptable.

  19. Investigation of film boiling thermal hydraulics under FCI conditions. Results of a numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Dinh, A.T.; Nourgaliev, R.R.; Sehgal, B.R. [Div. of Nuclear Power Safety Royal Inst. of Tech. (RIT), Brinellvaegen 60, 10044 Stockholm (Sweden)

    1998-01-01

    Film boiling on the surface of a high-temperature melt jet or of a melt particle is one of key phenomena governing the physics of fuel-coolant interactions (FCIs) which may occur during the course of a severe accident in a light water reactor (LWR). A number of experimental and analytical studies have been performed, in the past, to address film boiling heat transfer and the accompanying hydrodynamic aspects. Most of the experiments have, however, been performed for temperature and heat flux conditions, which are significantly lower than the prototypic conditions. For ex-vessel FCIs, high liquid subcooling can significantly affect the FCI thermal hydraulics. Presently, there are large uncertainties in predicting natural-convection film boiling of subcooled liquids on high-temperature surfaces. In this paper, research conducted at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS), Stockholm, concerning film-boiling thermal hydraulics under FCI condition is presented. Notably, the focus is placed on the effects of (1) water subcooling, (2) high-temperature steam properties, (3) the radiation heat transfer and (4) mixing zone boiling dynamics, on the vapor film characteristics. Numerical investigations are performed using a novel CFD modeling concept named as the local-homogeneous-slip model (LHSM). Results of the analytical and numerical studies are discussed with respect to boiling dynamics under FCI conditions. (author)

  20. Determination of local boiling in light water reactors by correlation of the neutron noise; Determination de l'ebullition locale dans les reacteurs a eau legere par correlation du bruit neutronique

    Energy Technology Data Exchange (ETDEWEB)

    Zwingelstein, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    The power limit of swimming-pool type reactors depends on the phenomenon of the appearance of burn-out. In order to determine this limit we have attempted to detect the local boiling which usually occurs before the burn out. Local boiling has been simulated by an electrically heated plate placed in the core of the reactor Siloette. The study of local boiling, which is based on the properties of the correlation functions for the neutron noise of detectors placed in the core, shows that a privileged frequency occurs in the power spectrum of the noise. It is intended in the future to determine the influence of various parameters on this characteristic frequency. (author) [French] La limitation de la puissance des reacteurs nucleaires de type piscine est due au phenomene d'apparition de 'burn out'. Pour determiner cette limitation, nous nous sommes proposes dans ce rapport de detecter l'ebullition locale qui apparait generalement avant le 'burn out'. L'ebullition locale a ete simulee par une plaque chauffee electriquement et placee dans le coeur du reacteur SILOETTE. L'etude de l'ebullition locale, qui est basee sur les proprietes des fonctions de correlation du bruit neutronique de detecteurs places clans le coeur, fait apparaitre une frequence privilegiee dans le spectre de puissance du bruit. On envisage dans l'avenir, de determiner l'influence des divers parametres sur cette frequence caracteristique. (auteur)

  1. Environmental mitigation for SCC initiation of BWR core internals by hydrogen injection during start-up

    Energy Technology Data Exchange (ETDEWEB)

    Dozaki, K.; Abe, A.; Nagata, N.; Takiguchi, H. [The Japan Atomic Power Co. (Japan)

    2004-07-01

    Hydrogen injection into the reactor water has been applied to many BWR power stations. Since hydrogen injected accelerates recombination of oxidant generated by water radiolysis, oxidant concentration, such as dissolved oxygen concentration in reactor water can be reduced. As the result of the reduction of oxidant concentration, Electrochemical Corrosion Potential (ECP) at the surface of structural material can be lowered. Lowered ECP moderates Stress Corrosion Cracking (SCC) sensitivity of structural materials, such as stainless steels. As usual, hydrogen injection system begins to work after the plant start-up is finished, when the condition of normal operation is established. Accordingly, Hydrogen Water Chemistry (HWC) does not cover all the period of plant operation. As far as SCC crack growth is considered, loss of HWC during plant start-up does not result in significant crack growth, because of duration of plant start-up is much shorter than that of plant normal operation, when HWC condition is being satisfied. However, the reactor water environment and load conditions during a plant start-up may contribute to the initiation of SCC. It is estimated that the core internals are subjected to the strain rate that may cause susceptibility to SCC initiation during start-up. Dissolved oxygen (DO) and hydrogen peroxide (H{sub 2}O{sub 2}) has a peak, and ECP is in high levels during start-up. Therefore it is beneficial to perform hydrogen injection during start-up as well in order to suppress SCC initiation. We call it HWC During Start-up (HDS) here. (orig.)

