WorldWideScience

Sample records for bv2 microglial cells

  1. trans-Cinnamaldehyde Inhibits Microglial Activation and Improves Neuronal Survival against Neuroinflammation in BV2 Microglial Cells with Lipopolysaccharide Stimulation

    Directory of Open Access Journals (Sweden)

    Yan Fu

    2017-01-01

    Full Text Available Background. Microglial activation contributes to neuroinflammation and neuronal damage in neurodegenerative disorders including Alzheimer’s and Parkinson’s diseases. It has been suggested that neurodegenerative disorders may be improved if neuroinflammation can be controlled. trans-cinnamaldehyde (TCA isolated from the stem bark of Cinnamomum cassia possesses potent anti-inflammatory capability; we thus tested whether TCA presents neuroprotective effects on improving neuronal survival by inhibiting neuroinflammatory responses in BV2 microglial cells. Results. To determine the molecular mechanism behind TCA-mediated neuroprotective effects, we assessed the effects of TCA on lipopolysaccharide- (LPS- induced proinflammatory responses in BV2 microglial cells. While LPS potently induced the production and expression upregulation of proinflammatory mediators, including NO, iNOS, COX-2, IL-1β, and TNF-α, TCA pretreatment significantly inhibited LPS-induced production of NO and expression of iNOS, COX-2, and IL-1β and recovered the morphological changes in BV2 cells. TCA markedly attenuated microglial activation and neuroinflammation by blocking nuclear factor kappa B (NF-κB signaling pathway. With the aid of microglia and neuron coculture system, we showed that TCA greatly reduced LPS-elicited neuronal death and exerted neuroprotective effects. Conclusions. Our results suggest that TCA, a natural product, has the potential of being used as a therapeutic agent against neuroinflammation for ameliorating neurodegenerative disorders.

  2. A dibenzoylmethane derivative inhibits lipopolysaccharide-induced NO production in mouse microglial cell line BV-2.

    Science.gov (United States)

    Takano, Katsura; Ishida, Natsumi; Kawabe, Kenji; Moriyama, Mitsuaki; Hibino, Satoshi; Choshi, Tominari; Hori, Osamu; Nakamura, Yoichi

    2017-04-05

    Microglial activation has been suggested to play important roles in various neurodegenerative diseases by phagocytosis and producing various factors such as nitric oxide (NO), proinflammatory cytokines. Excessive production of NO, as a consequence of increased inducible nitric oxide synthase (iNOS) in microglia, contributes to the neurodegeneration. During a search for compounds that regulate endoplasmic reticulum (ER) stress, a dibenzoylmethane derivative, 2,2'-dimethoxydibenzoylmethane (DBM 14-26) was identified as a novel neuroprotective agent (Takano et al., Am. J. Physiol. Cell Physiol. 293, C1884-1894, 2007). We previously reported in cultured astrocytes that DBM 14-26 protected hydrogen peroxide-induced cell death and inhibited lipopolysaccharide (LPS)-induced NO production (Takano et al., J. Neurosci. Res. 89, 955-965, 2011). In the present study, we assessed the effects of DBM 14-26 on microglia using the mouse cell line BV-2 and found that DBM 14-26 inhibited LPS-induced iNOS expression and NO production also in microglia. DBM 14-26 also suppressed LPS-induced IL-1β expression. Conditioned medium of BV-2 cells stimulated by LPS significantly decreased cell viability of neuron (human neuroblastoma SH-SY5Y cells) compared with the absence of LPS. Conditioned medium of BV-2 cells stimulated by LPS in the presence of DBM 14-26 did not significantly decreased cell viability of neuron. These results indicate that microglial activation by LPS causes neuronal cell death and DBM 14-26 protect neuron through the inhibition of microglial activation. Functional regulation of microglia by DBM 14-26 could be a therapeutic candidate for the treatment of neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Microglial cells (BV-2) internalize titanium dioxide (TiO2) nanoparticles: toxicity and cellular responses.

    Science.gov (United States)

    Rihane, Naima; Nury, Thomas; M'rad, Imen; El Mir, Lassaad; Sakly, Mohsen; Amara, Salem; Lizard, Gérard

    2016-05-01

    Because of their whitening and photocatalytic effects, titanium dioxide nanoparticles (TiO2-NPs) are widely used in daily life. These NPs can be found in paints, plastics, papers, sunscreens, foods, medicines (pills), toothpastes, and cosmetics. However, the biological effect of TiO2-NPs on the human body, especially on the central nervous system, is still unclear. Many studies have demonstrated that the brain is one of the target organs in acute or chronic TiO2-NPs toxicity. The present study aimed to investigate the effect of TiO2-NPs at different concentrations (0.1 to 200 μg/mL) on murine microglial cells (BV-2) to assess their activity on cell growth and viability, as well as their neurotoxicity. Different parameters were measured: cell viability, cell proliferation and DNA content (SubG1 peak), mitochondrial depolarization, overproduction of reactive oxygen species (especially superoxide anions), and ultrastructural changes. Results showed that TiO2-NPs induced some cytotoxic effects with a slight inhibition of cell growth. Thus, at high concentrations, TiO2-NPs were not only able to inhibit cell adhesion but also enhanced cytoplasmic membrane permeability to propidium iodide associated with a loss of mitochondrial transmembrane potential and an overproduction of superoxide anions. No induction of apoptosis based on the presence of a SubG1 peak was detected. The microscopic observations also indicated that small groups of nanosized particles and micron-sized aggregates were engulfed by the BV-2 cells and sequestered as intracytoplasmic aggregates after 24-h exposure to TiO2-NPs. Altogether, our data show that the accumulation TiO2-NPs in microglial BV-2 cells favors mitochondrial dysfunctions and oxidative stress.

  4. Prenylated Flavonoids from Cudrania tricuspidata Suppress Lipopolysaccharide-Induced Neuroinflammatory Activities in BV2 Microglial Cells

    Science.gov (United States)

    Kim, Dong-Cheol; Yoon, Chi-Su; Quang, Tran Hong; Ko, Wonmin; Kim, Jong-Su; Oh, Hyuncheol; Kim, Youn-Chul

    2016-01-01

    In Korea and China, Cudrania tricuspidata Bureau (Moraceae) is an important traditional medicinal plant used to treat lumbago, hemoptysis, and contusions. The C. tricuspidata methanol extract suppressed both production of NO and PGE2 in BV2 microglial cells. Cudraflavanone D (1), isolated from this extract, remarkably suppressed the protein expression of inducible NO synthase and cyclooxygenase-2, and decreased the levels of NO and PGE2 in BV2 microglial cells exposed to lipopolysaccharide. Cudraflavanone D (1) also decreased IL-6, TNF-α, IL-12, and IL-1β production, blocked nuclear translocation of NF-κB heterodimers (p50 and p65) by interrupting the degradation and phosphorylation of inhibitor of IκB-α, and inhibited NF-κB binding. In addition, cudraflavanone D (1) suppressed the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK pathways. This study indicated that cudraflavanone D (1) can be a potential drug candidate for the cure of neuroinflammation. PMID:26907256

  5. Excretory and Secretory Proteins of Naegleria fowleri Induce Inflammatory Responses in BV-2 Microglial Cells.

    Science.gov (United States)

    Lee, Jinyoung; Kang, Jung-Mi; Kim, Tae Im; Kim, Jong-Hyun; Sohn, Hae-Jin; Na, Byoung-Kuk; Shin, Ho-Joon

    2017-03-01

    Naegleria fowleri, a free-living amoeba that is found in diverse environmental habitats, can cause a type of fulminating hemorrhagic meningoencephalitis, primary amoebic meningoencephalitis (PAM), in humans. The pathogenesis of PAM is not fully understood, but it is likely to be primarily caused by disruption of the host's nervous system via a direct phagocytic mechanism by the amoeba. Naegleria fowleri trophozoites are known to secrete diverse proteins that may indirectly contribute to the pathogenic function of the amoeba, but this factor is not clearly understood. In this study, we analyzed the inflammatory responses in BV-2 microglial cells induced by excretory and secretory proteins of N. fowleri (NfESP). Treatment of BV-2 cells with NfESP induced the expression of various cytokines and chemokines, including the proinflammatory cytokines IL-1α and TNF-α. NfESP-induced IL-1α and TNF-α expression in BV-2 cells were regulated by p38, JNK, and ERK MAPKs. NfESP-induced IL-1α and TNF-α production in BV-2 cells were effectively downregulated by inhibition of NF-kB and AP-1. These results collectively suggest that NfESP stimulates BV-2 cells to release IL-1α and TNF-α via NF-kB- and AP-1-dependent MAPK signaling pathways. The released cytokines may contribute to inflammatory responses in microglia and other cell types in the brain during N. fowleri infection. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  6. Protective Effects of Curcumin on Manganese-Induced BV-2 Microglial Cell Death.

    Science.gov (United States)

    Park, Euteum; Chun, Hong Sung

    2017-08-01

    Curcumin, a bioactive component in tumeric, has been shown to exert antioxidant, anti-inflammatory, anticarcinogenic, hepatoprotective, and neuroprotective effects, but the effects of curcumin against manganese (Mn)-mediated neurotoxicity have not been studied. This study examined the protective effects of curcumin on Mn-induced cytotoxicity in BV-2 microglial cells. Curcumin (0.1-10 µM) dose-dependently prevented Mn (250 µM)-induced cell death. Mn-induced mitochondria-related apoptotic characteristics, such as caspase-3 and -9 activation, cytochrome c release, Bax increase, and Bcl-2 decrease, were significantly suppressed by curcumin. In addition, curcumin significantly increased intracellular glutathione (GSH) and moderately potentiated superoxide dismutase (SOD), both which were diminished by Mn treatment. Curcumin pretreatment effectively suppressed Mn-induced upregulation of malondialdehyde (MDA), total reactive oxygen species (ROS). Moreover, curcumin markedly inhibited the Mn-induced mitochondrial membrane potential (MMP) loss. Furthermore, curcumin was able to induce heme oxygenase (HO)-1 expression. Curcumin-mediated inhibition of ROS, down-regulation of caspases, restoration of MMP, and recovery of cell viability were partially reversed by HO-1 inhibitor (SnPP). These results suggest the first evidence that curcumin can prevent Mn-induced microglial cell death through the induction of HO-1 and regulation of oxidative stress, mitochondrial dysfunction, and apoptotic events.

  7. Inhibitory effects of antihistamines, diphenhydramine and chlorpheniramine, on proton currents in BV2 microglial cells.

    Science.gov (United States)

    Kim, Jiwon; Song, Jin-Ho

    2017-03-05

    Microglial NADPH oxidase is a major source of toxic reactive oxygen species produced during chronic neuroinflammation. Voltage-gated proton channel (H V 1) functions to maintain the intense activity of NADPH oxidase, and channel inhibition alleviates the pathology of neurodegenerative diseases such as ischemic stroke and multiple sclerosis associated with oxidative neuroinflammation. Antagonists of histamine H 1 receptors have beneficial effects against microglia-mediated oxidative stress and neurotoxicity. We examined the effects of the H 1 antihistamines, diphenhydramine and chlorpheniramine, on proton currents in BV2 microglial cells recorded using the whole-cell patch clamp technique. Diphenhydramine and chlorpheniramine reduced the proton currents with almost the same potency, yielding IC 50 values of 42 and 43μM, respectively. Histamine did not affect proton currents, excluding the involvement of histamine receptors in their action. Neither drug shifted the voltage-dependence of activation or the reversal potential of the proton currents, even though diphenhydramine slowed the activation and deactivation kinetics. The inhibitory effects of the two antihistamines on proton currents could be utilized to develop therapeutic agents for neurodegenerative diseases and other diseases associated with H V 1 proton channel abnormalities. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Carvedilol abrogates hypoxia-induced oxidative stress and neuroinflammation in microglial BV2 cells.

    Science.gov (United States)

    Gao, Xiujuan; Wu, Bin; Fu, Zhijian; Zhang, Zongwang; Xu, Guangjun

    2017-11-05

    Microglia initially undergo rapid activation in response to injury and stressful stimuli, such as hypoxia. Oxidative stress and the inflammatory response play critical roles in hypoxic-ischemic brain injury. Carvedilol is a β-blocker used to treat high blood pressure and heart failure. In this study, we investigated whether carvedilol had a protective effect against hypoxia-induced oxidative stress and inflammation in microglial BV2 cells. Our results indicate that hypoxic exposure significantly reduced mean cell viability of BV2 microglia, which was significantly restored by carvedilol (10 and 50μM). In addition, carvedilol treatment significantly inhibited the hypoxia-induced increase in reactive oxygen species (ROS) and 4-hydroxy-2-nonenal (4-HNE). Administration of carvedilol significantly inhibited expression of IL-1β, TNF-α, and IL-6 at both the mRNA and protein levels. Mechanistically, we found that hypoxia significantly increased phosphorylation of IKK, IκBα, and NF-κB p65. However, treatment with carvedilol inhibited phosphorylation of these molecules. Notably, hypoxia resulted in a significant nuclear translocation of NF-κB p65, which was inhibited by administration of carvedilol. Luciferase reporter assay results demonstrate that treatment with carvedilol inhibited the hypoxia-induced increase in NF-κB binding activity. These data suggest that carvedilol may be of potential use as a novel therapy against hypoxia or ischemia. Copyright © 2017. Published by Elsevier B.V.

  9. Salidroside Reduces Cell Mobility via NF-κB and MAPK Signaling in LPS-Induced BV2 Microglial Cells

    Directory of Open Access Journals (Sweden)

    Haixia Hu

    2014-01-01

    Full Text Available The unregulated activation of microglia following stroke results in the production of toxic factors that propagate secondary neuronal injury. Salidroside has been shown to exhibit protective effects against neuronal death induced by different insults. However, the molecular mechanisms responsible for the anti-inflammatory activity of salidroside have not been elucidated clearly in microglia. In the present study, we investigated the molecular mechanism underlying inhibiting LPS-stimulated BV2 microglial cell mobility of salidroside. The protective effect of salidroside was investigated in microglial BV2 cell, subjected to stretch injury. Moreover, transwell migration assay demonstrated that salidroside significantly reduced cell motility. Our results also indicated that salidroside suppressed LPS-induced chemokines production in a dose-dependent manner, without causing cytotoxicity in BV2 microglial cells. Moreover, salidroside suppressed LPS-induced activation of nuclear factor kappa B (NF-κB by blocking degradation of IκBα and phosphorylation of MAPK (p38, JNK, ERK1/2, which resulted in inhibition of chemokine expression. These results suggest that salidroside possesses a potent suppressive effect on cell migration of BV2 microglia and this compound may offer substantial therapeutic potential for treatment of ischemic strokes that are accompanied by microglial activation.

  10. Dual RNA sequencing reveals the expression of unique transcriptomic signatures in lipopolysaccharide-induced BV-2 microglial cells.

    Directory of Open Access Journals (Sweden)

    Amitabh Das

    Full Text Available Microglial cells become rapidly activated through interactions with pathogens, and the persistent activation of these cells is associated with various neurodegenerative diseases. Previous studies have investigated the transcriptomic signatures in microglia or macrophages using microarray technologies. However, this method has numerous restrictions, such as spatial biases, uneven probe properties, low sensitivity, and dependency on the probes spotted. To overcome this limitation and identify novel transcribed genes in response to LPS, we used RNA Sequencing (RNA-Seq to determine the novel transcriptomic signatures in BV-2 microglial cells. Sequencing assessment and quality evaluation showed that approximately 263 and 319 genes (≥ 1.5 log2-fold, such as cytokines and chemokines, were strongly induced after 2 and 4 h, respectively, and the induction of several genes with unknown immunological functions was also observed. Importantly, we observed that previously unidentified transcription factors (TFs (irf1, irf7, and irf9, histone demethylases (kdm4a and DNA methyltransferases (dnmt3l were significantly and selectively expressed in BV-2 microglial cells. The gene expression levels, transcription start sites (TSS, isoforms, and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation upon infection with LPS. In addition, gene ontology, molecular networks and pathway analyses identified the top significantly regulated functional classification, canonical pathways and network functions at each activation status. Moreover, we further analyzed differentially expressed genes to identify transcription factor (TF motifs (-950 to +50 bp of the 5' upstream promoters and epigenetic mechanisms. Furthermore, we confirmed that the expressions of key inflammatory genes as well as pro-inflammatory mediators in the supernatants were significantly induced in LPS treated primary microglial cells. This

  11. Involvement of PKA and HO-1 signaling in anti-inflammatory effects of surfactin in BV-2 microglial cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Young; Kim, Ji-Hee [Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Keumjeong-gu, Busan 609-735 (Korea, Republic of); Lee, Sang Joon [Department of Microbiology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Keumjeong-gu, Busan 609-735 (Korea, Republic of); Kim, YoungHee, E-mail: yheekim@pusan.ac.kr [Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Keumjeong-gu, Busan 609-735 (Korea, Republic of)

    2013-04-01

    Surfactin, one of the most powerful biosurfactants, is a bacterial cyclic lipopeptide. Here, we investigated the anti-neuroinflammatory properties of surfactin in lipoteichoic acid (LTA)-stimulated BV-2 microglial cells. Surfactin significantly inhibited excessive production of the pro-inflammatory mediators TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), prostaglandin E{sub 2} (PGE{sub 2}), nitric oxide (NO) and reactive oxygen species (ROS), and suppressed the expression of matrix metalloproteinase-9 (MMP-9), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequent mechanistic studies revealed that surfactin inhibited LTA-induced nuclear factor-kappaB (NF-κB) and signal transducer and activator of transcription-1 (STAT-1) activation. However, surfactin increases the phosphorylation of the STAT-3, a component of the homeostatic mechanism causing anti-inflammatory events. We also demonstrated that surfactin induces heme oxygenase-1 (HO-1) expression and nuclear factor-regulated factor-2 (Nrf-2) activation, and that the anti-inflammatory effects of surfactin are abrogated by small interfering RNA-mediated knock-down of HO-1 or Nrf-2. Interestingly, we found that surfactin increased the level of cAMP and induced phosphorylation of cAMP responsive element binding protein (CREB) in microglial cells. Furthermore, treatment with the protein kinase A (PKA) inhibitor, H-89, blocked HO-1 induction by surfactin and abolished surfactin's suppressive effects on ROS and NO production. These results indicate that HO-1 and its upstream effector, PKA, play a pivotal role in the anti-neuroinflammatory response of surfactin in LTA-stimulated microglia. Therefore, surfactin might have therapeutic potential for neuroprotective agents to treat inflammatory and neurodegenerative diseases. - Highlights: ► Surfactin inhibits proinflammatory mediator synthesis in LTA-activated BV-2 cells. ► Surfactin suppresses NF-κB and STAT-1, but potentiates

  12. Involvement of PKA and HO-1 signaling in anti-inflammatory effects of surfactin in BV-2 microglial cells

    International Nuclear Information System (INIS)

    Park, Sun Young; Kim, Ji-Hee; Lee, Sang Joon; Kim, YoungHee

    2013-01-01

    Surfactin, one of the most powerful biosurfactants, is a bacterial cyclic lipopeptide. Here, we investigated the anti-neuroinflammatory properties of surfactin in lipoteichoic acid (LTA)-stimulated BV-2 microglial cells. Surfactin significantly inhibited excessive production of the pro-inflammatory mediators TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), prostaglandin E 2 (PGE 2 ), nitric oxide (NO) and reactive oxygen species (ROS), and suppressed the expression of matrix metalloproteinase-9 (MMP-9), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequent mechanistic studies revealed that surfactin inhibited LTA-induced nuclear factor-kappaB (NF-κB) and signal transducer and activator of transcription-1 (STAT-1) activation. However, surfactin increases the phosphorylation of the STAT-3, a component of the homeostatic mechanism causing anti-inflammatory events. We also demonstrated that surfactin induces heme oxygenase-1 (HO-1) expression and nuclear factor-regulated factor-2 (Nrf-2) activation, and that the anti-inflammatory effects of surfactin are abrogated by small interfering RNA-mediated knock-down of HO-1 or Nrf-2. Interestingly, we found that surfactin increased the level of cAMP and induced phosphorylation of cAMP responsive element binding protein (CREB) in microglial cells. Furthermore, treatment with the protein kinase A (PKA) inhibitor, H-89, blocked HO-1 induction by surfactin and abolished surfactin's suppressive effects on ROS and NO production. These results indicate that HO-1 and its upstream effector, PKA, play a pivotal role in the anti-neuroinflammatory response of surfactin in LTA-stimulated microglia. Therefore, surfactin might have therapeutic potential for neuroprotective agents to treat inflammatory and neurodegenerative diseases. - Highlights: ► Surfactin inhibits proinflammatory mediator synthesis in LTA-activated BV-2 cells. ► Surfactin suppresses NF-κB and STAT-1, but potentiates phosphorylation

  13. Inducible nitric oxide synthase is key to peroxynitrite-mediated, LPS-induced protein radical formation in murine microglial BV2 cells.

    Science.gov (United States)

    Kumar, Ashutosh; Chen, Shih-Heng; Kadiiska, Maria B; Hong, Jau-Shyong; Zielonka, Jacek; Kalyanaraman, Balaraman; Mason, Ronald P

    2014-08-01

    Microglia are the resident immune cells in the brain. Microglial activation is characteristic of several inflammatory and neurodegenerative diseases including Alzheimer's disease, multiple sclerosis, and Parkinson's disease. Though lipopolysaccharide (LPS)-induced microglial activation in models of Parkinson's disease is well documented, the free radical-mediated protein radical formation and its underlying mechanism during LPS-induced microglial activation are not known. Here we have used immuno-spin trapping and RNA interference to investigate the role of inducible nitric oxide synthase (iNOS) in peroxynitrite-mediated protein radical formation in murine microglial BV2 cells treated with LPS. Treatment of BV2 cells with LPS resulted in morphological changes, induction of iNOS, and increased protein radical formation. Pretreatments with FeTPPS (a peroxynitrite decomposition catalyst), L-NAME (total NOS inhibitor), 1400W (iNOS inhibitor), and apocynin significantly attenuated LPS-induced protein radical formation and tyrosine nitration. Results obtained with coumarin-7-boronic acid, a highly specific probe for peroxynitrite detection, correlated with LPS-induced tyrosine nitration, which demonstrated involvement of peroxynitrite in protein radical formation. A similar degree of protection conferred by 1400W and L-NAME led us to conclude that only iNOS, and no other forms of NOS, is involved in LPS-induced peroxynitrite formation. Subsequently, siRNA for iNOS, the iNOS-specific inhibitor 1400W, the NF-κB inhibitor PDTC, and the p38 MAPK inhibitor SB202190 was used to inhibit iNOS directly or indirectly. Inhibition of iNOS precisely correlated with decreased protein radical formation in LPS-treated BV2 cells. The time course of protein radical formation also matched the time course of iNOS expression. Taken together, these results prove the role of iNOS in peroxynitrite-mediated protein radical formation in LPS-treated microglial BV2 cells. Copyright © 2014

  14. Anthocyanin-rich açai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells.

    Science.gov (United States)

    Poulose, Shibu M; Fisher, Derek R; Larson, Jessica; Bielinski, Donna F; Rimando, Agnes M; Carey, Amanda N; Schauss, Alexander G; Shukitt-Hale, Barbara

    2012-02-01

    Age-related diseases of the brain compromise memory, learning, and movement and are directly linked with increases in oxidative stress and inflammation. Previous research has shown that supplementation with berries can modulate signaling in primary hippocampal neurons or BV-2 mouse microglial cells. Because of their high polyphenolic content, fruit pulp fractions of açai ( Euterpe oleracea Mart.) were explored for their protective effect on BV-2 mouse microglial cells. Freeze-dried açai pulp was fractionated using solvents with different polarities and analyzed using HPLC for major anthocyanins and other phenolics. Fractions extracted using methanol (MEOH) and ethanol (ETOH) were particularly rich in anthocyanins such as cyanidin, delphinidin, malvidin, pelargonidin, and peonidin, whereas the fraction extracted using acetone (ACE) was rich in other phenolics such as catechin, ferulic acid, quercetin, resveratrol, and synergic and vanillic acids. Studies were conducted to investigate the mitigating effects of açai pulp extracts on lipopolysaccharide (LPS, 100 ng/mL) induced oxidative stress and inflammation; treatment of BV-2 cells with acai fractions resulted in significant (p fractions. The protection of microglial cells by açai pulp extracts, particularly that of MEOH, ETOH, and ACE fractions, was also accompanied by a significant concentration-dependent reduction in cyclooxygenase-2 (COX-2), p38 mitogen-activated protein kinase (p38-MAPK), tumor necrosis factor-α (TNFα), and nuclear factor κB (NF-κB). The current study offers valuable insights into the protective effects of açai pulp fractions on brain cells, which could have implications for improved cognitive and motor functions.

  15. Anthocyanins Downregulate Lipopolysaccharide-Induced Inflammatory Responses in BV2 Microglial Cells by Suppressing the NF-κB and Akt/MAPKs Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Yung Hyun Choi

    2013-01-01

    Full Text Available Anthocyanins are naturally occurring polyphenols that impart bright color to fruits, vegetables and plants and have a variety of protective properties, which have generally been attributed to their antioxidant capacity. However, little is known about the molecular mechanisms underlying anti-inflammatory effects of anthocyanins related to neurodegenerative diseases. Therefore, we determined whether anthocyanins isolated from black soybean seed coats would inhibit pro-inflammatory mediators and cytokines in lipopolysaccharide (LPS-stimulated murine BV2 microglial cells. Our results showed that anthocyanins significantly inhibited LPS-induced pro-inflammatory mediators, such as nitric oxide (NO and prostaglandin E2, and pro-inflammatory cytokines including tumor necrosis factor (TNF-α and interleukin (IL-1β, without significant cytotoxicity. Anthocyanins also downregulated excessive expression of inducible NO synthase, cyclooxygenase-2, TNF-α, and IL-1β in LPS-stimulated BV2 cells. Moreover, anthocyanins inhibited nuclear translocation of nuclear factor-kappa B (NF-κB by reducing inhibitor of NF-κB alpha degradation as well as phosphorylating extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, and Akt. These findings suggest that anthocyanins may offer substantial therapeutic potential for treating inflammatory and neurodegenerative diseases accompanied by microglial activation.

  16. Anti-Inflammatory Activity of Bee Venom in BV2 Microglial Cells: Mediation of MyD88-Dependent NF-κB Signaling Pathway.

    Science.gov (United States)

    Im, Eun Ju; Kim, Su Jung; Hong, Seung Bok; Park, Jin-Kyu; Rhee, Man Hee

    2016-01-01

    Bee venom has long been used as a traditional folk medicine in Korea. It has been reportedly used for the treatment of arthritis, cancer, and inflammation. Although its anti-inflammatory activity in lipopolysaccharide- (LPS-) stimulated inflammatory cells has been reported, the exact mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, the aim of this study was to investigate the anti-inflammatory mechanism of bee venom in BV2 microglial cells. We first investigated whether NO production in LPS-activated BV2 cells was inhibited by bee venom, and further iNOS mRNA and protein expressions were determined. The mRNA and protein levels of proinflammatory cytokines were examined using semiquantitative RT-PCR and immunoblotting, respectively. Moreover, modulation of the transcription factor NF-κB by bee venom was also investigated using a luciferase assay. LPS-induced NO production in BV2 microglial cells was significantly inhibited in a concentration-dependent manner upon pretreatment with bee venom. Bee venom markedly reduced the mRNA expression of COX-2, TNF-α, IL-1β, and IL-6 and suppressed LPS-induced activation of MyD88 and IRAK1 and phosphorylation of TAK1. Moreover, NF-κB translocation by IKKα/β phosphorylation and subsequent IκB-α degradation were also attenuated. Thus, collectively, these results indicate that bee venom exerts its anti-inflammatory activity via the IRAK1/TAK1/NF-κB signaling pathway.

  17. Flow Cytometric Analysis of the Expression Pattern of Peroxisomal Proteins, Abcd1, Abcd2, and Abcd3 in BV-2 Murine Microglial Cells.

    Science.gov (United States)

    Debbabi, Meryam; Nury, Thomas; Helali, Imen; Karym, El Mostafa; Geillon, Flore; Gondcaille, Catherine; Trompier, Doriane; Najid, Amina; Terreau, Sébastien; Bezine, Maryem; Zarrouk, Amira; Vejux, Anne; Andreoletti, Pierre; Cherkaoui-Malki, Mustapha; Savary, Stéphane; Lizard, Gérard

    2017-01-01

    Microglial cells play important roles in neurodegenerative diseases including peroxisomal leukodystrophies. The BV-2 murine immortalized cells are widely used in the context of neurodegenerative researches. It is therefore important to establish the expression pattern of peroxisomal proteins by flow cytometry in these cells. So, the expression pattern of various peroxisomal transporters (Abcd1, Abcd2, Abcd3) contributing to peroxisomal β-oxidation was evaluated on BV-2 cells by flow cytometry and complementary methods (fluorescence microscopy, and RT-qPCR). By flow cytometry a strong expression of peroxisomal proteins (Abcd1, Abcd2, Abcd3) was observed. These data were in agreement with those obtained by fluorescence microscopy (presence of numerous fluorescent dots in the cytoplasm characteristic of a peroxisomal staining pattern) and RT-qPCR (high levels of Abcd1, Abcd2, and Abcd3 mRNAs). Thus, the peroxisomal proteins (Abcd1, Abcd2, Abcd3) are expressed in BV-2 cells, and can be analyzed by flow cytometry.

  18. Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells

    Science.gov (United States)

    Park, SE; Sapkota, K; Kim, S; Kim, H; Kim, SJ

    2011-01-01

    BACKGROUND AND PURPOSE Kaempferol, a dietary flavonoid and phyto-oestrogen, is known to have anti-inflammatory properties. Microglial activation has been implicated in various neurodegenerative diseases. Anti-inflammatory effects of kaempferol and the underlying mechanisms were investigated by using LPS-stimulated microglial BV2 cells. EXPERIMENTAL APPROACH Cell viability was measured using MTT and neutral red assays. elisa, Western blot, immunocytochemistry and electrophoretic mobility-shift assay were used to analyse NO, PGE2, TNF-α and IL-1β production, inducible NOS (iNOS), COX-2 expression and the involvement of signalling pathways such as toll-like receptor-4 (TLR4), MAPK cascades, PKB (AKT) and NF-κB. Accumulation of reaction oxygen species (ROS) was measured by nitroblue tetrazolium and 2′7′-dichlorofluorescein diacetate assay. Matrix metalloproteinase activity was investigated by zymography and immunoblot assay. Phagocytotic activity was assessed by use of latex beads. KEY RESULTS Kaempferol significantly attenuated LPS-induced NO, PGE2, TNF-α, IL-1β and ROS production and phagocytosis in a concentration-dependent manner. Kaempferol suppressed the expression of iNOS, COX-2, MMP-3 and blocked the TLR4 activation. Moreover, kaempferol inhibited LPS-induced NF-κB activation and p38 MAPK, JNK and AKT phosphorylation. CONCLUSION AND IMPLICATIONS Kaempferol was able to reduce LPS-induced inflammatory mediators through the down-regulation of TLR4, NF-κB, p38 MAPK, JNK and AKT suggesting that kaempferol has therapeutic potential for the treatment of neuroinflammatory diseases. PMID:21449918

  19. Mineralocorticoid and glucocorticoid receptors differentially regulate NF-kappaB activity and pro-inflammatory cytokine production in murine BV-2 microglial cells

    Directory of Open Access Journals (Sweden)

    Chantong Boonrat

    2012-11-01

    Full Text Available Abstract Background Microglia, the resident macrophage-like cells in the brain, regulate innate immune responses in the CNS to protect neurons. However, excessive activation of microglia contributes to neurodegenerative diseases. Corticosteroids are potent modulators of inflammation and mediate their effects by binding to mineralocorticoid receptors (MR and glucocorticoid receptors (GR. Here, the coordinated activities of GR and MR on the modulation of the nuclear factor-κB (NF-κB pathway in murine BV-2 microglial cells were studied. Methods BV-2 cells were treated with different corticosteroids in the presence or absence of MR and GR antagonists. The impact of the glucocorticoid-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1 was determined by incubating cells with 11-dehydrocorticosterone, with or without selective inhibitors. Expression of interleukin-6 (IL-6, tumor necrosis factor receptor 2 (TNFR2, and 11β-HSD1 mRNA was analyzed by RT-PCR and IL-6 protein expression by ELISA. NF-κB activation and translocation upon treatment with various corticosteroids were visualized by western blotting, immunofluorescence microscopy, and translocation assays. Results GR and MR differentially regulate NF-κB activation and neuroinflammatory parameters in BV-2 cells. By converting inactive 11-dehydrocorticosterone to active corticosterone, 11β-HSD1 essentially modulates the coordinated action of GR and MR. Biphasic effects were observed for 11-dehydrocorticosterone and corticosterone, with an MR-dependent potentiation of IL-6 and tumor necrosis factor-α (TNF-α expression and NF-κB activation at low/moderate concentrations and a GR-dependent suppression at high concentrations. The respective effects were confirmed using the MR ligand aldosterone and the antagonist spironolactone as well as the GR ligand dexamethasone and the antagonist RU-486. NF-κB activation could be blocked by spironolactone and the inhibitor of NF

  20. Immunoglobulins G from Sera of Amyotrophic Lateral Sclerosis Patients Induce Oxidative Stress and Upregulation of Antioxidative System in BV-2 Microglial Cell Line

    Directory of Open Access Journals (Sweden)

    Milena Milošević

    2017-11-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a neurodegenerative disorder with a very fast progression, no diagnostic tool for the presymptomatic phase, and still no effective treatment of the disease. Although ALS affects motor neurons, the overall pathophysiological condition points out to the non-cell autonomous mechanisms, where astrocytes and microglia play crucial roles in the disease progression. We have already shown that IgG from sera of ALS patients (ALS IgG induce calcium transients and an increase in the mobility of acidic vesicles in cultured rat astrocytes. Having in mind the role of microglia in neurodegeneration, and a well-documented fact that oxidative stress is one of the many components contributing to the disease, we decided to examine the effect of ALS IgG on activation, oxidative stress and antioxidative system of BV-2 microglia, and to evaluate their acute effect on cytosolic peroxide, pH, and on reactive oxygen species (ROS generation. All tested ALS IgGs (compared to control IgG induced oxidative stress (rise in nitric oxide and the index of lipid peroxidation followed by release of TNF-α and higher antioxidative defense (elevation of Mn- and CuZn-superoxide dismutase, catalase, and glutathione reductase with a decrease of glutathione peroxidase and glutathione after 24 h treatment. Both ALS IgG and control IgG showed same localization on the membrane of BV-2 cells following 24 h treatment. Cytosolic peroxide and pH alteration were evaluated with fluorescent probes HyPer and SypHer, respectively, having in mind that HyPer also reacts to pH changes. Out of 11 tested IgGs from ALS patients, 4 induced slow exponential rise of HyPer signal, with maximal normalized fluorescence in the range 0.2–0.5, also inducing similar increase of SypHer intensity, but of a lower amplitude. None of the control IgGs induced changes with neither of the indicators. Acute ROS generation was detected in one out of three tested ALS samples with

  1. Immunoglobulins G from Sera of Amyotrophic Lateral Sclerosis Patients Induce Oxidative Stress and Upregulation of Antioxidative System in BV-2 Microglial Cell Line.

    Science.gov (United States)

    Milošević, Milena; Milićević, Katarina; Božić, Iva; Lavrnja, Irena; Stevanović, Ivana; Bijelić, Dunja; Dubaić, Marija; Živković, Irena; Stević, Zorica; Giniatullin, Rashid; Andjus, Pavle

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder with a very fast progression, no diagnostic tool for the presymptomatic phase, and still no effective treatment of the disease. Although ALS affects motor neurons, the overall pathophysiological condition points out to the non-cell autonomous mechanisms, where astrocytes and microglia play crucial roles in the disease progression. We have already shown that IgG from sera of ALS patients (ALS IgG) induce calcium transients and an increase in the mobility of acidic vesicles in cultured rat astrocytes. Having in mind the role of microglia in neurodegeneration, and a well-documented fact that oxidative stress is one of the many components contributing to the disease, we decided to examine the effect of ALS IgG on activation, oxidative stress and antioxidative system of BV-2 microglia, and to evaluate their acute effect on cytosolic peroxide, pH, and on reactive oxygen species (ROS) generation. All tested ALS IgGs (compared to control IgG) induced oxidative stress (rise in nitric oxide and the index of lipid peroxidation) followed by release of TNF-α and higher antioxidative defense (elevation of Mn- and CuZn-superoxide dismutase, catalase, and glutathione reductase with a decrease of glutathione peroxidase and glutathione) after 24 h treatment. Both ALS IgG and control IgG showed same localization on the membrane of BV-2 cells following 24 h treatment. Cytosolic peroxide and pH alteration were evaluated with fluorescent probes HyPer and SypHer, respectively, having in mind that HyPer also reacts to pH changes. Out of 11 tested IgGs from ALS patients, 4 induced slow exponential rise of HyPer signal, with maximal normalized fluorescence in the range 0.2-0.5, also inducing similar increase of SypHer intensity, but of a lower amplitude. None of the control IgGs induced changes with neither of the indicators. Acute ROS generation was detected in one out of three tested ALS samples with carboxy-H2DCFDA

  2. Microarray and pathway analysis reveal distinct mechanisms underlying cannabinoid-mediated modulation of LPS-induced activation of BV-2 microglial cells.

    Directory of Open Access Journals (Sweden)

    Ana Juknat

    Full Text Available Cannabinoids are known to exert immunosuppressive activities. However, the mechanisms which contribute to these effects are unknown. Using lipopolysaccharide (LPS to activate BV-2 microglial cells, we examined how Δ(9-tetrahydrocannabinol (THC, the major psychoactive component of marijuana, and cannabidiol (CBD the non-psychoactive component, modulate the inflammatory response. Microarray analysis of genome-wide mRNA levels was performed using Illumina platform and the resulting expression patterns analyzed using the Ingenuity Pathway Analysis to identify functional subsets of genes, and the Ingenuity System Database to denote the gene networks regulated by CBD and THC. From the 5338 transcripts that were differentially expressed across treatments, 400 transcripts were found to be upregulated by LPS, 502 by CBD+LPS and 424 by THC+LPS, while 145 were downregulated by LPS, 297 by CBD+LPS and 149 by THC+LPS, by 2-fold or more (p≤0.005. Results clearly link the effects of CBD and THC to inflammatory signaling pathways and identify new cannabinoid targets in the MAPK pathway (Dusp1, Dusp8, Dusp2, cell cycle related (Cdkn2b, Gadd45a as well as JAK/STAT regulatory molecules (Socs3, Cish, Stat1. The impact of CBD on LPS-stimulated gene expression was greater than that of THC. We attribute this difference to the fact that CBD highly upregulated several genes encoding negative regulators of both NFκB and AP-1 transcriptional activities, such as Trib3 and Dusp1 known to be modulated through Nrf2 activation. The CBD-specific expression profile reflected changes associated with oxidative stress and glutathione depletion via Trib3 and expression of ATF4 target genes. Furthermore, the CBD affected genes were shown to be controlled by nuclear factors usually involved in regulation of stress response and inflammation, mainly via Nrf2/Hmox1 axis and the Nrf2/ATF4-Trib3 pathway. These observations indicate that CBD, and less so THC, induce a cellular stress

  3. Inhibition of lipopolysaccharide-induced proinflammatory responses by Buddleja officinalis extract in BV-2 microglial cells via negative regulation of NF-kB and ERK1/2 signaling.

    Science.gov (United States)

    Oh, Won-Jun; Jung, Uhee; Eom, Hyun-Soo; Shin, Hee-June; Park, Hae-Ran

    2013-07-31

    Buddleja officinalis has been traditionally used in the supportive treatment of inflammatory and neuronal diseases in Korea and China. Although several reports have shown the anti-inflammatory effects of Buddleja officinalis, the anti-neuroinflammatory effect has remained unclear. In this study, we aimed to investigate the inhibitory effects of flower buds of B. officinalis Maximowicz water extract (BOWE) on LPS-induced inflammatory processes in BV-2 microglial cells. BOWE dose-dependently inhibited the production of nitric oxide as well as iNOS mRNA expression. Moreover, BOWE prevented IL-1β and IL-6 mRNA expression. However, BOWE had no effect on LPS-induced COX-2 or TNF-a mRNA expression. The extract also had no effect on LPS-stimulated p38 MAPK, JNK, and c-Jun phosphorylation, whereas ERK1/2 phosphorylation was strongly inhibited by BOWE. BOWE also inhibited the LPS-induced degradation of IkB-α, and LPS-induced phosphorylation of p65 NF-kB protein. These data indicate that BOWE inhibited the nitric oxide production and pro-inflammatory gene expression in BV-2 microglial cells, possibly through a negative regulation of the NF-kB and ERK1/2 pathways. Further identification of the direct target molecule(s) of BOWE is required to support its use as an anti-neuroinflammatory agent against the neurodegenerative disorders.

  4. Inhibition of Lipopolysaccharide-Induced Proinflammatory Responses by Buddleja officinalis Extract in BV-2 Microglial Cells via Negative Regulation of NF-kB and ERK1/2 Signaling

    Directory of Open Access Journals (Sweden)

    Hae-Ran Park

    2013-07-01

    Full Text Available Buddleja officinalis has been traditionally used in the supportive treatment of inflammatory and neuronal diseases in Korea and China. Although several reports have shown the anti-inflammatory effects of Buddleja officinalis, the anti-neuroinflammatory effect has remained unclear. In this study, we aimed to investigate the inhibitory effects of flower buds of B. officinalis Maximowicz water extract (BOWE on LPS-induced inflammatory processes in BV-2 microglial cells. BOWE dose-dependently inhibited the production of nitric oxide as well as iNOS mRNA expression. Moreover, BOWE prevented IL-1β and IL-6 mRNA expression. However, BOWE had no effect on LPS-induced COX-2 or TNF-a mRNA expression. The extract also had no effect on LPS-stimulated p38 MAPK, JNK, and c-Jun phosphorylation, whereas ERK1/2 phosphorylation was strongly inhibited by BOWE. BOWE also inhibited the LPS-induced degradation of IkB-α, and LPS-induced phosphorylation of p65 NF-kB protein. These data indicate that BOWE inhibited the nitric oxide production and pro-inflammatory gene expression in BV-2 microglial cells, possibly through a negative regulation of the NF-kB and ERK1/2 pathways. Further identification of the direct target molecule(s of BOWE is required to support its use as an anti-neuroinflammatory agent against the neurodegenerative disorders.

  5. Aspirin-triggered lipoxin A4 attenuates LPS-induced pro-inflammatory responses by inhibiting activation of NF-κB and MAPKs in BV-2 microglial cells

    Directory of Open Access Journals (Sweden)

    Yuan Shi-Ying

    2011-08-01

    Full Text Available Abstract Background Microglial activation plays an important role in neurodegenerative diseases through production of nitric oxide (NO and several pro-inflammatory cytokines. Lipoxins (LXs and aspirin-triggered LXs (ATLs are considered to act as 'braking signals' in inflammation. In the present study, we investigated the effect of aspirin-triggered LXA4 (ATL on infiammatory responses induced by lipopolysaccharide (LPS in murine microglial BV-2 cells. Methods BV-2 cells were treated with ATL prior to LPS exposure, and the effects of such treatment production of nitric oxide (NO, inducible nitric oxide synthase (iNOS, interleukin-1β (IL-1β and tumour necrosis factor-α (TNF-α were analysed by Griess reaction, ELISA, western blotting and quantitative RT-PCR. Moreover, we investigated the effects of ATL on LPS-induced nuclear factor-κB (NF-κB activation, phosphorylation of mitogen-activated protein kinases (MAPKs and activator protein-1 (AP-1 activation. Results ATL inhibited LPS-induced production of NO, IL-1β and TNF-α in a concentration-dependent manner. mRNA expressions for iNOS, IL-1β and TNF-α in response to LPS were also decreased by ATL. These effects were inhibited by Boc-2 (a LXA4 receptor antagonist. ATL significantly reduced nuclear translocation of NF-κB p65, degradation of the inhibitor IκB-α, and phosphorylation of extracellular signal-regulated kinase (ERK and p38 MAPK in BV-2 cells activated with LPS. Furthermore, the DNA binding activity of NF-κB and AP-1 was blocked by ATL. Conclusions This study indicates that ATL inhibits NO and pro-inflammatory cytokine production at least in part via NF-κB, ERK, p38 MAPK and AP-1 signaling pathways in LPS-activated microglia. Therefore, ATL may have therapeutic potential for various neurodegenerative diseases.

  6. Immunoglobulins G from Sera of Amyotrophic Lateral Sclerosis Patients Induce Oxidative Stress and Upregulation of Antioxidative System in BV-2 Microglial Cell Line

    OpenAIRE

    Milošević, Milena; Milićević, Katarina; Božić, Iva; Lavrnja, Irena; Stevanović, Ivana; Bijelić, Dunja; Dubaić, Marija; Živković, Irena; Stević, Zorica; Giniatullin, Rashid; Andjus, Pavle

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder with a very fast progression, no diagnostic tool for the presymptomatic phase, and still no effective treatment of the disease. Although ALS affects motor neurons, the overall pathophysiological condition points out to the non-cell autonomous mechanisms, where astrocytes and microglia play crucial roles in the disease progression. We have already shown that IgG from sera of ALS patients (ALS IgG) induce calcium transients and...

  7. Protective Effects of α-Tocopherol, γ-Tocopherol and Oleic Acid, Three Compounds of Olive Oils, and No Effect of Trolox, on 7-Ketocholesterol-Induced Mitochondrial and Peroxisomal Dysfunction in Microglial BV-2 Cells

    Directory of Open Access Journals (Sweden)

    Meryam Debbabi

    2016-11-01

    Full Text Available Lipid peroxidation products, such as 7-ketocholesterol (7KC, may be increased in the body fluids and tissues of patients with neurodegenerative diseases and trigger microglial dysfunction involved in neurodegeneration. It is therefore important to identify synthetic and natural molecules able to impair the toxic effects of 7KC. We determined the impact of 7KC on murine microglial BV-2 cells, especially its ability to trigger mitochondrial and peroxisomal dysfunction, and evaluated the protective effects of α- and γ-tocopherol, Trolox, and oleic acid (OA. Multiple complementary chemical assays, flow cytometric and biochemical methods were used to evaluate the antioxidant and cytoprotective properties of these molecules. According to various complementary assays to estimate antioxidant activity, only α-, and γ-tocopherol, and Trolox had antioxidant properties. However, only α-tocopherol, γ-tocopherol and OA were able to impair 7KC-induced loss of mitochondrial transmembrane potential, which is associated with increased permeability to propidium iodide, an indicator of cell death. In addition, α-and γ-tocopherol, and OA were able to prevent the decrease in Abcd3 protein levels, which allows the measurement of peroxisomal mass, and in mRNA levels of Abcd1 and Abcd2, which encode for two transporters involved in peroxisomal β-oxidation. Thus, 7KC-induced side effects are associated with mitochondrial and peroxisomal dysfunction which can be inversed by natural compounds, thus supporting the hypothesis that the composition of the diet can act on the function of organelles involved in neurodegenerative diseases.

  8. Protective Effects of α-Tocopherol, γ-Tocopherol and Oleic Acid, Three Compounds of Olive Oils, and No Effect of Trolox, on 7-Ketocholesterol-Induced Mitochondrial and Peroxisomal Dysfunction in Microglial BV-2 Cells

    Science.gov (United States)

    Debbabi, Meryam; Nury, Thomas; Zarrouk, Amira; Mekahli, Nadia; Bezine, Maryem; Sghaier, Randa; Grégoire, Stéphane; Martine, Lucy; Durand, Philippe; Camus, Emmanuelle; Vejux, Anne; Jabrane, Aymen; Bretillon, Lionel; Prost, Michel; Moreau, Thibault; Ammou, Sofien Ben; Hammami, Mohamed; Lizard, Gérard

    2016-01-01

    Lipid peroxidation products, such as 7-ketocholesterol (7KC), may be increased in the body fluids and tissues of patients with neurodegenerative diseases and trigger microglial dysfunction involved in neurodegeneration. It is therefore important to identify synthetic and natural molecules able to impair the toxic effects of 7KC. We determined the impact of 7KC on murine microglial BV-2 cells, especially its ability to trigger mitochondrial and peroxisomal dysfunction, and evaluated the protective effects of α- and γ-tocopherol, Trolox, and oleic acid (OA). Multiple complementary chemical assays, flow cytometric and biochemical methods were used to evaluate the antioxidant and cytoprotective properties of these molecules. According to various complementary assays to estimate antioxidant activity, only α-, and γ-tocopherol, and Trolox had antioxidant properties. However, only α-tocopherol, γ-tocopherol and OA were able to impair 7KC-induced loss of mitochondrial transmembrane potential, which is associated with increased permeability to propidium iodide, an indicator of cell death. In addition, α-and γ-tocopherol, and OA were able to prevent the decrease in Abcd3 protein levels, which allows the measurement of peroxisomal mass, and in mRNA levels of Abcd1 and Abcd2, which encode for two transporters involved in peroxisomal β-oxidation. Thus, 7KC-induced side effects are associated with mitochondrial and peroxisomal dysfunction which can be inversed by natural compounds, thus supporting the hypothesis that the composition of the diet can act on the function of organelles involved in neurodegenerative diseases. PMID:27897980

  9. The protective effect of fermented Curcuma longa L. on memory dysfunction in oxidative stress-induced C6 gliomal cells, proinflammatory-activated BV2 microglial cells, and scopolamine-induced amnesia model in mice.

    Science.gov (United States)

    Eun, Cheong-Su; Lim, Jong-Soon; Lee, Jihye; Lee, Sam-Pin; Yang, Seun-Ah

    2017-07-17

    Curcuma longa L. is a well-known medicinal plant that has been used for its anti-cancer, neuroprotective, and hepatoprotective effects. However, the neuroprotective effect of fermented C. longa (FCL) has not been reported. Therefore, in this study, the effectiveness of FCL for the regulation of memory dysfunction was investigated in two brain cell lines (rat glioma C6 and murine microglia BV2) and scopolamine-treated mice. C. longa powder was fermented by 5% Lactobacillus plantarum K154 containing 2% (w/v) yeast extract at 30 °C for 72 h followed by sterilization at 121 °C for 15 min. The protective effects of fermented C. longa (FCL) on oxidative stress induced cell death were analyzed by MTT assay in C6 cells. The anti-inflammatory effects of FCL were investigated by measuring the production of nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) as well as the expression levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated BV2 cells. The step-through passive avoidance test, Morris water maze test, acetylcholinesterase (AChE) activity, and expression of cAMP response element-binding protein (CREB) and brain-derived neurotropic factor (BDNF) were employed to determine the effects of FCL on scopolamine-induced memory deficit in mice. The contents of curcuminoids were analyzed through LC/MS. Pretreatment with FCL effectively prevented the cell death induced by oxidative stress in C6 cells. Moreover, FCL inhibited the production NO and PGE 2 via the inhibition of iNOS and COX-2 expression in BV2 cells. FCL significantly attenuated scopolamine-induced memory impairment in mice and prevented scopolamine-induced AChE activity in the hippocampus. Additionally, FCL reversed the reduction of CREB and BDNF expression. The curcuminoids content in FCL was 1.44%. FCL pretreatment could alleviate scopolamine-induced memory impairment in mice, as well as oxidative stress and inflammation in C6 and BV2 cells, respectively. Thus, FCL might be a

  10. Ganoderma lucidum ethanol extract inhibits the inflammatory response by suppressing the NF-κB and toll-like receptor pathways in lipopolysaccharide-stimulated BV2 microglial cells.

    Science.gov (United States)

    Yoon, Hyun-Min; Jang, Kyung-Jun; Han, Min Seok; Jeong, Jin-Woo; Kim, Gi Young; Lee, Jai-Heon; Choi, Yung Hyun

    2013-03-01

    Ganoderma lucidum is a traditional Oriental medicine that has been widely used as a tonic to promote longevity and health in Korea and other Asian countries. Although a great deal of work has been carried out on the therapeutic potential of this mushroom, the pharmacological mechanisms of its anti-inflammatory actions remain unclear. In this study, we evaluated the inhibitory effects of G. lucidum ethanol extract (EGL) on the production of inflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated murine BV2 microglia. We also investigated the effects of EGL on the LPS-induced activation of nuclear factor kappaB (NF-κB) and upregulation of toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). Elevated levels of nitric oxide (NO), prostaglandin E(2) (PGE(2)) and pro-inflammatory cytokine production were detected in BV2 microglia following LPS stimulation. We identifed that EGL significantly inhibits the excessive production of NO, PGE(2) and pro-inflammatory cytokines, including interleukin (IL)-1β and tumor necrosis factor-α in a concentration-dependent manner without causing cytotoxicity. In addition, EGL suppressed NF-κB translocation and transcriptional activity by blocking IκB degradation and inhibiting TLR4 and MyD88 expression in LPS-stimulated BV2 cells. Our results indicate that the inhibitory effects of EGL on LPS-stimulated inflammatory responses in BV2 microglia are associated with the suppression of the NF-κB and TLR signaling pathways. Therefore, EGL may be useful in the treatment of neurodegenerative diseases by inhibiting inflammatory mediator responses in activated microglia.

  11. Delta 9-THC and N-arachidonoyl glycine regulate BV-2 microglial morphology and cytokine release plasticity: implications for signaling at GPR18

    Directory of Open Access Journals (Sweden)

    Douglas eMcHugh

    2014-01-01

    Full Text Available Microglial cells are extremely plastic and undergo a variety of CNS-prompted shape changes relative to their location and current role. Signaling molecules from neurons also regulate microglial cytokine production. Neurons are known to employ the endogenous cannabinoid system to communicate with other cells of the CNS. N-arachidonoyl glycine (NAGly and Δ9-tetrahydrocannabinol (Δ9-THC signaling via GPR18 has been introduced as an important new target in microglial-neuronal communication. Our hypothesis is that endogenous NAGly-GPR18 signaling regulates phenotypic shape and cytokine production in microglia, and is mimicked by Δ9-THC in the BV-2 microglia model system. BV-2 microglia were exposed to NAGly and Δ9-THC or Vh for 12 hours, which resulted in significant differences in the cell morphologies expressed. Cannabidiol (CBD was effective at antagonizing the effects of both NAGly and Δ9-THC. Using ELISA-based microarrays, BV-2 microglia were exposed to NAGly and Δ9-THC or Vh for 3 hours and the presence of 40 cytokines in the culture media quantified. Production of Axl, CD40, IGF-I, OPN and Pro-MMP-9 were significantly altered by NAGly and Δ9-THC, and antagonized by CBD. These data add to an emerging profile that emphasizes NAGly as a component of an endogenous system present in the CNS that tightly integrates microglial proliferation, recruitment and adhesion with neuron-glia interactivity and tissue remodeling.

  12. Inhibitory effect of a tyrosine-fructose Maillard reaction product, 2,4-bis(p-hydroxyphenyl-2-butenal on amyloid-β generation and inflammatory reactions via inhibition of NF-κB and STAT3 activation in cultured astrocytes and microglial BV-2 cells

    Directory of Open Access Journals (Sweden)

    Choi Im Seup

    2011-10-01

    Full Text Available Abstract Background Amyloidogenesis is linked to neuroinflammation. The tyrosine-fructose Maillard reaction product, 2,4-bis(p-hydroxyphenyl-2-butenal, possesses anti-inflammatory properties in cultured macrophages, and in an arthritis animal model. Because astrocytes and microglia are responsible for amyloidogenesis and inflammatory reactions in the brain, we investigated the anti-inflammatory and anti-amyloidogenic effects of 2,4-bis(p-hydroxyphenyl-2-butenal in lipopolysaccharide (LPS-stimulated astrocytes and microglial BV-2 cells. Methods Cultured astrocytes and microglial BV-2 cells were treated with LPS (1 μg/ml for 24 h, in the presence (1, 2, 5 μM or absence of 2,4-bis(p-hydroxyphenyl-2-butenal, and harvested. We performed molecular biological analyses to determine the levels of inflammatory and amyloid-related proteins and molecules, cytokines, Aβ, and secretases activity. Nuclear factor-kappa B (NF-κB DNA binding activity was determined using gel mobility shift assays. Results We found that 2,4-bis(p-hydroxyphenyl-2-butenal (1, 2, 5 μM suppresses the expression of inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 as well as the production of nitric oxide (NO, reactive oxygen species (ROS, tumor necrosis factor-α (TNF-α, and interleukin-1β (IL-1β in LPS (1 μg/ml-stimulated astrocytes and microglial BV-2 cells. Further, 2,4-bis(p-hydroxyphenyl-2-butenal inhibited the transcriptional and DNA binding activity of NF-κB--a transcription factor that regulates genes involved in neuroinflammation and amyloidogenesis via inhibition of IκB degradation as well as nuclear translocation of p50 and p65. Consistent with the inhibitory effect on inflammatory reactions, 2,4-bis(p-hydroxyphenyl-2-butenal inhibited LPS-elevated Aβ42 levels through attenuation of β- and γ-secretase activities. Moreover, studies using signal transducer and activator of transcription 3 (STAT3 siRNA and a pharmacological inhibitor showed that 2

  13. stimulated BV2 Microglial

    African Journals Online (AJOL)

    2012-03-26

    Mar 26, 2012 ... (PGE2) as well as their regulatory genes such as inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-. 2), in LPS-stimulated ... mediated NF-κB activity. Keywords: Myelophycus caespitosus, Nitric oxide, Prostaglandin E2, Nuclear factor-κB. ..... induced by hypoxia and endotoxin. J Immunol. 2000 ...

  14. Dopamine inhibits lipopolysaccharide-induced nitric oxide production through the formation of dopamine quinone in murine microglia BV-2 cells

    Directory of Open Access Journals (Sweden)

    Yasuhiro Yoshioka

    2016-02-01

    Full Text Available Dopamine (DA has been suggested to modulate functions of glial cells including microglial cells. To reveal the regulatory role of DA in microglial function, in the present study, we investigated the effect of DA on lipopolysaccharide (LPS-induced nitric oxide (NO production in murine microglial cell line BV-2. Pretreatment with DA for 24 h concentration-dependently attenuated LPS-induced NO production in BV-2 cells. The inhibitory effect of DA on LPS-induced NO production was not inhibited by SCH-23390 and sulpiride, D1-like and D2-like DA receptor antagonists, respectively. In addition, pretreatment with (−-(6aR,12bR-4,6,6a,7,8,12b-Hexahydro-7-methylindolo[4,3-a]phenanthridin (CY 208–243 and bromocriptine, D1-like and D2-like DA receptor agonists, respectively, did not affect the LPS-induced NO production. N-Acetylcysteine, which inhibits DA oxidation, completely inhibited the effect of DA. Tyrosinase, which catalyzes the oxidation of DA to DA quionone (DAQ, accelerated the inhibitory effect of DA on LPS-induced NO production. These results suggest that DA attenuates LPS-induced NO production through the formation of DAQ in BV-2 cells.

  15. Anti-inflammatory effects of the cannabidiol derivative dimethylheptyl-cannabidiol - studies in BV-2 microglia and encephalitogenic T cells.

    Science.gov (United States)

    Juknat, Ana; Kozela, Ewa; Kaushansky, Nathali; Mechoulam, Raphael; Vogel, Zvi

    2016-05-01

    Dimethylheptyl-cannabidiol (DMH-CBD), a non-psychoactive, synthetic derivative of the phytocannabinoid cannabidiol (CBD), has been reported to be anti-inflammatory in RAW macrophages. Here, we evaluated the effects of DMH-CBD at the transcriptional level in BV-2 microglial cells as well as on the proliferation of encephalitogenic T cells. BV-2 cells were pretreated with DMH-CBD, followed by stimulation with the endotoxin lipopolysaccharide (LPS). The expression levels of selected genes involved in stress regulation and inflammation were determined by quantitative real-time PCR. In addition, MOG35-55-reactive T cells (TMOG) were cultured with antigen-presenting cells in the presence of DMH-CBD and MOG35-55 peptide, and cell proliferation was determined by measuring [3H]thymidine incorporation. DMH-CBD treatment downregulated in a dose-dependent manner the mRNA expression of LPS-upregulated pro-inflammatory genes (Il1b, Il6, and Tnf) in BV-2 microglial cells. The expression of these genes was also downregulated by DMH-CBD in unstimulated cells. In parallel, DMH-CBD upregulated the expression of genes related to oxidative stress and glutathione homeostasis such as Trb3, Slc7a11/xCT, Hmox1, Atf4, Chop, and p8 in both stimulated and unstimulated microglial cells. In addition, DMH-CBD dose-dependently inhibited MOG35-55-induced TMOG proliferation. The results show that DMH-CBD has similar anti-inflammatory properties to those of CBD. DMH-CBD downregulates the expression of inflammatory cytokines and protects the microglial cells by inducing an adaptive cellular response against inflammatory stimuli and oxidative injury. In addition, DMH-CBD decreases the proliferation of pathogenic activated TMOG cells.

  16. Anti-inflammatory effects of sargachromenol-rich ethanolic extract of Myagropsis myagroides on lipopolysaccharide-stimulated BV-2 cells

    OpenAIRE

    Kim, Sunghee; Lee, Min-Sup; Lee, Bonggi; Gwon, Wi-Gyeong; Joung, Eun-Ji; Yoon, Na-Young; Kim, Hyeung-Rak

    2014-01-01

    Background Excessive pro-inflammatory cytokine production from activated microglia contributes to neurodegenerative diseases, thus, microglial inactivation may delay the progress of neurodegeneration by attenuating the neuroinflammation. Among 5 selected brown algae, we found the highest antioxidant and anti-neuroinflammatory activities from Myagropsis myagroides ethanolic extract (MME) in lipopolysaccharide (LPS)-stimulated BV-2 cells. Methods The levels of nitric oxide (NO), prostaglandin E...

  17. TLR4 Signaling in MPP+-Induced Activation of BV-2 Cells

    Directory of Open Access Journals (Sweden)

    Peng Zhou

    2016-01-01

    Full Text Available Aims. This work was conducted to establish an in vitro Parkinson’s disease (PD model by exposing BV-2 cells to 1-methyl-4-phenylpyridinium (MPP+ and exploring the roles of TLR2/TLR4/TLR9 in inflammatory responses to MPP+. Methods/Results. MTT assay showed that cell viability of BV-2 cells was 84.78 ± 0.86% and 81.18 ± 0.99% of the control after incubation with 0.1 mM MPP+ for 12 hours and 24 hours, respectively. Viability was not significantly different from the control group. With immunofluorescence technique, we found that MPP+ incubation at 0.1 mM for 12 hours was the best condition to activate BV-2 cells. In this condition, the levels of TNF-α, IL-1β, and iNOS protein were statistically increased compared to the control according to ELISA tests. Real time RT-PCR and western blot measurements showed that TLR4 was statistically increased after 0.1 mM MPP+ incubation for 12 hours. Furthermore, after siRNA interference of TLR4 mRNA, NF-κB activation and the levels of TNF-α, IL-1β, and iNOS were all statistically decreased in this cell model. Conclusion. MPP+ incubation at the concentration of 0.1 mM for 12 hours is the best condition to activate BV-2 cells for mimicking PD inflammation in BV-2 cells. TLR4 signalling plays a critical role in the activation of BV-2 cells and the induction of inflammation in this cell model.

  18. Taraxasterol Inhibits LPS-Induced Inflammatory Response in BV2 Microglia Cells by Activating LXRα

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2018-04-01

    Full Text Available Neuroinflammation plays a critical role in the development of neurodegenerative diseases. Taraxasterol, a pentacyclic-triterpene isolated from Taraxacum officinale, has been reported to have anti-inflammatory effect. The aim of this study was to investigate the anti-inflammatory effects and mechanism of taraxasterol in LPS-stimulated BV2 microglia cells. BV2 microglia cells were treated with taraxasterol 12 h before LPS stimulation. The effects of taraxasterol on LPS-induced TNF-α and IL-1β production were detected by ELISA. The effects of taraxasterol on LXRα, ABCA1, TLR4, and NF-κB expression were detected by western blot analysis. The results showed that taraxasterol dose-dependently inhibited LPS-induced TNF-α and IL-1β production and NF-κB activation. Taraxasterol also disrupted the formation of lipid rafts and inhibited translocation of TLR4 into lipid rafts. Furthermore, taraxasterol was found to activate LXRα-ABCA1 signaling pathway which induces cholesterol efflux from cells. In addition, our results showed that the anti-inflammatory effect of taraxasterol was attenuated by transfection with LXRα siRNA. In conclusion, these results suggested that taraxasterol inhibits LPS-induced inflammatory response in BV2 microglia cells by activating LXRα-ABCA1 signaling pathway.

  19. Linalool Inhibits LPS-Induced Inflammation in BV2 Microglia Cells by Activating Nrf2.

    Science.gov (United States)

    Li, Yang; Lv, Ou; Zhou, Fenggang; Li, Qingsong; Wu, Zhichao; Zheng, Yongri

    2015-07-01

    Linalool, a natural compound of the essential oils, has been reported to have anti-inflammatory effects. This study aimed to investigate the anti-inflammatory effects and mechanism of linalool in LPS-stimulated BV2 microglia cells. BV2 microglia cells were stimulated with LPS in the presence or absence of linalool. The production of inflammatory mediators TNF-α, IL-1β, NO, and PGE2 as well as Nrf2, HO-1 expression were detected. Our results showed that linalool inhibited LPS-induced TNF-α, IL-1β, NO, and PGE2 production in a dose-dependent manner. Linalool also inhibited LPS-induced NF-κB activation. Treatment of linalool induced nuclear translocation of Nrf2 and expression of HO-1. In addition, our results showed that the anti-inflammatory effect of linalool was attenuated by transfection with Nrf2 siRNA. In conclusion, these results suggested that linalool inhibits LPS-induced inflammation in BV2 microglia cells by activating Nrf2/HO-1 signaling pathway.

  20. Biological activities of Schottenol and Spinasterol, two natural phytosterols present in argan oil and in cactus pear seed oil, on murine miroglial BV2 cells

    International Nuclear Information System (INIS)

    El Kharrassi, Youssef; Samadi, Mohammad; Lopez, Tatiana; Nury, Thomas; El Kebbaj, Riad; Andreoletti, Pierre; El Hajj, Hammam I.; Vamecq, Joseph; Moustaid, Khadija; Latruffe, Norbert; El Kebbaj, M’Hammed Saïd; Masson, David

    2014-01-01

    Highlights: • Sterol composition in argan oil and in cactus seed oil. • Chemical synthesis of two sterols: Schottenol and Spinasterol. • Sterols from argan oil or from cactus seed oil show no toxicity on BV2 cells. • Schottenol and Spinasterol modulate the activation and the expression of two nuclear receptors, LXRα and LXRβ. - Abstract: The objective of this study was to evaluate the biological activities of the major phytosterols present in argan oil (AO) and in cactus seed oil (CSO) in BV2 microglial cells. Accordingly, we first determined the sterol composition of AO and CSO, showing the presence of Schottenol and Spinasterol as major sterols in AO. While in CSO, in addition to these two sterols, we found mainly another sterol, the Sitosterol. The chemical synthesis of Schottenol and Spinasterol was performed. Our results showed that these two phytosterols, as well as sterol extracts from AO or CSO, are not toxic to microglial BV2 cells. However, treatments by these phytosterols impact the mitochondrial membrane potential. Furthermore, both Schottenol and Spinasterol can modulate the gene expression of two nuclear receptors, liver X receptor (LXR)-α and LXRβ, their target genes ABCA1 and ABCG1. Nonetheless, only Schottenol exhibited a differential activation vis-à-vis the nuclear receptor LXRβ. Thus Schottenol and Spinasterol can be considered as new LXR agonists, which may play protective roles by the modulation of cholesterol metabolism

  1. Biological activities of Schottenol and Spinasterol, two natural phytosterols present in argan oil and in cactus pear seed oil, on murine miroglial BV2 cells

    Energy Technology Data Exchange (ETDEWEB)

    El Kharrassi, Youssef [Université de Bourgogne, Laboratoire Bio-PeroxIL, EA7270, Dijon F-21000 (France); Laboratoire de Biochimie et Neurosciences, Faculté des Sciences et Techniques, Université Hassan I, BP 577, 26000 Settat (Morocco); Samadi, Mohammad [LCPMC-A2, ICPM, Department of Chemistry, Université de Lorraine, Metz (France); Lopez, Tatiana [CRINSERM 866, Dijon (France); Nury, Thomas [Université de Bourgogne, Laboratoire Bio-PeroxIL, EA7270, Dijon F-21000 (France); El Kebbaj, Riad [Université de Bourgogne, Laboratoire Bio-PeroxIL, EA7270, Dijon F-21000 (France); Laboratoire de Biochimie et Neurosciences, Faculté des Sciences et Techniques, Université Hassan I, BP 577, 26000 Settat (Morocco); Andreoletti, Pierre; El Hajj, Hammam I. [Université de Bourgogne, Laboratoire Bio-PeroxIL, EA7270, Dijon F-21000 (France); Vamecq, Joseph [INSERM and HMNO, CBP, CHRU Lille, 59037 Lille (France); Moustaid, Khadija [Laboratoire de Biochimie et Neurosciences, Faculté des Sciences et Techniques, Université Hassan I, BP 577, 26000 Settat (Morocco); Latruffe, Norbert [Université de Bourgogne, Laboratoire Bio-PeroxIL, EA7270, Dijon F-21000 (France); El Kebbaj, M’Hammed Saïd [Laboratoire de recherche sur les Lipoprotéines et l’Athérosclérose, Faculté des Sciences Ben M’sik, Avenue Cdt Driss El Harti BP. 7955, Université Hassan II-Mohammedia-Casablanca (Morocco); Masson, David [CRINSERM 866, Dijon (France); and others

    2014-04-11

    Highlights: • Sterol composition in argan oil and in cactus seed oil. • Chemical synthesis of two sterols: Schottenol and Spinasterol. • Sterols from argan oil or from cactus seed oil show no toxicity on BV2 cells. • Schottenol and Spinasterol modulate the activation and the expression of two nuclear receptors, LXRα and LXRβ. - Abstract: The objective of this study was to evaluate the biological activities of the major phytosterols present in argan oil (AO) and in cactus seed oil (CSO) in BV2 microglial cells. Accordingly, we first determined the sterol composition of AO and CSO, showing the presence of Schottenol and Spinasterol as major sterols in AO. While in CSO, in addition to these two sterols, we found mainly another sterol, the Sitosterol. The chemical synthesis of Schottenol and Spinasterol was performed. Our results showed that these two phytosterols, as well as sterol extracts from AO or CSO, are not toxic to microglial BV2 cells. However, treatments by these phytosterols impact the mitochondrial membrane potential. Furthermore, both Schottenol and Spinasterol can modulate the gene expression of two nuclear receptors, liver X receptor (LXR)-α and LXRβ, their target genes ABCA1 and ABCG1. Nonetheless, only Schottenol exhibited a differential activation vis-à-vis the nuclear receptor LXRβ. Thus Schottenol and Spinasterol can be considered as new LXR agonists, which may play protective roles by the modulation of cholesterol metabolism.

  2. Anti-inflammatory effects of sargachromenol-rich ethanolic extract of Myagropsis myagroides on lipopolysaccharide-stimulated BV-2 cells.

    Science.gov (United States)

    Kim, Sunghee; Lee, Min-Sup; Lee, Bonggi; Gwon, Wi-Gyeong; Joung, Eun-Ji; Yoon, Na-Young; Kim, Hyeung-Rak

    2014-07-09

    Excessive pro-inflammatory cytokine production from activated microglia contributes to neurodegenerative diseases, thus, microglial inactivation may delay the progress of neurodegeneration by attenuating the neuroinflammation. Among 5 selected brown algae, we found the highest antioxidant and anti-neuroinflammatory activities from Myagropsis myagroides ethanolic extract (MME) in lipopolysaccharide (LPS)-stimulated BV-2 cells. The levels of nitric oxide (NO), prostaglandin E2 (PGE2), and pro-inflammatory cytokines were measured by Griess assay and enzyme linked immunesorbent assay. The levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), mitogen-activated protein kinases (MAPKs), and Akt were measured using Western blot. Nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) were determined by immunefluorescence and reporter gene assay, respectively. MME inhibited the expression of iNOS and COX-2 at mRNA and protein levels, resulting in reduction of NO and PGE2 production. As a result, pro-inflammatory cytokines were reduced by MME. MME also inhibited the activation and translocation of NF-κB by preventing inhibitor κB-α (IκB-α) degradation. Moreover, MME inhibited the phosphorylation of extracellular signal regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs). Main anti-inflammatory compound in MME was identified as sargachromenol by NMR spectroscopy. These results indicate that the anti-inflammatory effect of sargachromenol-rich MME on LPS-stimulated microglia is mainly regulated by the inhibition of IκB-α/NF-κB and ERK/JNK pathways.

  3. Apigetrin from Scutellaria baicalensis Georgi Inhibits Neuroinflammation in BV-2 Microglia and Exerts Neuroprotective Effect in HT22 Hippocampal Cells.

    Science.gov (United States)

    Lim, Hye-Sun; Kim, Ohn-Soon; Kim, Bu-Yeo; Jeong, Soo-Jin

    2016-11-01

    Apigetrin is a flavonoid isolated from various herbal medicines such as Scutellaria baicalensis Georgi, Matricaria chamomilla, Stachys tibetica Vatke, and Teucrium gnaphalodes. In the present study, we investigated the inhibitory effects of apigetrin on neuroinflammation using the BV-2 microglia cell line. Our data revealed that apigetrin significantly reduced secretion and mRNA expression of inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), in lipopolysaccharide (LPS)-stimulated BV-2 mouse microglia. Apigetrin also significantly decreased LPS-mediated production of prostaglandin E 2 (PGE 2 ) level and nitric oxide (NO) production as well as expression of cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) in BV-2 cells. In addition, apigetrin suppressed nuclear expression of nuclear factor kappa B (NF-κB) in LPS-stimulated BV-2 cells. Furthermore, apigetrin significantly impaired reactive oxygen species (ROS) generation and enhanced expression of antioxidant enzymes, hempxygenase 1 (HO-1) and nuclear factor-like 2 (Nrf2), in BV-2 cells. Apigetrin also increased 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, indicating antioxidative activity of apigetrin. Moreover, we found that apigetrin inhibited hydrogen peroxide (H 2 O 2 )-induced cell death in HT22 hippocampal cells. Overall, our findings indicate that apigetrin has inhibitory effects on neuroinflammation as well as antioxidation and neuroprotection, suggesting the potential prophylactic activity for neurodegenerative diseases through the inter-regulation of neuroinflammation, oxidative stress, and neuronal injury.

  4. Pristimerin Inhibits LPS-Triggered Neurotoxicity in BV-2 Microglia Cells Through Modulating IRAK1/TRAF6/TAK1-Mediated NF-κB and AP-1 Signaling Pathways In Vitro.

    Science.gov (United States)

    Hui, Bin; Zhang, Liping; Zhou, Qinhua; Hui, Ling

    2018-02-01

    Microglia plays a prominent role in the brain's inflammatory response to injury or infection by migrating to affected locations and secreting inflammatory molecules. However, hyperactivated microglial is neurotoxic and plays critical roles in the pathogenesis of neurodegenerative diseases. Pristimerin, a naturally occurring triterpenoid, possesses antitumor, antioxidant, and anti-inflammatory activities. However, the effect and the molecular mechanism of pristimerin against lipopolysaccharide (LPS)-induced neurotoxicity in microglia remain to be revealed. In the present study, using BV-2 microglial cultures, we investigated whether pristimerin modifies neurotoxicity after LPS stimulation and which intracellular pathways are involved in the effect of pristimerin. Here we show that pristimerin markedly suppressed the release of Regulated on Activation, Normal T Expressed and Secreted (RANTES), transforming growth factor-β1 (TGF-β1), IL-6, tumor necrosis factor-α (TNF-α), and nitric oxide (NO). Pristimerin also significantly inhibited migration of BV-2 microglia and alleviated the death of neuron-like PC12 cell induced by the conditioned medium from LPS-activated BV-2 microglial cells. Moreover, pristimerin reduced the expression and interaction of TNF Receptor-Associated Factor 6 (TRAF6) and Interleukin-1 Receptor-Associated Kinases (IRAK1), limiting TGF-beta activating kinase 1 (TAK1) activation, and resulting in an inhibition of IKKα/β/NF-κB and MKK7/JNK/AP-1 signaling pathway in LPS-activated BV-2 microglia. Taken together, the anti-neurotoxicity action of pristimerin is mediated through the inhibition of TRAF6/IRAK1/TAK1 interaction as well as the related pathways: IKKα/β/NF-κB and MKK7/JNK/AP-1 signaling pathways. These findings may suggest that pristimerin might serve as a new therapeutic agent for treating hyperactivated microglial induced neurodegenerative diseases.

  5. Anti-inflammatory effects of tanshinone IIA on radiation-induced microglia BV-2 cells inflammatory response

    DEFF Research Database (Denmark)

    Dong, Xiaorong; Dong, Jihua; Zhang, Ruiguang

    2009-01-01

    and confocal microscopy analysis were applied to detect the expression of gamma-H2AX and p65 postirradiation. RESULTS: Radiation-induced release of proinflammatory cytokines in BV-2 cells was detectable after irradiation. Tanshinone II(A) decreased the radiation-induced release of proinflammatory cytokines......AIM: The aim of this study was to explore the inhibitory effects of Tanshinone II(A) on the production of proinflammation cytokines in radiation-stimulated microglia. METHODS: Microglia cells were treated with 2, 4, 8, 16, and 32 Gy of irradiation or sham-irradiated in the presence or absence of 1....... Further, Western blotting showed that Tanshinone II(A) could attenuate the nuclear translocation of (NF-kappabeta) p65 submit postirradiation. Immunofluorescence staining showed gamma-H2AX foci formation with p65 translocation into the nucleus postirradiation. CONCLUSIONS: Our data indicated...

  6. Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells.