  2. Microlayer during boiling in narrow slot channels

    Science.gov (United States)

    Diev, Mikhail D.; Leontiev, Alexander I.

    1997-01-01

    An international space station Alpha will have a two-phase thermal control system. Boiling of a liquid ammonia will be a process of heat collection in evaporative heat exchangers. Unfortunately, only little data is available for boiling heat transfer in microgravity. Geometries of boiling channels working good in normal gravity are not appropriate in microgravity, and special means should be worked out to avoid some undesired events. From this point of view, the narrow slot channels may be assumed as a promising geometry for microgravity operation. During boiling in narrow slots, the vapor bubbles are flattened between the channel walls. The vapor phase and the channel wall are separated by a thin liquid film which is known as a microlayer. The paper presents the experimental results compared to the theoretical analysis, the paper also shows the narrow slot channels as a perspective configuration for microgravity applications.

  3. Using Boiling for Treating Waste Activated Sludge

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this work we investigated the feasibility of using short time, low superheat boiling to treat biological sludge. The treated sludge exhibited reduced filterability and enhanced settleability. The boiling treatment released a large amount of extra-cellular polymers (ECPs) from the solid phase and reduced the microbial density levels of the total coliform bacteria and the heterotrophic bacteria. A diluted sludge is preferable for its high degree of organic hydrolysis and sufficient reduction in microbial density levels.

  4. Decomposition Analysis of Void Reactivity Coefficient for Innovative and Modified BWR Assemblies

    Directory of Open Access Journals (Sweden)

    Andrius Slavickas

    2014-01-01

    Full Text Available The decomposition analysis of void reactivity coefficient for innovative BWR assemblies is presented in this paper. The innovative assemblies were loaded with high enrichment UO2 and MOX fuels. Additionally the impact of the moderation enhancement on the void reactivity coefficient through a full fuel burnup discharge interval was investigated for the innovative assembly with MOX fuel. For the numerical analysis the TRITON functional module of SCALE code with ENDF/B-VI cross section library was applied. The obtained results indicate the influence of the most important isotopes to the void reactivity behaviour over a fuel burnup interval of 70 GWd/t for both UO2 and MOX fuels. From the neutronic safety concern positive void reactivity coefficient values are observed for MOX fuel at the beginning of the fuel irradiation cycle. For extra-moderated assembly designs, implementing 8 and 12 water holes, the neutron spectrum softening is achieved and consequently the lower void reactivity values. Variations in void reactivity coefficient values are explained by fulfilled decomposition analysis based on neutrons absorption reactions for separate isotopes.

  5. Analysis of the behavior of irradiated BWR fuel rod in storage dry conditions; Analisis del comportamiento de una barra combustible irradiada BWR en condiciones de almacenamiento en seco

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A.; Montes, D.; Ruiz-Hervias, J.; Munoz-Reja, C.

    2014-07-01

    In order to complete previous studies of creep on PWR sheath material, developed a joint experimental program by CSN, ENRESA and ENUSA about BWR (Zircaloy-2) sheath material. This program consisted in creep tests and then on the material under creep, compression testing diametral obtaining the permissible displacement of the sheath to break. (Author)

  6. Studies on Water Flow Boiling Heat Transfer Characteristics in Vertical Narrow Rectangular Channel%竖直矩形窄通道内水流动沸腾换热特性的研究

    Institute of Scientific and Technical Information of China (English)

    郑志皋; 陶乐仁; 黄理浩

    2014-01-01

    A single-side heating apparatus is set up to study the flow boiling and heat transfer in vertical narrow rectangular channel,experiment research on flow boiling and heat transfer characteristics in a vertical narrow rectangular channel with the section of 250mm ×5 mm is carried out.According to the experimental analysis:(1 )With the increase of dryness,the local heat transfer coefficient firstly increases then decreases ,there is a maximum,which is saturated nucleate boiling region ,the steam quality is close to zero,also it is close to the onset of boiling.Accordingly flow mode of fluid is from single phase,bubble,slug, churn to annular flow.(2)For flow boiling heat transfer,nuclear boiling heat transfer is significantly affected by heat flux,but liquid film evaporation is nearly not.So it is assumed that heat transfer is caused by the change of heat flux.(3 )The change of inlet temperature has influence on single-phase flow heat transfer coefficient,but flow boiling heat transfer coefficient has great re-lationship with flow pattern and generated bubbles,and not inlet temperature.%建立单面加热垂直矩形窄通道流动沸腾换热试验装置,针对截面250mm ×3.5mm的窄缝通道,对水流动沸腾换热特性进行试验研究。通过试验分析可知:(1)随着干度的增加,局部换热系数先增加后减小,有一个最大值,此时处于饱和核沸腾区域,其蒸汽干度也接近于0,同时也接近于沸腾起始点。相应地流体从单相流-泡状-块状流-搅拌-环状流转变。(2)在流动沸腾换热中,热流密度对核态沸腾换热有明显影响,而对流动沸腾液膜蒸发的影响甚小,所以可以认为由热流密度的变化而引起的换热变化,主要表现在核态沸腾。(3)入口温度的变化对单相流动的换热系数有影响,而沸腾换热系数与流型及汽泡的产生及扰动有极大关系,入口温度对流动沸腾局部换热系数基本没有影响。

  7. Stability analysis of a recycling circuit of a BWR type reactor. Theoretical study; Analisis de estabilidad de un circuito de recirculacion de un reactor del tipo BWR. Estudio teorico

    Energy Technology Data Exchange (ETDEWEB)

    Salinas H, J.G.; Espinosa P, G. [Universidad Autonoma Metropolitana-Iztapalapa, 09000 Mexico D.F. (Mexico); Gonzalez M, V.M. [Comision Nacional de Seguridad Nuclear y Salvaguardias, 04000 Mexico D.F. (Mexico)

    2000-07-01

    The Technology, Regulation and Services Management of the National Commission of Nuclear Safety and Safeguards financed and in coordinate form with the I.P.H. Department of the Metropolitan Autonomous-Iztapalapa University developed the present project with the purpose of studying the effect of the recycling system on the linear stability of a BWR reactor whose reference central is the Laguna Verde power station. The present project forms part of a work series focused to the linear stability of the nuclear reactor of the Unit 1 at Laguna Verde power station. The components of the recycling system considered for the study of stability are the recycling external circuit (recycling pumps, valves) and the internal circuit (downcomer, jet pumps, lower full, driers, separators). The mathematical model is obtained applying mass balances and movement quantity in each one of the mentioned circuits. With respect to the nucleus model two regions are considered, the first one is made of a flow in one phase and the second one of a flow in two phases. For modelling the biphasic region it is considered homogenous flow. Generally it is studied the system behavior in the frequency domain starting from the transfer function applied to four operational states which correspond to the lower stability zone in the map power-flow of the Unit 1 of Laguna Verde power station. The Nyquist diagrams corresponding to each state as well as their characteristic frequency were determined. The results show that exists a very clear dependence of the power-flow relation on the stability of the system. It was found that the boiling length is an important parameter for the linear stability of the system. The obtained results show that the characteristic frequencies in unstability zones are similar to the reported data of the Unit 1 of the Laguna Verde power station in the event of power oscillations carried out in January 1995. (Author)

  8. Prediction of film boiling heat transfer coefficients for binary mixtures

    Science.gov (United States)