    Science.gov (United States)

    Foresti, Roberta; Bains, Sandip K; Pitchumony, Tamil Selvi; de Castro Brás, Lisandra E; Drago, Filippo; Dubois-Randé, Jean-Luc; Bucolo, Claudio; Motterlini, Roberto

    2013-10-01

    The nuclear factor erythroid derived 2-related factor 2 (Nrf2) and the antioxidant protein heme oxygenase-1 (HO-1) are crucial components of the cellular stress response. These two systems work together to combat oxidative stress and inflammation and are attractive drug targets for counteracting different pathologies, including neuroinflammation. We aimed to identify the most effective Nrf2/HO-1 activators that modulate the inflammatory response in microglia cells. In the present study, we searched the literature and selected 56 compounds reported to activate Nrf2 or HO-1 and analyzed them for HO-1 induction at 6 and 24h and cytotoxicity in BV2 microglial cells in vitro. Approximately 20 compounds up-regulated HO-1 at the concentrations tested (5-20 μM) with carnosol, supercurcumin, cobalt protoporphyrin-IX and dimethyl fumarate exhibiting the best induction/low cytotoxicity profile. Up-regulation of HO-1 by some compounds resulted in increased cellular bilirubin levels but did not augment the expression of proteins involved in heme synthesis (ALAS 1) or biliverdin reductase. Bilirubin production by HO-1 inducers correlated with their potency in inhibiting nitrite production after challenge with interferon-γ (INF-γ) or lipopolysaccharide (LPS). The compounds down-regulated the inflammatory response (TNF-α, PGE2 and nitrite) more strongly in cells challenged with INF-γ than LPS, and silencing HO-1 or Nrf2 with shRNA differentially affected the levels of inflammatory markers. These findings indicate that some small activators of Nrf2/HO-1 are effective modulators of microglia inflammation and highlight the chemical scaffolds that can serve for the synthesis of potent new derivatives to counteract neuroinflammation and neurodegeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. 6-Shogaol attenuates LPS-induced inflammation in BV2 microglia cells by activating PPAR-γ.

    Science.gov (United States)

    Han, Qinghe; Yuan, Qinghai; Meng, Xiaolin; Huo, Junyuan; Bao, Yuxin; Xie, Guanghong

    2017-06-27

    6-Shogaol, a pungent agent isolated from Zingiber officinale Roscoe, has been known to have anti-tumor and anti-inflammatory effects. However, the anti-inflammatory effects and biological mechanism of 6-Shogaol in LPS-activated BV2 microglia remains largely unknown. In this study, we evaluated the anti-inflammatory effects of 6-Shogaol in LPS-activated BV2 microglia. 6-Shogaol was administrated 1 h before LPS treatment. The production of inflammatory mediators were detected by ELISA. The expression of NF-κB and PPAR-γ were detected by western blot analysis. Our results revealed that 6-Shogaol inhibited LPS-induced TNF-α, IL-1β, IL-6, and PGE2 production in a concentration dependent manner. Furthermore, 6-Shogaol inhibited LPS-induced NF-κB activation by inhibiting phosphorylation and nuclear translocation of NF-κB p65. In addition, 6-Shogaol could increase the expression of PPAR-γ. Moreover, inhibition of PPAR-γ by GW9662 could prevent the inhibition of 6-Shogaol on LPS-induced inflammatory mediator production. In conclusion, 6-Shogaol inhibits LPS-induced inflammation by activating PPAR-γ.

  8. Microglial Cells Prevent Hemorrhage in Neonatal Focal Arterial Stroke

    OpenAIRE

    Fernández-López, David; Faustino, Joel; Klibanov, Alexander L.; Derugin, Nikita; Blanchard, Elodie; Simon, Franziska; Leib, Stephen L.; Vexler, Zinaida S.

    2016-01-01

    Perinatal stroke leads to significant morbidity and long-term neurological and cognitive deficits. The pathophysiological mechanisms of brain damage depend on brain maturation at the time of stroke. To understand whether microglial cells limit injury after neonatal stroke by preserving neurovascular integrity, we subjected postnatal day 7 (P7) rats depleted of microglial cells, rats with inhibited microglial TGFbr2/ALK5 signaling, and corresponding controls, to transient middle cerebral arter...

  9. Activation of BV2 microglia by lipopolysaccharide triggers an inflammatory reaction in PC12 cell apoptosis through a toll-like receptor 4-dependent pathway.

    Science.gov (United States)

    Dai, Xiao-jing; Li, Na; Yu, Le; Chen, Zi-yang; Hua, Rong; Qin, Xia; Zhang, Yong-Mei

    2015-03-01

    Microglia play an important role in neuronal protection and damage. However, the molecular and cellular relationship between microglia and neurons is unclear. We carried out a prospective study to detect that activation of BV2 microglia induced PC12 cell apoptosis in vitro through the TLR4/adapter protein myeloid differentiation factor 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway. BV2 microglia were treated with different concentrations of LPS for 24 h. Western blot was utilized to detect the expression of TLR4 and the downstream signaling pathway. The level of inflammatory mediator was quantified using a specific ELISA kit. The supernatant of 10 μg/ml LPS-treated BV2 cells was used as conditioned medium (CM). PC12 cells were co-culture with CM for 24 h. Cell viability was determined by MTT assay and cell apoptosis was tested by flow cytometry. BV2 microglia were treated with 10, 20, or 30 μg/ml LPS for 24 h. The expression of TLR4, MyD88, and NF-κB significantly increased. When PC12 cells were co-cultured with CM for 24 h, cell viability decreased. CM up-regulated the Bax level and down-regulated the Bcl-2 protein level in PC12 cells. PC12 cells pretreated with interleukin-1 receptor antagonist (IL-1RA) for 30 min, significantly alleviated CM-induced PC12 cell apoptosis. These results suggest that BV2 microglia activated by LPS triggered TLR4/MyD88/NF-κB signaling pathway that induced the release of IL-1β and could participate in the PC12 cells injury.

  10. Gardenia jasminoides extracts and gallic acid inhibit lipopolysaccharide-induced inflammation by suppression of JNK2/1 signaling pathways in BV-2 cells

    Directory of Open Access Journals (Sweden)

    Wen-Hung Lin

    2015-06-01

    Conclusion:Taken together, these results indicate that the protective mechanism of the GJ extract involves an antioxidant effect and inhibition of JNK2/1 MAP kinase and COX-2 expressions in LPS-induced inflammation of BV-2 cells.

  11. Peripheral viral infection induced microglial sensome genes and enhanced microglial cell activity in the hippocampus of neonatal piglets

    NARCIS (Netherlands)

    Ji, Peng; Schachtschneider, Kyle M.; Schook, Lawrence B.; Walker, Frederick R.; Johnson, Rodney W.

    2016-01-01

    Although poorly understood, early-life infection is predicted to affect brain microglial cells, making them hypersensitive to subsequent stimuli. To investigate this, we assessed gene expression in hippocampal tissue obtained from a previously published study reporting increased microglial cell

  12. [Zileuton, a 5-lipoxygenase inhibitor, attenuates mouse microglial cell-mediated rotenone toxicity in PC12 cells].

    Science.gov (United States)

    Zhang, Xiao-yan; Chen, Lu; Xu, Dong-min; Wang, Xiao-rong; Wang, Yan-fang; Li, Cheng-tan; Wei, Er-qing; Zhang, Li-hui

    2014-05-01

    To examine the effect of a selective inhibitor of 5-lipoxygenase (5-LOX) zileuton on microglia-mediated rotenone neurotoxicity. The supernatant from different concentrations of rotenone-stimulated mouse microglia BV2 cells was used as the conditioned media (CM) for PC12 cells. The viability of PC12 cells was determined by MTT assay and lactate dehydrogenase (LDH) release. Cell death was observed by LDH release and double fluorescence staining with Hoechst/propidiumiodide (PI). The effect of zileuton on microglia-mediated rotenone toxicity was evaluated by the above methods. Rotenone at 1-10 nmol/L was nontoxic to PC12 cells directly. However, the CM from BV2 cells that were treated with rotenone (1-10 nmol/L) resulted in toxicity of PC12 cells. The BV2 CM which stimulated with rotenone (1-10 nmol/L) induced morphological changes, reduced cell viability, and increased LDH release and cell necrosis in PC12 cells. Pretreatment of BV2 cells with the 5-LOX inhibitor zileuton (0.01-1 μmol/L) protected PC12 cells from the microglia-mediated rotenone toxicity. The 5-LOX inhibitor zileuton effectively attenuates microglia-mediated rotenone toxicity in PC12 cells. These results suggest that 5-LOX pathway may be involved in neuronal death induced by microglial inflammation.

  13. Enhanced detection and study of murine norovirus-1 using a more efficient microglial cell line

    Directory of Open Access Journals (Sweden)

    Lu Yuanan

    2009-11-01

    Full Text Available Abstract Background Human Noroviruses are the predominant cause of non-bacterial gastroenteritis worldwide. To facilitate prevention and control, a norovirus isolated from mice can provide a model to understand human noroviruses. To establish optimal viral infectivity conditions for murine noroviruses, several cell lines of hematopoietic lineage, including murine BV-2, RAW 264.7, and TIB, as well as human CHME-5, were tested comparatively for their sensitivity to murine norovirus-1. Results Except for CHME-5, all three murine-derived cell lines were susceptible to MNV infection. Viral infection of these cells was confirmed by RT-PCR. Using both viral plaque and replication assays, BV-2 and RAW 264.7 cells were determined to have comparable sensitivities to MNV-1 infection. Comparisons of cell growth characteristics, general laboratory handling and potential in-field applications suggest the use of BV-2 to be more advantageous. Conclusion Results obtained from these studies demonstrate that an immortalized microglial cell line can support MNV-1 replication and provides a more efficient method to detect and study murine noroviruses, facilitating future investigations using MNV-1 as a model to study, detect, and control Human Norovirus.

  14. Inhibition of CD200R1 expression by C/EBP beta in reactive microglial cells

    Directory of Open Access Journals (Sweden)

    Dentesano Guido

    2012-07-01

    Full Text Available Abstract Background In physiological conditions, it is postulated that neurons control microglial reactivity through a series of inhibitory mechanisms, involving either cell contact-dependent, soluble-factor-dependent or neurotransmitter-associated pathways. In the current study, we focus on CD200R1, a microglial receptor involved in one of these cell contact-dependent mechanisms. CD200R1 activation by its ligand, CD200 (mainly expressed by neurons in the central nervous system,is postulated to inhibit the pro-inflammatory phenotype of microglial cells, while alterations in CD200-CD200R1 signalling potentiate this phenotype. Little is known about the regulation of CD200R1 expression in microglia or possible alterations in the presence of pro-inflammatory stimuli. Methods Murine primary microglial cultures, mixed glial cultures from wild-type and CCAAT/enhancer binding protein β (C/EBPβ-deficient mice, and the BV2 murine cell line overexpressing C/EBPβ were used to study the involvement of C/EBPβ transcription factor in the regulation of CD200R1 expression in response to a proinflammatory stimulus (lipopolysaccharide (LPS. Binding of C/EBPβ to the CD200R1 promoter was determined by quantitative chromatin immunoprecipitation (qChIP. The involvement of histone deacetylase 1 in the control of CD200R1 expression by C/EBPβ was also determined by co-immunoprecipitation and qChIP. Results LPS treatment induced a decrease in CD200R1 mRNA and protein expression in microglial cells, an effect that was not observed in the absence of C/EBPβ. C/EBPβ overexpression in BV2 cells resulted in a decrease in basal CD200R1 mRNA and protein expression. In addition, C/EBPβ binding to the CD200R1 promoter was observed in LPS-treated but not in control glial cells, and also in control BV2 cells overexpressing C/EBPβ. Finally, we observed that histone deacetylase 1 co-immunoprecipitated with C/EBPβ and showed binding to a C/EBPβ consensus sequence of the CD

  15. Microglial Cells Prevent Hemorrhage in Neonatal Focal Arterial Stroke.

    Science.gov (United States)

    Fernández-López, David; Faustino, Joel; Klibanov, Alexander L; Derugin, Nikita; Blanchard, Elodie; Simon, Franziska; Leib, Stephen L; Vexler, Zinaida S

    2016-03-09

    Perinatal stroke leads to significant morbidity and long-term neurological and cognitive deficits. The pathophysiological mechanisms of brain damage depend on brain maturation at the time of stroke. To understand whether microglial cells limit injury after neonatal stroke by preserving neurovascular integrity, we subjected postnatal day 7 (P7) rats depleted of microglial cells, rats with inhibited microglial TGFbr2/ALK5 signaling, and corresponding controls, to transient middle cerebral artery occlusion (tMCAO). Microglial depletion by intracerebral injection of liposome-encapsulated clodronate at P5 significantly reduced vessel coverage and triggered hemorrhages in injured regions 24 h after tMCAO. Lack of microglia did not alter expression or intracellular redistribution of several tight junction proteins, did not affect degradation of collagen IV induced by the tMCAO, but altered cell types producing TGFβ1 and the phosphorylation and intracellular distribution of SMAD2/3. Selective inhibition of TGFbr2/ALK5 signaling in microglia via intracerebral liposome-encapsulated SB-431542 delivery triggered hemorrhages after tMCAO, demonstrating that TGFβ1/TGFbr2/ALK5 signaling in microglia protects from hemorrhages. Consistent with observations in neonatal rats, depletion of microglia before tMCAO in P9 Cx3cr1(GFP/+)/Ccr2(RFP/+) mice exacerbated injury and induced hemorrhages at 24 h. The effects were independent of infiltration of Ccr2(RFP/+) monocytes into injured regions. Cumulatively, in two species, we show that microglial cells protect neonatal brain from hemorrhage after acute ischemic stroke. Copyright © 2016 the authors 0270-6474/16/362881-13$15.00/0.

  16. Induction of Microglial Activation by Mediators Released from Mast Cells

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2016-04-01

    Full Text Available Background/Aims: Microglia are the resident immune cells in the brain and play a pivotal role in immune surveillance in the central nervous system (CNS. Brain mast cells are activated in CNS disorders and induce the release of several mediators. Thus, brain mast cells, rather than microglia, are the “first responders” due to injury. However, the functional aspects of mast cell-microglia interactions remain uninvestigated. Methods: Conditioned medium from activated HMC-1 cells induces microglial activation similar to co-culture of microglia with HMC-1 cells. Primary cultured microglia were examined by flow cytometry analysis and confocal microscopy. TNF- alpha and IL-6 were measured with commercial ELISA kits. Cell signalling was analysed by Western blotting. Results: In the present study, we found that the conditioned medium from activated HMC-1 cells stimulated microglial activation and the subsequent production of the pro-inflammatory factors TNF-α and IL-6. Co-culture of microglia and HMC-1 cells with corticotropin-releasing hormone (CRH for 24, 48 and 72 hours increased TNF-α and IL-6 production. Antagonists of histamine receptor 1 (H1R, H4R, proteinase-activated receptor 2 (PAR2 or Toll-like receptor 4 (TLR4 reduced HMC-1-induced pro-inflammatory factor production and MAPK and PI3K/AKT pathway activation. Conclusions: These results imply that activated mast cells trigger microglial activation. Interactions between mast cells and microglia could constitute a new and unique therapeutic target for CNS inflammation-related diseases.

  17. A histochemical study of the microglial cells in the brain of Salamandra salamandra by lectin binding.

    Science.gov (United States)

    Franceschini, V; Ciani, F

    1992-01-01

    Seven biotinylated lectins were utilized as histochemical markers for the study of microglial cells in the brain of Salamandra salamandra. It has been demonstrated that SBA, BSA-I, BSA-I-B4 and RCA120 label the microglial cells and, on the basis of the binding selectivity of the single lectins for specific carbohydrates, it was found that alpha-galactosyl residues are present in high density on the microglial membrane of S. salamandra. The reaction was localized not only to the ramified microglial cells, but also to other round cells without extensions, interpreted as ameboid microglial cells. The results show that lectin binding is a reliable molecular probe for identifying microglial cells in urodels.

  18. Andrographolide Activates Keap1/Nrf2/ARE/HO-1 Pathway in HT22 Cells and Suppresses Microglial Activation by Aβ42 through Nrf2-Related Inflammatory Response.

    Science.gov (United States)

    Seo, Ji Yeon; Pyo, Euisun; An, Jin-Pyo; Kim, Jinwoong; Sung, Sang Hyun; Oh, Won Keun

    2017-01-01

    Therapeutic approach of Alzheimer's disease (AD) has been gradually diversified. We examined the therapeutic and preventive potential of andrographolide, which is a lactone diterpenoid from Andrographis paniculata , and focused on the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated heme oxygenase (HO)-1-inducing effects and the inhibitory activity of amyloid beta (A β ) 42 -induced microglial activation related to Nrf2 and nuclear factor κ B (NF- κ B)-mediated inflammatory responses. Andrographolide induced the expression and translocation of Nrf2 from the cytoplasm to the nucleus, thereby activating antioxidant response element (ARE) gene transcription and HO-1 expression in murine hippocampal HT22 cells. Andrographolide eliminated intracellular A β 42 in BV-2 cells and decreased the production of interleukin (IL)-6, IL-1 β , prostaglandin (PG)E 2 , and nitric oxide (NO) because of artificial phagocytic A β 42 . It decreased pNF- κ B accumulation in the nucleus and the expression of inducible nitric oxide synthase (i-NOS) and cyclooxygenase II (COX-II) in the microglial BV-2 cell line. In summary, andrographolide activates Nrf2-mediated HO-1 expression and inhibits A β 42 -overexpressed microglial BV-2 cell activation. These results suggested that andrographolide might have the potential for further examination of the therapeutics of AD.

  19. Andrographolide Activates Keap1/Nrf2/ARE/HO-1 Pathway in HT22 Cells and Suppresses Microglial Activation by Aβ42 through Nrf2-Related Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Ji Yeon Seo

    2017-01-01

    Full Text Available Therapeutic approach of Alzheimer’s disease (AD has been gradually diversified. We examined the therapeutic and preventive potential of andrographolide, which is a lactone diterpenoid from Andrographis paniculata, and focused on the Kelch-like ECH-associated protein 1 (Keap1/nuclear factor (erythroid-derived 2-like 2 (Nrf2-mediated heme oxygenase (HO-1-inducing effects and the inhibitory activity of amyloid beta (Aβ42-induced microglial activation related to Nrf2 and nuclear factor κB (NF-κB-mediated inflammatory responses. Andrographolide induced the expression and translocation of Nrf2 from the cytoplasm to the nucleus, thereby activating antioxidant response element (ARE gene transcription and HO-1 expression in murine hippocampal HT22 cells. Andrographolide eliminated intracellular Aβ42 in BV-2 cells and decreased the production of interleukin (IL-6, IL-1β, prostaglandin (PGE2, and nitric oxide (NO because of artificial phagocytic Aβ42. It decreased pNF-κB accumulation in the nucleus and the expression of inducible nitric oxide synthase (i-NOS and cyclooxygenase II (COX-II in the microglial BV-2 cell line. In summary, andrographolide activates Nrf2-mediated HO-1 expression and inhibits Aβ42-overexpressed microglial BV-2 cell activation. These results suggested that andrographolide might have the potential for further examination of the therapeutics of AD.

  20. Tff3 is Expressed in Neurons and Microglial Cells

    Directory of Open Access Journals (Sweden)

    Ting Fu

    2014-11-01

    Full Text Available Background/Aims: The trefoil factor family (TFF peptide TFF3 is typically secreted by mucous epithelia, but is also expressed in the immune system and the brain. It was the aim of this study to determine the cerebral cell types which express Tff3. Methods: Primary cultures from rat embryonic or neonatal cerebral cortex and hippocampus, respectively, were studied by means of RT-PCR and immunofluorescence. Moreover, Tff3 expression was localized by immunocytochemistry in sections of adult rat cerebellum. Results: Tff3 transcripts were detectable in neural cultures of both the cortex and the hippocampus as well as in glial cell-enriched cultures. Tff3 peptide co-localized with Map2 indicating an expression in neurons in vitro. The neuronal expression was confirmed by immunofluorescence studies of adult rat cerebellum. Furthermore, Tff3 peptide showed also a clear co-localization with Iba-1 in vitro typical of activated microglial cells. Conclusion: The neuronal expression of Tff3 is in line with a function of a typical neuropeptide influencing, e.g., fear, memory, depression and motoric skills. The expression in activated microglial cells, which is demonstrated here for the first time, points towards a possible function for Tff3 in immune reactions in the CNS. This opens a plethora of additional possible functions for Tff3 including synaptic plasticity and cognition as well as during neuroinflammatory diseases and psychiatric disorders.

  1. Automatic counting of microglial cell activation and its applications

    Directory of Open Access Journals (Sweden)

    Beatriz I Gallego

    2016-01-01

    Full Text Available Glaucoma is a multifactorial optic neuropathy characterized by the damage and death of the retinal ganglion cells. This disease results in vision loss and blindness. Any vision loss resulting from the disease cannot be restored and nowadays there is no available cure for glaucoma; however an early detection and treatment, could offer neuronal protection and avoid later serious damages to the visual function. A full understanding of the etiology of the disease will still require the contribution of many scientific efforts. Glial activation has been observed in glaucoma, being microglial proliferation a hallmark in this neurodegenerative disease. A typical project studying these cellular changes involved in glaucoma often needs thousands of images - from several animals - covering different layers and regions of the retina. The gold standard to evaluate them is the manual count. This method requires a large amount of time from specialized personnel. It is a tedious process and prone to human error. We present here a new method to count microglial cells by using a computer algorithm. It counts in one hour the same number of images that a researcher counts in four weeks, with no loss of reliability.

  2. Anti-neuroinflammatory Activity of Elephantopus scaber L. via Activation of Nrf2/HO-1 Signaling and Inhibition of p38 MAPK Pathway in LPS-Induced Microglia BV-2 Cells

    Directory of Open Access Journals (Sweden)

    Chim-Kei Chan

    2017-06-01

    Full Text Available Elephantopus scaber L. (family: Asteraceae has been traditionally utilized as a folkloric medicine and scientifically shown to exhibit anti-inflammatory activities in various in vivo inflammatory models. Given the lack of study on the effect of E. scaber in neuroinflammation, this study aimed to investigate the anti-neuroinflammatory effect and the underlying mechanisms of ethyl acetate fraction from the leaves of E. scaber (ESEAF on the release of pro-inflammatory mediators in lipopolysaccharide (LPS-induced microglia cells (BV-2. Present findings showed that ESEAF markedly attenuated the translocation of NF-κB to nucleus concomitantly with the significant mitigation on the LPS-induced production of NO, iNOS, COX-2, PGE2, IL-1β, and TNF-α. These inflammatory responses were reduced via the inhibition of p38. Besides, ESEAF was shown to possess antioxidant activities evident by the DPPH and SOD scavenging activities. The intracellular catalase enzyme activity was enhanced by ESEAF in the LPS-stimulated BV-2 cells. Furthermore, the formation of ROS induced by LPS in BV-2 cells was reduced upon the exposure to ESEAF. Intriguingly, the reduction of ROS was found in concerted with the activation of Nrf2 and HO-1. It is conceivable that the activation promotes the scavenging power of antioxidant enzymes as well as to ameliorate the inflammatory response in LPS-stimulated BV-2 cells. Finally, the safety profile analysis through oral administration of ESEAF at 2000 mg/kg did not result in any mortalities, adverse effects nor histopathologic abnormalities of organs in mice. Taken altogether, the cumulative findings suggested that ESEAF holds the potential to develop as nutraceutical for the intervention of neuroinflammatory disorders.

  3. Patterns of Microglial Cell Activation in Alzheimer Disease and Frontotemporal Lobar Degeneration.

    Science.gov (United States)

    Taipa, Ricardo; Brochado, Paulo; Robinson, Andrew; Reis, Inês; Costa, Patrício; Mann, David M; Melo Pires, Manuel; Sousa, Nuno

    2017-01-01

    Microglia-driven neuroinflammation can play an important role in the pathophysiology of neurodegenerative disorders. In this study, we sought to characterize the distribution of microglial cell activation in 2 neurodegenerative dementias with distinct protein signatures, Alzheimer disease (AD) and frontotemporal lobar degeneration (FTLD) of the TDP subtype, and to determine if there was an anatomical correlation with the phenotypes most commonly associated with these conditions. The distribution and extent of microglial cell activation was assessed semiquantitatively in the hippocampal formation, cortical gray matter, and subcortical white matter of CD68-immunostained sections of the frontal, temporal, parietal, and occipital cortices from 15 pathologically confirmed cases of AD, 13 cases of FTLD, and 18 controls. Significantly higher levels of microglial cell activation occurred in the subiculum in AD and FTLD than in controls. Additionally, AD had higher microglial activation in the CA1 and FTLD in the hippocampal white matter than the controls. Microglial activation was greater in the dentate gyrus molecular layer in AD than in FTLD. In the cortical regions, the 2 pathological groups differed only in frontal white matter, with the FTLD group showing higher microglial scores. FTLD showed higher microglial activation in the white matter compared to the respective gray matter in the entorhinal, temporal, and frontal regions. Our work expands the knowledge of the distribution and magnitude of microglial activation in these disorders. Additionally, we found some microglial circuit-specific patterns that could help to explain some of the clinical overlap between AD and FTLD-TDP, namely in memory deficits. © 2017 S. Karger AG, Basel.

  4. Microglial cell death induced by glycated bovine serum albumin: nitric oxide involvement.

    Science.gov (United States)

    Khazaei, Mohammad R; Habibi-Rezaei, Mehran; Karimzadeh, Fereshteh; Moosavi-Movahedi, Ali Akbar; Sarrafnejhad, Abdo Alfattah; Sabouni, Farzaneh; Bakhti, Mostafa

    2008-08-01

    Nonenzymatic glycation results in the formation of advanced glycation end products (AGEs) through a nonenzymatic multistep reaction of reducing sugars with proteins. AGEs have been suspected to be involved in the pathogenesis of several chronic clinical neurodegenerative complications including Alzheimer's disease, which is characterized with the activation of microglial cells in neuritic plaques. To find out the consequence of this activation on microglial cells, we treated the cultured microglial cells with different glycation levels of Bovine Serum Albumin (BSA) which were prepared in vitro. Extent of glycation of protein has been characterized during 16 weeks of incubation with glucose. Treatment of microglial cells with various levels of glycated albumin induced nitric oxide (NO) production and consequently cell death. We also tried to find out the mode of death in AGE-activated microglial cells. Altogether, our results suggest that AGE treatment causes microglia to undergo NO-mediated apoptotic and necrotic cell death in short term and long term, respectively. NO production is a consequence of iNOS expression in a JNK dependent RAGE signalling after activation of RAGE by AGE-BSA.

  5. Donepezil Regulates 1-Methyl-4-phenylpyridinium-Induced Microglial Polarization in Parkinson's Disease.

    Science.gov (United States)

    Chen, Teng; Hou, Ruihua; Xu, Shujun; Wu, Chengyuan

    2015-10-21

    1-Methyl-4-phenylpyridinium (MPP+) induces microglial activation and degeneration of dopaminergic (DAergic) neurons. Donepezil is a well-known acetylcholinesterase inhibitor used clinically to treat cognitive dysfunction in Alzheimer's disease (AD). In the present study, we tested the hypothesis that MPP+ promotes microglial M1 polarization and suppresses M2 polarization and that this can be restored by donepezil. Results indicate that MPP+ treatment in microglial BV2 cells promotes microglial polarization toward the M1 state. However, pretreatment with donepezil inhibited MPP+-induced M1 polarization in microglia by suppressing the release of interleukin (IL)-6, IL-1β, or tumor necrosis factor (TNF)-α. Importantly, we found that MPP+ inhibited microglial M2 polarization by suppressing expression of Arg-1, Fizz1, and Ym1, which was also rescued by pretreatment with donepezil. In addition, IL-4-mediated induction of anti-inflammatory marker genes IL-10, IL-13, and transforming growth factor-β2 (TGF-β2) were significantly attenuated by MPP+ in BV2 cells, which was restored by pretreatment with donepezil in a concentration-dependent manner. Mechanistically, we found that the addition of MPP+ reduced the intensity of phosphorylated signal transducer and activator of transcription 6 (STAT6) but not total STAT6 in IL-4-stimulated BV2 cells. Importantly, pretreatment of microglial BV2 cells with donepezil 3 h prior to administration of MPP+ rescued the reduction of STAT6 phosphorylation induced by MPP+.

  6. Anti-neuroinflammatory effects of grossamide from hemp seed via suppression of TLR-4-mediated NF-κB signaling pathways in lipopolysaccharide-stimulated BV2 microglia cells.

    Science.gov (United States)

    Luo, Qian; Yan, Xiaoli; Bobrovskaya, Larisa; Ji, Mei; Yuan, Huiqing; Lou, Hongxiang; Fan, Peihong

    2017-04-01

    Grossamide, a representative lignanamide in hemp seed, has been reported to possess potential anti-inflammatory effects. However, the potential anti-neuroinflammatory effects and underlying mechanisms of action of grossamide are still unclear. Therefore, the present study investigated the possible effects and underlying mechanisms of grossamide against lipopolysaccharide (LPS)-induced inflammatory response in BV2 microglia cells. BV2 microglia cells were pre-treated with various concentrations of grossamide before being stimulated with LPS to induce inflammation. The levels of pro-inflammatory cytokines were determined using the enzyme-linked immunoassay (ELISA) and mRNA expression levels were measured by real-time PCR. The translocation of nuclear factor-kappa B (NF-κB) and contribution of TLR4-mediated NF-κB activation on inflammatory effects were evaluated by immunostaining and Western blot analysis. This study demonstrated that grossamide significantly inhibited the secretion of pro-inflammatory mediators such as interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α), and decreased the level of LPS-mediated IL-6 and TNF-α mRNA. In addition, it significantly reduced the phosphorylation levels of NF-κB subunit p65 in a concentration-dependent manner and suppressed translocation of NF-κB p65 into the nucleus. Furthermore, grossamide markedly attenuated the LPS-induced expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). Taken together, these data suggest that grossamide could be a potential therapeutic candidate for inhibiting neuroinflammation in neurodegenerative diseases.

  7. Distribution of microglial cells in the cerebral hemispheres of embryonic and neonatal chicks

    Directory of Open Access Journals (Sweden)

    Ignácio A.R.

    2005-01-01

    Full Text Available The distribution, morphology and morphometry of microglial cells in the chick cerebral hemispheres from embryonic day 4 (E4 to the first neonatal day (P1 were studied by histochemical labeling with a tomato (Lycopersicon esculentum lectin. The histochemical analysis revealed lectin-reactive cells in the nervous parenchyma on day E4. Between E4 (5.7 ± 1.35 mm length and E17 (8.25 ± 1.2 mm length, the lectin-reactive cells were identified as ameboid microglia and observed starting from the subventricular layer, distributed throughout the mantle layer and in the proximity of the blood vessels. After day E13, the lectin-reactive cells exhibited elongated forms with small branched processes, and were considered primitive ramified microglia. Later, between E18 (5.85 ± 1.5 mm cell body length and P1 (3.25 ± 0.6 mm cell body length, cells with more elongated branched processes were observed, constituting the ramified microglia. Our findings provide additional information on the migration and differentiation of microglial cells, whose ramified form is observed at the end of embryonic development. The present paper focused on the arrangement of microglial cells in developing cerebral hemispheres of embryonic and neonatal chicks, which are little studied in the literature. Details of morphology, morphometry and spatial distribution of microglial cells contributed to the understanding of bird and mammal central nervous system ontogeny. Furthermore, the identification and localization of microglial cells during the normal development could be used as a morphological guide for embryonic brain injury researches.

  8. Two-dimensional zymography differentiates gelatinase isoforms in stimulated microglial cells and in brain tissues of acute brain injuries.

    Science.gov (United States)

    Chen, Shanyan; Meng, Fanjun; Chen, Zhenzhou; Tomlinson, Brittany N; Wesley, Jennifer M; Sun, Grace Y; Whaley-Connell, Adam T; Sowers, James R; Cui, Jiankun; Gu, Zezong

    2015-01-01

    Excessive activation of gelatinases (MMP-2/-9) is a key cause of detrimental outcomes in neurodegenerative diseases. A single-dimension zymography has been widely used to determine gelatinase expression and activity, but this method is inadequate in resolving complex enzyme isoforms, because gelatinase expression and activity could be modified at transcriptional and posttranslational levels. In this study, we investigated gelatinase isoforms under in vitro and in vivo conditions using two-dimensional (2D) gelatin zymography electrophoresis, a protocol allowing separation of proteins based on isoelectric points (pI) and molecular weights. We observed organomercuric chemical 4-aminophenylmercuric acetate-induced activation of MMP-2 isoforms with variant pI values in the conditioned medium of human fibrosarcoma HT1080 cells. Studies with murine BV-2 microglial cells indicated a series of proform MMP-9 spots separated by variant pI values due to stimulation with lipopolysaccharide (LPS). The MMP-9 pI values were shifted after treatment with alkaline phosphatase, suggesting presence of phosphorylated isoforms due to the proinflammatory stimulation. Similar MMP-9 isoforms with variant pI values in the same molecular weight were also found in mouse brains after ischemic and traumatic brain injuries. In contrast, there was no detectable pI differentiation of MMP-9 in the brains of chronic Zucker obese rats. These results demonstrated effective use of 2D zymography to separate modified MMP isoforms with variant pI values and to detect posttranslational modifications under different pathological conditions.

  9. Inhibition of neuroinflammation by synthetic androstene derivatives incorporating amino acid methyl esters on activated BV-2 microglia.

    Science.gov (United States)

    Wu, Jing; Du, Juanjuan; Gu, Ruinan; Zhang, Li; Zhen, Xuechu; Li, Yuanchao; Chen, Hongli; Jiang, Biao; Zheng, Longtai

    2015-04-01

    Androstene derivatives incorporating amino acid methyl esters were prepared, and their anti-inflammatory effects were evaluated in lipopolysaccharide (LPS)-activated BV-2 microglial cells. Several compounds exhibited dose-dependent inhibition. The most active compound, methyl ((3S,10R,13S)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthrene-17-carbonyl)-L-phenylalaninate (10) significantly suppressed LPS-induced expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Mechanistic studies revealed that compound 10 markedly inhibits phosphorylation of p38 mitogen-activated protein kinases (MAPKs) and subsequent transcription factor (NF-κB) and activator protein-1 (AP-1) activation. Furthermore, compound 10 decreased LPS-activated microglial neurotoxicity in a condition medium/HT-22 neuroblastoma co-culture model. Taken together, these results suggest 10 is a potential lead compound for the development of a novel therapeutic agent for neurodegenerative diseases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells.

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    Full Text Available Aged garlic extract (AGE is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl-L-arginine (FruArg. The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress.

  11. Immunological Demyelination Triggers Macrophage/Microglial Cells Activation without Inducing Astrogliosis

    Directory of Open Access Journals (Sweden)

    Frank Cloutier

    2013-01-01

    Full Text Available The glial scar formed by reactive astrocytes and axon growth inhibitors associated with myelin play important roles in the failure of axonal regeneration following central nervous system (CNS injury. Our laboratory has previously demonstrated that immunological demyelination of the CNS facilitates regeneration of severed axons following spinal cord injury. In the present study, we evaluate whether immunological demyelination is accompanied with astrogliosis. We compared the astrogliosis and macrophage/microglial cell responses 7 days after either immunological demyelination or a stab injury to the dorsal funiculus. Both lesions induced a strong activated macrophage/microglial cells response which was significantly higher within regions of immunological demyelination. However, immunological demyelination regions were not accompanied by astrogliosis compared to stab injury that induced astrogliosis which extended several millimeters above and below the lesions, evidenced by astroglial hypertrophy, formation of a glial scar, and upregulation of intermediate filaments glial fibrillary acidic protein (GFAP. Moreover, a stab or a hemisection lesion directly within immunological demyelination regions did not induced astrogliosis within the immunological demyelination region. These results suggest that immunological demyelination creates a unique environment in which astrocytes do not form a glial scar and provides a unique model to understand the putative interaction between astrocytes and activated macrophage/microglial cells.

  12. Enhanced microglial clearance of myelin debris in T cell-infiltrated central nervous system

    DEFF Research Database (Denmark)

    Nielsen, Helle Hvilsted; Ladeby, Rune; Fenger, Christina

    2009-01-01

    Acute multiple sclerosis lesions are characterized by accumulation of T cells and macrophages, destruction of myelin and oligodendrocytes, and axonal damage. There is, however, limited information on neuroimmune interactions distal to sites of axonal damage in the T cell-infiltrated central nervous...... system. We investigated T-cell infiltration, myelin clearance, microglial activation, and phagocytic activity distal to sites of axonal transection through analysis of the perforant pathway deafferented dentate gyrus in SJL mice that had received T cells specific for myelin basic protein (TMBP...

  13. Contact-independent cell death of human microglial cells due to pathogenic Naegleria fowleri trophozoites.

    Science.gov (United States)

    Kim, Jong-Hyun; Kim, Daesik; Shin, Ho-Joon

    2008-12-01

    Free-living Naegleria fowleri leads to a fatal infection known as primary amebic meningoencephalitis in humans. Previously, the target cell death could be induced by phagocytic activity of N. fowleri as a contact-dependent mechanism. However, in this study we investigated the target cell death under a non-contact system using a tissue-culture insert. The human microglial cells, U87MG cells, co-cultured with N. fowleri trophozoites for 30 min in a non-contact system showed morphological changes such as the cell membrane destruction and a reduction in the number. By fluorescence-activated cell sorter (FACS) analysis, U87MG cells co-cultured with N. fowleri trophozoites in a non-contact system showed a significant increase of apoptotic cells (16%) in comparison with that of the control or N. fowleri lysate. When U87MG cells were co-cultured with N. fowleri trophozoites in a non-contact system for 30 min, 2 hr, and 4 hr, the cytotoxicity of amebae against target cells was 40.5, 44.2, and 45.6%, respectively. By contrast, the cytotoxicity of non-pathogenic N. gruberi trophozoites was 10.2, 12.4, and 13.2%, respectively. These results suggest that the molecules released from N. fowleri in a contact-independent manner as well as phagocytosis in a contact-dependent manner may induce the host cell death.

  14. Anti-Inflammatory and Cytoprotective Effects of TMC-256C1 from Marine-Derived Fungus Aspergillus sp. SF-6354 via up-Regulation of Heme Oxygenase-1 in Murine Hippocampal and Microglial Cell Lines

    Directory of Open Access Journals (Sweden)

    Dong-Cheol Kim

    2016-04-01

    Full Text Available In the course of searching for bioactive secondary metabolites from marine fungi, TMC-256C1 was isolated from an ethyl acetate extract of the marine-derived fungus Aspergillus sp. SF6354. TMC-256C1 displayed anti-neuroinflammatory effect in BV2 microglial cells induced by lipopolysaccharides (LPS as well as neuroprotective effect against glutamate-stimulated neurotoxicity in mouse hippocampal HT22 cells. TMC-256C1 was shown to develop a cellular resistance to oxidative damage caused by glutamate-induced cytotoxicity and reactive oxygen species (ROS generation in HT22 cells, and suppress the inflammation process in LPS-stimulated BV2 cells. Furthermore, the neuroprotective and anti-neuroinflammatory activities of TMC-256C1 were associated with upregulated expression of heme oxygenase (HO-1 and nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2 in HT22 and BV2 cells. We also found that TMC-256C1 activated p38 mitogen-activated protein kinases (MAPK and phosphatidylinositol 3-kinase (PI3K/Akt signaling pathways in HT22 and BV2 cells. These results demonstrated that TMC-256C1 activates HO-1 protein expression, probably by increasing nuclear Nrf2 levels via the activation of the p38 MAPK and PI3K/Akt pathways.

  15. Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2

    Directory of Open Access Journals (Sweden)

    Little Morgan R

    2010-06-01

    Full Text Available Abstract Background Using a murine model of herpes simplex virus (HSV-1 encephalitis, our laboratory has determined that induction of proinflammatory mediators in response to viral infection is largely mediated through a Toll-like receptor-2 (TLR2-dependent mechanism. Published studies have shown that, like other inflammatory mediators, reactive oxygen species (ROS are generated during viral brain infection. It is increasingly clear that ROS are responsible for facilitating secondary tissue damage during central nervous system infection and may contribute to neurotoxicity associated with herpes encephalitis. Methods Purified microglial cell and mixed neural cell cultures were prepared from C57B/6 and TLR2-/- mice. Intracellular ROS production in cultured murine microglia was measured via 2', 7'-Dichlorofluorescin diacetate (DCFH-DA oxidation. An assay for 8-isoprostane, a marker of lipid peroxidation, was utilized to measure free radical-associated cellular damage. Mixed neural cultures obtained from β-actin promoter-luciferase transgenic mice were used to detect neurotoxicity induced by HSV-infected microglia. Results Stimulation with HSV-1 elevated intracellular ROS in wild-type microglial cell cultures, while TLR2-/- microglia displayed delayed and attenuated ROS production following viral infection. HSV-infected TLR2-/- microglia produced less neuronal oxidative damage to mixed neural cell cultures in comparison to HSV-infected wild-type microglia. Further, HSV-infected TLR2-/- microglia were found to be less cytotoxic to cultured neurons compared to HSV-infected wild-type microglia. These effects were associated with decreased activation of p38 MAPK and p42/p44 ERK in TLR2-/- mice. Conclusions These studies demonstrate the importance of microglial cell TLR2 in inducing oxidative stress and neuronal damage in response to viral infection.

  16. Astrocyte-Derived CCL2 is Associated with M1 Activation and Recruitment of Cultured Microglial Cells

    Directory of Open Access Journals (Sweden)

    Mingfeng He

    2016-02-01

    Full Text Available Background/Aims: Microglia are an essential player in central nervous system inflammation. Recent studies have demonstrated that the astrocytic chemokine, CCL2, is associated with microglial activation in vivo. However, CCL2-induced microglial activation has not yet been studied in vitro. The purpose of the current study was to understand the role of astrocyte-derived CCL2 in microglial activation and to elucidate the underlying mechanism(s. Methods: Primary astrocytes were pre-treated with CCL2 siRNA and stimulated with TNF-α. The culture medium (CM was collected and added to cultures of microglia, which were incubated with and without CCR2 inhibitor. Microglial cells were analyzed by quantitative RT-PCR to determine whether they polarized to the M1 or M2 state. Microglial migratory ability was assessed by transwell migration assay. Results: TNF-α stimulated the release of CCL2 from astrocytes, even if the culture media containing TNF-α was replaced with fresh media after 3 h. CM from TNF-α-stimulated astrocytes successfully induced microglial activation, which was ascertained by increased activation of M1 and enhanced migration ability. In contrast, CM from astrocytes pretreated with CCL2 siRNA showed no effect on microglial activation, compared to controls. Additionally, microglia pre-treated with RS102895, a CCR2 inhibitor, were resistant to activation by CM from TNF-α-stimulated astrocytes. Conclusion: This study demonstrates that the CCL2/CCR2 pathway of astrocyte-induced microglial activation is associated with M1 polarization and enhanced migration ability, indicating that this pathway could be a useful target to ameliorate inflammation in the central nervous system.

  17. Naegleria fowleri lysate induces strong cytopathic effects and pro-inflammatory cytokine release in rat microglial cells.

    Science.gov (United States)

    Lee, Yang-Jin; Park, Chang-Eun; Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Jung, Suk-Yul; Shin, Ho-Joon

    2011-09-01

    Naegleria fowleri, a ubiquitous free-living ameba, causes fatal primary amebic meningoencephalitis in humans. N. fowleri trophozoites are known to induce cytopathic changes upon contact with microglial cells, including necrotic and apoptotic cell death and pro-inflammatory cytokine release. In this study, we treated rat microglial cells with amebic lysate to probe contact-independent mechanisms for cytotoxicity, determining through a combination of light microscopy and scanning and transmission electron microscopy whether N. fowleri lysate could effect on both necrosis and apoptosis on microglia in a time- as well as dose-dependent fashion. A (51)Cr release assay demonstrated pronounced lysate induction of cytotoxicity (71.5%) toward microglial cells by 24 hr after its addition to cultures. In an assay of pro-inflammatory cytokine release, microglial cells treated with N. fowleri lysate produced TNF-α, IL-6, and IL-1β, though generation of the former 2 cytokines was reduced with time, and that of the last increased throughout the experimental period. In summary, N. fowleri lysate exerted strong cytopathic effects on microglial cells, and elicited pro-inflammatory cytokine release as a primary immune response.

  18. Microglial depletion alters the brain neuroimmune response to acute binge ethanol withdrawal.

    Science.gov (United States)

    Walter, T Jordan; Crews, Fulton T

    2017-04-20

    Recent studies have implicated microglia-the resident immune cells of the brain-in the pathophysiology of alcoholism. Indeed, post-mortem alcoholic brains show increased microglial markers and increased immune gene expression; however, the effects of ethanol on microglial functioning and how this impacts the brain remain unclear. In this present study, we investigate the effects of acute binge ethanol on microglia and how microglial depletion changes the brain neuroimmune response to acute binge ethanol withdrawal. C57BL/6J mice were treated intragastrically with acute binge ethanol for time course and dose-response studies. Cultured mouse BV2 microglia-like cells were treated with ethanol in vitro for time course studies. Mice were also administered the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 to deplete microglia from the brain. These mice were subsequently treated with acute binge ethanol and sacrificed during withdrawal. Brain and BV2 mRNA were isolated and assessed using RT-PCR to examine expression of microglial and neuroimmune genes. Acute binge ethanol biphasically changed microglial (e.g., Iba1, CD68) gene expression, with initial decreases during intoxication and subsequent increases during withdrawal. Acute ethanol withdrawal dose dependently increased neuroimmune gene (e.g., TNFα, Ccl2, IL-1ra, IL-4) expression beginning at high doses. BV2 cells showed biphasic changes in pro-inflammatory (e.g., TNFα, Ccl2) gene expression following ethanol treatment in vitro. Administration of PLX5622 depleted microglia from the brains of mice. Although some neuroimmune genes were reduced by microglial depletion, many others were unchanged. Microglial depletion blunted pro-inflammatory (e.g., TNFα, Ccl2) gene expression and enhanced anti-inflammatory (e.g., IL-1ra, IL-4) gene expression during acute binge ethanol withdrawal. These studies find acute binge ethanol withdrawal increases microglial and neuroimmune gene expression. Ethanol exposure

  19. Data from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with Withaferin A (WA

    Directory of Open Access Journals (Sweden)

    Malathi Narayan

    2016-06-01

    Full Text Available Mass spectrometry data collected in a study analyzing the effect of withaferin A (WA on a mouse microglial (N9 cell line is presented in this article. Data was collected from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with either WA or DMSO vehicle control. This article reports all the proteins that were identified in this analysis. The data presented here is related to the published research article on the effect of WA on the differential regulation of proteins in mouse microglial cells [1]. Mass spectrometry data has also been deposited in the ProteomeXchange with the identifier http://www.ebi.ac.uk/pride/archive/projects/PXD003032.

  20. Formation of multinucleated giant cells and microglial degeneration in rats expressing a mutant Cu/Zn superoxide dismutase gene

    Directory of Open Access Journals (Sweden)

    Streit Wolfgang J

    2007-02-01

    Full Text Available Abstract Background Microglial neuroinflammation is thought to play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS. The purpose of this study was to provide a histopathological evaluation of the microglial neuroinflammatory response in a rodent model of ALS, the SOD1G93A transgenic rat. Methods Multiple levels of the CNS from spinal cord to cerebral cortex were studied in SOD1G93A transgenic rats during three stages of natural disease progression, including presymptomatic, early symptomatic (onset, and late symptomatic (end stage, using immuno- and lectin histochemical markers for microglia, such as OX-42, OX-6, and Griffonia simplicifolia isolectin B4. Results Our studies revealed abnormal aggregates of microglia forming in the spinal cord as early as the presymptomatic stage. During the symptomatic stages there was prominent formation of multinucleated giant cells through fusion of microglial cells in the spinal cord, brainstem, and red nucleus of the midbrain. Other brain regions, including substantia nigra, cranial nerve nuclei, hippocampus and cortex showed normal appearing microglia. In animals during end stage disease at 4–5 months of age virtually all microglia in the spinal cord gray matter showed extensive fragmentation of their cytoplasm (cytorrhexis, indicative of widespread microglial degeneration. Few microglia exhibiting nuclear fragmentation (karyorrhexis indicative of apoptosis were identified at any stage. Conclusion The current findings demonstrate the occurrence of severe abnormalities in microglia, such as cell fusions and cytorrhexis, which may be the result of expression of mutant SOD1 in these cells. The microglial changes observed are different from those that accompany normal microglial activation, and they demonstrate that aberrant activation and degeneration of microglia is part of the pathogenesis of motor neuron disease.

  1. Regulatory Effects of Caffeic Acid Phenethyl Ester on Neuroinflammation in Microglial Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Fang Tsai

    2015-03-01

    Full Text Available Microglial activation has been widely demonstrated to mediate inflammatory processes that are crucial in several neurodegenerative disorders. Pharmaceuticals that can deliver direct inhibitory effects on microglia are therefore considered as a potential strategy to counter balance neurodegenerative progression. Caffeic acid phenethyl ester (CAPE, a natural phenol in honeybee propolis, is known to possess antioxidant, anti-inflammatory and anti-microbial properties. Accordingly, the current study intended to probe the effects of CAPE on microglia activation by using in vitro and in vivo models. Western blot and Griess reaction assay revealed CAPE significantly inhibited the expressions of inducible nitric oxide synthase (NOS, cyclooxygenase (COX-2 and the production of nitric oxide (NO. Administration of CAPE resulted in increased expressions of hemeoxygenase (HO-1and erythropoietin (EPO in microglia. The phosphorylated adenosine monophosphate-activated protein kinase (AMPK-α was further found to regulate the anti-inflammatory effects of caffeic acid. In vivo results from immunohistochemistry along with rotarod test also revealed the anti-neuroinflammatory effects of CAPE in microglia activation. The current study has evidenced several possible molecular determinants, AMPKα, EPO, and HO-1, in mediating anti-neuroinflammatory responses in microglial cells.

  2. Astrocyte galectin-9 potentiates microglial TNF secretion.

    Science.gov (United States)

    Steelman, Andrew J; Li, Jianrong

    2014-08-27

    Aberrant neuroinflammation is suspected to contribute to the pathogenesis of myriad neurological diseases. As such, determining the pathways that promote or inhibit glial activation is of interest. Activation of the surface glycoprotein T-cell immunoglobulin and mucin-domain containing protein 3 (Tim-3) by the lectin galectin-9 has been implicated in promoting innate immune cell activation by potentiating or synergizing toll-like receptor (TLR) signaling. In the present study we examined the role of the Tim-3/galectin-9 pathway in glial activation in vitro. Primary monocultures of microglia or astrocytes, co-cultures containing microglia and astrocytes, and mixed glial cultures consisting of microglia, astrocytes and oligodendrocytes were stimulated with poly(I:C) or LPS, and galectin-9 up-regulation was determined. The effect of endogenous galectin-9 production on microglial activation was examined using cultures from wild-type and Lgals9 null mice. The ability for recombinant galectin-9 to promote microglia activation was also assessed. Tim-3 expression on microglia and BV2 cells was examined by qPCR and flow cytometry and its necessity in transducing the galectin-9 signal was determined using a Tim-3 specific neutralizing antibody or recombinant soluble Tim-3. Astrocytes potentiated TNF production from microglia following TLR stimulation. Poly(I:C) stimulation increased galectin-9 expression in microglia and microglial-derived factors promoted galectin-9 up-regulation in astrocytes. Astrocyte-derived galectin-9 in turn enhanced microglial TNF production. Similarly, recombinant galectin-9 enhanced poly(I:C)-induced microglial TNF and IL-6 production. Inhibition of Tim-3 did not alter TNF production in mixed glial cultures stimulated with poly(I:C). Galectin-9 functions as an astrocyte-microglia communication signal and promotes cytokine production from microglia in a Tim-3 independent manner. Activation of CNS galectin-9 likely modulates neuroinflammatory

  3. Versatility of microglial bioenergetic machinery under starving conditions.

    Science.gov (United States)

    Nagy, Adam M; Fekete, Rebeka; Horvath, Gergo; Koncsos, Gabor; Kriston, Csilla; Sebestyen, Anna; Giricz, Zoltan; Kornyei, Zsuzsanna; Madarasz, Emilia; Tretter, Laszlo

    2018-03-01

    Microglia are highly dynamic cells in the brain. Their functional diversity and phenotypic versatility brought microglial energy metabolism into the focus of research. Although it is known that microenvironmental cues shape microglial phenotype, their bioenergetic response to local nutrient availability remains unclear. In the present study effects of energy substrates on the oxidative and glycolytic metabolism of primary - and BV-2 microglial cells were investigated. Cellular oxygen consumption, glycolytic activity, the levels of intracellular ATP/ADP, autophagy, mTOR phosphorylation, apoptosis and cell viability were measured in the absence of nutrients or in the presence of physiological energy substrates: glutamine, glucose, lactate, pyruvate or ketone bodies. All of the oxidative energy metabolites increased the rate of basal and maximal respiration. However, the addition of glucose decreased microglial oxidative metabolism and glycolytic activity was enhanced. Increased ATP/ADP ratio and cell viability, activation of the mTOR and reduction of autophagic activity were observed in glutamine-supplemented media. Moreover, moderate and transient oxidation of ketone bodies was highly enhanced by glutamine, suggesting that anaplerosis of the TCA-cycle could stimulate ketone body oxidation. It is concluded that microglia show high metabolic plasticity and utilize a wide range of substrates. Among them glutamine is the most efficient metabolite. To our knowledge these data provide the first account of microglial direct metabolic response to nutrients under short-term starvation and demonstrate that microglia exhibit versatile metabolic machinery. Our finding that microglia have a distinct bioenergetic profile provides a critical foundation for specifying microglial contributions to brain energy metabolism. Copyright © 2017. Published by Elsevier B.V.

  4. Inhibitory effects of diallyl disulfide on the production of inflammatory mediators and cytokines in lipopolysaccharide-activated BV2 microglia

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye Young [Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-714 (Korea, Republic of); Department of Pharmacy, Pusan National University, Busan 609-735 (Korea, Republic of); Kim, Nam Deuk [Department of Pharmacy, Pusan National University, Busan 609-735 (Korea, Republic of); Kim, Gi-Young [Department of Marine Life Sciences, Jeju National University, Jeju 690-756 (Korea, Republic of); Hwang, Hye Jin [Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan 614-714 (Korea, Republic of); Department of Food and Nutrition, College of Human Ecology, Dongeui University, Busan 614-714 (Korea, Republic of); Kim, Byung-Woo [Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan 614-714 (Korea, Republic of); Department of Life Science and Biotechnology, College of Natural Science, Dongeui University, Busan 614-714 (Korea, Republic of); Department of Biomaterial Control, Graduate School, Dongeui University, Busan 614-714 (Korea, Republic of); Kim, Wun Jae [Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of); Choi, Yung Hyun, E-mail: choiyh@deu.ac.kr [Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-714 (Korea, Republic of); Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan 614-714 (Korea, Republic of); Department of Biomaterial Control, Graduate School, Dongeui University, Busan 614-714 (Korea, Republic of)

    2012-07-15

    Diallyl disulfide (DADS), a main organosulfur component responsible for the diverse biological effects of garlic, displays a wide variety of internal biological activities. However, the cellular and molecular mechanisms underlying DADS' anti-inflammatory activity remain poorly understood. In this study, therefore, the anti-inflammatory effects of DADS were studied to investigate its potential therapeutic effects in lipopolysaccharide (LPS)-stimulated BV2 microglia. We found that pretreatment with DADS prior to treatment with LPS significantly inhibited excessive production of nitric oxide (NO) and prostaglandin E{sub 2} (PGE{sub 2}) in a dose-dependent manner. The inhibition was associated with down-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. DADS also attenuated the production of pro-inflammatory cytokines and chemokines, including interleukin-1β (IL-1β), tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein-1 (MCP-1) by suppressing the expression of mRNAs for these proteins. The mechanism underlying this protective effect might be related to the inhibition of nuclear factor-kappaB, Akt and mitogen-activated protein kinase signaling pathway activation in LPS-stimulated microglial cells. These findings indicated that DADS is potentially a novel therapeutic candidate for the treatment of various neurodegenerative diseases. -- Highlights: ► DADS attenuates production of NO and PGE2 in LPS-activated BV2 microglia. ► DADS downregulates levels of iNOS and COX-2. ► DADS inhibits production and expression of inflammatory cytokines and chemokine. ► DADS exhibits these effects by suppression of NF-κB, PI3K/Akt and MAPKs pathways.

  5. A novel pleiotropic effect of aspirin: Beneficial regulation of pro- and anti-inflammatory mechanisms in microglial cells.

    Science.gov (United States)

    Kata, Diana; Földesi, Imre; Feher, Liliana Z; Hackler, Laszlo; Puskas, Laszlo G; Gulya, Karoly

    2017-06-01

    Aspirin, one of the most widely used non-steroidal anti-inflammatory drugs, has extensively studied effects on the cardiovascular system. To reveal further pleiotropic, beneficial effects of aspirin on a number of pro- and anti-inflammatory microglial mechanisms, we performed morphometric and functional studies relating to phagocytosis, pro- and anti-inflammatory cytokine production (IL-1β, tumor necrosis factor-α (TNF-α) and IL-10, respectively) and analyzed the expression of a number of inflammation-related genes, including those related to the above functions, in pure microglial cells. We examined the effects of aspirin (0.1mM and 1mM) in unchallenged (control) and bacterial lipopolysaccharide (LPS)-challenged secondary microglial cultures. Aspirin affected microglial morphology and functions in a dose-dependent manner as it inhibited LPS-elicited microglial activation by promoting ramification and the inhibition of phagocytosis in both concentrations. Remarkably, aspirin strongly reduced the pro-inflammatory IL-1β and TNF-α production, while it increased the anti-inflammatory IL-10 level in LPS-challenged cells. Moreover, aspirin differentially regulated the expression of a number of inflammation-related genes as it downregulated such pro-inflammatory genes as Nos2, Kng1, IL1β, Ptgs2 or Ccr1, while it upregulated some anti-inflammatory genes such as IL10, Csf2, Cxcl1, Ccl5 or Tgfb1. Thus, the use of aspirin could be beneficial for the prophylaxis of certain neurodegenerative disorders as it effectively ameliorates inflammation in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Effects of a Standardized Phenolic-Enriched Maple Syrup Extract on β-Amyloid Aggregation, Neuroinflammation in Microglial and Neuronal Cells, and β-Amyloid Induced Neurotoxicity in Caenorhabditis elegans

    Science.gov (United States)

    Ma, Hang; DaSilva, Nicholas A.; Liu, Weixi; Nahar, Pragati P.; Wei, Zhengxi; Liu, Yongqiang; Pham, Priscilla T.; Crews, Rebecca; Vattem, Dhiraj A.; Slitt, Angela L.; Shaikh, Zahir A.; Seeram, Navindra P.

    2018-01-01

    Published data supports the neuroprotective effects of several phenolic-containing natural products, including certain fruit, berries, spices, nuts, green tea, and olive oil. However, limited data are available for phenolic-containing plant-derived natural sweeteners including maple syrup. Herein, we investigated the neuroprotective effects of a chemically standardized phenolic-enriched maple syrup extract (MSX) using a combination of biophysical, in vitro, and in vivo studies. Based on biophysical data (Thioflavin T assay, transmission electron microscopy, circular dichroism, dynamic light scattering, and zeta potential), MSX reduced amyloid β1–42 peptide (Aβ1–42) fibrillation in a concentration-dependent manner (50–500 μg/mL) with similar effects as the neuroprotective polyphenol, resveratrol, at its highest test concentration (63.5% at 500 μg/mL vs. 77.3% at 50 μg/mL, respectively). MSX (100 μg/mL) decreased H2O2-induced oxidative stress (16.1% decrease in ROS levels compared to control), and down-regulated the production of lipopolysaccharide (LPS)-stimulated inflammatory markers (22.1, 19.9, 74.8, and 87.6% decrease in NOS, IL-6, PGE2, and TNFα levels, respectively, compared to control) in murine BV-2 microglial cells. Moreover, in a non-contact co-culture cell model, differentiated human SH-SY5Y neuronal cells were exposed to conditioned media from BV-2 cells treated with MSX (100 μg/mL) and LPS or LPS alone. MSX-BV-2 media increased SH-SY5Y cell viability by 13.8% compared to media collected from LPS-BV-2 treated cells. Also, MSX (10 μg/mL) showed protective effects against Aβ1–42 induced neurotoxicity and paralysis in Caenorhabditis elegans in vivo. These data support the potential neuroprotective effects of MSX warranting further studies on this natural product. PMID:27418278

  7. Inhibition of neuroinflammation in BV2 microglia by the biflavonoid kolaviron is dependent on the Nrf2/ARE antioxidant protective mechanism.

    Science.gov (United States)

    Onasanwo, Samuel A; Velagapudi, Ravikanth; El-Bakoush, Abdelmeneim; Olajide, Olumayokun A

    2016-03-01

    Kolaviron is a mixture of biflavonoids found in the nut of the West African edible seed Garcinia kola, and it has been reported to exhibit a wide range of pharmacological activities. In this study, we investigated the effects of kolaviron in neuroinflammation. The effects of kolaviron on the expression of nitric oxide/inducible nitric oxide synthase (iNOS), prostaglandin E2 (PGE2)/cyclooxygenase-2, cellular reactive oxygen species (ROS) and the pro-inflammatory cytokines were examined in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Molecular mechanisms of the effects of kolaviron on NF-κB and Nrf2/ARE signalling pathways were analysed by immunoblotting, binding assays and reporter assays. RNA interference was used to investigate the role of Nrf2 in the anti-inflammatory effect of kolaviron. Neuroprotective effect of kolaviron was assessed in a BV2 microglia/HT22 hippocampal neuron co-culture. Kolaviron inhibited the protein levels of NO/iNOS, PGE2/COX-2, cellular ROS and the pro-inflammatory cytokines (TNFα and IL-6) in LPS-stimulated microglia. Further mechanistic studies showed that kolaviron inhibited neuroinflammation by inhibiting IκB/NF-κB signalling pathway in LPS-activated BV2 microglia. Kolaviron produced antioxidant effect in BV2 microglia by increasing HO-1 via the Nrf2/antioxidant response element pathway. RNAi experiments revealed that Nrf2 is needed for the anti-inflammatory effects of kolaviron. Kolaviron protected HT22 neurons from neuroinflammation-induced toxicity. Kolaviron inhibits neuroinflammation through Nrf2-dependent mechanisms. This compound may therefore be beneficial in neuroinflammation-related neurodegenerative disorders.

  8. Glycyrrhiza uralensis flavonoids inhibit brain microglial cell TNF-α secretion, p-IκB expression, and increase brain-derived neurotropic factor (BDNF secretion

    Directory of Open Access Journals (Sweden)

    Sangita P. Patil

    2014-07-01

    Conclusion: ASHMI and its effective flavonoid, isoliquiritigenin, inhibited TNF-α production by LPS stimulated microglial cells and elevated BDNF levels, which may prove to have anti-CNS inflammatory and anti-anxiety effects.

  9. Non-toxic engineered carbon nanodiamond concentrations induce oxidative/nitrosative stress, imbalance of energy metabolism, and mitochondrial dysfunction in microglial and alveolar basal epithelial cells.

    Science.gov (United States)

    Fresta, Claudia G; Chakraborty, Aishik; Wijesinghe, Manjula B; Amorini, Angela M; Lazzarino, Giacomo; Lazzarino, Giuseppe; Tavazzi, Barbara; Lunte, Susan M; Caraci, Filippo; Dhar, Prajnaparamita; Caruso, Giuseppe

    2018-02-14

    Engineered nanoparticles are finding a wide spectrum of biomedical applications, including drug delivery and capacity to trigger cytotoxic phenomena, potentially useful against tumor cells. The full understanding of their biosafety and interactions with cell processes is mandatory. Using microglial (BV-2) and alveolar basal epithelial (A549) cells, in this study we determined the effects of engineered carbon nanodiamonds (ECNs) on cell viability, nitric oxide (NO) and reactive oxygen species (ROS) production, as well as on energy metabolism. Particularly, we initially measured decrease in cell viability as a function of increasing ECNs doses, finding similar cytotoxic ECN effects in the two cell lines. Subsequently, using apparently non-cytotoxic ECN concentrations (2 µg/mL causing decrease in cell number < 5%) we determined NO and ROS production, and measured the concentrations of compounds related to energy metabolism, mitochondrial functions, oxido-reductive reactions, and antioxidant defences. We found that in both cell lines non-cytotoxic ECN concentrations increased NO and ROS production with sustained oxidative/nitrosative stress, and caused energy metabolism imbalance (decrease in high energy phosphates and nicotinic coenzymes) and mitochondrial malfunctioning (decrease in ATP/ADP ratio).These results underline the importance to deeply investigate the molecular and biochemical changes occurring upon the interaction of ECNs (and nanoparticles in general) with living cells, even at apparently non-toxic concentration. Since the use of ECNs in biomedical field is attracting increasing attention the complete evaluation of their biosafety, toxicity and/or possible side effects both in vitro and in vivo is mandatory before these highly promising tools might find the correct application.

  10. Antimalarial Drug Artemether Inhibits Neuroinflammation in BV2 Microglia Through Nrf2-Dependent Mechanisms.

    Science.gov (United States)

    Okorji, Uchechukwu P; Velagapudi, Ravikanth; El-Bakoush, Abdelmeneim; Fiebich, Bernd L; Olajide, Olumayokun A

    2016-11-01

    Artemether, a lipid-soluble derivative of artemisinin has been reported to possess anti-inflammatory properties. In this study, we have investigated the molecular mechanisms involved in the inhibition of neuroinflammation by the drug. The effects of artemether on neuroinflammation-mediated HT22 neuronal toxicity were also investigated in a BV2 microglia/HT22 neuron co-culture. To investigate effects on neuroinflammation, we used LPS-stimulated BV2 microglia treated with artemether (5-40 μM) for 24 h. ELISAs and western blotting were used to detect pro-inflammatory cytokines, nitric oxide, prostaglandin E 2 (PGE 2 ), inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase-1 (mPGES-1). Beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1) activity and Aβ levels were measured with ELISA kits. Protein levels of targets in nuclear factor kappa B (NF-κB) and p38 mitogen-activated protein kinase (MAPK) signalling, as well as heme oxygenase-1 (HO-1), NQO1 and nuclear factor-erythroid 2-related factor 2 (Nrf2) were also measured with western blot. NF-κB binding to the DNA was investigated using electrophoretic mobility shift assays (EMSA). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), DNA fragmentation and reactive oxygen species (ROS) assays in BV2-HT22 neuronal co-culture were used to evaluate the effects of artemether on neuroinflammation-induced neuronal death. The role of Nrf2 in the anti-inflammatory activity of artemether was investigated in BV2 cells transfected with Nrf2 siRNA. Artemether significantly suppressed pro-inflammatory mediators (NO/iNOS, PGE 2 /COX-2/mPGES-1, tumour necrosis factor-alpha (TNFα) and interleukin (IL)-6); Aβ and BACE-1 in BV2 cells following LPS stimulation. These effects of artemether were shown to be mediated through inhibition of NF-κB and p38 MAPK signalling. Artemether produced increased levels of HO-1, NQO1 and GSH in BV2 microglia. The drug

  11. Polysaccharides from Ganoderma lucidum attenuate microglia-mediated neuroinflammation and modulate microglial phagocytosis and behavioural response.

    Science.gov (United States)

    Cai, Qing; Li, Yuanyuan; Pei, Gang

    2017-03-24

    Ganoderma lucidum (GL) has been widely used in Asian countries for hundreds of years to promote health and longevity. The pharmacological functions of which had been classified, including the activation of innate immune responses, suppression of tumour and modulation of cell proliferations. Effective fractions of Ganoderma lucidum polysaccharides (GLP) had already been reported to regulate the immune system. Nevertheless, the role of GLP in the microglia-mediated neuroinflammation has not been sufficiently elucidated. Further, GLP effect on microglial behavioural modulations in correlation with the inflammatory responses remains to be unravelled. The aim of this work was to quantitatively analyse the contributions of GLP on microglia. The BV2 microglia and primary mouse microglia were stimulated by lipopolysaccharides (LPS) and amyloid beta 42 (Aβ 42 ) oligomer, respectively. Investigation on the effect of GLP was carried by quantitative determination of the microglial pro- and anti-inflammatory cytokine expressions and behavioural modulations including migration, morphology and phagocytosis. Analysis of microglial morphology and phagocytosis modulations was confirmed in the zebrafish brain. Quantitative results revealed that GLP down-regulates LPS- or Aβ-induced pro-inflammatory cytokines and promotes anti-inflammatory cytokine expressions in BV-2 and primary microglia. In addition, GLP attenuates inflammation-related microglial migration, morphological alterations and phagocytosis probabilities. We also showed that modulations of microglial behavioural responses were associated with MCP-1 and C1q expressions. Overall, our study provides an insight into the GLP regulation of LPS- and Aβ-induced neuroinflammation and serves an implication that the neuroprotective function of GLP might be achieved through modulation of microglial inflammatory and behavioural responses.

  12. Microglial Dysregulation in Psychiatric Disease

    Directory of Open Access Journals (Sweden)

    Luciana Romina Frick

    2013-01-01

    Full Text Available Microglia, the brain's resident immune cells, are phagocytes of the macrophage lineage that have a key role in responding to inflammation and immune challenge in the brain. More recently, they have been shown to have a number of important roles beyond immune surveillance and response, including synaptic pruning during development and the support of adult neurogenesis. Microglial abnormalities have been found in several neuropsychiatric conditions, though in most cases it remains unclear whether these are causative or are a reaction to some other underlying pathophysiology. Here we summarize postmortem, animal, neuroimaging, and other evidence for microglial pathology in major depression, schizophrenia, autism, obsessive-compulsive disorder, and Tourette syndrome. We identify gaps in the existing literature and important areas for future research. If microglial pathology proves to be an important causative factor in these or other neuropsychiatric diseases, modulators of microglial function may represent a novel therapeutic strategy.

  13. LRRK2 kinase inhibition prevents pathological microglial phagocytosis in response to HIV-1 Tat protein

    Directory of Open Access Journals (Sweden)

    Marker Daniel F

    2012-11-01

    Full Text Available Abstract Background Human Immunodeficiency Virus-1 (HIV-1 associated neurocognitive disorders (HANDs are accompanied by significant morbidity, which persists despite the use of combined antiretroviral therapy (cART. While activated microglia play a role in pathogenesis, changes in their immune effector functions, including phagocytosis and proinflammatory signaling pathways, are not well understood. We have identified leucine-rich repeat kinase 2 (LRRK2 as a novel regulator of microglial phagocytosis and activation in an in vitro model of HANDs, and hypothesize that LRRK2 kinase inhibition will attenuate microglial activation during HANDs. Methods We treated BV-2 immortalized mouse microglia cells with the HIV-1 trans activator of transcription (Tat protein in the absence or presence of LRRK2 kinase inhibitor (LRRK2i. We used Western blot, qRT-PCR, immunocytochemistry and latex bead engulfment assays to analyze LRRK2 protein levels, proinflammatory cytokine and phagocytosis receptor expression, LRRK2 cellular distribution and phagocytosis, respectively. Finally, we utilized ex vivo microfluidic chambers containing primary hippocampal neurons and BV-2 microglia cells to investigate microglial phagocytosis of neuronal axons. Results We found that Tat-treatment of BV-2 cells induced kinase activity associated phosphorylation of serine 935 on LRRK2 and caused the formation of cytoplasmic LRRK2 inclusions. LRRK2i decreased Tat-induced phosphorylation of serine 935 on LRRK2 and inhibited the formation of Tat-induced cytoplasmic LRRK2 inclusions. LRRK2i also decreased Tat-induced process extension in BV-2 cells. Furthermore, LRRK2i attenuated Tat-induced cytokine expression and latex bead engulfment. We examined relevant cellular targets in microfluidic chambers and found that Tat-treated BV-2 microglia cells cleared axonal arbor and engulfed neuronal elements, whereas saline treated controls did not. LRRK2i was found to protect axons in the presence

  14. Curcumin Ameliorates the Reduction Effect of PGE2 on Fibrillar β-Amyloid Peptide (1-42)-Induced Microglial Phagocytosis through the Inhibition of EP2-PKA Signaling in N9 Microglial Cells

    Science.gov (United States)

    Yang, Ju; Shen, Ting-ting; Chen, Yi; Yang, Xue-Sen

    2016-01-01

    Inflammatory activation of microglia and β amyloid (Aβ) deposition are considered to work both independently and synergistically to contribute to the increased risk of Alzheimer’s disease (AD). Recent studies indicate that long-term use of phenolic compounds provides protection against AD, primarily due to their anti-inflammatory actions. We previously suggested that phenolic compound curcumin ameliorated phagocytosis possibly through its anti-inflammatory effects rather than direct regulation of phagocytic function in electromagnetic field-exposed N9 microglial cells (N9 cells). Here, we explored the prostaglandin-E2 (PGE2)-related signaling pathway that involved in curcumin-mediated phagocytosis in fibrillar β-amyloid peptide (1–42) (fAβ42)-stimulated N9 cells. Treatment with fAβ42 increased phagocytosis of fluorescent-labeled latex beads in N9 cells. This increase was attenuated in a dose-dependent manner by endogenous and exogenous PGE2, as well as a selective EP2 or protein kinase A (PKA) agonist, but not by an EP4 agonist. We also found that an antagonist of EP2, but not EP4, abolished the reduction effect of PGE2 on fAβ42-induced microglial phagocytosis. Additionally, the increased expression of endogenous PGE2, EP2, and cyclic adenosine monophosphate (AMP), and activation of vasodilator-stimulated phosphoprotein, cyclic AMP responsive element-binding protein, and PKA were depressed by curcumin administration. This reduction led to the amelioration of the phagocytic abilities of PGE2-stimulated N9 cells. Taken together, these data suggested that curcumin restored the attenuating effect of PGE2 on fAβ42-induced microglial phagocytosis via a signaling mechanism involving EP2 and PKA. Moreover, due to its immune modulatory effects, curcumin may be a promising pharmacological candidate for neurodegenerative diseases. PMID:26824354

  15. Effects of a Standardized Phenolic-Enriched Maple Syrup Extract on β-Amyloid Aggregation, Neuroinflammation in Microglial and Neuronal Cells, and β-Amyloid Induced Neurotoxicity in Caenorhabditis elegans.

    Science.gov (United States)

    Ma, Hang; DaSilva, Nicholas A; Liu, Weixi; Nahar, Pragati P; Wei, Zhengxi; Liu, Yongqiang; Pham, Priscilla T; Crews, Rebecca; Vattem, Dhiraj A; Slitt, Angela L; Shaikh, Zahir A; Seeram, Navindra P

    2016-11-01

    Published data supports the neuroprotective effects of several phenolic-containing natural products, including certain fruit, berries, spices, nuts, green tea, and olive oil. However, limited data are available for phenolic-containing plant-derived natural sweeteners including maple syrup. Herein, we investigated the neuroprotective effects of a chemically standardized phenolic-enriched maple syrup extract (MSX) using a combination of biophysical, in vitro, and in vivo studies. Based on biophysical data (Thioflavin T assay, transmission electron microscopy, circular dichroism, dynamic light scattering, and zeta potential), MSX reduced amyloid β 1-42 peptide (Aβ 1-42 ) fibrillation in a concentration-dependent manner (50-500 μg/mL) with similar effects as the neuroprotective polyphenol, resveratrol, at its highest test concentration (63.5 % at 500 μg/mL vs. 77.3 % at 50 μg/mL, respectively). MSX (100 μg/mL) decreased H 2 O 2 -induced oxidative stress (16.1 % decrease in ROS levels compared to control), and down-regulated the production of lipopolysaccharide (LPS)-stimulated inflammatory markers (22.1, 19.9, 74.8, and 87.6 % decrease in NOS, IL-6, PGE 2 , and TNFα levels, respectively, compared to control) in murine BV-2 microglial cells. Moreover, in a non-contact co-culture cell model, differentiated human SH-SY5Y neuronal cells were exposed to conditioned media from BV-2 cells treated with MSX (100 μg/mL) and LPS or LPS alone. MSX-BV-2 media increased SH-SY5Y cell viability by 13.8 % compared to media collected from LPS-BV-2 treated cells. Also, MSX (10 μg/mL) showed protective effects against Aβ 1-42 induced neurotoxicity and paralysis in Caenorhabditis elegans in vivo. These data support the potential neuroprotective effects of MSX warranting further studies on this natural product.

  16. Tart cherry extracts reduce inflammatory and oxidative stress signaling in microglial cells

    Science.gov (United States)

    Tart cherries contain an array of polyphenols that can decrease inflammation and oxidative stress (OS), which contribute to cognitive declines seen in aging populations. Previous studies have shown that polyphenols from dark-colored fruits can reduce stress-mediated signaling in BV-2 mouse microglia...

  17. Expression of Tau40 induces activation of cultured rat microglial cells.

    Directory of Open Access Journals (Sweden)

    Lu Wang

    Full Text Available Accumulation of microtubule-associated protein tau has been observed in the brain of aging and tauopathies. Tau was observed in microglia, but its role is not illustrated. By immunofluorescence staining and the fractal dimension value assay in the present study, we observed that microglia were activated in the brains of rats and mice during aging, simultaneously, the immunoreactivities of total tau and the phosphorylated tau were significantly enhanced in the activated microglia. Furtherly by transient transfection of tau40 (human 2N/4R tau into the cultured rat microglia, we demonstrated that expression of tau40 increased the level of Iba1, indicating activation of microglia. Moreover, expression of tau40 significantly enhanced the membranous localization of the phosphorylated tau at Ser396 in microglia possibly by a mechanism involving protein phosphatase 2A, extracellular signal-regulated kinase and glycogen synthase kinase-3β. It was also found that expression of tau40 promoted microglial migration and phagocytosis, but not proliferation. And we observed increased secretion of several cytokines, including interleukin (IL-1β, IL-6, IL-10, tumor necrosis factor-α and nitric oxide after the expression of tau40. These data suggest a novel role of human 2N/4R tau in microglial activation.

  18. Human Neural Stem Cell Transplantation-Mediated Alteration of Microglial/Macrophage Phenotypes after Traumatic Brain Injury.

    Science.gov (United States)

    Gao, Junling; Grill, Raymond J; Dunn, Tiffany J; Bedi, Supinder; Labastida, Javier Allende; Hetz, Robert A; Xue, Hasen; Thonhoff, Jason R; DeWitt, Douglas S; Prough, Donald S; Cox, Charles S; Wu, Ping

    2016-10-01

    Neural stem cells (NSCs) promote recovery from brain trauma, but neuronal replacement is unlikely the sole underlying mechanism. We hypothesize that grafted NSCs enhance neural repair at least partially through modulating the host immune response after traumatic brain injury (TBI). C57BL/6 mice were intracerebrally injected with primed human NSCs (hNSCs) or vehicle 24 h after a severe controlled cortical impact injury. Six days after transplantation, brain tissues were collected for Western blot and immunohistochemical analyses. Observations included indicators of microglia/macrophage activation, M1 and M2 phenotypes, axonal injury detected by amyloid precursor protein (APP), lesion size, and the fate of grafted hNSCs. Animals receiving hNSC transplantation did not show significant decreases of brain lesion volumes compared to transplantation procedures with vehicle alone, but did show significantly reduced injury-dependent accumulation of APP. Furthermore, intracerebral transplantation of hNSCs reduced microglial activation as shown by a diminished intensity of Iba1 immunostaining and a transition of microglia/macrophages toward the M2 anti-inflammatory phenotype. The latter was represented by an increase in the brain M2/M1 ratio and increases of M2 microglial proteins. These phenotypic switches were accompanied by the increased expression of anti-inflammatory interleukin-4 receptor α and decreased proinflammatory interferon-γ receptor β. Finally, grafted hNSCs mainly differentiated into neurons and were phagocytized by either M1 or M2 microglia/macrophages. Thus, intracerebral transplantation of primed hNSCs efficiently leads host microglia/macrophages toward an anti-inflammatory phenotype that presumably contributes to stem cell-mediated neuroprotective effects after severe TBI in mice.

  19. Anti-inflammatory effects of progesterone in lipopolysaccharide-stimulated BV-2 microglia.

    Directory of Open Access Journals (Sweden)

    Beilei Lei

    Full Text Available Female sex is associated with improved outcome in experimental brain injury models, such as traumatic brain injury, ischemic stroke, and intracerebral hemorrhage. This implies female gonadal steroids may be neuroprotective. A mechanism for this may involve modulation of post-injury neuroinflammation. As the resident immunomodulatory cells in central nervous system, microglia are activated during acute brain injury and produce inflammatory mediators which contribute to secondary injury including proinflammatory cytokines, and nitric oxide (NO and prostaglandin E2 (PGE2, mediated by inducible NO synthase (iNOS and cyclooxygenase-2 (COX-2, respectively. We hypothesized that female gonadal steroids reduce microglia mediated neuroinflammation. In this study, the progesterone's effects on tumor necrosis factor alpha (TNF-α, iNOS, and COX-2 expression were investigated in lipopolysaccharide (LPS-stimulated BV-2 microglia. Further, investigation included nuclear factor kappa B (NF-κB and mitogen activated protein kinase (MAPK pathways. LPS (30 ng/ml upregulated TNF-α, iNOS, and COX-2 protein expression in BV-2 cells. Progesterone pretreatment attenuated LPS-stimulated TNF-α, iNOS, and COX-2 expression in a dose-dependent fashion. Progesterone suppressed LPS-induced NF-κB activation by decreasing inhibitory κBα and NF-κB p65 phosphorylation and p65 nuclear translocation. Progesterone decreased LPS-mediated phosphorylation of p38, c-Jun N-terminal kinase and extracellular regulated kinase MAPKs. These progesterone effects were inhibited by its antagonist mifepristone. In conclusion, progesterone exhibits pleiotropic anti-inflammatory effects in LPS-stimulated BV-2 microglia by down-regulating proinflammatory mediators corresponding to suppression of NF-κB and MAPK activation. This suggests progesterone may be used as a potential neurotherapeutic to treat inflammatory components of acute brain injury.

  20. Low-level laser therapy regulates microglial function through Src-mediated signaling pathways: implications for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Song Sheng

    2012-09-01

    Full Text Available Abstract Background Activated microglial cells are an important pathological component in brains of patients with neurodegenerative diseases. The purpose of this study was to investigate the effect of He-Ne (632.8 nm, 64.6 mW/cm2 low-level laser therapy (LLLT, a non-damaging physical therapy, on activated microglia, and the subsequent signaling events of LLLT-induced neuroprotective effects and phagocytic responses. Methods To model microglial activation, we treated the microglial BV2 cells with lipopolysaccharide (LPS. For the LLLT-induced neuroprotective study, neuronal cells with activated microglial cells in a Transwell™ cell-culture system were used. For the phagocytosis study, fluorescence-labeled microspheres were added into the treated microglial cells to confirm the role of LLLT. Results Our results showed that LLLT (20 J/cm2 could attenuate toll-like receptor (TLR-mediated proinflammatory responses in microglia, characterized by down-regulation of proinflammatory cytokine expression and nitric oxide (NO production. LLLT-triggered TLR signaling inhibition was achieved by activating tyrosine kinases Src and Syk, which led to MyD88 tyrosine phosphorylation, thus impairing MyD88-dependent proinflammatory signaling cascade. In addition, we found that Src activation could enhance Rac1 activity and F-actin accumulation that typify microglial phagocytic activity. We also found that Src/PI3K/Akt inhibitors prevented LLLT-stimulated Akt (Ser473 and Thr308 phosphorylation and blocked Rac1 activity and actin-based microglial phagocytosis, indicating the activation of Src/PI3K/Akt/Rac1 signaling pathway. Conclusions The present study underlines the importance of Src in suppressing inflammation and enhancing microglial phagocytic function in activated microglia during LLLT stimulation. We have identified a new and important neuroprotective signaling pathway that consists of regulation of microglial phagocytosis and inflammation under LLLT

  1. Effect of Lipopolysaccharide Derived from Pantoea agglomerans on the Phagocytic Activity of Amyloid β by Primary Murine Microglial Cells.

    Science.gov (United States)

    Kobayashi, Yutaro; Inagawa, Hiroyuki; Kohchi, Chie; Okazaki, Katsuichiro; Zhang, Ran; Soma, Gen-Ichiro

    2016-07-01

    Monophosphoryl lipid A, lipopolysaccharide (LPS)-derived Toll-like receptor (TLR) 4 agonist, has been shown to be effective in the prevention of Alzheimer's disease (AD) by enhancing phagocytosis of amyloid β (Aβ) by brain microglia. Our recent study demonstrated that oral administration of LPS derived from Pantoea agglomerans (LPSp) activates peritoneal macrophages and enhances the phagocytic activity via TLR4 signaling pathway; however, the effect of LPSp on Aβ phagocytosis in microglia is still unknown. Primary microglial cells were isolated from adult mouse brain by enzymatic digestion, following myelin removal and magnetic separation of cluster of differentiation (CD) 11b. Phagocytic analysis of the primary microglia was measured by using HiLyte™ Fluor 488-conjugated Aβ1-42 RESULTS: Using our protocols, the average yield of isolated CD11b(+) cells was around 2.2×10(5) cells per brain. CD11b(+)CD45(+)CD39(+) cells were defined here as microglia. The phagocytic activity of Aβ1-42 by the isolated microglia was confirmed. LPSp (10 ng/ml) pre-treatment for 18 h significantly increased Aβ phagocytic activity. The enhancement of Aβ1-42 phagocytosis by LPSp treatment in the primary mouse microglia was demonstrated for the first time. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Essential roles of mitochondrial depolarization in neuron loss through microglial activation and attraction toward neurons.

    Science.gov (United States)

    Nam, Min-Kyung; Shin, Hyun-Ah; Han, Ji-Hye; Park, Dae-Wook; Rhim, Hyangshuk

    2013-04-10

    As life spans increased, neurodegenerative disorders that affect aging populations have also increased. Progressive neuronal loss in specific brain regions is the most common cause of neurodegenerative disease; however, key determinants mediating neuron loss are not fully understood. Using a model of mitochondrial membrane potential (ΔΨm) loss, we found only 25% cell loss in SH-SY5Y (SH) neuronal mono-cultures, but interestingly, 85% neuronal loss occurred when neurons were co-cultured with BV2 microglia. SH neurons overexpressing uncoupling protein 2 exhibited an increase in neuron-microglia interactions, which represent an early step in microglial phagocytosis of neurons. This result indicates that ΔΨm loss in SH neurons is an important contributor to recruitment of BV2 microglia. Notably, we show that ΔΨm loss in BV2 microglia plays a crucial role in microglial activation and phagocytosis of damaged SH neurons. Thus, our study demonstrates that ΔΨm loss in both neurons and microglia is a critical determinant of neuron loss. These findings also offer new insights into neuroimmunological and bioenergetical aspects of neurodegenerative disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Human amnion mesenchymal cells negative co-stimulatory molecules PD-L1 expression and its capacity of modulating microglial activation of CNS.

    Science.gov (United States)

    Wu, Weijiang; Lan, Qing; Lu, Hua; Xu, Jie; Zhu, Aihua; Fang, Wenfeng; Ge, Feng; Hui, Guozhen

    2014-05-01

    The objective of this study is to investigate the negative immunomodulatory capacity of human amniotic mesenchymal cells (AMSCs) and their possible intrinsic mechanism, by which we can confirm that they modulate microglial activation of central nervous system from multiple perspectives at the molecular level. The identification of the immune phenotype of AMSCs and microglial cells was executed by immunohistochemical methods and flow cytometry. Meanwhile, the influence and mechanism of amniotic mesenchymal cells in vitro on proliferation, cell cycle, and cytokine release of activated microglia (MI) would be detected by ELISA, β-liquid scintillation counting method, and flow cytometry. Human amnion mesenchymal cells highly expressed negative co-stimulatory molecules PD-L1, while its ligand PD1 was expressed with high level by activated MI. When adding the PD-L1mAb to the mixed culture system composed of AMSCs and activated MI, the proliferation inhibitory effect and the cycle-blocking effect produced by the former on the latter would be partially reversed; at the same time, the impact of the latter cytokine secretion would be adjusted. As a conclusion, AMSCs play inhibitory effects on microglial activation, proliferation, and immune effects partially through the PD-L1-PD1 signaling pathways.

  4. Cytomegalovirus Infection of the Rat Developing Brain In Utero Prominently Targets Immune Cells and Promotes Early Microglial Activation.

    Directory of Open Access Journals (Sweden)

    Robin Cloarec

    Full Text Available Congenital cytomegalovirus infections are a leading cause of neurodevelopmental disorders in human and represent a major health care and socio-economical burden. In contrast with this medical importance, the pathophysiological events remain poorly known. Murine models of brain cytomegalovirus infection, mostly neonatal, have brought recent insights into the possible pathogenesis, with convergent evidence for the alteration and possible involvement of brain immune cells.In order to confirm and expand those findings, particularly concerning the early developmental stages following infection of the fetal brain, we have created a model of in utero cytomegalovirus infection in the developing rat brain. Rat cytomegalovirus was injected intraventricularly at embryonic day 15 (E15 and the brains analyzed at various stages until the first postnatal day, using a combination of gene expression analysis, immunohistochemistry and multicolor flow cytometry experiments.Rat cytomegalovirus infection was increasingly seen in various brain areas including the choroid plexi and the ventricular and subventricular areas and was prominently detected in CD45low/int, CD11b+ microglial cells, in CD45high, CD11b+ cells of the myeloid lineage including macrophages, and in CD45+, CD11b- lymphocytes and non-B non-T cells. In parallel, rat cytomegalovirus infection of the developing rat brain rapidly triggered a cascade of pathophysiological events comprising: chemokines upregulation, including CCL2-4, 7 and 12; infiltration by peripheral cells including B-cells and monocytes at E17 and P1, and T-cells at P1; and microglia activation at E17 and P1.In line with previous findings in neonatal murine models and in human specimen, our study further suggests that neuroimmune alterations might play critical roles in the early stages following cytomegalovirus infection of the brain in utero. Further studies are now needed to determine which role, whether favorable or detrimental

  5. Human neural progenitor cell engraftment increases neurogenesis and microglial recruitment in the brain of rats with stroke.

    Directory of Open Access Journals (Sweden)

    Zahra Hassani

    Full Text Available Stem cell transplantation is to date one of the most promising therapies for chronic ischemic stroke. The human conditionally immortalised neural stem cell line, CTX0E03, has demonstrable efficacy in a rodent model of stroke and is currently in clinical trials. Nonetheless, the mechanisms by which it promotes brain repair are not fully characterised. This study investigated the cellular events occurring after CTX0E03 transplantation in the brains of rats that underwent ischemic stroke.We focused on the endogenous proliferative activity of the host brain in response to cell transplantation and determined the identity of the proliferating cells using markers for young neurons (doublecortin, Dcx and microglia (CD11b. So as to determine the chronology of events occurring post-transplantation, we analysed the engrafted brains one week and four weeks post-transplantation.We observed a significantly greater endogenous proliferation in the striatum of ischemic brains receiving a CTX0E03 graft compared to vehicle-treated ischemic brains. A significant proportion of these proliferative cells were found to be Dcx+ striatal neuroblasts. Further, we describe an enhanced immune response after CTX0E03 engraftment, as shown by a significant increase of proliferating CD11b+ microglial cells.Our study demonstrates that few Dcx+ neuroblasts are proliferative in normal conditions, and that this population of proliferative neuroblasts is increased in response to stroke. We further show that CTX0E03 transplantation after stroke leads to the maintenance of this proliferative activity. Interestingly, the preservation of neuronal proliferative activity upon CTX0E03 transplantation is preceded and accompanied by a high rate of proliferating microglia. Our study suggests that microglia might mediate in part the effect of CTX0E03 transplantation on neuronal proliferation in ischemic stroke conditions.

  6. Microglial activation state exerts a biphasic influence on brain endothelial cell proliferation by regulating the balance of TNF and TGF-β1

    Directory of Open Access Journals (Sweden)

    Milner Richard

    2010-12-01

    Full Text Available Abstract Background Studies of cerebral ischemia and other neuroinflammatory states have demonstrated a strong association between new vessel formation and microglial recruitment and activation, raising the possibility that microglia may be involved in promoting angiogenesis. As endothelial cell proliferation is a fundamental early step in angiogenesis, the aim of this study was to test this hypothesis by examining the influence of microglial secreted factors on brain endothelial cell (BEC proliferation using BrdU incorporation. Methods Primary cultures of mouse BEC, microglia and astrocytes were used in this study. Proliferation of BEC was examined by BrdU incorporation. ELISA was used to quantify TNF and TGF-β1 levels within cell culture supernatants. Results Microglia regulated BEC proliferation in a biphasic manner; microglia conditioned medium (MG-CM from resting microglia inhibited, while that from activated microglia promoted BEC proliferation. A screen of microglial cytokines revealed that BEC proliferation was inhibited by TGF-β1, but promoted by TNF. ELISA showed that TNF and TGF-β1 were both present in MG-CM, and that while TGF-β1 dominated in resting MG-CM, TNF levels were massively increased in activated MG-CM, shifting the balance in favor of TNF. Antibody-blocking studies revealed that the influence of MG-CM to inhibit or promote BEC proliferation was largely attributable to the cytokines TGF-β1 and TNF, respectively. Conclusion This data suggests that microglial activation state might be an important determinant of cerebral angiogenesis; inhibiting BEC proliferation and neovascularization in the normal central nervous system (CNS, but stimulating the growth of new capillaries under neuroinflammatory conditions.

  7. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation

    Directory of Open Access Journals (Sweden)

    Siham eRaboune

    2014-08-01

    Full Text Available A family of endogenous lipids, structurally analogous to the endogenous cannabinoid, N-arachidonoyl ethanolamine (Anandamide, and called N-acyl amides have emerged as a family of biologically active compounds at TRP receptors. N-acyl amides are constructed from an acyl group and an amine via an amide bond. This same structure can be modified by changing either the fatty acid or the amide to form potentially hundreds of lipids. More than 70 N-acyl amides have been identified in nature. We have ongoing studies aimed at isolating and characterizing additional members of the family of N-acyl amides in both central and peripheral tissues in mammalian systems. Here, using a unique in-house library of over 70 N-acyl amides we tested the following three hypotheses: 1 Additional N-acyl amides will have activity at TRPV1-4, 2 Acute peripheral injury will drive changes in CNS levels of N-acyl amides, and 3 N-acyl amides will regulate calcium in CNS-derived microglia. Through these studies, we have identified 20 novel N-acyl amides that collectively activate (stimulating or inhibiting TRPV1-4. Using lipid extraction and HPLC coupled to tandem mass spectrometry we showed that levels of at least 10 of these N-acyl amides that activate TRPVs are regulated in brain after intraplantar carrageenan injection. We then screened the BV2 microglial cell line for activity with this N-acyl amide library and found overlap with TRPV receptor activity as well as additional activators of calcium mobilization from these lipids. Together these data provide new insight into the family of N-acyl amides and their roles as signaling molecules at ion channels, in microglia, and in the brain in the context of inflammation.

  8. Atorvastatin prevents age-related and amyloid-β-induced microglial activation by blocking interferon-γ release from natural killer cells in the brain

    Directory of Open Access Journals (Sweden)

    Clarke Rachael

    2011-03-01

    Full Text Available Abstract Background Microglial function is modulated by several factors reflecting the numerous receptors expressed on the cell surface, however endogenous factors which contribute to the age-related increase in microglial activation remain largely unknown. One possible factor which may contribute is interferon-γ (IFNγ. IFNγ has been shown to increase in the aged brain and potently activates microglia, although its endogenous cell source in the brain remains unidentified. Methods Male Wistar rats were used to assess the effect of age and amyloid-β (Aβ on NK cell infiltration into the brain. The effect of the anti-inflammatory compound, atorvastatin was also assessed under these conditions. We measured cytokine and chemokine (IFNγ, IL-2, monocyte chemoattractant protein-1 (MCP-1 and IFNγ-induced protein 10 kDa (IP-10, expression in the brain by appropriate methods. We also looked at NK cell markers, CD161, NKp30 and NKp46 using flow cytometry and western blot. Results Natural killer (NK cells are a major source of IFNγ in the periphery and here we report the presence of CD161+ NKp30+ cells and expression of CD161 and NKp46 in the brain of aged and Aβ-treated rats. Furthermore, we demonstrate that isolated CD161+ cells respond to interleukin-2 (IL-2 by releasing IFNγ. Atorvastatin, the HMG-CoA reductase inhibitor, attenuates the increase in CD161 and NKp46 observed in hippocampus of aged and Aβ-treated rats. This was paralleled by a decrease in IFNγ, markers of microglial activation and the chemokines, MCP-1 and IP-10 which are chemotactic for NK cells. Conclusions We propose that NK cells contribute to the age-related and Aβ-induced neuroinflammatory changes and demonstrate that these changes can be modulated by atorvastatin treatment.

  9. Atorvastatin prevents age-related and amyloid-beta-induced microglial activation by blocking interferon-gamma release from natural killer cells in the brain

    LENUS (Irish Health Repository)

    Lyons, Anthony

    2011-03-31

    Abstract Background Microglial function is modulated by several factors reflecting the numerous receptors expressed on the cell surface, however endogenous factors which contribute to the age-related increase in microglial activation remain largely unknown. One possible factor which may contribute is interferon-γ (IFNγ). IFNγ has been shown to increase in the aged brain and potently activates microglia, although its endogenous cell source in the brain remains unidentified. Methods Male Wistar rats were used to assess the effect of age and amyloid-β (Aβ) on NK cell infiltration into the brain. The effect of the anti-inflammatory compound, atorvastatin was also assessed under these conditions. We measured cytokine and chemokine (IFNγ, IL-2, monocyte chemoattractant protein-1 (MCP-1) and IFNγ-induced protein 10 kDa (IP-10)), expression in the brain by appropriate methods. We also looked at NK cell markers, CD161, NKp30 and NKp46 using flow cytometry and western blot. Results Natural killer (NK) cells are a major source of IFNγ in the periphery and here we report the presence of CD161+ NKp30+ cells and expression of CD161 and NKp46 in the brain of aged and Aβ-treated rats. Furthermore, we demonstrate that isolated CD161+ cells respond to interleukin-2 (IL-2) by releasing IFNγ. Atorvastatin, the HMG-CoA reductase inhibitor, attenuates the increase in CD161 and NKp46 observed in hippocampus of aged and Aβ-treated rats. This was paralleled by a decrease in IFNγ, markers of microglial activation and the chemokines, MCP-1 and IP-10 which are chemotactic for NK cells. Conclusions We propose that NK cells contribute to the age-related and Aβ-induced neuroinflammatory changes and demonstrate that these changes can be modulated by atorvastatin treatment.

  10. Therapeutic targeting of Krüppel-like factor 4 abrogates microglial activation

    Directory of Open Access Journals (Sweden)

    Kaushik Deepak

    2012-03-01

    Full Text Available Abstract Background Neuroinflammation occurs as a result of microglial activation in response to invading micro-organisms or other inflammatory stimuli within the central nervous system. According to our earlier findings, Krüppel-like factor 4 (Klf4, a zinc finger transcription factor, is involved in microglial activation and subsequent release of proinflammatory cytokines, tumor necrosis factor alpha, macrophage chemoattractant protein-1 and interleukin-6 as well as proinflammatory enzymes, inducible nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharide-treated microglial cells. Our current study focuses on finding the molecular mechanism of the anti-inflammatory activities of honokiol in lipopolysaccharide-treated microglia with emphasis on the regulation of Klf4. Methods For in vitro studies, mouse microglial BV-2 cell lines as well as primary microglia were treated with 500 ng/mL lipopolysaccharide as well as 1 μM and 10 μM of honokiol. We cloned full-length Klf4 cDNA in pcDNA3.1 expression vector and transfected BV-2 cells with this construct using lipofectamine for overexpression studies. For in vivo studies, brain tissues were isolated from BALB/c mice treated with 5 mg/kg body weight of lipopolysaccharide either with or without 2.5 or 5 mg/kg body weight of honokiol. Expression of Klf4, cyclooxygenase-2, inducible nitric oxide synthase and phospho-nuclear factor-kappa B was measured using immunoblotting. We also measured the levels of cytokines, reactive oxygen species and nitric oxide in different conditions. Results Our findings suggest that honokiol can substantially downregulate the production of proinflammatory cytokines and inflammatory enzymes in lipopolysaccharide-stimulated microglia. In addition, honokiol downregulates lipopolysaccharide-induced upregulation of both Klf4 and phospho-nuclear factor-kappa B in these cells. We also found that overexpression of Klf4 in BV-2 cells suppresses the anti

  11. Subneurotoxic copper(II)-induced NF-κB-dependent microglial activation is associated with mitochondrial ROS

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zhuqin; Yu, Fengxiang; Gong, Ping; Qiu, Yu; Zhou, Wei; Cui, Yongyao; Li, Juan, E-mail: lijuanpharm@gmail.com; Chen, Hongzhuan, E-mail: yaoli@shsmu.edu.cn

    2014-04-15

    Microglia-mediated neuroinflammation and the associated neuronal damage play critical roles in the pathogenesis of neurodegenerative disorders. Evidence shows an elevated concentration of extracellular copper(II) in the brains of these disorders, which may contribute to neuronal death through direct neurotoxicity. Here we explored whether extracellular copper(II) triggers microglial activation. Primary rat microglia and murine microglial cell line BV-2 cells were cultured and treated with copper(II). The content of tumor necrosis factor-α (TNF-α) and nitric oxide in the medium was determined. Extracellular hydrogen peroxide was quantified by a fluorometric assay with Amplex Red. Mitochondrial superoxide was measured by MitoSOX oxidation. At subneurotoxic concentrations, copper(II) treatment induced a dose- and time-dependent release of TNF-α and nitric oxide from microglial cells, and caused an indirect, microglia-mediated neurotoxicity that was blocked by inhibition of TNF-α and nitric oxide production. Copper(II)-initiated microglial activation was accompanied with reduced IkB-α expression as well as phosphorylation and translocation of nuclear factor-κB (NF-κB) p65 and was blocked by NF-κB inhibitors (BAY11-7082 and SC-514). Moreover, copper(II) treatment evoked a rapid release of hydrogen peroxide from microglial cells, an effect that was not affected by NADPH oxidase inhibitors. N-acetyl-cysteine, a scavenger of reactive oxygen species (ROS), abrogated copper(II)-elicited microglial release of TNF-α and nitric oxide and subsequent neurotoxicity. Importantly, mitochondrial production of superoxide, paralleled to extracellular release of hydrogen peroxide, was induced after copper(II) stimulation. Our findings suggest that extracellular copper(II) at subneurotoxic concentrations could trigger NF-κB-dependent microglial activation and subsequent neurotoxicity. NADPH oxidase-independent, mitochondria-derived ROS may be involved in this activation

  12. Neuroprotection of Scutellarin is mediated by inhibition of microglial inflammatory activation.

    Science.gov (United States)

    Wang, S; Wang, H; Guo, H; Kang, L; Gao, X; Hu, L

    2011-06-30

    Inhibition of microglial over-reaction and the inflammatory processes may represent a therapeutic target to alleviate the progression of neurological diseases, such as neurodegenerative diseases and stroke. Scutellarin is the major active component of Erigeron breviscapus (Vant.) Hand-Mazz, a herbal medicine in treatment of cerebrovascular diseases for a long time in the Orient. In this study, we explored the mechanisms of neuroprotection by Scutellarin, particularly its anti-inflammatory effects in microglia. We observed that Scutellarin inhibited lipopolysaccharide (LPS)-induced production of proinflammatory mediators such as nitric oxide (NO), tumor necrosis factor α (TNFα), interleukin-1β (IL-1β) and reactive oxygen species (ROS), suppressed LPS-stimulated inducible nitric oxide synthase (iNOS), TNFα, and IL-1β mRNA expression in rat primary microglia or BV-2 mouse microglial cell line. Scutellarin inhibited LPS-induced nuclear translocation and DNA binding activity of nuclear factor κB (NF-κB). It repressed the LPS-induced c-Jun N-terminal kinase (JNK) and p38 phosphorylation without affecting the activity of extracellular signal regulated kinase (ERK) mitogen-activated protein kinase. Moreover, Scutellarin also inhibited interferon-γ (IFN-γ)-induced NO production, iNOS mRNA expression and transcription factor signal transducer and activator of transcription 1α (STAT1α) activation. Concomitantly, conditioned media from Scutellarin pretreated BV-2 cells significantly reduced neurotoxicity compared with conditioned media from LPS treated alone. Together, the present study reported the anti-inflammatory activity of Scutellarin in microglial cells along with their underlying molecular mechanisms, and suggested Scutellarin might have therapeutic potential for various microglia mediated neuroinflammation. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Cannabidiol inhibits pathogenic T cells, decreases spinal microglial activation and ameliorates multiple sclerosis-like disease in C57BL/6 mice

    Science.gov (United States)

    Kozela, Ewa; Lev, Nirit; Kaushansky, Nathali; Eilam, Raya; Rimmerman, Neta; Levy, Rivka; Ben-Nun, Avraham; Juknat, Ana; Vogel, Zvi

    2011-01-01

    BACKGROUND AND PURPOSE Cannabis extracts and several cannabinoids have been shown to exert broad anti-inflammatory activities in experimental models of inflammatory CNS degenerative diseases. Clinical use of many cannabinoids is limited by their psychotropic effects. However, phytocannabinoids like cannabidiol (CBD), devoid of psychoactive activity, are, potentially, safe and effective alternatives for alleviating neuroinflammation and neurodegeneration. EXPERIMENTAL APPROACH We used experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein (MOG) in C57BL/6 mice, as a model of multiple sclerosis. Using immunocytochemistry and cell proliferation assays we evaluated the effects of CBD on microglial activation in MOG-immunized animals and on MOG-specific T-cell proliferation. KEY RESULTS Treatment with CBD during disease onset ameliorated the severity of the clinical signs of EAE. This effect of CBD was accompanied by diminished axonal damage and inflammation as well as microglial activation and T-cell recruitment in the spinal cord of MOG-injected mice. Moreover, CBD inhibited MOG-induced T-cell proliferation in vitro at both low and high concentrations of the myelin antigen. This effect was not mediated via the known cannabinoid CB1 and CB2 receptors. CONCLUSIONS AND IMPLICATIONS CBD, a non-psychoactive cannabinoid, ameliorates clinical signs of EAE in mice, immunized against MOG. Suppression of microglial activity and T-cell proliferation by CBD appeared to contribute to these beneficial effects. LINKED ARTICLES This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21449980

  14. Inhibitors of Microglial Neurotoxicity: Focus on Natural Products

    Directory of Open Access Journals (Sweden)

    Kyoungho Suk

    2011-01-01

    Full Text Available Microglial cells play a dual role in the central nervous system as they have both neurotoxic and neuroprotective effects. Uncontrolled and excessive activation of microglia often contributes to inflammation-mediated neurodegeneration. Recently, much attention has been paid to therapeutic strategies aimed at inhibiting neurotoxic microglial activation. Pharmacological inhibitors of microglial activation are emerging as a result of such endeavors. In this review, natural products-based inhibitors of microglial activation will be reviewed. Potential neuroprotective activity of these compounds will also be discussed. Future works should focus on the discovery of novel drug targets that specifically mediate microglial neurotoxicity rather than neuroprotection. Development of new drugs based on these targets may require a better understanding of microglial biology and neuroinflammation at the molecular, cellular, and systems levels.

  15. Alginate-Derived Oligosaccharide Inhibits Neuroinflammation and Promotes Microglial Phagocytosis of β-Amyloid

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    2015-09-01

    Full Text Available Alginate from marine brown algae has been widely applied in biotechnology. In this work, the effects of alginate-derived oligosaccharide (AdO on lipopolysaccharide (LPS/β-amyloid (Aβ-induced neuroinflammation and microglial phagocytosis of Aβ were studied. We found that pretreatment of BV2 microglia with AdO prior to LPS/Aβ stimulation led to a significant inhibition of production of nitric oxide (NO and prostaglandin E2 (PGE2, expression of inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 and secretion of proinflammatory cytokines. We further demonstrated that AdO remarkably attenuated the LPS-activated overexpression of toll-like receptor 4 (TLR4 and nuclear factor (NF-κB in BV2 cells. In addition to the impressive inhibitory effect on neuroinflammation, we also found that AdO promoted the phagocytosis of Aβ through its interaction with TLR4 in microglia. Our results suggested that AdO exerted the inhibitory effect on neuroinflammation and the promotion effect on microglial phagocytosis, indicating its potential as a nutraceutical or therapeutic agent for neurodegenerative diseases, particularly Alzheimer’s disease (AD.

  16. Cocaine-mediated induction of microglial activation involves the ER stress-TLR2 axis.

    Science.gov (United States)

    Liao, Ke; Guo, Minglei; Niu, Fang; Yang, Lu; Callen, Shannon E; Buch, Shilpa

    2016-02-09

    Neuroinflammation associated with advanced human immunodeficiency virus (HIV)-1 infection is often exacerbated by chronic cocaine abuse. Cocaine exposure has been demonstrated to mediate up-regulation of inflammatory mediators in in vitro cultures of microglia. The molecular mechanisms involved in this process, however, remain poorly understood. In this study, we sought to explore the underlying signaling pathways involved in cocaine-mediated activation of microglial cells. BV2 microglial cells were exposed to cocaine and assessed for toll-like receptor (TLR2) expression by quantitative polymerase chain reaction (qPCR), western blot, flow cytometry, and immunofluorescence staining. The mRNA and protein levels of cytokines (TNFα, IL-6, MCP-1) were detected by qPCR and ELISA, respectively; level of reactive oxygen species (ROS) production was examined by the Image-iT LIVE Green ROS detection kit; activation of endoplasmic reticulum (ER)-stress pathways were detected by western blot. Chromatin immunoprecipitation (ChIP) assay was employed to discern the binding of activating transcription factor 4 (ATF4) with the TLR2 promoter. Immunoprecipitation followed by western blotting with tyrosine antibody was used to determine phosphorylation of TLR2. Cocaine-mediated up-regulation of TLR2 expression and microglial activation was validated in cocaine-injected mice. Exposure of microglial cells to cocaine resulted in increased expression of TLR2 with a concomitant induction of microglial activation. Furthermore, this effect was mediated by NADPH oxidase-mediated rapid accumulation of ROS with downstream activation of the ER-stress pathways as evidenced by the fact that cocaine exposure led to up-regulation of pPERK/peIF2α/ATF4 and TLR2. The novel role of ATF4 in the regulation of TLR2 expression was confirmed using genetic and pharmacological approaches. xThe current study demonstrates that cocaine-mediated activation of microglia involves up-regulation of TLR2 through the

  17. Botanical Polyphenols Mitigate Microglial Activation and Microglia-Induced Neurotoxicity: Role of Cytosolic Phospholipase A2.

    Science.gov (United States)

    Chuang, Dennis Y; Simonyi, Agnes; Cui, Jiankun; Lubahn, Dennis B; Gu, Zezong; Sun, Grace Y

    2016-09-01

    Microglia play a significant role in the generation and propagation of oxidative/nitrosative stress, and are the basis of neuroinflammatory responses in the central nervous system. Upon stimulation by endotoxins such as lipopolysaccharides (LPS), these cells release pro-inflammatory factors which can exert harmful effects on surrounding neurons, leading to secondary neuronal damage and cell death. Our previous studies demonstrated the effects of botanical polyphenols to mitigate inflammatory responses induced by LPS, and highlighted an important role for cytosolic phospholipase A2 (cPLA2) upstream of the pro-inflammatory pathways (Chuang et al. in J Neuroinflammation 12(1):199, 2015. doi: 10.1186/s12974-015-0419-0 ). In this study, we investigate the action of botanical compounds and assess whether suppression of cPLA2 in microglia is involved in the neurotoxic effects on neurons. Differentiated SH-SY5Y neuroblastoma cells were used to test the neurotoxicity of conditioned medium from stimulated microglial cells, and WST-1 assay was used to assess for the cell viability of SH-SY5Y cells. Botanicals such as quercetin and honokiol (but not cyanidin-3-O-glucoside, 3CG) were effective in inhibiting LPS-induced nitric oxide (NO) production and phosphorylation of cPLA2. Conditioned medium from BV-2 cells stimulated with LPS or IFNγ caused neurotoxicity to SH-SY5Y cells. Decrease in cell viability could be ameliorated by pharmacological inhibitors for cPLA2 as well as by down-regulating cPLA2 with siRNA. Botanicals effective in inhibition of LPS-induced NO and cPLA2 phosphorylation were also effective in ameliorating microglial-induced neurotoxicity. Results demonstrated cytotoxic factors from activated microglial cells to cause damaging effects to neurons and potential use of botanical polyphenols to ameliorate the neurotoxic effects.

  18. Cleome rutidosperma and Euphorbia thymifolia Suppress Inflammatory Response via Upregulation of Phase II Enzymes and Modulation of NF-κB and JNK Activation in LPS-Stimulated BV2 Microglia

    Directory of Open Access Journals (Sweden)

    Hsiou-Yu Ding

    2016-08-01

    Full Text Available Cleome rutidosperma DC. and Euphorbia thymifolia L. are herbal medicines used in traditional Indian and Chinese medicine to treat various illnesses. Reports document that they have antioxidant and anti-inflammatory activities; nonetheless, the molecular mechanisms involved in their anti-inflammatory actions have not yet been elucidated. The anti-neuroinflammatory activities and underlying mechanisms of ethanol extracts of Cleome rutidosperma (CR and Euphorbia thymifolia (ET were studied using lipopolysaccharide (LPS-stimulated microglial cell line BV2. The morphology changes and production of pro-inflammatory mediators were assayed. Gene expression of inflammatory genes such as inducible nitric oxide synthase (iNOS, cyclooxygenase (COX-2, interleukin (IL-1β, and CC chemokine ligand (CCL-2, as well as phase II enzymes such as heme oxygenase (HO-1, the modifier subunit of glutamate cysteine ligase (GCLM and NAD(PH quinone dehydrogenase 1 (NQO1, were further investigated using reverse transcription quantitative-PCR (RT-Q-PCR and Western blotting. The effects of CR and ET on mitogen activated protein kinases (MAPKs and nuclear factor (NF-κB signaling pathways were examined using Western blotting and specific inhibitors. CR and ET suppressed BV2 activation, down-regulated iNOS and COX-2 expression and inhibited nitric oxide (NO overproduction without affecting cell viability. They reduced LPS-mediated tumor necrosis factor (TNF and IL-6 production, attenuated IL-1β and CCL2 expression, but upregulated HO-1, GCLM and NQO1 expression. They also inhibited p65 NF-κB phosphorylation and modulated Jun-N terminal kinase (JNK activation in BV2 cells. SP600125, the JNK inhibitor, significantly augmented the anti-IL-6 activity of ET. NF-κB inhibitor, Bay 11-7082, enhanced the anti-IL-6 effects of both CR and ET. Znpp, a competitive inhibitor of HO-1, attenuated the anti-NO effects of CR and ET. Our results show that CR and ET exhibit anti

  19. Proinflammatory-Activated Glioma Cells Induce a Switch in Microglial Polarization and Activation Status, From a Predominant M2b Phenotype to a Mixture of M1 and M2a/B Polarized Cells

    Directory of Open Access Journals (Sweden)

    Lucia Lisi

    2014-04-01

    Full Text Available Malignant gliomas are primary brain tumors characterized by morphological and genetic complexities, as well as diffuse infiltration into normal brain parenchyma. Within gliomas, microglia/macrophages represent the largest tumor-infiltrating cell population, contributing by at least one-third to the total tumor mass. Bi-directional interactions between glioma cells and microglia may therefore play an important role on tumor growth and biology. In the present study, we have characterized the influence of glioma-soluble factors on microglial function, comparing the effects of media harvested under basal conditions with those of media obtained after inducing a pro-inflammatory activation state in glioma cells. We found that microglial cells undergo a different pattern of activation depending on the stimulus; in the presence of activated glioma-derived factors, i.e. a condition mimicking the late stage of pathology, microglia presents as a mixture of polarization phenotypes (M1 and M2a/b, with up-regulation of iNOS (inducible nitric oxide synthase, ARG (arginase and IL (interleukine-10. At variance, microglia exposed to basal glioma-derived factors, i.e. a condition resembling the early stage of pathology, shows a more specific pattern of activation, with increased M2b polarization status and up-regulation of IL-10 only. As far as viability and cell proliferation are concerned, both LI-CM [LPS (lipopolysaccharide—IFNγ (interferon γ conditioned media] and C-CM (control-conditioned media induce similar effects on microglial morphology. Finally, in human glioma tissue obtained from surgical resection of patients with IV grade glioblastoma, we detected a significant amount of CD68 positive cells, which is a marker of macrophage/microglial phagocytic activity, suggesting that in vitro findings presented here might have a relevance in the human pathology as well.

  20. Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury.

    Science.gov (United States)

    Kumar, Alok; Stoica, Bogdan A; Loane, David J; Yang, Ming; Abulwerdi, Gelareh; Khan, Niaz; Kumar, Asit; Thom, Stephen R; Faden, Alan I

    2017-03-15

    Local and systemic inflammatory responses are initiated early after traumatic brain injury (TBI), and may play a key role in the secondary injury processes resulting in neuronal loss and neurological deficits. However, the mechanisms responsible for the rapid expansion of neuroinflammation and its long-term progression have yet to be elucidated. Here, we investigate the role of microparticles (MP), a member of the extracellular vesicle family, in the exchange of pro-inflammatory molecules between brain immune cells, as well as their transfer to the systemic circulation, as key pathways of inflammation propagation following brain trauma. Adult male C57BL/6 mice were subjected to controlled cortical impact TBI for 24 h, and enriched MP were isolated in the blood, while neuroinflammation was assessed in the TBI cortex. MP were characterized by flow cytometry, and MP content was assayed using gene and protein markers for pro-inflammatory mediators. Enriched MP co-cultured with BV2 or primary microglial cells were used for immune propagation assays. Enriched MP from BV2 microglia or CD11b-positive microglia from the TBI brain were stereotactically injected into the cortex of uninjured mice to evaluate MP-related seeding of neuroinflammation in vivo. As the neuroinflammatory response is developing in the brain after TBI, microglial-derived MP are released into the circulation. Circulating enriched MP from the TBI animals can activate microglia in vitro. Lipopolysaccharide stimulation increases MP release from microglia in vitro and enhances their content of pro-inflammatory mediators, interleukin-1β and microRNA-155. Enriched MP from activated microglia in vitro or CD11b-isolated microglia/macrophage from the TBI brain ex vivo are sufficient to initiate neuroinflammation following their injection into the cortex of naïve (uninjured) animals. These data provide further insights into the mechanisms underlying the development and dissemination of neuroinflammation after

  1. Regulatory Effects of Fisetin on Microglial Activation

    Directory of Open Access Journals (Sweden)

    Jing-Yuan Chuang

    2014-06-01

    Full Text Available Increasing evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play a key role in neurodegeneration. Fisetin, a plant flavonol commonly found in fruits and vegetables, is frequently added to nutritional supplements due to its antioxidant properties. In the present study, treatment with fisetin inhibited microglial cell migration and ROS (reactive oxygen species production. Treatment with fisetin also effectively inhibited LPS plus IFN-γ-induced nitric oxide (NO production, and inducible nitric oxide synthase (iNOS expression in microglial cells. Furthermore, fisetin also reduced expressions of iNOS and NO by stimulation of peptidoglycan, the major component of the Gram-positive bacterium cell wall. Fisetin also inhibited the enhancement of LPS/IFN-γ- or peptidoglycan-induced inflammatory mediator IL (interlukin-1 β expression. Besides the antioxidative and anti-inflammatory effects of fisetin, our study also elucidates the manner in fisetin-induced an endogenous anti-oxidative enzyme HO (heme oxygenase-1 expression. Moreover, the regulatory molecular mechanism of fisetin-induced HO-1 expression operates through the PI-3 kinase/AKT and p38 signaling pathways in microglia. Notably, fisetin also significantly attenuated inflammation-related microglial activation and coordination deficit in mice in vivo. These findings suggest that fisetin may be a candidate agent for the development of therapies for inflammation-related neurodegenerative diseases.

  2. Microglial activation - tuning and pruning adult neurogenesis

    Directory of Open Access Journals (Sweden)

    Christine T eEkdahl

    2012-03-01

    Full Text Available Adult born neurons are encountering numerous choices during their development from neural stem cells to mature functionally integrated neurons in the brain. Microglia are part of the microenvironment within the neurogenic niches and possibly involved during the entire decision process. Mounting evidence suggest that microglia act as local equalizers capable of amplifying as well as filtering homeostatic signals. Depending on their state of activation, they may induce or facilitate different fundamental decisions in neurogenesis, such as proliferation or quiescence, cell survival or death, migration or establishment, growth or retraction of dendrites and axons, synaptic assembly or pruning, or tuning of synaptic transmission. Microglia are activated as a first line of defence against infections and participate in transforming the innate immunity into an adaptive immune response by recruiting systemic immune cells. So far, most studies have reported an acute decrease in the survival of new neurons following this classically activated microglial reaction. However, the long-term effects are more complex. In several neurodegenerative diseases the microglial activation is also evident, including a heterogeneous population of microglial phenotypes and a plethora of immune mediators, where the initiating agent may be protein deposits or cell debris. The transformation from a pro- to an anti-inflammatory cytokine profile and the de-activation of microglia is not clearly defined, or even dysregulated, and the adaptive response is often sparse. The diverse role of microglial activation in neurodegenerative diseases is reflected by the numerous studies reporting both beneficial and detrimental effects on the different steps of neurogenesis. This review will highlight the most recent findings on how microglial activation modulates adult neurogenesis, and specifically discuss the role of microglia in synaptic integration, currently a fast expanding research

  3. Inhibition of microglial activation by elderberry extracts and its phenolic components

    Science.gov (United States)

    Simonyi, Agnes; Chen, Zihong; Jiang, Jinghua; Zong, Yijia; Chuang, Dennis Y.; Gu, Zezong; Lu, Chi-Hua; Fritsche, Kevin L.; Greenlief, C. Michael; Rottinghaus, George E.; Thomas, Andrew L.; Lubahn, Dennis B.; Sun, Grace Y.

    2015-01-01

    Aims Elderberry (Sambucus spp.) is one of the oldest medicinal plants noted for its cardiovascular, anti-inflammatory, and immune-stimulatory properties. In this study, we investigated the anti-inflammatory and anti-oxidant effects of the American elderberry (Sambucus nigra subsp. canadensis) pomace as well as some of the anthocyanins (cyanidin chloride and cyanidin 3-O-glucoside) and flavonols (quercetin and rutin) in bv-2 mouse microglial cells. Main methods The bv-2 cells were pretreated with elderberry pomace (extracted with ethanol or ethyl acetate) or its anthocyanins and flavonols and stimulated by either lipopolysaccharide (LPS) or interferon-γ (IFNγ). Reactive oxygen species (ROS) and nitric oxide (NO) production (indicating oxidative stress and inflammatory response) were measured using the ROS detection reagent DCF-DA and the Griess reaction, respectively. Key findings Analysis of total monomeric anthocyanin (as cyanidin 3-O-glucoside equivalents) indicated five-fold higher amount in the freeze-dried ethanol extract as compared to that of the oven-dried extract; anthocyanin was not detected in the ethyl acetate extracts. Elderberry ethanol extracts (freeze-dried or oven-dried) showed higher anti-oxidant activities and better ability to inhibit LPS or IFNγ-induced NO production as compared with the ethyl acetate extracts. The phenolic compounds strongly inhibited LPS or IFNγ-induced ROS production, but except for quercetin, they were relatively poor in inhibiting NO production. Significance These results demonstrated difference in anti-oxidative and anti-inflammatory effects of elderberry extracts depending on solvents used. Results further identified quercetin as the most active component in suppressing oxidative stress and inflammatory responses on microglial cells. PMID:25744406

  4. Estimation of absolute microglial cell numbers in mouse fascia dentata using unbiased and efficient stereological cell counting principles

    DEFF Research Database (Denmark)

    Wirenfeldt, Martin; Dalmau, Ishar; Finsen, Bente

    2003-01-01

    Stereology offers a set of unbiased principles to obtain precise estimates of total cell numbers in a defined region. In terms of microglia, which in the traumatized and diseased CNS is an extremely dynamic cell population, the strength of stereology is that the resultant estimate is unaffected b...

  5. Phenotypic clustering: a novel method for microglial morphology analysis.

    Science.gov (United States)

    Verdonk, Franck; Roux, Pascal; Flamant, Patricia; Fiette, Laurence; Bozza, Fernando A; Simard, Sébastien; Lemaire, Marc; Plaud, Benoit; Shorte, Spencer L; Sharshar, Tarek; Chrétien, Fabrice; Danckaert, Anne

    2016-06-17

    Microglial cells are tissue-resident macrophages of the central nervous system. They are extremely dynamic, sensitive to their microenvironment and present a characteristic complex and heterogeneous morphology and distribution within the brain tissue. Many experimental clues highlight a strong link between their morphology and their function in response to aggression. However, due to their complex "dendritic-like" aspect that constitutes the major pool of murine microglial cells and their dense network, precise and powerful morphological studies are not easy to realize and complicate correlation with molecular or clinical parameters. Using the knock-in mouse model CX3CR1(GFP/+), we developed a 3D automated confocal tissue imaging system coupled with morphological modelling of many thousands of microglial cells revealing precise and quantitative assessment of major cell features: cell density, cell body area, cytoplasm area and number of primary, secondary and tertiary processes. We determined two morphological criteria that are the complexity index (CI) and the covered environment area (CEA) allowing an innovative approach lying in (i) an accurate and objective study of morphological changes in healthy or pathological condition, (ii) an in situ mapping of the microglial distribution in different neuroanatomical regions and (iii) a study of the clustering of numerous cells, allowing us to discriminate different sub-populations. Our results on more than 20,000 cells by condition confirm at baseline a regional heterogeneity of the microglial distribution and phenotype that persists after induction of neuroinflammation by systemic injection of lipopolysaccharide (LPS). Using clustering analysis, we highlight that, at resting state, microglial cells are distributed in four microglial sub-populations defined by their CI and CEA with a regional pattern and a specific behaviour after challenge. Our results counteract the classical view of a homogenous regional resting

  6. Licochalcone A Prevents the Loss of Dopaminergic Neurons by Inhibiting Microglial Activation in Lipopolysaccharide (LPS-Induced Parkinson’s Disease Models

    Directory of Open Access Journals (Sweden)

    Bingxu Huang

    2017-09-01

    Full Text Available The neuroprotective effects of Licochalcone A (Lico.A, a flavonoid isolated from the herb licorice, in Parkinson’s disease (PD have not been elucidated. The prominent pathological feature of PD is the loss of dopaminergic neurons. The crucial role of neuroinflammation induced by activated microglia in dopaminergic neurodegeneration has been validated. In this study, we explore the therapeutic effects of Lico.A in lipopolysaccharide (LPS-induced PD models in vivo and in vitro. We find that Lico.A significantly inhibits LPS-stimulated production of pro-inflammatory mediators and microglial activation by blocking the phosphorylation of extracellular signal-regulated kinase (ERK1/2 and nuclear factor κB (NF-κB p65 in BV-2 cells. In addition, through cultured primary mesencephalic neuron-glia cell experiments, we illustrate that Lico.A attenuates the decrease in [3H] dopamine (DA uptake and the loss of tyrosine hydroxylase-immunoreactive (TH-ir neurons in LPS-induced PD models in vitro. Furthermore, LPS intoxication in rats results in microglial activation, dopaminergic neurodegeneration and significant behavioral deficits in vivo. Lico.A treatment prevents microglial activation and reduction of dopaminergic neuron and ameliorates PD-like behavioral impairments. Thus, these results demonstrate for the first time that the neuroprotective effects of Lico.A are associated with microglia and anti-inflammatory effects in PD models.

  7. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia

    Science.gov (United States)

    2013-01-01

    Background Hypoxia induces microglial activation which causes damage to the developing brain. Microglia derived inflammatory mediators may contribute to this process. Toll-like receptor 4 (TLR4) has been reported to induce microglial activation and cytokines production in brain injuries; however, its role in hypoxic injury remains uncertain. We investigate here TLR4 expression and its roles in neuroinflammation in neonatal rats following hypoxic injury. Methods One day old Wistar rats were subjected to hypoxia for 2 h. Primary cultured microglia and BV-2 cells were subjected to hypoxia for different durations. TLR4 expression in microglia was determined by RT-PCR, western blot and immunofluorescence staining. Small interfering RNA (siRNA) transfection and antibody neutralization were employed to downregulate TLR4 in BV-2 and primary culture. mRNA and protein expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) was assessed. Reactive oxygen species (ROS), nitric oxide (NO) and NF-κB levels were determined by flow cytometry, colorimetric and ELISA assays respectively. Hypoxia-inducible factor-1 alpha (HIF-1α) mRNA and protein expression was quantified and where necessary, the protein expression was depleted by antibody neutralization. In vivo inhibition of TLR4 with CLI-095 injection was carried out followed by investigation of inflammatory mediators expression via double immunofluorescence staining. Results TLR4 immunofluorescence and protein expression in the corpus callosum and cerebellum in neonatal microglia were markedly enhanced post-hypoxia. In vitro, TLR4 protein expression was significantly increased in both primary microglia and BV-2 cells post-hypoxia. TLR4 neutralization in primary cultured microglia attenuated the hypoxia-induced expression of TNF-α, IL-1β and iNOS. siRNA knockdown of TLR4 reduced hypoxia-induced upregulation of TNF-α, IL-1β, iNOS, ROS and NO in BV-2 cells. TLR4

  8. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia

    Directory of Open Access Journals (Sweden)

    Yao Linli

    2013-02-01

    Full Text Available Abstract Background Hypoxia induces microglial activation which causes damage to the developing brain. Microglia derived inflammatory mediators may contribute to this process. Toll-like receptor 4 (TLR4 has been reported to induce microglial activation and cytokines production in brain injuries; however, its role in hypoxic injury remains uncertain. We investigate here TLR4 expression and its roles in neuroinflammation in neonatal rats following hypoxic injury. Methods One day old Wistar rats were subjected to hypoxia for 2 h. Primary cultured microglia and BV-2 cells were subjected to hypoxia for different durations. TLR4 expression in microglia was determined by RT-PCR, western blot and immunofluorescence staining. Small interfering RNA (siRNA transfection and antibody neutralization were employed to downregulate TLR4 in BV-2 and primary culture. mRNA and protein expression of tumor necrosis factor-alpha (TNF-α, interleukin-1 beta (IL-1β and inducible nitric oxide synthase (iNOS was assessed. Reactive oxygen species (ROS, nitric oxide (NO and NF-κB levels were determined by flow cytometry, colorimetric and ELISA assays respectively. Hypoxia-inducible factor-1 alpha (HIF-1α mRNA and protein expression was quantified and where necessary, the protein expression was depleted by antibody neutralization. In vivo inhibition of TLR4 with CLI-095 injection was carried out followed by investigation of inflammatory mediators expression via double immunofluorescence staining. Results TLR4 immunofluorescence and protein expression in the corpus callosum and cerebellum in neonatal microglia were markedly enhanced post-hypoxia. In vitro, TLR4 protein expression was significantly increased in both primary microglia and BV-2 cells post-hypoxia. TLR4 neutralization in primary cultured microglia attenuated the hypoxia-induced expression of TNF-α, IL-1β and iNOS. siRNA knockdown of TLR4 reduced hypoxia-induced upregulation of TNF-α, IL-1β, iNOS, ROS and

  9. miR-146a negatively regulates the induction of proinflammatory cytokines in response to Japanese encephalitis virus infection in microglial cells.

    Science.gov (United States)

    Deng, Minnan; Du, Ganqin; Zhao, Jiegang; Du, Xiaowei

    2017-06-01

    Increasing evidence confirms the involvement of virus infection and miRNA, such as miR-146a, in neuroinflammation-associated epilepsy. In the present study, we investigated the upregulation of miR-146a with RT-qPCR and in situ hybridization methods in a mice infection model of Japanese encephalitis virus (JEV) and in vitro. Subsequently we investigated the involvement of miR-146a in modulating JEV-induced neuroinflammation. It was demonstrated that JEV infection promoted miR-146a production in BALB/c mice brain and in cultured mouse microglial C8-B4 cells, along with pro-inflammatory cytokines, such as IL-1β, IL-6, TNF-α, IFN-β and IFN-α. We also found that miR-146a exerted negative regulatory effects upon IL-1β, IL-6, TNF-α, IFN-β and IFN-α in C8-B4 cells. Accordingly, miR-146a downregulation with a miR-146a inhibitor promoted the upregulation of IL-1β, IL-6, TNF-α, IFN-β and IFN-α, whereas miR-146a upregulation with miR-146a mimics reduced the upregulation of these cytokines. Moreover, miR-146a exerted no regulation upon JEV growth in C8-B4 cells. In conclusion, JEV infection upregulated miR-146a and pro-inflammatory cytokine production, in mice brain and in cultured C8-B4 cells. Furthermore, miR-146a negatively regulated the production of JEV-induced pro-inflammatory cytokines, in virus growth independent fashion, identifying miR-146a as a negative feedback regulator in JEV-induced neuroinflammation, and possibly in epilepsy.

  10. Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: a novel mechanism for cannabinoid-induced cell death

    OpenAIRE

    Rimmerman, N; Ben-Hail, D; Porat, Z; Juknat, A; Kozela, E; Daniels, M P; Connelly, P S; Leishman, E; Bradshaw, H B; Shoshan-Barmatz, V; Vogel, Z

    2013-01-01

    Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that inhibits cell proliferation and induces cell death of cancer cells and activated immune cells. It is not an agonist of the classical CB1/CB2 cannabinoid receptors and the mechanism by which it functions is unknown. Here, we studied the effects of CBD on various mitochondrial functions in BV-2 microglial cells. Our findings indicate that CBD treatment leads to a biphasic increase in intracellular calcium levels and to changes in mi...

  11. Modulation of microglial activation enhances neuroprotection and functional recovery derived from bone marrow mononuclear cell transplantation after cortical ischemia.

    Science.gov (United States)

    Franco, Edna C S; Cardoso, Marcelo M; Gouvêia, Amauri; Pereira, Antonio; Gomes-Leal, Walace

    2012-06-01

    Activated microglia may exacerbate damage in neural disorders; however, it is unknown how they affect stem cells transplanted after stroke. Focal ischemia was induced by microinjections of 40 pmol of endothelin-1 into the motor cortex of adult rats. Ischemic animals were treated with sterile saline (n = 5), bone marrow mononuclear cells (BMMCs, n = 8), minocycline (n = 5) or concomitantly with minocycline and BMMCs (n = 5). BMMC-treated animals received 5 × 10(6)BMMCs through the caudal vein 24h post-ischemia. Behavioral tests were performed to evaluate functional recovery. Morphometric and histological analyses were performed to assess infarct area, neuronal loss and microglia/macrophage activation up to 21 days post-ischemia. Treatments with minocycline, BMMCs or minocycline-BMMCs reduced infarct area, increased neuronal survival and decreased the number of caspase-3+ and ED-1+ cells, but these effects were more prominent in the minocycline-BMMC group. Behavioral analyses using the modified sticky-tape and open-field tests showed that ischemic rats concomitantly treated with BMMCs and minocycline showed better motor performance than rats treated with BMMCs or minocycline only. The results suggest that proper modulation of the inflammatory response through the blockage of microglia activation enhances neuroprotection and functional recovery induced by intravenous transplantation of BMMCs after motor cortex ischemia. Copyright © 2012 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  12. Quantitating the subtleties of microglial morphology with fractal analysis

    Science.gov (United States)

    Karperien, Audrey; Ahammer, Helmut; Jelinek, Herbert F.

    2013-01-01

    It is well established that microglial form and function are inextricably linked. In recent years, the traditional view that microglial form ranges between “ramified resting” and “activated amoeboid” has been emphasized through advancing imaging techniques that point to microglial form being highly dynamic even within the currently accepted morphological categories. Moreover, microglia adopt meaningful intermediate forms between categories, with considerable crossover in function and varying morphologies as they cycle, migrate, wave, phagocytose, and extend and retract fine and gross processes. From a quantitative perspective, it is problematic to measure such variability using traditional methods, but one way of quantitating such detail is through fractal analysis. The techniques of fractal analysis have been used for quantitating microglial morphology, to categorize gross differences but also to differentiate subtle differences (e.g., amongst ramified cells). Multifractal analysis in particular is one technique of fractal analysis that may be useful for identifying intermediate forms. Here we review current trends and methods of fractal analysis, focusing on box counting analysis, including lacunarity and multifractal analysis, as applied to microglial morphology. PMID:23386810

  13. Lipopolysaccharides Derived from Pantoea agglomerans Can Promote the Phagocytic Activity of Amyloid β in Mouse Microglial Cells.

    Science.gov (United States)

    Kobayashi, Yutaro; Inagawa, Hiroyuki; Kohchi, Chie; Okazaki, Katsuichiro; Zhang, Ran; Kobara, Hideki; Masaki, Tsutomu; Soma, Gen-Ichiro

    2017-07-01

    Recent studies reported that lipopolysaccharide (LPS) exhibits beneficial effects on prevention of immune-related diseases by activating macrophages. We previously demonstrated that pre-treatment with LPS derived from Pantoea agglomerans (LPSp) activated amyloid β (Aβ) phagocytosis in mouse primary microglia. In the present study, we further examined the promotory effect on phagocytosis of phagocytic particles in the C8-B4 microglia cell line. Phagocytic analysis of C8-B4 cells was evaluated using phagocytic particles (latex beads or HiLyte™ Fluor 488-conjugated Aβ 1-42 ). The phagocytic activity of latex beads was dependent on the concentration of beads and incubation time. LPSp, at as low as 100 pg/ml, significantly increased phagocytosis against the beads. In the experiment of Aβ 1-42 phagocytosis, LPSp significantly increased Aβ phagocytic activity. LPSp treatment was confirmed to enhance Aβ 1-42 phagocytosis by mouse microglia. It is suggested that the use of LPSp may be a potential promising candidate for the prevention of Alzheimer's disease. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. Poly(ADP-ribosepolymerase-1 modulates microglial responses to amyloid β

    Directory of Open Access Journals (Sweden)

    Kauppinen Tiina M

    2011-11-01

    Full Text Available Abstract Background Amyloid β (Aβ accumulates in Alzheimer's disease (AD brain. Microglial activation also occurs in AD, and this inflammatory response may contribute to disease progression. Microglial activation can be induced by Aβ, but the mechanisms by which this occurs have not been defined. The nuclear enzyme poly(ADP-ribose polymerase-1 (PARP-1 regulates microglial activation in response to several stimuli through its interactions with the transcription factor, NF-κB. The purpose of this study was to evaluate whether PARP-1 activation is involved in Aβ-induced microglial activation, and whether PARP-1 inhibition can modify microglial responses to Aβ. Methods hAPPJ20 mice, which accumulate Aβ with ageing, were crossed with PARP-1-/- mice to assess the effects of PARP-1 depletion on microglial activation, hippocampal synaptic integrity, and cognitive function. Aβ peptide was also injected into brain of wt and PARP-1-/- mice to directly determine the effects of PARP-1 on Aβ-induced microglial activation. The effect of PARP-1 on Aβ-induced microglial cytokine production and neurotoxicity was evaluated in primary microglia cultures and in microglia-neuron co-cultures, utilizing PARP-1-/- cells and a PARP-1 inhibitor. NF-κB activation was evaluated in microglia infected with a lentivirus reporter gene. Results The hAPPJ20 mice developed microglial activation, reduced hippocampal CA1 calbindin expression, and impaired novel object recognition by age 6 months. All of these features were attenuated in hAPPJ20/PARP-1-/- mice. Similarly, Aβ1-42 injected into mouse brain produced a robust microglial response in wild-type mice, and this was blocked in mice lacking PARP-1 expression or activity. Studies using microglial cultures showed that PARP-1 activity was required for Aβ-induced NF-κB activation, morphological transformation, NO release, TNFα release, and neurotoxicity. Conversely, PARP-1 inhibition increased release of the

  15. Downregulation of miR-199b promotes the acute spinal cord injury through IKKβ-NF-κB signaling pathway activating microglial cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Heng-Jun [Department of Neurosurgery, the First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang (China); Wang, Li-Qing [Department of Anesthesia, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003 (China); Xu, Qing-Sheng; Fan, Zuo-Xu; Zhu, Yu; Jiang, Hao; Zheng, Xiu-Jue; Ma, Yue-Hui [Department of Neurosurgery, the First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang (China); Zhan, Ren-Ya, E-mail: zhanry148@163.com [Department of Neurosurgery, the First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang (China)

    2016-11-15

    Inflammatory response played an important role in the progression of spinal cord injury (SCI). Several miRNAs were associated with the pathology of SCI. However, the molecular mechanism of miRNA involving in inflammatory response in acute SCI (ASCI) was poorly understood. Sprague-Dawley (SD) rats were divided into 2 groups: control group (n=6) and acute SCI (ASCI) group (n=6). The expression of miR-199b and IκB kinase β-nuclear factor-kappa B (IKKβ-NF-κB) signaling pathway were evaluated by quantitative reverse transcription-PCR (qRT-PCR) in rats with ASCI and in primary microglia activated by lipopolysaccharide (LPS). We found that downregulation of miR-199b and activation of IKKβ/NF-κB were observed in rats after ASCI and in activated microglia. miR-199b negatively regulated IKKβ by targeting its 3′- untranslated regions (UTR) through using luciferase reporter assay. Overexpression of miR-199b reversed the up-regulation of IKKβ, p-p65, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in LPS-treated BV2 cells assessed by western blotting analysis. In addition, BMS-345541 reversed the up-regulation effects of miR-199b inhibitor on the expression of TNF-α and IL-1β. In the SCI rats, overexpression of miR-199b attenuated ASCI and decreased the expression of IKKβ-NF-κB signaling pathway and TNF-α and IL-1β. These results indicated that miR-199b attenuated ASCI at least partly through IKKβ-NF-κB signaling pathway and affecting the function of microglia. Our findings suggest that miR-199b may be employed as therapeutic for spinal cord injury. - Highlights: • Downregulation of miR-199b and activation of IKKβ/NF-κB were observed in rat after SCI. • miR-199b negatively regulated IKKβ by targeting its 3′-UTR. • miR-199b overexpression reversed the increasing IKKβ, p-p65, TNF-α and IL-1β in LPS-treated BV2. • BMS-345541 reversed the up-regulation of TNF-α and IL-1β induced by miR-199b inhibitor. • Overexpression of miR-199b

  16. Influence of CSN1S2 protein from Caprine milk Etawah Breed (EB) on histology of microglial cells in rat (Rattus norvegicus) Type-2 diabetes mellitus (T2DM)

    Science.gov (United States)

    Rika, Margareth; Fatchiyah

    2017-11-01

    Type-2 diabetes mellitus (T2DM) is a degenerative disease that causes an imbalance in the metabolism. The aim of this research is to determine the influences of CSN1S2 on the structure of microglial cells in T2DM. Rats (Rattus norvegicus) were divided into eight groups of treatment with looping three times each between treatment groups (CM) Control. The control is given a milk treatment with doses of 375 mg/kg (CM375), 750 mg/kg (CM750), and 1500 mg/kg (CM1500), T2DM (DMK), and T2DM with CSN1S2 375 mg/kg dose (DM375), 750mg/kg (DM750), and 1500 mg/kg (DM1500). The animal model T2DM was induced by a high-fat diet in the form of feed followed by injection of STZ (dose of 25 mg/kg of animal treatment) and treatment of CSN1S2 for 28 days. Brain organs were taken and analysed in histopathology stained by Hematoxylin-eosin (HE) and observed using Olympus BX53. Based on the results, it was concluded that CSN1S2 protein is influential for induction of microglial cell proliferation in animal models of T2DM, as immunity responds to the inflammatory condition in T2DM.

  17. Microglial interactions with synapses are modulated by visual experience.

    Directory of Open Access Journals (Sweden)

    Marie-Ève Tremblay

    2010-11-01

    Full Text Available Microglia are the immune cells of the brain. In the absence of pathological insult, their highly motile processes continually survey the brain parenchyma and transiently contact synaptic elements. Aside from monitoring, their physiological roles at synapses are not known. To gain insight into possible roles of microglia in the modification of synaptic structures, we used immunocytochemical electron microscopy, serial section electron microscopy with three-dimensional reconstructions, and two-photon in vivo imaging to characterize microglial interactions with synapses during normal and altered sensory experience, in the visual cortex of juvenile mice. During normal visual experience, most microglial processes displayed direct apposition with multiple synapse-associated elements, including synaptic clefts. Microglial processes were also distinctively surrounded by pockets of extracellular space. In terms of dynamics, microglial processes localized to the vicinity of small and transiently growing dendritic spines, which were typically lost over 2 d. When experience was manipulated through light deprivation and reexposure, microglial processes changed their morphology, showed altered distributions of extracellular space, displayed phagocytic structures, apposed synaptic clefts more frequently, and enveloped synapse-associated elements more extensively. While light deprivation induced microglia to become less motile and changed their preference of localization to the vicinity of a subset of larger dendritic spines that persistently shrank, light reexposure reversed these behaviors. Taken together, these findings reveal different modalities of microglial interactions with synapses that are subtly altered by sensory experience. These findings suggest that microglia may actively contribute to the experience-dependent modification or elimination of a specific subset of synapses in the healthy brain.

  18. Redox Control of Microglial Function: Molecular Mechanisms and Functional Significance

    Science.gov (United States)

    McBean, Gethin; Cindric, Marina; Egea, Javier; López, Manuela G.; Rada, Patricia; Zarkovic, Neven

    2014-01-01

    Abstract Neurodegenerative diseases are characterized by chronic microglial over-activation and oxidative stress. It is now beginning to be recognized that reactive oxygen species (ROS) produced by either microglia or the surrounding environment not only impact neurons but also modulate microglial activity. In this review, we first analyze the hallmarks of pro-inflammatory and anti-inflammatory phenotypes of microglia and their regulation by ROS. Then, we consider the production of reactive oxygen and nitrogen species by NADPH oxidases and nitric oxide synthases and the new findings that also indicate an essential role of glutathione (γ-glutamyl-l-cysteinylglycine) in redox homeostasis of microglia. The effect of oxidant modification of macromolecules on signaling is analyzed at the level of oxidized lipid by-products and sulfhydryl modification of microglial proteins. Redox signaling has a profound impact on two transcription factors that modulate microglial fate, nuclear factor kappa-light-chain-enhancer of activated B cells, and nuclear factor (erythroid-derived 2)-like 2, master regulators of the pro-inflammatory and antioxidant responses of microglia, respectively. The relevance of these proteins in the modulation of microglial activity and the interplay between them will be evaluated. Finally, the relevance of ROS in altering blood brain barrier permeability is discussed. Recent examples of the importance of these findings in the onset or progression of neurodegenerative diseases are also discussed. This review should provide a profound insight into the role of redox homeostasis in microglial activity and help in the identification of new promising targets to control neuroinflammation through redox control of the brain. Antioxid. Redox Signal. 21, 1766–1801. PMID:24597893

  19. Microglial responses to amyloid β peptide opsonization and indomethacin treatment

    Directory of Open Access Journals (Sweden)

    Leonard Brian

    2005-08-01

    Full Text Available Abstract Background Recent studies have suggested that passive or active immunization with anti-amyloid β peptide (Aβ antibodies may enhance microglial clearance of Aβ deposits from the brain. However, in a human clinical trial, several patients developed secondary inflammatory responses in brain that were sufficient to halt the study. Methods We have used an in vitro culture system to model the responses of microglia, derived from rapid autopsies of Alzheimer's disease patients, to Aβ deposits. Results Opsonization of the deposits with anti-Aβ IgG 6E10 enhanced microglial chemotaxis to and phagocytosis of Aβ, as well as exacerbated microglial secretion of the pro-inflammatory cytokines TNF-α and IL-6. Indomethacin, a common nonsteroidal anti-inflammatory drug (NSAID, had no effect on microglial chemotaxis or phagocytosis, but did significantly inhibit the enhanced production of IL-6 after Aβ opsonization. Conclusion These results are consistent with well known, differential NSAID actions on immune cell functions, and suggest that concurrent NSAID administration might serve as a useful adjunct to Aβ immunization, permitting unfettered clearance of Aβ while dampening secondary, inflammation-related adverse events.

  20. Matairesinol Suppresses Neuroinflammation and Migration Associated with Src and ERK1/2-NF-κB Pathway in Activating BV2 Microglia.

    Science.gov (United States)

    Xu, Peng; Huang, Meng-Wei; Xiao, Chen-Xi; Long, Fen; Wang, Ying; Liu, Si-Yu; Jia, Wan-Wan; Wu, Wei-Jun; Yang, Di; Hu, Jin-Feng; Liu, Xin-Hua; Zhu, Yi-Zhun

    2017-10-01

    Chronic neuroinflammation is a pathological feature of neurodegenerative diseases. Inhibition of microglia-mediated neuroinflammation might be a potential strategy for neurodegeneration. Matairesinol, a dibenzylbutyrolactone plant lignan, presents in a wide variety of foodstuffs. It has been found to possess anti-angiogenic, anti-oxidative, anti-cancer and anti-fungal activities. In the present study, we investigated the anti-neuroinflammation effects of matairesinol on lipopolysaccharide (LPS)-induced BV2 microglia cells and the related molecular mechanisms. The results showed that matairesinol inhibited microglia activation by reducing the production of nitric oxide, the expression of inducible nitric oxide synthase and cyclooxygenase-2 in a concentration-dependent manner (6.25, 12.5, 25 μM). In the molecular signaling pathway, LPS-induced nuclear factor-kappa B (NF-κB) transcriptional activity and translocation into the nucleus were remarkably suppressed by matairesinol through the inhibition of the extracellular signal-regulated kinase (ERK)1/2 signal transduction pathways, but not p38 MAPK or c-jun N-terminal kinase (JNK). Meanwhile, matairesinol also blocked LPS-mediated microglia migration and this was associated with inhibition of LPS-induced Src phosphorylation as well as Src expression in a concentration-dependent manner. Taken together, these results suggest that matairesinol inhibited inflammatory response and migration in LPS-induced BV2 microglia, and the mechanisms may be associated with the NF-κB activation and modulation of Src pathway.

  1. The microglial system in the eye and brain in response to stimuli in vivo.

    Science.gov (United States)

    Ellis-Behnke, Rutledge G; Jonas, Rahul A; Jonas, Jost B

    2013-01-01

    Microglial cells function as first responders to signal inflammation, react to injuries by creating a wall to block invaders, and clear debris from the site. To better understand the modulation of microglia in inflammation and injury of eye and brain, we developed a morphological and orienting classification system of each stage of microglia, calling it the 'Spider Effect'. We transected the olfactory bulb of rats and examined the activation of the microglial system histologically. Six stages of bidirectional microglial activation (A) and deactivation (R) were observed. Our findings support a morphologically defined stepwise activation and deactivation of microglia cells. This relates to inflammation in the eye due to noxious stimuli, injury, or increase in pressure. Future studies may address the reported modulation of the microglial system in retina and optic nerve head in acute and chronic glaucoma.

  2. Deciphering resting microglial morphology and process motility from a synaptic prospect

    Directory of Open Access Journals (Sweden)

    Ines eHristovska

    2016-01-01

    Full Text Available Microglia, the resident immune cells of the central nervous system (CNS, were traditionally believed to be set into action only in case of injury or disease. Accordingly, microglia were assumed to be inactive or resting in the healthy brain. However, recent studies revealed that microglia carry out active tissue sampling in the intact brain by extending and retracting their ramified processes while periodically contacting synapses. Microglial morphology and motility as well as the frequency and duration of physical contacts with synaptic elements were found to be modulated by neuronal activity, sensory experience and neurotransmission; however findings have not been straightforward. Microglial cells are the most morphologically plastic element of the CNS. This unique feature confers them the possibility to locally sense activity, and to respond adequately by establishing synaptic contacts to regulate synaptic inputs by the secretion of signaling molecules. Indeed, microglial cells can hold new roles as critical players in maintaining brain homeostasis and regulating synaptic number, maturation and plasticity. For this reason, a better characterization of microglial cells and cues mediating neuron-to-microglia communication under physiological conditions may help advance our understanding of the microglial behavior and its regulation in the healthy brain. This review highlights recent findings on the instructive role of neuronal activity on microglial motility and microglia-synapse interactions, focusing on the main transmitters involved in this communication and including newly described communication at the tripartite synapse.

  3. Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity

    Directory of Open Access Journals (Sweden)

    Jeon Hyejin

    2012-06-01

    Full Text Available Abstract Background Plasminogen activator inhibitor type 1 (PAI-1 is the primary inhibitor of urokinase type plasminogen activators (uPA and tissue type plasminogen activators (tPA, which mediate fibrinolysis. PAI-1 is also involved in the innate immunity by regulating cell migration and phagocytosis. However, little is known about the role of PAI-1 in the central nervous system. Methods In this study, we identified PAI-1 in the culture medium of mouse mixed glial cells by liquid chromatography and tandem mass spectrometry. Secretion of PAI-1 from glial cultures was detected by ELISA and western blotting analysis. Cell migration was evaluated by in vitro scratch-wound healing assay or Boyden chamber assay and an in vivo stab wound injury model. Phagocytic activity was measured by uptake of zymosan particles. Results The levels of PAI-1 mRNA and protein expression were increased by lipopolysaccharide and interferon-γ stimulation in both microglia and astrocytes. PAI-1 promoted the migration of microglial cells in culture via the low-density lipoprotein receptor-related protein (LRP 1/Janus kinase (JAK/signal transducer and activator of transcription (STAT1 axis. PAI-1 also increased microglial migration in vivo when injected into mouse brain. PAI-1-mediated microglial migration was independent of protease inhibition, because an R346A mutant of PAI-1 with impaired PA inhibitory activity also promoted microglial migration. Moreover, PAI-1 was able to modulate microglial phagocytic activity. PAI-1 inhibited microglial engulfment of zymosan particles in a vitronectin- and Toll-like receptor 2/6-dependent manner. Conclusion Our results indicate that glia-derived PAI-1 may regulate microglial migration and phagocytosis in an autocrine or paracrine manner. This may have important implications in the regulation of brain microglial activities in health and disease.

  4. Astrocytic Orosomucoid-2 Modulates Microglial Activation and Neuroinflammation.

    Science.gov (United States)

    Jo, Myungjin; Kim, Jong-Heon; Song, Gyun Jee; Seo, Minchul; Hwang, Eun Mi; Suk, Kyoungho

    2017-03-15

    Orosomucoid (ORM) is an acute-phase protein that belongs to the immunocalin subfamily, a group of small-molecule-binding proteins with immunomodulatory functions. Little is known about the role of ORM proteins in the CNS. The aim of the present study was to investigate the brain expression of ORM and its role in neuroinflammation. Expression of Orm2, but not Orm1 or Orm3, was highly induced in the mouse brain after systemic injection of lipopolysaccharide (LPS). Plasma levels of ORM2 were also significantly higher in patients with cognitive impairment than in normal subjects. RT-PCR, Western blot, and immunofluorescence analyses revealed that astrocytes are the major cellular sources of ORM2 in the inflamed mouse brain. Recombinant ORM2 protein treatment decreased microglial production of proinflammatory mediators and reduced microglia-mediated neurotoxicity in vitro LPS-induced microglial activation, proinflammatory cytokines in hippocampus, and neuroinflammation-associated cognitive deficits also decreased as a result of intracerebroventricular injection of recombinant ORM2 protein in vivo Moreover, lentiviral shRNA-mediated Orm2 knockdown enhanced LPS-induced proinflammatory cytokine gene expression and microglial activation in the hippocampus. Mechanistically, ORM2 inhibited C-C chemokine ligand 4 (CCL4)-induced microglial migration and activation by blocking the interaction of CCL4 with C-C chemokine receptor type 5. Together, the results from our cultured glial cells, mouse neuroinflammation model, and patient studies suggest that ORM2 is a novel mediator of astrocyte-microglial interaction. We also report that ORM2 exerts anti-inflammatory effects by modulating microglial activation and migration during brain inflammation. ORM2 can be exploited therapeutically for the treatment of neuroinflammatory diseases. SIGNIFICANCE STATEMENT Neural cell interactions are important for brain physiology and pathology. Particularly, the interaction between non

  5. Sex differences in microglial phagocytosis in the neonatal hippocampus.

    Science.gov (United States)

    Nelson, Lars H; Warden, Spencer; Lenz, Kathryn M

    2017-08-01

    Microglia regulate brain development through many processes, such as promoting neurogenesis, supporting cell survival, and phagocytizing progenitor, newly-born, and dying cells. Many of these same developmental processes show robust sex differences, yet very few studies have assessed sex differences in microglia function during development. Hormonally-induced sexual differentiation of the brain occurs during the perinatal period, thus we examined sex differences in microglial morphology, phagocytosis, and proliferation in the hippocampus during the early postnatal period. We found that the neonatal female hippocampus had significantly more microglia with phagocytic cups than the male hippocampus. We subsequently found that female microglia phagocytized more neural progenitor cells and healthy cells compared to males, but there were no sex differences in the number of newly-born or dying cells targeted by microglial phagocytosis. We found that the number of phagocytic microglia in females was reduced to male-typical levels by treatment with estradiol, the hormone responsible for masculinizing the rodent brain. Females also had higher expression of several phagocytic pathway genes in the hippocampus compared to males. In contrast to robust sex differences in phagocytic microglia, we found no sex differences in the number of microglia with amoeboid, transitioning, or ramified morphologies or differences in three-dimensional reconstructions of microglial morphology. While we did not find a baseline sex difference in microglial proliferation during or following the prenatal gonadal hormone surge in males, we found that estradiol treatment increased microglia proliferation in females. Overall, these data show that there are important sex differences in microglia function in the hippocampus during the early neonatal period. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Transduced PEP-1-PON1 proteins regulate microglial activation and dopaminergic neuronal death in a Parkinson's disease model.