    Liu, Ming-Huei; Yang, Yu-Min; Maa, Jer-Ru

    Film boiling of binary liquid mixtures may be significantly different from that of single-component liquids due to the mass diffusion effect. A theoretical analysis is performed to outline the effects of mass diffusion phenomena on film boiling heat transfer process from a horizontal cylinder heating surface to the binary liquid mixtures of ethylene oxide/water and ethanol/benzene over whole range of compositions. These two binary systems are chosen for illustrating the strong and weak mass diffusion effects, respectively, on film boiling. Furthermore, a simple correlation for predicting heat transfer coefficient is proposed to demonstrate the idea that the dimensionless F factor can satisfactorily account for the mass diffusion effect on film boiling heat transfer of binary mixtures. Zusammenfassung Infolge des Stoffdiffusionseffektes kann sich das Filmsiedeverhalten binärer Flüssigkeitsgemische ganz wesentlich von dem der Einzelkomponentenfluide unterscheiden. In einer theoretischen Studie sollen die Einflüsse der Stoffdiffusionsphänomene auf den Wärmeübergang beim Filmsieden untersucht werden, und zwar bezüglich einer horizontalen zylindrischen Heizfläche, die Wärme an die Binärgemische Ethylenoxid/Wasser und Ethanol/Benzol bei beliebigen Konzentrationsverhältnissen abgibt. Die beiden Binärsysteme wurden ausgewählt, um einmal starken und dann schwachen Einfluß des Stoffdiffusionseffektes auf das Filmsieden zu zeigen. Schließlich wird eine einfache Korrelationsbeziehung zur Berechnung von Wärmeübergangskoeffizienten vorgeschlagen, die darlegen soll, daß der dimensionslose F-Faktor geeignet ist, den Einfluß des Stoffdiffusionseffektes auf das Filmsieden binärer Gemische befriedigend zu berücksichtigen.

  9. Flow boiling heat transfer in circulating fluidized bed

    Institute of Scientific and Technical Information of China (English)

    Xiaoguang REN; Jiangdong ZHENG; Sefiane KHELLII; Arumemi-Ikhide MICHAEL

    2009-01-01

    In order to enhance heat transfer and mitigate contamination in the boiling processes, a new type of vapor-liquid-solid (3-phase) circulating fluidized bed boil-ing system has been designed, combining a circulating fluidized bed with boiling heat transfer. Experimental results show an enhancement of the boiling curve. Flow visualization studies concerning flow hydrodynamics within the riser column are also conducted whose results are presented and discussed.

  10. Fuel performance improvement program. Quarterly/annual progress report, October 1977--September 1978. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Crouthamel, C.E. (comp.)

    1978-10-01

    This quarterly/annual report reviews and summarizes the activities performed in support of the Fuel Performance Improvement Program (FPIP) during Fiscal Year 1978 with emphasis on those activities that transpired during the quarter ending September 30, 1978. Significant progress has been made in achieving the primary objectives of the program, i.e., to demonstrate commercially viable fuel concepts with improved fuel - cladding interaction (FCI) behavior. This includes out-of-reactor experiments to support the fuel concepts being evaluated, initiation of instrumented test rod experiments in the Halden Boiling Water Reactor (HBWR), and fabrication of the first series of demonstration rods for irradiation in the Big Rock Point Reactor (BRPR).

  11. PSI contribution to the CASTOC round robin on EAC of low-alloy RPV steels under BWR conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P.; Ritter, S

    2001-08-01

    Within the CASTOC-project (5th EU FW programme), the environmentally-assisted crack growth (EAC) behaviour of low-alloy reactor pressure vessel (RPV) steels is experimentally investigated under simulated transient and steady-state BWR power operation conditions by 6 European laboratories. The present report contains a summary of the PSI contribution to the Working Package 1 (WP1) of this project. WP1 is an interlaboratory round robin EAC test in simulated BWR/NWC environment under cyclic and static loading conditions. The round robin shall demonstrate the applicability of the used advanced test technique and establishes the technical basis for the decision of test conditions in the other working packages. In the first part of the report, the PSI testing facility/measurement instruments and the applied test and evaluation procedure are discussed in detail. In the second part, the exact test conditions and test results with detailed post-test fractographical evaluation in the SEM are presented. The test results are compared with other PSI results, literature data and nuclear codes. Stable and stationary test conditions within the specified range could be achieved in the PSI test during the whole conditioning and experimental phase. The cyclic crack growth rate results agree well with recent PSI results at a higher dissolved oxygen content of 8 ppm and are slightly below the 'high-sulphur line' of the PLEDGE-model. The crack growth rates are significantly above the ASME XI 'wet' curve. Compared to fatigue crack growth rates in air under otherwise identical test conditions, the effect of the high-temperature water environment resulted in an acceleration of crack growth by a factor of 150-250 under these low-cyclic loading conditions. The test results at constant load confirm the extremely low susceptibility to SCC crack growth under static load at 288 {sup o}C observed in tests at MPA, PSI and in a European Round Robin. They agree well with the RPV

  12. Environmentally assisted cracking in Light Water Reactors: Semiannual report, April 1993--September 1993. Volume 17

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K.; Chung, H.M.; Karlsen, T.; Kassner, T.F.; Michaud, W.F.; Ruther, W.E.; Sanecki, J.E.; Shack, W.J.; Soppet, W.K. [Argonne National Lab., IL (United States)