    Science.gov (United States)

    Kim, Mi Jin; Park, Meeyoung; Kim, Dae Won; Shin, Min Jea; Son, Ora; Jo, Hyo Sang; Yeo, Hyeon Ji; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Kim, Duk-Soo; Kwon, Oh-Shin; Kim, Joon; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2015-09-01

    Parkinson's disease (PD) is an oxidative stress-mediated neurodegenerative disorder caused by selective dopaminergic neuronal death in the midbrain substantia nigra. Paraoxonase 1 (PON1) is a potent inhibitor of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) against oxidation by destroying biologically active phospholipids with potential protective effects against oxidative stress-induced inflammatory disorders. In a previous study, we constructed protein transduction domain (PTD) fusion PEP-1-PON1 protein to transduce PON1 into cells and tissue. In this study, we examined the role of transduced PEP-1-PON1 protein in repressing oxidative stress-mediated inflammatory response in microglial BV2 cells after exposure to lipopolysaccharide (LPS). Moreover, we identified the functions of transduced PEP-1-PON1 proteins which include, mitigating mitochondrial damage, decreasing reactive oxidative species (ROS) production, matrix metalloproteinase-9 (MMP-9) expression and protecting against 1-methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity in SH-SY5Y cells. Furthermore, transduced PEP-1-PON1 protein reduced MMP-9 expression and protected against dopaminergic neuronal cell death in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice model. Taken together, these results suggest a promising therapeutic application of PEP-1-PON1 proteins against PD and other inflammation and oxidative stress-related neuronal diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Okanin, effective constituent of the flower tea Coreopsis tinctoria, attenuates LPS-induced microglial activation through inhibition of the TLR4/NF-κB signaling pathways

    Science.gov (United States)

    Hou, Yue; Li, Guoxun; Wang, Jian; Pan, Yingni; Jiao, Kun; Du, Juan; Chen, Ru; Wang, Bing; Li, Ning

    2017-04-01

    The EtOAc extract of Coreopsis tinctoria Nutt. significantly inhibited LPS-induced nitric oxide (NO) production, as judged by the Griess reaction, and attenuated the LPS-induced elevation in iNOS, COX-2, IL-1β, IL-6 and TNF-α mRNA levels, as determined by quantitative real-time PCR, when incubated with BV-2 microglial cells. Immunohistochemical results showed that the EtOAc extract significantly decreased the number of Iba-1-positive cells in the hippocampal region of LPS-treated mouse brains. The major effective constituent of the EtOAc extract, okanin, was further investigated. Okanin significantly suppressed LPS-induced iNOS expression and also inhibited IL-6 and TNF-α production and mRNA expression in LPS-stimulated BV-2 cells. Western blot analysis indicated that okanin suppressed LPS-induced activation of the NF-κB signaling pathway by inhibiting the phosphorylation of IκBα and decreasing the level of nuclear NF-κB p65 after LPS treatment. Immunofluorescence staining results showed that okanin inhibited the translocation of the NF-κB p65 subunit from the cytosol to the nucleus. Moreover, okanin significantly inhibited LPS-induced TLR4 expression in BV-2 cells. In summary, okanin attenuates LPS-induced activation of microglia. This effect may be associated with its capacity to inhibit the TLR4/NF-κB signaling pathways. These results suggest that okanin may have potential as a nutritional preventive strategy for neurodegenerative disorders.

  8. Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases.

    Science.gov (United States)

    Carniglia, Lila; Ramírez, Delia; Durand, Daniela; Saba, Julieta; Turati, Juan; Caruso, Carla; Scimonelli, Teresa N; Lasaga, Mercedes

    2017-01-01

    Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity.

  9. Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Lila Carniglia

    2017-01-01

    Full Text Available Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity.

  10. A nicotinic receptor-mediated anti-inflammatory effect of the flavonoid rhamnetin in BV2 microglia

    Science.gov (United States)

    Lutz, Joseph A.; Kulshrestha, Manish; Rogers, Dennis T.; Littleton, John M.

    2014-01-01

    The alpha7 nicotinic acetylcholine receptor (nAChR) is a potential target in neuroinflammation. Screening a plant extract library identified Solidago nemoralis as containing methyl-quercetin derivatives that are relatively selective ligands for the alpha7 nAChR. Flavonoids are not known for this activity, so we screened a small library of pure flavonoids to confirm our findings. Some flavonoids, e.g. rhamnetin, displaced a selective alpha7 nAChR radioligand from rat brain membranes whereas similar structures e.g. sakuranetin, did not. To evaluate the contribution of this putative nAChR activity to the known anti-inflammatory properties of these flavonoids, we compared their effects on lipopolysaccharide induced release of inflammatory mediators from BV2 microglia. Both rhamnetin and sakuranetin reduced mediator release, but differed in potency (rhamnetin>sakuranetin) and the Hill slope of their concentration response curves. For rhamnetin the Hill coefficient was >3.0 whereas for sakuranetin the coefficient was 1.0, suggesting that effects of rhamnetin are mediated through more than one mechanism, whereas sakuranetin has a single mechanism. nACHR antagonists decreased the Hill coefficient for rhamnetin toward unity, which suggests that a nAChR-mediated mechanism contributes cooperatively to its overall anti-inflammatory effect. In contrast nAChR antagonists had no effect on the potency or Hill coefficient for sakuranetin, but a concentration of nicotine (1μM) that had no effect alone, significantly increased the Hill coefficient of this flavonoid. In conclusion, the anti-inflammatory effects of rhamnetin benefit cooperatively from a nAChR-mediated mechanism. This action, together with potent free radical scavenging activity, suggests that flavonoids with alpha7 nAChR activity have therapeutic potential in neuroinflammatory conditions. PMID:24972350

  11. Walnut extract inhibits LPS-induced activation of BV-2 microglia via internalization of TLR4: possible involvement of phospholipase D2

    Science.gov (United States)

    Walnuts are a rich source of essential fatty acids, including the polyunsaturated fatty acids alpha-linolenic acid (ALA) and linoleic acid (LA). Essential fatty acids have been shown to modulate a number of cellular processes in the brain, including the activation state of microglia. Microglial acti...

  12. Myelin-specific T cells induce interleukin-1beta expression in lesion-reactive microglial-like cells in zones of axonal degeneration

    DEFF Research Database (Denmark)

    Grebing, Manuela; Nielsen, Helle H; Fenger, Christina D

    2016-01-01

    -reactive microglia. To gain mechanistic insight, we used RNA microarray analysis to compare the transcript profile in hippocampi from perforant pathway axonal-lesioned mice with and without adoptively transferred myelin-specific T cells 2 days postlesion, when microglia are clearly lesion reactive. Pathway analysis...

  13. Microglial Dysfunction in Brain Aging and Alzheimer’s Disease

    Science.gov (United States)

    Mosher, Kira Irving; Wyss-Coray, Tony

    2014-01-01

    Microglia, the immune cells of the central nervous system, have long been a subject of study in the Alzheimer’s disease (AD) field due to their dramatic responses to the pathophysiology of the disease. With several large-scale genetic studies in the past year implicating microglial molecules in AD, the potential significance of these cells has become more prominent than ever before. As a disease that is tightly linked to aging, it is perhaps not entirely surprising that microglia of the AD brain share some phenotypes with aging microglia. Yet the relative impacts of both conditions on microglia are less frequently considered in concert. Furthermore, microglial “activation” and “neuroinflammation” are commonly analyzed in studies of neurodegeneration but are somewhat ill-defined concepts that in fact encompass multiple cellular processes. In this review, we have enumerated six distinct functions of microglia and discuss the specific effects of both aging and AD. By calling attention to the commonalities of these two states, we hope to inspire new approaches for dissecting microglial mechanisms. PMID:24445162

  14. Microglial Priming and Alzheimer's Disease: A Possible Role for (Early) Immune Challenges and Epigenetics?

    Science.gov (United States)

    Hoeijmakers, Lianne; Heinen, Yvonne; van Dam, Anne-Marie; Lucassen, Paul J; Korosi, Aniko

    2016-01-01

    Neuroinflammation is thought to contribute to Alzheimer's disease (AD) pathogenesis that is, to a large extent, mediated by microglia. Given the tight interaction between the immune system and the brain, peripheral immune challenges can profoundly affect brain function. Indeed, both preclinical and clinical studies have indicated that an aberrant inflammatory response can elicit behavioral impairments and cognitive deficits, especially when the brain is in a vulnerable state, e.g., during early development, as a result of aging, or under disease conditions like AD. However, how exactly peripheral immune challenges affect brain function and whether this is mediated by aberrant microglial functioning remains largely elusive. In this review, we hypothesize that: (1) systemic immune challenges occurring during vulnerable periods of life can increase the propensity to induce later cognitive dysfunction and accelerate AD pathology; and (2) that "priming" of microglial cells is instrumental in mediating this vulnerability. We highlight how microglia can be primed by both neonatal infections as well as by aging, two periods of life during which microglial activity is known to be specifically upregulated. Lasting changes in (the ratios of) specific microglial phenotypes can result in an exaggerated pro-inflammatory cytokine response to subsequent inflammatory challenges. While the resulting changes in brain function are initially transient, a continued and/or excess release of such pro-inflammatory cytokines can activate various downstream cellular cascades known to be relevant for AD. Finally, we discuss microglial priming and the aberrant microglial response as potential target for treatment strategies for AD.

  15. Microglial involvement in neuroplastic changes following focal brain ischemia in rats.

    Directory of Open Access Journals (Sweden)

    Alexandre Madinier

    2009-12-01

    Full Text Available The pathogenesis of ischemic stroke is a complex sequence of events including inflammatory reaction, for which the microglia appears to be a major cellular contributor. However, whether post-ischemic activation of microglial cells has beneficial or detrimental effects remains to be elucidated, in particular on long term brain plasticity events. The objective of our study was to determine, through modulation of post-stroke inflammatory response, to what extent microglial cells are involved in some specific events of neuronal plasticity, neurite outgrowth and synaptogenesis. Since microglia is a source of neurotrophic factors, the identification of the brain-derived neurophic factor (BDNF as possible molecular actor involved in these events was also attempted. As a means of down-regulating the microglial response induced by ischemia, 3-aminobenzamide (3-AB, 90 mg/kg, i.p. was used to inhibit the poly(ADP-ribose polymerase-1 (PARP-1. Indeed, PARP-1 contributes to the activation of the transcription factor NF-kB, which is essential to the upregulation of proinflammatory genes, in particular responsible for microglial activation/proliferation. Experiments were conducted in rats subjected to photothrombotic ischemia which leads to a strong and early microglial cells activation/proliferation followed by an infiltration of macrophages within the cortical lesion, events evaluated at serial time points up to 1 month post-ictus by immunostaining for OX-42 and ED-1. Our most striking finding was that the decrease in acute microglial activation induced by 3-AB was associated with a long term down-regulation of two neuronal plasticity proteins expression, synaptophysin (marker of synaptogenesis and GAP-43 (marker of neuritogenesis as well as to a significant decrease in tissue BDNF production. Thus, our data argue in favour of a supportive role for microglia in brain neuroplasticity stimulation possibly through BDNF production, suggesting that a targeted

  16. Microglial Dysregulation in OCD, Tourette Syndrome, and PANDAS

    Directory of Open Access Journals (Sweden)

    Luciana Frick

    2016-01-01

    Full Text Available There is accumulating evidence that immune dysregulation contributes to the pathophysiology of obsessive-compulsive disorder (OCD, Tourette syndrome, and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS. The mechanistic details of this pathophysiology, however, remain unclear. Here we focus on one particular component of the immune system: microglia, the brain’s resident immune cells. The role of microglia in neurodegenerative diseases has been understood in terms of classic, inflammatory activation, which may be both a consequence and a cause of neuronal damage. In OCD and Tourette syndrome, which are not characterized by frank neural degeneration, the potential role of microglial dysregulation is much less clear. Here we review the evidence for a neuroinflammatory etiology and microglial dysregulation in OCD, Tourette syndrome, and PANDAS. We also explore new hypotheses as to the potential contributions of microglial abnormalities to pathophysiology, beyond neuroinflammation, including failures in neuroprotection, lack of support for neuronal survival, and abnormalities in synaptic pruning. Recent advances in neuroimaging and animal model work are creating new opportunities to elucidate these issues.

  17. Onset of microglial entry into developing quail retina coincides with increased expression of active caspase-3 and is mediated by extracellular ATP and UDP.

    Science.gov (United States)

    Martín-Estebané, María; Navascués, Julio; Sierra-Martín, Ana; Martín-Guerrero, Sandra M; Cuadros, Miguel A; Carrasco, María-Carmen; Marín-Teva, José L

    2017-01-01

    Microglial cell precursors located in the area of the base of the pecten and the optic nerve head (BP/ONH) start to enter the retina of quail embryos at the 7th day of incubation (E7), subsequently colonizing the entire retina by central-to-peripheral tangential migration, as previously shown by our group. The present study demonstrates a precise chronological coincidence of the onset of microglial cell entry into the retina with a striking increase in death of retinal cells, as revealed by their active caspase-3 expression and TUNEL staining, in regions dorsal to the BP/ONH area, suggesting that dying retinal cells would contribute to the microglial cell inflow into the retina. However, the molecular mechanisms involved in this inflow are currently unclear. Extracellular nucleotides, such as ATP and UDP, have previously been shown to favor migration of microglia towards brain injuries because they are released by apoptotic cells and stimulate both chemotaxis and chemokinesis in microglial cells via signaling through purinergic receptors. Hence, we tested here the hypothesis that ATP and UDP play a role in the entry and migration of microglial precursors into the developing retina. For this purpose, we used an experimental model system based on organotypic cultures of E6.5 quail embryo retina explants, which mimics the entry and migration of microglial precursors in the in situ developing retina. Inhibition of purinergic signaling by treating retina explants with either apyrase, a nucleotide-hydrolyzing enzyme, or suramin, a broad spectrum antagonist of purinergic receptors, significantly prevents the entry of microglial cells into the retina. In addition, treatment of retina explants with either exogenous ATP or UDP results in significantly increased numbers of microglial cells entering the retina. In light of these findings, we conclude that purinergic signaling by extracellular ATP and UDP is necessary for the entry and migration of microglial cells into the

  18. IFNgamma enhances microglial reactions to hippocampal axonal degeneration

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Lomholt, N D

    2000-01-01

    Glial reactivity is implicated in CNS repair and regenerative responses. Microglia, the cells responding earliest to axonal injury, produce tumor necrosis factor-alpha (TNFalpha), a cytokine with both cytopathic and neuroprotective effects. We have studied activation of hippocampal microglia...... periods. Message for the immune cytokine interferon-gamma (IFNgamma) was undetectable, and glial reactivity to axonal lesions occurred as normal in IFNgamma-deficient mice. Microglial responses to lesion-induced neuronal injury were markedly enhanced in myelin basic protein promoter-driven transgenic mice...

  19. Coordinated role of voltage-gated sodium channels and the Na{sup +}/H{sup +} exchanger in sustaining microglial activation during inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Muhammad M. [Department of Environmental and Occupational Medicine and Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Sonsalla, Patricia K. [Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Richardson, Jason R., E-mail: jricha3@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine and Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2013-12-01

    Persistent neuroinflammation and microglial activation play an integral role in the pathogenesis of many neurological disorders. We investigated the role of voltage-gated sodium channels (VGSC) and Na{sup +}/H{sup +} exchangers (NHE) in the activation of immortalized microglial cells (BV-2) after lipopolysaccharide (LPS) exposure. LPS (10 and 100 ng/ml) caused a dose- and time-dependent accumulation of intracellular sodium [(Na{sup +}){sub i}] in BV-2 cells. Pre-treatment of cells with the VGSC antagonist tetrodotoxin (TTX, 1 μM) abolished short-term Na{sup +} influx, but was unable to prevent the accumulation of (Na{sup +}){sub i} observed at 6 and 24 h after LPS exposure. The NHE inhibitor cariporide (1 μM) significantly reduced accumulation of (Na{sup +}){sub i} 6 and 24 h after LPS exposure. Furthermore, LPS increased the mRNA expression and protein level of NHE-1 in a dose- and time-dependent manner, which was significantly reduced after co-treatment with TTX and/or cariporide. LPS increased production of TNF-α, ROS, and H{sub 2}O{sub 2} and expression of gp91{sup phox}, an active subunit of NADPH oxidase, in a dose- and time-dependent manner, which was significantly reduced by TTX or TTX + cariporide. Collectively, these data demonstrate a closely-linked temporal relationship between VGSC and NHE-1 in regulating function in activated microglia, which may provide avenues for therapeutic interventions aimed at reducing neuroinflammation. - Highlights: • LPS causes immediate increase in sodium through VGSC and subsequently through the NHE-1. • Inhibition of VGSC reduces increases in NHE-1 and gp91{sup phox}. • Inhibition of VGSC and NHE-1 reduces NADPH oxidase-mediated Tnf-α, ROS, and H{sub 2}O{sub 2} production. • NHE-1 and Na{sub v}1.6 may be viable targets for therapeutic interventions to reduce neuroinflammation in neurodegenerative disease.

  20. Microglial TNF and IL-1 as early disease-modifiers in Alzheimer's-like disease in mice

    DEFF Research Database (Denmark)

    Ilkjær, Laura; Babcock, Alicia; Finsen, Bente

    2015-01-01

    In Alzheimer's disease (AD) signs of microglial activation is evident already in prodromal and early AD. This and other evidence suggest that neuroinflammation contributes to the progression of the early disease development in AD. Microglial cells have the capacity to produce cytokines such as TNF...... and IL-1, and to phagocytose and clear amyloid beta (As), however, the influence of TNF and IL-1, and inflammation in general, on these processes is still poorly understood. We have studied the development of As pathology, and basal and lipopolysaccharide (LPS) stimulated microglial cytokine production...... mice. Microglial expression of TNF and IL-1s can be significantly increased by i.p. injection of LPS, which we find reduces cortical As pathology at 12 months. Results will also be reported on the influence of IL-1 in modulating As pathology during early disease stages in APPswe/PS1DE9 mice. Together...

  1. Telomere dysfunction reduces microglial numbers without fully inducing an aging phenotype

    DEFF Research Database (Denmark)

    Khan, Asif Manzoor; Babcock, Alicia; Saeed, Hamid

    2015-01-01

    The susceptibility of the aging brain to neurodegenerative disease may in part be attributed to cellular aging of the microglial cells that survey it. We investigated the effect of cellular aging induced by telomere shortening on microglia by the use of mice lacking the telomerase RNA component...... distribution and normal expression of CD45 and CD68 and the aging marker, ferritin, but were morphologically distinct from microglia in both adult and old wild-type mice. TERC KO mice also showed increased cellular apoptosis and impaired spatial learning. Our results suggest that individual microglia...... are relatively resistant to telomerase deficiency during steady state conditions, despite an overall reduction in microglial numbers. Furthermore, telomerase deficiency and aging may provide disparate cues leading to distinct changes in microglial morphology and phenotype....

  2. Connexins and pannexins: New insights into microglial functions and dysfunctions

    Directory of Open Access Journals (Sweden)

    Rosario Gajardo-Gómez

    2016-09-01

    Full Text Available In a physiological context, microglia adopt a resting phenotype that is associated with the production of anti-inflammatory and neurotrophic factors. In response to a wide variety of insults, they shift to the activated phenotype that is necessary for the proper restoration of brain homeostasis. When the intensity of the threat is relatively high, microglial activation can worsen the damage progression instead of providing protection, with potentially significant consequences for neuronal survival. Coordinated interactions among microglia and with other brain cells, including astrocytes and neurons, is critical for the development of timely and optimal inflammatory responses in the brain parenchyma. Tissue synchronization is in part mediated by connexins and pannexins, which are protein families that form different plasma membrane channels to communicate with neighboring cells. At one end, the gap junction channels (which are exclusively formed by connexins in vertebrates connect the cytoplasm of contacting cells to coordinate electrical and metabolic coupling. At the other end, hemichannels and pannexons (which are formed by connexins and pannexins, respectively communicate via intra- and extracellular compartments and serve as diffusion pathways for the exchange of ions and small molecules. In this review, we discuss the evidence available concerning the functional expression and regulation of connexin- and pannexin-based channels in microglia and their contribution to microglial function and dysfunction. We focus on the possible implications of these channels in microglia-to-microglia, microglia-to-astrocyte and neuron-to-microglia interactions in the inflamed brain.

  3. Macrophage colony-stimulating factor and its receptor signaling augment glycated albumin-induced retinal microglial inflammation in vitro

    Directory of Open Access Journals (Sweden)

    Jiang Chun H

    2011-01-01

    Full Text Available Abstract Background Microglial activation and the proinflammatory response are controlled by a complex regulatory network. Among the various candidates, macrophage colony-stimulating factor (M-CSF is considered an important cytokine. The up-regulation of M-CSF and its receptor CSF-1R has been reported in brain disease, as well as in diabetic complications; however, the mechanism is unclear. An elevated level of glycated albumin (GA is a characteristic of diabetes; thus, it may be involved in monocyte/macrophage-associated diabetic complications. Results The basal level of expression of M-CSF/CSF-1R was examined in retinal microglial cells in vitro. Immunofluorescence, real-time PCR, immunoprecipitation, and Western blot analyses revealed the up-regulation of CSF-1R in GA-treated microglial cells. We also detected increased expression and release of M-CSF, suggesting that the cytokine is produced by activated microglia via autocrine signaling. Using an enzyme-linked immunosorbent assay, we found that GA affects microglial activation by stimulating the release of tumor necrosis factor-α and interleukin-1β. Furthermore, the neutralization of M-CSF or CSF-1R with antibodies suppressed the proinflammatory response. Conversely, this proinflammatory response was augmented by the administration of M-CSF. Conclusions We conclude that GA induces microglial activation via the release of proinflammatory cytokines, which may contribute to the inflammatory pathogenesis of diabetic retinopathy. The increased microglial expression of M-CSF/CSF-1R not only is a response to microglial activation in diabetic retinopathy but also augments the microglial inflammation responsible for the diabetic microenvironment.

  4. Pathologic and protective roles for microglial subsets and bone marrow- and blood-derived myeloid cells in central nervous system inflammation.

    Directory of Open Access Journals (Sweden)

    Agnieszka eWlodarczyk

    2015-09-01

    Full Text Available Inflammation is a series of processes designed for eventual clearance of pathogens and repair of damaged tissue. In the context of autoimmune recognition inflammatory processes are usually considered to be pathological. This is also true for inflammatory responses in the central nervous system (CNS. However, as in other tissues, neuroinflammation can have beneficial as well as pathological outcomes. The complex role of encephalitogenic T cells in multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE may derive from heterogeneity of the myeloid cells with which these T cells interact within the CNS. Myeloid cells, including resident microglia and infiltrating bone marrow-derived cells such as dendritic cells (DC and monocytes/macrophages (BMDM, are highly heterogeneous populations that may be involved in neurotoxicity but also immunoregulation and regenerative processes. Better understanding and characterization of myeloid cell heterogeneity is essential for future development of treatments controlling inflammation and inducing neuroprotection and neuroregeneration in diseased CNS. Here we describe and compare three populations of myeloid cells: CD11c+ microglia, CD11c- microglia and CD11c+ blood-derived cells in terms of their pathological versus protective functions in the CNS of mice with EAE. Our data show that CNS-resident microglia include functionally distinct subsets that can be distinguished by their expression of CD11c. These subsets differ in their expression of Arg-1, YM1, iNOS, IL-10 and IGF-1. Moreover, in contrast to BMDM/DC both subsets of microglia express protective interferon-beta (IFNβ, high levels of colony-stimulating factor-1 receptor and do not express the Th1-associated transcription factor T-bet. Taken together, our data suggest that CD11c+ microglia, CD11c- microglia and infiltrating BMDM/DC represent separate and distinct populations and illustrate the heterogeneity of the CNS

  5. Bioassay-guided fractionation of ethyl acetate extract from Armillaria mellea attenuates inflammatory response in lipopolysaccharide (LPS) stimulated BV-2 microglia.

    Science.gov (United States)

    Geng, Yan; Zhu, Shuiling; Cheng, Peng; Lu, Zhen-Ming; Xu, Hong-Yu; Shi, Jin-Song; Xu, Zheng-Hong

    2017-03-15

    Armillaria mellea (A. mellea) is a traditional Chinese medicinal and edible mushroom, which is proved to possess a lot of biological activities, including anti-oxidation, immunopotentiation, anti-vertigo and anti-aging activities. However, little information is available in regard to its neuroprotection activity in inflammation-mediated neurodegenerative diseases. We have found that A. mellea has an anti-inflammatory activity in LPS-induced RAW264.7 cells in our previous study. The objective of this study is to investigate the anti-neuroinflammatory mechanism of a bioassay-guided fractionation (Fr.2) and its active components/compounds. Compounds were isolated by preparative high performance liquid chromatography (pre-HPLC) and their structures were established by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopic analyses. The anti-neuroinflammatory effect of Fr.2 and each compounds were investigated in lipopolysaccharide (LPS)-stimulated murine microglia cell lineBV-2. We demonstrated that Fr.2 significantly decreased the production of inflammation mediator nitric oxide (NO) and inflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and interleukin-1beta (IL-1β) in a dose-dependent manner (10, 30, 100µg/ml). In addition, Fr.2 markedly down-regulated the phosphorylation levels of nuclear factor kappa B p65 (NF-κB p65), inhibitory κB-α (IκB-α) and c-Jun N-terminal kinases (JNKs) pathways. Sevens compounds were isolated from Fr.2, among them, three compounds, 5-hydroxymethylfurfural (CP1), vanillic acid (CP4) and syringate (CP5) were reported for the first time in A. mellea. NO and inflammatory cytokines (TNF-α, IL-6, IL-1β) secretion indicated that daidzein (CP6) and genistein (CP7) showed a more outstanding anti-inflammation potential at non-toxic concentrations (10, 30, 100µM) than the other five compounds. In conclusion, Fr.2 may have therapeutic potential for neurodegenerative diseases by inhibiting

  6. Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission.

    Directory of Open Access Journals (Sweden)

    Aurora M Fontainhas

    Full Text Available PURPOSE: Microglia represent the primary resident immune cells in the CNS, and have been implicated in the pathology of neurodegenerative diseases. Under basal or "resting" conditions, microglia possess ramified morphologies and exhibit dynamic surveying movements in their processes. Despite the prominence of this phenomenon, the function and regulation of microglial morphology and dynamic behavior are incompletely understood. We investigate here whether and how neurotransmission regulates "resting" microglial morphology and behavior. METHODS: We employed an ex vivo mouse retinal explant system in which endogenous neurotransmission and dynamic microglial behavior are present. We utilized live-cell time-lapse confocal imaging to study the morphology and behavior of GFP-labeled retinal microglia in response to neurotransmitter agonists and antagonists. Patch clamp electrophysiology and immunohistochemical localization of glutamate receptors were also used to investigate direct-versus-indirect effects of neurotransmission by microglia. RESULTS: Retinal microglial morphology and dynamic behavior were not cell-autonomously regulated but are instead modulated by endogenous neurotransmission. Morphological parameters and process motility were differentially regulated by different modes of neurotransmission and were increased by ionotropic glutamatergic neurotransmission and decreased by ionotropic GABAergic neurotransmission. These neurotransmitter influences on retinal microglia were however unlikely to be directly mediated; local applications of neurotransmitters were unable to elicit electrical responses on microglia patch-clamp recordings and ionotropic glutamatergic receptors were not located on microglial cell bodies or processes by immunofluorescent labeling. Instead, these influences were mediated indirectly via extracellular ATP, released in response to glutamatergic neurotransmission through probenecid-sensitive pannexin hemichannels

  7. Microglial dysfunction as a key pathological change in adrenomyeloneuropathy.

    Science.gov (United States)

    Gong, Yi; Sasidharan, Nikhil; Laheji, Fiza; Frosch, Matthew; Musolino, Patricia; Tanzi, Rudy; Kim, Doo Yeon; Biffi, Alessandra; El Khoury, Joseph; Eichler, Florian

    2017-11-01

    Mutations in ABCD1 cause the neurodegenerative disease, adrenoleukodystrophy, which manifests as the spinal cord axonopathy adrenomyeloneuropathy (AMN) in nearly all males surviving into adulthood. Microglial dysfunction has long been implicated in pathogenesis of brain disease, but its role in the spinal cord is unclear. We assessed spinal cord microglia in humans and mice with AMN and investigated the role of ABCD1 in microglial activity toward neuronal phagocytosis in cell culture. Because mutations in ABCD1 lead to incorporation of very-long-chain fatty acids into phospholipids, we separately examined the effects of lysophosphatidylcholine (LPC) upon microglia. Within the spinal cord of humans and mice with AMN, upregulation of several phagocytosis-related markers, such as MFGE8 and TREM2, precedes complement activation and synapse loss. Unexpectedly, this occurs in the absence of overt inflammation. LPC C26:0 added to ABCD1-deficient microglia in culture further enhances MFGE8 expression, aggravates phagocytosis, and leads to neuronal injury. Furthermore, exposure to a MFGE8-blocking antibody reduces phagocytic activity. Spinal cord microglia lacking ABCD1 are primed for phagocytosis, affecting neurons within an altered metabolic milieu. Blocking phagocytosis or specific phagocytic receptors may alleviate synapse loss and axonal degeneration. Ann Neurol 2017;82:813-827. © 2017 The Authors Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.

  8. Microglial activation underlies cerebellar deficits produced by repeated cannabis exposure.

    Science.gov (United States)

    Cutando, Laura; Busquets-Garcia, Arnau; Puighermanal, Emma; Gomis-González, Maria; Delgado-García, José María; Gruart, Agnès; Maldonado, Rafael; Ozaita, Andrés

    2013-07-01

    Chronic cannabis exposure can lead to cerebellar dysfunction in humans, but the neurobiological mechanisms involved remain incompletely understood. Here, we found that in mice, subchronic administration of the psychoactive component of cannabis, delta9-tetrahydrocannabinol (THC), activated cerebellar microglia and increased the expression of neuroinflammatory markers, including IL-1β. This neuroinflammatory phenotype correlated with deficits in cerebellar conditioned learning and fine motor coordination. The neuroinflammatory phenotype was readily detectable in the cerebellum of mice with global loss of the CB1 cannabinoid receptor (CB1R, Cb1(-/-) mice) and in mice lacking CB1R in the cerebellar parallel fibers, suggesting that CB1R downregulation in the cerebellar molecular layer plays a key role in THC-induced cerebellar deficits. Expression of CB2 cannabinoid receptor (CB2R) and Il1b mRNA was increased under neuroinflammatory conditions in activated CD11b-positive microglial cells. Furthermore, administration of the immunosuppressant minocycline or an inhibitor of IL-1β receptor signaling prevented the deficits in cerebellar function in Cb1(-/-) and THC-withdrawn mice. Our results suggest that cerebellar microglial activation plays a crucial role in the cerebellar deficits induced by repeated cannabis exposure.

  9. Targeting Microglial Activation States as a Therapeutic Avenue in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sudhakar R. Subramaniam

    2017-06-01

    Full Text Available Parkinson’s disease (PD is a chronic and progressive disorder characterized neuropathologically by loss of dopamine neurons in the substantia nigra, intracellular proteinaceous inclusions, reduction of dopaminergic terminals in the striatum, and increased neuroinflammatory cells. The consequent reduction of dopamine in the basal ganglia results in the classical parkinsonian motor phenotype. A growing body of evidence suggest that neuroinflammation mediated by microglia, the resident macrophage-like immune cells in the brain, play a contributory role in PD pathogenesis. Microglia participate in both physiological and pathological conditions. In the former, microglia restore the integrity of the central nervous system and, in the latter, they promote disease progression. Microglia acquire different activation states to modulate these cellular functions. Upon activation to the M1 phenotype, microglia elaborate pro-inflammatory cytokines and neurotoxic molecules promoting inflammation and cytotoxic responses. In contrast, when adopting the M2 phenotype microglia secrete anti-inflammatory gene products and trophic factors that promote repair, regeneration, and restore homeostasis. Relatively little is known about the different microglial activation states in PD and a better understanding is essential for developing putative neuroprotective agents. Targeting microglial activation states by suppressing their deleterious pro-inflammatory neurotoxicity and/or simultaneously enhancing their beneficial anti-inflammatory protective functions appear as a valid therapeutic approach for PD treatment. In this review, we summarize microglial functions and, their dual neurotoxic and neuroprotective role in PD. We also review molecules that modulate microglial activation states as a therapeutic option for PD treatment.

  10. Pomegranate Polyphenols and Extract Inhibit Nuclear Factor of Activated T-Cell Activity and Microglial Activation In Vitro and in a Transgenic Mouse Model of Alzheimer Disease123

    Science.gov (United States)

    Rojanathammanee, Lalida; Puig, Kendra L.; Combs, Colin K.

    2013-01-01

    Alzheimer disease (AD) brain is characterized by extracellular plaques of amyloid β (Aβ) peptide with reactive microglia. This study aimed to determine whether a dietary intervention could attenuate microgliosis. Memory was assessed in 12-mo-old male amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice via Barnes maze testing followed by division into either a control-fed group provided free access to normal chow and water or a treatment group provided free access to normal chow and drinking water supplemented with pomegranate extract (6.25 mL/L) for 3 mo followed by repeat Barnes maze testing for both groups. Three months of pomegranate feeding decreased the path length to escape of mice compared with their initial 12-mo values (P pomegranate-fed mice had lower tumor necrosis factor α (TNF-α) concentrations (P pomegranate or control mice were also compared with an additional control group of 12-mo-old mice for histologic analysis. Immunocytochemistry showed that pomegranate- but not control-fed mice had attenuated microgliosis (P pomegranate extract–supplemented drinking water (6.25 mL/L) for 1 mo followed by repeat T-maze testing in both groups. One month of pomegranate feeding increased spontaneous alternations versus control-fed mice (P pomegranate extract, punicalagin and ellagic acid, attenuated NFAT activity in a reporter cell line (P pomegranate produces brain antiinflammatory effects that may attenuate AD progression. PMID:23468550

  11. Pomegranate polyphenols and extract inhibit nuclear factor of activated T-cell activity and microglial activation in vitro and in a transgenic mouse model of Alzheimer disease.

    Science.gov (United States)

    Rojanathammanee, Lalida; Puig, Kendra L; Combs, Colin K

    2013-05-01

    Alzheimer disease (AD) brain is characterized by extracellular plaques of amyloid β (Aβ) peptide with reactive microglia. This study aimed to determine whether a dietary intervention could attenuate microgliosis. Memory was assessed in 12-mo-old male amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice via Barnes maze testing followed by division into either a control-fed group provided free access to normal chow and water or a treatment group provided free access to normal chow and drinking water supplemented with pomegranate extract (6.25 mL/L) for 3 mo followed by repeat Barnes maze testing for both groups. Three months of pomegranate feeding decreased the path length to escape of mice compared with their initial 12-mo values (P pomegranate-fed mice had lower tumor necrosis factor α (TNF-α) concentrations (P pomegranate or control mice were also compared with an additional control group of 12-mo-old mice for histologic analysis. Immunocytochemistry showed that pomegranate- but not control-fed mice had attenuated microgliosis (P pomegranate extract-supplemented drinking water (6.25 mL/L) for 1 mo followed by repeat T-maze testing in both groups. One month of pomegranate feeding increased spontaneous alternations versus control-fed mice (P pomegranate extract, punicalagin and ellagic acid, attenuated NFAT activity in a reporter cell line (P pomegranate produces brain antiinflammatory effects that may attenuate AD progression.

  12. Large A-fiber activity is required for microglial proliferation and p38 MAPK activation in the spinal cord: different effects of resiniferatoxin and bupivacaine on spinal microglial changes after spared nerve injury

    Directory of Open Access Journals (Sweden)

    Decosterd Isabelle

    2009-09-01

    Full Text Available Abstract Background After peripheral nerve injury, spontaneous ectopic activity arising from the peripheral axons plays an important role in inducing central sensitization and neuropathic pain. Recent evidence indicates that activation of spinal cord microglia also contributes to the development of neuropathic pain. In particular, activation of p38 mitogen-activated protein kinase (MAPK in spinal microglia is required for the development of mechanical allodynia. However, activity-dependent activation of microglia after nerve injury has not been fully addressed. To determine whether spontaneous activity from C- or A-fibers is required for microglial activation, we used resiniferatoxin (RTX to block the conduction of transient receptor potential vanilloid subtype 1 (TRPV1 positive fibers (mostly C- and Aδ-fibers and bupivacaine microspheres to block all fibers of the sciatic nerve in rats before spared nerve injury (SNI, and observed spinal microglial changes 2 days later. Results SNI induced robust mechanical allodynia and p38 activation in spinal microglia. SNI also induced marked cell proliferation in the spinal cord, and all the proliferating cells (BrdU+ were microglia (Iba1+. Bupivacaine induced a complete sensory and motor blockade and also significantly inhibited p38 activation and microglial proliferation in the spinal cord. In contrast, and although it produced an efficient nociceptive block, RTX failed to inhibit p38 activation and microglial proliferation in the spinal cord. Conclusion (1 Blocking peripheral input in TRPV1-positive fibers (presumably C-fibers is not enough to prevent nerve injury-induced spinal microglial activation. (2 Peripheral input from large myelinated fibers is important for microglial activation. (3 Microglial activation is associated with mechanical allodynia.

  13. Large A-fiber activity is required for microglial proliferation and p38 MAPK activation in the spinal cord: different effects of resiniferatoxin and bupivacaine on spinal microglial changes after spared nerve injury.

    Science.gov (United States)

    Suter, Marc R; Berta, Temugin; Gao, Yong-Jing; Decosterd, Isabelle; Ji, Ru-Rong

    2009-09-22

    After peripheral nerve injury, spontaneous ectopic activity arising from the peripheral axons plays an important role in inducing central sensitization and neuropathic pain. Recent evidence indicates that activation of spinal cord microglia also contributes to the development of neuropathic pain. In particular, activation of p38 mitogen-activated protein kinase (MAPK) in spinal microglia is required for the development of mechanical allodynia. However, activity-dependent activation of microglia after nerve injury has not been fully addressed. To determine whether spontaneous activity from C- or A-fibers is required for microglial activation, we used resiniferatoxin (RTX) to block the conduction of transient receptor potential vanilloid subtype 1 (TRPV1) positive fibers (mostly C- and Adelta-fibers) and bupivacaine microspheres to block all fibers of the sciatic nerve in rats before spared nerve injury (SNI), and observed spinal microglial changes 2 days later. SNI induced robust mechanical allodynia and p38 activation in spinal microglia. SNI also induced marked cell proliferation in the spinal cord, and all the proliferating cells (BrdU+) were microglia (Iba1+). Bupivacaine induced a complete sensory and motor blockade and also significantly inhibited p38 activation and microglial proliferation in the spinal cord. In contrast, and although it produced an efficient nociceptive block, RTX failed to inhibit p38 activation and microglial proliferation in the spinal cord. (1) Blocking peripheral input in TRPV1-positive fibers (presumably C-fibers) is not enough to prevent nerve injury-induced spinal microglial activation. (2) Peripheral input from large myelinated fibers is important for microglial activation. (3) Microglial activation is associated with mechanical allodynia.

  14. Lutein suppresses inflammatory responses through Nrf2 activation and NF-κB inactivation in lipopolysaccharide-stimulated BV-2 microglia.

    Science.gov (United States)

    Wu, Wanqiang; Li, Yuelian; Wu, Yue; Zhang, Yawen; Wang, Zhen; Liu, Xuebo

    2015-09-01

    In this study, the effects of lutein on neuroinflammation in lipopolysaccharide (LPS)-activated BV-2 microglia were investigated. The production of proinflammatory cytokines tumor necrosis factor-α, interleukin-1β, and nitric oxide was measured in culture medium using enzyme immunoassay and Griess reagent, respectively. The expression of proteins was determined using Western blot. Pretreatment with lutein (50 μM) prior to LPS (1 μg/mL, 12 h) stimulation resulted in a significant inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression, as well as tumor necrosis factor-α, interleukin-1β, and nitric oxide production (p lutein suppressed LPS-induced NF-κB activation by inhibiting the phosphorylation of p38 kinase, c-Jun N-terminal kinase (JNK), and Akt kinase (p lutein markedly quenched reactive oxygen species and promoted antioxidant protein expression including heme oxygenase-1 and quinone oxidoreductase by enhancing the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) mediated NF-E2-related factor 2 (Nrf2) activation (p lutein attenuates neuroinflammation in LPS-activated BV-2 microglia partly through inhibiting p38-, JNK-, and Akt-stimulated NF-κB activation and promoting ERK-induced Nrf2 activation, suggesting that lutein has great potential as a nutritional preventive strategy in inflammation-related neurodegenerative disorders. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Clearing the corpses: regulatory mechanisms, novel tools, and therapeutic potential of harnessing microglial phagocytosis in the diseased brain

    Directory of Open Access Journals (Sweden)

    Irune Diaz-Aparicio

    2016-01-01

    Full Text Available Apoptosis is a widespread phenomenon that occurs in the brain in both physiological and pathological conditions. Dead cells must be quickly removed to avoid the further toxic effects they exert in the parenchyma, a process executed by microglia, the brain professional phagocytes. Although phagocytosis is critical to maintain tissue homeostasis, it has long been either overlooked or indirectly assessed based on microglial morphology, expression of classical activation markers, or engulfment of artificial phagocytic targets in vitro. Nevertheless, these indirect methods present several limitations and, thus, direct observation and quantification of microglial phagocytosis is still necessary to fully grasp its relevance in the diseased brain. To overcome these caveats and obtain a comprehensive, quantitative picture of microglial phagocytosis we have developed a novel set of parameters. These parameters have allowed us to identify the different strategies utilized by microglia to cope with apoptotic challenges induced by excitotoxicity or inflammation. In contrast, we discovered that in mouse and human epilepsy microglia failed to find and engulf apoptotic cells, resulting in accumulation of debris and inflammation. Herein, we advocate that the efficiency of microglial phagocytosis should be routinely tested in neurodegenerative and neurological disorders, in order to determine the extent to which it contributes to apoptosis and inflammation found in these conditions. Finally, our findings point towards enhancing microglial phagocytosis as a novel therapeutic strategy to control tissue damage and inflammation, and accelerate recovery in brain diseases.

  16. Anti-Inflammatory Effect of Methylpenicinoline from a Marine Isolate of Penicillium sp. (SF-5995: Inhibition of NF-κB and MAPK Pathways in Lipopolysaccharide-Induced RAW264.7 Macrophages and BV2 Microglia

    Directory of Open Access Journals (Sweden)

    Dong-Cheol Kim

    2014-11-01

    Full Text Available In the course of a search for anti-inflammatory metabolites from marine-derived fungi, methylpenicinoline (1 was isolated from a marine isolate of Penicillin sp. Compound 1 inhibited lipopolysaccharide (LPS-stimulated nitric oxide (NO production by suppressing the expression of inducible NO synthase (iNOS in RAW264.7 macrophages and BV2 microglia. It also attenuated prostaglandin E2 (PGE2 production by suppressing cyclooxygenase-2 (COX-2 expression in a concentration-dependent manner (from 10 μM to 80 μM without affecting cell viability. In addition, compound 1 reduced the production of the pro-inflammatory cytokine interleukin-1β (IL-1β. In a further study designed to elucidate the mechanism of its anti-inflammatory effects, compound 1 was shown to block nuclear factor-kappa B (NF-κB activation in LPS-induced RAW264.7 macrophages and BV2 microglia by inhibiting the phosphorylation of inhibitor kappa B-α (IκB-α, thereby suppressing the nuclear translocation of NF-κB dimers, namely p50 and p65, that are known to be crucial molecules associated with iNOS and COX-2 expression. In addition, compound 1 inhibited the activation of mitogen-activated protein kinase (MAPK pathways. Taken together, the results suggest that compound 1 might be a valuable therapeutic agent for the treatment of anti-inflammatory and anti-neuroinflammatory diseases.

  17. Lipoprotein Lipase Maintains Microglial Innate Immunity in Obesity

    NARCIS (Netherlands)

    Gao, Yuanqing; Vidal-Itriago, Andrés; Kalsbeek, Martin J; Layritz, Clarita; García-Cáceres, Cristina; Tom, Robby Zachariah; Eichmann, Thomas O; Vaz, Frédéric M; Houtkooper, Riekelt H; van der Wel, Nicole; Verhoeven, Arthur J; Yan, Jie; Kalsbeek, A.; Eckel, Robert H; Hofmann, Susanna M; Yi, Chun-Xia

    2017-01-01

    Consumption of a hypercaloric diet upregulates microglial innate immune reactivity along with a higher expression of lipoprotein lipase (Lpl) within the reactive microglia in the mouse brain. Here, we show that knockdown of the Lpl gene specifically in microglia resulted in deficient microglial

  18. Vanillin Protects Dopaminergic Neurons against Inflammation-Mediated Cell Death by Inhibiting ERK1/2, P38 and the NF-κB Signaling Pathway.

    Science.gov (United States)

    Yan, Xuan; Liu, Dian-Feng; Zhang, Xiang-Yang; Liu, Dong; Xu, Shi-Yao; Chen, Guang-Xin; Huang, Bing-Xu; Ren, Wen-Zhi; Wang, Wei; Fu, Shou-Peng; Liu, Ju-Xiong

    2017-02-12

    Neuroinflammation plays a very important role in the pathogenesis of Parkinson's disease (PD). After activation, microglia produce pro-inflammatory mediators that damage surrounding neurons. Consequently, the inhibition of microglial activation might represent a new therapeutic approach of PD. Vanillin has been shown to protect dopaminergic neurons, but the mechanism is still unclear. Herein, we further study the underlying mechanisms in lipopolysaccharide (LPS)-induced PD models. In vivo, we firstly established rat models of PD by unilateral injection of LPS into substantia nigra (SN), and then examined the role of vanillin in motor dysfunction, microglial activation and degeneration of dopaminergic neurons. In vitro, murine microglial BV-2 cells were treated with vanillin prior to the incubation of LPS, and then the inflammatory responses and the related signaling pathways were analyzed. The in vivo results showed that vanillin markedly improved the motor dysfunction, suppressed degeneration of dopaminergic neurons and inhibited microglial over-activation induced by LPS intranigral injection. The in vitro studies demonstrated that vanillin reduces LPS-induced expression of inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2), IL-1β, and IL-6 through regulating ERK1/2, p38 and NF-κB signaling. Collectively, these data indicated that vanillin has a role in protecting dopaminergic neurons via inhibiting inflammatory activation.

  19. Vanillin Protects Dopaminergic Neurons against Inflammation-Mediated Cell Death by Inhibiting ERK1/2, P38 and the NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xuan Yan

    2017-02-01

    Full Text Available Neuroinflammation plays a very important role in the pathogenesis of Parkinson’s disease (PD. After activation, microglia produce pro-inflammatory mediators that damage surrounding neurons. Consequently, the inhibition of microglial activation might represent a new therapeutic approach of PD. Vanillin has been shown to protect dopaminergic neurons, but the mechanism is still unclear. Herein, we further study the underlying mechanisms in lipopolysaccharide (LPS-induced PD models. In vivo, we firstly established rat models of PD by unilateral injection of LPS into substantia nigra (SN, and then examined the role of vanillin in motor dysfunction, microglial activation and degeneration of dopaminergic neurons. In vitro, murine microglial BV-2 cells were treated with vanillin prior to the incubation of LPS, and then the inflammatory responses and the related signaling pathways were analyzed. The in vivo results showed that vanillin markedly improved the motor dysfunction, suppressed degeneration of dopaminergic neurons and inhibited microglial over-activation induced by LPS intranigral injection. The in vitro studies demonstrated that vanillin reduces LPS-induced expression of inducible nitric oxide (iNOS, cyclooxygenase-2 (COX-2, IL-1β, and IL-6 through regulating ERK1/2, p38 and NF-κB signaling. Collectively, these data indicated that vanillin has a role in protecting dopaminergic neurons via inhibiting inflammatory activation.

  20. Natural product HTP screening for antibacterial (E.coli 0157:H7) and anti-inflammatory agents in (LPS from E. coli O111:B4) activated macrophages and microglial cells; focus on sepsis.

    Science.gov (United States)

    Mazzio, Elizabeth A; Li, Nan; Bauer, David; Mendonca, Patricia; Taka, Equar; Darb, Mohammed; Thomas, Leeshawn; Williams, Henry; Soliman, Karam F A

    2016-11-15

    Acute systemic inflammatory response syndrome arising from infection can lead to multiple organ failure and death, with greater susceptibility occurring in immunocompromised individuals. Moreover, sub-acute chronic inflammation is a contributor to the pathology of diverse degenerative diseases (Parkinson's disease, Alzheimer's disease and arthritis). Given the known limitations in Western medicine to treat a broad range of inflammatory related illness as well as the emergence of antibiotic resistance, there is a renewed interest in complementary and alternative medicines (CAMs) to achieve these means. A high throughput (HTP) screening of >1400 commonly sold natural products (bulk herbs, cooking spices, teas, leaves, supplement components, nutraceutical food components, fruit and vegetables, rinds, seeds, polyphenolics etc.) was conducted to elucidate anti-inflammatory substances in lipopolysaccharide (LPS) (E. coli serotype O111:B4) monocytes: RAW 264.7 macrophages [peripheral], BV-2 microglia [brain]) relative to hydrocortisone, dexamethasone and L-N6-(1Iminoethyl)lysine (L-NIL). HTP evaluation was also carried out for lethal kill curves against E.coli 0157:H7 1x10 6 CFU/mL relative to penicillin. Validation studies were performed to assess cytokine profiling using antibody arrays. Findings were corroborated by independent ELISAs and NO2-/iNOS expression quantified using the Griess Reagent and immunocytochemistry, respectively. For robust screening, we developed an in-vitro efficacy paradigm to ensure anti-inflammatory parameters were observed independent of cytotoxicity. This caution was taken given that many plants exert tumoricidal and anti-inflammatory effects at close range through similar signaling pathways, which could lead to false positives. The data show that activated BV-2 microglia cells (+ LPS 1μg/ml) release >10-fold greater IL-6, MIP1/2, RANTES and nitric oxide (NO2-), where RAW 264.7 macrophages (+ LPS 1μg/ml) produced > 10-fold rise in sTNFR2

  1. Lipoprotein Lipase Maintains Microglial Innate Immunity in Obesity

    Directory of Open Access Journals (Sweden)

    Yuanqing Gao

    2017-09-01

    Full Text Available Consumption of a hypercaloric diet upregulates microglial innate immune reactivity along with a higher expression of lipoprotein lipase (Lpl within the reactive microglia in the mouse brain. Here, we show that knockdown of the Lpl gene specifically in microglia resulted in deficient microglial uptake of lipid, mitochondrial fuel utilization shifting to glutamine, and significantly decreased immune reactivity. Mice with knockdown of the Lpl gene in microglia gained more body weight than control mice on a high-carbohydrate high-fat (HCHF diet. In these mice, microglial reactivity was significantly decreased in the mediobasal hypothalamus, accompanied by downregulation of phagocytic capacity and increased mitochondrial dysmorphologies. Furthermore, HCHF-diet-induced POMC neuronal loss was accelerated. These results show that LPL-governed microglial immunometabolism is essential to maintain microglial function upon exposure to an HCHF diet. In a hypercaloric environment, lack of such an adaptive immunometabolic response has detrimental effects on CNS regulation of energy metabolism.

  2. Necrotic neurons enhance microglial neurotoxicity through induction of glutaminase by a MyD88-dependent pathway

    Directory of Open Access Journals (Sweden)

    Braz Maria H

    2008-10-01

    Full Text Available Abstract Background Microglia are macrophage-like cells that constantly sense the microenvironment within the central nervous system (CNS. In the event of neuronal stress or injury, microglial cells rapidly react and change their phenotype. This response may lead to a deleterious type of microglial activation, which is often associated with neuroinflammation and neurotoxicity in several neuropathological conditions. We investigated the molecular mechanisms underlying triggering of microglial activation by necrotic neuronal damage. Methods Primary cultures of microglia were used to study the effect of necrotic neurons on microglial inflammatory responses and toxicity towards cerebellar granule neurons (CGN. The mouse hippocampal cell line, HT22, was used in this study as the main source of necrotic neurons to stimulate microglia. To identify the signal transduction pathways activated in microglia, primary microglial cultures were obtained from mice deficient in Toll-like receptor (TLR -2, -4, or in the TLR adapter protein MyD88. Results Necrotic neurons, but not other necrotic cell types, induced microglial activation which was characterized by up-regulation of: i MHC class II; ii co-stimulatory molecules, i.e. CD40 and CD24; iii β2 integrin CD11b; iii pro-inflammatory cytokines, i.e. interleukin 6 (IL-6, IL-12p40 and tumor-necrosis factor (TNF; iv pro-inflammatory enzymes such as nitric oxide synthase (iNOS, type II NOS, indoleamine 2,3-dioxygenase (IDO and cyclooxygenase-2 (COX-2 and increased microglial motility. Moreover, microglia-conditioned medium (MCM obtained from cultures of activated microglia showed increased neurotoxicity mediated through the N-methyl-D-aspartate receptor (NMDAR. The activation of microglia by necrotic neurons was shown to be dependent on the TLR-associated adapter molecule myeloid differentiation primary response gene (MyD88. Furthermore, MyD88 mediated enhanced neurotoxicity by activated microglia through up

  3. Developmental alcohol exposure impairs synaptic plasticity without overtly altering microglial function in mouse visual cortex.

    Science.gov (United States)

    Wong, Elissa L; Lutz, Nina M; Hogan, Victoria A; Lamantia, Cassandra E; McMurray, Helene R; Myers, Jason R; Ashton, John M; Majewska, Ania K

    2018-01-01

    Fetal alcohol spectrum disorder (FASD), caused by gestational ethanol (EtOH) exposure, is one of the most common causes of non-heritable and life-long mental disability worldwide, with no standard treatment or therapy available. While EtOH exposure can alter the function of both neurons and glia, it is still unclear how EtOH influences brain development to cause deficits in sensory and cognitive processing later in life. Microglia play an important role in shaping synaptic function and plasticity during neural circuit development and have been shown to mount an acute immunological response to EtOH exposure in certain brain regions. Therefore, we hypothesized that microglial roles in the healthy brain could be permanently altered by early EtOH exposure leading to deficits in experience-dependent plasticity. We used a mouse model of human third trimester high binge EtOH exposure, administering EtOH twice daily by subcutaneous injections from postnatal day 4 through postnatal day 9 (P4-:P9). Using a monocular deprivation model to assess ocular dominance plasticity, we found an EtOH-induced deficit in this type of visually driven experience-dependent plasticity. However, using a combination of immunohistochemistry, confocal microscopy, and in vivo two-photon microscopy to assay microglial morphology and dynamics, as well as fluorescence activated cell sorting (FACS) and RNA-seq to examine the microglial transcriptome, we found no evidence of microglial dysfunction in early adolescence. We also found no evidence of microglial activation in visual cortex acutely after early ethanol exposure, possibly because we also did not observe EtOH-induced neuronal cell death in this brain region. We conclude that early EtOH exposure caused a deficit in experience-dependent synaptic plasticity in the visual cortex that was independent of changes in microglial phenotype or function. This demonstrates that neural plasticity can remain impaired by developmental ethanol exposure even in

  4. Synergistic Use of Geniposide and Ginsenoside Rg1 Balance Microglial TNF-α and TGF-β1 following Oxygen-Glucose Deprivation In Vitro: A Genome-Wide Survey

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2015-01-01

    Full Text Available Ischemia-activated microglia are like a double-edged sword, characterized by both neurotoxic and neuroprotective effects. The aim of this study was to reveal the synergistic effect of geniposide and ginsenoside Rg1 based on tumor necrosis factor- (TNF- α and transforming growth factor- (TGF- β1 balance of microglia. BV2 microglial cells were divided into 5 groups: control, model (oxygen-glucose deprivation (OGD, geniposide-treated, ginsenoside-Rg1-treated, and combination-treated. A series of assays were used to detect on (i cell viability; (ii NO content; (iii expression (content of TNF-α and TGF-β1; and (iv gene expression profiles. The results showed that integrated use of geniposide and ginsenoside Rg1 significantly inhibited NO level and protected cell viability, improved the content and expression of TGF-β1, and reduced the content and expression of TNF-α. Separated use of geniposide or ginsenoside Rg1 showed different effects at different emphases. Next-generation sequencing showed that Fcγ-receptor-mediated phagocytosis pathway played a key regulatory role in the balance of TNF-α and TGF-β1 when cotreated with geniposide and ginsenoside Rg1. These findings suggest that synergistic drug combination of geniposide and ginsenoside Rg1 in the treatment of stroke is a feasible avenue for the application.

  5. Mechanisms of microglial activation in models of inflammation and hypoxia: Implications for chronic intermittent hypoxia.

    Science.gov (United States)

    Kiernan, Elizabeth A; Smith, Stephanie M C; Mitchell, Gordon S; Watters, Jyoti J

    2016-03-15

    Chronic intermittent hypoxia (CIH) is a hallmark of sleep apnoea, a condition associated with diverse clinical disorders. CIH and sleep apnoea are characterized by increased reactive oxygen species formation, peripheral and CNS inflammation, neuronal death and neurocognitive deficits. Few studies have examined the role of microglia, the resident CNS immune cells, in models of CIH. Thus, little is known concerning their direct contributions to neuropathology or the cellular mechanisms regulating their activities during or following pathological CIH. In this review, we identify gaps in knowledge regarding CIH-induced microglial activation, and propose mechanisms based on data from related models of hypoxia and/or hypoxia-reoxygenation. CIH may directly affect microglia, or may have indirect effects via the periphery or other CNS cells. Peripheral inflammation may indirectly activate microglia via entry of pro-inflammatory molecules into the CNS, and/or activation of vagal afferents that trigger CNS inflammation. CIH-induced release of damage-associated molecular patterns from injured CNS cells may also activate microglia via interactions with pattern recognition receptors expressed on microglia. For example, Toll-like receptors activate mitogen-activated protein kinase/transcription factor pathways required for microglial inflammatory gene expression. Although epigenetic effects from CIH have not yet been studied in microglia, potential epigenetic mechanisms in microglial regulation are discussed, including microRNAs, histone modifications and DNA methylation. Epigenetic effects can occur during CIH, or long after it has ended. A better understanding of CIH effects on microglial activities may be important to reverse CIH-induced neuropathology in patients with sleep disordered breathing. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  6. CCL2/MCP-1 modulation of microglial activation and proliferation

    Directory of Open Access Journals (Sweden)

    Garcia-Bueno Borja

    2011-07-01

    Full Text Available Abstract Background Monocyte chemoattractant protein (CCL2/MCP-1 is a chemokine that attracts cells involved in the immune/inflammatory response. As microglia are one of the main cell types sustaining inflammation in brain, we proposed here to analyze the direct effects of MCP-1 on cultured primary microglia. Methods Primary microglia and neuronal cultures were obtained from neonatal and embryonic Wistar rats, respectively. Microglia were incubated with different concentrations of recombinant MCP-1 and LPS. Cell proliferation was quantified by measuring incorporation of bromodeoxyuridine (BrdU. Nitrite accumulation was measured using the Griess assay. The expression and synthesis of different proteins was measured by RT-PCR and ELISA. Cell death was quantified by measuring release of LDH into the culture medium. Results MCP-1 treatment (50 ng/ml, 24 h did not induce morphological changes in microglial cultures. Protein and mRNA levels of different cytokines were measured, showing that MCP-1 was not able to induce proinflammatory cytokines (IL-1β, IL6, MIP-1α, either by itself or in combination with LPS. A similar lack of effect was observed when measuring inducible nitric oxide synthase (NOS2 expression or accumulation of nitrites in the culture media as a different indicator of microglial activation. MCP-1 was also unable to alter the expression of different trophic factors that were reduced by LPS treatment. In order to explore the possible release of other products by microglia and their potential neurotoxicity, neurons were co-cultured with microglia: no death of neurons could be detected when treated with MCP-1. However, the presence of MCP-1 induced proliferation of microglia, an effect opposite to that observed with LPS. Conclusion These data indicate that, while causing migration and proliferation of microglia, MCP-1 does not appear to directly activate an inflammatory response in this cell type, and therefore, other factors may be

  7. Microglial AGE-albumin is critical for neuronal death in Parkinson's disease: a possible implication for theranostics.

    Science.gov (United States)

    Bayarsaikhan, Enkhjargal; Bayarsaikhan, Delger; Lee, Jaesuk; Son, Myeongjoo; Oh, Seyeon; Moon, Jeongsik; Park, Hye-Jeong; Roshini, Arivazhagan; Kim, Seung U; Song, Byoung-Joon; Jo, Seung-Mook; Byun, Kyunghee; Lee, Bonghee

    2015-01-01

    Advanced glycation end products (AGEs) are known to play an important role in the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD), by inducing protein aggregation and cross-link, formation of Lewy body, and neuronal death. In this study, we observed that AGE-albumin, the most abundant AGE product in the human PD brain, is synthesized in activated microglial cells and accumulates in the extracellular space. AGE-albumin synthesis in human-activated microglial cells is distinctly inhibited by ascorbic acid and cytochalasin treatment. Accumulated AGE-albumin upregulates the receptor to AGE, leading to apoptosis of human primary dopamine (DA) neurons. In animal experiments, we observed reduced DA neuronal cell death by treatment with soluble receptor to AGE. Our study provides evidence that activated microglial cells are one of the main contributors in AGE-albumin accumulation, deleterious to DA neurons in human and animal PD brains. Finally, activated microglial AGE-albumin could be used as a diagnostic and therapeutic biomarker with high sensitivity for neurodegenerative disorders, including PD.

  8. Roles of Microglial Phagocytosis and Inflammatory Mediators in the Pathophysiology of Sleep Disorders

    Directory of Open Access Journals (Sweden)

    Agnes Nadjar

    2017-08-01

    Full Text Available Sleep serves crucial learning and memory functions in both nervous and immune systems. Microglia are brain immune cells that actively maintain health through their crucial physiological roles exerted across the lifespan, including phagocytosis of cellular debris and orchestration of neuroinflammation. The past decade has witnessed an explosive growth of microglial research. Considering the recent developments in the field of microglia and sleep, we examine their possible impact on various pathological conditions associated with a gain, disruption, or loss of sleep in this focused mini-review. While there are extensive studies of microglial implication in a variety of neuropsychiatric and neurodegenerative diseases, less is known regarding their roles in sleep disorders. It is timely to stimulate new research in this emergent and rapidly growing field of investigation.

  9. Enhancement of LPS-Induced Microglial Inflammation Response via TLR4 Under High Glucose Conditions

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2015-03-01

    Full Text Available Background: Microglia activation mediated by toll-like receptor 4 (TLR4 plays an important role in neuroinflammation and postoperative cognitive dysfunction (POCD. Diabetes mellitus (DM has been recently suggested as an independent risk factor for POCD. In this study, we investigate the potential exacerbation of the inflammatory response in primary microglia due to high glucose conditions. Methods: Primary microglial cells were exposed to normal glucose (25 mmol/L and high glucose (35 mmol/L levels alone or with lipopolyscaccharide (LPS 0, 2, 5, 10 ng/mL. The pro-inflammatory response of the cells was assessed by measuring changes in cytokine levels and the evaluation of associated signaling pathways. Results: Neither high glucose nor low LPS (≤5ng/ml alone had an effect on TNF-a and IL-6 levels, but the combination of low LPS and high glucose stimulated the inflammatory response. Analyses of the associated signaling pathways demonstrated that high glucose enhanced the LPS-induced microglial activation via the TLR4/JAK2/STAT3 pathway. Conclusion: This study demonstrates that high glucose, one of the key abnormalities characteristic of DM, can augment LPS-induced microglial activation and inflammatory cytokine levels through the TLR4/JAK2/STAT3 pathway, offering new insight into the pathophysiological relationship between DM and POCD.

  10. APP Regulates Microglial Phenotype in a Mouse Model of Alzheimer's Disease

    Science.gov (United States)

    Manocha, Gunjan D.; Floden, Angela M.; Rausch, Keiko; Kulas, Joshua A.; McGregor, Brett A.; Rojanathammanee, Lalida; Puig, Kelley R.; Puig, Kendra L.; Karki, Sanjib; Nichols, Michael R.; Darland, Diane C.; Porter, James E.

    2016-01-01

    Prior work suggests that amyloid precursor protein (APP) can function as a proinflammatory receptor on immune cells, such as monocytes and microglia. Therefore, we hypothesized that APP serves this function in microglia during Alzheimer's disease. Although fibrillar amyloid β (Aβ)-stimulated cytokine secretion from both wild-type and APP knock-out (mAPP−/−) microglial cultures, oligomeric Aβ was unable to stimulate increased secretion from mAPP−/− cells. This was consistent with an ability of oligomeric Aβ to bind APP. Similarly, intracerebroventricular infusions of oligomeric Aβ produced less microgliosis in mAPP−/− mice compared with wild-type mice. The mAPP−/− mice crossed to an APP/PS1 transgenic mouse line demonstrated reduced microgliosis and cytokine levels and improved memory compared with wild-type mice despite robust fibrillar Aβ plaque deposition. These data define a novel function for microglial APP in regulating their ability to acquire a proinflammatory phenotype during disease. SIGNIFICANCE STATEMENT A hallmark of Alzheimer's disease (AD) brains is the accumulation of amyloid β (Aβ) peptide within plaques robustly invested with reactive microglia. This supports the notion that Aβ stimulation of microglial activation is one source of brain inflammatory changes during disease. Aβ is a cleavage product of the ubiquitously expressed amyloid precursor protein (APP) and is able to self-associate into a wide variety of differently sized and structurally distinct multimers. In this study, we demonstrate both in vitro and in vivo that nonfibrillar, oligomeric forms of Aβ are able to interact with the parent APP protein to stimulate microglial activation. This provides a mechanism by which metabolism of APP results in possible autocrine or paracrine Aβ production to drive the microgliosis associated with AD brains. PMID:27511018

  11. Phenotypic dysregulation of microglial activation in young offspring rats with maternal sleep deprivation-induced cognitive impairment.

    Science.gov (United States)

    Zhao, Qiuying; Xie, Xiaofang; Fan, Yonghua; Zhang, Jinqiang; Jiang, Wei; Wu, Xiaohui; Yan, Shuo; Chen, Yubo; Peng, Cheng; You, Zili

    2015-04-01

    Despite the potential adverse effects of maternal sleep deprivation (MSD) on physiological and behavioral aspects of offspring, the mechanisms remain poorly understood. The present study was intended to investigate the roles of microglia on neurodevelopment and cognition in young offspring rats with prenatal sleep deprivation. Pregnant Wistar rats received 72 h sleep deprivation in the last trimester of gestation, and their prepuberty male offspring were given the intraperitoneal injection with or without minocycline. The results showed the number of Iba1(+) microglia increased, that of hippocampal neurogenesis decreased, and the hippocampus-dependent spatial learning and memory were impaired in MSD offspring. The classical microglial activation markers (M1 phenotype) IL-1β, IL-6, TNF-α, CD68 and iNOS were increased, while the alternative microglial activation markers (M2 phenotype) Arg1, Ym1, IL-4, IL-10 and CD206 were reduced in hippocampus of MSD offspring. After minocycline administration, the MSD offspring showed improvement in MWM behaviors and increase in BrdU(+)/DCX(+) cells. Minocycline reduced Iba1(+) cells, suppressed the production of pro-inflammatory molecules, and reversed the reduction of M2 microglial markers in the MSD prepuberty offspring. These results indicate that dysregulation in microglial pro- and anti-inflammatory activation is involved in MSD-induced inhibition of neurogenesis and impairment of spatial learning and memory.

  12. Microglial number is related to the number of tyrosine hydroxylase neurons in SHR and normotensive rats.

    Science.gov (United States)

    Kapoor, Komal; Bhandare, Amol M; Mohammed, Suja; Farnham, Melissa M J; Pilowsky, Paul M

    2016-07-01

    Microglia are ubiquitously distributed throughout the central nervous system (CNS) and play a critical role in the maintenance of neuronal homeostasis. Recent advances have shown that microglia, never resting cells of the CNS, continuously monitor and influence neuronal/synaptic activity levels, by communicating with neurons with the aid of their dynamic processes. The brainstem contains many catecholaminergic nuclei that are key to many aspects of brain function. This includes C1 neurons of the ventrolateral medulla that are thought to play a critical role in control of the circulation. Despite the role of catecholaminergic brainstem neurons in normal physiology, the presence of microglia that surrounds them is poorly understood. Here, we investigate the spatial distribution and morphology of microglia in catecholaminergic nuclei of the brainstem in 3 strains of rat: Sprague-Dawley (SD), Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Our data reveal that microglia are heterogeneously distributed within and across different strains of rats. Interestingly, intra-strain comparison of tyrosine hydroxylase-immunoreactive (TH-ir) neuronal and microglial number reveals that microglial number varies with the TH-ir neuronal number in the brainstem. Even though microglial spatial distribution varies across brainstem nuclei, microglial morphology (% area covered, number of end point processes and branch length) does not differ significantly. This work provides the first evidence that even though microglia, in their surveilling state, do not vary appreciably in their morphology across brainstem areas, they do have a heterogeneous pattern of distribution that may be influenced by their local environment. Copyright © 2016. Published by Elsevier B.V.

  13. Headmasters: Microglial regulation of learning and memory in health and disease

    Directory of Open Access Journals (Sweden)

    Laetitia Weinhard

    2018-03-01

    Full Text Available Microglia are mononuclear phagocytes that reside throughout the lifetime of the animal in the central nervous system (CNS. Originating from the yolk sac, microglial progenitors infiltrate the developing brain anlage even before the formation of the neural network. Mature microglial cells persist by slow rates of self-renewal that vary across brain regions. Eminent studies in the recent decade have highlighted a role for steady state microglia in neurogenesis, synaptic pruning, and formation and maintenance of connectivity within the CNS, which are critical to learning and memory functions. Activity- and learning-dependent synaptic remodeling by microglia has been described in various contexts. Molecular pathways, including signaling through fractalkine CX3CL1 and its receptor CX3CR1, transforming growth factor-beta, classical complement system, colony-stimulating factor 1 receptor, adaptor protein DAP12, and brain-derived neurotropic factor, have been proposed to be important mediators of synaptic plasticity regulated by microglia. Reactive, dysfunctional, or aged microglia are thought to impact learning and memory, and are implicated in human neurodegenerative disorders in which dementia is a hallmark. These disorders include Nasu-Hakola disease, hereditary diffuse leukoencephaly with spheroids, Alzheimer’s disease, frontotemporal dementia, and Parkinson’s disease. Focusing on microglia, here we discuss the potential detrimental effects and risks presented by microglia-specific genetic variants, the environmental factors that target microglia, and microglial aging that likely lead to progressive memory loss in neurodegenerative diseases. Finally, we consider some caveats of the animal model systems that to date have advanced our understanding of microglial regulation of learning and memory.

  14. A novel microglial subset plays a key role in myelinogenesis in developing brain

    DEFF Research Database (Denmark)

    Wlodarczyk, Agnieszka; Holtman, Inge; Krueger, Martin

    2017-01-01

    -activated cells, neonatal microglia show a unique myelinogenic and neurogenic phenotype. A CD11c+ microglial subset that predominates in primary myelinating areas of the developing brain expresses genes for neuronal and glial survival, migration and differentiation. These cells are the major source of insulin......Microglia are resident macrophages of the central nervous system that contribute to homeostasis and neuroinflammation. Although known to play an important role in brain development, their exact function has not been fully described. Here we show that in contrast to healthy adult and inflammation...

  15. ProMoIJ: A new tool for automatic three-dimensional analysis of microglial process motility.

    Science.gov (United States)

    Paris, Iñaki; Savage, Julie C; Escobar, Laura; Abiega, Oihane; Gagnon, Steven; Hui, Chin-Wai; Tremblay, Marie-Ève; Sierra, Amanda; Valero, Jorge

    2018-04-01

    Microglia, the immune cells of the central nervous system, continuously survey the brain to detect alterations and maintain tissue homeostasis. The motility of microglial processes is indicative of their surveying capacity in normal and pathological conditions. The gold standard technique to study motility involves the use of two-photon microscopy to obtain time-lapse images from brain slices or the cortex of living animals. This technique generates four dimensionally-coded images which are analyzed manually using time-consuming, non-standardized protocols. Microglial process motility analysis is frequently performed using Z-stack projections with the consequent loss of three-dimensional (3D) information. To overcome these limitations, we developed ProMoIJ, a pack of ImageJ macros that perform automatic motility analysis of cellular processes in 3D. The main core of ProMoIJ is formed by two macros that assist the selection of processes, automatically reconstruct their 3D skeleton, and analyze their motility (process and tip velocity). Our results show that ProMoIJ presents several key advantages compared with conventional manual analysis: (1) reduces the time required for analysis, (2) is less sensitive to experimenter bias, and (3) is more robust to varying numbers of processes analyzed. In addition, we used ProMoIJ to demonstrate that commonly performed 2D analysis underestimates microglial process motility, to reveal that only cells adjacent to a laser injured area extend their processes toward the lesion site, and to demonstrate that systemic inflammation reduces microglial process motility. ProMoIJ is a novel, open-source, freely-available tool which standardizes and accelerates the time-consuming labor of 3D analysis of microglial process motility. © 2017 Wiley Periodicals, Inc.

  16. Microglial neuroinflammation contributes to tau accumulation in chronic traumatic encephalopathy.

    Science.gov (United States)

    Cherry, Jonathan D; Tripodis, Yorghos; Alvarez, Victor E; Huber, Bertrand; Kiernan, Patrick T; Daneshvar, Daniel H; Mez, Jesse; Montenigro, Philip H; Solomon, Todd M; Alosco, Michael L; Stern, Robert A; McKee, Ann C; Stein, Thor D

    2016-10-28

    The chronic effects of repetitive head impacts (RHI) on the development of neuroinflammation and its relationship to chronic traumatic encephalopathy (CTE) are unknown. Here we set out to determine the relationship between RHI exposure, neuroinflammation, and the development of hyperphosphorylated tau (ptau) pathology and dementia risk in CTE. We studied a cohort of 66 deceased American football athletes from the Boston University-Veteran's Affairs-Concussion Legacy Foundation Brain Bank as well as 16 non-athlete controls. Subjects with a neurodegenerative disease other than CTE were excluded. Counts of total and activated microglia, astrocytes, and ptau pathology were performed in the dorsolateral frontal cortex (DLF). Binary logistic and simultaneous equation regression models were used to test associations between RHI exposure, microglia, ptau pathology, and dementia. Duration of RHI exposure and the development and severity of CTE were associated with reactive microglial morphology and increased numbers of CD68 immunoreactive microglia in the DLF. A simultaneous equation regression model demonstrated that RHI exposure had a significant direct effect on CD68 cell density (p CTE. Inflammatory molecules may be important diagnostic or predictive biomarkers as well as promising therapeutic targets in CTE.

  17. Disruption of Fractalkine Signaling Leads to Microglial Activation and Neuronal Damage in the Diabetic Retina

    Directory of Open Access Journals (Sweden)

    Sandra M. Cardona

    2015-10-01

    Full Text Available Fractalkine (CX3CL1 or FKN is a membrane-bound chemokine expressed on neuronal membranes and is proteolytically cleaved to shed a soluble chemoattractant domain. FKN signals via its unique receptor CX3CR1 expressed on microglia and other peripheral leukocytes. The aim of this study is to determine the role of CX3CR1 in inflammatory-mediated damage to retinal neurons using a model of diabetic retinopathy. For this, we compared neuronal, microglial, and astroglial densities and inflammatory response in nondiabetic and diabetic (Ins2Akita CX3CR1-wild-type and CX3CR1-deficient mice at 10 and 20 weeks of age. Our results show that Ins2Akita CX3CR1-knockout mice exhibited (a decreased neuronal cell counts in the retinal ganglion cell layer, (b increased microglial cell numbers, and (c decreased astrocyte responses comparable with Ins2Akita CX3CR1-Wild-type mice at 20 weeks of age. Analyses of the inflammatory response using PCR arrays showed several inflammatory genes differentially regulated in diabetic tissues. From those, the response in Ins2Akita CX3CR1-deficient mice at 10 weeks of age revealed a significant upregulation of IL-1β at the transcript level that was confirmed by enzyme-linked immunosorbent assay in soluble retinal extracts. Overall, IL-1β, VEGF, and nitrite levels as a read out of nitric oxide production were abundant in Ins2Akita CX3CR1-deficient retina. Notably, double immunofluorescence staining shows that astrocytes act as a source of IL-1β in the Ins2Akita retina, and CX3CR1-deficient microglia potentiate the inflammatory response via IL-1β release. Collectively, these data demonstrate that dysregulated microglial responses in absence of CX3CR1 contribute to inflammatory-mediated damage of neurons in the diabetic retina.

  18. Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier

    DEFF Research Database (Denmark)

    Lou, Nanhong; Takano, Takahiro; Pei, Yong

    2016-01-01

    Microglia are integral functional elements of the central nervous system, but the contribution of these cells to the structural integrity of the neurovascular unit has not hitherto been assessed. We show here that following blood-brain barrier (BBB) breakdown, P2RY12 (purinergic receptor P2Y, G......-protein coupled, 12)-mediated chemotaxis of microglia processes is required for the rapid closure of the BBB. Mice treated with the P2RY12 inhibitor clopidogrel, as well as those in which P2RY12 was genetically ablated, exhibited significantly diminished movement of juxtavascular microglial processes and failed...