    1994-06-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRS) during the six months from April 1993 to September 1993. EAC and fatigue of piping, pressure vessels, and core components in LWRs are important concerns as extended reactor lifetimes are envisaged. Topics that have been investigated include (a) fatigue of low-alloy steel used in piping, steam generators, and reactor pressure vessels; (b) EAC of cast stainless steels (SSs); and (c) radiation-induced segregation and irradiation-assisted stress corrosion cracking of Type 304 SS after accumulation of relatively high fluence. Fatigue tests were conducted on medium-sulfur-content A106-Gr B piping and A533-Gr B pressure vessel steels in simulated PWR water and in air. Additional crack growth data were obtained on fracture-mechanics specimens of cast austenitic SSs in the as-received and thermally aged conditions in simulated boiling-water reactor (BWR) water at 289{degree}C. The data were compared with predictions based on crack growth correlations for wrought austenitic SS in oxygenated water developed at ANL and rates in air from Section 11 of the ASME Code. Microchemical and microstructural changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy.

  13. Environmentally assisted cracking in light water reactors. Semiannual progress report, January 1996--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K.; Chung, H.M.; Gruber, E.E. [and others

    1997-05-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from January 1996 to June 1996. Topics that have been investigated include (a) fatigue of carbon, low-alloy, and austenitic stainless steels (SSs) used in reactor piping and pressure vessels, (b) irradiation-assisted stress corrosion cracking of Type 304 SS, and (c) EAC of Alloys 600 and 690. Fatigue tests were conducted on ferritic and austenitic SSs in water that contained various concentrations of dissolved oxygen (DO) to determine whether a slow strain rate applied during various portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Slow-strain-rate-tensile tests were conducted in simulated boiling water reactor (BWR) water at 288{degrees}C on SS specimens irradiated to a low fluence in the Halden reactor and the results were compared with similar data from a control-blade sheath and neutron-absorber tubes irradiated in BWRs to the same fluence level. Crack-growth-rate tests were conducted on compact-tension specimens from several heats of Alloys 600 and 690 in air and high-purity, low-DO water. 83 refs., 60 figs., 14 tabs.

  14. Environmentally assisted cracking in light water reactors. Semiannual report, April 1994--September 1994, Volume 19

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K.; Chung, H.M.; Gavenda, D.J. [and others

    1995-09-01

    This report summarizes work performed by Argonne National Laboratory (ANL) on fatigue and environmentally assisted cracking (EAC) in light water reactors from April to September 1994. Topics that have been investigated include (a) fatigue of carbon and low-alloy steel used in piping and reactor pressure vessels, (b) EAC of austenitic stainless steels (SSs) and Alloy 600, and (c) irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS. Fatigue tests have been conducted on A106-Gr B and A533-Gr B steels in oxygenated water to determine whether a slow strain rate applied during different portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Crack growth data were obtained on fracture-mechanics specimens of SSs and Alloy 600 to investigate EAC in simulated boiling water reactor (BWR) and pressurized water reactor environments at 289{degrees}C. The data were compared with predictions from crack growth correlations developed at ANL for SSs in water and from rates in air from Section XI of the ASME Code. Microchemical changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements may contribute to IASCC of these materials.

  15. Effects of nanoparticles-coated surface on flow boiling CHF Using FC-72

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Seok Bin; Seo, Han; Kim, Kyung Mo; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    CHF mechanism in flow boiling can be distinguished into two types. One is liquid film dryout (LFD) developed at smaller heat flux with higher vapor quality, which occurs in BWR. The other is departure from nucleate boiling (DNB) occurring in PWR with relatively higher heat flux at lower vapor quality. Many studies have focused on the physical understanding for the CHF phenomenon, clear explanation for CHF, especially DNB, which isn't achieved yet. The present study aims to investigate feasibility of DNB enhancement and promising mechanisms for the nanotechnology-engineered surfaces. In general the widely accepted DNB models are proposed from Weisman and Pei and Lee and Mudawwar. One is near-wall bubble crowding model based on the enthalpy transportation through the interface between boundary layer and the bulk core. The other is liquid sublayer dryout model introducing liquid sublayer located between vapor blanket and heated surface. By using highly wettable refrigerant FC-72 as a working fluid, the study focuses on the effect of porosity and roughness from nanoparticles-formed porous structure on vertical heated surface. The CHF enhancement phenomena in FC-72 refrigerant on a bare and a nanoparticles-coated heater were investigated according to inlet subcooling. The nanoparticles-coated surface shows CHF enhancement up to 40% compared to bare surface, while the enhancement ratio decreases as the inlet subcooling increases. Due to the high wettability of FC-72 working fluid, only the porosity and roughness are the key parameters for CHF enhancement. Increased porosity and roughness by nanoparticles deposited on the surface provide the enhancement of rewetting process induced by increased capillary action. Based on the momentum balance, liquid velocity to the sublayer is related to porosity. Then increasing porosity supplies more liquid to the sublayer delaying CHF.