  19. Microglial activation and neuroinflammation in Alzheimer's disease: a critical examination of recent history

    Directory of Open Access Journals (Sweden)

    Wolfgang J Streit

    2010-06-01

    Full Text Available The neurofibrillary degeneration that occurs in Alzheimer’s disease (AD is thought to be the result of a chronic and damaging neuroinflammatory response mediated by neurotoxic substances produced by activated microglial cells. This neuroinflammation hypothesis of AD pathogenesis has led to numerous clinical trials with anti-inflammatory drugs, none of which have shown clear benefits for slowing or preventing disease onset and progression. In this paper, I make the point that AD is not an inflammatory condition, and reconstruct the sequence of events during the 1980s and 1990s that I believe led to the development of this faulty theory.

  20. A common carcinogen benzo[a]pyrene causes neuronal death in mouse via microglial activation.

    Directory of Open Access Journals (Sweden)

    Kallol Dutta

    Full Text Available BACKGROUND: Benzo[a]pyrene (B[a]P belongs to a class of polycyclic aromatic hydrocarbons that serve as micropollutants in the environment. B[a]P has been reported as a probable carcinogen in humans. Exposure to B[a]P can take place by ingestion of contaminated (especially grilled, roasted or smoked food or water, or inhalation of polluted air. There are reports available that also suggests neurotoxicity as a result of B[a]P exposure, but the exact mechanism of action is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using neuroblastoma cell line and primary cortical neuron culture, we demonstrated that B[a]P has no direct neurotoxic effect. We utilized both in vivo and in vitro systems to demonstrate that B[a]P causes microglial activation. Using microglial cell line and primary microglial culture, we showed for the first time that B[a]P administration results in elevation of reactive oxygen species within the microglia thereby causing depression of antioxidant protein levels; enhanced expression of inducible nitric oxide synthase, that results in increased production of NO from the cells. Synthesis and secretion of proinflammatory cytokines were also elevated within the microglia, possibly via the p38MAP kinase pathway. All these factors contributed to bystander death of neurons, in vitro. When administered to animals, B[a]P was found to cause microglial activation and astrogliosis in the brain with subsequent increase in proinflammatory cytokine levels. CONCLUSIONS/SIGNIFICANCE: Contrary to earlier published reports we found that B[a]P has no direct neurotoxic activity. However, it kills neurons in a bystander mechanism by activating the immune cells of the brain viz the microglia. For the first time, we have provided conclusive evidence regarding the mechanism by which the micropollutant B[a]P may actually cause damage to the central nervous system. In today's perspective, where rising pollution levels globally are a matter of grave concern, our

  1. Retinal microglial activation and inflammation induced by amadori-glycated albumin in a rat model of diabetes.

    Science.gov (United States)

    Ibrahim, Ahmed S; El-Remessy, Azza B; Matragoon, Suraporn; Zhang, Wenbo; Patel, Yogin; Khan, Sohail; Al-Gayyar, Mohammed M; El-Shishtawy, Mamdouh M; Liou, Gregory I

    2011-04-01

    During diabetes, retinal microglial cells are activated to release inflammatory cytokines that initiate neuronal loss and blood-retinal barrier breakdown seen in diabetic retinopathy (DR). The mechanism by which diabetes activates microglia to release those inflammatory mediators is unclear and was therefore elucidated. Microglia activation was characterized in streptozocin-injected rats and in isolated microglial cells using immunofluorescence, enzyme-linked immunosorbent assay, RT-PCR, and Western blot analyses. In 8-week diabetic retina, phospho-extracellular signal-related kinase (ERK) and P38 mitogen-activated protein kinases were localized in microglia, but not in Mueller cells or astrocytes. At the same time, Amadori-glycated albumin (AGA)-like epitopes were featured in the regions of microglia distribution, implicating a pathogenic effect on microglial activation. To test this, diabetic rats were treated intravitreally with A717, a specific AGA-neutralizing antibody, or murine IgG. Relative to nondiabetic rats, diabetic rats (IgG-treated) manifested 3.9- and 7.9-fold increases in Iba-1 and tumor necrosis factor (TNF)-α mRNAs, respectively. Treatment of diabetic rats with A717 significantly attenuated overexpression of these mRNAs. Intravitreal injection of AGA per se in normal rats resulted in increases of Iba-1 expression and TNF-α release. Guided by these results, a cultured retinal microglia model was developed to study microglial response after AGA treatment and the mechanistic basis behind this response. The results showed that formation of reactive oxygen species and subsequent activation of ERK and P38, but not Jun NH2-terminal kinase, are molecular events underpinning retinal microglial TNF-α release during AGA treatment. These results provide new insights in understanding the pathogenesis of early DR, showing that the accumulated AGA within the diabetic retina elicits the microglial activation and secretion of TNF-α. Thus, intervention trials

  2. The PPARα Agonist Fenofibrate Preserves Hippocampal Neurogenesis and Inhibits Microglial Activation After Whole-Brain Irradiation

    International Nuclear Information System (INIS)

    Ramanan, Sriram; Kooshki, Mitra; Zhao Weiling; Hsu, F.-C.; Riddle, David R.; Robbins, Mike E.

    2009-01-01

    Purpose: Whole-brain irradiation (WBI) leads to cognitive impairment months to years after radiation. Numerous studies suggest that decreased hippocampal neurogenesis and microglial activation are involved in the pathogenesis of WBI-induced brain injury. The goal of this study was to investigate whether administration of the peroxisomal proliferator-activated receptor (PPAR) α agonist fenofibrate would prevent the detrimental effect of WBI on hippocampal neurogenesis. Methods and Materials: For this study, 129S1/SvImJ wild-type and PPARα knockout mice that were fed either regular or 0.2% wt/wt fenofibrate-containing chow received either sham irradiation or WBI (10-Gy single dose of 137 Cs γ-rays). Mice were injected intraperitoneally with bromodeoxyuridine to label the surviving cells at 1 month after WBI, and the newborn neurons were counted at 2 months after WBI by use of bromodeoxyuridine/neuronal nuclei double immunofluorescence. Proliferation in the subgranular zone and microglial activation were measured at 1 week and 2 months after WBI by use of Ki-67 and CD68 immunohistochemistry, respectively. Results: Whole-brain irradiation led to a significant decrease in the number of newborn hippocampal neurons 2 months after it was performed. Fenofibrate prevented this decrease by promoting the survival of newborn cells in the dentate gyrus. In addition, fenofibrate treatment was associated with decreased microglial activation in the dentate gyrus after WBI. The neuroprotective effects of fenofibrate were abolished in the knockout mice, indicating a PPARα-dependent mechanism or mechanisms. Conclusions: These data highlight a novel role for PPARα ligands in improving neurogenesis after WBI and offer the promise of improving the quality of life for brain cancer patients receiving radiotherapy.

  3. Hypothermia Reduces Toll-Like Receptor 3-Activated Microglial Interferon-β and Nitric Oxide Production

    Directory of Open Access Journals (Sweden)

    Tomohiro Matsui

    2013-01-01

    Full Text Available Therapeutic hypothermia protects neurons after injury to the central nervous system (CNS. Microglia express toll-like receptors (TLRs that play significant roles in the pathogenesis of sterile CNS injury. To elucidate the possible mechanisms involved in the neuroprotective effect of therapeutic hypothermia, we examined the effects of hypothermic culture on TLR3-activated microglial release of interferon (IFN-β and nitric oxide (NO, which are known to be associated with neuronal cell death. When rat or mouse microglia were cultured under conditions of hypothermia (33°C and normothermia (37°C with a TLR3 agonist, polyinosinic-polycytidylic acid, the production of IFN-β and NO in TLR3-activated microglia at 48 h was decreased by hypothermia compared with that by normothermia. In addition, exposure to recombinant IFN-β and sodium nitroprusside, an NO donor, caused death of rat neuronal pheochromocytoma PC12 cells in a concentration-dependent manner after 24 h. Taken together, these results suggest that the attenuation of microglial production of IFN-β and NO by therapeutic hypothermia leads to the inhibition of neuronal cell death.

  4. Anti-Inflammatory Strategy for M2 Microglial Polarization Using Retinoic Acid-Loaded Nanoparticles

    Directory of Open Access Journals (Sweden)

    Marta Machado-Pereira

    2017-01-01

    Full Text Available Inflammatory mechanisms triggered by microglial cells are involved in the pathophysiology of several brain disorders, hindering repair. Herein, we propose the use of retinoic acid-loaded polymeric nanoparticles (RA-NP as a means to modulate microglia response towards an anti-inflammatory and neuroprotective phenotype (M2. RA-NP were first confirmed to be internalized by N9 microglial cells; nanoparticles did not affect cell survival at concentrations below 100 μg/mL. Then, immunocytochemical studies were performed to assess the expression of pro- and anti-inflammatory mediators. Our results show that RA-NP inhibited LPS-induced release of nitric oxide and the expression of inducible nitric oxide synthase and promoted arginase-1 and interleukin-4 production. Additionally, RA-NP induced a ramified microglia morphology (indicative of M2 state, promoting tissue viability, particularly neuronal survival, and restored the expression of postsynaptic protein-95 in organotypic hippocampal slice cultures exposed to an inflammatory challenge. RA-NP also proved to be more efficient than the free equivalent RA concentration. Altogether, our data indicate that RA-NP may be envisioned as a promising therapeutic agent for brain inflammatory diseases.

  5. Methane Suppresses Microglial Activation Related to Oxidative, Inflammatory, and Apoptotic Injury during Spinal Cord Injury in Rats

    Directory of Open Access Journals (Sweden)

    WeiHeng Wang

    2017-01-01

    Full Text Available Objective. We investigated the hypothesis that methane-rich saline (MS can be used to repair spinal cord injury (SCI in a rat model through suppressing microglial activation related to oxidative, inflammatory, and apoptotic injury. Methods. MS was injected intraperitoneally in rats after SCI. Hematoxylin-eosin (HE staining, oxidative stress, inflammatory parameters, and cell apoptosis were detected 72 h after SCI to determine the optimal dose. Then, we investigated the protective mechanisms and the long-term effects of MS on SCI. HE and microglial activation were observed. Neurological function was evaluated by the Basso, Beattie, and Bresnahan (BBB scale. Results. MS can significantly decrease infarct area and inhibit oxidative stress, inflammation, and cell apoptosis 72 h following SCI. The MS protective effect at a dose of 20 ml/kg was better. Moreover, MS can significantly suppress microglial activation related to oxidative and inflammatory injury after SCI and improve hind limb neurological function. Conclusion. MS could repair SCI and reduce the release of oxidative stress, inflammatory cytokines, and cell apoptosis produced by activated microglia. MS provides a novel and promising strategy for the treatment of SCI.

  6. Microglial recruitment, activation, and proliferation in response to primary demyelination

    DEFF Research Database (Denmark)

    Remington, Leah T; Babcock, Alicia A; Zehntner, Simone P

    2007-01-01

    microglial numbers. Microglia adopted an activated phenotype during demyelination, up-regulating major histocompatibility class I and B7.2/CD86. A subpopulation of CD45(dim-high) microglia that expressed reduced levels of CD11b emerged during demyelination. These microglia expressed CD11c and were potent...

  7. Comparison of the Expression Changes after Botulinum Toxin Type A and Minocycline Administration in Lipopolysaccharide-Stimulated Rat Microglial and Astroglial Cultures

    Directory of Open Access Journals (Sweden)

    Joanna Mika

    2017-04-01

    Full Text Available Botulinum neurotoxin type A (BoNT/A and minocycline are potent drugs used in clinical therapies. The primary molecular mechanism of BoNT/A is the cleavage of SNARE proteins, which prevents cells from releasing neurotransmitters from vesicles, while the effects of minocycline are related to the inhibition of p38 activation. Both BoNT/A and minocycline exhibit analgesic effects, however, their direct impact on glial cells is not fully known. Therefore, the aim of the present study was to determine the effects of those drugs on microglial and astroglial activity after lipopolysaccharide (LPS stimulation and their potential synergistic action. Our results show that BoNT/A and minocycline influenced primary microglial cells by inhibiting intracellular signaling pathways, such as p38, ERK1/2, NF-κB, and the release of pro-inflammatory factors, including IL-1β, IL-18, IL-6, and NOS2. We have revealed that, in contrast to minocycline, BoNT/A treatment did not decrease LPS-induced release of pro-inflammatory factors in the astroglia. In addition, BoNT/A decreased SNAP-23 in both types of glial cells and also SNAP-25 expressed only in astrocytes. Moreover, BoNT/A increased TLR2 and its adaptor protein MyD88, but not TLR4 exclusively in microglial cells. Furthermore, we have shown the impact of BoNT/A on microglial and astroglial cells, with a particular emphasis on its molecular target, TLR2. In contrast, minocycline did not affect any of those factors. We have revealed that despite of different molecular targets, minocycline, and BoNT/A reduced the release of microglia-derived pro-inflammatory factors. In conclusion, we have shown that BoNT/A and minocycline are effective drugs for the management of neuroinflammation by dampening the activation of microglial cells, with minocycline also affecting astroglial activity.

  8. Microglial and macrophage reactions mark progressive changes and define the penumbra in the rat neocortex and striatum after transient middle cerebral artery occlusion

    DEFF Research Database (Denmark)

    Lehrmann, E; Christensen, Thomas; Zimmer, J

    1997-01-01

    major histocompatibility complex (MHC) class II antigen expression. We interpret the present results as delineating two differentially progressing penumbral zones, which are likely to reflect differences in the underlying degenerative processes. Differences in the microglial/macrophage activation...... pattern attract special attention, as these cells may constitute specific targets for therapeutic intervention....

  9. Mu-opioid receptor and delta-opioid receptor differentially regulate microglial inflammatory response to control proopiomelanocortin neuronal apoptosis in the hypothalamus: effects of neonatal alcohol.

    Science.gov (United States)

    Shrivastava, Pallavi; Cabrera, Miguel A; Chastain, Lucy G; Boyadjieva, Nadka I; Jabbar, Shaima; Franklin, Tina; Sarkar, Dipak K

    2017-04-14

    Opioid receptors are known to control neurotransmission of various peptidergic neurons, but their potential role in regulation of microglia and neuronal cell communications is unknown. We investigated the role of mu-opioid receptors (MOR) and delta-opioid receptors (DOR) on microglia in the regulation of apoptosis in proopiomelanocortin (POMC) neurons induced by neonatal ethanol in the hypothalamus. Neonatal rat pups were fed a milk formula containing ethanol or control diets between postnatal days 2-6. Some of the alcohol-fed rats additionally received pretreatment of a microglia activation blocker minocycline. Two hours after the last feeding, some of the pups were sacrificed and processed for histochemical detection of microglial cell functions or confocal microscopy for detection of cellular physical interaction or used for gene and protein expression analysis. The rest of the pups were dissected for microglia separation by differential gradient centrifugation and characterization by measuring production of various activation markers and cytokines. In addition, primary cultures of microglial cells were prepared using hypothalamic tissues of neonatal rats and used for determination of cytokine production/secretion and apoptotic activity of neurons. In the hypothalamus, neonatal alcohol feeding elevated cytokine receptor levels, increased the number of microglial cells with amoeboid-type circularity, enhanced POMC and microglial cell physical interaction, and decreased POMC cell numbers. Minocycline reversed these cellular effects of alcohol. Alcohol feeding also increased levels of microglia MOR protein and pro-inflammatory signaling molecules in the hypothalamus, and MOR receptor antagonist naltrexone prevented these effects of alcohol. In primary cultures of hypothalamic microglia, both MOR agonist [D-Ala 2, N-MePhe 4, Gly-ol]-enkephalin (DAMGO) and ethanol increased microglial cellular levels and secretion of pro-inflammatory cell signaling proteins. However

  10. Methamphetamine alters microglial immune function through P2X7R signaling.

    Science.gov (United States)

    Fernandes, Nicole C; Sriram, Uma; Gofman, Larisa; Cenna, Jonathan M; Ramirez, Servio H; Potula, Raghava

    2016-04-26

    Purinoceptors have emerged as mediators of chronic inflammation and neurodegenerative processes. The ionotropic purinoceptor P2X7 (P2X7R) is known to modulate proinflammatory signaling and integrate neuronal-glial circuits. Evidence of P2X7R involvement in neurodegeneration, chronic pain, and chronic inflammation suggests that purinergic signaling plays a major role in microglial activation during neuroinflammation. In this study, we investigated the effects of methamphetamine (METH) on microglial P2X7R. ESdMs were used to evaluate changes in METH-induced P2X7R gene expression via Taqman PCR and protein expression via western blot analysis. Migration and phagocytosis assays were used to evaluate functional changes in ESdMs in response to METH treatment. METH-induced proinflammatory cytokine production following siRNA silencing of P2X7R in ESdMs measured P2X7R-dependent functional changes. In vivo expression of P2X7R and tyrosine hydroxylase (TH) was visualized in an escalating METH dose mouse model via immunohistochemical analysis. Stimulation of ESdMs with METH for 48 h significantly increased P2X7R mRNA (*p P2X7R protein in cellular fractionations revealed increases in membrane P2X7R (*p P2X7R-dependent through the use of A 438079, a P2X7R-competitive antagonist, which reversed the METH effects (****p P2X7R antagonist reduced METH-induced phagocytosis (****p P2X7R decreased TNF-α (*p P2X7R and decreased TH expression in the striata of escalating dose METH animal model compared to controls. This study sheds new light on the functional role of P2X7R in the regulation of microglial effector functions during substance abuse. Our findings suggest that P2X7R plays an important role in METH-induced microglial activation responses. P2X7R antagonists may thus constitute a novel target of therapeutic utility in neuroinflammatory conditions by regulating pathologically activated glial cells in stimulant abuse.

  11. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression.

    Science.gov (United States)

    Cheng, Kevin P; Kiernan, Elizabeth A; Eliceiri, Kevin W; Williams, Justin C; Watters, Jyoti J

    2016-02-17

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS.

  12. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression

    Science.gov (United States)

    Cheng, Kevin P.; Kiernan, Elizabeth A.; Eliceiri, Kevin W.; Williams, Justin C.; Watters, Jyoti J.

    2016-01-01

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS. PMID:26883795

  13. In vivo characterization of microglial engulfment of dying neurons in the zebrafish spinal cord

    Science.gov (United States)

    Morsch, Marco; Radford, Rowan; Lee, Albert; Don, Emily K.; Badrock, Andrew P.; Hall, Thomas E.; Cole, Nicholas J.; Chung, Roger

    2015-01-01

    Microglia are specialized phagocytes in the vertebrate central nervous system (CNS). As the resident immune cells of the CNS they play an important role in the removal of dying neurons during both development and in several neuronal pathologies. Microglia have been shown to prevent the diffusion of damaging degradation products of dying neurons by engulfment and ingestion. Here we describe a live imaging approach that uses UV laser ablation to selectively stress and kill spinal neurons and visualize the clearance of neuronal remnants by microglia in the zebrafish spinal cord. In vivo imaging confirmed the motile nature of microglia within the uninjured spinal cord. However, selective neuronal ablation triggered rapid activation of microglia, leading to phagocytic uptake of neuronal debris by microglia within 20–30 min. This process of microglial engulfment is highly dynamic, involving the extension of processes toward the lesion site and consequently the ingestion of the dying neuron. 3D rendering analysis of time-lapse recordings revealed the formation of phagosome-like structures in the activated microglia located at the site of neuronal ablation. This real-time representation of microglial phagocytosis in the living zebrafish spinal cord provides novel opportunities to study the mechanisms of microglia-mediated neuronal clearance. PMID:26379496

  14. Age-specific function of α5β1 integrin in microglial migration during early colonization of the developing mouse cortex.

    Science.gov (United States)

    Smolders, Sophie Marie-Thérèse; Swinnen, Nina; Kessels, Sofie; Arnauts, Kaline; Smolders, Silke; Le Bras, Barbara; Rigo, Jean-Michel; Legendre, Pascal; Brône, Bert

    2017-07-01

    Microglia, the immune cells of the central nervous system, take part in brain development and homeostasis. They derive from primitive myeloid progenitors that originate in the yolk sac and colonize the brain mainly through intensive migration. During development, microglial migration speed declines which suggests that their interaction with the microenvironment changes. However, the matrix-cell interactions allowing dispersion within the parenchyma are unknown. Therefore, we aimed to better characterize the migration behavior and to assess the role of matrix-integrin interactions during microglial migration in the embryonic brain ex vivo. We focused on microglia-fibronectin interactions mediated through the fibronectin receptor α5β1 integrin because in vitro work indirectly suggested a role for this ligand-receptor pair. Using 2-photon time-lapse microscopy on acute ex vivo embryonic brain slices, we found that migration occurs in a saltatory pattern and is developmentally regulated. Most importantly, there is an age-specific function of the α5β1 integrin during microglial cortex colonization. At embryonic day (E) 13.5, α5β1 facilitates migration while from E15.5, it inhibits migration. These results indicate a developmentally regulated function of α5β1 integrin in microglial migration during colonization of the embryonic brain. © 2017 Wiley Periodicals, Inc.

  15. A Prenylated Xanthone, Cudratricusxanthone A, Isolated from Cudrania tricuspidata Inhibits Lipopolysaccharide-Induced Neuroinflammation through Inhibition of NF-κB and p38 MAPK Pathways in BV2 Microglia.

    Science.gov (United States)

    Yoon, Chi-Su; Kim, Dong-Cheol; Quang, Tran Hong; Seo, Jungwon; Kang, Dae Gill; Lee, Ho Sub; Oh, Hyuncheol; Kim, Youn-Chul

    2016-09-16

    Cudrania tricuspidata Bureau (Moraceae) is an important source of traditional Korean and Chinese medicines used to treat neuritis and inflammation. Cudratricusxanthone A (1), a prenylated xanthone, isolated from C. tricuspidata, has a variety of biological and therapeutic activities. The goal of this study was to examine the effects of compound 1 on neuroinflammation and characterize its mechanism of action in lipopolysaccharide (LPS)-stimulated BV2 microglia. Cudratricusxanthone A (1) suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 enzymes and decreased the production of iNOS-derived nitric oxide and COX-2-derived prostaglandin E2 in LPS-stimulated mouse BV2 microglia. The compound also decreased tumor necrosis factor-α, interleukin (IL)-1β, and IL-12 production; inhibited the phosphorylation and degradation of IκB-α; and blocked the nuclear translocation of p50 and p65 in mouse BV2 microglia induced by LPS. Cudratricusxanthone A (1) had inhibitory effects on nuclear factor kappa B DNA-binding activity. Additionally, it inhibited the p38 mitogen-activated protein kinase signaling pathway. Our data suggests that cudratricusxanthone A (1) may be a useful therapeutic agent in the treatment of neurodegenerative diseases caused by neuroinflammation.

  16. Social defeat induces depressive-like states and microglial activation without involvement of peripheral macrophages.

    Science.gov (United States)

    Lehmann, Michael L; Cooper, Hannah A; Maric, Dragan; Herkenham, Miles

    2016-08-31

    We are interested in the causal interactions between psychological stress and activity within different compartments of the immune system. Psychosocial stress has been reported to not only alter microglia morphology but also produce anxiety-like and depressive-like effects by triggering CNS infiltration of macrophages from the periphery. We sought to test these phenomena in a somewhat different but standardized model of chronic social defeat (SD) stress. We used a paradigm of dyadic home pairing of dominant and subordinate mice that has been validated to induce powerful anxiety-like and depressive-like effects manifested by behavior assessed in social tasks. We administered the SD stress for 3 days (acute SD) or 14 days (chronic SD) and looked for monocyte entry into the brain by three independent means, including CD45 activation states assessed by flow cytometry and tracking fluorescently tagged peripheral cells from Ccr2 (wt/rfp) and Ubc (gfp/gfp) reporter mice. We further characterized the effects of SD stress on microglia using quantitative morphometric analysis, ex vivo phagocytosis assays, flow cytometry, and immunochemistry. We saw no evidence of stress-induced macrophage entry after acute or chronic defeat stress. In comparison, brain infiltration of peripheral cells did occur after endotoxin administration. Furthermore, mutant mice lacking infiltrating macrophages due to CCR2 knockout developed the same degree of chronic SD-induced depressive behavior as wildtype mice. We therefore focused more closely on the intrinsic immune cells, the microglia. Using Cx3cr1 (wt/gpf) microglial reporter mice, we saw by quantitative methods that microglial morphology was not altered by stress at either time point. However, chronic SD mice had elevated numbers of CD68(hi) microglia examined by flow cytometry. CD68 is a marker for phagocytic activity. Indeed, these cells ex vivo showed elevated phagocytosis, confirming the increased activation status of chronic SD

  17. Tissue plasminogen activator induces microglial inflammation via a noncatalytic molecular mechanism involving activation of mitogen-activated protein kinases and Akt signaling pathways and AnnexinA2 and Galectin-1 receptors.

    Science.gov (United States)

    Pineda, David; Ampurdanés, Coral; Medina, Manel G; Serratosa, Joan; Tusell, Josep Maria; Saura, Josep; Planas, Anna M; Navarro, Pilar

    2012-04-01

    Inflammatory responses mediated by glial cells play a critical role in many pathological situations related to neurodegeneration such as Alzheimer's disease. Tissue plasminogen activator (tPA) is a serine protease which best-known function is fibrinolysis, but it is also involved in many other physiological and pathological events as microglial activation. Here, we found that tPA is required for Aβ-mediated microglial inflammatory response and tumor necrosis factor-α release. We further investigated the molecular mechanism responsible for tPA-mediated microglial activation. We found that tPA induces a catalytic-independent rapid and sustained activation of extracellular signal-regulated kinase (ERK)1/2, Jun N-terminal kinase (JNK), Akt, and p38 signaling pathways. Inhibition of ERK1/2 and JNK resulted in a strong inhibition of microglial activation, whereas Akt inhibition led to increased inflammatory response, suggesting specific functions for each signaling pathway in the regulation of microglial activation. Furthermore, we demonstrated that AnnexinA2 and Galectin-1 receptors are involved in tPA signaling and inflammatory response in glial cells. This study provides new evidences supporting that tPA plays a cytokine-like role in glial activation by triggering receptor-mediated intracellular signaling circuits and opens new therapeutic strategies for the treatment of neurological disorders in which neuroinflammation plays a pathogenic role. Copyright © 2011 Wiley-Liss, Inc.

  18. Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity.

    Science.gov (United States)

    Gallina, Donika; Zelinka, Christopher Paul; Cebulla, Colleen M; Fischer, Andy J

    2015-11-01

    Reactive microglia and macrophages are prevalent in damaged retinas. Glucocorticoid signaling is known to suppress inflammation and the reactivity of microglia and macrophages. In the vertebrate retina, the glucocorticoid receptor (GCR) is known to be activated and localized to the nuclei of Müller glia (Gallina et al., 2014). Accordingly, we investigated how signaling through GCR influences the survival of neurons using the chick retina in vivo as a model system. We applied intraocular injections of GCR agonist or antagonist, assessed microglial reactivity, and the survival of retinal neurons following different damage paradigms. Microglial reactivity was increased in retinas from eyes that were injected with vehicle, and this reactivity was decreased by GCR-agonist dexamethasone (Dex) and increased by GCR-antagonist RU486. We found that activation of GCR suppresses the reactivity of microglia and inhibited the loss of retinal neurons resulting from excitotoxicity. We provide evidence that the protection-promoting effects of Dex were maintained when the microglia were selectively ablated. Similarly, intraocular injections of Dex protected ganglion cells from colchicine-treatment and protected photoreceptors from damage caused by retinal detachment. We conclude that activation of GCR promotes the survival of ganglion cells in colchicine-damaged retinas, promotes the survival of amacrine and bipolar cells in excitotoxin-damaged retinas, and promotes the survival of photoreceptors in detached retinas. We propose that suppression of microglial reactivity is secondary to activation of GCR in Müller glia, and this mode of signaling is an effective means to lessen the damage and vision loss resulting from different types of retinal damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. C3-dependent mechanism of microglial priming relevant to multiple sclerosis

    NARCIS (Netherlands)

    Ramaglia, Valeria; Hughes, Timothy R.; Donev, Rossen M.; Ruseva, Marieta M.; Wu, Xiaobo; Huitinga, Inge; Baas, Frank; Neal, James W.; Morgan, B. Paul

    2012-01-01

    Microglial priming predisposes the brain to neurodegeneration and affects disease progression. The signal to switch from the quiescent to the primed state is unknown. We show that deleting the C3 convertase regulator complement receptor 1-related protein y (Crry) induces microglial priming. Mice

  20. Anti-inflammatory mechanism of Isodon japonicas (Burm) Hara on ...

    African Journals Online (AJOL)

    Burm.) Hara extract (IJE) on BV2 microglial cells. . Methods: Cell viability was evaluated by MTT method. BV2 microglial cells were stimulated with lipopolyscarride (LPS, 1 μg/ml) and the effect of IJE on nitric oxide (NO) levels were measured ...

  1. Chronic intermittent hypoxia exerts CNS region-specific effects on rat microglial inflammatory and TLR4 gene expression.

    Directory of Open Access Journals (Sweden)

    Stephanie M C Smith

    Full Text Available Intermittent hypoxia (IH during sleep is a hallmark of sleep apnea, causing significant neuronal apoptosis, and cognitive and behavioral deficits in CNS regions underlying memory processing and executive functions. IH-induced neuroinflammation is thought to contribute to cognitive deficits after IH. In the present studies, we tested the hypothesis that IH would differentially induce inflammatory factor gene expression in microglia in a CNS region-dependent manner, and that the effects of IH would differ temporally. To test this hypothesis, adult rats were exposed to intermittent hypoxia (2 min intervals of 10.5% O2 for 8 hours/day during their respective sleep cycles for 1, 3 or 14 days. Cortex, medulla and spinal cord tissues were dissected, microglia were immunomagnetically isolated and mRNA levels of the inflammatory genes iNOS, COX-2, TNFα, IL-1β and IL-6 and the innate immune receptor TLR4 were compared to levels in normoxia. Inflammatory gene expression was also assessed in tissue homogenates (containing all CNS cells. We found that microglia from different CNS regions responded to IH differently. Cortical microglia had longer lasting inflammatory gene expression whereas spinal microglial gene expression was rapid and transient. We also observed that inflammatory gene expression in microglia frequently differed from that in tissue homogenates from the same region, indicating that cells other than microglia also contribute to IH-induced neuroinflammation. Lastly, microglial TLR4 mRNA levels were strongly upregulated by IH in a region- and time-dependent manner, and the increase in TLR4 expression appeared to coincide with timing of peak inflammatory gene expression, suggesting that TLR4 may play a role in IH-induced neuroinflammation. Together, these data indicate that microglial-specific neuroinflammation may play distinct roles in the effects of intermittent hypoxia in different CNS regions.

  2. Identification of a novel dehydroergosterol enhancing microglial anti-inflammatory activity in a dairy product fermented with Penicillium candidum.

    Science.gov (United States)

    Ano, Yasuhisa; Kutsukake, Toshiko; Hoshi, Ayaka; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of dementia patients worldwide, fundamental therapeutic approaches to treat this disease remain to be established. Preventive approaches such as diet, exercise and learning attract attention. Several epidemiological studies suggest that ingestion of fermented dairy products prevents cognitive decline in the elderly. These reports indicate that specific ingredients in the fermented dairy products elicit an anti-inflammatory or anti-oxidative activity that facilitates neuroprotection. The responsible components remain to be investigated. A number of studies have shown that inflammation caused by microglia is closely related to exaggeration of the pathology and cognitive decline seen in the elderly. Many researchers have proposed that controlling microglial activities could be effective in preventing and possibly curing dementia. In the present study, to elucidate specific compounds that regulate microglial activity from dairy products, repeated purification by HPLC, combined with evaluation using primary microglia, facilitated the identification of dehydroergosterol (DHE) as a novel component of the extract that enhances microglial anti-inflammatory activity. DHE contains three conjugated double bonds in a steroid ring system and is an analogue of ergosterol. Despite their related chemical structures, the anti-inflammatory activity of DHE is markedly stronger than that of ergosterol. P. candidum for camembert cheese produces DHE, but P. Roqueforti for blue cheese and Aspergillus do not. DHE also induces CD11b-positive microglia cells into CD206-positive M2 type microglia. Neurotoxicity and neuronal cell death induced by excessively activated microglia is suppressed by treatment with DHE. Thus, this is the first report to demonstrate that DHE, identified as a responsible compound in dairy products, can induce microglia into a preferable phenotype for our brain environment and can be safely introduced into the body by consumption of

  3. Identification of a novel dehydroergosterol enhancing microglial anti-inflammatory activity in a dairy product fermented with Penicillium candidum.

    Directory of Open Access Journals (Sweden)

    Yasuhisa Ano

    Full Text Available Despite the ever-increasing number of dementia patients worldwide, fundamental therapeutic approaches to treat this disease remain to be established. Preventive approaches such as diet, exercise and learning attract attention. Several epidemiological studies suggest that ingestion of fermented dairy products prevents cognitive decline in the elderly. These reports indicate that specific ingredients in the fermented dairy products elicit an anti-inflammatory or anti-oxidative activity that facilitates neuroprotection. The responsible components remain to be investigated. A number of studies have shown that inflammation caused by microglia is closely related to exaggeration of the pathology and cognitive decline seen in the elderly. Many researchers have proposed that controlling microglial activities could be effective in preventing and possibly curing dementia. In the present study, to elucidate specific compounds that regulate microglial activity from dairy products, repeated purification by HPLC, combined with evaluation using primary microglia, facilitated the identification of dehydroergosterol (DHE as a novel component of the extract that enhances microglial anti-inflammatory activity. DHE contains three conjugated double bonds in a steroid ring system and is an analogue of ergosterol. Despite their related chemical structures, the anti-inflammatory activity of DHE is markedly stronger than that of ergosterol. P. candidum for camembert cheese produces DHE, but P. Roqueforti for blue cheese and Aspergillus do not. DHE also induces CD11b-positive microglia cells into CD206-positive M2 type microglia. Neurotoxicity and neuronal cell death induced by excessively activated microglia is suppressed by treatment with DHE. Thus, this is the first report to demonstrate that DHE, identified as a responsible compound in dairy products, can induce microglia into a preferable phenotype for our brain environment and can be safely introduced into the body

  4. Characteristic microglial features in patients with hereditary diffuse leukoencephalopathy with spheroids.

    Science.gov (United States)

    Tada, Mari; Konno, Takuya; Tada, Masayoshi; Tezuka, Toshiyuki; Miura, Takeshi; Mezaki, Naomi; Okazaki, Ken-Ichi; Arakawa, Musashi; Itoh, Kyoko; Yamamoto, Toru; Yokoo, Hideaki; Yoshikura, Nobuaki; Ishihara, Kenji; Horie, Masao; Takebayashi, Hirohide; Toyoshima, Yasuko; Naito, Makoto; Onodera, Osamu; Nishizawa, Masatoyo; Takahashi, Hitoshi; Ikeuchi, Takeshi; Kakita, Akiyoshi

    2016-10-01

    To clarify the histopathological alterations of microglia in the brains of patients with hereditary diffuse leukoencephalopathy with spheroids (HDLS) caused by mutations of the gene encoding the colony stimulating factor-1 receptor (CSF-1R). We examined 5 autopsied brains and 1 biopsy specimen from a total of 6 patients with CSF-1R mutations. Detailed immunohistochemical, biochemical, and ultrastructural features of microglia were examined, and quantitative analyses were performed. In layers 3 to 4 of the frontal cortex in HDLS brains, microglia showed relatively uniform and delicate morphology, with thin and winding processes accompanying knotlike structures, and significantly smaller areas of Iba1 immunoreactivity and lower numbers of Iba1-positive cells were evident in comparison with control brains. On the other hand, in layers 5 to 6 and the underlying white matter, microglia were distributed unevenly; that is, in some areas they had accumulated densely, whereas in others they were scattered. Immunoblot analyses of microglia-associated proteins, including CD11b and DAP12, revealed that HDLS brains had significantly lower amounts of these proteins than diseased controls, although Ki-67-positive proliferative microglia were not reduced. Ultrastructurally, the microglial cytoplasm and processes in HDLS showed vesiculation of the rough endoplasmic reticulum and disaggregated polyribosomes, indicating depression of protein synthesis. On the other hand, macrophages were immunonegative for GLUT-5 or P2ry12, indicating that they were derived from bone marrow. The pathogenesis of HDLS seems to be associated with microglial vulnerability and morphological alterations. Ann Neurol 2016;80:554-565. © 2016 American Neurological Association.

  5. Key role for spinal dorsal horn microglial kinin B1 receptor in early diabetic pain neuropathy

    Directory of Open Access Journals (Sweden)

    Couture Réjean

    2010-06-01

    Full Text Available Abstract Background The pro-nociceptive kinin B1 receptor (B1R is upregulated on sensory C-fibres, astrocytes and microglia in the spinal cord of streptozotocin (STZ-diabetic rat. This study aims at defining the role of microglial kinin B1R in diabetic pain neuropathy. Methods Sprague-Dawley rats were made diabetic with STZ (65 mg/kg, i.p., and 4 days later, two specific inhibitors of microglial cells (fluorocitrate, 1 nmol, i.t.; minocycline, 10 mg/kg, i.p. were administered to assess the impact on thermal hyperalgesia, allodynia and mRNA expression (qRT-PCR of B1R and pro-inflammatory markers. Spinal B1R binding sites ((125I-HPP-desArg10-Hoe 140 were also measured by quantitative autoradiography. Inhibition of microglia was confirmed by confocal microscopy with the specific marker Iba-1. Effects of intrathecal and/or systemic administration of B1R agonist (des-Arg9-BK and antagonists (SSR240612 and R-715 were measured on neuropathic pain manifestations. Results STZ-diabetic rats displayed significant tactile and cold allodynia compared with control rats. Intrathecal or peripheral blockade of B1R or inhibition of microglia reversed time-dependently tactile and cold allodynia in diabetic rats without affecting basal values in control rats. Microglia inhibition also abolished thermal hyperalgesia and the enhanced allodynia induced by intrathecal des-Arg9-BK without affecting hyperglycemia in STZ rats. The enhanced mRNA expression (B1R, IL-1β, TNF-α, TRPV1 and Iba-1 immunoreactivity in the STZ spinal cord were normalized by fluorocitrate or minocycline, yet B1R binding sites were reduced by 38%. Conclusion The upregulation of kinin B1R in spinal dorsal horn microglia by pro-inflammatory cytokines is proposed as a crucial mechanism in early pain neuropathy in STZ-diabetic rats.

  6. Treadmill exercise ameliorates symptoms of Alzheimer disease through suppressing microglial activation-induced apoptosis in rats.

    Science.gov (United States)

    Baek, Seung-Soo; Kim, Sang-Hoon

    2016-12-01

    Alzheimer disease (AD) is a most common form of dementia and eventually causes impairments of learning ability and memory function. In the present study, we investigated the effects of treadmill exercise on the symptoms of AD focusing on the microglial activation-induced apoptosis. AD was made by bilateral intracerebroventricular injection of streptozotocin. The rats in the exercise groups were made to run on a treadmill once a day for 30 min during 4 weeks. The distance and latency in the Morris water maze task and the latency in the step-down avoidance task were increased in the AD rats, in contrast, treadmill exercise shortened these parameters. The numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive and caspase-3-positive cells in the hippocampal dentate gyrus were decreased in the AD rats, in contrast, treadmill exercise suppressed these numbers. Expressions of glial fibrillary acidic protein (GFAP) and cluster of differentiation molecule 11B (CD11b) in the hippocampal dentate gyrus were increased in the AD rats, in contrast, treadmill exercise suppressed GFAP and CD11b expressions. Bax expression was increased and Bcl-2 expression was decreased in the hippocampus of AD rats, in contrast, treadmill exercise decreased Bax expression and increased Bcl-2 expression. The present results demonstrated that treadmill exercise ameliorated AD-induced impairments of spatial learning ability and short-term memory through suppressing apoptosis. The antiapoptotic effect of treadmill exercise might be ascribed to the inhibitory effect of treadmill exercise on microglial activation.

  7. Key role for spinal dorsal horn microglial kinin B1 receptor in early diabetic pain neuropathy.

    Science.gov (United States)

    Talbot, Sébastien; Chahmi, Emna; Dias, Jenny Pena; Couture, Réjean

    2010-06-29

    The pro-nociceptive kinin B1 receptor (B1R) is upregulated on sensory C-fibres, astrocytes and microglia in the spinal cord of streptozotocin (STZ)-diabetic rat. This study aims at defining the role of microglial kinin B1R in diabetic pain neuropathy. Sprague-Dawley rats were made diabetic with STZ (65 mg/kg, i.p.), and 4 days later, two specific inhibitors of microglial cells (fluorocitrate, 1 nmol, i.t.; minocycline, 10 mg/kg, i.p.) were administered to assess the impact on thermal hyperalgesia, allodynia and mRNA expression (qRT-PCR) of B1R and pro-inflammatory markers. Spinal B1R binding sites ((125I)-HPP-desArg10-Hoe 140) were also measured by quantitative autoradiography. Inhibition of microglia was confirmed by confocal microscopy with the specific marker Iba-1. Effects of intrathecal and/or systemic administration of B1R agonist (des-Arg9-BK) and antagonists (SSR240612 and R-715) were measured on neuropathic pain manifestations. STZ-diabetic rats displayed significant tactile and cold allodynia compared with control rats. Intrathecal or peripheral blockade of B1R or inhibition of microglia reversed time-dependently tactile and cold allodynia in diabetic rats without affecting basal values in control rats. Microglia inhibition also abolished thermal hyperalgesia and the enhanced allodynia induced by intrathecal des-Arg9-BK without affecting hyperglycemia in STZ rats. The enhanced mRNA expression (B1R, IL-1beta, TNF-alpha, TRPV1) and Iba-1 immunoreactivity in the STZ spinal cord were normalized by fluorocitrate or minocycline, yet B1R binding sites were reduced by 38%. The upregulation of kinin B1R in spinal dorsal horn microglia by pro-inflammatory cytokines is proposed as a crucial mechanism in early pain neuropathy in STZ-diabetic rats.

  8. Interleukin-1 primes human mesenchymal stem cells towards an anti-inflammatory and pro-trophic phenotype in vitro.

    Science.gov (United States)

    Redondo-Castro, Elena; Cunningham, Catriona; Miller, Jonjo; Martuscelli, Licia; Aoulad-Ali, Sarah; Rothwell, Nancy J; Kielty, Cay M; Allan, Stuart M; Pinteaux, Emmanuel

    2017-04-17

    Inflammation is a key contributor to central nervous system (CNS) injury such as stroke, and is a major target for therapeutic intervention. Effective treatments for CNS injuries are limited and applicable to only a minority of patients. Stem cell-based therapies are increasingly considered for the treatment of CNS disease, because they can be used as in-situ regulators of inflammation, and improve tissue repair and recovery. One promising option is the use of bone marrow-derived mesenchymal stem cells (MSCs), which can secrete anti-inflammatory and trophic factors, can migrate towards inflamed and injured sites or can be implanted locally. Here we tested the hypothesis that pre-treatment with inflammatory cytokines can prime MSCs towards an anti-inflammatory and pro-trophic phenotype in vitro. Human MSCs from three different donors were cultured in vitro and treated with inflammatory mediators as follows: interleukin (IL)-1α, IL-1β, tumour necrosis factor alpha (TNF-α) or interferon-γ. After 24 h of treatment, cell supernatants were analysed by ELISA for expression of granulocyte-colony stimulating factor (G-CSF), IL-10, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), IL-1 receptor antagonist (IL-1Ra) and vascular endothelial growth factor (VEGF). To confirm the anti-inflammatory potential of MSCs, immortalised mouse microglial BV2 cells were treated with bacterial lipopolysaccharide (LPS) and exposed to conditioned media (CM) of naïve or IL-1-primed MSCs, and levels of secreted microglial-derived inflammatory mediators including TNF-α, IL-10, G-CSF and IL-6 were measured by ELISA. Unstimulated MSCs constitutively expressed anti-inflammatory cytokines and trophic factors (IL-10, VEGF, BDNF, G-CSF, NGF and IL-1Ra). MSCs primed with IL-1α or IL-1β showed increased secretion of G-CSF, which was blocked by IL-1Ra. Furthermore, LPS-treated BV2 cells secreted less inflammatory and apoptotic markers, and showed increased secretion of the

  9. Mechanisms Underlying Interferon-γ-Induced Priming of Microglial Reactive Oxygen Species Production.

    Directory of Open Access Journals (Sweden)

    Nicholas G Spencer

    Full Text Available Microglial priming and enhanced reactivity to secondary insults cause substantial neuronal damage and are hallmarks of brain aging, traumatic brain injury and neurodegenerative diseases. It is, thus, of particular interest to identify mechanisms involved in microglial priming. Here, we demonstrate that priming of microglia with interferon-γ (IFN γ substantially enhanced production of reactive oxygen species (ROS following stimulation of microglia with ATP. Priming of microglial ROS production was substantially reduced by inhibition of p38 MAPK activity with SB203580, by increases in intracellular glutathione levels with N-Acetyl-L-cysteine, by blockade of NADPH oxidase subunit NOX2 activity with gp91ds-tat or by inhibition of nitric oxide production with L-NAME. Together, our data indicate that priming of microglial ROS production involves reduction of intracellular glutathione levels, upregulation of NADPH oxidase subunit NOX2 and increases in nitric oxide production, and suggest that these simultaneously occurring processes result in enhanced production of neurotoxic peroxynitrite. Furthermore, IFNγ-induced priming of microglial ROS production was reduced upon blockade of Kir2.1 inward rectifier K+ channels with ML133. Inhibitory effects of ML133 on microglial priming were mediated via regulation of intracellular glutathione levels and nitric oxide production. These data suggest that microglial Kir2.1 channels may represent novel therapeutic targets to inhibit excessive ROS production by primed microglia in brain pathology.

  10. Prenatal Immune Challenge in Mice Leads to Partly Sex-Dependent Behavioral, Microglial, and Molecular Abnormalities Associated with Schizophrenia

    Directory of Open Access Journals (Sweden)

    Chin W. Hui

    2018-02-01

    Full Text Available Epidemiological studies revealed that environmental factors comprising prenatal infection are strongly linked to risk for later development of neuropsychiatric disorders such as schizophrenia. Considering strong sex differences in schizophrenia and its increased prevalence in males, we designed a methodological approach to investigate possible sex differences in pathophysiological mechanisms. Prenatal immune challenge was modeled by systemic administration of the viral mimic polyinosinic-polycytidylic acid (Poly I:C to C57BL/6 mice at embryonic day 9.5. The consequences on behavior, gene expression, and microglia—brain immune cells that are critical for normal development—were characterized in male vs. female offspring at adulthood. The cerebral cortex, hippocampus, and cerebellum, regions where structural and functional alterations were mainly described in schizophrenia patients, were selected for cellular and molecular analyses. Confocal and electron microscopy revealed most pronounced differences in microglial distribution, arborization, cellular stress, and synaptic interactions in the hippocampus of male vs. female offspring exposed to Poly I:C. Sex differences in microglia were also measured under both steady-state and Poly I:C conditions. These microglial alterations were accompanied by behavioral impairment, affecting for instance sensorimotor gating, in males. Consistent with these results, increased expression of genes related to inflammation was measured in cerebral cortex and hippocampus of males challenged with Poly I:C. Overall, these findings suggest that schizophrenia's higher incidence in males might be associated, among other mechanisms, with an increased microglial reactivity to prenatal immune challenges, hence determining disease outcomes into adulthood.

  11. Targeting Microglial KATP Channels to Treat Neurodegenerative Diseases: A Mitochondrial Issue

    Directory of Open Access Journals (Sweden)

    Manuel J. Rodríguez

    2013-01-01

    Full Text Available Neurodegeneration is a complex process involving different cell types and neurotransmitters. A common characteristic of neurodegenerative disorders is the occurrence of a neuroinflammatory reaction in which cellular processes involving glial cells, mainly microglia and astrocytes, are activated in response to neuronal death. Microglia do not constitute a unique cell population but rather present a range of phenotypes closely related to the evolution of neurodegeneration. In a dynamic equilibrium with the lesion microenvironment, microglia phenotypes cover from a proinflammatory activation state to a neurotrophic one directly involved in cell repair and extracellular matrix remodeling. At each moment, the microglial phenotype is likely to depend on the diversity of signals from the environment and of its response capacity. As a consequence, microglia present a high energy demand, for which the mitochondria activity determines the microglia participation in the neurodegenerative process. As such, modulation of microglia activity by controlling microglia mitochondrial activity constitutes an innovative approach to interfere in the neurodegenerative process. In this review, we discuss the mitochondrial KATP channel as a new target to control microglia activity, avoid its toxic phenotype, and facilitate a positive disease outcome.

  12. Inhibition of microglial activation protects hippocampal neurogenesis and improves cognitive deficits in a transgenic mouse model for Alzheimer's disease.

    Science.gov (United States)

    Biscaro, Barbara; Lindvall, Olle; Tesco, Giuseppina; Ekdahl, Christine T; Nitsch, Roger M

    2012-01-01

    Activated microglia with macrophage-like functions invade and surround β-amyloid (Aβ) plaques in Alzheimer's disease (AD), possibly contributing to the turnover of Aβ, but they can also secrete proinflammatory factors that may be involved in the pathogenesis of AD. Microglia are known to modulate adult hippocampal neurogenesis. To determine the role of microglia on neurogenesis in brains with Aβ pathology, we inhibited microglial activation with the tetracycline derivative minocycline in doubly transgenic mice expressing mutant human amyloid precursor protein (APP) and mutant human presenilin-1 (PS1). Minocycline increased the survival of new dentate granule cells in APP/PS1 mice indicated by more BrdU+/NeuN+ cells as compared to vehicle-treated transgenic littermates, accompanied by improved behavioral performance in a hippocampus-dependent learning task. Both brain levels of Aβ and Aβ-related morphological deficits in the new neurons labeled with GFP-expressing retrovirus were unaffected in minocycline-treated mice. These results suggest a role for microglia in Aβ-related functional deficits and in suppressing the survival of new neurons, and show that modulation of microglial function with minocycline can protect hippocampal neurogenesis in the presence of Aβ pathology. Copyright © 2012 S. Karger AG, Basel.

  13. Effect of methamphetamine on the microglial damage: role of potassium channel Kv1.3.

    Directory of Open Access Journals (Sweden)

    Jun Wang

    Full Text Available Methamphetamine (Meth abusing represents a major public health problem worldwide. Meth has long been known to induce neurotoxicity. However, the mechanism is still remained poorly understood. Growing evidences indicated that the voltage-gated potassium channels (Kv were participated in neuronal damage and microglia function. With the whole cell patch clamp, we found that Meth significantly increased the outward K⁺ currents, therefore, we explored whether Kv1.3, one of the major K⁺ channels expressed in microglia, was involved in Meth-induced microglia damage. Our study showed that Meth significantly increased the cell viability in a dose dependent manner, while the Kv blocker, tetraethylamine (TEA, 4-Aminopyridine (4-AP and Kv1.3 specific antagonist margatoxin (MgTx, prevented against the damage mediated by Meth. Interestingly, treatment of cells with Meth resulted in increasing expression of Kv1.3 rather than Kv1.5, at both mRNA and protein level, which is partially blocked by MgTx. Furthermore, Meth also stimulated a significant increased expression of IL-6 and TNF-α at protein level, which was significantly inhibited by MgTx. Taken together, these results demonstrated that Kv1.3 was involved in Meth-mediated microglial damage, providing the potential target for the development of therapeutic strategies for Meth abuse.

  14. Role of Microglial M1/M2 Polarization in Relapse and Remission of Psychiatric Disorders and Diseases

    Directory of Open Access Journals (Sweden)

    Yutaka Nakagawa

    2014-11-01

    Full Text Available Psychiatric disorders such as schizophrenia and major depressive disorder were thought to be caused by neurotransmitter abnormalities. Patients with these disorders often experience relapse and remission; however the underlying molecular mechanisms of relapse and remission still remain unclear. Recent advanced immunological analyses have revealed that M1/M2 polarization of macrophages plays an important role in controlling the balance between promotion and suppression in inflammation. Microglial cells share certain characteristics with macrophages and contribute to immune-surveillance in the central nervous system (CNS. In this review, we summarize immunoregulatory functions of microglia and discuss a possible role of microglial M1/M2 polarization in relapse and remission of psychiatric disorders and diseases. M1 polarized microglia can produce pro-inflammatory cytokines, reactive oxygen species, and nitric oxide, suggesting that these molecules contribute to dysfunction of neural network in the CNS. Alternatively, M2 polarized microglia express cytokines and receptors that are implicated in inhibiting inflammation and restoring homeostasis. Based on these aspects, we propose a possibility that M1 and M2 microglia are related to relapse and remission, respectively in psychiatric disorders and diseases. Consequently, a target molecule skewing M2 polarization of microglia may provide beneficial therapies for these disorders and diseases in the CNS.

  15. Idazoxan attenuates spinal cord injury by enhanced astrocytic activation and reduced microglial activation in rat experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Wang, Xin-Shi; Chen, Yan-Yan; Shang, Xiao-Feng; Zhu, Zhen-Guo; Chen, Guo-Qian; Han, Zhao; Shao, Bei; Yang, Hui-Min; Xu, Hui-Qin; Chen, Jiang-Fan; Zheng, Rong-Yuan

    2009-02-09

    Idazoxan, an imidazoline 2 receptor (I(2)R) ligand, has been shown to protect against brain injury in several animal models of neurological disorders. In the present study we investigated the effect of idazoxan on experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. EAE was induced by immunizing Wistar rats with guinea pig spinal cord homogenates emulsified in CFA, followed by daily treatment of idazoxan (0, 0.5 mg/kg, 1.5 mg/kg, 4.5 mg/kg, i.p, bid) for 10 days. The results showed that the treatment of idazoxan (1.5 mg/kg and 4.5 mg/kg) significantly decreased the incidence and alleviated inflammatory cell infiltration and demyelination in spinal cords and cerebral cortex. Furthermore, the protective effect of idazoxan on EAE was associated with the enhanced astrocytic activation and attenuated microglial activation and with the subsequent down-regulated expression of proinflammatory cytokines IL-12p40 and IFN-gamma and up-regulated expression of anti-inflammatory cytokines IL-10 and TGF-beta(1). Thus, the daily treatment of the I(2)R ligand idazoxan for 10 days attenuates EAE pathology by differential modulation of astrocytic and microglial activations, raising a possibility that the I(2)R ligand may be a novel strategy for treating EAE.

  16. Donepezil inhibits the amyloid-beta oligomer-induced microglial activation in vitro and in vivo.

    Science.gov (United States)

    Kim, Hyo Geun; Moon, Minho; Choi, Jin Gyu; Park, Gunhyuk; Kim, Ae-Jung; Hur, Jinyoung; Lee, Kyung-Tae; Oh, Myung Sook

    2014-01-01

    Recent studies on Alzheimer's disease (AD) have focused on soluble oligomeric forms of amyloid-beta (Aβ oligomer, AβO) that are directly associated with AD-related pathologies, such as cognitive decline, neurodegeneration, and neuroinflammation. Donepezil is a well-known anti-dementia agent that increases acetylcholine levels through inhibition of acetylcholinesterase. However, a growing body of experimental and clinical studies indicates that donepezil may also provide neuroprotective and disease-modifying effects in AD. Additionally, donepezil has recently been demonstrated to have anti-inflammatory effects against lipopolysaccharides and tau pathology. However, it remains unknown whether donepezil has anti-inflammatory effects against AβO in cultured microglial cells and the brain in animals. Further, the effects of donepezil against AβO-mediated neuronal death, astrogliosis, and memory impairment have also not yet been investigated. Thus, in the present study, we examined the anti-inflammatory effect of donepezil against AβO and its neuroinflammatory mechanisms. Donepezil significantly attenuated the release of inflammatory mediators (prostaglandin E2, interleukin-1 beta, tumor necrosis factor-α, and nitric oxide) from microglia. Donepezil also decreased AβO-induced up-regulation of inducible nitric oxide synthase and cyclooxygenase-2 protein and phosphorylation of p38 mitogen-activated protein kinase as well as translocation of nuclear factor-kappa B. We next showed that donepezil suppresses activated microglia-mediated toxicity in primary hippocampal cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In intrahippocampal AβO-injected mice, donepezil significantly inhibited microgliosis and astrogliosis. Furthermore, behavioral tests revealed that donepezil (2 mg/kg/day, 5 days, p.o.) significantly ameliorated AβO-induced memory impairment. These results suggest that donepezil directly inhibits microglial activation

  17. Delayed xenon post-conditioning mitigates spinal cord ischemia/reperfusion injury in rabbits by regulating microglial activation and inflammatory factors.

    Science.gov (United States)

    Yang, Yan-Wei; Wang, Yun-Lu; Lu, Jia-Kai; Tian, Lei; Jin, Mu; Cheng, Wei-Ping

    2018-03-01

    The neuroprotective effect against spinal cord ischemia/reperfusion injury in rats exerted by delayed xenon post-conditioning is stronger than that produced by immediate xenon post-conditioning. However, the mechanisms underlying this process remain unclear. Activated microglia are the main inflammatory cell type in the nervous system. The release of pro-inflammatory factors following microglial activation can lead to spinal cord damage, and inhibition of microglial activation can relieve spinal cord ischemia/reperfusion injury. To investigate how xenon regulates microglial activation and the release of inflammatory factors, a rabbit model of spinal cord ischemia/reperfusion injury was induced by balloon occlusion of the infrarenal aorta. After establishment of the model, two interventions were given: (1) immediate xenon post-conditioning-after reperfusion, inhalation of 50% xenon for 1 hour, 50% N 2 /50%O 2 for 2 hours; (2) delayed xenon post-conditioning-after reperfusion, inhalation of 50% N 2 /50%O 2 for 2 hours, 50% xenon for 1 hour. At 4, 8, 24, 48 and 72 hours after reperfusion, hindlimb locomotor function was scored using the Jacobs locomotor scale. At 72 hours after reperfusion, interleukin 6 and interleukin 10 levels in the spinal cord of each group were measured using western blot assays. Iba1 levels were determined using immunohistochemistry and a western blot assay. The number of normal neurons at the injury site was quantified using hematoxylin-eosin staining. At 72 hours after reperfusion, delayed xenon post-conditioning remarkably enhanced hindlimb motor function, increased the number of normal neurons at the injury site, decreased Iba1 levels, and inhibited interleukin-6 and interleukin-10 levels in the spinal cord. Immediate xenon post-conditioning did not noticeably affect the above-mentioned indexes. These findings indicate that delayed xenon post-conditioning after spinal cord injury improves the recovery of neurological function by reducing

  18. The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Landreth Gary E

    2006-11-01

    Full Text Available Abstract Alzheimer's disease is the most common cause of dementia in the elderly, and manifests as progressive cognitive decline and profound neuronal loss. The principal neuropathological hallmarks of Alzheimer's disease are the senile plaques and the neurofibrillary tangles. The senile plaques are surrounded by activated microglia, which are largely responsible for the proinflammatory environment within the diseased brain. Microglia are the resident innate immune cells in the brain. In response to contact with fibrillar beta-amyloid, microglia secrete a diverse array of proinflammatory molecules. Evidence suggests that oxidative stress emanating from activated microglia contribute to the neuronal loss characteristic of this disease. The source of fibrillar beta-amyloid induced reactive oxygen species is primarily the microglial nicotinamide adenine dinucleotide phosphate (NADPH oxidase. The NADPH oxidase is a multicomponent enzyme complex that, upon activation, produces the highly reactive free radical superoxide. The cascade of intracellular signaling events leading to NADPH oxidase assembly and the subsequent release of superoxide in fibrillar beta-amyloid stimulated microglia has recently been elucidated. The induction of reactive oxygen species, as well as nitric oxide, from activated microglia can enhance the production of more potent free radicals such as peroxynitrite. The formation of peroxynitrite causes protein oxidation, lipid peroxidation and DNA damage, which ultimately lead to neuronal cell death. The elimination of beta-amyloid-induced oxidative damage through the inhibition of the NADPH oxidase represents an attractive therapeutic target for the treatment of Alzheimer's disease.

  19. Sleep Loss Promotes Astrocytic Phagocytosis and Microglial Activation in Mouse Cerebral Cortex.

    Science.gov (United States)

    Bellesi, Michele; de Vivo, Luisa; Chini, Mattia; Gilli, Francesca; Tononi, Giulio; Cirelli, Chiara

    2017-05-24

    We previously found that Mertk and its ligand Gas6 , astrocytic genes involved in phagocytosis, are upregulated after acute sleep deprivation. These results suggested that astrocytes may engage in phagocytic activity during extended wake, but direct evidence was lacking. Studies in humans and rodents also found that sleep loss increases peripheral markers of inflammation, but whether these changes are associated with neuroinflammation and/or activation of microglia, the brain's resident innate immune cells, was unknown. Here we used serial block-face scanning electron microscopy to obtain 3D volume measurements of synapses and surrounding astrocytic processes in mouse frontal cortex after 6-8 h of sleep, spontaneous wake, or sleep deprivation (SD) and after chronic (∼5 d) sleep restriction (CSR). Astrocytic phagocytosis, mainly of presynaptic components of large synapses, increased after both acute and chronic sleep loss relative to sleep and wake. MERTK expression and lipid peroxidation in synaptoneurosomes also increased to a similar extent after short and long sleep loss, suggesting that astrocytic phagocytosis may represent the brain's response to the increase in synaptic activity associated with prolonged wake, clearing worn components of heavily used synapses. Using confocal microscopy, we then found that CSR but not SD mice show morphological signs of microglial activation and enhanced microglial phagocytosis of synaptic elements, without obvious signs of neuroinflammation in the CSF. Because low-level sustained microglia activation can lead to abnormal responses to a secondary insult, these results suggest that chronic sleep loss, through microglia priming, may predispose the brain to further damage. SIGNIFICANCE STATEMENT We find that astrocytic phagocytosis of synaptic elements, mostly of presynaptic origin and in large synapses, is upregulated already after a few hours of sleep deprivation and shows a further significant increase after prolonged and

  20. Chronic Psychological Distress as an Inducer of Microglial Activation and Leukocyte Recruitment into the Area Postrema.

    Science.gov (United States)

    Vargas-Caraveo, Alejandra; Pérez-Ishiwara, David Guillermo; Martínez-Martínez, Alejandro

    2015-01-01

    Chronic psychological distress can cause neuroinflammation, but the involvement of leukocytes in this inflammatory response remains unclear. The area postrema (AP) is considered a neural-immune interface because it lacks a blood-brain barrier and a site for leukocyte recruitment in neuroinflammatory conditions induced by immunological insults, but its role in chronic psychological distress has not been explored. To determine leukocyte recruitment to the AP after chronic psychological distress. Rats were exposed to cat odor for 5 consecutive days to induce distress, and, on the 6th day, their brains were dissected to perform immunohistofluorescence studies of the AP. Immune cells were identified and quantified with CD45 and CD11b markers. The distribution of neurons and immune cells was determined using TrkA and CD45 markers, respectively. Distress induced a significant increase in CD45(+) and CD11b(+) cells in the AP. Three immunophenotypes were determined in the control and distress groups: CD45(+)/CD11b(-), CD45(+)/CD11b(+) and CD45(-)/CD11b(+). CD expression, morphology and fluorescence intensity enabled the identification of different immune cell types: starting from longitudinal ramified microglia (mainly in the control group) to amoeboid microglia, monocytes and lymphocytes (mostly in the distressed group). TrkA and CD45 expression in the AP revealed the proximity between soma neurons and leukocytes. Interestingly, some CD45(+) cells expressed TrkA, with increased expression in the distressed group. The identification of microglial activation, leukocyte recruitment and the close proximity between neurons and leukocytes in the AP after chronic psychological distress exposure suggests the AP as a site for distress-induced immune responses and engraftment of leukocytes infiltrating the CNS. © 2015 S. Karger AG, Basel.

  1. Inhibitory Effects of Ketamine on Lipopolysaccharide-Induced Microglial Activation

    Directory of Open Access Journals (Sweden)

    Yi Chang

    2009-01-01

    Full Text Available Microglia activated in response to brain injury release neurotoxic factors including nitric oxide (NO and proinflammatory cytokines such as tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β. Ketamine, an anesthetic induction agent, is generally reserved for use in patients with severe hypotension or respiratory depression. In this study, we found that ketamine (100 and 250 μM concentration-dependently inhibited lipopolysaccharide (LPS-induced NO and IL-1β release in primary cultured microglia. However, ketamine (100 and 250 μM did not significantly inhibit the LPS-induced TNF-α production in microglia, except at the higher concentration (500 μM. Further study of the molecular mechanisms revealed that ketamine markedly inhibited extracellular signal-regulated kinase (ERK1/2 phosphorylation but not c-Jun N-terminal kinase or p38 mitogen-activated protein kinase stimulated by LPS in microglia. These results suggest that microglial inactivation by ketamine is at least partially due to inhibition of ERK1/2 phosphorylation.

  2. Neuropathic pain inhibitor, RAP-103, is a potent inhibitor of microglial CCL1/CCR8.

    Science.gov (United States)

    Noda, Mami; Tomonaga, Daichi; Kitazono, Kota; Yoshioka, Yusaku; Liu, Jiadai; Rousseau, Jean-Philippe; Kinkead, Richard; Ruff, Michael R; Pert, Candace B

    2017-12-14

    Chemokine signaling is important in neuropathic pain, with microglial cells expressing chemokine (C-C motif) receptor CCR2, CCR5 and CCR8, all playing key roles. In the previous report (Padi et al., 2012), oral administration of a short peptide, RAP-103, for 7 days fully prevents mechanical allodynia and inhibits the development of thermal hyperalgesia after partial ligation of the sciatic nerve in rodents. As for the mechanism of the inhibiting effect of RAP-103, it was speculated to be due to dual blockade of CCR2 and CCR5. We report here that RAP-103 exhibits stronger antagonism for CCR8 (half maximal inhibitory concentration [IC 50 ] 7.7 fM) compared to CCR5 (IC 50  < 100 pM) in chemotaxis using primary cultured mouse microglia. In addition, RAP-103 at a concentration of 0.1 pM completely inhibits membrane ruffling and phagocytosis induced by chemokine (C-C motif) ligand 1 (CCL1), an agonist for CCR8. It has been shown that CCL1/CCR8 signaling is important in tactile allodynia induced by nerve ligation. Therefore, CCR8, among other chemokine receptors such as CCR2/CCR5, could be the most potent target for RAP-103. Inhibitory effects of RAP-103 on plural chemokine receptors may play important roles for broad clinical use in neuropathic pain treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Equol, a Dietary Daidzein Gut Metabolite Attenuates Microglial Activation and Potentiates Neuroprotection In Vitro

    Directory of Open Access Journals (Sweden)

    Lalita Subedi

    2017-02-01

    Full Text Available Estrogen deficiency has been well characterized in inflammatory disorders including neuroinflammation. Daidzein, a dietary alternative phytoestrogen found in soy (Glycine max as primary isoflavones, possess anti‐inflammatory activity, but the effect of its active metabolite Equol (7‐hydroxy‐3‐(4′‐hydroxyphenyl‐chroman has not been well established. In this study, we investigated the anti‐neuroinflammatory and neuroprotective effect of Equol in vitro. To evaluate the potential effects of Equol, three major types of central nervous system (CNS cells, including microglia (BV‐2, astrocytes (C6, and neurons (N2a, were used. Effects of Equol on the expression of inducible nitric oxide synthase (iNOS, cyclooxygenase (COX‐2, Mitogen activated protein kinase (MAPK signaling proteins, and apoptosis‐related proteins were measured by western blot analysis. Equol inhibited the lipopolysaccharide (LPS‐induced TLR4 activation, MAPK activation, NF‐kB‐mediated transcription of inflammatory mediators, production of nitric oxide (NO, release of prostaglandin E2 (PGE‐2, secretion of tumor necrosis factor‐α (TNF‐α and interleukin 6 (IL‐6, in Lipopolysaccharide (LPS‐activated murine microglia cells. Additionally, Equol protects neurons from neuroinflammatory injury mediated by LPS‐activated microglia through downregulation of neuronal apoptosis, increased neurite outgrowth in N2a cell and neurotrophins like nerve growth factor (NGF production through astrocytes further supporting its neuroprotective potential. These findings provide novel insight into the anti‐neuroinflammatory effects of Equol on microglial cells, which may have clinical significance in cases of neurodegeneration.

  4. Effects of chemokine (C–C motif) ligand 1 on microglial function

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Nozomi [Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Ifuku, Masataka [Laboratory of Integrative Physiology, Graduate School of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Mori, Yuki [Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Noda, Mami, E-mail: noda@phar.kyushu-u.ac.jp [Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2013-07-05

    Highlights: •CCR8, a specific receptor for CCL-1, was expressed on primary cultured microglia. •Expression of CCR-8 in microglia was upregulated in the presence of CCL-1. •CCL-1 increased motility, proliferation and phagocytosis of cultured microglia. •CCL-1promoted BDNF and IL-6 mRNA, and the release of NO from microglia. •CCL-1 activates microglia and may contribute to the development of neuropathic pain. -- Abstract: Microglia, which constitute the resident macrophages of the central nervous system (CNS), are generally considered as the primary immune cells in the brain and spinal cord. Microglial cells respond to various factors which are produced following nerve injury of multiple aetiologies and contribute to the development of neuronal disease. Chemokine (C–C motif) ligand 1 (CCL-1), a well-characterized chemokine secreted by activated T cells, has been shown to play an important role in neuropathic pain induced by nerve injury and is also produced in various cell types in the CNS, especially in dorsal root ganglia (DRG). However, the role of CCL-1 in the CNS and the effects on microglia remains unclear. Here we showed the multiple effects of CCL-1 on microglia. We first showed that CCR-8, a specific receptor for CCL-1, was expressed on primary cultured microglia, as well as on astrocytes and neurons, and was upregulated in the presence of CCL-1. CCL-1 at concentration of 1 ng/ml induced chemotaxis, increased motility at a higher concentration (100 ng/ml), and increased proliferation and phagocytosis of cultured microglia. CCL-1 also activated microglia morphologically, promoted mRNA levels for brain-derived neurotrophic factor (BDNF) and IL-6, and increased the release of nitrite from microglia. These indicate that CCL-1 has a role as a mediator in neuron-glia interaction, which may contribute to the development of neurological diseases, especially in neuropathic pain.

  5. Effects of chemokine (C–C motif) ligand 1 on microglial function

    International Nuclear Information System (INIS)

    Akimoto, Nozomi; Ifuku, Masataka; Mori, Yuki; Noda, Mami

    2013-01-01

    Highlights: •CCR8, a specific receptor for CCL-1, was expressed on primary cultured microglia. •Expression of CCR-8 in microglia was upregulated in the presence of CCL-1. •CCL-1 increased motility, proliferation and phagocytosis of cultured microglia. •CCL-1promoted BDNF and IL-6 mRNA, and the release of NO from microglia. •CCL-1 activates microglia and may contribute to the development of neuropathic pain. -- Abstract: Microglia, which constitute the resident macrophages of the central nervous system (CNS), are generally considered as the primary immune cells in the brain and spinal cord. Microglial cells respond to various factors which are produced following nerve injury of multiple aetiologies and contribute to the development of neuronal disease. Chemokine (C–C motif) ligand 1 (CCL-1), a well-characterized chemokine secreted by activated T cells, has been shown to play an important role in neuropathic pain induced by nerve injury and is also produced in various cell types in the CNS, especially in dorsal root ganglia (DRG). However, the role of CCL-1 in the CNS and the effects on microglia remains unclear. Here we showed the multiple effects of CCL-1 on microglia. We first showed that CCR-8, a specific receptor for CCL-1, was expressed on primary cultured microglia, as well as on astrocytes and neurons, and was upregulated in the presence of CCL-1. CCL-1 at concentration of 1 ng/ml induced chemotaxis, increased motility at a higher concentration (100 ng/ml), and increased proliferation and phagocytosis of cultured microglia. CCL-1 also activated microglia morphologically, promoted mRNA levels for brain-derived neurotrophic factor (BDNF) and IL-6, and increased the release of nitrite from microglia. These indicate that CCL-1 has a role as a mediator in neuron-glia interaction, which may contribute to the development of neurological diseases, especially in neuropathic pain

  6. Cannabinoid-mediated modulation of neuropathic pain and microglial accumulation in a model of murine type I diabetic peripheral neuropathic pain

    Directory of Open Access Journals (Sweden)

    Ellis Connie L

    2010-03-01

    Full Text Available Abstract Background Despite the frequency of diabetes mellitus and its relationship to diabetic peripheral neuropathy (DPN and neuropathic pain (NeP, our understanding of underlying mechanisms leading to chronic pain in diabetes remains poor. Recent evidence has demonstated a prominent role of microglial cells in neuropathic pain states. One potential therapeutic option gaining clinical acceptance is the cannabinoids, for which cannabinoid receptors (CB are expressed on neurons and microglia. We studied the accumulation and activation of spinal and thalamic microglia in streptozotocin (STZ-diabetic CD1 mice and the impact of cannabinoid receptor agonism/antagonism during the development of a chronic NeP state. We provided either intranasal or intraperitoneal cannabinoid agonists/antagonists at multiple doses both at the initiation of diabetes as well as after establishment of diabetes and its related NeP state. Results Tactile allodynia and thermal hypersensitivity were observed over 8 months in diabetic mice without intervention. Microglial density increases were seen in the dorsal spinal cord and in thalamic nuclei and were accompanied by elevation of phosphorylated p38 MAPK, a marker of microglial activation. When initiated coincidentally with diabetes, moderate-high doses of intranasal cannabidiol (cannaboid receptor 2 agonist and intraperitoneal cannabidiol attenuated the development of an NeP state, even after their discontinuation and without modification of the diabetic state. Cannabidiol was also associated with restriction in elevation of microglial density in the dorsal spinal cord and elevation in phosphorylated p38 MAPK. When initiated in an established DPN NeP state, both CB1 and CB2 agonists demonstrated an antinociceptive effect until their discontinuation. There were no pronociceptive effects demonstated for either CB1 or CB2 antagonists. Conclusions The prevention of microglial accumulation and activation in the dorsal spinal

  7. The induction of neuronal death by up-regulated microglial cathepsin H in LPS-induced neuroinflammation.

    Science.gov (United States)

    Fan, Kai; Li, Daobo; Zhang, Yanli; Han, Chao; Liang, Junjie; Hou, Changyi; Xiao, Hongliang; Ikenaka, Kazuhiro; Ma, Jianmei

    2015-03-19

    Neuroinflammation is a hallmark that leads to selective neuronal loss and/or dysfunction in neurodegenerative disorders. Microglia-derived lysosomal cathepsins are increasingly recognized as important inflammatory mediators to trigger signaling pathways that aggravate neuroinflammation. However, cathepsin H (Cat H), a cysteine protease, has been far less studied in neuroinflammation, compared to cathepsins B, D, L, and S. The expression patterns and functional roles of Cat H in the brain in neuroinflammation remain unknown. C57BL/6J mice were intraperitoneally injected with either 0.9% saline or lipopolysaccharide (LPS, 5 mg/kg). Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to analyze expression and localization of Cat H in the brain. Nitrite assay was used to examine microglial activation in vitro; ELISA was used to determine the release of Cat H and proinflammatory cytokines (TNF-α, IL-1β, IL-6, IFN-γ). Cat H activity was analyzed by cellular Cat H assay kit. Flow cytometry and in situ cell death detection were used to investigate neuronal death. Data were evaluated for statistical significance with one-way ANOVA and t test. Cat H mRNA was only present in perivascular microglia and non-parenchymal sites under normal conditions. After LPS injection, Cat H mRNA expression in activated microglia in different brain regions was increased. Twenty-four hours after LPS injection, Cat H mRNA expression was maximal in SNr; 72 h later, it peaked in cerebral cortex and hippocampus then decreased and maintained at a low level. The expression of Cat H protein exhibited the similar alterations after LPS injection. In vitro, inflammatory stimulation (LPS, TNF-α, IL-1β, IL-6, and IFN-γ) increased the release and activity of Cat H in microglia. Conversely, addition of Cat H to microglia promoted the production and release of NO, IL-1β, and IFN-γ which could be prevented by neutralizing antibody. Further, addition of Cat H to Neuro2a cells induced

  8. Spinal Microgliosis Due to Resident Microglial Proliferation Is Required for Pain Hypersensitivity after Peripheral Nerve Injury

    Directory of Open Access Journals (Sweden)

    Nan Gu

    2016-07-01

    Full Text Available Peripheral nerve injury causes neuropathic pain accompanied by remarkable microgliosis in the spinal cord dorsal horn. However, it is still debated whether infiltrated monocytes contribute to injury-induced expansion of the microglial population. Here, we found that spinal microgliosis predominantly results from local proliferation of resident microglia but not from infiltrating monocytes after spinal nerve transection (SNT by using two genetic mouse models (CCR2RFP/+:CX3CR1GFP/+ and CX3CR1creER/+:R26tdTomato/+ mice as well as specific staining of microglia and macrophages. Pharmacological inhibition of SNT-induced microglial proliferation correlated with attenuated neuropathic pain hypersensitivities. Microglial proliferation is partially controlled by purinergic and fractalkine signaling, as CX3CR1−/− and P2Y12−/− mice show reduced spinal microglial proliferation and neuropathic pain. These results suggest that local microglial proliferation is the sole source of spinal microgliosis, which represents a potential therapeutic target for neuropathic pain management.

  9. Low-power laser irradiation (LPLI) attenuates microglial cytotoxicity through the activation of Src pathway

    Science.gov (United States)

    Song, Sheng; Zhou, Feifan; Chen, Wei R.

    2014-02-01

    It has been known for a long time that microglial activation plays an important role in the pathology of neurodegenerative diseases. Once activated, they have macrophage-like capabilities, which can be detrimental by producing proinflammatory and neurotoxic factors including cytokines, reactive oxygen species (ROS) and nitric oxide that directly or indirectly cause neurodegeneration. Therefore, the regulation of microglial-induced neuroinflammation is considered a useful strategy in searching for neuroprotective treatments. In this study, our results showed that low power laser irradiation (LPLI) (20 J/cm2) could suppress microglial-induced neuroinflammation in LPS-activated microglia. We found that LPLI-mediated neuroprotection was achieved by activating tyrosine kinases Src, which led to MyD88 tyrosine phosphorylation, thus impairing MyD88-dependent proinflammatory signaling cascade. Our research may provide a feasible therapeutic approach to control the progression of neurodegenerative diseases.

  10. TMEM16F Regulates Spinal Microglial Function in Neuropathic Pain States

    Directory of Open Access Journals (Sweden)

    Laura Batti

    2016-06-01

    Full Text Available Neuropathic pain is a widespread chronic pain state that results from injury to the nervous system. Spinal microglia play a causative role in the pathogenesis of neuropathic pain through secretion of growth factors and cytokines. Here, we investigated the contribution of TMEM16F, a protein that functions as a Ca2+-dependent ion channel and a phospholipid scramblase, to microglial activity during neuropathic pain. We demonstrate that mice with a conditional ablation of TMEM16F in microglia do not develop mechanical hypersensitivity upon nerve injury. In the absence of TMEM16F, microglia display deficits in process motility and phagocytosis. Moreover, loss of GABA immunoreactivity upon injury is spared in TMEM16F conditional knockout mice. Collectively, these data indicate that TMEM16F is an essential component of the microglial response to injury and suggest the importance of microglial phagocytosis in the pathogenesis of neuropathic pain.

  11. Inhibition of endogenous heat shock protein 70 attenuates inducible nitric oxide synthase induction via disruption of heat shock protein 70/Na(+) /H(+) exchanger 1-Ca(2+) -calcium-calmodulin-dependent protein kinase II/transforming growth factor β-activated kinase 1-nuclear factor-κB signals in BV-2 microglia.

    Science.gov (United States)

    Huang, Chao; Lu, Xu; Wang, Jia; Tong, Lijuan; Jiang, Bo; Zhang, Wei

    2015-08-01

    Inducible nitric oxide synthase (iNOS) critically contributes to inflammation and host defense. The inhibition of heat shock protein 70 (Hsp70) prevents iNOS induction in lipopolysaccharide (LPS)-stimulated macrophages. However, the role and mechanism of endogenous Hsp70 in iNOS induction in microglia remains unclear. This study addresses this issue in BV-2 microglia, showing that Hsp70 inhibition or knockdown prevents LPS-induced iNOS protein expression and nitric oxide production. Real-time PCR experiments showed that LPS-induced iNOS mRNA transcription was blocked by Hsp70 inhibition. Further studies revealed that the inhibition of Hsp70 attenuated LPS-stimulated nuclear translocation and phosphorylation of nuclear factor (NF)-κB as well as the degradation of inhibitor of κB (IκB)-α and phosphorylation of IκB kinase β (IKKβ). This prevention effect of Hsp70 inhibition on IKKβ-NF-κB activation was found to be dependent on the Ca(2+) /calcium-calmodulin-dependent protein kinase II (CaMKII)/transforming growth factor β-activated kinase 1 (TAK1) signals based on the following observations: 1) chelation of intracellular Ca(2+) or inhibition of CaMKII reduced LPS-induced increases in TAK1 phosphorylation and 2) Hsp70 inhibition reduced LPS-induced increases in CaMKII/TAK1 phosphorylation, intracellular pH value, [Ca(2+) ]i , and CaMKII/TAK1 association. Mechanistic studies showed that Hsp70 inhibition disrupted the association between Hsp70 and Na(+) /H(+) exchanger 1 (NHE1), which is an important exchanger responsible for Ca(2+) influx in LPS-stimulated cells. These studies demonstrate that the inhibition of endogenous Hsp70 attenuates the induction of iNOS, which likely occurs through the disruption of NHE1/Hsp70-Ca(2+) -CaMKII/TAK1-NF-κB signals in BV-2 microglia, providing further insight into the functions of Hsp70 in the CNS. © 2015 Wiley Periodicals, Inc.

  12. Anti-inflammatory effects of glaucocalyxin B in microglia cells

    Directory of Open Access Journals (Sweden)

    Ping Gan

    2015-05-01

    Full Text Available Over-activated microglia is involved in various kinds of neurodegenerative process including Parkinson, Alzheimer and HIV dementia. Suppression of microglial over activation has emerged as a novel strategy for treatment of neuroinflammation-based neurodegeneration. In the current study, anti-inflammatory and neuroprotective effects of the ent-kauranoid diterpenoids, which were isolated from the aerial parts of Rabdosia japonica (Burm. f. var. glaucocalyx (Maxim. Hara, were investigated in cultured microglia cells. Glaucocalyxin B (GLB, one of five ent-kauranoid diterpenoids, significantly decreased the generation of nitric oxide (NO, tumor necrosis factor (TNF-α, interleukin (IL-1β, cyclooxygenase (COX-2 and inducible nitric oxide synthase (iNOS in the lipopolysaccharide (LPS-activated microglia cells. In addition, GLB inhibited activation of nuclear factor-κB (NF-κB, p38 mitogen-activated protein kinase (MAPK and generation of reactive oxygen species (ROS in LPS-activated microglia cells. Furthermore, GLB strongly induced the expression of heme oxygenase (HO-1 in BV-2 microglia cells. Finally, GLB exhibited neuroprotective effect by preventing over-activated microglia induced neurotoxicity in a microglia/neuron co-culture model. Taken together, the present study demonstrated that the GLB possesses anti-nueroinflammatory activity, and might serve as a potential therapeutic agent for treating neuroinflammatory diseases.

  13. GDNF selectively induces microglial activation and neuronal survival in CA1/CA3 hippocampal regions exposed to NMDA insult through Ret/ERK signalling.

    Directory of Open Access Journals (Sweden)

    Francesca Boscia

    Full Text Available The glial cell line-derived neurotrophic factor (GDNF is a potent survival factor for several neuronal populations in different brain regions, including the hippocampus. However, no information is available on the: (1 hippocampal subregions involved in the GDNF-neuroprotective actions upon excitotoxicity, (2 identity of GDNF-responsive hippocampal cells, (3 transduction pathways involved in the GDNF-mediated neuroprotection in the hippocampus. We addressed these questions in organotypic hippocampal slices exposed to GDNF in presence of N-methyl-D-aspartate (NMDA by immunoblotting, immunohistochemistry, and confocal analysis. In hippocampal slices GDNF acts through the activation of the tyrosine kinase receptor, Ret, without involving the NCAM-mediated pathway. Both Ret and ERK phosphorylation mainly occurred in the CA3 region where the two activated proteins co-localized. GDNF protected in a greater extent CA3 rather than CA1 following NMDA exposure. This neuroprotective effect targeted preferentially neurons, as assessed by NeuN staining. GDNF neuroprotection was associated with a significant increase of Ret phosphorylation in both CA3 and CA1. Interestingly, confocal images revealed that upon NMDA exposure, Ret activation occurred in microglial cells in the CA3 and CA1 following GDNF exposure. Collectively, this study shows that CA3 and CA1 hippocampal regions are highly responsive to GDNF-induced Ret activation and neuroprotection, and suggest that, upon excitotoxicity, such neuroprotection involves a GDNF modulation of microglial cell activity.

  14. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immune-modulated glutamatergic neurotransmission?

    Directory of Open Access Journals (Sweden)

    Mawrin Christian

    2011-08-01

    Full Text Available Abstract Background Immune dysfunction, including monocytosis and increased blood levels of interleukin-1, interleukin-6 and tumour necrosis factor α has been observed during acute episodes of major depression. These peripheral immune processes may be accompanied by microglial activation in subregions of the anterior cingulate cortex where depression-associated alterations of glutamatergic neurotransmission have been described. Methods Microglial immunoreactivity of the N-methyl-D-aspartate (NMDA glutamate receptor agonist quinolinic acid (QUIN in the subgenual anterior cingulate cortex (sACC, anterior midcingulate cortex (aMCC and pregenual anterior cingulate cortex (pACC of 12 acutely depressed suicidal patients (major depressive disorder/MDD, n = 7; bipolar disorder/BD, n = 5 was analyzed using immunohistochemistry and compared with its expression in 10 healthy control subjects. Results Depressed patients had a significantly increased density of QUIN-positive cells in the sACC (P = 0.003 and the aMCC (P = 0.015 compared to controls. In contrast, counts of QUIN-positive cells in the pACC did not differ between the groups (P = 0.558. Post-hoc tests showed that significant findings were attributed to MDD and were absent in BD. Conclusions These results add a novel link to the immune hypothesis of depression by providing evidence for an upregulation of microglial QUIN in brain regions known to be responsive to infusion of NMDA antagonists such as ketamine. Further work in this area could lead to a greater understanding of the pathophysiology of depressive disorders and pave the way for novel NMDA receptor therapies or immune-modulating strategies.

  15. Gestational Exposure to Air Pollution Alters Cortical Volume, Microglial Morphology, and Microglia-Neuron Interactions in a Sex-Specific Manner

    Directory of Open Access Journals (Sweden)

    Jessica L. Bolton

    2017-05-01

    Full Text Available Microglia are the resident immune cells of the brain, important for normal neural development in addition to host defense in response to inflammatory stimuli. Air pollution is one of the most pervasive and harmful environmental toxicants in the modern world, and several large scale epidemiological studies have recently linked prenatal air pollution exposure with an increased risk of neurodevelopmental disorders such as autism spectrum disorder (ASD. Diesel exhaust particles (DEP are a primary toxic component of air pollution, and markedly activate microglia in vitro and in vivo in adult rodents. We have demonstrated that prenatal exposure to DEP in mice, i.e., to the pregnant dams throughout gestation, results in a persistent vulnerability to behavioral deficits in adult offspring, especially in males, which is intriguing given the greater incidence of ASD in males to females (∼4:1. Moreover, there is a striking upregulation of toll-like receptor (TLR 4 gene expression within the brains of the same mice, and this expression is primarily in microglia. Here we explored the impact of gestational exposure to DEP or vehicle on microglial morphology in the developing brains of male and female mice. DEP exposure increased inflammatory cytokine protein and altered the morphology of microglia, consistent with activation or a delay in maturation, only within the embryonic brains of male mice; and these effects were dependent on TLR4. DEP exposure also increased cortical volume at embryonic day (E18, which switched to decreased volume by post-natal day (P30 in males, suggesting an impact on the developing neural stem cell niche. Consistent with this hypothesis, we found increased microglial-neuronal interactions in male offspring that received DEP compared to all other groups. Taken together, these data suggest a mechanism by which prenatal exposure to environmental toxins may affect microglial development and long-term function, and thereby contribute

  16. Luteolin inhibits microglial inflammation and improves neuron survival against inflammation.

    Science.gov (United States)

    Zhu, Li-Hong; Bi, Wei; Qi, Ren-bin; Wang, Hua-dong; Lu, Da-xiang

    2011-06-01

    Microglia activation is one of the causative factors for neuroinflammation, which results in brain damage during neurodegenerative disease. Accumulating evidence has shown that the flavonoid luteolin (Lut) possesses potent anti-inflammatory properties; however, its effect on microglia inhibition is currently unknown. Moreover, it is not clear whether Lut also has indirect neuroprotective effects by reducing inflammatory mediators and suppressing microglia activation. In this study, we examined the effects of Lut on lipopolysaccharide (LPS)-induced proinflammatory mediator production and signaling pathways in murine BV2 microglia. In addition, we cocultured microglia and neurons to observe the indirect neuroprotective effects of Lut. Lut inhibited the LPS-stimulated expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β) as well as the production of nitric oxide (NO) and prostaglandin E(2) (PGE(2)). Moreover, Lut blocked LPS-induced nuclear factor kappa B (NF-κB) activation. Preincubation of microglia with Lut diminished the neurotoxic effects, owing to the direct anti-inflammatory effects of the compound. Taken together, our findings suggest that Lut may have a potential therapeutic application in the treatment of neuroinflammatory disorders. Copyright © 2011 Informa Healthcare USA, Inc.

  17. Sevoflurane preconditioning induced endogenous neurogenesis against ischemic brain injury by promoting microglial activation.

    Science.gov (United States)

    Li, Li; Saiyin, Hexige; Xie, Jingmo; Ma, Lixiang; Xue, Lei; Wang, Wei; Liang, Weimin; Yu, Qiong

    2017-04-25

    Brain ischemia causes irreversible damage to functional neurons in cases of infarct. Promoting endogenous neurogenesis to replace necrotic neurons is a promising therapeutic strategy for ischemia patients. The neuroprotective role of sevoflurane preconditioning implies that it might also enhance endogenous neurogenesis and functional restoration in the infarct region. By using a transient middle cerebral artery occlusion (tMCAO) model, we discovered that endogenous neurogenesis was enhanced by sevoflurane preconditioning. This enhancement process is characterized by the promotion of neuroblast proliferation within the subventricular zone (SVZ), migration and differentiation into neurons, and the presence of astrocytes and oligodendrocytes at the site of infarct. The newborn neurons in the sevoflurane preconditioning group showed miniature excitatory postsynaptic currents (mEPSCs), increased synaptophysin and PSD95 staining density, indicating normal neuronal function. Furthermore, long-term behavioral improvement was observed in the sevoflurane preconditioning group consistent with endogenous neurogenesis. Further histological analyses showed that sevoflurane preconditioning accelerated microglial activation, including migration, phagocytosis and secretion of brain-derived neurotrophic factor (BDNF). Intraperitoneal injection of minocycline, a microglial inhibitor, suppressed microglial activation and reversed neurogenesis. Our data showed that sevoflurane preconditioning promoted microglial activities, created a favorable microenvironment for endogenous neurogenesis and accelerated functional reconstruction in the infarct region.

  18. Accelerated microglial pathology is associated with Aβ plaques in mouse models of Alzheimer's disease

    DEFF Research Database (Denmark)

    Baron, Rona; Babcock, Alicia A; Nemirovsky, Anna

    2014-01-01

    with a chronic proinflammatory reaction in the brain, aging causes a significant reduction in the capacity of microglia to scan their environment. This type of pathology is markedly accelerated in mouse models of AD, resulting in a severe microglial process deficiency, and possibly contributing to enhanced...... cognitive decline....

  19. Anandamide, Acting via CB2 Receptors, Alleviates LPS-Induced Neuroinflammation in Rat Primary Microglial Cultures

    Directory of Open Access Journals (Sweden)

    Natalia Malek

    2015-01-01

    Full Text Available Microglial activation is a polarized process divided into potentially neuroprotective phenotype M2 and neurotoxic phenotype M1, predominant during chronic neuroinflammation. Endocannabinoid system provides an attractive target to control the balance between microglial phenotypes. Anandamide as an immune modulator in the central nervous system acts via not only cannabinoid receptors (CB1 and CB2 but also other targets (e.g., GPR18/GPR55. We studied the effect of anandamide on lipopolysaccharide-induced changes in rat primary microglial cultures. Microglial activation was assessed based on nitric oxide (NO production. Analysis of mRNA was conducted for M1 and M2 phenotype markers possibly affected by the treatment. Our results showed that lipopolysaccharide-induced NO release in microglia was significantly attenuated, with concomitant downregulation of M1 phenotypic markers, after pretreatment with anandamide. This effect was not sensitive to CB1 or GPR18/GPR55 antagonism. Administration of CB2 antagonist partially abolished the effects of anandamide on microglia. Interestingly, administration of a GPR18/GPR55 antagonist by itself suppressed NO release. In summary, we showed that the endocannabinoid system plays a crucial role in the management of neuroinflammation by dampening the activation of an M1 phenotype. This effect was primarily controlled by the CB2 receptor, although functional cross talk with GPR18/GPR55 may occur.

  20. C3-dependent mechanism of microglial priming relevant to multiple sclerosis.

    Science.gov (United States)

    Ramaglia, Valeria; Hughes, Timothy R; Donev, Rossen M; Ruseva, Marieta M; Wu, Xiaobo; Huitinga, Inge; Baas, Frank; Neal, James W; Morgan, B Paul

    2012-01-17

    Microglial priming predisposes the brain to neurodegeneration and affects disease progression. The signal to switch from the quiescent to the primed state is unknown. We show that deleting the C3 convertase regulator complement receptor 1-related protein y (Crry) induces microglial priming. Mice that were double-knockout for Crry and either C3 or factor B did not show priming, demonstrating dependence on alternative pathway activation. Colocalization of C3b/iC3b and CR3 implicated the CR3/iC3b interaction in priming. Systemic lipopolysaccharide challenge overactivated primed microglia with florid expression of proinflammatory molecules, which were blocked by complement inhibition. Relevance for neurodegenerative disease is exemplified by human multiple sclerosis (MS) and by experimental autoimmune encephalomyelitis (EAE), a model of MS. In human MS, microglial priming was evident in perilesional white matter, in close proximity to C3b/iC3b deposits. EAE was accelerated and exacerbated in Crry-deficient mice, and was dependent on C activation. In summary, C3-dependent microglial priming confers susceptibility to other challenges. Our observations are relevant to progression in MS and other neurological diseases exacerbated by acute insults.

  1. Deletion of the Inflammasome Sensor Aim2 Mitigates Aβ Deposition and Microglial Activation but Increases Inflammatory Cytokine Expression in an Alzheimer Disease Mouse Model.

    Science.gov (United States)

    Wu, Pei-Jung; Hung, Yun-Fen; Liu, Hsin-Yu; Hsueh, Yi-Ping

    2017-01-01

    Inflammation is clearly associated with Alzheimer disease (AD). Knockout of Nlrp3, a gene encoding an inflammasome sensor, has been shown to ameliorate AD pathology in a mouse model. Because AIM2 is the most dominant inflammasome sensor expressed in mouse brains, here we investigate whether Aim2 deletion also influences the phenotype of a 5XFAD AD mouse model. Quantitative RT-PCR, immunostaining, immunoblotting, and behavioral analyses were applied to compare wild-type, Aim2-/-, 5XFAD, and Aim2-/-;5XFAD mice. We found that Aim2 knockout mitigates Aβ deposition in the cerebral cortex and hippocampus of 5XFAD mice. The activation of microglial cells is also reduced in Aim2-/-;5XFAD brains compared with 5XFAD brains. However, Aim2 knockout does not improve memory and anxiety phenotypes of 5XFAD mice in an open field, cued Y-maze, or Barnes maze. Compared with 5XFAD mice, Il-1 expression levels are not reduced in Aim2-/-;5XFAD mice. Unexpectedly, Il-6 and Il-18 expression levels in 5XFAD brains were further increased when Aim2 was deleted. Thus, inflammatory cytokine expression in 5XFAD brains is upregulated by Aim2 deletion through an unknown mechanism. Although Aim2 knockout mitigates Aβ deposition and microglial activation, Aim2 deletion does not have a beneficial effect on the spatial memory or cytokine expression of 5XFAD mice. Our findings suggest that Aβ aggregation and microglial activation may not always be correlated with the expression of inflammatory cytokines or cognitive function of 5XFAD mice. Our study also implies that different inflammasomes likely perform distinct roles in different physiological and/or pathological events. © 2017 S. Karger AG, Basel.

  2. Evaluation of Polyphenol Anthocyanin-Enriched Extracts of Blackberry, Black Raspberry, Blueberry, Cranberry, Red Raspberry, and Strawberry for Free Radical Scavenging, Reactive Carbonyl Species Trapping, Anti-Glycation, Anti-β-Amyloid Aggregation, and Microglial Neuroprotective Effects

    Directory of Open Access Journals (Sweden)

    Hang Ma

    2018-02-01

    Full Text Available Glycation is associated with several neurodegenerative disorders, including Alzheimer’s disease (AD, where it potentiates the aggregation and toxicity of proteins such as β-amyloid (Aβ. Published studies support the anti-glycation and neuroprotective effects of several polyphenol-rich fruits, including berries, which are rich in anthocyanins. Herein, blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts were evaluated for: (1 total phenolic and anthocyanins contents, (2 free radical (DPPH scavenging and reactive carbonyl species (methylglyoxal; MGO trapping, (3 anti-glycation (using BSA-fructose and BSA-MGO models, (4 anti-Aβ aggregation (using thermal- and MGO-induced fibrillation models, and, (5 murine microglia (BV-2 neuroprotective properties. Berry crude extracts (CE were fractionated to yield anthocyanins-free (ACF and anthocyanins-enriched (ACE extracts. The berry ACEs (at 100 μg/mL showed superior free radical scavenging, reactive carbonyl species trapping, and anti-glycation effects compared to their respective ACFs. The berry ACEs (at 100 μg/mL inhibited both thermal- and MGO-induced Aβ fibrillation. In addition, the berry ACEs (at 20 μg/mL reduced H2O2-induced reactive oxygen species production, and lipopolysaccharide-induced nitric oxide species in BV-2 microglia as well as decreased H2O2-induced cytotoxicity and caspase-3/7 activity in BV-2 microglia. The free radical scavenging, reactive carbonyl trapping, anti-glycation, anti-Aβ fibrillation, and microglial neuroprotective effects of these berry extracts warrant further in vivo studies to evaluate their potential neuroprotective effects against AD.

  3. Microchannel acoustophoresis does not impact survival or function of microglia, leukocytes or tumor cells.

    Directory of Open Access Journals (Sweden)

    Miguel A Burguillos

    Full Text Available The use of acoustic forces to manipulate particles or cells at the microfluidic scale (i.e. acoustophoresis, enables non-contact, label-free separation based on intrinsic cell properties such as size, density and compressibility. Acoustophoresis holds great promise as a cell separation technique in several research and clinical areas. However, it has been suggested that the force acting upon cells undergoing acoustophoresis may impact cell viability, proliferation or cell function via subtle phenotypic changes. If this were the case, it would suggest that the acoustophoresis method would be a less useful tool for many cell analysis applications as well as for cell therapy.We investigate, for the first time, several key aspects of cellular changes following acoustophoretic processing. We used two settings of ultrasonic actuation, one that is used for cell sorting (10 Vpp operating voltage and one that is close to the maximum of what the system can generate (20 Vpp. We used microglial cells and assessed cell viability and proliferation, as well as the inflammatory response that is indicative of more subtle changes in cellular phenotype. Furthermore, we adapted a similar methodology to monitor the response of human prostate cancer cells to acoustophoretic processing. Lastly, we analyzed the respiratory properties of human leukocytes and thrombocytes to explore if acoustophoretic processing has adverse effects.BV2 microglia were unaltered after acoustophoretic processing as measured by apoptosis and cell turnover assays as well as inflammatory cytokine response up to 48 h following acoustophoresis. Similarly, we found that acoustophoretic processing neither affected the cell viability of prostate cancer cells nor altered their prostate-specific antigen secretion following androgen receptor activation. Finally, human thrombocytes and leukocytes displayed unaltered mitochondrial respiratory function and integrity after acoustophoretic processing

  4. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides.

    Science.gov (United States)

    Torres-Platas, Susana G; Cruceanu, Cristiana; Chen, Gary Gang; Turecki, Gustavo; Mechawar, Naguib

    2014-11-01

    Despite increasing evidence supporting the neuroinflammatory theory of depression, little is known about cerebral macrophages in individuals suffering from major depression. In the present study, we investigated the morphology and distribution of cells immunostained for the macrophage-specific marker ionized calcium binding adaptor molecule 1 (IBA1) in the dorsal anterior cingulate cortex (dACC) white matter of middle-aged depressed suicides and matched non-psychiatric controls. This region is known for its implication in mood disorders, and its white matter compartment was previously found to display hypertrophic astrocytes in depressed suicides. Distributions of IBA1-immunoreactive (IBA-IR) microglial phenotypes were assessed using stereology and cell morphometry, and blood vessels were characterized as being intimately associated with either a high or a low density of IBA1-IR amoeboid-like cells. Total densities of IBA1-IR microglia did not differ between depressed suicides and controls. However, a finer analysis examining relative proportions of microglial phenotypes revealed that the ratio of primed over ramified ("resting") microglia was significantly increased in depressed suicides. Strikingly, the proportion of blood vessels surrounded by a high density of macrophages was more than twice higher in depressed suicides than in controls, and this difference was strongly significant. Consistent with these observations, gene expression of IBA1 and MCP-1, a chemokine involved in the recruitment of circulating monocytes, was significantly upregulated in depressed suicides. Furthermore, mRNA for CD45, a marker enriched in perivascular macrophages, was also significantly increased in samples from depressed suicides. An increase compared to controls was also observed in the proportion of blood vessels surrounded by a high density of CD45-IR cells, but this difference did not reach significance. These histological and molecular data suggest the recruitment of monocytes

  5. Neuroprotective Effect of Sargassum thunbergii (Mertens ex Roth ...

    African Journals Online (AJOL)

    ex Roth) Kuntze in Activated Murine Microglial Cells ... extract (Mertens ex Roth) Kuntze (STE) in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells in ..... S. Production of nitric oxide by glial cells: regulation and potential roles in the CNS. GLIA 2000;. 29:1-13. 15. Merrill JE, Benveniste EN. Cytokines in inflammatory.

  6. Gabapentin reduces CX3CL1 signaling and blocks spinal microglial activation in monoarthritic rats

    Directory of Open Access Journals (Sweden)

    Yang Jia-Le

    2012-05-01

    Full Text Available Abstract Background Spinal glia, particularly microglia and astrocytes, are of the utmost importance in the development and maintenance of chronic pain. A recent study from our laboratory revealed that gabapentin, a recommended first-line treatment for multiple neuropathic conditions, could also efficiently antagonize thermal hyperalgesia evoked by complete Freund's adjuvant (CFA-induced monoarthritis (MA. In the present study, we investigated whether the spinal glia are involved in the anti-hyperalgesic effect of gabapentin and how this event occurs. Results Unilateral intra-articular injection of CFA produced a robust activation of microglia and astrocytes. These cells exhibited large cell bodies, thick processes and increases in the ionized calcium binding adapter molecule 1 (Iba-1, a microglial marker or the glia fibrillary acidic protein (GFAP, an astrocytic marker. These cells also displayed immunoreactive signals, and an upregulation of the voltage-gated calcium channels (VGCCs α2/δ-1 subunit, CX3CL1 and CX3CR1 expression levels in the spinal cord. These changes were associated with the development of thermal hyperalgesia. Immunofluorescence staining showed that VGCC α2/δ-1 subunit, a proposed gabapentin target of action, was widely distributed in primary afferent fibers terminals and dorsal horn neurons. CX3CL1, a potential trigger to activate microglia, colocalized with VGCC α2/δ-1 subunits in the spinal dorsal horn. However, its receptor CX3CR1 was mainly expressed in the spinal microglia. Multiple intraperitoneal (i.p. gabapentin injections (100 mg/kg, once daily for 4 days with the first injection 60 min before intra-articular CFA suppressed the activation of spinal microglia, downregulated spinal VGCC α2/δ-1 subunits decreased CX3CL1 levels and blocked the development of thermal hyperalgesia in MA rats. Conclusions Here we provide the first evidence that gabapentin diminishes CX3CL1 signaling and spinal microglia

  7. Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: a novel mechanism for cannabinoid-induced cell death.

    Science.gov (United States)

    Rimmerman, N; Ben-Hail, D; Porat, Z; Juknat, A; Kozela, E; Daniels, M P; Connelly, P S; Leishman, E; Bradshaw, H B; Shoshan-Barmatz, V; Vogel, Z

    2013-12-05

    Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that inhibits cell proliferation and induces cell death of cancer cells and activated immune cells. It is not an agonist of the classical CB1/CB2 cannabinoid receptors and the mechanism by which it functions is unknown. Here, we studied the effects of CBD on various mitochondrial functions in BV-2 microglial cells. Our findings indicate that CBD treatment leads to a biphasic increase in intracellular calcium levels and to changes in mitochondrial function and morphology leading to cell death. Density gradient fractionation analysis by mass spectrometry and western blotting showed colocalization of CBD with protein markers of mitochondria. Single-channel recordings of the outer-mitochondrial membrane protein, the voltage-dependent anion channel 1 (VDAC1) functioning in cell energy, metabolic homeostasis and apoptosis revealed that CBD markedly decreases channel conductance. Finally, using microscale thermophoresis, we showed a direct interaction between purified fluorescently labeled VDAC1 and CBD. Thus, VDAC1 seems to serve as a novel mitochondrial target for CBD. The inhibition of VDAC1 by CBD may be responsible for the immunosuppressive and anticancer effects of CBD.

  8. Trajectory of inflammatory and microglial activation markers in the postnatal rabbit brain following intrauterine endotoxin exposure.

    Science.gov (United States)

    Zhang, Zhi; Jyoti, Amar; Balakrishnan, Bindu; Williams, Monica; Singh, Sarabdeep; Chugani, Diane C; Kannan, Sujatha

    2018-03-01

    Maternal infection is a risk factor for periventricular leukomalacia and cerebral palsy (CP) in neonates. We have previously demonstrated hypomyelination and motor deficits in newborn rabbits, as seen in patients with cerebral palsy, following maternal intrauterine endotoxin administration. This was associated with increased microglial activation, primarily involving the periventricular region (PVR). In this study we hypothesized that maternal intrauterine inflammation leads to a pro-inflammatory environment in the PVR that is associated with microglial activation in the first 2 postnatal weeks. Timed pregnant New Zealand white rabbits underwent laparotomy on gestational day 28 (G28). They were randomly divided to receive lipopolysaccharide (LPS; 20μg/kg in 1mL saline) (Endotoxin group) or saline (1mL) (control saline, CS group), administrated along the wall of the uterus. The PVR from the CS and Endotoxin kits were harvested at G29 (1day post-injury), postnatal day1 (PND1, 3day post-injury) and PND5 (7days post-injury) for real-time PCR, ELISA and immunohistochemistry. Kits from CS and Endotoxin groups underwent longitudinal MicroPET imaging, with [ 11 C]PK11195, a tracer for microglial activation. We found that intrauterine endotoxin exposure resulted in pro-inflammatory microglial activation in the PVR of rabbits in the first postnatal week. This was evidenced by increased TSPO (translocator protein) expression co-localized with microglia/macrophages in the PVR, and changes in the microglial morphology (ameboid soma and retracted processes). In addition, CD11b level significantly increased with a concomitant decline in the CD45 level in the PVR at G29 and PND1. There was a significant elevation of pro-inflammatory cytokines and iNOS, and decreased anti-inflammatory markers in the Endotoxin kits at G29, PND1 and PND5. Increased [ 11 C]PK11195 binding to the TSPO measured in vivo by PET imaging in the brain of Endotoxin kits was present up to PND14-17. Our

  9. PODAAC-OSCT2-L2BV2

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of the version 2 Level 2B science-quality ocean surface wind vector retrievals from the Oceansat-2 scatterometer (OSCAT), which was designed...

  10. Natural Docosahexaenoic Acid in the Triglyceride Form Attenuates In Vitro Microglial Activation and Ameliorates Autoimmune Encephalomyelitis in Mice

    Directory of Open Access Journals (Sweden)

    Pilar Mancera

    2017-06-01

    Full Text Available Many neurodegenerative diseases are associated, at least in part, to an inflammatory process in which microglia plays a major role. The effect of the triglyceride form of the omega-3 polyunsaturated fatty acid docosahexaenoic acid (TG-DHA was assayed in vitro and in vivo to assess the protective and anti-inflammatory activity of this compound. In the in vitro study, BV-2 microglia cells were previously treated with TG-DHA and then activated with Lipopolysaccharide (LPS and Interferon-gamma (IFN-γ. TG-DHA treatment protected BV-2 microglia cells from oxidative stress toxicity attenuating NO production and suppressing the induction of inflammatory cytokines. When compared with DHA in the ethyl-ester form, a significant difference in the ability to inhibit NO production in favor of TG-DHA was observed. TG-DHA inhibited significantly splenocyte proliferation but isolated CD4+ lymphocyte proliferation was unaffected. In a mice model of autoimmune encephalomyelitis (EAE, 250 mg/kg/day oral TG-DHA treatment was associated with a significant amelioration of the course and severity of the disease as compared to untreated animals. TG-DHA-treated EAE mice showed a better weight profile, which is a symptom related to a better course of encephalomyelitis. TG-DHA may be a promising therapeutic agent in neuroinflammatory processes and merit to be more extensively studied in human neurodegenerative disorders.

  11. Silver and gold nanoparticles exposure to in vitro cultured retina--studies on nanoparticle internalization, apoptosis, oxidative stress, glial- and microglial activity.

    Directory of Open Access Journals (Sweden)

    Erika Söderstjerna

    Full Text Available The complex network of neuronal cells in the retina makes it a potential target of neuronal toxicity--a risk factor for visual loss. With growing use of nanoparticles (NPs in commercial and medical applications, including ophthalmology, there is a need for reliable models for early prediction of NP toxicity in the eye and retina. Metal NPs, such as gold and silver, gain much of attention in the ophthalmology community due to their potential to cross the barriers of the eye. Here, NP uptake and signs of toxicity were investigated after exposure to 20 and 80 nm Ag- and AuNPs, using an in vitro tissue culture model of the mouse retina. The model offers long-term preservation of retinal cell types, numbers and morphology and is a controlled system for delivery of NPs, using serum-free defined culture medium. AgNO3-treatment was used as control for toxicity caused by silver ions. These end-points were studied; gross morphological organization, glial activity, microglial activity, level of apoptosis and oxidative stress, which are all well described as signs of insult to neural tissue. TEM analysis demonstrated cellular- and nuclear uptake of all NP types in all neuronal layers of the retina. Htx-eosin staining showed morphological disruption of the normal complex layered retinal structure, vacuole formation and pyknotic cells after exposure to all Ag- and AuNPs. Significantly higher numbers of apoptotic cells as well as an increased number of oxidative stressed cells demonstrated NP-related neuronal toxicity. NPs also caused increased glial staining and microglial cell activation, typical hallmarks of neural tissue insult. This study demonstrates that low concentrations of 20 and 80 nm sized Ag- and AuNPs have adverse effects on the retina, using an organotypic retina culture model. Our results motivate careful assessment of candidate NP, metallic or-non-metallic, to be used in neural systems for therapeutic approaches.

  12. Silver and gold nanoparticles exposure to in vitro cultured retina--studies on nanoparticle internalization, apoptosis, oxidative stress, glial- and microglial activity.

    Science.gov (United States)

    Söderstjerna, Erika; Bauer, Patrik; Cedervall, Tommy; Abdshill, Hodan; Johansson, Fredrik; Johansson, Ulrica Englund

    2014-01-01

    The complex network of neuronal cells in the retina makes it a potential target of neuronal toxicity--a risk factor for visual loss. With growing use of nanoparticles (NPs) in commercial and medical applications, including ophthalmology, there is a need for reliable models for early prediction of NP toxicity in the eye and retina. Metal NPs, such as gold and silver, gain much of attention in the ophthalmology community due to their potential to cross the barriers of the eye. Here, NP uptake and signs of toxicity were investigated after exposure to 20 and 80 nm Ag- and AuNPs, using an in vitro tissue culture model of the mouse retina. The model offers long-term preservation of retinal cell types, numbers and morphology and is a controlled system for delivery of NPs, using serum-free defined culture medium. AgNO3-treatment was used as control for toxicity caused by silver ions. These end-points were studied; gross morphological organization, glial activity, microglial activity, level of apoptosis and oxidative stress, which are all well described as signs of insult to neural tissue. TEM analysis demonstrated cellular- and nuclear uptake of all NP types in all neuronal layers of the retina. Htx-eosin staining showed morphological disruption of the normal complex layered retinal structure, vacuole formation and pyknotic cells after exposure to all Ag- and AuNPs. Significantly higher numbers of apoptotic cells as well as an increased number of oxidative stressed cells demonstrated NP-related neuronal toxicity. NPs also caused increased glial staining and microglial cell activation, typical hallmarks of neural tissue insult. This study demonstrates that low concentrations of 20 and 80 nm sized Ag- and AuNPs have adverse effects on the retina, using an organotypic retina culture model. Our results motivate careful assessment of candidate NP, metallic or-non-metallic, to be used in neural systems for therapeutic approaches.

  13. Insensitivity of Astrocytes to Interleukin-10 Signaling following Peripheral Immune Challenge Results in Prolonged Microglial Activation in the Aged Brain

    Science.gov (United States)

    Norden, Diana M.; Trojanowski, Paige J.; Walker, Frederick R.; Godbout, Jonathan P.

    2017-01-01

    Immune-activated microglia from aged mice produce exaggerated levels of cytokines. Despite high levels of microglial IL-10 in the aged brain, neuroinflammation was prolonged and associated with depressive-like deficits. Because astrocytes respond to IL-10 and, in turn, attenuate microglial activation, we investigated if astrocyte-mediated resolution of microglial activation was impaired with age. Here, aged astrocytes had a dysfunctional profile with higher GFAP, lower glutamate transporter expression, and significant cytoskeletal re-arrangement. Moreover, aged astrocytes had reduced expression of growth factors and IL-10 Receptor-1 (IL-10R1). Following in vivo LPS immune challenge, aged astrocytes had a molecular signature associated with reduced responsiveness to IL-10. This IL-10 insensitivity of aged astrocytes resulted in a failure to induce IL-10R1 and TGFβ and resolve microglial activation. Additionally, adult astrocytes reduced microglial activation when co-cultured ex vivo, while aged astrocytes did not. Consistent with the aging studies, IL-10RKO astrocytes did not augment TGFβ after immune challenge and failed to resolve microglial activation. Collectively, a major cytokine-regulatory loop between activated microglia and astrocytes is impaired in the aged brain. PMID:27318131

  14. Methamphetamine alters microglial immune function through P2X7R signaling

    OpenAIRE

    Fernandes, Nicole C.; Sriram, Uma; Gofman, Larisa; Cenna, Jonathan M.; Ramirez, Servio H.; Potula, Raghava

    2016-01-01

    Background Purinoceptors have emerged as mediators of chronic inflammation and neurodegenerative processes. The ionotropic purinoceptor P2X7 (P2X7R) is known to modulate proinflammatory signaling and integrate neuronal-glial circuits. Evidence of P2X7R involvement in neurodegeneration, chronic pain, and chronic inflammation suggests that purinergic signaling plays a major role in microglial activation during neuroinflammation. In this study, we investigated the effects of methamphetamine (MET...

  15. Peripheral nerve injury induces a transitory microglial reaction in the rat infralimbic cortex.

    Science.gov (United States)

    Chu Sin Chung, Paul; Panigada, Tania; Cardis, Romain; Decosterd, Isabelle; Gosselin, Romain-Daniel

    2017-08-10

    Undeniable evidence shows that microglia in the spinal cord undergo marked reactions following peripheral injuries. However, only rare studies have investigated the possible short and long term microglial reaction in brain regions following peripheral nerve injury and its interspecies specificities. In the present study we examined microglia in subdivisions of the prefrontal cortex in mice and rats, 7days and 42days after spared nerve injury (SNI) of the sciatic nerve. We show that a bilateral increase of microglial density takes place in the infralimbic cortex in rats 7days post-injury (sham vs. SNI, n=5: ipsilateral 35.4% increase of the median, p=0.0317; contralateral 24.9% increase of the median, p=0.0079), without any detectable change in the other investigated regions, namely the anterior cingulate, prelimbic and agranular insular cortices. In mice, no observable difference could be found in any region at both time points, neither using Iba-1 immunostaining nor with CX3CR1-eGFP animals. Our results indicate that a transitory, species-specific and highly regionalized microglial reaction takes place in the prefrontal cortex following peripheral nerve injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer's disease brain.

    Science.gov (United States)

    Varnum, Megan M; Ikezu, Tsuneya

    2012-08-01

    Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline of cognitive function. There is no therapy that can halt or reverse its progression. Contemporary research suggests that age-dependent neuroinflammatory changes may play a significant role in the decreased neurogenesis and cognitive impairments in AD. The innate immune response is characterized by pro-inflammatory (M1) activation of macrophages and subsequent production of specific cytokines, chemokines, and reactive intermediates, followed by resolution and alternative activation for anti-inflammatory signaling (M2a) and wound healing (M2c). We propose that microglial activation phenotypes are analogous to those of macrophages and that their activation plays a significant role in regulating neurogenesis in the brain. Microglia undergo a switch from an M2- to an M1-skewed activation phenotype during aging. This review will assess the neuroimmunological studies that led to characterization of the different microglial activation states in AD mouse models. It will also discuss the roles of microglial activation on neurogenesis in AD and propose anti-inflammatory molecules as exciting therapeutic targets for research. Molecules such as interleukin-4 and CD200 have proven to be important anti-inflammatory mediators in the regulation of neuroinflammation in the brain, which will be discussed in detail for their therapeutic potential.

  17. Imaging microglial activation and amyloid burden in amnestic mild cognitive impairment.

    Science.gov (United States)

    Knezevic, Dunja; Verhoeff, Nicolaas Paul Lg; Hafizi, Sina; Strafella, Antonio P; Graff-Guerrero, Ariel; Rajji, Tarek; Pollock, Bruce G; Houle, Sylvain; Rusjan, Pablo M; Mizrahi, Romina

    2017-01-01

    Amnestic mild cognitive impairment (aMCI) is defined as a transitional state between normal aging and Alzheimer's disease (AD). Given the replicated finding of increased microglial activation in AD, we sought to investigate whether microglial activation is also elevated in aMCI and whether it is related to amyloid beta (Aβ) burden in-vivo . Eleven aMCI participants and 14 healthy volunteers completed positron emission tomography (PET) scans with [ 18 F]-FEPPA and [ 11 C]-PIB. Given the known sensitivity in affinity of second-generation TSPO radioligands, participants were genotyped for the TSPO polymorphism and only high-affinity binders were included. Dynamic [ 18 F]-FEPPA PET images were analyzed using the 2-tissue compartment model with arterial plasma input function. Additionally, a supplementary method, the standardized uptake value ratio (SUVR), was explored. [ 11 C]-PIB PET images were analyzed using the Logan graphical method. aMCI participants had significantly higher [ 11 C]-PIB binding in the cortical regions. No significant differences in [ 18 F]-FEPPA binding were observed between aMCI participants and healthy volunteers. In the aMCI group, [ 18 F]-FEPPA and [ 11 C]-PIB bindings were correlated in the hippocampus. There were no correlations between our PET measures and cognition. Our findings demonstrate that while Aβ burden is evident in the aMCI stage, microglial activation may not be present.

  18. Experience-Dependent Synaptic Plasticity in V1 Occurs without Microglial CX3CR1.

    Science.gov (United States)

    Schecter, Rachel W; Maher, Erin E; Welsh, Christina A; Stevens, Beth; Erisir, Alev; Bear, Mark F

    2017-11-01

    Brief monocular deprivation (MD) shifts ocular dominance and reduces the density of thalamic synapses in layer 4 of the mouse primary visual cortex (V1). We found that microglial lysosome content is also increased as a result of MD. Previous studies have shown that the microglial fractalkine receptor CX3CR1 is involved in synaptic development and hippocampal plasticity. We therefore tested the hypothesis that neuron-to-microglial communication via CX3CR1 is an essential component of visual cortical development and plasticity in male mice. Our data show that CX3CR1 is not required for normal development of V1 responses to visual stimulation, multiple forms of experience-dependent plasticity, or the synapse loss that accompanies MD in layer 4. By ruling out an essential role for fractalkine signaling, our study narrows the search for understanding how microglia respond to active synapse modification in the visual cortex. SIGNIFICANCE STATEMENT Microglia in the visual cortex respond to monocular deprivation with increased lysosome content, but signaling through the fractalkine receptor CX3CR1 is not an essential component in the mechanisms of visual cortical development or experience-dependent synaptic plasticity. Copyright © 2017 the authors 0270-6474/17/3710541-13$15.00/0.

  19. Xenon Reduces Neuronal Hippocampal Damage and Alters the Pattern of Microglial Activation after Experimental Subarachnoid Hemorrhage: A Randomized Controlled Animal Trial

    Directory of Open Access Journals (Sweden)

    Michael Veldeman

    2017-09-01

    Full Text Available ObjectiveThe neuroprotective properties of the noble gas xenon have already been demonstrated using a variety of injury models. Here, we examine for the first time xenon’s possible effect in attenuating early brain injury (EBI and its influence on posthemorrhagic microglial neuroinflammation in an in vivo rat model of subarachnoid hemorrhage (SAH.MethodsSprague-Dawley rats (n = 22 were randomly assigned to receive either Sham surgery (n = 9; divided into two groups or SAH induction via endovascular perforation (n = 13, divided into two groups. Of those randomized for SAH, 7 animals were postoperatively ventilated with 50 vol% oxygen/50 vol% xenon for 1 h and 6 received 50 vol% oxygen/50 vol% nitrogen (control. The animals were sacrificed 24 h after SAH. Of each animal, a cerebral coronal section (−3.60 mm from bregma was selected for assessment of histological damage 24 h after SAH. A 5-point neurohistopathological severity score was applied to assess neuronal cell damage in H&E and NeuN stained sections in a total of four predefined anatomical regions of interest. Microglial activation was evaluated by a software-assisted cell count of Iba-1 stained slices in three cortical regions of interest.ResultsA diffuse cellular damage was apparent in all regions of the ipsilateral hippocampus 24 h after SAH. Xenon-treated animals presented with a milder damage after SAH. This effect was found to be particularly pronounced in the medial regions of the hippocampus, CA3 (p = 0.040, and dentate gyrus (DG p = 0.040. However, for the CA1 and CA2 regions, there were no statistical differences in neuronal damage according to our histological scoring. A cell count of activated microglia was lower in the cortex of xenon-treated animals. This difference was especially apparent in the left piriform cortex (p = 0.017.ConclusionIn animals treated with 50 vol% xenon (for 1 h after SAH, a less pronounced neuronal damage was

  20. Attenuation of Neuroinflammatory Responses in Lipopolysaccharide ...

    African Journals Online (AJOL)

    Chenopodiaceae) extract on neuroinflammatory responses induced by lipopolysaccharide (LPS) in BV-2 microglial cells and its antioxidant effects. Methods: Biochemical studies carried out include 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyl-tetrazolium ...

  1. Inhibition of Nitric Oxide and Prostaglandin E2 Expression by ...

    African Journals Online (AJOL)

    HP

    binding activity of NF-. κB in LPS-stimulated BV2 microglial cells and suppressed phosphorylation of ERK and JNK, which are involved in the mitogen-activated protein kinase (MAPK) signaling pathway for regulating pro- inflammatory genes.

  2. Lipoxin A4 inhibits microglial activation and reduces neuroinflammation and neuropathic pain after spinal cord hemisection.

    Science.gov (United States)

    Martini, Alessandra Cadete; Berta, Temugin; Forner, Stefânia; Chen, Gang; Bento, Allisson Freire; Ji, Ru-Rong; Rae, Giles Alexander

    2016-04-08

    Spinal cord injury (SCI) is a severe neurological disorder with many disabling consequences, including persistent neuropathic pain, which develops in about 40 % of SCI patients and is induced and sustained by excessive and uncontrolled spinal neuroinflammation. Here, we have evaluated the effects of lipoxin A4 (LXA4), a member of a unique class of endogenous lipid mediators with both anti-inflammatory and analgesic properties, on spinal neuroinflammation and chronic pain in an experimental model of SCI. Spinal hemisection at T10 was carried out in adult male CD1 mice and Wistar rats. To test if LXA4 can reduce neuroinflammation and neuropathic pain, each animal received two intrathecal injections of LXA4 (300 pmol) or vehicle at 4 and 24 h after SCI. Sensitivity to mechanical stimulation of the hind paws was evaluated using von Frey monofilaments, and neuroinflammation was tested by measuring the mRNA and/or protein expression levels of glial markers and cytokines in the spinal cord samples after SCI. Also, microglia cultures prepared from murine cortical tissue were used to assess the direct effects of LXA4 on microglial activation and release of pro-inflammatory TNF-α. LXA4 treatment caused significant reductions in the intensity of mechanical pain hypersensitivity and spinal expression levels of microglial markers and pro-inflammatory cytokines induced by SCI, when compared to rodents receiving control vehicle injections. Notably, the increased expressions of the microglial marker IBA-1 and of the pro-inflammatory cytokine TNF-α were the most affected by the LXA4 treatment. Furthermore, cortical microglial cultures expressed ALX/FPR2 receptors for LXA4 and displayed potentially anti-inflammatory responses upon challenge with LXA4. Collectively, our results suggest that LXA4 can effectively modulate microglial activation and TNF-α release through ALX/FPR2 receptors, ultimately reducing neuropathic pain in rodents after spinal cord hemisection. The dual anti

  3. Role of fractalkine/CX3CR1 interaction in light-induced photoreceptor degeneration through regulating retinal microglial activation and migration.

    Directory of Open Access Journals (Sweden)

    Meng Zhang

    Full Text Available BACKGROUND: Excessive exposure to light enhances the progression and severity of some human retinal degenerative diseases. While retinal microglia are likely to be important in neuron damage associated with these diseases, the relationship between photoreceptor damage and microglial activation remains poorly understood. Some recent studies have indicated that the chemokine fractalkine is involved in the pathogenesis of many neurodegenerative diseases. The present study was performed to investigate the cross-talk between injured photoreceptors and activated retinal microglia, focusing on the role of fractalkine and its receptor CX3CR1 in light-induced photoreceptor degeneration. METHODOLOGY/PRINCIPAL FINDINGS: Both in vivo and in vitro experiments were involved in the research. In vivo, Sprague-Dawley rats were exposed to blue light for 24 hours. In vitro, the co-culture of primary retinal microglia and a photoreceptor cell line (661W cell was exposed to blue light for five hours. Some cultures were pretreated by the addition of anti-CX3CR1 neutralizing antibody or recombinant fractalkine. Expression of fractalkine/CX3CR1 and inflammatory cytokines was detected by immunofluorescence, real-time PCR, Western immunoblot analysis, and ELISA assay. TUNEL method was used to detect cell apoptosis. In addition, chemotaxis assay was performed to evaluate the impact of soluble fractalkine on microglial migration. Our results showed that the expression of fractalkine that was significantly upregulated after exposure to light, located mainly at the photoreceptors. The extent of photoreceptor degeneration and microglial migration paralleled the increased level of fractalkine/CX3CR1. Compared with the control, the expression of inflammatory cytokines was significantly downregulated in the anti-CX3CR1 neutralizing antibody-treated group, and the number of photoreceptors was also well preserved. The addition of recombinant full-length fractalkine or soluble

  4. Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease.

    Science.gov (United States)

    Norden, Diana M; Muccigrosso, Megan M; Godbout, Jonathan P

    2015-09-01

    Glia of the central nervous system (CNS) help to maintain homeostasis in the brain and support efficient neuronal function. Microglia are innate immune cells of the brain that mediate responses to pathogens and injury. They have key roles in phagocytic clearing, surveying the local microenvironment and propagating inflammatory signals. An interruption in homeostasis induces a cascade of conserved adaptive responses in glia. This response involves biochemical, physiological and morphological changes and is associated with the production of cytokines and secondary mediators that influence synaptic plasticity, cognition and behavior. This reorganization of host priorities represents a beneficial response that is normally adaptive but may become maladaptive when the profile of microglia is compromised. For instance, microglia can develop a primed or pro-inflammatory mRNA, protein and morphological profile with aging, traumatic brain injury and neurodegenerative disease. As a result, primed microglia exhibit an exaggerated inflammatory response to secondary and sub-threshold challenges. Consequences of exaggerated inflammatory responses by microglia include the development of cognitive deficits, impaired synaptic plasticity and accelerated neurodegeneration. Moreover, impairments in regulatory systems in these circumstances may make microglia more resistant to negative feedback and important functions of glia can become compromised and dysfunctional. Overall, the purpose of this review is to discuss key concepts of microglial priming and immune-reactivity in the context of aging, traumatic CNS injury and neurodegenerative disease. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Duloxetine Inhibits Microglial P2X4 Receptor Function and Alleviates Neuropathic Pain after Peripheral Nerve Injury.

    Directory of Open Access Journals (Sweden)

    Tomohiro Yamashita

    Full Text Available P2X4 receptors (P2X4R are a family of ATP-gated non-selective cation channels. We previously demonstrated that activation of P2X4R in spinal microglia is crucial for neuropathic pain, a highly debilitating chronic pain condition, suggesting that P2X4R is a potential therapeutic target for treating neuropathic pain. Thus, the identification of a compound that has a potent inhibitory effect on P2X4R is an important clinical challenge. In the present study, we screened a chemical library of clinically approved drugs and show for the first time that duloxetine, a serotonin and noradrenaline reuptake inhibitor, has an inhibitory effect on rodent and human P2X4R. In primary cultured microglial cells, duloxetine also inhibited P2X4R-, but not P2X7R-, mediated responses. Moreover, intrathecal administration of duloxetine in a model of neuropathic pain produced a reversal of nerve injury-induced mechanical allodynia, a cardinal symptom of neuropathic pain. In rats that were pretreated with a serotonin-depleting agent and a noradrenaline neurotoxin, the antiallodynic effect of duloxetine was reduced, but still remained. Based on these results, we suggest that, in addition to duloxetine's primary inhibitory action on serotonin and noradrenaline transporters, an inhibitory effect on P2X4R may be involved at least in part in an antiallodynic effect of intrathecal duloxetine in a model of neuropathic pain.

  6. Intravenous immunglobulin binds beta amyloid and modifies its aggregation, neurotoxicity and microglial phagocytosis in vitro.

    Directory of Open Access Journals (Sweden)

    Susann Cattepoel

    Full Text Available Intravenous Immunoglobulin (IVIG has been proposed as a potential therapeutic for Alzheimer's disease (AD and its efficacy is currently being tested in mild-to-moderate AD. Earlier studies reported the presence of anti-amyloid beta (Aβ antibodies in IVIG. These observations led to clinical studies investigating the potential role of IVIG as a therapeutic agent in AD. Also, IVIG is known to mediate beneficial effects in chronic inflammatory and autoimmune conditions by interfering with various pathological processes. Therefore, we investigated the effects of IVIG and purified polyclonal Aβ-specific antibodies (pAbs-Aβ on aggregation, toxicity and phagocytosis of Aβ in vitro, thus elucidating some of the potential mechanisms of action of IVIG in AD patients. We report that both IVIG and pAbs-Aβ specifically bound to Aβ and inhibited its aggregation in a dose-dependent manner as measured by Thioflavin T assay. Additionally, IVIG and the purified pAbs-Aβ inhibited Aβ-induced neurotoxicity in the SH-SY5Y human neuroblastoma cell line and prevented Aβ binding to rat primary cortical neurons. Interestingly, IVIG and pAbs-Aβ also increased the number of phagocytosing cells as well as the amount of phagocytosed fibrillar Aβ by BV-2 microglia. Phagocytosis of Aβ depended on receptor-mediated endocytosis and was accompanied by upregulation of CD11b expression. Importantly, we could also show that Privigen dose-dependently reversed Aβ-mediated LTP inhibition in mouse hippocampal slices. Therefore, our in vitro results suggest that IVIG may have an impact on different processes involved in AD pathogenesis, thereby promoting further understanding of the effects of IVIG observed in clinical studies.

  7. Quantification of microglial proliferation and apoptosis by flow cytometry

    DEFF Research Database (Denmark)

    Babcock, Alicia A; Wirenfeldt, Martin; Finsen, Bente

    2013-01-01

    Microglia are innate immune cells that survey the central nervous system (CNS) and respond almost immediately to any disturbance in CNS homeostasis. They are derived from primitive yolk sac myeloid progenitors and in the mouse colonize the CNS during fetal development. As a population, microglia...

  8. IFNgamma enhances microglial reactions to hippocampal axonal degeneration

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Lomholt, N D

    2000-01-01

    Glial reactivity is implicated in CNS repair and regenerative responses. Microglia, the cells responding earliest to axonal injury, produce tumor necrosis factor-alpha (TNFalpha), a cytokine with both cytopathic and neuroprotective effects. We have studied activation of hippocampal microglia to p...

  9. Adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) and Nasu-Hakola disease: lesion staging and dynamic changes of axons and microglial subsets.

    Science.gov (United States)

    Oyanagi, Kiyomitsu; Kinoshita, Michiaki; Suzuki-Kouyama, Emi; Inoue, Teruhiko; Nakahara, Asa; Tokiwai, Mika; Arai, Nobutaka; Satoh, Jun-Ichi; Aoki, Naoya; Jinnai, Kenji; Yazawa, Ikuru; Arai, Kimihito; Ishihara, Kenji; Kawamura, Mitsuru; Ishizawa, Keisuke; Hasegawa, Kazuko; Yagisita, Saburo; Amano, Naoji; Yoshida, Kunihiro; Terada, Seishi; Yoshida, Mari; Akiyama, Haruhiko; Mitsuyama, Yoshio; Ikeda, Shu-Ichi

    2017-11-01

    The brains of 10 Japanese patients with adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) encompassing hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) and pigmentary orthochromatic leukodystrophy (POLD) and eight Japanese patients with Nasu-Hakola disease (N-HD) and five age-matched Japanese controls were examined neuropathologically with special reference to lesion staging and dynamic changes of microglial subsets. In both diseases, the pathognomonic neuropathological features included spherically swollen axons (spheroids and globules), axon loss and changes of microglia in the white matter. In ALSP, four lesion stages based on the degree of axon loss were discernible: Stage I, patchy axon loss in the cerebral white matter without atrophy; Stage II, large patchy areas of axon loss with slight atrophy of the cerebral white matter and slight dilatation of the lateral ventricles; Stage III, extensive axon loss in the cerebral white matter and dilatation of the lateral and third ventricles without remarkable axon loss in the brainstem and cerebellum; Stage IV, devastated cerebral white matter with marked dilatation of the ventricles and axon loss in the brainstem and/or cerebellum. Internal capsule and pontine base were relatively well preserved in the N-HD, even at Stage IV, and the swollen axons were larger with a higher density in the ALSP. Microglial cells immunopositive for CD68, CD163 or CD204 were far more obvious in ALSP, than in N-HD, and the shape and density of the cells changed in each stage. With progression of the stage, clinical symptoms became worse to apathetic state, and epilepsy was frequently observed in patients at Stages III and IV in both diseases. From these findings, it is concluded that (i) shape, density and subsets of microglia change dynamically along the passage of stages and (ii) increase of IBA-1-, CD68-, CD163- and CD204-immunopositive cells precedes loss of axons in ALSP. © 2016

  10. Bisphenol A exposure induces increased microglia and microglial related factors in the murine embryonic dorsal telencephalon and hypothalamus.

    Science.gov (United States)

    Takahashi, Mifumi; Komada, Munekazu; Miyazawa, Ken; Goto, Shigemi; Ikeda, Yayoi

    2018-03-01

    Bisphenol A (BPA) is a widely used compound in the food packaging industry. Prenatal exposure to BPA induces histological abnormalities in the neocortex and hypothalamus in association with abnormal behaviors. Yet, the molecular and cellular neurodevelopmental toxicological mechanisms of BPA are incompletely characterized on neuroinflammatory-related endopoints. To evaluate the neurodevelopmental effects of BPA exposure in mouse embryos, we examined microglial numbers as well as the expression of microglial-related factors in the E15.5 embryonic brain. BPA-exposed embryos exhibited significant increases in Iba1-immunoreactive microglial numbers in the dorsal telencephalon and the hypothalamus compared to control embryos. Further, the expression levels of microglial markers (Iba1, CD16, iNOS, and CD206), inflammatory factors (TNFα and IL4), signal transducing molecules (Cx3Cr1 and Cx3Cl1), and neurotrophic factor (IGF1) were altered in BPA-exposed embryos. These findings suggest that BPA exposure increases microglial numbers in the brain and alters the neuroinflammatory status at a transcriptional level. Together, these changes may represent a novel target for neurodevelopmental toxicity assessment after BPA exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Mir143-BBC3 cascade reduces microglial survival via interplay between apoptosis and autophagy: Implications for methamphetamine-mediated neurotoxicity

    Science.gov (United States)

    Zhang, Yuan; Shen, Kai; Bai, Ying; Lv, Xuan; Huang, Rongrong; Zhang, Wei; Chao, Jie; Nguyen, Lan K.; Hua, Jun; Gan, Guangming; Hu, Gang; Yao, Honghong

    2016-01-01

    ABSTRACT BBC3 (BCL2 binding component 3) is a known apoptosis inducer; however, its role in microglial survival remains poorly understood. In addition to the classical transcription factor TRP53, Mir143 is involved in BBC3 expression at the post-transcriptional level. Here, we identify unique roles of Mir143-BBC3 in mediating microglial survival via the regulation of the interplay between apoptosis and autophagy. Autophagy inhibition accelerated methamphetamine-induced apoptosis, whereas autophagy induction attenuated the decrease in microglial survival. Moreover, anti-Mir143-dependent BBC3 upregulation reversed the methamphetamine-induced decrease in microglial survival via the regulation of apoptosis and autophagy. The in vivo relevance of these findings was confirmed in mouse models, which demonstrated that the microinjection of anti-Mir143 into the hippocampus ameliorated the methamphetamine-induced decrease in microglia as well as that observed in heterozygous Mir143+/− mice. These findings provide new insight regarding the specific contributions of Mir143-BBC3 to microglial survival in the context of drug abuse. PMID:27464000

  12. Deficiency of leptin receptor in myeloid cells disrupts hypothalamic metabolic circuits and causes body weight increase

    Directory of Open Access Journals (Sweden)

    Yuanqing Gao

    2018-01-01

    Conclusions: Myeloid cell leptin receptor deficient mice partially replicate the db/db phenotype. Leptin signaling in hypothalamic microglia is important for microglial function and a correct formation of the hypothalamic neuronal circuit regulating metabolism.

  13. Computational Identification of Potential Multi-drug Combinations for Reduction of Microglial Inflammation in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Thomas J. Anastasio

    2015-06-01

    Full Text Available Like other neurodegenerative diseases, Alzheimer Disease (AD has a prominent inflammatory component mediated by brain microglia. Reducing microglial inflammation could potentially halt or at least slow the neurodegenerative process. A major challenge in the development of treatments targeting brain inflammation is the sheer complexity of the molecular mechanisms that determine whether microglia become inflammatory or take on a more neuroprotective phenotype. The process is highly multifactorial, raising the possibility that a multi-target/multi-drug strategy could be more effective than conventional monotherapy. This study takes a computational approach in finding combinations of approved drugs that are potentially more effective than single drugs in reducing microglial inflammation in AD. This novel approach exploits the distinct advantages of two different computer programming languages, one imperative and the other declarative. Existing programs written in both languages implement the same model of microglial behavior, and the input/output relationships of both programs agree with each other and with data on microglia over an extensive test battery. Here the imperative program is used efficiently to screen the model for the most efficacious combinations of 10 drugs, while the declarative program is used to analyze in detail the mechanisms of action of the most efficacious combinations. Of the 1024 possible drug combinations, the simulated screen identifies only 7 that are able to move simulated microglia at least 50% of the way from a neurotoxic to a neuroprotective phenotype. Subsequent analysis shows that of the 7 most efficacious combinations, 2 stand out as superior both in strength and reliability. The model offers many experimentally testable and therapeutically relevant predictions concerning effective drug combinations and their mechanisms of action.

  14. Computational identification of potential multi-drug combinations for reduction of microglial inflammation in Alzheimer disease.

    Science.gov (United States)

    Anastasio, Thomas J

    2015-01-01

    Like other neurodegenerative diseases, Alzheimer Disease (AD) has a prominent inflammatory component mediated by brain microglia. Reducing microglial inflammation could potentially halt or at least slow the neurodegenerative process. A major challenge in the development of treatments targeting brain inflammation is the sheer complexity of the molecular mechanisms that determine whether microglia become inflammatory or take on a more neuroprotective phenotype. The process is highly multifactorial, raising the possibility that a multi-target/multi-drug strategy could be more effective than conventional monotherapy. This study takes a computational approach in finding combinations of approved drugs that are potentially more effective than single drugs in reducing microglial inflammation in AD. This novel approach exploits the distinct advantages of two different computer programming languages, one imperative and the other declarative. Existing programs written in both languages implement the same model of microglial behavior, and the input/output relationships of both programs agree with each other and with data on microglia over an extensive test battery. Here the imperative program is used efficiently to screen the model for the most efficacious combinations of 10 drugs, while the declarative program is used to analyze in detail the mechanisms of action of the most efficacious combinations. Of the 1024 possible drug combinations, the simulated screen identifies only 7 that are able to move simulated microglia at least 50% of the way from a neurotoxic to a neuroprotective phenotype. Subsequent analysis shows that of the 7 most efficacious combinations, 2 stand out as superior both in strength and reliability. The model offers many experimentally testable and therapeutically relevant predictions concerning effective drug combinations and their mechanisms of action.

  15. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    International Nuclear Information System (INIS)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng; Wang, Yixin; Wei, Ling; Liu, Yutong; Liao, Jieying; Gao, Hui-Ming; Zhou, Hui

    2017-01-01

    Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPH oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 μg/cm 2 induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 μg/cm 2 ) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91 phox , p47 phox and p40 phox ); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47 phox and p67 phox translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to oxidative damage to DA neurons. Our

  16. Microglial phagocytosis/apoptosis uncoupling in epilepsy: mechanisms and detrimental consequences

    OpenAIRE

    Abiega Etxabe, Oihane

    2017-01-01

    174 p. La microglía es la célula inmune y el fagocito profesional del cerebro. La microglía es la encargada de fagocitar las células que mueren en el cerebro por apoptosis, o muerte programada. La fagocitosis de estas células es un proceso clave para mantener la salud del tejido nervioso. En condiciones fisiológicas, la fagocitosis microglial es un proceso muy rápido y eficaz. No obstante, el proceso fagocítico, sus mecanismos de regulación y sus consecuencias para el tejido siguen siendo ...

  17. Microglial activation induced by brain trauma is suppressed by post-injury treatment with a PARP inhibitor

    Directory of Open Access Journals (Sweden)

    d'Avila Joana C

    2012-02-01

    Full Text Available Abstract Background Traumatic brain injury (TBI induces activation of microglia. Activated microglia can in turn increase secondary injury and impair recovery. This innate immune response requires hours to days to become fully manifest, thus providing a clinically relevant window of opportunity for therapeutic intervention. Microglial activation is regulated in part by poly(ADP-ribose polymerase-1 (PARP-1. Inhibition of PARP-1 activity suppresses NF-kB-dependent gene transcription and thereby blocks several aspects of microglial activation. Here we evaluated the efficacy of a PARP inhibitor, INO-1001, in suppressing microglial activation after cortical impact in the rat. Methods Rats were subjected to controlled cortical impact and subsequently treated with 10 mg/kg of INO-1001 (or vehicle alone beginning 20 - 24 hours after the TBI. Brains were harvested at several time points for histological evaluation of inflammation and neuronal survival, using markers for microglial activation (morphology and CD11b expression, astrocyte activation (GFAP, and neuronal survival (NeuN. Rats were also evaluated at 8 weeks after TBI using measures of forelimb dexterity: the sticky tape test, cylinder test, and vermicelli test. Results Peak microglial and astrocyte activation was observed 5 to 7 days after this injury. INO-1001 significantly reduced microglial activation in the peri-lesion cortex and ipsilateral hippocampus. No rebound inflammation was observed in rats that were treated with INO-1001 or vehicle for 12 days followed by 4 days without drug. The reduced inflammation was associated with increased neuronal survival in the peri-lesion cortex and improved performance on tests of forelimb dexterity conducted 8 weeks after TBI. Conclusions Treatment with a PARP inhibitor for 12 days after TBI, with the first dose given as long as 20 hours after injury, can reduce inflammation and improve histological and functional outcomes.

  18. Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection.

    Science.gov (United States)

    Egea, Javier; Buendia, Izaskun; Parada, Esther; Navarro, Elisa; León, Rafael; Lopez, Manuela G

    2015-10-15

    Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system, being expressed in neurons and non-neuronal cells, where they participate in a variety of physiological responses like memory, learning, locomotion, attention, among others. We will focus on the α7 nAChR subtype, which has been implicated in neuroprotection, synaptic plasticity and neuronal survival, and is considered as a potential therapeutic target for several neurological diseases. Oxidative stress and neuroinflammation are currently considered as two of the most important pathological mechanisms common in neurodegenerative diseases such as Alzheimer, Parkinson or Huntington diseases. In this review, we will first analysed the distribution and expression of nAChR in mammalian brain. Then, we focused on the function of the α7 nAChR subtype in neuronal and non-neuronal cells and its role in immune responses (cholinergic anti-inflammatory pathway). Finally, we will revise the anti-inflammatory pathway promoted via α7 nAChR activation that is related to recruitment and activation of Jak2/STAT3 pathway, which on the one hand inhibits NF-κB nuclear translocation, and on the other hand, activates the master regulator of oxidative stress Nrf2/HO-1. This review provides a profound insight into the role of the α7 nAChR subtype in microglia and point out to microglial α7/HO-1 pathway as an anti-inflammatory therapeutic target. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Evaluation of CLINDE as potent translocator protein (18 kDa) SPECT radiotracer reflecting the degree of neuroinflammation in a rat model of microglial activation

    Energy Technology Data Exchange (ETDEWEB)

    Arlicot, Nicolas; Duval, Stephanie; Guilloteau, Denis; Chalon, Sylvie [Inserm, U930, Tours (France); Universite Francois Rabelais, Tours (France); CHRU de Tours, Tours (France); Katsifis, Andrew; Mattner, Filomena [Australian Nuclear Science and Technology Organisation, Radiopharmaceuticals Research Institute, Sydney (Australia); Garreau, Lucette; Vergote, Jackie; Bodard, Sylvie [Inserm, U930, Tours (France); Universite Francois Rabelais, Tours (France)

    2008-12-15

    The translocator protein (TSPO; 18 kDa), the new name of the peripheral-type benzodiazepine receptor, is localised in mitochondria of glial cells and expressed in very low concentrations in normal brain. Their expression rises after microglial activation following brain injury. Accordingly, TSPO are potential targets to evaluate neuroinflammatory changes in a variety of CNS disorders. To date, only a few effective tools are available to explore TSPO by SPECT. We characterised here 6-chloro-2-(4'iodophenyl)-3-(N,N-diethyl)-imidazo[1,2-a]pyridine-3-acetamide or CLINDE in a rat model with different stages of excitotoxic lesion. Excitotoxicity was induced in male Wistar rats by unilateral intrastriatal injection of different amounts of quinolinic acid (75, 150 or 300 nmol). Six days later, two groups of rats (n = 5-6/group) were i.v. injected with [{sup 125}I]-CLINDE (0.4 MBq); one group being pre-injected with PK11195 (5 mg/kg). Brains were removed 30 min after tracer injection and the radioactivity of cerebral areas measured. Complementary ex vivo autoradiography, in vitro autoradiography ([{sup 3}H]-PK11195) and immunohistochemical studies (OX-42) were performed on brain sections. In the control group, [{sup 125}I]-CLINDE binding was significantly higher (p < 0.001) in lesioned than that in intact side. This binding disappeared in rats pre-treated with PK11195 (p<0.001), showing specific binding of CLINDE to TSPO. Ex vivo and in vitro autoradiographic studies and immunohistochemistry were consistent with this, revealing a spatial correspondence between radioactivity signal and activated microglia. Regression analysis yielded a positive relation between the ligand binding and the degree of neuroinflammation. These results demonstrate that CLINDE is suitable for TSPO in vivo SPECT imaging to explore their involvement in neurodegenerative disorders associated with microglial activation. (orig.)

  20. Does microglial dysfunction play a role in autism and Rett syndrome?

    Science.gov (United States)

    Maezawa, Izumi; Calafiore, Marco; Wulff, Heike; Jin, Lee-Way

    2011-02-01

    Autism spectrum disorders (ASDs) including classic autism is a group of complex developmental disabilities with core deficits of impaired social interactions, communication difficulties and repetitive behaviors. Although the neurobiology of ASDs has attracted much attention in the last two decades, the role of microglia has been ignored. Existing data are focused on their recognized role in neuroinflammation, which only covers a small part of the pathological repertoire of microglia. This review highlights recent findings on the broader roles of microglia, including their active surveillance of brain microenvironments and regulation of synaptic connectivity, maturation of brain circuitry and neurogenesis. Emerging evidence suggests that microglia respond to pre- and postnatal environmental stimuli through epigenetic interface to change gene expression, thus acting as effectors of experience-dependent synaptic plasticity. Impairments of these microglial functions could substantially contribute to several major etiological factors of autism, such as environmental toxins and cortical underconnectivity. Our recent study on Rett syndrome, a syndromic autistic disorder, provides an example that intrinsic microglial dysfunction due to genetic and epigenetic aberrations could detrimentally affect the developmental trajectory without evoking neuroinflammation. We propose that ASDs provide excellent opportunities to study the influence of microglia on neurodevelopment, and this knowledge could lead to novel therapies.

  1. Does microglial dysfunction play a role in autism and Rett syndrome?

    Science.gov (United States)

    MAEZAWA, IZUMI; CALAFIORE, MARCO; WULFF, HEIKE; JIN, LEE-WAY

    2016-01-01

    Autism spectrum disorders (ASDs) including classic autism is a group of complex developmental disabilities with core deficits of impaired social interactions, communication difficulties and repetitive behaviors. Although the neurobiology of ASDs has attracted much attention in the last two decades, the role of microglia has been ignored. Existing data are focused on their recognized role in neuroinflammation, which only covers a small part of the pathological repertoire of microglia. This review highlights recent findings on the broader roles of microglia, including their active surveillance of brain microenvironments and regulation of synaptic connectivity, maturation of brain circuitry and neurogenesis. Emerging evidence suggests that microglia respond to pre- and postnatal environmental stimuli through epigenetic interface to change gene expression, thus acting as effectors of experience-dependent synaptic plasticity. Impairments of these microglial functions could substantially contribute to several major etiological factors of autism, such as environmental toxins and cortical underconnectivity. Our recent study on Rett syndrome, a syndromic autistic disorder, provides an example that intrinsic microglial dysfunction due to genetic and epigenetic aberrations could detrimentally affect the developmental trajectory without evoking neuroinflammation. We propose that ASDs provide excellent opportunities to study the influence of microglia on neurodevelopment, and this knowledge could lead to novel therapies. PMID:22717189

  2. Piper sarmentosum Roxb. confers neuroprotection on beta-amyloid (Aβ)-induced microglia-mediated neuroinflammation and attenuates tau hyperphosphorylation in SH-SY5Y cells.

    Science.gov (United States)

    Yeo, Emilia Tze Ying; Wong, Kelly Wang Ling; See, Mun Ling; Wong, Ka Yan; Gan, Sook Yee; Chan, Elaine Wan Ling

    2018-05-10

    Piper sarmentosum Roxb. (PS), belonging to Piperaceae family, is an edible plant with medicinal properties. It is traditionally used by the Malays to treat headache and boost memory. Pharmacological studies revealed that PS exhibits anti-inflammatory, anti-oxidant, anti-acetylcholinesterase, and anti-depressant-like effects. In view of this, the present study aimed to investigate the anti-inflammatory actions of PS and its potential neuroprotective effects against beta-amyloid (Aβ)-induced microglia-mediated neurotoxicity. The inhibitory effects of hexane (L HXN ), dichloromethane (L DCM ), ethyl acetate (L EA ) and methanol (L MEOH ) extracts from leaves of PS on Aβ-induced production and mRNA expression of pro-inflammatory mediators in BV-2 microglial cells were assessed using colorimetric assay with Griess reagent, ELISA kit and real-time RT-PCR respectively. Subsequently, MTT reduction assay was used to evaluate the neuroprotective effects of PS leaf extracts against Aβ-induced microglia-mediated neurotoxicity in SH-SY5Y neuroblastoma cells. The levels of tau proteins phosphorylated at threonine 231 (pT231) and total tau proteins (T-tau) were determined using ELISA kits. Polar extracts of PS leaves (L EA and L MEOH ) reduced the Aβ-induced secretion of pro-inflammatory cytokines (IL-1β and TNF-α) in BV-2 cells by downregulating the mRNA expressions of pro-inflammatory cytokines. The inhibition of nitric oxide (NO) production could be due to the free radical scavenging activity of the extracts. In addition, conditioned media from Aβ-induced BV-2 cells pre-treated with L EA and L MEOH protected SH-SY5Y cells against microglia-mediated neurotoxicity. Further mechanistic study suggested that the neuroprotective effects were associated with the downregulation of phosphorylated tau proteins. The present study suggests that polar extracts of PS leaves confer neuroprotection against Aβ-induced microglia-mediated neurotoxicity in SH-SY5Y cells by attenuating tau

  3. Microglial imaging with positron emission tomography and atrophy measurements with magnetic resonance imaging in multiple sclerosis : a correlative study

    NARCIS (Netherlands)

    Versijpt, J; Debruyne, JC; Van Laere, KJ; De Vos, F; Keppens, J; Strijckmans, K; Achten, E; Slegers, G; Dierckx, RA; Korf, J; De Reuck, JL

    2005-01-01

    Objective: The objectives of the present study were to assess brain atrophy in multiple sclerosis (MS) patients during different disease stages and to investigate by PET and [C-11]PK11195, a marker of microglial activation, the relationship between inflammation, atrophy and clinically relevant

  4. Minocycline, a microglial inhibitor, blocks spinal CCL2-induced heat hyperalgesia and augmentation of glutamatergic transmission in substantia gelatinosa neurons.

    Science.gov (United States)

    Huang, Chung-Yu; Chen, Ying-Ling; Li, Allen H; Lu, Juu-Chin; Wang, Hung-Li

    2014-01-10

    Several lines of evidence suggest that CCL2 could initiate the hyperalgesia of neuropathic pain by causing central sensitization of spinal dorsal horn neurons and facilitating nociceptive transmission in the spinal dorsal horn. The cellular and molecular mechanisms by which CCL2 enhances spinal pain transmission and causes hyperalgesia remain unknown. The substantia gelatinosa (lamina II) of the spinal dorsal horn plays a critical role in nociceptive transmission. An activated spinal microglia, which is believed to release pro-inflammatory cytokines including TNF-α, plays an important role in the development of neuropathic pain, and CCL2 is a key mediator for spinal microglia activation. In the present study, we tested the hypothesis that spinal CCL2 causes the central sensitization of substantia gelatinosa neurons and enhances spinal nociceptive transmission by activating the spinal microglia and augmenting glutamatergic transmission in lamina II neurons. CCL2 was intrathecally administered to 2-month-old male rats. An intrathecal injection of CCL2 induced heat hyperalgesia, which was assessed using the hot plate test. Whole-cell voltage-clamp recordings substantia gelatinosa neurons in spinal cord slices were performed to record glutamatergic excitatory postsynaptic currents (EPSCs) and GABAergic inhibitory postsynaptic currents (IPSCs). The hot plate test showed that 1 day after the intrathecal injection of CCL2 (1 μg), the latency of hind-paw withdrawal caused by a heat stimulus was significantly reduced in rats. One day after the intrathecal administration of CCL2, the amplitude of the evoked glutamatergic EPSCs and the frequency of spontaneous glutamatergic miniature EPSCs (mEPSCs) were significantly increased in outer lamina II neurons. Intrathecal co-injection of minocycline, a specific inhibitor of microglial activation, and CCL2 blocked the CCL2-induced reduction in the latency of hind-paw withdrawal and thermal hyperalgesia. Following intrathecal co

  5. Neuronal precursor cell proliferation in the hippocampus after transient cerebral ischemia: a comparative study of two rat strains using stereological tools

    DEFF Research Database (Denmark)

    Kelsen, Jesper; Larsen, Marianne; Sørensen, Jens Christian H.