  16. Cryogenic Boil-Off Reduction System

    Science.gov (United States)

    Plachta, David W.; Guzik, Monica C.

    2014-03-01

    A computational model of the cryogenic boil-off reduction system being developed by NASA as part of the Cryogenic Propellant Storage and Transfer technology maturation project has been applied to a range of propellant storage tanks sizes for high-performing in-space cryogenic propulsion applications. This effort focuses on the scaling of multi-layer insulation (MLI), cryocoolers, broad area cooling shields, radiators, solar arrays, and tanks for liquid hydrogen propellant storage tanks ranging from 2 to 10 m in diameter. Component scaling equations were incorporated into the Cryogenic Analysis Tool, a spreadsheet-based tool used to perform system-level parametric studies. The primary addition to the evolution of this updated tool is the integration of a scaling method for reverse turbo-Brayton cycle cryocoolers, as well as the development and inclusion of Self-Supporting Multi-Layer Insulation. Mass, power, and sizing relationships are traded parametrically to establish the appropriate loiter period beyond which this boil-off reduction system application reduces mass. The projected benefit compares passive thermal control to active thermal control, where active thermal control is evaluated for reduced boil-off with a 90 K shield, zero boil-off with a single heat interception stage at the tank wall, and zero boil-off with a second interception stage at a 90 K shield. Parametric studies show a benefit over passive storage at loiter durations under one month, in addition to showing a benefit for two-stage zero boil-off in terms of reducing power and mass as compared to single stage zero boil-off. Furthermore, active cooling reduces the effect of varied multi-layer insulation performance, which, historically, has been shown to be significant.

  17. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    CERN Document Server

    Li, Q; Francois, M M; He, Y L; Luo, K H

    2015-01-01

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach [Q. Li, K. H. Luo, and X. J. Li, Phys. Rev. E 87, 053301 (2013)]. The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid-vapor phase change. Using the model, the liquid-vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic features and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Furthermore, the effects of the he...

  18. Strain-induced corrosion cracking in ferritic components of BWR primary circuits; Risskorrosion in druckfuehrenden ferritischen Komponenten des Primaerkreislaufes von Siedewasserreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.-P.; Ritter, S.; Ineichen, U.; Tschanz, U.; Gerodetti, B

    2003-04-01

    The present final report of the RIKORR project is a summary of a literature survey and of the experimental work performed by PSI on the environmentally-assisted cracking (EAC) and dynamic strain ageing (DSA) susceptibility of low-alloy steels (LAS) in high-temperature (HT) water. Within this project, the EAC crack growth behaviour of different low-alloy RPV steels, weld filler and weld heat-affected zone materials has been investigated under simulated transient and steady-state BWR/NWC power operation conditions. The strain-induced corrosion cracking (SICC) / low-frequency corrosion fatigue (CF) and stress corrosion cracking (SCC) crack growth behaviour of different low-alloy RPV steels under simulated transient and stationary BWR/NWC conditions was characterized by slow rising load / low-frequency corrosion fatigue and constant load / periodical partial unloading / ripple load tests with pre-cracked fracture mechanics specimens in oxygenated HT water at temperatures of either 288, 250, 200 or 150 {sup o}C. Modern high-temperature water loops, on-line crack growth monitoring and fractographic analysis by scanning electron microscopy (SEM) were used to quantify the cracking response. (author)

  19. A review of film boiling at cryogenic temperatures.

    Science.gov (United States)

    Hsu, Y. Y.