    2010-01-01

    We are currently investigating microglial activation and neuronal precursor cell (NPC) proliferation after transient middle cerebral artery occlusion (tMCAo) in rats. This study aimed: (1) to investigate differences in hippocampal NPC proliferation in outbred male spontaneously hypertensive rats...

  6. Neuronal precursor cell proliferation in the hippocampus after transient cerebral ischemia: a comparative study of two rat strains using stereological tools

    DEFF Research Database (Denmark)

    Kelsen, Jesper; Larsen, Marianne; Sørensen, Jens Christian H.

    2010-01-01

    We are currently investigating microglial activation and neuronal precursor cell (NPC) proliferation after transient middle cerebral artery occlusion (tMCAo) in rats. This study aimed: (1) to investigate differences in hippocampal NPC proliferation in outbred male spontaneously hypertensive rats ...

  7. Attenuation of Neuroinflammatory Responses in Lipopolysaccharide ...

    African Journals Online (AJOL)

    HP

    neuroinflammatory responses induced by lipopolysaccharide (LPS) in BV-2 microglial cells and its antioxidant effects. Methods: Biochemical studies ... [2] and as an anti-aging agent in cosmeceuticals [4]. However, its pharmacological actions on ... in LPS-stimulated BV-2 microglia and explored the possible mechanism.

  8. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation.

    Science.gov (United States)

    Pelletier, Simon J; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin; Cicchetti, Francesca

    2014-12-07

    The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  9. Cyanotoxins at low doses induce apoptosis and inflammatory effects in murine brain cells: Potential implications for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Larissa Takser

    2016-01-01

    Full Text Available Cyanotoxins have been shown to be highly toxic for mammalian cells, including brain cells. However, little is known about their effect on inflammatory pathways. This study investigated whether mammalian brain and immune cells can be a target of certain cyanotoxins, at doses approximating those in the guideline levels for drinking water, either alone or in mixtures. We examined the effects on cellular viability, apoptosis and inflammation signalling of several toxins on murine macrophage-like RAW264.7, microglial BV-2 and neuroblastoma N2a cell lines. We tested cylindrospermopsin (CYN, microcystin-LR (MC-LR, and anatoxin-a (ATX-a, individually as well as their mixture. In addition, we studied the neurotoxins β-N-methylamino-l-alanine (BMAA and its isomer 2,4-diaminobutyric acid (DAB, as well as the mixture of both. Cellular viability was determined by the MTT assay. Apoptosis induction was assessed by measuring the activation of caspases 3/7. Cell death and inflammation are the hallmarks of neurodegenerative diseases. Thus, our final step was to quantify the expression of a major proinflammatory cytokine TNF-α by ELISA. Our results show that CYN, MC-LR and ATX-a, but not BMAA and DAB, at low doses, especially when present in a mixture at threefold less concentrations than individual compounds are 3–15 times more potent at inducing apoptosis and inflammation. Our results suggest that common cyanotoxins at low doses have a potential to induce inflammation and apoptosis in immune and brain cells. Further research of the neuroinflammatory effects of these compounds in vivo is needed to improve safety limit levels for cyanotoxins in drinking water and food.

  10. Rod-like microglia are restricted to eyes with laser-induced ocular hypertension but absent from the microglial changes in the contralateral untreated eye.

    Directory of Open Access Journals (Sweden)

    Rosa de Hoz

    Full Text Available In the mouse model of unilateral laser-induced ocular hypertension (OHT the microglia in both the treated and the normotensive untreated contralateral eye have morphological signs of activation and up-regulation of MHC-II expression in comparison with naïve. In the brain, rod-like microglia align to less-injured neurons in an effort to limit damage. We investigate whether: i microglial activation is secondary to laser injury or to a higher IOP and; ii the presence of rod-like microglia is related to OHT. Three groups of mice were used: age-matched control (naïve, n=15; and two lasered: limbal (OHT, n=15; and non-draining portion of the sclera (scleral, n=3. In the lasered animals, treated eyes as well as contralateral eyes were analysed. Retinal whole-mounts were immunostained with antibodies against, Iba-1, NF-200, MHC-II, CD86, CD68 and Ym1. In the scleral group (normal ocular pressure no microglial signs of activation were found. Similarly to naïve eyes, OHT-eyes and their contralateral eyes had ramified microglia in the nerve-fibre layer related to the blood vessel. However, only eyes with OHT had rod-like microglia that aligned end-to-end, coupling to form trains of multiple cells running parallel to axons in the retinal surface. Rod-like microglia were CD68+ and were related to retinal ganglion cells (RGCs showing signs of degeneration (NF-200+RGCs. Although MHC-II expression was up-regulated in the microglia of the NFL both in OHT-eyes and their contralateral eyes, no expression of CD86 and Ym1 was detected in ramified or in rod-like microglia. After 15 days of unilateral lasering of the limbal and the non-draining portion of the sclera, activated microglia was restricted to OHT-eyes and their contralateral eyes. However, rod-like microglia were restricted to eyes with OHT and degenerated NF-200+RGCs and were absent from their contralateral eyes. Thus, rod-like microglia seem be related to the neurodegeneration associated with HTO.

  11. Microglial CX3CR1 promotes adult neurogenesis by inhibiting Sirt 1/p65 signaling independent of CX3CL1.

    Science.gov (United States)

    Sellner, Sabine; Paricio-Montesinos, Ricardo; Spieß, Alena; Masuch, Annette; Erny, Daniel; Harsan, Laura A; Elverfeldt, Dominik V; Schwabenland, Marius; Biber, Knut; Staszewski, Ori; Lira, Sergio; Jung, Steffen; Prinz, Marco; Blank, Thomas

    2016-09-17

    Homo and heterozygote cx3cr1 mutant mice, which harbor a green fluorescent protein (EGFP) in their cx3cr1 loci, represent a widely used animal model to study microglia and peripheral myeloid cells. Here we report that microglia in the dentate gyrus (DG) of cx3cr1 (-/-) mice displayed elevated microglial sirtuin 1 (SIRT1) expression levels and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) p65 activation, despite unaltered morphology when compared to cx3cr1 (+/-) or cx3cr1 (+/+) controls. This phenotype was restricted to the DG and accompanied by reduced adult neurogenesis in cx3cr1 (-/-) mice. Remarkably, adult neurogenesis was not affected by the lack of the CX3CR1-ligand, fractalkine (CX3CL1). Mechanistically, pharmacological activation of SIRT1 improved adult neurogenesis in the DG together with an enhanced performance of cx3cr1 (-/-) mice in a hippocampus-dependent learning and memory task. The reverse condition was induced when SIRT1 was inhibited in cx3cr1 (-/-) mice, causing reduced adult neurogenesis and lowered hippocampal cognitive abilities. In conclusion, our data indicate that deletion of CX3CR1 from microglia under resting conditions modifies brain areas with elevated cellular turnover independent of CX3CL1.

  12. Donepezil improves learning and memory deficits in APP/PS1 mice by inhibition of microglial activation.

    Science.gov (United States)

    Guo, H B; Cheng, Y F; Wu, J G; Wang, C M; Wang, H T; Zhang, C; Qiu, Z K; Xu, J P

    2015-04-02

    Donepezil, a cholinesterase inhibitor, is a representative symptomatic therapy for Alzheimer's disease (AD). Recent studies have reported the anti-inflammatory effects of donepezil. However, limited studies that investigate its anti-inflammatory effect in AD have been reported. Considering the role of proinflammatory molecules and microglial activation in the pathogenesis of AD, the current study aimed to elucidate the effects of donepezil on microglial activation induced by amyloid deposition in transgenic mice. Our results showed that chronic treatment with donepezil significantly improved the cognitive function in the novel object recognition test and Morris water maze test in amyloid precursor protein (APP)/presenilin-1 (PS1) transgenic mice. We further demonstrated that these cognitive enhancements were related to the anti-inflammatory effect of donepezil. We found that donepezil could inhibit the expression of CD68, a specific marker of microglial activation, and reduce the release of proinflammatory cytokines including tumor necrosis factor-α and interleukin-1β. Immunohistochemistry and Congo red co-staining revealed that congophilic amyloid and activated microglia around plaques were also reduced by donepezil treatment. Enzyme-linked immunosorbent assay (ELISA) analysis showed that donepezil decreased insoluble Aβ40/Aβ42 and soluble Aβ40 levels. Moreover, donepezil reversed the impaired expression of insulin-degrading enzyme in the hippocampus of APP/PS1 mice. Our findings indicated that donepezil improves cognitive deficits in APP/PS1 mice by a mechanism that may be associated with its inhibition of microglial activation and release of proinflammatory cytokines. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Stereological estimation of microglial and neuronal cell numbers in Alzheimer's disease and control brains

    DEFF Research Database (Denmark)

    Finsen, Bente; larsen, Anders Elm; Babcock, Alicia

    2017-01-01

    Lactate plays a significant role as an energy supply for neurons and has a neuroprotective effect in hypoglycemia and ischemia (1±5). Further, oligodendrocytes can use lactate for myelination when glucose levels are low. New studies suggest that lactate is not only a metabolic fuel but also a sig...

  14. Carbon monoxide reduces neuropathic pain and spinal microglial activation by inhibiting nitric oxide synthesis in mice.

    Directory of Open Access Journals (Sweden)

    Arnau Hervera

    Full Text Available Carbon monoxide (CO synthesized by heme oxygenase 1 (HO-1 exerts antinociceptive effects during inflammation but its role during neuropathic pain remains unknown. Our objective is to investigate the exact contribution of CO derived from HO-1 in the modulation of neuropathic pain and the mechanisms implicated.We evaluated the antiallodynic and antihyperalgesic effects of CO following sciatic nerve injury in wild type (WT or inducible nitric oxide synthase knockout (NOS2-KO mice using two carbon monoxide-releasing molecules (CORM-2 and CORM-3 and an HO-1 inducer (cobalt protoporphyrin IX, CoPP daily administered from days 10 to 20 after injury. The effects of CORM-2 and CoPP on the expression of HO-1, heme oxygenase 2 (HO-2, neuronal nitric oxide synthase (NOS1 and NOS2 as well as a microglial marker (CD11b/c were also assessed at day 20 after surgery in WT and NOS2-KO mice. In WT mice, the main neuropathic pain symptoms induced by nerve injury were significantly reduced in a time-dependent manner by treatment with CO-RMs or CoPP. Both CORM-2 and CoPP treatments increased HO-1 expression in WT mice, but only CoPP stimulated HO-1 in NOS2-KO animals. The increased expression of HO-2 induced by nerve injury in WT, but not in NOS2-KO mice, remains unaltered by CORM-2 or CoPP treatments. In contrast, the over-expression of CD11b/c, NOS1 and NOS2 induced by nerve injury in WT, but not in NOS2-KO mice, were significantly decreased by both CORM-2 and CoPP treatments. These data indicate that CO alleviates neuropathic pain through the reduction of spinal microglial activation and NOS1/NOS2 over-expression.This study reports that an interaction between the CO and nitric oxide (NO systems is taking place following sciatic nerve injury and reveals that increasing the exogenous (CO-RMs or endogenous (CoPP production of CO may represent a novel strategy for the treatment of neuropathic pain.

  15. Evaluation of C.L.I.N.D.E. as potent peripheral-type benzodiazepine receptor tracer in a rat model of micro-glial activation

    Energy Technology Data Exchange (ETDEWEB)

    Arlicot, N.; Guilloteau, D.; Chalon, S. [Institut National de la Sante et de la Recherche Medicale (INSERM), U619, 37 - Tours (France); Universite Francois Rabelais de Tours, 37 (France); Katsifis, A.; Mattner, F. [ANSTO, Sydney (Australia)

    2008-02-15

    The peripheral-type benzodiazepine receptors (P.B.R.) are localized in mitochondria of glial cells and are very low expressed in normal brain. Their expression rises after micro-glial activation consecutive to brain injury. Accordingly, P.B.R. are potential targets to evaluate neuro inflammatory changes in a variety of C.N.S. disorders. To date no effective tool is available to explore P.B.R. by SPECT. We characterized here 6-chloro-2-(4 iodophenyl)-3-(N,N-diethyl)-imidazo[1,2-a]pyridine- 3-acetamide, C.L.I.N.D.E., in a rat model of excitotoxic lesion. Excitotoxicity was induced in male Wistar rats by unilateral intra striatal injection of different amounts of quinolinic acid (Q.A.: 75, 150 or 300 nmol). One week later, 2 groups of rats (n = 5-6/group) were i.v. injected with [{sup 125}I]-C.L.I.N.D.E. (0.4 MBq), one group being pre-injected with P.K.11195 (5 mg/kg). Brains were removed 30 min after tracer injection and the radioactivity of cerebral areas measured. Complementary ex vivo autoradiography and immunohistochemical studies using O.X.-42 were performed on brain sections In the control group, [{sup 125}I]-C.L.I.N.D.E. binding was significantly higher ( p < 0.001) in lesioned than that in intact side (striatum: 0.552 {+-} 0.109 vs. 0.123 {+-} 0.012% I.D./g tissue; cortex: 0.385 {+-} 0.126 vs. 0.131 {+-} 0.007% with 300 nmol Q.A.). This binding disappeared in rats pretreated with P.K.11195 ( p < 0.001), showing specific binding of C.L.I.N.D.E. to P.B.R.. Ex vivo autoradiography and immunohistochemistry were consistent with this, revealing a spatial correspondence between radioactivity signal and activated micro-glia. Regression analysis yielded a significant correlation ( p < 0.001) between the ligand binding and the dose of Q.A.. These results demonstrate that C.L.I.N.D.E. is suitable for P.B.R. in vivo SPECT imaging to explore their involvement in neuro degenerative disorders associated with micro-glial activation. (authors)

  16. Evaluation of C.L.I.N.D.E. as potent peripheral-type benzodiazepine receptor tracer in a rat model of micro-glial activation

    International Nuclear Information System (INIS)

    Arlicot, N.; Guilloteau, D.; Chalon, S.; Katsifis, A.; Mattner, F.

    2008-01-01

    The peripheral-type benzodiazepine receptors (P.B.R.) are localized in mitochondria of glial cells and are very low expressed in normal brain. Their expression rises after micro-glial activation consecutive to brain injury. Accordingly, P.B.R. are potential targets to evaluate neuro inflammatory changes in a variety of C.N.S. disorders. To date no effective tool is available to explore P.B.R. by SPECT. We characterized here 6-chloro-2-(4 iodophenyl)-3-(N,N-diethyl)-imidazo[1,2-a]pyridine- 3-acetamide, C.L.I.N.D.E., in a rat model of excitotoxic lesion. Excitotoxicity was induced in male Wistar rats by unilateral intra striatal injection of different amounts of quinolinic acid (Q.A.: 75, 150 or 300 nmol). One week later, 2 groups of rats (n = 5-6/group) were i.v. injected with [ 125 I]-C.L.I.N.D.E. (0.4 MBq), one group being pre-injected with P.K.11195 (5 mg/kg). Brains were removed 30 min after tracer injection and the radioactivity of cerebral areas measured. Complementary ex vivo autoradiography and immunohistochemical studies using O.X.-42 were performed on brain sections In the control group, [ 125 I]-C.L.I.N.D.E. binding was significantly higher ( p < 0.001) in lesioned than that in intact side (striatum: 0.552 ± 0.109 vs. 0.123 ± 0.012% I.D./g tissue; cortex: 0.385 ± 0.126 vs. 0.131 ± 0.007% with 300 nmol Q.A.). This binding disappeared in rats pretreated with P.K.11195 ( p < 0.001), showing specific binding of C.L.I.N.D.E. to P.B.R.. Ex vivo autoradiography and immunohistochemistry were consistent with this, revealing a spatial correspondence between radioactivity signal and activated micro-glia. Regression analysis yielded a significant correlation ( p < 0.001) between the ligand binding and the dose of Q.A.. These results demonstrate that C.L.I.N.D.E. is suitable for P.B.R. in vivo SPECT imaging to explore their involvement in neuro degenerative disorders associated with micro-glial activation. (authors)

  17. Characterization of Macrophage/Microglial Activation and Effect of Photobiomodulation in the Spared Nerve Injury Model of Neuropathic Pain.

    Science.gov (United States)

    Kobiela Ketz, Ann; Byrnes, Kimberly R; Grunberg, Neil E; Kasper, Christine E; Osborne, Lisa; Pryor, Brian; Tosini, Nicholas L; Wu, Xingjia; Anders, Juanita J

    2017-05-01

    Neuropathic pain is common and debilitating with limited effective treatments. Macrophage/microglial activation along ascending somatosensory pathways following peripheral nerve injury facilitates neuropathic pain. However, polarization of macrophages/microglia in neuropathic pain is not well understood. Photobiomodulation treatment has been used to decrease neuropathic pain, has anti-inflammatory effects in spinal injury and wound healing models, and modulates microglial polarization in vitro. Our aim was to characterize macrophage/microglia response after peripheral nerve injury and modulate the response with photobiomodulation. Adult male Sprague-Dawley rats were randomly assigned to sham (N = 13), spared nerve injury (N = 13), or injury + photobiomodulation treatment groups (N = 7). Mechanical hypersensitivity was assessed with electronic von Frey. Photobiomodulation (980 nm) was applied to affected hind paw (output power 1 W, 20 s, 41cm above skin, power density 43.25 mW/cm 2 , dose 20 J), dorsal root ganglia (output power 4.5W, 19s, in skin contact, power density 43.25 mW/cm 2 , dose 85.5 J), and spinal cord regions (output power 1.5 W, 19s, in skin contact, power density 43.25 mW/cm 2 , dose 28.5 J) every other day from day 7-30 post-operatively. Immunohistochemistry characterized macrophage/microglial activation. Injured groups demonstrated mechanical hypersensitivity 1-30 days post-operatively. Photobiomodulation-treated animals began to recover after two treatments; at day 26, mechanical sensitivity reached baseline. Peripheral nerve injury caused region-specific macrophages/microglia activation along spinothalamic and dorsal-column medial lemniscus pathways. A pro-inflammatory microglial marker was expressed in the spinal cord of injured rats compared to photobiomodulation-treated and sham group. Photobiomodulation-treated dorsal root ganglion macrophages expressed anti-inflammatory markers. Photobiomodulation effectively reduced

  18. Microglial Phagocytosis and Its Regulation: A Therapeutic Target in Parkinson’s Disease?

    Directory of Open Access Journals (Sweden)

    Elzbieta Janda

    2018-04-01

    Full Text Available The role of phagocytosis in the neuroprotective function of microglia has been appreciated for a long time, but only more recently a dysregulation of this process has been recognized in Parkinson’s disease (PD. Indeed, microglia play several critical roles in central nervous system (CNS, such as clearance of dying neurons and pathogens as well as immunomodulation, and to fulfill these complex tasks they engage distinct phenotypes. Regulation of phenotypic plasticity and phagocytosis in microglia can be impaired by defects in molecular machinery regulating critical homeostatic mechanisms, including autophagy. Here, we briefly summarize current knowledge on molecular mechanisms of microglia phagocytosis, and the neuro-pathological role of microglia in PD. Then we focus more in detail on the possible functional role of microglial phagocytosis in the pathogenesis and progression of PD. Evidence in support of either a beneficial or deleterious role of phagocytosis in dopaminergic degeneration is reported. Altered expression of target-recognizing receptors and lysosomal receptor CD68, as well as the emerging determinant role of α-synuclein (α-SYN in phagocytic function is discussed. We finally discuss the rationale to consider phagocytic processes as a therapeutic target to prevent or slow down dopaminergic degeneration.

  19. Microglial KCa3.1 Channels as a Potential Therapeutic Target for Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Izumi Maezawa

    2012-01-01

    Full Text Available There exists an urgent need for new target discovery to treat Alzheimer’s disease (AD; however, recent clinical trials based on anti-Aβ and anti-inflammatory strategies have yielded disappointing results. To expedite new drug discovery, we propose reposition targets which have been previously pursued by both industry and academia for indications other than AD. One such target is the calcium-activated potassium channel KCa3.1 (KCNN4, which in the brain is primarily expressed in microglia and is significantly upregulated when microglia are activated. We here review the existing evidence supporting that KCa3.1 inhibition could block microglial neurotoxicity without affecting their neuroprotective phagocytosis activity and without being broadly immunosuppressive. The anti-inflammatory and neuroprotective effects of KCa3.1 blockade would be suitable for treating AD as well as cerebrovascular and traumatic brain injuries, two well-known risk factors contributing to the dementia in AD patients presenting with mixed pathologies. Importantly, the pharmacokinetics and pharmacodynamics of several KCa3.1 blockers are well known, and a KCa3.1 blocker has been proven safe in clinical trials. It is therefore promising to reposition old or new KCa3.1 blockers for AD preclinical and clinical trials.

  20. Microglial Scavenger Receptors and Their Roles in the Pathogenesis of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Kim Wilkinson

    2012-01-01

    Full Text Available Alzheimer’s disease (AD is increasing in prevalence with the aging population. Deposition of amyloid-β (Aβ in the brain of AD patients is a hallmark of the disease and is associated with increased microglial numbers and activation state. The interaction of microglia with Aβ appears to play a dichotomous role in AD pathogenesis. On one hand, microglia can phagocytose and clear Aβ, but binding of microglia to Aβ also increases their ability to produce inflammatory cytokines, chemokines, and neurotoxic reactive oxygen species (ROS. Scavenger receptors, a group of evolutionally conserved proteins expressed on the surface of microglia act as receptors for Aβ. Of particular interest are SCARA-1 (scavenger receptor A-1, CD36, and RAGE (receptor for advanced glycation end products. SCARA-1 appears to be involved in the clearance of Aβ, while CD36 and RAGE are involved in activation of microglia by Aβ. In this review, we discuss the roles of various scavenger receptors in the interaction of microglia with Aβ and propose that these receptors play complementary, nonredundant functions in the development of AD pathology. We also discuss potential therapeutic applications for these receptors in AD.

  1. Differential expression of miR-184 in temporal lobe epilepsy patients with and without hippocampal sclerosis – Influence on microglial function

    Science.gov (United States)

    Danis, Bénédicte; van Rikxoort, Marijke; Kretschmann, Anita; Zhang, Jiong; Godard, Patrice; Andonovic, Lidija; Siegel, Franziska; Niehusmann, Pitt; Hanon, Etienne; Delev, Daniel; von Lehe, Marec; Kaminski, Rafal M.; Pfeifer, Alexander; Foerch, Patrik

    2016-01-01

    Epilepsy is one of the most common neurological disorders characterized by recurrent seizures due to neuronal hyperexcitability. Here we compared miRNA expression patterns in mesial temporal lobe epilepsy with and without hippocampal sclerosis (mTLE + HS and mTLE −HS) to investigate the regulatory mechanisms differentiating both patient groups. Whole genome miRNA sequencing in surgically resected hippocampi did not reveal obvious differences in expression profiles between the two groups of patients. However, one microRNA (miR-184) was significantly dysregulated, which was confirmed by qPCR. We observed that overexpression of miR-184 inhibited cytokine release after LPS stimulation in primary microglial cells, while it did not affect the viability of murine primary neurons and primary astrocytes. Pathway analysis revealed that miR-184 is potentially involved in the regulation of inflammatory signal transduction and apoptosis. Dysregulation of some the potential miR-184 target genes was confirmed by qPCR and 3′UTR luciferase reporter assay. The reduced expression of miR-184 observed in patients with mTLE + HS together with its anti-inflammatory effects indicate that miR-184 might be involved in the modulation of inflammatory processes associated with hippocampal sclerosis which warrants further studies elucidating the role of miR-184 in the pathophysiology of mTLE. PMID:27666871

  2. Immune cell entry to the CNS--a focus for immunoregulation of EAE

    DEFF Research Database (Denmark)

    Owens, T; Tran, E; Hassan-Zahraee, M

    1999-01-01

    -requirement then to prove such a role. The point that emerges is that cytokine production in the CNS parenchyma is itself dependent on the prior infiltration of immune cells, and that without immune cell entry, EAE does not occur. This identifies events at the BBB, and in particular in the perivascular space, as critical......T-cell-derived cytokines are therefore individually unnecessary and collectively insufficient for microglial response. This somewhat provocative interpretation does not exclude a role for T-cell cytokines in induction of a microglial response in EAE, but it may be easier to show a non...

  3. TGFβ produced by IL-10 re-directed Astrocytes Attenuates Microglial Activation

    Science.gov (United States)

    Norden, Diana M.; Fenn, Ashley M.; Dugan, Allison; Godbout, Jonathan P.

    2014-01-01

    While there clearly is an intimate relationship between astrocytes and microglia, few studies have examined these potentially dynamic interactions. In this study, cytokine-mediated communication between microglia and astrocytes under inflammatory conditions was investigated. We have previously shown that activated microglia produce Interleukin (IL)-10, a regulatory cytokine that plays an important role in resolving neuroinflammation. Nonetheless, the mechanism by which IL-10 attenuates pro-inflammatory cytokine expression in the brain is unclear. Here we show that IL-10 re-directed astrocytes regulate the activation of microglia in a Transforming growth factor (TGF)-β dependent manner. In support of this concept, astrocytes in the brain maintained higher IL-10 receptor (IL-10R1) expression and primary astrocytes in culture were markedly more sensitive to the anti-inflammatory effects of IL-10 compared to microglia. Moreover, studies using primary cultures and an astrocyte-microglia co-culture system revealed that astrocytes mediated the anti-inflammatory effects of IL-10 on microglia through the production of TGFβ. For instance, only when astrocytes were present did IL-10 stimulation reduce the expression of IL-1β and increase expression of anti-inflammatory mediators fractalkine receptor (CX3CR1) and interleukin 4 receptor-α (IL-4Rα) in microglia. Importantly, these IL-10-astrocyte dependent effects on microglia were blocked by a TGFβ inhibitor. Furthermore, inhibition of TGFβ signaling in the brain resulted in prolonged sickness behavior and amplified pro-inflammatory cytokine expression in mice challenged with lipopolysaccharide (LPS). Taken together, IL-10 stimulated the production of TGFβ by astrocytes, which in turn, attenuated microglial activation. Overall, these findings provide novel insight into the mechanisms by which astrocytes modulate microglia under inflammatory conditions. PMID:24616125

  4. Fetal microglial in vitro phenotype depends on prior in vivo inflammation

    Directory of Open Access Journals (Sweden)

    Mingju eCao

    2015-08-01

    Full Text Available Objective. Neuroinflammation in utero may result in life-long neurological disabilities. The molecular mechanisms whereby microglia contribute to this response remain incompletely understood. Methods. Lipopolysaccharide (LPS or saline were administered intravenously to non-anesthetized chronically instrumented near-term fetal sheep to model fetal inflammation in vivo. Microglia were then isolated from in vivo LPS and saline (naïve exposed animals. To mimic the second hit of neuroinflammation, these microglia were then re-exposed to LPS in vitro. Cytokine responses were measured in vivo and subsequently in vitro in the primary microglia cultures derived from these animals. We sequenced the whole transcriptome of naïve and second hit microglia and profiled their genetic expression to define molecular pathways disrupted during neuroinflammation.Results. In vivo LPS exposure resulted in IL-6 increase in fetal plasma 3 h post LPS exposure. Even though not histologically apparent, microglia acquired a pro-inflammatory phenotype in vivo that was sustained and amplified in vitro upon second hit LPS exposure as measured by IL-1β response in vitro and RNAseq analyses. While NFKB and Jak-Stat inflammatory pathways were up regulated in naïve microglia, heme oxygenase 1 (HMOX1 and Fructose-1,6-bisphosphatase (FBP genes were uniquely differentially expressed in the second hit microglia. Microglial calreticulin/LRP genes implicated in microglia-neuronal communication relevant for the neuronal development were up regulated in second hit microglia.Discussion. We identified a unique HMOX1down and FBPup phenotype of microglia exposed to the double-hit suggesting interplay of inflammatory and metabolic pathways as a memory of prior inflammatory insult. These findings suggest new therapeutic targets for early postnatal intervention to prevent brain injury.

  5. Deep brain stimulation during early adolescence prevents microglial alterations in a model of maternal immune activation.

    Science.gov (United States)

    Hadar, Ravit; Dong, Le; Del-Valle-Anton, Lucia; Guneykaya, Dilansu; Voget, Mareike; Edemann-Callesen, Henriette; Schweibold, Regina; Djodari-Irani, Anais; Goetz, Thomas; Ewing, Samuel; Kettenmann, Helmut; Wolf, Susanne A; Winter, Christine

    2017-07-01

    In recent years schizophrenia has been recognized as a neurodevelopmental disorder likely involving a perinatal insult progressively affecting brain development. The poly I:C maternal immune activation (MIA) rodent model is considered as a neurodevelopmental model of schizophrenia. Using this model we and others demonstrated the association between neuroinflammation in the form of altered microglia and a schizophrenia-like endophenotype. Therapeutic intervention using the anti-inflammatory drug minocycline affected altered microglia activation and was successful in the adult offspring. However, less is known about the effect of preventive therapeutic strategies on microglia properties. Previously we found that deep brain stimulation of the medial prefrontal cortex applied pre-symptomatically to adolescence MIA rats prevented the manifestation of behavioral and structural deficits in adult rats. We here studied the effects of deep brain stimulation during adolescence on microglia properties in adulthood. We found that in the hippocampus and nucleus accumbens, but not in the medial prefrontal cortex, microglial density and soma size were increased in MIA rats. Pro-inflammatory cytokine mRNA was unchanged in all brain areas before and after implantation and stimulation. Stimulation of either the medial prefrontal cortex or the nucleus accumbens normalized microglia density and soma size in main projection areas including the hippocampus and in the area around the electrode implantation. We conclude that in parallel to an alleviation of the symptoms in the rat MIA model, deep brain stimulation has the potential to prevent the neuroinflammatory component in this disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Imaging Microglial Activation in Untreated First-Episode Psychosis: A PET Study With [18F]FEPPA.

    Science.gov (United States)

    Hafizi, Sina; Tseng, Huai-Hsuan; Rao, Naren; Selvanathan, Thiviya; Kenk, Miran; Bazinet, Richard P; Suridjan, Ivonne; Wilson, Alan A; Meyer, Jeffrey H; Remington, Gary; Houle, Sylvain; Rusjan, Pablo M; Mizrahi, Romina

    2017-02-01

    Neuroinflammation and abnormal immune responses are increasingly implicated in the pathophysiology of schizophrenia. Previous positron emission tomography (PET) studies targeting the translocator protein 18 kDa (TSPO) have been limited by high nonspecific binding of the first-generation radioligand, low-resolution scanners, small sample sizes, and psychotic patients being on antipsychotics or not being in the first episode of their illness. The present study uses the novel second-generation TSPO PET radioligand [ 18 F]FEPPA to evaluate whether microglial activation is elevated in the dorsolateral prefrontal cortex and hippocampus of untreated patients with first-episode psychosis. Nineteen untreated patients with first-episode psychosis (14 of them antipsychotic naive) and 20 healthy volunteers underwent a high-resolution [ 18 F]FEPPA PET scan and MRI. Dynamic PET data were analyzed using the validated two-tissue compartment model with arterial plasma input function with total volume of distribution (V T ) as outcome measure. All analyses were corrected for TSPO rs6971 polymorphism (which is implicated in differential binding affinity). No significant differences were observed between patients and healthy volunteers in microglial activation, as indexed by [ 18 F]FEPPA V T , in either the dorsolateral prefrontal cortex or the hippocampus. There were no significant correlations between [ 18 F]FEPPA V T and duration of illness, clinical presentation, or neuropsychological measures after adjusting for multiple testing. The lack of significant differences in [ 18 F]FEPPA V T between groups suggests that microglial activation is not present in first-episode psychosis.

  7. Sleep Deprivation Aggravates Median Nerve Injury-Induced Neuropathic Pain and Enhances Microglial Activation by Suppressing Melatonin Secretion

    Science.gov (United States)

    Huang, Chun-Ta; Chiang, Rayleigh Ping-Ying; Chen, Chih-Li; Tsai, Yi-Ju

    2014-01-01

    Study Objectives: Sleep deprivation is common in patients with neuropathic pain, but the effect of sleep deprivation on pathological pain remains uncertain. This study investigated whether sleep deprivation aggravates neuropathic symptoms and enhances microglial activation in the cuneate nucleus (CN) in a median nerve chronic constriction injury (CCI) model. Also, we assessed if melatonin supplements during the sleep deprived period attenuates these effects. Design: Rats were subjected to sleep deprivation for 3 days by the disc-on-water method either before or after CCI. In the melatonin treatment group, CCI rats received melatonin supplements at doses of 37.5, 75, 150, or 300 mg/kg during sleep deprivation. Melatonin was administered at 23:00 once a day. Participants: Male Sprague-Dawley rats, weighing 180-250 g (n = 190), were used. Measurements: Seven days after CCI, behavioral testing was conducted, and immunohistochemistry, immunoblotting, and enzyme-linked immunosorbent assay were used for qualitative and quantitative analyses of microglial activation and measurements of proinflammatory cytokines. Results: In rats who underwent post-CCI sleep deprivation, microglia were more profoundly activated and neuropathic pain was worse than those receiving pre-CCI sleep deprivation. During the sleep deprived period, serum melatonin levels were low over the 24-h period. Administration of melatonin to CCI rats with sleep deprivation significantly attenuated activation of microglia and development of neuropathic pain, and markedly decreased concentrations of proinflammatory cytokines. Conclusions: Sleep deprivation makes rats more vulnerable to nerve injury-induced neuropathic pain, probably because of associated lower melatonin levels. Melatonin supplements to restore a circadian variation in melatonin concentrations during the sleep deprived period could alleviate nerve injury-induced behavioral hypersensitivity. Citation: Huang CT, Chiang RP, Chen CL, Tsai YJ. Sleep

  8. Single episode of mild murine malaria induces neuroinflammation, alters microglial profile, impairs adult neurogenesis, and causes deficits in social and anxiety-like behavior.

    Science.gov (United States)

    Guha, Suman K; Tillu, Rucha; Sood, Ankit; Patgaonkar, Mandar; Nanavaty, Ishira N; Sengupta, Arjun; Sharma, Shobhona; Vaidya, Vidita A; Pathak, Sulabha

    2014-11-01

    Cerebral malaria is associated with cerebrovascular damage and neurological sequelae. However, the neurological consequences of uncomplicated malaria, the most prevalent form of the disease, remain uninvestigated. Here, using a mild malaria model, we show that a single Plasmodium chabaudi adami infection in adult mice induces neuroinflammation, neurogenic, and behavioral changes in the absence of a blood-brain barrier breach. Using cytokine arrays we show that the infection induces differential serum and brain cytokine profiles, both at peak parasitemia and 15days post-parasite clearance. At the peak of infection, along with the serum, the brain also exhibited a definitive pro-inflammatory cytokine profile, and gene expression analysis revealed that pro-inflammatory cytokines were also produced locally in the hippocampus, an adult neurogenic niche. Hippocampal microglia numbers were enhanced, and we noted a shift to an activated profile at this time point, accompanied by a striking redistribution of the microglia to the subgranular zone adjacent to hippocampal neuronal progenitors. In the hippocampus, a distinct decline in progenitor turnover and survival was observed at peak parasitemia, accompanied by a shift from neuronal to glial fate specification. Studies in transgenic Nestin-GFP reporter mice demonstrated a decline in the Nestin-GFP(+)/GFAP(+) quiescent neural stem cell pool at peak parasitemia. Although these cellular changes reverted to normal 15days post-parasite clearance, specific brain cytokines continued to exhibit dysregulation. Behavioral analysis revealed selective deficits in social and anxiety-like behaviors, with no change observed in locomotor, cognitive, and depression-like behaviors, with a return to baseline at recovery. Collectively, these findings indicate that even a single episode of mild malaria results in alterations of the brain cytokine profile, causes specific behavioral dysfunction, is accompanied by hippocampal microglial

  9. Microglial reactivity correlates to the density and the myelination of the anterogradely degenerating axons and terminals following perforant path denervation of the mouse fascia dentata

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Rom Poulsen, Frantz

    1999-01-01

    Transection of the entorhino-dentate perforant path is a well known model for lesion-induced axonal sprouting and glial reactions in the rat. In this study, we have characterized the microglial reaction in the dentate molecular layer of the SJL/J and C57Bl/6 mouse. The morphological transformatio...

  10. Neonatal L-glutamine modulates anxiety-like behavior, cortical spreading depression, and microglial immunoreactivity: analysis in developing rats suckled on normal size- and large size litters.

    Science.gov (United States)

    de Lima, Denise Sandrelly Cavalcanti; Francisco, Elian da Silva; Lima, Cássia Borges; Guedes, Rubem Carlos Araújo

    2017-02-01

    In mammals, L-glutamine (Gln) can alter the glutamate-Gln cycle and consequently brain excitability. Here, we investigated in developing rats the effect of treatment with different doses of Gln on anxiety-like behavior, cortical spreading depression (CSD), and microglial activation expressed as Iba1-immunoreactivity. Wistar rats were suckled in litters with 9 and 15 pups (groups L 9 and L 15 ; respectively, normal size- and large size litters). From postnatal days (P) 7-27, the animals received Gln per gavage (250, 500 or 750 mg/kg/day), or vehicle (water), or no treatment (naive). At P28 and P30, we tested the animals, respectively, in the elevated plus maze and open field. At P30-35, we measured CSD parameters (velocity of propagation, amplitude, and duration). Fixative-perfused brains were processed for microglial immunolabeling with anti-IBA-1 antibodies to analyze cortical microglia. Rats treated with Gln presented an anxiolytic behavior and accelerated CSD propagation when compared to the water- and naive control groups. Furthermore, CSD velocity was higher (p litter sizes, and for microglial activation in the L 15 groups. Besides confirming previous electrophysiological findings (CSD acceleration after Gln), our data demonstrate for the first time a behavioral and microglial activation that is associated with early Gln treatment in developing animals, and that is possibly operated via changes in brain excitability.

  11. Blueberry and EpidiferphaneTM (EDP) enhance calcium buffering in rat hippocampal cells and reduce stress signalling in microglial cells

    Science.gov (United States)

    Age-related decrements are thought to result from increased susceptibility to and accumulating effects of oxidative stress and inflammation. Some foods and food compounds contain bioactive phytochemicals that exhibit potent antioxidant and anti-inflammatory activities, and these foods have been show...

  12. Mise en évidence de la diversité des populations de cactus (Opuntia spp.) au Maroc et de la modulation du métabolisme lipidique par des extraits naturels et de phytostérols issues de cactus ou d'huile d'Argan dans les cellules microgliales BV2

    OpenAIRE

    El Kharrassi, Youssef

    2015-01-01

    The objective of this PhD thesis is to characterize the Moroccan germplasm of the cactus Opuntia collected from different regions in Morocco, by studying the phenologic behavior, the genetic features and physicochemical composition, along with the molecules of high therapeutic potential which may have beneficial effects on the central nervous system cells from cactus extracts (fruit, flower, seed, oil, cladodes and spine) and compared to Argan oil. This work has been conducted in fours differ...

  13. Isolation and characterization of apolipoproteins from murine microglia. Identification of a low density lipoprotein-like apolipoprotein J-rich but E-poor spherical particle.

    Science.gov (United States)

    Xu, Q; Li, Y; Cyras, C; Sanan, D A; Cordell, B

    2000-10-13

    Amyloid Abeta deposition is a neuropathologic hallmark of Alzheimer's disease. Activated microglia are intimately associated with plaques and appear to facilitate Abeta deposition, an event believed to contribute to pathogenesis. It is unclear if microglia can modulate pathogenesis of Alzheimer's disease by secreting lipoprotein particles. Here we show that cultured BV2 murine microglial cells, like astrocytes, secrete apolipoprotein E (apoE) and apolipoprotein J (apoJ) in a time-dependent manner. To isolate and identify BV2 microglial particles, gel filtration chromatography was employed to fractionate BV2-conditioned medium. Analyses by Western blot, lipid determination, electron microscopy, and native gel electrophoresis demonstrate that BV2 microglial cells release spherical low density lipoprotein (LDL)-like lipid-containing particles rich in apoJ but poor in apoE. These microglial particles are dissimilar in size, shape, and lipoprotein composition to astrocyte-derived particles. The microglial-derived particles were tested for functional activity. Under conditions of suppressed de novo cholesterol synthesis, the LDL-like particles effectively rescued primary rat cortical neurons from mevastatin-induced neurotoxicity. The particles were also shown to bind Abeta. We speculate that the LDL-like apoJ-rich apoE-poor microglial lipoproteins preferentially bind the lipoprotein receptor, recognizing apoJ, which is abundant in the choroid plexus, facilitating Abeta clearance from the brain. BV2 cells also secrete an apoE-rich lipid-poor species that binds Abeta. Consistent with the role of apoE in Abeta fibril formation and deposition, this microglial species may promote plaque formation.

  14. TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Song Min

    2011-08-01

    Full Text Available Abstract Background Amyloid plaques, a pathological hallmark of Alzheimer's disease (AD, are accompanied by activated microglia. The role of activated microglia in the pathogenesis of AD remains controversial: either clearing Aβ deposits by phagocytosis or releasing proinflammatory cytokines and cytotoxic substances. Microglia can be activated via toll-like receptors (TLRs, a class of pattern-recognition receptors in the innate immune system. We previously demonstrated that an AD mouse model homozygous for a loss-of-function mutation of TLR4 had increases in Aβ deposits and buffer-soluble Aβ in the brain as compared with a TLR4 wild-type AD mouse model at 14-16 months of age. However, it is unknown if TLR4 signaling is involved in initiation of Aβ deposition as well as activation and recruitment of microglia at the early stage of AD. Here, we investigated the role of TLR4 signaling and microglial activation in early stages using 5-month-old AD mouse models when Aβ deposits start. Methods Microglial activation and amyloid deposition in the brain were determined by immunohistochemistry in the AD models. Levels of cerebral soluble Aβ were determined by ELISA. mRNA levels of cytokines and chemokines in the brain and Aβ-stimulated monocytes were quantified by real-time PCR. Cognitive functions were assessed by the Morris water maze. Results While no difference was found in cerebral Aβ load between AD mouse models at 5 months with and without TLR4 mutation, microglial activation in a TLR4 mutant AD model (TLR4M Tg was less than that in a TLR4 wild-type AD model (TLR4W Tg. At 9 months, TLR4M Tg mice had increased Aβ deposition and soluble Aβ42 in the brain, which were associated with decrements in cognitive functions and expression levels of IL-1β, CCL3, and CCL4 in the hippocampus compared to TLR4W Tg mice. TLR4 mutation diminished Aβ-induced IL-1β, CCL3, and CCL4 expression in monocytes. Conclusion This is the first demonstration of TLR4

  15. Sleep deprivation aggravates median nerve injury-induced neuropathic pain and enhances microglial activation by suppressing melatonin secretion.

    Science.gov (United States)

    Huang, Chun-Ta; Chiang, Rayleigh Ping-Ying; Chen, Chih-Li; Tsai, Yi-Ju

    2014-09-01

    Sleep deprivation is common in patients with neuropathic pain, but the effect of sleep deprivation on pathological pain remains uncertain. This study investigated whether sleep deprivation aggravates neuropathic symptoms and enhances microglial activation in the cuneate nucleus (CN) in a median nerve chronic constriction injury (CCI) model. Also, we assessed if melatonin supplements during the sleep deprived period attenuates these effects. Rats were subjected to sleep deprivation for 3 days by the disc-on-water method either before or after CCI. In the melatonin treatment group, CCI rats received melatonin supplements at doses of 37.5, 75, 150, or 300 mg/kg during sleep deprivation. Melatonin was administered at 23:00 once a day. Male Sprague-Dawley rats, weighing 180-250 g (n = 190), were used. Seven days after CCI, behavioral testing was conducted, and immunohistochemistry, immunoblotting, and enzyme-linked immunosorbent assay were used for qualitative and quantitative analyses of microglial activation and measurements of proinflammatory cytokines. In rats who underwent post-CCI sleep deprivation, microglia were more profoundly activated and neuropathic pain was worse than those receiving pre-CCI sleep deprivation. During the sleep deprived period, serum melatonin levels were low over the 24-h period. Administration of melatonin to CCI rats with sleep deprivation significantly attenuated activation of microglia and development of neuropathic pain, and markedly decreased concentrations of proinflammatory cytokines. Sleep deprivation makes rats more vulnerable to nerve injury-induced neuropathic pain, probably because of associated lower melatonin levels. Melatonin supplements to restore a circadian variation in melatonin concentrations during the sleep deprived period could alleviate nerve injury-induced behavioral hypersensitivity. © 2014 Associated Professional Sleep Societies, LLC.

  16. Microglial activation is not equivalent to neuroinflammation in alcohol-induced neurodegeneration: The importance of microglia phenotype.

    Science.gov (United States)

    Marshall, S Alex; McClain, Justin A; Kelso, Matthew L; Hopkins, Deann M; Pauly, James R; Nixon, Kimberly

    2013-06-01

    Excessive alcohol intake, a defining characteristic of an alcohol use disorder (AUD), results in neurodegeneration in the hippocampus and entorhinal cortex that has been linked to a variety of cognitive deficits. Neuroinflammation is thought to be a factor in alcohol-induced neurodegeneration, and microglia activation is a key but not sole component of an inflammatory response. These experiments investigate the effects of ethanol exposure in a well-accepted model of an AUD on both microglial activation and blood brain barrier disruption (BBB) in order to understand their relationship to classical definitions of inflammation and alcohol-induced neurodegeneration. Following a four-day binge ethanol paradigm, rat hippocampal and entorhinal cortex tissue was examined using three distinct approaches to determine microglia phenotype and BBB disruption: immunohistochemistry, autoradiography, and ELISA. After ethanol exposure, there was an increase in [(3)H]-PK-11195 binding and OX-42 immunoreactivity indicative of microglial activation; however, microglia were not fully activated since both OX-6 and ED-1 immunoreactive microglia were absent. This data was supported by functional evidence as there was no increase in the proinflammatory cytokines IL-6 or TNF-α, but a 26% increase in the anti-inflammatory cytokine, IL-10, and a 38% increase in the growth factor, TGF-β, seven days after exposure. Furthermore, there was no evidence of a disruption of the BBB. These data suggest that the four-day binge model of an AUD, which produces neurodegeneration in corticolimbic regions, does not elicit classical neuroinflammation but instead produces partially activated microglia. Partial activation of microglia following binge ethanol exposure suggest that microglia in this model have beneficial or homeostatic roles rather than directly contributing to neurodegeneration and are a consequence of alcohol-induced-damage instead of the source of damage. Copyright © 2013 Elsevier Inc. All

  17. In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Yokokura, Masamichi; Mori, Norio; Yoshihara, Yujiro; Wakuda, Tomoyasu; Takebayashi, Kiyokazu; Iwata, Yasuhide; Nakamura, Kazuhiko [Hamamatsu University School of Medicine, Department of Psychiatry and Neurology, Hamamatsu (Japan); Yagi, Shunsuke; Ouchi, Yasuomi [Hamamatsu University School of Medicine, Laboratory of Human Imaging Research, Molecular Imaging Frontier Research Center, Hamamatsu (Japan); Yoshikawa, Etsuji [Hamamatsu Photonics K.K., Central Research Laboratory, Hamamatsu (Japan); Kikuchi, Mitsuru [Kanazawa University, Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa (Japan); Sugihara, Genichi; Suda, Shiro; Tsuchiya, Kenji J.; Suzuki, Katsuaki [Hamamatsu University School of Medicine, Research Center for Child Mental Development, Hamamatsu (Japan); Ueki, Takatoshi [Hamamatsu University School of Medicine, Department of Anatomy, Hamamatsu (Japan)

    2011-02-15

    Amyloid {beta} protein (A{beta}) is known as a pathological substance in Alzheimer's disease (AD) and is assumed to coexist with a degree of activated microglia in the brain. However, it remains unclear whether these two events occur in parallel with characteristic hypometabolism in AD in vivo. The purpose of the present study was to clarify the in vivo relationship between A{beta} accumulation and neuroinflammation in those specific brain regions in early AD. Eleven nootropic drug-naive AD patients underwent a series of positron emission tomography (PET) measurements with [{sup 11}C](R)PK11195, [{sup 11}C]PIB and [{sup 18}F]FDG and a battery of cognitive tests within the same day. The binding potentials (BPs) of [{sup 11}C](R)PK11195 were directly compared with those of [{sup 11}C]PIB in the brain regions with reduced glucose metabolism. BPs of [{sup 11}C](R)PK11195 and [{sup 11}C]PIB were significantly higher in the parietotemporal regions of AD patients than in ten healthy controls. In AD patients, there was a negative correlation between dementia score and [{sup 11}C](R)PK11195 BPs, but not [{sup 11}C]PIB, in the limbic, precuneus and prefrontal regions. Direct comparisons showed a significant negative correlation between [{sup 11}C](R)PK11195 and [{sup 11}C]PIB BPs in the posterior cingulate cortex (PCC) (p < 0.05, corrected) that manifested the most severe reduction in [{sup 18}F]FDG uptake. A lack of coupling between microglial activation and amyloid deposits may indicate that A{beta} accumulation shown by [{sup 11}C]PIB is not always the primary cause of microglial activation, but rather the negative correlation present in the PCC suggests that microglia can show higher activation during the production of A{beta} in early AD. (orig.)

  18. Fluoxetine treatment affects the inflammatory response and microglial function according to the quality of the living environment.

    Science.gov (United States)

    Alboni, Silvia; Poggini, Silvia; Garofalo, Stefano; Milior, Giampaolo; El Hajj, Hassan; Lecours, Cynthia; Girard, Isabelle; Gagnon, Steven; Boisjoly-Villeneuve, Samuel; Brunello, Nicoletta; Wolfer, David P; Limatola, Cristina; Tremblay, Marie-Ève; Maggi, Laura; Branchi, Igor

    2016-11-01

    It has been hypothesized that selective serotonin reuptake inhibitors (SSRIs), the most common treatment for major depression, affect mood through changes in immune function. However, the effects of SSRIs on inflammatory response are contradictory since these act either as anti- or pro-inflammatory drugs. Previous experimental and clinical studies showed that the quality of the living environment moderates the outcome of antidepressant treatment. Therefore, we hypothesized that the interplay between SSRIs and the environment may, at least partially, explain the apparent incongruence regarding the effects of SSRI treatment on the inflammatory response. In order to investigate such interplay, we exposed C57BL/6 mice to chronic stress to induce a depression-like phenotype and, subsequently, to fluoxetine treatment or vehicle (21days) while being exposed to either an enriched or a stressful condition. At the end of treatment, we measured the expression levels of several anti- and pro-inflammatory cytokines and inflammatory mediators in the whole hippocampus and in isolated microglia. We also determined microglial density, distribution, and morphology to investigate their surveillance state. Results show that the effects of fluoxetine treatment on inflammation and microglial function, as compared to vehicle, were dependent on the quality of the living environment. In particular, fluoxetine administered in the enriched condition increased the expression of pro-inflammatory markers compared to vehicle, while treatment in a stressful condition produced anti-inflammatory effects. These findings provide new insights regarding the effects of SSRIs on inflammation, which may be crucial to devise pharmacological strategies aimed at enhancing antidepressant efficacy by means of controlling environmental conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Intravital correlated microscopy reveals differential macrophage and microglial dynamics during resolution of neuroinflammation

    NARCIS (Netherlands)

    van Ham, Tjakko J.; Brady, Colleen A.; Kalicharan, Ruby D.; Oosterhof, Nynke; Kuipers, Jeroen; Veenstra-Algra, Anneke; Sjollema, Klaas A.; Peterson, Randall T.; Kampinga, Harm H.; Giepmans, Ben N. G.

    Many brain diseases involve activation of resident and peripheral immune cells to clear damaged and dying neurons. Which immune cells respond in what way to cues related to brain disease, however, remains poorly understood. To elucidate these in vivo immunological events in response to brain cell

  20. Protective Effect of Purple Sweet Potato (Ipomoea batatas Linn ...

    African Journals Online (AJOL)

    Purpose: To evaluate the protective effects of purple sweet potato (Ipomoea batatas Linn, Convolvulaceae) extract (IBE) in stimulated BV-2 microglial cells and its anti-oxidant properties. Methods: Cell viability assessment was performed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide (MTT) assay.

  1. Neuronal and microglial regulators of cortical wiring: usual and novel guideposts

    Directory of Open Access Journals (Sweden)

    Paola eSquarzoni

    2015-07-01

    Full Text Available Neocortex functioning relies on the formation of complex networks that begins to be assembled during embryogenesis by highly stereotyped processes of cell migration and axonal navigation. The guidance of cells and axons is driven by extracellular cues, released along by final targets or intermediate targets located along specific pathways. In particular, guidepost cells, originally described in the grasshopper, are considered discrete, specialized cell populations located at crucial decision points along axonal trajectories that regulate tract formation. These cells are usually early-born, transient and act at short-range or via cell-cell contact. The vast majority of guidepost cells initially identified were glial cells, which play a role in the formation of important axonal tracts in the forebrain, such as the corpus callosum, anterior and post-optic commissures as well as optic chiasm. In the last decades, tangential migrating neurons have also been found to participate in the guidance of principal axonal tracts in the forebrain. This is the case for several examples such as guideposts for the lateral olfactory tract (LOT, corridor cells, which open an internal path for thalamo-cortical axons and Cajal-Retzius cells that have been involved in the formation of the entorhino-hippocampal connections. More recently, microglia, the resident macrophages of the brain, were specifically observed at the crossroads of important neuronal migratory routes and axonal tract pathways during forebrain development. We furthermore found that microglia participate to the shaping of prenatal forebrain circuits, thereby opening novel perspectives on forebrain development and wiring. Here we will review the last findings on already known guidepost cells populations and will discuss the role of microglia as a potentially new class of atypical guidepost cells.

  2. Translocator Protein (18 kDa Mapping with [125I]-CLINDE in the Quinolinic Acid Rat Model of Excitotoxicity: A Longitudinal Comparison with Microglial Activation, Astrogliosis, and Neuronal Death

    Directory of Open Access Journals (Sweden)

    Nicolas Arlicot

    2014-03-01

    Full Text Available Excitotoxicity leads to an inflammatory reaction involving an overexpression of: translocator protein 18 kDa (TSPO in cerebral microglia and astrocytes. Therefore, we performed ex vivo explorations with [125]-CLINDE, a TSPO-specific radioligand, to follow the time course of TSPO expression, in parallel with lesion progression, over 90 days after induction of cerebral excitotoxicity in rats intrastriatally injected with quinolinic acid. Biodistribution data showed a significant increase in CLINDE uptake on the injured side from 1 days postlesion (dpl; the maximal striatal binding values evidenced a plateau between 7 and 30 dpl. [125I]-CLINDE binding was displaced from the lesion by PK11195, suggesting TSPO specificity. These results were confirmed by ex vivo autoradiography. Combined immunohistochemical studies showed a marked increase in microglial expression in the lesion, peaking at 14 dpl, and astrocytic reactivity enhanced at 7 and 14 dpl, whereas a prominent neuronal cell loss was observed. At 90 dpl, CLINDE binding and immunoreactivity targeting activated microglia, astrogliosis, and neuronal cell density returned to a basal level. These results show that both neuroinflammation and neuronal loss profiles occurred concomitantly and appeared to be transitory processes. These findings provide the possibility of a therapeutic temporal window to compare the differential effects of antiinflammatory treatments in slowing down neurodegeneration in this rodent model, with potential applications to humans.

  3. Translocator protein (18 kDa) mapping with [125I]-CLINDE in the quinolinic acid rat model of excitotoxicity: a longitudinal comparison with microglial activation, astrogliosis, and neuronal death.

    Science.gov (United States)

    Arlicot, Nicolas; Tronel, Claire; Bodard, Sylvie; Garreau, Lucette; de la Crompe, Brice; Vandevelde, Inge; Guilloteau, Denis; Antier, Daniel; Chalon, Sylvie

    2014-01-01

    Excitotoxicity leads to an inflammatory reaction involving an overexpression of: translocator protein 18 kDa (TSPO) in cerebral microglia and astrocytes. Therefore, we performed ex vivo explorations with [125]-CLINDE, a TSPO-specific radioligand, to follow the time course of TSPO expression, in parallel with lesion progression, over 90 days after induction of cerebral excitotoxicity in rats intrastriatally injected with quinolinic acid. Biodistribution data showed a significant increase in CLINDE uptake on the injured side from 1 days postlesion (dpl); the maximal striatal binding values evidenced a plateau between 7 and 30 dpl. [125I]-CLINDE binding was displaced from the lesion by PK11195, suggesting TSPO specificity. These results were confirmed by ex vivo autoradiography. Combined immunohistochemical studies showed a marked increase in microglial expression in the lesion, peaking at 14 dpl, and astrocytic reactivity enhanced at 7 and 14 dpl, whereas a prominent neuronal cell loss was observed. At 90 dpl, CLINDE binding and immunoreactivity targeting activated microglia, astrogliosis, and neuronal cell density returned to a basal level. These results show that both neuroinflammation and neuronal loss profiles occurred concomitantly and appeared to be transitory processes. These findings provide the possibility of a therapeutic temporal window to compare the differential effects of antiinflammatory treatments in slowing down neurodegeneration in this rodent model, with potential applications to humans.

  4. Reactive microgliosis engages distinct responses by microglial subpopulations after minor central nervous system injury

    DEFF Research Database (Denmark)

    Wirenfeldt, Martin; Babcock, Alicia Anne; Ladeby, Rune

    2005-01-01

    Microglia are bone marrow-derived cells that constitute a facultative macrophage population when activated by trauma or pathology in the CNS. Endogenous CNS-resident microglia as well as exogenous (immigrant) bone marrow-derived cells contribute to reactive microgliosis, raising fundamental quest...

  5. Synergistic Effects of Psychosocial Stress and Mild Peripheral Infection on Inducing Microglial Activation in the Hippocampal Dentate Gyrus and Long-Lasting Deficits in Hippocampus-Related Memory.

    Science.gov (United States)

    Tzeng, Wen-Yu; Su, Chien-Chou; Sun, Li-Han; Cherng, Chianfang G.; Yu, Lung

    2018-04-30

    Lipopolysaccharide (LPS) treatment and stress may cause immune activation in the brain, an event which has been thought to play a role in mediating stress-induced cognitive dysfunction. However, the enduring impact of psychosocial stress on brain immune activation or cognitive deficits has not been well investigated. Likewise, it remains unexplored whether there exist synergistic effects of psychosocial stress and a weak systemic LPS treatment on brain immune activation and/or cognitive function. In this work, a 10-day social defeat regimen was used to model psychosocial stress and the number and density of ionized calcium-binding adaptor molecule 1 (Iba1)-stained microglia was used to reveal brain immune activation in male Balb/C mice. The social defeat regimen did not cause observable microglial activation in dentate gyrus (DG) 24 h after the conclusion of the regimen. Microglial activation peaked in DG 24 h following a single 1 mg/kg intra-peritoneal LPS injection. At this time point, DG microglial activation was not evident providing 0.125 mg/kg or lower of LPS was used, this dose of LPS was, thus, regarded as the “sub-threshold” in this study. Twenty-four h after the conclusion of the defeat regimen, mice received a social interaction test to determine their defeat stress susceptibility and a “sub-threshold” LPS injection. DG microglial activation was observed in the defeat-stress susceptible, but not in the resilient, mice. Furthermore, the stress-susceptible mice showed impairment in object location and Y maze tasks 24 and 72 h after the “sub-threshold” LPS injection. These results suggest that psychosocial stress, when combined with a negligible peripheral infection, may induce long-lasting hippocampus-related memory deficits exclusively in subjects susceptible to psychosocial stresses.

  6. Focal thalamic degeneration from ethanol and thiamine deficiency is associated with neuroimmune gene induction, microglial activation, and lack of monocarboxylic acid transporters.

    Science.gov (United States)

    Qin, Liya; Crews, Fulton T

    2014-03-01

    Wernicke's encephalopathy-Korsakoff syndrome (WE-KS) is common in alcoholics, caused by thiamine deficiency (TD; vitamin B1) and associated with lesions to the thalamus (THAL). Although TD alone can cause WE, the high incidence in alcoholism suggests that TD and ethanol (EtOH) interact. Mice in control, TD, or EtOH groups alone or combined were studied after 5 or 10 days of treatment. THAL and entorhinal cortex (ENT) histochemistry and mRNA were assessed. Combined EtOH-TD treatment for 5 days (EtOH-TD5) showed activated microglia, proinflammatory gene induction and THAL neurodegeneration that was greater than that found with TD alone (TD5), whereas 10 days resulted in marked THAL degeneration and microglial-neuroimmune activation in both groups. In contrast, 10 days of TD did not cause ENT degeneration. Interestingly, in ENT, TD10 activated microglia and astrocytes more than EtOH-TD10. In THAL, multiple astrocytic markers were lost consistent with glial cell loss. TD blocks glucose metabolism more than acetate. Acetate derived from hepatic EtOH metabolism is transported by monocarboxylic acid transporters (MCT) into both neurons and astrocytes that use acetyl-CoA synthetase (AcCoAS) to generate cellular energy from acetate. MCT and AcCoAS expression in THAL is lower than ENT prompting the hypothesis that focal THAL degeneration is related to insufficient MCT and AcCoAS in THAL. To test this hypothesis, we administered glycerin triacetate (GTA) to increase blood acetate and found it protected the THAL from TD-induced degeneration. Our findings suggest that EtOH potentiates TD-induced THAL degeneration through neuroimmune gene induction. The findings support the hypothesis that TD deficiency inhibits global glucose metabolism and that a reduced ability to process acetate for cellular energy results in THAL focal degeneration in alcoholics contributing to the high incidence of Wernicke-Korsakoff syndrome in alcoholism. Copyright © 2013 by the Research Society on

  7. Atypical Microglial Response to Biodiesel Exhaust in Healthy and Hypertensive Rats

    Science.gov (United States)

    Accumulating evidence suggests a deleterious role for urban air pollution in central nervous system (CNS) diseases and neurodevelopmental disorders. Microglia, the resident innate immune cells and sentinels in the brain, are a common source of neuroinflammation and are implicate...

  8. Methanol Extract of Hydroclathrus clathratus Inhibits Production of ...

    African Journals Online (AJOL)

    Methanol Extract of Hydroclathrus clathratus Inhibits Production of Nitric Oxide, Prostaglandin E2 and Tumor Necrosis Factor-α in Lipopolysaccharidestimulated BV2 Microglial Cells via Inhibition of NF-κB Activity. RGPT Jayasooriya, D-O Moon, YH Chol, C-H Yoon, G-Y Kim ...

  9. Tropical Journal of Pharmaceutical Research - Vol 12, No 1 (2013)

    African Journals Online (AJOL)

    Inhibition of Nitric Oxide and Prostaglandin E2 Expression by Methanol Extract of Polyopes affinis in Lipopolysaccharide-stimulated BV2 Microglial Cells through Suppression of Akt-dependent NF-kB Activity and MAPK Pathway · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD ...

  10. Inhibition of Lipopolysaccharide-Stimulated Neuro- Inflammatory ...

    African Journals Online (AJOL)

    Purpose: To investigate the in vitro antioxidant and anti-neuroinflammatory effects of Tetragonia tetragonoides (Pall.) Kuntze extract (TKE) in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Methods: To evaluate the effects of TKE, LPS-stimulated BV microglia were used and the expression and production of ...

  11. Neuroprotective Effect of Sargassum thunbergii (Mertens ex Roth ...

    African Journals Online (AJOL)

    Purpose: To evaluate the anti-oxidant and anti-neuroinflammatory effects of the Sargassum thunbergii extract (Mertens ex Roth) Kuntze (STE) in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells in vitro. Methods: STE antioxidative activity was evaluated with an Electron Spin Resonance (ESR) spectrometer, which ...

  12. Methanol Extract of Myelophycus caespitosus Inhibits the ...

    African Journals Online (AJOL)

    Purpose: To determine whether the methanol extract of Myelophycus caespitosus (MEMC) downregulates the expression of pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Methods: Reverse transcription-polymerase chain reaction (RT-PCR) together with Western blot analysis was ...

  13. Carum carvi Linn (Umbelliferae) Attenuates Lipopolysaccharide ...

    African Journals Online (AJOL)

    on LPS-activated neuroinflammatory processes in BV-2 microglial cells and explored its mechanisms involved. EXPERIMENTAL. Plant material and preparation of C. carvi extract. The dried fruit material of C. carvi procured in the month of September 2008 was obtained from. Chemiloids, Vijayawada, India. The fruit material.

  14. Methanol Extract of Polyopes lancifolius Inhibits the Expression of ...

    African Journals Online (AJOL)

    ... expression of mRNA and protein were investigated RT-PCR and western blot analyses in LPS-stimulated BV2 microglial cells. The level of nitric oxide (NO) production was analyzed using Griess reaction. The release of prostaglandin E2 (PGE2) and tumor necrosis factor-α (TNF-α) were determined using sandwich ELISA ...

  15. Inhibition of EGFR/MAPK signaling reduces microglial inflammatory response and the associated secondary damage in rats after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Qu Wen-sheng

    2012-07-01

    Full Text Available Abstract Background Emerging evidence indicates that reactive microglia-initiated inflammatory responses are responsible for secondary damage after primary traumatic spinal cord injury (SCI; epidermal growth factor receptor (EGFR signaling may be involved in cell activation. In this report, we investigate the influence of EGFR signaling inhibition on microglia activation, proinflammatory cytokine production, and the neuronal microenvironment after SCI. Methods Lipopolysaccharide-treated primary microglia/BV2 line cells and SCI rats were used as model systems. Both C225 and AG1478 were used to inhibit EGFR signaling activation. Cell activation and EGFR phosphorylation were observed after fluorescent staining and western blot. Production of interleukin-1beta (IL-1β and tumor necrosis factor alpha (TNFα was tested by reverse transcription PCR and ELISA. Western blot was performed to semi-quantify the expression of EGFR/phospho-EGFR, and phosphorylation of Erk, JNK and p38 mitogen-activated protein kinases (MAPK. Wet-dry weight was compared to show tissue edema. Finally, axonal tracing and functional scoring were performed to show recovery of rats. Results EGFR phosphorylation was found to parallel microglia activation, while EGFR blockade inhibited activation-associated cell morphological changes and production of IL-1β and TNFα. EGFR blockade significantly downregulated the elevated MAPK activation after cell activation; selective MAPK inhibitors depressed production of cytokines to a certain degree, suggesting that MAPK mediates the depression of microglia activation brought about by EGFR inhibitors. Subsequently, seven-day continual infusion of C225 or AG1478 in rats: reduced the expression of phospho-EGFR, phosphorylation of Erk and p38 MAPK, and production of IL-1β and TNFα; lessened neuroinflammation-associated secondary damage, like microglia/astrocyte activation, tissue edema and glial scar/cavity formation; and enhanced axonal

  16. [Resolvin D1 inhibits the injury of PC12 cells induced by activated microglia].

    Science.gov (United States)

    Guo, Huiling; Wang, Yanping; Zhao, Xiaona; Liu, Panmei; Lian, Yiwen; Li, Xinxin; Li, Mingming; Ma, Minyu

    2016-11-01

    Objective To investigate the effect of resolvin D1 (RvD1) on the injury of PC12 cells induced by activated BV-2 microglia and the related mechanisms. Methods BV-2 cells were divided into control group, lipopolysaccharide (LPS)-treated group, RvD1-treated group and RvD1 combined with LPS (RvD1-LPS)-treated group. After BV-2 cells were incubated with the corresponding substances for 12 and 24 hours, the levels of interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α) in the supernatants were determined by ELISA. The culture supernatants of BV-2 cells were collected at 24 hours and added into PC12 cells for another 24-hour culture. Thereafter, the survival rate of PC12 cells was tested by MTT assay. The expression of NF-κB p65 protein in BV-2 cells was deteced by Western blotting. Results Compared with the control group, the survival rate of PC12 cells in the LPS group significantly decreased; the levels of IL-1β, IL-6 and TNF-α in the supernatant of BV-2 cells and the nuclear translocation of NF-κB p65 significantly increased in the LPS group. Compared with the LPS group, the survival rate of PC12 cells in RvD1-LPS group was significantly elevated; the levels of IL-1, IL-6, TNF-α and the nuclear translocation of NF-κB p65 were significantly reduced in RvD1-LPS group. Conclusion RvD1 can inhibit the injury of PC12 cells induced by activated BV-2 microglia through inhibiting the nuclear translocation of NF-κB p65 and inflammatory factor levels in BV-2 cells.

  17. Neurogenic exacerbation of microglial and astrocyte responses to Neisseria meningitidis and Borrelia burgdorferi.

    Science.gov (United States)

    Chauhan, Vinita S; Sterka, David G; Gray, David L; Bost, Kenneth L; Marriott, Ian

    2008-06-15

    Although glial cells are recognized for their roles in maintaining neuronal function, there is growing appreciation of the ability of resident CNS cells to initiate and/or augment inflammation following trauma or infection. The tachykinin, substance P (SP), is well known to augment inflammatory responses at peripheral sites and its presence throughout the CNS raises the possibility that this neuropeptide might serve a similar function within the brain. In support of this hypothesis, we have recently demonstrated the expression of high affinity receptors for SP (Neurokinin-1 (NK-1) receptors) on microglia and shown that this tachykinin can significantly elevate bacterially induced inflammatory prostanoid production by isolated cultures of these cells. In the present study, we demonstrate that endogenous SP/NK-1R interactions are an essential component in the initiation and/or progression of CNS inflammation in vivo following exposure to two clinically relevant bacterial CNS pathogens, Neisseria meningitidis and Borrelia burgdorferi. We show that in vivo elevations in inflammatory cytokine production and decreases in the production of an immunosuppressive cytokine are markedly attenuated in mice genetically deficient in the expression of the NK-1R or in mice treated with a specific NK-1R antagonist. Furthermore, we have used isolated cultures of microglia and astrocytes to demonstrate that SP can augment inflammatory cytokine production by these resident CNS cell types following exposure to either of these bacterial pathogens. Taken together, these studies indicate a potentially important role for neurogenic exacerbation of resident glial immune responses in CNS inflammatory diseases, such as bacterial meningitis.

  18. Peripheral and central effects of repeated social defeat stress: monocyte trafficking, microglial activation, and anxiety.

    Science.gov (United States)

    Reader, B F; Jarrett, B L; McKim, D B; Wohleb, E S; Godbout, J P; Sheridan, J F

    2015-03-19

    The development and exacerbation of depression and anxiety are associated with exposure to repeated psychosocial stress. Stress is known to affect the bidirectional communication between the nervous and immune systems leading to elevated levels of stress mediators including glucocorticoids (GCs) and catecholamines and increased trafficking of proinflammatory immune cells. Animal models, like the repeated social defeat (RSD) paradigm, were developed to explore this connection between stress and affective disorders. RSD induces activation of the sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis activation, increases bone marrow production and egress of primed, GC-insensitive monocytes, and stimulates the trafficking of these cells to tissues including the spleen, lung, and brain. Recently, the observation that these monocytes have the ability to traffic to the brain perivascular spaces and parenchyma have provided mechanisms by which these peripheral cells may contribute to the prolonged anxiety-like behavior associated with RSD. The data that have been amassed from the RSD paradigm and others recapitulate many of the behavioral and immunological phenotypes associated with human anxiety disorders and may serve to elucidate potential avenues of treatment for these disorders. Here, we will discuss novel and key data that will present an overview of the neuroendocrine, immunological and behavioral responses to social stressors. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Thrombin-induced microglial activation impairs hippocampal neurogenesis and spatial memory ability in mice.

    Science.gov (United States)

    Yang, Yuan; Zhang, Meikui; Kang, Xiaoni; Jiang, Chen; Zhang, Huan; Wang, Pei; Li, Jingjing

    2015-09-26

    To investigate the effects of microglia/macrophages activation induced by intrastriatal thrombin injection on dentate gyrus neurogenesis and spatial memory ability in mice. The male C57BL/6 mice were divided into 4 groups of 10: sham, intracerebral hemorrhage (ICH), ICH + hirudin (thrombin inhibitor), and ICH + indometacin (Indo, an anti-inflammation drug). ICH model was created by intrastriatal thrombin (1U) injection. BrdU (50 mg/kg) was administrated on the same day after surgery for 6 consecutive days. Motor functions were evaluated with rotarod and beam walking tests. The spatial memory deficit was measured with Morris water maze (MWM). Cell quantification was performed for doublecortin (DCX, immature neuron), BrdU (S-phase proliferating cell population) and CD68 (activated microglia/macrophage) immune-reactive cells. Microglia/macrophages activation induced by intrastriatal thrombin injection reduced hippocampal neurogenesis and impaired spatial memory ability, but did not affect the motor function at 3 and 5 days post-injury. Both hirudin and indometacin reduced microglia/macrophages activation, enhanced hippocampal neurogenesis, and improved spatial memory ability in mice. Microglia/macrophages activation induced by intrastriatal thrombin injection might be responsible for the spatial memory deficit. Targeting both thrombin and inflammation systems in acute phase of ICH might be important in alleviating the significant spatial memory deficits.

  20. Microglial Amyloid-β1-40 Phagocytosis Dysfunction Is Caused by High-Mobility Group Box Protein-1: Implications for the Pathological Progression of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Kazuyuki Takata

    2012-01-01

    Full Text Available In Alzheimer disease (AD patient brains, the accumulation of amyloid-β (Aβ peptides is associated with activated microglia. Aβ is derived from the amyloid precursor protein; two major forms of Aβ, that is, Aβ1-40 (Aβ40 and Aβ1-42 (Aβ42, exist. We previously reported that rat microglia phagocytose Aβ42, and high mobility group box protein 1 (HMGB1, a chromosomal protein, inhibits phagocytosis. In the present study, we investigated the effects of exogenous HMGB1 on rat microglial Aβ40 phagocytosis. In the presence of exogenous HMGB1, Aβ40 markedly increased in microglial cytoplasm, and the reduction of extracellular Aβ40 was inhibited. During this period, HMGB1 was colocalized with Aβ40 in the cytoplasm. Furthermore, exogenous HMGB1 inhibited the degradation of Aβ40 induced by the rat microglial cytosolic fraction. Thus, extracellular HMGB1 may internalize with Aβ40 in the microglial cytoplasm and inhibit Aβ40 degradation by microglia. This may subsequently delay Aβ40 clearance. We further confirmed that in AD brains, the parts of senile plaques surrounded by activated microglia are composed of Aβ40, and extracellular HMGB1 is deposited on these plaques. Taken together, microglial Aβ phagocytosis dysfunction may be caused by HMGB1 that accumulates extracellularly on Aβ plaques, and it may be critically involved in the pathological progression of AD.

  1. TRPM2 contributes to LPC-induced intracellular Ca2+influx and microglial activation.

    Science.gov (United States)

    Jeong, Heejin; Kim, Yong Ho; Lee, Yunsin; Jung, Sung Jun; Oh, Seog Bae

    2017-04-01

    Microglia are the resident immune cells which become activated in some pathological conditions in central nervous system (CNS). Lysophosphatidylcholine (LPC), an endogenous inflammatory phospholipid, is implicated in immunomodulatory function of glial cells in the CNS. Although several studies uncovered that LPC induces intracellular Ca 2+ influx and morphologic change in microglia, there is still no direct evidence showing change of phosphorylation of mitogen-activated protein kinase (MAPK) p38 (p-p38), a widely used microglia activation marker, by LPC. Furthermore, the cellular mechanism of LPC-induced microglia activation remains unknown. In this study, we found that LPC induced intracellular Ca 2+ increase in primary cultured microglia, which was blocked in the presence of Gd 3+ , non-selective transient receptor potential (TRP) channel blocker. RT-PCR and whole cell patch clamp recordings revealed molecular and functional expression of TRP melastatin 2 (TRPM2) in microglia. Using western blotting, we also observed that LPC increased phosphorylation of p38 MAPK, and the increase of p-p38 expression is also reversed in TRPM2-knockout (KO) microglia. Moreover, LPC induced membrane trafficking of TRPM2 and intrathecal injection of LPC increased Iba-1 immunoreactivity in the spinal cord, which were significantly reduced in KO mice. In addition, LPC-induced intracellular Ca 2+ increase and inward currents were abolished in TRPM2-KO microglia. Taken together, our results suggest that LPC induces intracellular Ca 2+ influx and increases phosphorylation of p38 MAPK via TRPM2, which in turn activates microglia. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Persistent Increase in Microglial RAGE Contributes to Chronic Stress-Induced Priming of Depressive-like Behavior.

    Science.gov (United States)

    Franklin, Tina C; Wohleb, Eric S; Zhang, Yi; Fogaça, Manoela; Hare, Brendan; Duman, Ronald S

    2018-01-01

    Chronic stress-induced inflammatory responses occur in part via danger-associated molecular pattern (DAMP) molecules, such as high mobility group box 1 protein (HMGB1), but the receptor(s) underlying DAMP signaling have not been identified. Microglia morphology and DAMP signaling in enriched rat hippocampal microglia were examined during the development and expression of chronic unpredictable stress (CUS)-induced behavioral deficits, including long-term, persistent changes after CUS. The results show that CUS promotes significant morphological changes and causes robust upregulation of HMGB1 messenger RNA in enriched hippocampal microglia, an effect that persists for up to 6 weeks after CUS exposure. This coincides with robust and persistent upregulation of receptor for advanced glycation end products (RAGE) messenger RNA, but not toll-like receptor 4 in hippocampal microglia. CUS also increased surface expression of RAGE protein on hippocampal microglia as determined by flow cytometry and returned to basal levels 5 weeks after CUS. Importantly, exposure to short-term stress was sufficient to increase RAGE surface expression as well as anhedonic behavior, reflecting a primed state that results from a persistent increase in RAGE messenger RNA expression. Further evidence for DAMP signaling in behavioral responses is provided by evidence that HMGB1 infusion into the hippocampus was sufficient to cause anhedonic behavior and by evidence that RAGE knockout mice were resilient to stress-induced anhedonia. Together, the results provide evidence of persistent microglial HMGB1-RAGE expression that increases vulnerability to depressive-like behaviors long after chronic stress exposure. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-κB pathway following experimental traumatic brain injury.