    1972-01-01

    Film boiling occurs in the quenching of metals, the chilling of biological species, the regenerative cooling of rockets, and the cooling down of a cryogenic fuel tank. Occasionally film boiling is also found in a nuclear reactor or in a cryomagnet. Aspects of film boiling involving an unconstrained liquid mass are considered, giving attention to the evaporation time, the Leidenfrost temperature, solid-liquid contacts, the thermal properties of the solid, effects of coating or scale, wettability, the metastable condition, and the velocity effect on drops. Developments discussed with regard to pool boiling are related to vertical surfaces, film boiling from horizontal surfaces, film boiling from a horizontal cylinder, film boiling from a sphere, and film boiling of helium. Processes of film boiling in a channel are also analyzed.

  20. Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhen-hua; Liao, Liang [School of Mechanical and Power Engineering, Shanghai Jiaotong University, 200030 Shanghai (China)

    2008-05-15

    The pool nucleate boiling heat transfer experiments of water (H{sub 2}O) based and alcohol (C{sub 2}H{sub 5}OH) based nanofluids and nanoparticles-suspensions on the plain heated copper surface were carried out. The study was focused on the sorption and agglutination phenomenon of nanofluids on a heated surface. The nanofluids consisted of the base liquid, the nanoparticles and the surfactant. The nanoparticles-suspensions consisted of the base liquid and nanoparticles. The both liquids of water and alcohol and both nanoparticles of CuO and SiO{sub 2} were used. The surfactant was sodium dodecyl benzene sulphate (SDBS). The experimental results show that for nanofluids, the agglutination phenomenon occurred on the heated surface when the wall temperature was over 112{sup o}C and steady nucleated boiling experiment could not be carried out. The reason was that an unsteady porous agglutination layer was formed on the heated surface. However, for nanoparticles-suspensions, no agglutination phenomenon occurred on the heating surface and the steady boiling could be carried out in the whole nucleate boiling region. For the both of alcohol based nanofluids and nano-suspensions, no agglutination phenomenon occurred on the heating surface and steady nucleate boiling experiment could be carried out in the whole nucleate boiling region whose wall temperature did not exceed 112{sup o}C. The boiling heat transfer characteristics of the nanofluids and nanoparticles-suspensions are somewhat poor compared with that of the base fluids, since the decrease of the active nucleate cavities on the heating surface with a very thin nanoparticles sorption layer. The very thin nanoparticles sorption layer also caused a decrease in the solid-liquid contact angle on the heating surface which leaded to an increase of the critical heat flux (CHF). (author)

  1. AREVA solutions to licensing challenges in PWR and BWR reload and safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Curca-Tivig, Florin [AREVA GmbH, Erlangen (Germany)

    2016-05-15

    Regulatory requirements for reload and safety analyses are evolving: new safety criteria, request for enlarged qualification databases, statistical applications, uncertainty propagation.. In order to address these challenges and access more predictable licensing processes, AVERA is implementing consistent code and methodology suites for PWR and BWR core design and safety analysis, based on first principles modeling and extremely broad verification and validation data base. Thanks to the high computational power increase in the last decades methods' development and application now include new capabilities. An overview of the main AREVA codes and methods developments is given covering PWR and BWR applications in different licensing environments.

  2. Design of a redundant meteorological station for a BWR reactor; Diseno de una estacion meteorologica redundante para un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, R.; Celis del Angel, L.; Bucio, F.; Rivero, T.; Palacios, J. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: ramses@nuclear.inin.mx

    2008-07-01

    In this work the design of a meteorological station for a reactor type BWR is proposed. Two independent channels of data acquisition that allow him to have a bigger readiness is exposed. It is incorporate sensors without mobile parts to measure speed, wind direction and pluvial precipitation. It also counts, with sensors of global solar radiation, net radiation, barometric pressure, relative humidity and ambient temperature; with them they are possible to be calculated, moreover, other variables as temperature differential, dew point and atmospheric stability. The sensors are placed on a tower to different heights and send their information (each second) to a local registration system, the one which in turn, it remits the data to the monitoring office so that a computer is linked with the system, display and management the information in real time and automatic way. The redundant structure allows that in the event of maintenance the data acquisition is not interrupted, even if the information is transferred to another place. In all the station sections it is used protocols of standard communication to allow that a great quantity of devices can be connected without major problem. The above-mentioned would allow to the operators in the control room to have reliable information during the whole time of the reactor operation. (Author)

  3. Identification of the reduced order models of a BWR reactor; Identificacion de modelos de orden reducido de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez S, A. [UNAM, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos (Mexico)]. e-mail: augusto@correo.unam.mx

    2004-07-01

    The present work has as objective to analyze the relative stability of a BWR type reactor. It is analyzed that so adaptive it turns out to identify the parameters of a model of reduced order so that this it reproduces a condition of given uncertainty. This will take of a real fact happened in the La Salle plant under certain operation conditions of power and flow of coolant. The parametric identification is carried out by means of an algorithm of recursive least square and an Output Error model (Output Error), measuring the output power of the reactor when the instability is present, and considering that it is produced by a change in the reactivity of the system in the same way that a sign of type step. Also it is carried out an analytic comparison of the relative stability, analyzing two types of answers: the original answer of the uncertainty of the reactor vs. the obtained response identifying the parameters of the model of reduced order, reaching the conclusion that it is very viable to adapt a model of reduced order to study the stability of a reactor, under the only condition to consider that the dynamics of the reactivity is of step type. (Author)

  4. A study on the correlations development for film boiling heat transfer on spheres

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong Hoon; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    Film boiling is the heat transfer mechanism that can occurs when large temperature differences exist between a cold liquid and hot material. In the nuclear reactor safety analysis, film boiling has become an important issue in recent years. During severe accident, hot molten corium fall into relatively cool water, and fragment into spheres or sphere-like particles. If the steam explosion is triggered, the thermal energy of corlium is converted into the mechanical energy that can threaten the integrity of reactor vessel or reactor cavity. One of the important concerns in the heat transfer analysis during pre-mixing stage is the film boiling heat transfer between the corium and water/steam two-phase flow. Until now, considerable works on film boiling have been performed. However, there is no available correlation adequate for severe accident analysis. In this study, film boiling heat transfer correlations have been developed, and their applicable ranges have been enlarged and their prediction accuracy has been enhanced. 7 refs., 5 figs., 5 tabs. (Author)

  5. Boiling on Microconfigured Composite Surfaces Enhanced

    Science.gov (United States)

    Chao, David F.

    2000-01-01

    Boiling heat transfer is one of the key technologies for the two-phase active thermal-control system used on space platforms, as well as for the dynamic power systems aboard the International Space Station. Because it is an effective heat transfer mode, boiling is integral to many space applications, such as heat exchangers and other cooling devices. Nucleate boiling near the critical heat flux (CHF) can transport very large thermal loads with a much smaller device and much lower pumping power than for single-phase heat exchangers. However, boiling performance sharply deteriorates in a reduced-gravity environment, and operation in the CHF regime is somewhat perilous because of the risk of burnout to the device surface. New materials called microconfigured metal-graphite composites can enhance boiling. The photomicrograph shows the microconfiguration (x3000) of the copper-graphite (Cu-Gr) surface as viewed by scanning electronic microscope. The graphite fiber tips appear as plateaus with rugged surfaces embedded in the copper matrix. It has been experimentally demonstrated that this type of material manifests excellent boiling heat transfer performance characteristics and an increased CHF. Nonisothermal surfaces were less sensitive to variations of wall superheat in the CHF regime. Because of the great difference in conductivity between the copper base and the graphite fiber, the composite surfaces have a nonisothermal surface characteristic and, therefore, will have a much larger "safe" operating region in the CHF regime. In addition, the thermocapillary forces induced by the temperature differences between the fiber tips and the metal matrix play an important role in bubble detachment, and may not be adversely affected in a reduced-gravity environment. All these factors indicate that microconfigured composites may improve the reliability and economy (dominant factors in all space applications) of various thermal components found on spacecraft during future

  6. Environmentally assisted cracking in light-water reactors: Semi-annual report, January--June 1997. Volume 24

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K.; Chung, H.M.; Gruber, E.E. [Argonne National Lab., IL (United States)] [and others

    1998-04-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from January 1997 to June 1997. Topics that have been investigated include (a) fatigue of carbon, low-alloy, and austenitic stainless steels (SSs) used in reactor piping and pressure vessels, (b) irradiation-assisted stress corrosion cracking of Types 304 and 304L SS, and (c) EAC of Alloys 600 and 690. Fatigue tests were conducted on ferritic and austenitic SSs in water that contained various concentr