    Science.gov (United States)

    Chen, Xiangrong; Wu, Shukai; Chen, Chunnuan; Xie, Baoyuan; Fang, Zhongning; Hu, Weipeng; Chen, Junyan; Fu, Huangde; He, Hefan

    2017-07-24

    Microglial activation and the subsequent inflammatory response in the central nervous system play important roles in secondary damage after traumatic brain injury (TBI). High-mobility group box 1 (HMGB1) protein, an important mediator in late inflammatory responses, interacts with transmembrane receptor for advanced glycation end products (RAGE) and toll-like receptors (TLRs) to activate downstream signaling pathways, such as the nuclear factor (NF)-κB signaling pathway, leading to a cascade amplification of inflammatory responses, which are related to neuronal damage after TBI. Omega-3 polyunsaturated fatty acid (ω-3 PUFA) is a commonly used clinical immunonutrient, which has antioxidative and anti-inflammatory effects. However, the effects of ω-3 PUFA on HMGB1 expression and HMGB1-mediated activation of the TLR4/NF-κB signaling pathway are not clear. The Feeney DM TBI model was adopted to induce brain injury in rats. Modified neurological severity scores, brain water content, and Nissl staining were employed to determine the neuroprotective effects of ω-3 PUFA supplementation. Assessment of microglial activation in lesioned sites and protein markers for proinflammatory, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, interferon (IFN)-γ, and HMGB1 were used to evaluate neuroinflammatory responses and anti-inflammation effects of ω-3 PUFA supplementation. Immunofluorescent staining and western blot analysis were used to detect HMGB1 nuclear translocation, secretion, and HMGB1-mediated activation of the TLR4/NF-κB signaling pathway to evaluate the effects of ω-3 PUFA supplementation and gain further insight into the mechanisms underlying the development of the neuroinflammatory response after TBI. It was found that ω-3 PUFA supplementation inhibited TBI-induced microglial activation and expression of inflammatory factors (TNF-α, IL-1β, IL-6, and IFN-γ), reduced brain edema, decreased neuronal apoptosis, and improved neurological

  4. Neural Stem Cell Delivery of Therapeutic Antibodies to Treat Breast Cancer Brain Metastases

    Science.gov (United States)

    2009-10-01

    deliver antineoplastic gene products directly to the tumor-producing cells. This potential therapeutic strategy may safely eradicate tumor-producing cells...surgical manipulation since activated microglial cells were never detected in the same brain regions of animals injected with medium alone (Fig. 4B-a right...steps of metastatic invasion remain to be elucidated. Unraveling the underlying mechanisms in vivo might lead to targeted manipulation of the brain

  5. Preventive effects of a fermented dairy product against Alzheimer's disease and identification of a novel oleamide with enhanced microglial phagocytosis and anti-inflammatory activity.

    Science.gov (United States)

    Ano, Yasuhisa; Ozawa, Makiko; Kutsukake, Toshiko; Sugiyama, Shinya; Uchida, Kazuyuki; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of patients with dementia worldwide, fundamental therapeutic approaches to this condition have not been established. Epidemiological studies suggest that intake of fermented dairy products prevents cognitive decline in the elderly. However, the active compounds responsible for the effect remain to be elucidated. The present study aims to elucidate the preventive effects of dairy products on Alzheimer's disease and to identify the responsible component. Here, in a mouse model of Alzheimer's disease (5xFAD), intake of a dairy product fermented with Penicillium candidum had preventive effects on the disease by reducing the accumulation of amyloid β (Aβ) and hippocampal inflammation (TNF-α and MIP-1α production), and enhancing hippocampal neurotrophic factors (BDNF and GDNF). A search for preventive substances in the fermented dairy product identified oleamide as a novel dual-active component that enhanced microglial Aβ phagocytosis and anti-inflammatory activity towards LPS stimulation in vitro and in vivo. During the fermentation, oleamide was synthesized from oleic acid, which is an abundant component of general dairy products owing to lipase enzymatic amidation. The present study has demonstrated the preventive effect of dairy products on Alzheimer's disease, which was previously reported only epidemiologically. Moreover, oleamide has been identified as an active component of dairy products that is considered to reduce Aβ accumulation via enhanced microglial phagocytosis, and to suppress microglial inflammation after Aβ deposition. Because fermented dairy products such as camembert cheese are easy to ingest safely as a daily meal, their consumption might represent a preventive strategy for dementia.

  6. Preventive Effects of a Fermented Dairy Product against Alzheimer’s Disease and Identification of a Novel Oleamide with Enhanced Microglial Phagocytosis and Anti-Inflammatory Activity

    Science.gov (United States)

    Ano, Yasuhisa; Ozawa, Makiko; Kutsukake, Toshiko; Sugiyama, Shinya; Uchida, Kazuyuki; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of patients with dementia worldwide, fundamental therapeutic approaches to this condition have not been established. Epidemiological studies suggest that intake of fermented dairy products prevents cognitive decline in the elderly. However, the active compounds responsible for the effect remain to be elucidated. The present study aims to elucidate the preventive effects of dairy products on Alzheimer’s disease and to identify the responsible component. Here, in a mouse model of Alzheimer’s disease (5xFAD), intake of a dairy product fermented with Penicillium candidum had preventive effects on the disease by reducing the accumulation of amyloid β (Aβ) and hippocampal inflammation (TNF-α and MIP-1α production), and enhancing hippocampal neurotrophic factors (BDNF and GDNF). A search for preventive substances in the fermented dairy product identified oleamide as a novel dual-active component that enhanced microglial Aβ phagocytosis and anti-inflammatory activity towards LPS stimulation in vitro and in vivo. During the fermentation, oleamide was synthesized from oleic acid, which is an abundant component of general dairy products owing to lipase enzymatic amidation. The present study has demonstrated the preventive effect of dairy products on Alzheimer’s disease, which was previously reported only epidemiologically. Moreover, oleamide has been identified as an active component of dairy products that is considered to reduce Aβ accumulation via enhanced microglial phagocytosis, and to suppress microglial inflammation after Aβ deposition. Because fermented dairy products such as camembert cheese are easy to ingest safely as a daily meal, their consumption might represent a preventive strategy for dementia. PMID:25760987

  7. Spinal astrocyte and microglial activation contributes to rat pain-related behaviors induced by the venom of scorpion Buthus martensi Karch.

    Science.gov (United States)

    Jiang, Feng; Liu, Tong; Cheng, Ming; Pang, Xue-Yan; Bai, Zhan-Tao; Zhou, Jing-Jing; Ji, Yong-Hua

    2009-11-25

    The present study investigated whether spinal astrocyte and microglia were activated in Buthus martensi Karch (BmK) venom-induced rat pain-related behaviors. The results showed that glial fibrillary acidic protein (GFAP) immunoreactivity indicative astrocyte activation in bilateral spinal cord started to increase by day 3, peaked at day 7 and gradually reversed at day 14 following intraplantar injection of BmK venom. Western blotting analysis confirmed GFAP expression was up-regulated by BmK venom. In contrast, bilateral spinal increase of OX-42 immunoreactivity indicative of microglial activation began at 4h peaked at day 1 and gradually reversed by days 3 to 7 after the administration of BmK venom. Pretreatment with either intrathecal injection of fluorocitrate or intraperitonial injection of minocycline, and two glial activation inhibitors, suppressed the spontaneous nociceptive responses, and prevented the primary thermal and bilateral mechanical hyperalgesia induced by BmK venom. The post-treatment with fluorocitrate or minocycline could not affect the mechanical hyperalgesia. Moreover, minocycline partially inhibited BmK venom-induced spinal c-Fos expression but lack of effects on BmK venom-induced paw edema. Taken together, the current study demonstrated that spinal astrocyte and microglial activation may contribute to BmK venom-induced rat pain-related behaviors. Thus, spinal glia may represent novel targets for effective treatment of pain syndrome associated with scorpion envenomation.

  8. Chemokine receptor expression by inflammatory T cells in EAE

    DEFF Research Database (Denmark)

    Mony, Jyothi Thyagabhavan; Khorooshi, Reza; Owens, Trevor

    2014-01-01

    Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS). The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS). The CCL20...... immunofluorescence. Consistent with flow cytometry data some but not all CD4(+) T cells expressed CCR6 within infiltrates. CD4-negative CCR6(+) cells included macrophage/microglial cells. Thus we have for the first time directly studied CD4(+) and CD8(+) T cells in the CNS of mice with peak EAE, and determined IFNγ...

  9. Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer's disease mice

    Directory of Open Access Journals (Sweden)

    LaFerla Frank M

    2005-10-01

    Full Text Available Abstract Background Alzheimer's disease is a complex neurodegenerative disorder characterized pathologically by a temporal and spatial progression of beta-amyloid (Aβ deposition, neurofibrillary tangle formation, and synaptic degeneration. Inflammatory processes have been implicated in initiating and/or propagating AD-associated pathology within the brain, as inflammatory cytokine expression and other markers of inflammation are pronounced in individuals with AD pathology. The current study examines whether inflammatory processes are evident early in the disease process in the 3xTg-AD mouse model and if regional differences in inflammatory profiles exist. Methods Coronal brain sections were used to identify Aβ in 2, 3, and 6-month 3xTg-AD and non-transgenic control mice. Quantitative real-time RT-PCR was performed on microdissected entorhinal cortex and hippocampus tissue of 2, 3, and 6-month 3xTg-AD and non-transgenic mice. Microglial/macrophage cell numbers were quantified using unbiased stereology in 3xTg-AD and non-transgenic entorhinal cortex and hippocampus containing sections. Results We observed human Aβ deposition at 3 months in 3xTg-AD mice which is enhanced by 6 months of age. Interestingly, we observed a 14.8-fold up-regulation of TNF-α and 10.8-fold up-regulation of MCP-1 in the entorhinal cortex of 3xTg-AD mice but no change was detected over time in the hippocampus or in either region of non-transgenic mice. Additionally, this increase correlated with a specific increase in F4/80-positive microglia and macrophages in 3xTg-AD entorhinal cortex. Conclusion Our data provide evidence for early induction of inflammatory processes in a model that develops amyloid and neurofibrillary tangle pathology. Additionally, our results link inflammatory processes within the entorhinal cortex, which represents one of the earliest AD-affected brain regions.

  10. Modulation of microglial activity

    NARCIS (Netherlands)

    Kannan, Vishnu

    2013-01-01

    Histone deacetylases (HDAC’s), een groep enzymen die histones (proteïnes die DNA verpakken en reguleren) in staat stellen om hun werk te doen, zijn mogelijk een belangrijk doelwit in het stopzetten van ontstekingsreacties in het centrale zenuwstelsel. Dat concludeert Vishun Kannan in een onderzoek

  11. SCM-198 inhibits microglial overactivation and attenuates Aβ(1-40)-induced cognitive impairments in rats via JNK and NF-кB pathways.

    Science.gov (United States)

    Hong, Zhen-Yi; Shi, Xue-Ru; Zhu, Kai; Wu, Ting-Ting; Zhu, Yi-Zhun

    2014-08-19

    Neuroinflammation mediated by overactivated microglia plays a key role in many neurodegenerative diseases, including Alzheimer's disease (AD). In this study, we investigated for the first time the anti-neuroinflammatory effects and possible mechanisms of SCM-198 (an alkaloid extracted from Herbaleonuri), which was previously found highly cardioprotective, both in vitro and in vivo. For in vitro experiments, lipopolysaccharide (LPS) or β-amyloid(1-40) (Aβ(1-40)) was applied to induce microglial overactivation. Proinflammatory mediators were measured and activations of NF-κB and mitogen-activated protein kinases' (MAPKs) pathways were investigated. Further protective effect of SCM-198 was evaluated in microglia-neuron co-culture assay and Sprague-Dawley (SD) rats intrahippocampally-injected with Aβ(1-40). SCM-198 reduced expressions of nitric oxide (NO), TNF-α, IL-1β and IL-6 possibly via, at least partially, inhibiting c-Jun N-terminal kinase (JNK) and NF-κB signaling pathways in microglia. Co-culture assay showed that activated microglia pretreated with SCM-198 led to less neuron loss and decreased phosphorylation of tau and extracellular signal-regulated kinase (ERK) in neurons. Besides, SCM-198 also directly protected against Aβ(1-40)-induced neuronal death and lactate dehydrogenase (LDH) release in primary cortical neurons. For in vivo studies, SCM-198 significantly enhanced cognitive performances of rats 12 days after intrahippocampal injections of aged Aβ(1-40) peptides in the Morris water maze (MWM), accompanied by less hippocampal microglial activation, decreased synaptophysin loss and phosphorylation of ERK and tau. Co-administration of donepezil and SCM-198 resulted in a slight cognitive improvement in SD rats 50 days after intrahippocampal injections of aged Aβ(1-40) peptides as compared to only donepezil or SCM-198 treated group. Our findings are the first to report that SCM-198 has considerable anti-neuroinflammatory effects on inhibiting

  12. Chemokine Expression in Retinal Pigment Epithelial ARPE-19 Cells in Response to Coculture with Activated T Cells

    DEFF Research Database (Denmark)

    Juel, Helene Bæk; Faber, Carsten; Udsen, Maja

    2012-01-01

    -cell–derived cytokines by upregulating expression of multiple chemokines related to microglial, T-cell, and monocyte chemotaxis and activation. This inflammatory stress response may have implications for immune homeostasis in the retina, and for the further understanding of inflammatory ocular diseases such as uveitis......Purpose. To investigate the effects of T-cell–derived cytokines on gene and protein expression of chemokines in a human RPE cell line (ARPE-19). Methods. We used an in vitro coculture system in which the RPE and CD3/CD28–activated T-cells were separated by a membrane. RPE cell expression...

  13. Mycobacterium tuberculosis-infected human monocytes down-regulate microglial MMP-2 secretion in CNS tuberculosis via TNFα, NFκB, p38 and caspase 8 dependent pathways

    Directory of Open Access Journals (Sweden)

    Elkington Paul T

    2011-05-01

    Full Text Available Abstract Tuberculosis (TB of the central nervous system (CNS is a deadly disease characterized by extensive tissue destruction, driven by molecules such as Matrix Metalloproteinase-2 (MMP-2 which targets CNS-specific substrates. In a simplified cellular model of CNS TB, we demonstrated that conditioned medium from Mycobacterium tuberculosis-infected primary human monocytes (CoMTb, but not direct infection, unexpectedly down-regulates constitutive microglial MMP-2 gene expression and secretion by 72.8% at 24 hours, sustained up to 96 hours (P M.tb-infected monocyte-dependent networks paradoxically involves the pro-inflammatory mediators TNF-α, p38 MAP kinase and NFκB in addition to a novel caspase 8-dependent pathway.

  14. α-Asarone attenuates microglia-mediated neuroinflammation by inhibiting NF kappa B activation and mitigates MPTP-induced behavioral deficits in a mouse model of Parkinson's disease.

    Science.gov (United States)

    Kim, Byung-Wook; Koppula, Sushruta; Kumar, Hemant; Park, Ju-Young; Kim, Il-Woung; More, Sandeep V; Kim, In-Su; Han, Sang-Don; Kim, Si-Kwan; Yoon, Sung-Hwa; Choi, Dong-Kug

    2015-10-01

    The selective loss of dopaminergic neurons in Parkinson's disease (PD) is associated with microglial activation. Therefore, the importance of early therapeutic intervention to inhibit microglial activation would be an effective strategy to alleviate the progression of PD. α-Asarone, an active compound found in Araceae and Annonaceae plant species has been used to improve various disease conditions including central nervous system disorders. In the present study the in vitro and in vivo therapeutic effects of α-asarone isolated from the rhizome of Acorus gramineus Solander was evaluated on microglia-mediated neuroinflammation and neuroprotection. Lipopolysaccharide (LPS)-stimulated BV-2 microglial cells were used to evaluate in vitro effects. 1-methyl-4 phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced mouse model of PD was developed to study the neuroprotective effects of α-asarone in vivo. The results indicated that α-asarone significantly attenuated the LPS-stimulated increase in neuroinflammatory responses and suppressed pro-inflammatory cytokine production in BV-2 cells. Mechanistic study revealed that α-asarone inhibited the LPS-stimulated activation via regulation of nuclear factor kappa-B by blocking degradation of inhibitor kappa B-alpha signaling in BV-2 microglial cells. In in vivo studies, MPTP intoxication to mice resulted in brain microglial activation and significant behavioral deficits. Prophylactic treatment with α-asarone suppressed microglial activation and attenuated PD-like behavioral impairments as assessed by the Y-maze and pole tests. Taken together, these data demonstrate that α-asarone is a promising neuroprotective agent that should be further evaluated and developed for future prevention and treatment of microglia-mediated neuroinflammatory conditions including PD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Expression of N-methyl D-aspartate receptor subunits in amoeboid microglia mediates production of nitric oxide via NF-κB signaling pathway and oligodendrocyte cell death in hypoxic postnatal rats.

    Science.gov (United States)

    Murugan, Madhuvika; Sivakumar, Viswanathan; Lu, Jia; Ling, Eng-Ang; Kaur, Charanjit

    2011-04-01

    The present study was focused on identifying the expression of N-methyl D-aspartate receptor (NMDAR) subunits on activated microglia and to determine their role in the pathogenesis of periventricular white matter damage (PWMD) in neonatal rats following hypoxia. One day old wistar rats were subjected to hypoxia (5% O(2) ; 95% N(2) ) and the mRNA and protein expression of NMDAR subunits (NR1, NR2A-D, and NR3A) in the periventricular white matter (PWM) was determined at different time points (3,24 h, 3, 7, and 14 days) following hypoxic exposure. Immunoexpression of NR1 and NR2A-D was localized in amoeboid microglial cells (AMC) suggesting the presence of functional NMDARs in them. The expression of NMDAR in primary microglial cultures was ascertained by RT-PCR analysis and double immunofluorescence studies. The functionality of the microglial NMDAR in cultured microglial cells was examined by monitoring calcium movements in cells with fura-2. In primary microglial cultures, hypoxia induced the nuclear translocation of NF-κB which was suppressed by administration of MK801, an NMDAR antagonist. MK801 also down regulated the hypoxia-induced expression of tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase (iNOS), and nitric oxide (NO) production by microglia which may be mediated by the NF-κB signaling pathway. NO produced by microglia is known to cause death of oligodendrocytes in the developing PWM. In this connection, pharmacological agents such as MK801, BAY (NF-κB inhibitor), and 1400w (iNOS inhibitor) proved to be beneficial since they reduced the hypoxia-induced iNOS expression, NO production, and a corresponding reduction in the death of oligodendrocytes following hypoxia. Copyright © 2011 Wiley-Liss, Inc.

  16. Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: a dual-key mechanism of inflammatory neurodegeneration

    Directory of Open Access Journals (Sweden)

    Brown Guy C

    2005-09-01

    Full Text Available Abstract Background Inflammation-activated glia are seen in many CNS pathologies and may kill neurons through the release of cytotoxic mediators, such as nitric oxide from inducible NO synthase (iNOS, and possibly superoxide from NADPH oxidase (NOX. We set out to determine the relative role of these species in inducing neuronal death, and to test the dual-key hypothesis that the production of both species simultaneously is required for significant neuronal death. Methods Primary co-cultures of cerebellar granule neurons and glia from rats were used to investigate the effect of NO (from iNOS, following lipopolysaccharide (LPS and/or cytokine addition or superoxide/hydrogen peroxide (from NOX, following phorbol 12-myristate 13-acetate (PMA, ATP analogue (BzATP, interleukin-1β (IL-1β or arachidonic acid (AA addition on neuronal survival. Results Induction of glial iNOS caused little neuronal death. Similarly, activation of NOX alone resulted in little or no neuronal death. However, if NOX was activated (by PMA or BzATP in the presence of iNOS (induced by LPS and interferon-γ then substantial delayed neuronal death occurred over 48 hours, which was prevented by inhibitors of iNOS (1400W, NOX (apocynin or a peroxynitrite decomposer (FeTPPS. Neurons and glia were also found to stain positive for nitrotyrosine (a putative marker of peroxynitrite only when both iNOS and NOX were simultaneously active. If NOX was activated by weak stimulators (IL-1β, AA or the fibrillogenic prion peptide PrP106-126 in the presence of iNOS, it caused microglial proliferation and delayed neurodegeneration over 6 days, which was prevented by iNOS or NOX inhibitors, a peroxynitrite decomposer or a NMDA-receptor antagonist (MK-801. Conclusion These results suggest a dual-key mechanism, whereby glial iNOS or microglial NOX activation alone is relatively benign, but if activated simultaneously are synergistic in killing neurons, through generating peroxynitrite. This

  17. Regulation of microglia activity by glaucocalyxin-A: attenuation of lipopolysaccharide-stimulated neuroinflammation through NF-κB and p38 MAPK signaling pathways.

    Science.gov (United States)

    Kim, Byung-Wook; Koppula, Sushruta; Hong, Seong-Su; Jeon, Sae-Bom; Kwon, Ji-Hye; Hwang, Bang-Yeon; Park, Eun-Jung; Choi, Dong-Kug

    2013-01-01

    Microglial cells are the resident macrophages and intrinsic arm of the central nervous system innate immune defense. Microglial cells become activated in response to injury, infection, environmental toxins, and other stimuli that threaten neuronal survival. Therefore, regulating microglial activation may have therapeutic benefits that lead to alleviating the progression of inflammatory-mediated neurodegeneration. In the present study, we investigated the effect of glaucocalyxin A (GLA) isolated from Rabdosia japonica on the production of pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated primary microglia and BV-2 cells. GLA significantly inhibited LPS-induced production of nitric oxide and reversed the morphological changes in primary microglia. Further, GLA suppressed expression of inducible nitric oxide synthase and cyclooxygenase-2 dose-dependently at the mRNA and protein levels. The production of proinflammatory cytokines such as tumor necrosis factor-α, interleukin-1β (IL)-1β, and IL-6 were inhibited by suppressing their transcriptional activity. Furthermore, GLA suppressed nuclear factor-κB activation by blocking degradation of IκB-α and inhibited the induction of lipocalin-2 expression in LPS-stimulated BV-2 cells. Mechanistic study revealed that the inhibitory effects of GLA were accompanied by blocking the p38 mitogen activated protein kinase signaling pathway in activated microglia. In conclusion, given that microglial activation contributes to the pathogenesis of neurodegenerative diseases, GLA could be developed as a potential therapeutic agent for treating microglia-mediated neuroinflammatory diseases.

  18. Regulation of microglia activity by glaucocalyxin-A: attenuation of lipopolysaccharide-stimulated neuroinflammation through NF-κB and p38 MAPK signaling pathways.

    Directory of Open Access Journals (Sweden)

    Byung-Wook Kim

    Full Text Available Microglial cells are the resident macrophages and intrinsic arm of the central nervous system innate immune defense. Microglial cells become activated in response to injury, infection, environmental toxins, and other stimuli that threaten neuronal survival. Therefore, regulating microglial activation may have therapeutic benefits that lead to alleviating the progression of inflammatory-mediated neurodegeneration. In the present study, we investigated the effect of glaucocalyxin A (GLA isolated from Rabdosia japonica on the production of pro-inflammatory mediators in lipopolysaccharide (LPS-stimulated primary microglia and BV-2 cells. GLA significantly inhibited LPS-induced production of nitric oxide and reversed the morphological changes in primary microglia. Further, GLA suppressed expression of inducible nitric oxide synthase and cyclooxygenase-2 dose-dependently at the mRNA and protein levels. The production of proinflammatory cytokines such as tumor necrosis factor-α, interleukin-1β (IL-1β, and IL-6 were inhibited by suppressing their transcriptional activity. Furthermore, GLA suppressed nuclear factor-κB activation by blocking degradation of IκB-α and inhibited the induction of lipocalin-2 expression in LPS-stimulated BV-2 cells. Mechanistic study revealed that the inhibitory effects of GLA were accompanied by blocking the p38 mitogen activated protein kinase signaling pathway in activated microglia. In conclusion, given that microglial activation contributes to the pathogenesis of neurodegenerative diseases, GLA could be developed as a potential therapeutic agent for treating microglia-mediated neuroinflammatory diseases.

  19. Endogenous pleiotrophin and midkine regulate LPS-induced glial responses.

    Science.gov (United States)

    Fernández-Calle, Rosalía; Vicente-Rodríguez, Marta; Gramage, Esther; de la Torre-Ortiz, Carlos; Pérez-García, Carmen; Ramos, María P; Herradón, Gonzalo

    2018-01-01

    Pleiotrophin (PTN) and Midkine (MK) are two growth factors that modulate neuroinflammation. PTN overexpression in the brain prevents LPS-induced astrocytosis in mice but potentiates microglial activation. The modest astrocytic response caused by a low dose of LPS (0.5mg/kg) is blocked in the striatum of MK-/- mice whereas microglial response is unaffected. We have now tested the effects of an intermediate dose of LPS (7.5mg/kg) in glial response in PTN-/- and MK-/- mice. We found that LPS-induced astrocytosis is prevented in prefrontal cortex and striatum of both PTN-/- and MK-/- mice. Some of the morphological changes of microglia induced by LPS tended to increase in both genotypes, particularly in PTN-/- mice. Since we previously showed that PTN potentiates LPS-induced activation of BV2 microglial cells, we tested the activation of FYN kinase, a substrate of the PTN receptor RPTPβ/ζ, and the subsequent ERK1/2 phosphorylation on LPS and PTN-treated BV2 cells. LPS effects on BV2 cells were not affected by the addition of PTN, suggesting that PTN does not recruit the FYN-MAP kinase signaling pathway in order to modulate LPS effects on microglial cells. Taking together, evidences demonstrate that regulation of astroglial responses to LPS administration are highly dependent on the levels of expression of PTN and MK. Further studies are needed to clarify the possible roles of endogenous expression of PTN and MK in LPS-induced microglial responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Microglial Janus kinase/signal transduction and activator of transcription 3 pathway activity directly impacts astrocyte and spinal neuron characteristics

    Czech Academy of Sciences Publication Activity Database

    Molet, J.; Mauborgne, A.; Diallo, Michael; Armand, V.; Geny, D.; Villanueva, L.; Boucher, Y.; Pohl, M.

    2016-01-01

    Roč. 136, č. 1 (2016), s. 133-147 ISSN 0022-3042 R&D Projects: GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : astrocytes * cell plasticity * JAK/STAT3 pathway * microglia conditioned media * spinal cord neurons Subject RIV: FH - Neurology Impact factor: 4.083, year: 2016

  1. LED enhances anti-inflammatory effect ofluteolin (3',4',5,7-tetrahydroxyflavone) in vitro.

    Science.gov (United States)

    Fan, Shengnuo; Habib, Ahsan; Liu, Jun; Tan, Jun

    2018-01-01

    Neuroinflammation is a complex pathological process usually results from abnormal microglial activation, thus, intervention in a microglial stimulation pathway could be a promising approach for the treatment of neurodegenerative diseases. Luteolin is an important bioflavonoid possesses anti-inflammatory properties, which is widely studied over these years. Light emitting diode (LED) therapy is reported to be a potential therapeutic strategy for many diseases including neurodegenerative diseases. However, little is known about the anti-inflammatory effect of LED therapy on activated microglial cells, even less is known whether there is a synergistic anti-inflammatory effect exist in LED and luteolin therapy. In this study, we aimed to confirm the anti-inflammatory effect of luteolin and LED combination therapy in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. We showed that luteolin inhibited LPS-induced cytotoxicity, tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) production through modulation of p38 and extracellular signal-regulated kinase (ERK) signaling in BV2 cells. In addition, LED therapy enhanced the anti-inflammatory effect of luteolin. These results suggest that a synergistic effect between luteolin and LED could be a new effective therapy in relieving neuroinflammation.

  2. LED enhances anti-inflammatory effect of luteolin (3’,4’,5,7-tetrahydroxyflavone) in vitro

    Science.gov (United States)

    Fan, Shengnuo; Habib, Ahsan; Liu, Jun; Tan, Jun

    2018-01-01

    Neuroinflammation is a complex pathological process usually results from abnormal microglial activation, thus, intervention in a microglial stimulation pathway could be a promising approach for the treatment of neurodegenerative diseases. Luteolin is an important bioflavonoid possesses anti-inflammatory properties, which is widely studied over these years. Light emitting diode (LED) therapy is reported to be a potential therapeutic strategy for many diseases including neurodegenerative diseases. However, little is known about the anti-inflammatory effect of LED therapy on activated microglial cells, even less is known whether there is a synergistic anti-inflammatory effect exist in LED and luteolin therapy. In this study, we aimed to confirm the anti-inflammatory effect of luteolin and LED combination therapy in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. We showed that luteolin inhibited LPS-induced cytotoxicity, tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) production through modulation of p38 and extracellular signal-regulated kinase (ERK) signaling in BV2 cells. In addition, LED therapy enhanced the anti-inflammatory effect of luteolin. These results suggest that a synergistic effect between luteolin and LED could be a new effective therapy in relieving neuroinflammation. PMID:29423013

  3. Glial cell biology in the Great Lakes region.

    Science.gov (United States)

    Feinstein, Douglas L; Skoff, Robert P

    2016-03-31

    We report on the tenth bi-annual Great Lakes Glial meeting, held in Traverse City, Michigan, USA, September 27-29 2015. The GLG meeting is a small conference that focuses on current research in glial cell biology. The array of functions that glial cells (astrocytes, microglia, oligodendrocytes, Schwann cells) play in health and disease is constantly increasing. Despite this diversity, GLG meetings bring together scientists with common interests, leading to a better understanding of these cells. This year's meeting included two keynote speakers who presented talks on the regulation of CNS myelination and the consequences of stress on Schwann cell biology. Twenty-two other talks were presented along with two poster sessions. Sessions covered recent findings in the areas of microglial and astrocyte activation; age-dependent changes to glial cells, Schwann cell development and pathology, and the role of stem cells in glioma and neural regeneration.

  4. Inhibition of Nitric Oxide and Prostaglandin E 2 Expression by ...

    African Journals Online (AJOL)

    Inhibition of Nitric Oxide and Prostaglandin E2 Expression by Methanol Extract of Polyopes affinis in Lipopolysaccharide-stimulated BV2 Microglial Cells through Suppression of Akt-dependent NF-kB Activity and MAPK Pathway. RGPT Jayasooriya, Y-J Jang, C-H Kang, MG Dilshara, D-O Moon, T-J Nam, YH Choi, G-Y Kim ...

  5. Sesquiterpenes from Ulmus davidiana var. japonica with the inhibitory effects on lipopolysaccharide-induced nitric oxide production.

    Science.gov (United States)

    Kim, Young Choong; Lee, Mi Kyeong; Sung, Sang Hyun; Kim, Seung Hyun

    2007-04-01

    Investigation of antiinflammatory constituents of the stem and root barks of Ulmus davidiana var. japonica resulted in the isolation of three guaiane type sesquiterpenes, torilin, 1-hydroxytorilin, together with a new derivative, (1beta, 7beta, 8beta, 10beta)-1,8,11-trihydroxy-4-guaien-8-angeloyl-3-one named 1-hydroxytorilin A. All the three sesquiterpenes inhibited lipopolysaccharide-induced nitric oxide production in murine microglial BV2 cells.

  6. Positive feedback loop of autocrine BDNF from microglia causes prolonged microglia activation.

    Science.gov (United States)

    Zhang, Xin; Zeng, Lulu; Yu, Tingting; Xu, Yongming; Pu, Shaofeng; Du, Dongping; Jiang, Wei

    2014-01-01

    Microglia, which represent the immune cells of the central nervous system (CNS), have long been a subject of study in CNS disease research. Substantial evidence indicates that microglial activation functions as a strong neuro-inflammatory response in neuropathic pain, promoting the release of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α. In addition, activated microglia release brain-derived neurotrophic factor (BDNF), which acts as a powerful cytokine. In this study, we performed a series of in vitro experiments to examine whether a positive autocrine feedback loop existed between microglia-derived BDNF and subsequent microglial activation as well as the mechanisms underlying this positive feedback loop. Because ATP is a classic inducer of microglial activation, firstly, we examined ATP-activated microglia in the present study. Secondly, we used TrkB/Fc, the BDNF sequester, to eliminate the effects of endogenous BDNF. ATP-stimulated microglia without BDNF was examined. Finally, we used exogenous BDNF to further determine whether BDNF could directly activate BV2 microglia. In all experiments, to quantify BV2 microglia activation, the protein levels of CD11b, a microglial activation marker, were measured by western blot. A Transwell migration assay was used to examine microglial migration. To assess the synthesis and release of proinflammatory cytokines, western blot was used to measure BDNF synthesis, and ELISA was used to quantify TNF-α release. In our present research, we have observed that ATP dramatically activates microglia, enhancing microglial migration, increasing the synthesis of BDNF and up-regulating the release of TNF-α. Microglial activation is inhibited following the sequestration of endogenous BDNF, resulting in impaired microglial migration and decreased TNF-α release. Furthermore, exogenous BDNF can also activate microglia to subsequently enhance migration and increase TNF-α release. Therefore, we suggest that microglial

  7. Behaviour of CD11b-Positive Cells in an Animal Model of Laser-Induced Choroidal Neovascularisation.

    Science.gov (United States)

    Li, Lu; Heiduschka, Peter; Alex, Anne F; Niekämper, Daniel; Eter, Nicole

    2017-01-01

    Immune cells, e.g. microglial cells of the retina, appear to be involved in pathological processes in neovascular age-related macular degeneration. Therefore, the purpose of this study was to immunohistochemically check the expression of various factors and cytokines by CD11b-positive (CD11b+) immune cells in an animal model of choroidal neovascularisation (CNV). We used the animal model of laser-induced CNV in mice. Eyes were isolated at 1, 4, 7, and 14 days after laser treatment. Cryosections were prepared and checked immunohistochemically for the presence of different growth factors and cytokines on microglial cells and other immune cells identified by CD11b immunoreactivity. We found that the number of CD11b+ cells at the laser spots increased dramatically 4 days after laser treatment, the majority of them entering the laser spot most probably by migration. CD11b+ cells in the laser spot were positive for a variety of pro-angiogenic factors, such as PDGF-β, FGF-1, FGF-2, and TGF-β1. They were also positive for some inflammatory cytokines, in particular TNF-α, IL-6, and CXCL1. In non-treated retinas, CD11b+ cells showed almost no immunoreactivity for these proteins. Microglial cells, macrophages, and other CD11b+ cells may promote the neovascularisation in the laser spot and show a moderate inflammatory behaviour. Immunoreactivity for most of these molecules was found to decrease during the time of observation. Modulation of immune cell activity may thus be a tool to reduce the extent of CNV. © 2017 S. Karger AG, Basel.

  8. Fenofibrate dose not protect glioma cells from irradiation

    International Nuclear Information System (INIS)

    Ro, Jae Lim; Kim, Won Dong; Park, Woo Yoon

    2012-01-01

    Fenofibrate(FF) is a ligand for peroxisome proliferator-activated receptor (PPAR) α and used clinically as a hypolipidemic drug. FF has been reported to have a radioprotective effect of newborn cells in the dentate gyrus 1) and inhibit radiation-induced microglial pro-inflammatory response 2). However, if FF also protect tumor cells, it can not be used clinically during radiotherapy. Thus, we're interested in whether FF has an radioprotective effect of brain tumor cells or not Although the radiosensitive G0/G1 phase cells were increased, radiosensitization by FF was not observed in three human glioma cells. This may be due to counterbalance of radiosensitizing and radioprotecting proteins increased by FF. Taken together, FF neither radiosensitize nor radioprotect glioma cells, so it can be used to protect normal neural cells from radiation damage

  9. Contemporary views on inflammatory pain mechanisms: TRPing over innate and microglial pathways [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Zhonghui Guan

    2016-09-01

    Full Text Available Tissue injury, whether by trauma, surgical intervention, metabolic dysfunction, ischemia, or infection, evokes a complex cellular response (inflammation that is associated with painful hyperalgesic states. Although in the acute stages it is necessary for protective reflexes and wound healing, inflammation may persist well beyond the need for tissue repair or survival. Prolonged inflammation may well represent the greatest challenge mammalian organisms face, as it can lead to chronic painful conditions, organ dysfunction, morbidity, and death. The complexity of the inflammatory response reflects not only the inciting event (infection, trauma, surgery, cancer, or autoimmune but also the involvement of heterogeneous cell types including neuronal (primary afferents, sensory ganglion, and spinal cord, non-neuronal (endothelial, keratinocytes, epithelial, and fibroblasts, and immune cells. In this commentary, we will examine 1. the expression and regulation of two members of the transient receptor potential family in primary afferent nociceptors and their activation/regulation by products of inflammation, 2. the role of innate immune pathways that drive inflammation, and 3. the central nervous system’s response to injury with a focus on the activation of spinal microglia driving painful hyperalgesic states.

  10. Improvements in hippocampal-dependent memory and microglial infiltration with calorie restriction and gastric bypass surgery, but not with vertical sleeve gastrectomy.

    Science.gov (United States)

    Grayson, B E; Fitzgerald, M F; Hakala-Finch, A P; Ferris, V M; Begg, D P; Tong, J; Woods, S C; Seeley, R J; Davidson, T L; Benoit, S C

    2014-03-01

    Much recent evidence suggest that obesity and related comorbidities contribute to cognitive decline, including the development of non age-related dementia and Alzheimer's disease. Obesity is a serious threat to public health, and few treatments offer proven long-term weight loss. In fact, bariatric surgery remains the most effective long-term therapy to reduce weight and alleviate other aspects of the metabolic syndrome (MetS). Unlike the demonstrated benefits of caloric restriction to prevent weight gain, few if any studies have compared various means of weight loss on central nervous system function and hippocampal-dependent cognitive processes. Our studies comprise the first direct comparisons of caloric restriction to two bariatric surgeries (Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG)) on cognitive function. Weight loss following caloric restriction, RYGB and VSG was associated with generalized improvements in metabolic health and hippocampal-dependent learning, as measured in the radial arm maze and spontaneous alternation tests. However, VSG-treated rats exhibited deficits on spatial learning tasks in the Morris water maze. In addition, whereas VSG animals had elevated hippocampal inflammation, comparable to that of obese controls, RYGB and calorie-restricted (pair-fed, PF) controls exhibited an amelioration of inflammation, as measured by the microglial protein ionized calcium binding adaptor molecule 1 (IBA1). We also assessed whether GHR (ghrelin) replacement would attenuate hippocampal inflammation in VSG, as post-surgical GHR levels are significantly reduced in VSG relative to RYGB and PF rats. However, GHR treatment did not attenuate the hippocampal inflammation. Although VSG was comparably effective at reducing body weight and improving glucose regulation as RYGB, VSG did not appear to confer an equal benefit on cognitive function and markers of inflammation.

  11. The redox state of the alarmin HMGB1 is a pivotal factor in neuroinflammatory and microglial priming: A role for the NLRP3 inflammasome.

    Science.gov (United States)

    Frank, Matthew G; Weber, Michael D; Fonken, Laura K; Hershman, Sarah A; Watkins, Linda R; Maier, Steven F

    2016-07-01

    The alarmin high mobility group box-1 (HMGB1) has been implicated as a key factor mediating neuroinflammatory processes. Recent findings suggest that the redox state of HMGB1 is a critical molecular feature of HMGB1 such that the reduced form (fr-HMGB1) is chemotactic, while the disulfide form (ds-HMGB1) is pro-inflammatory. The present study examined the neuroinflammatory effects of these molecular forms as well as the ability of these forms to prime the neuroinflammatory and microglial response to an immune challenge. To examine the neuroinflammatory effects of these molecular forms in vivo, animals were administered intra-cisterna magna (ICM) a single dose of fr-HMGB1 (10μg), ds-HMGB1 (10μg) or vehicle and basal pro-inflammatory effects were measured 2 and 24h post-injection in hippocampus. Results of this initial experiment demonstrated that ds-HMGB1 increased hippocampal pro-inflammatory mediators at 2h (NF-κBIα mRNA, NLRP3 mRNA and IL-1β protein) and 24h (NF-κBIα mRNA, TNFα mRNA, and NLRP3 protein) after injection. fr-HMGB1 had no effect on these mediators. These neuroinflammatory effects of ds-HMGB1 suggested that ds-HMGB1 may function to prime the neuroinflammatory response to a subsequent immune challenge. To assess the neuroinflammatory priming effects of these molecular forms, animals were administered ICM a single dose of fr-HMGB1 (10μg), ds-HMGB1 (10μg) or vehicle and 24h after injection, animals were challenged with LPS (10μg/kg IP) or vehicle. Neuroinflammatory mediators and the sickness response (3, 8 and 24h after injection) were measured 2h after immune challenge. We found that ds-HMGB1 potentiated the neuroinflammatory (NF-κBIα mRNA, TNFα mRNA, IL-1β mRNA, IL-6 mRNA, NLRP3 mRNA and IL-1β protein) and sickness response (reduced social exploration) to LPS challenge. fr-HMGB1 failed to potentiate the neuroinflammatory response to LPS. To examine whether these molecular forms of HMGB1 directly induce neuroinflammatory effects in

  12. Protection against RAGE-mediated neuronal cell death by sRAGE-secreting human mesenchymal stem cells in 5xFAD transgenic mouse model.

    Science.gov (United States)

    Son, Myeongjoo; Oh, Seyeon; Park, Hyunjin; Ahn, Hyosang; Choi, Junwon; Kim, Hyungho; Lee, Hye Sun; Lee, Sojung; Park, Hye-Jeong; Kim, Seung U; Lee, Bonghee; Byun, Kyunghee

    2017-11-01

    Alzheimer's disease (AD), which is the most commonly encountered neurodegenerative disease, causes synaptic dysfunction and neuronal loss due to various pathological processes that include tau abnormality and amyloid beta (Aβ) accumulation. Aβ stimulates the secretion and the synthesis of Receptor for Advanced Glycation End products (RAGE) ligand by activating microglial cells, and has been reported to cause neuronal cell death in Aβ 1-42 treated rats and in mice with neurotoxin-induced Parkinson's disease. The soluble form of RAGE (sRAGE) is known to reduce inflammation, and to decrease microglial cell activation and Aβ deposition, and thus, it protects from neuronal cell death in AD. However, sRAGE protein has too a short half-life for therapeutic purposes. We developed sRAGE-secreting umbilical cord derived mesenchymal stem cells (sRAGE-MSCs) to enhance the inhibitory effects of sRAGE on Aβ deposition and to reduce the secretion and synthesis of RAGE ligands in 5xFAD mice. In addition, these cells improved the viability of injected MSCs, and enhanced the protective effects of sRAGE by inhibiting the binding of RAGE and RAGE ligands in 5xFAD mice. These findings suggest sRAGE protein from sRAGE-MSCs has better protection against neuronal cell death than sRAGE protein or single MSC treatment by inhibiting the RAGE cell death cascade and RAGE-induce inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Interleukin-1 exerts distinct actions on different cell types of the brain in vitro

    Directory of Open Access Journals (Sweden)

    Ying An

    2011-01-01

    Full Text Available Ying An, Qun Chen, Ning QuanDepartment of Oral Biology, Ohio State University, Columbus, OH, USAAbstract: Interleukin-1 (IL-1 is a critical neuroinflammatory mediator in the central nervous system (CNS. In this study, we investigated the effect of IL-1 on inducing inflammation-related gene expression in three astrocyte, two microglial, and one brain endothelial cell line. Interleukin-1 beta (IL-1β is found to be produced by the two microglial cell lines constitutively, but these cells do not respond to IL-1β stimulation. The three astrocyte cell lines responded to IL-1ß stimulation by expressing MCP-1, CXCL-1, and VCAM-1, but different subtypes of astrocytes exhibited different expression profiles after IL-1β stimulation. The brain endothelial cells showed strongest response to IL-1β by producing MCP-1, CXCL-1, VCAM-1, ICAM-1, IL-6, and COX-2 mRNA. The induction of endothelial COX-2 mRNA is shown to be mediated by p38 MAPK pathway, whereas the induction of other genes is mediated by the NF-κB pathway. These results demonstrate that IL-1 exerts distinct cell type-specific action in CNS cells and suggest that IL-1-mediated neuroinflammation is the result of the summation of multiple responses from different cell types in the CNS to IL-1.Keywords: astrocyte, microglia, endothelial cells, signal transduction pathways, gene expression 

  14. Pathologic and Protective Roles for Microglial Subsets and Bone Marrow- and Blood-Derived Myeloid Cells in Central Nervous System Inflammation

    DEFF Research Database (Denmark)

    Wlodarczyk, Agnieszka; Cédile, Oriane; Jensen, Kirstine Nolling

    2015-01-01

    Inflammation is a series of processes designed for eventual clearance of pathogens and repair of damaged tissue. In the context of autoimmune recognition, inflammatory processes are usually considered to be pathological. This is also true for inflammatory responses in the central nervous system...... by their expression of CD11c. These subsets differ in their expression of Arg-1, YM1, iNOS, IL-10, and IGF-1. Moreover, in contrast to BMDM/DC, both subsets of microglia express protective interferon-beta (IFNβ), high levels of colony-stimulating factor-1 receptor, and do not express the Th1-associated transcription...

  15. RETRACTED: Pierisformoside B exhibits neuroprotective and anti-inflammatory effects in murine hippocampal and microglial cells via the HO-1/Nrf2-mediated pathway.

    Science.gov (United States)

    Im, Nam-Kyung; Zhou, Wei; Na, MinKyun; Jeong, Gil-Saeng

    2015-02-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor. The authors have found multiple errors with the submission including but not limited to the incorporation of a figure (figure 6C) previously published in the Korean Journal of Pharmacognosy 2014. Apr, 45(2):161–167, http://kpubs.org/article/articleMain.kpubs?articleANo=HKSOBF_2014_v45n2_161. The authors extend an apology to readers and editors for this matter. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Low-level laser light therapy improves cognitive deficits and inhibits microglial activation after controlled cortical impact in mice.

    Science.gov (United States)

    Khuman, Jugta; Zhang, Jimmy; Park, Juyeon; Carroll, James D; Donahue, Chad; Whalen, Michael J

    2012-01-20

    Low-level laser light therapy (LLLT) exerts beneficial effects on motor and histopathological outcomes after experimental traumatic brain injury (TBI), and coherent near-infrared light has been reported to improve cognitive function in patients with chronic TBI. However, the effects of LLLT on cognitive recovery in experimental TBI are unknown. We hypothesized that LLLT administered after controlled cortical impact (CCI) would improve post-injury Morris water maze (MWM) performance. Low-level laser light (800 nm) was applied directly to the contused parenchyma or transcranially in mice beginning 60-80 min after CCI. Injured mice treated with 60 J/cm² (500 mW/cm²×2 min) either transcranially or via an open craniotomy had modestly improved latency to the hidden platform (pcraniotomy mice were associated with reduced microgliosis at 48 h (21.8±2.3 versus 39.2±4.2 IbA-1+ cells/200×field, pcognitive function was observed using the other doses, a 4-h administration time point and 7-day administration of 60 J/cm². No effect of LLLT (60 J/cm² open craniotomy) was observed on post-injury motor function (days 1-7), brain edema (24 h), nitrosative stress (24 h), or lesion volume (14 days). Although further dose optimization and mechanism studies are needed, the data suggest that LLLT might be a therapeutic option to improve cognitive recovery and limit inflammation after TBI.

  17. Distant microglial and astroglial activation secondary to experimental spinal cord lesion Ativação microglial e astroglial à distância secundárias a lesão da medula espinhal

    Directory of Open Access Journals (Sweden)

    Ricardo José de Almeida Leme

    2001-09-01

    Full Text Available This paper analysed whether glial responses following a spinal cord lesion is restricted to a scar formation close to the wound or they might be also related to widespread paracrine trophic events in the entire cord. Spinal cord hemitransection was performed in adult rats at the thoracic level. Seven days and three months later the spinal cords were removed and submitted to immunohistochemistry of glial fibrillary acidic protein (GFAP and OX42, markers for astrocytes and microglia, as well as of basic fibroblast growth factor (bFGF, an astroglial neurotrophic factor. Computer assisted image analysis was employed in the quantification of the immunoreactivity changes. At the lesion site an increased number of GFAP positive astrocytes and OX42 positive phagocytic cells characterized a dense scar formation by seven days, which was further augmented after three months. Morphometric analysis of the area and microdensitometric analysis of the intensity of the GFAP and OX42 immunoreactivities showed reactive astrocytes and microglia in the entire spinal cord white and gray matters 7 days and 3 months after surgery. Double immunofluorescence demonstrated increased bFGF immunostaining in reactive astrocytes. The results indicated that glial reaction close to an injury site of the spinal cord is related to wounding and repair events. Although gliosis constitutes a barrier to axonal regeneration, glial activation far from the lesion may contribute to neuronal trophism and plasticity in the lesioned spinal cord favoring neuronal maintenance and fiber outgrowth.Este trabalho analisou se a resposta glial após a lesão da medula espinhal é restrita à formação da cicatriz no local do trauma ou pode também estar relacionada a efeitos tróficos parácrinos em toda a medula espinhal. Hemitransecção da medula espinhal de ratos adultos foi realizada em nível torácico baixo. Após 7 dias e 3 meses as medulas espinhais dos animais foram removidas e submetidas

  18. 5'-Chloro-5'-deoxy-(±)-ENBA, a potent and selective adenosine A(1) receptor agonist, alleviates neuropathic pain in mice through functional glial and microglial changes without affecting motor or cardiovascular functions.

    Science.gov (United States)

    Luongo, Livio; Petrelli, Riccardo; Gatta, Luisa; Giordano, Catia; Guida, Francesca; Vita, Patrizia; Franchetti, Palmarisa; Grifantini, Mario; de Novellis, Vito; Cappellacci, Loredana; Maione, Sabatino

    2012-11-22

    This study was undertaken in order to investigate the effect of chronic treatment with 5′-chloro-5′-deoxy-(±)-ENBA, a potent and highly selective agonist of human adenosine A(1) receptor, on thermal hyperalgesia and mechanical allodynia in a mouse model of neuropathic pain, the Spared Nerve Injury (SNI) of the sciatic nerve. Chronic systemic administration of 5′-chloro-5′-deoxy-(±)-ENBA (0.5 mg/kg, i.p.) reduced both mechanical allodynia and thermal hyperalgesia 3 and 7 days post-SNI, in a way prevented by DPCPX (3 mg/kg, i.p.), a selective A(1) adenosine receptor antagonist, without exerting any significant change on the motor coordination or arterial blood pressure. In addition, a single intraperitoneal injection of 5′-chloro-5′-deoxy-(±)-ENBA (0.5 mg/kg, i.p.) 7 days post-SNI also reduced both symptoms for at least two hours. SNI was associated with spinal changes in microglial activation ipsilaterally to the nerve injury. Activated, hypertrophic microglia were significantly reduced by 5′-chloro-5′-deoxy-(±)-ENBA chronic treatment. Our results demonstrated an involvement of adenosine A(1) receptor in the amplified nociceptive thresholds and in spinal glial and microglial changes occurred in neuropathic pain, without affecting motor coordination or blood pressure. Our data suggest a possible use of adenosine A(1) receptor agonist in neuropathic pain symptoms.

  19. 5'-Chloro-5'-deoxy-(±-ENBA, a Potent and Selective Adenosine A1 Receptor Agonist, Alleviates Neuropathic Pain in Mice Through Functional Glial and Microglial Changes without Affecting Motor or Cardiovascular Functions

    Directory of Open Access Journals (Sweden)

    Livio Luongo

    2012-11-01

    Full Text Available This study was undertaken in order to investigate the effect of chronic treatment with 5′-chloro-5′-deoxy-(±-ENBA, a potent and highly selective agonist of human adenosine A1 receptor, on thermal hyperalgesia and mechanical allodynia in a mouse model of neuropathic pain, the Spared Nerve Injury (SNI of the sciatic nerve. Chronic systemic administration of 5′-chloro-5′-deoxy-(±-ENBA (0.5 mg/kg, i.p. reduced both mechanical allodynia and thermal hyperalgesia 3 and 7 days post-SNI, in a way prevented by DPCPX (3 mg/kg, i.p., a selective A1 adenosine receptor antagonist, without exerting any significant change on the motor coordination or arterial blood pressure. In addition, a single intraperitoneal injection of 5′-chloro-5′-deoxy-(±-ENBA (0.5 mg/kg, i.p. 7 days post-SNI also reduced both symptoms for at least two hours. SNI was associated with spinal changes in microglial activation ipsilaterally to the nerve injury. Activated, hypertrophic microglia were significantly reduced by 5′-chloro-5′-deoxy-(±-ENBA chronic treatment. Our results demonstrated an involvement of adenosine A1 receptor in the amplified nociceptive thresholds and in spinal glial and microglial changes occurred in neuropathic pain, without affecting motor coordination or blood pressure. Our data suggest a possible use of adenosine A1 receptor agonist in neuropathic pain symptoms.

  20. Microglial inhibitory mechanism of Coenzyme Q10 against Aβ (1-42 induced cognitive dysfunctions: possible behavioral, biochemical, cellular and histopathological alterations

    Directory of Open Access Journals (Sweden)

    Arti eSingh

    2015-11-01

    Full Text Available Rationale: Alzheimer’s disease (AD is a debilitating disease with complex pathophysiology. Amyloid beta (Aβ (1-42 is a reliable model of AD that recapitulates many aspects of human AD. Objective: The present study has been designed to investigate the neuroprotective potential of Coenzyme Q10 (CoQ10 and its modulation with minocycline (microglial inhibitor against Aβ (1-42 induced cognitive dysfunction in rats. Method: Intrahippocampal (i.h. Aβ (1-42 (1µg/µl; 4µl/site were administered followed by drug treatment with galantamine (2 mg/kg, CoQ10 (20 and 40 mg/kg, minocycline (50 and 100 mg/kg and their combinations for a period of 21 days. Various neurobehavioral parameters followed by biochemical, acetylcholinesterase (AChE level, proinflammatory markers (TNF-α, mitochondrial respiratory enzyme complexes (I-IV and histopathological examinations were assessed.Results: Aβ (1-42 administration significantly impaired cognitive performance in Morris water maze (MWM performance test, causes oxidative stress, raised AChE level, caused neuroinflammation, mitochondrial dysfunction and histopathological alterations as compared to sham treatment. Treatment with CoQ10 (20 and 40 mg/kg and minocycline (50 and 100 mg/kg alone for 21days significantly improved cognitive performance as evidenced by reduced transfer latency and increased time spent in target quadrant (TSTQ, reduced AChE activity, oxidative damage (reduced LPO, nitrite level and restored SOD, catalase and GHS levels, TNF-α level, restored mitochondrial respiratory enzyme complex (I, II, III, IV activities and histopathological alterations as compared to control (Aβ (1-42 treated animals group. Further, combination of minocycline (50 and 100 mg/kg with CoQ10 (20 and 40 mg/kg significantly modulate the protective effect of CoQ10 as compared to their effect alone. Conclusion: The present study suggests that the neuroprotective effect of CoQ10 could be due to its microglia inhibitory

  1. In Vitro Infection of Human Nervous Cells by Two Strains of Toxoplasma gondii: A Kinetic Analysis of Immune Mediators and Parasite Multiplication

    Science.gov (United States)

    Mammari, Nour; Vignoles, Philippe; Halabi, Mohamad Adnan; Darde, Marie Laure; Courtioux, Bertrand

    2014-01-01

    The severity of toxoplasmic infection depends mainly on the immune status of the host, but also on the Toxoplasma gondii strains, which differ by their virulence profile. The relationship between the human host and T. gondii has not yet been elucidated because few studies have been conducted on human models. The immune mechanisms involved in the persistence of T. gondii in the brains of immunocompetent subjects and during the reactivation of latent infections are still unclear. In this study, we analyzed the kinetics of immune mediators in human nervous cells in vitro, infected with two strains of T. gondii. Human neuroblast cell line (SH SY5Y), microglial (CMH5) and endothelial cells (Hbmec) were infected separately by RH (type I) or PRU (type II) strains for 8 h, 14 h, 24 h and 48 h (ratio 1 cell: 2 tachyzoites). Pro-inflammatory protein expression was different between the two strains and among different human nervous cells. The cytokines IL-6, IL-8 and the chemokines MCP-1 and GROα, and SERPIN E1 were significantly increased in CMH5 and SH SY5Y at 24 h pi. At this point of infection, the parasite burden declined in microglial cells and neurons, but remained high in endothelial cells. This differential effect on the early parasite multiplication may be correlated with a higher production of immune mediators by neurons and microglial cells compared to endothelial cells. Regarding strain differences, PRU strain, but not RH strain, stimulates all cells to produce pro-inflammatory growth factors, G-CSF and GM-CSF. These proteins could increase the inflammatory effect of this type II strain. These results suggest that the different protein expression profiles depend on the parasitic strain and on the human nervous cell type, and that this could be at the origin of diverse brain lesions caused by T. gondii. PMID:24886982

  2. Anti-inflammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia.

    Science.gov (United States)

    Park, Sun Young; Jin, Mei Ling; Kim, Young Hun; Kim, YoungHee; Lee, Sang Joon

    2012-09-01

    Amyloid β (Aβ) induces the production of neuroinflammatory molecules, which may contribute to the pathogenesis of numerous neurodegenerative diseases. Therefore, suppression of neuroinflammatory molecules could be developed as a therapeutic method. Aromatic (ar)-turmerone, turmeric oil isolated from Curcuma longa, has long been used in Southeast Asia as both a remedy and a food. In this study, we investigated the anti-inflammatory effects of ar-turmerone in BV2 microglial cells. Aβ-stimulated microglial cells were tested for the expression and activation of MMP-9, iNOS, and COX-2, the production of proinflammatory cytokines, chemokines, and ROS, as well as the underlying signaling pathways. Ar-turmerone significantly suppressed Aβ-induced expression and activation of MMP-9, iNOS, and COX-2, but not MMP-2. Ar-turmerone also reduced TNF-α, IL-1β, IL-6, and MCP-1 production in Aβ-stimulated microglial cells. Further, ar-turmerone markedly inhibited the production of ROS. Impaired translocation and activation of NF-κB were observed in Aβ-stimulated microglial cells exposed to ar-turmerone. Furthermore, ar-turmerone inhibited the phosphorylation and degradation of IκB-α as well as the phosphorylation of JNK and p38 MAPK. These results suggest that ar-turmerone impaired the Aβ-induced inflammatory response of microglial cells by inhibiting the NF-κB, JNK, and p38 MAPK signaling pathways. Lastly, ar-turmerone protected hippocampal HT-22 cells from indirect neuronal toxicity induced by activated microglial cells. These novel findings provide new insights into the development of ar-turmerone as a therapeutic agent for the treatment of neurodegenerative disorders. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Temporomandibular joint inflammation activates glial and immune cells in both the trigeminal ganglia and in the spinal trigeminal nucleus

    Directory of Open Access Journals (Sweden)

    Jasmin Luc

    2010-12-01

    Full Text Available Abstract Background Glial cells have been shown to directly participate to the genesis and maintenance of chronic pain in both the sensory ganglia and the central nervous system (CNS. Indeed, glial cell activation has been reported in both the dorsal root ganglia and the spinal cord following injury or inflammation of the sciatic nerve, but no data are currently available in animal models of trigeminal sensitization. Therefore, in the present study, we evaluated glial cell activation in the trigeminal-spinal system following injection of the Complete Freund's Adjuvant (CFA into the temporomandibular joint, which generates inflammatory pain and trigeminal hypersensitivity. Results CFA-injected animals showed ipsilateral mechanical allodynia and temporomandibular joint edema, accompanied in the trigeminal ganglion by a strong increase in the number of GFAP-positive satellite glial cells encircling neurons and by the activation of resident macrophages. Seventy-two hours after CFA injection, activated microglial cells were observed in the ipsilateral trigeminal subnucleus caudalis and in the cervical dorsal horn, with a significant up-regulation of Iba1 immunoreactivity, but no signs of reactive astrogliosis were detected in the same areas. Since the purinergic system has been implicated in the activation of microglial cells during neuropathic pain, we have also evaluated the expression of the microglial-specific P2Y12 receptor subtype. No upregulation of this receptor was detected following induction of TMJ inflammation, suggesting that any possible role of P2Y12 in this paradigm of inflammatory pain does not involve changes in receptor expression. Conclusions Our data indicate that specific glial cell populations become activated in both the trigeminal ganglia and the CNS following induction of temporomandibular joint inflammation, and suggest that they might represent innovative targets for controlling pain during trigeminal nerve sensitization.

  4. Effects of Bee Venom on Glutamate-Induced Toxicity in Neuronal and Glial Cells

    Directory of Open Access Journals (Sweden)

    Sang Min Lee

    2012-01-01

    Full Text Available Bee venom (BV, which is extracted from honeybees, is used in traditional Korean medical therapy. Several groups have demonstrated the anti-inflammatory effects of BV in osteoarthritis both in vivo and in vitro. Glutamate is the predominant excitatory neurotransmitter in the central nervous system (CNS. Changes in glutamate release and uptake due to alterations in the activity of glutamate transporters have been reported in many neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. To assess if BV can prevent glutamate-mediated neurotoxicity, we examined cell viability and signal transduction in glutamate-treated neuronal and microglial cells in the presence and absence of BV. We induced glutamatergic toxicity in neuronal cells and microglial cells and found that BV protected against cell death. Furthermore, BV significantly inhibited the cellular toxicity of glutamate, and pretreatment with BV altered MAP kinase activation (e.g., JNK, ERK, and p38 following exposure to glutamate. These findings suggest that treatment with BV may be helpful in reducing glutamatergic cell toxicity in neurodegenerative diseases.

  5. High content analysis of phagocytic activity and cell morphology with PuntoMorph.

    Science.gov (United States)

    Al-Ali, Hassan; Gao, Han; Dalby-Hansen, Camilla; Peters, Vanessa Ann; Shi, Yan; Brambilla, Roberta

    2017-11-01

    Phagocytosis is essential for maintenance of normal homeostasis and healthy tissue. As such, it is a therapeutic target for a wide range of clinical applications. The development of phenotypic screens targeting phagocytosis has lagged behind, however, due to the difficulties associated with image-based quantification of phagocytic activity. We present a robust algorithm and cell-based assay system for high content analysis of phagocytic activity. The method utilizes fluorescently labeled beads as a phagocytic substrate with defined physical properties. The algorithm employs statistical modeling to determine the mean fluorescence of individual beads within each image, and uses the information to conduct an accurate count of phagocytosed beads. In addition, the algorithm conducts detailed and sophisticated analysis of cellular morphology, making it a standalone tool for high content screening. We tested our assay system using microglial cultures. Our results recapitulated previous findings on the effects of microglial stimulation on cell morphology and phagocytic activity. Moreover, our cell-level analysis revealed that the two phenotypes associated with microglial activation, specifically cell body hypertrophy and increased phagocytic activity, are not highly correlated. This novel finding suggests the two phenotypes may be under the control of distinct signaling pathways. We demonstrate that our assay system outperforms preexisting methods for quantifying phagocytic activity in multiple dimensions including speed, accuracy, and resolution. We provide a framework to facilitate the development of high content assays suitable for drug screening. For convenience, we implemented our algorithm in a standalone software package, PuntoMorph. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Microglial interleukin-1β in the ipsilateral dorsal horn inhibits the development of mirror-image contralateral mechanical allodynia through astrocyte activation in a rat model of inflammatory pain.

    Science.gov (United States)

    Choi, Hoon-Seong; Roh, Dae-Hyun; Yoon, Seo-Yeon; Moon, Ji-Young; Choi, Sheu-Ran; Kwon, Soon-Gu; Kang, Suk-Yun; Han, Ho-Jae; Kim, Hyun-Woo; Beitz, Alvin J; Oh, Seog-Bae; Lee, Jang-Hern

    2015-06-01

    Damage on one side of the body can also result in pain on the contralateral unaffected side, called mirror-image pain (MIP). Currently, the mechanisms responsible for the development of MIP are unknown. In this study, we investigated the involvement of spinal microglia and interleukin-1β (IL-1β) in the development of MIP using a peripheral inflammatory pain model. After unilateral carrageenan injection, mechanical allodynia (MA) in both hind paws and the expression levels of spinal Iba-1, IL-1β, and GFAP were evaluated. Ipsilateral MA was induced beginning at 3 hours after carrageenan injection, whereas contralateral MA showed a delayed onset occurring 5 days after injection. A single intrathecal (i.t.) injection of minocycline, a tetracycline derivative that displays selective inhibition of microglial activation, or an interleukin-1 receptor antagonist (IL-1ra) on the day of carrageenan injection caused an early temporary induction of contralateral MA, whereas repeated i.t. treatment with these drugs from days 0 to 3 resulted in a long-lasting contralateral MA, which was evident in its advanced development. We further showed that IL-1β was localized to microglia and that minocycline inhibited the carrageenan-induced increases in spinal Iba-1 and IL-1β expression. Conversely, minocycline or IL-1ra pretreatment increased GFAP expression as compared with that of control rats. However, i.t. pretreatment with fluorocitrate, an astrocyte inhibitor, restored minocycline- or IL-1ra-induced contralateral MA. These results suggest that spinal IL-1β derived from activated microglia temporarily suppresses astrocyte activation, which can ultimately prevent the development of contralateral MA under inflammatory conditions. These findings imply that microglial IL-1β plays an important role in regulating the induction of inflammatory MIP.

  7. Protein Kinase Cδ Upregulation in Microglia Drives Neuroinflammatory Responses and Dopaminergic Neurodegeneration in Experimental Models of Parkinson's Disease

    Science.gov (United States)

    Gordon, Richard; Singh, Neeraj; Lawana, Vivek; Ghosh, Anamitra; Harischandra, Dilshan S.; Jin, Huajun; Hogan, Colleen; Sarkar, Souvarish; Rokad, Dharmin; Panicker, Nikhil; Anantharam, Vellareddy; Kanthasamy, Anumantha G.; Kanthasamy, Arthi

    2016-01-01

    Chronic microglial activation has been linked to the progressive degeneration of the nigrostriatal dopaminergic neurons evidenced in Parkinson's disease (PD) pathogenesis. The exact etiology of PD remains poorly understood. Although both oxidative stress and neuroinflammation are identified as co-contributors in PD pathogenesis, signaling mechanisms underlying neurodegenerative processes have yet to be defined. Indeed, we recently identified that protein kinase C delta (PKCδ) activation is critical for induction of dopaminergic neuronal loss in response to neurotoxic stressors. However, it remains to be defined whether PKCδ activation contributes to immune signaling events driving microglial neurotoxicity. In the present study, we systematically investigated whether PKCδ contributes to the heightened microglial activation response following exposure to major proinflammatory stressors, including α-synuclein, tumor necrosis factor α (TNFα), and lipopolysaccharide (LPS). We report that exposure to the aforementioned inflammatory stressors dramatically upregulated PKCδ with a concomitant increase in its kinase activity and nuclear translocation in both BV-2 microglial cells and primary microglia. Importantly, we also observed a marked upregulation of PKCδ in the microglia of the ventral midbrain region of PD patients when compared to age-matched controls, suggesting a role for microglial PKCδ in neurodegenerative processes. Further, shRNA-mediated knockdown and genetic ablation of PKCδ in primary microglia blunted the microglial proinflammatory response elicited by the inflammogens, including ROS generation, nitric oxide production, and proinflammatory cytokine and chemokine release. Importantly, we found that PKCδ activated NFκB, a key mediator of inflammatory signaling events, after challenge with inflammatory stressors, and that transactivation of NFκB led to translocation of the p65 subunit to the nucleus, IκBα degradation and phosphorylation of p65

  8. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, Daria [Kazan State Medical University, Kazan, Republic of Tatarstan (Russian Federation); Hannover Medical School, Hannover (Germany); Rizvanov, Albert A.; Salafutdinov, Ilnur I.; Kudryashova, Nezhdana V. [Kazan Federal University, Kazan, Republic of Tatarstan (Russian Federation); Palotás, András, E-mail: palotas@asklepios-med.eu [Kazan Federal University, Kazan, Republic of Tatarstan (Russian Federation); Asklepios-Med (Private Medical Practice and Research Center), Szeged (Hungary); Islamov, Rustem R., E-mail: islamru@yahoo.com [Kazan State Medical University, Kazan, Republic of Tatarstan (Russian Federation)

    2014-09-05

    Highlights: • Gene and cell-based therapies comprise innovative aspects of regenerative medicine. • Genetically modified hUCB-MCs enhanced differentiation of cells in a mouse model of ALS. • Stem cells successfully transformed into micro-glial and endothelial lines in spinal cords. • Over-expressing oct4 and sox2 also induced production of neural marker PGP9.5. • Formation of new nerve cells, secreting trophic factors and neo-vascularisation could improve symptoms in ALS. - Abstract: Gene and cell-based therapies comprise innovative aspects of regenerative medicine. Even though stem cells represent a highly potential therapeutic strategy, their wide-spread exploitation is marred by ethical concerns, potential for malignant transformation and a plethora of other technical issues, largely restricting their use to experimental studies. Utilizing genetically modified human umbilical cord blood mono-nuclear cells (hUCB-MCs), this communication reports enhanced differentiation of transplants in a mouse model of amyotrophic lateral sclerosis (ALS). Over-expressing Oct4 and Sox2 induced production of neural marker PGP9.5, as well as transformation of hUCB-MCs into micro-glial and endothelial lines in ALS spinal cords. In addition to producing new nerve cells, providing degenerated areas with trophic factors and neo-vascularisation might prevent and even reverse progressive loss of moto-neurons and skeletal muscle paralysis.

  9. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo

    International Nuclear Information System (INIS)

    Guseva, Daria; Rizvanov, Albert A.; Salafutdinov, Ilnur I.; Kudryashova, Nezhdana V.; Palotás, András; Islamov, Rustem R.

    2014-01-01

    Highlights: • Gene and cell-based therapies comprise innovative aspects of regenerative medicine. • Genetically modified hUCB-MCs enhanced differentiation of cells in a mouse model of ALS. • Stem cells successfully transformed into micro-glial and endothelial lines in spinal cords. • Over-expressing oct4 and sox2 also induced production of neural marker PGP9.5. • Formation of new nerve cells, secreting trophic factors and neo-vascularisation could improve symptoms in ALS. - Abstract: Gene and cell-based therapies comprise innovative aspects of regenerative medicine. Even though stem cells represent a highly potential therapeutic strategy, their wide-spread exploitation is marred by ethical concerns, potential for malignant transformation and a plethora of other technical issues, largely restricting their use to experimental studies. Utilizing genetically modified human umbilical cord blood mono-nuclear cells (hUCB-MCs), this communication reports enhanced differentiation of transplants in a mouse model of amyotrophic lateral sclerosis (ALS). Over-expressing Oct4 and Sox2 induced production of neural marker PGP9.5, as well as transformation of hUCB-MCs into micro-glial and endothelial lines in ALS spinal cords. In addition to producing new nerve cells, providing degenerated areas with trophic factors and neo-vascularisation might prevent and even reverse progressive loss of moto-neurons and skeletal muscle paralysis

  10. Inhibition of Allograft Inflammatory Factor-1 in Dendritic Cells Restrains CD4+ T Cell Effector Responses and Induces CD25+Foxp3+ T Regulatory Subsets

    Directory of Open Access Journals (Sweden)

    Diana M. Elizondo

    2017-11-01

    Full Text Available Allograft inflammatory factor-1 (AIF1 is a cytoplasmic scaffold protein shown to influence immune responses in macrophages and microglial cells. The protein contains Ca2+ binding EF-hand and PDZ interaction domains important for mediating intracellular signaling complexes. This study now reports that AIF1 is expressed in CD11c+ dendritic cells (DC and silencing of expression restrains induction of antigen-specific CD4+ T cell effector responses. AIF1 knockdown in murine DC resulted in impaired T cell proliferation and skewed polarization away from T helper type 1 and 17 fates. In turn, there was a parallel expansion of IL-10-producing and CD25+Foxp3+ T regulatory subsets. These studies are the first to demonstrate that AIF1 expression in DC serves as a potent governor of cognate T cell responses and presents a novel target for engineering tolerogenic DC-based immunotherapies.

  11. Inhibition of Allograft Inflammatory Factor-1 in Dendritic Cells Restrains CD4+ T Cell Effector Responses and Induces CD25+Foxp3+ T Regulatory Subsets.

    Science.gov (United States)

    Elizondo, Diana M; Andargie, Temesgen E; Yang, Dazhi; Kacsinta, Apollo D; Lipscomb, Michael W

    2017-01-01

    Allograft inflammatory factor-1 (AIF1) is a cytoplasmic scaffold protein shown to influence immune responses in macrophages and microglial cells. The protein contains Ca 2+ binding EF-hand and PDZ interaction domains important for mediating intracellular signaling complexes. This study now reports that AIF1 is expressed in CD11c + dendritic cells (DC) and silencing of expression restrains induction of antigen-specific CD4 + T cell effector responses. AIF1 knockdown in murine DC resulted in impaired T cell proliferation and skewed polarization away from T helper type 1 and 17 fates. In turn, there was a parallel expansion of IL-10-producing and CD25 + Foxp3 + T regulatory subsets. These studies are the first to demonstrate that AIF1 expression in DC serves as a potent governor of cognate T cell responses and presents a novel target for engineering tolerogenic DC-based immunotherapies.

  12. Role of the endothelin axis in astrocyte- and endothelial cell-mediated chemoprotection of cancer cells

    Science.gov (United States)

    Kim, Seung Wook; Choi, Hyun Jin; Lee, Ho-Jeong; He, Junqin; Wu, Qiuyu; Langley, Robert R.; Fidler, Isaiah J.; Kim, Sun-Jin

    2014-01-01

    Background Recent evidence suggests that astrocytes protect cancer cells from chemotherapy by stimulating upregulation of anti-apoptotic genes in those cells. We investigated the possibility that activation of the endothelin axis orchestrates survival gene expression and chemoprotection in MDA-MB-231 breast cancer cells and H226 lung cancer cells. Methods Cancer cells, murine astrocytes, and murine fibroblasts were grown in isolation, and expression of endothelin (ET) peptides and ET receptors (ETAR and ETBR) compared with expression on cancer cells and astrocytes (or cancer cells and fibroblasts) that were co-incubated for 48 hours. Type-specific endothelin receptor antagonists were used to evaluate the contribution of ETAR and ETBR to astrocyte-induced activation of the protein kinase B (AKT)/mitogen-activated protein kinase (MAPK) signal transduction pathways, anti-apoptotic gene expression, and chemoprotection of cancer cells. We also investigated the chemoprotective potential of brain endothelial cells and microglial cells. Results Gap junction signaling between MDA-MB-231 cancer cells and astrocytes stimulates upregulation of interleukin 6 (IL-6) and IL-8 expression in cancer cells, which increases ET-1 production from astrocytes and ET receptor expression on cancer cells. ET-1 signals for activation of AKT/MAPK and upregulation of survival proteins that protect cancer cells from taxol. Brain endothelial cell-mediated chemoprotection of cancer cells also involves endothelin signaling. Dual antagonism of ETAR and ETBR is required to abolish astrocyte- and endothelial cell-mediated chemoprotection. Conclusions Bidirectional signaling between astrocytes and cancer cells involves upregulation and activation of the endothelin axis, which protects cancer cells from cytotoxicity induced by chemotherapeutic drugs. PMID:25008093

  13. The Plant-Derived Chalcone 2,2′,5′-Trihydroxychalcone Provides Neuroprotection against Toll-Like Receptor 4 Triggered Inflammation in Microglia

    Directory of Open Access Journals (Sweden)

    Manasi Jiwrajka

    2016-01-01

    Full Text Available Chalcones are plant metabolites with potential for therapeutic exploitation as antioxidant, anti-inflammatory, and antiproliferative agents. Here we explored the neuroprotective effects of 2,2′,5′-trihydroxychalcone (225THC, a potent antioxidant with radical-scavenging properties. 225THC was found to be a potent inhibitor of apoptosis in stimulated primary rat neuronal cultures. This was likely mediated by an anti-inflammatory effect on microglial cells since 225THC inhibited LPS-stimulated TNF-α and IL-6 secretion from primary rat microglia and modulated the cytokine/chemokine profile of BV2 microglial cells. Additionally, 225THC inhibited LPS-evoked inducible nitric oxide synthase expression but did not influence endogenous superoxide generation. Microglial flow cytometric analyses indicated the 225THC treatment induced a shift from an M1-like phenotype to a more downregulated microglial profile. Taken together these data suggest that the chalcone 2,2′,5′-trihydroxychalcone can modulate neuroinflammatory activation in brain-derived microglia and holds promise as a therapeutic in neuroinflammatory conditions.

  14. An in vitro toxicity evaluation of gold-, PLLA- and PCL-coated silica nanoparticles in neuronal cells for nanoparticle-assisted laser-tissue soldering.

    Science.gov (United States)

    Koch, Franziska; Möller, Anja-M; Frenz, Martin; Pieles, Uwe; Kuehni-Boghenbor, Kathrin; Mevissen, Meike

    2014-08-01

    The uptake of silica (Si) and gold (Au) nanoparticles (NPs) engineered for laser-tissue soldering in the brain was investigated using microglial cells and undifferentiated and differentiated SH-SY5Y cells. It is not known what effects NPs elicit once entering the brain. Cellular uptake, cytotoxicity, apoptosis, and the potential induction of oxidative stress by means of depletion of glutathione levels were determined after NP exposure at concentrations of 10(3) and 10(9)NPs/ml. Au-, silica poly (ε-caprolactone) (Si-PCL-) and silica poly-L-lactide (Si-PLLA)-NPs were taken up by all cells investigated. Aggregates and single NPs were found in membrane-surrounded vacuoles and the cytoplasm, but not in the nucleus. Both NP concentrations investigated did not result in cytotoxicity or apoptosis, but reduced glutathione (GSH) levels predominantly at 6 and 24h, but not after 12 h of NP exposure in the microglial cells. NP exposure-induced GSH depletion was concentration-dependent in both cell lines. Si-PCL-NPs induced the strongest effect of GSH depletion followed by Si-PLLA-NPs and Au-NPs. NP size seems to be an important characteristic for this effect. Overall, Au-NPs are most promising for laser-assisted vascular soldering in the brain. Further studies are necessary to further evaluate possible effects of these NPs in neuronal cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Selective A2A receptor antagonist prevents microglia-mediated neuroinflammation and protects retinal ganglion cells from high intraocular pressure-induced transient ischemic injury.

    Science.gov (United States)

    Madeira, Maria H; Boia, Raquel; Elvas, Filipe; Martins, Tiago; Cunha, Rodrigo A; Ambrósio, António Francisco; Santiago, Ana Raquel

    2016-03-01

    Glaucoma is a leading cause of vision loss and blindness worldwide, characterized by chronic and progressive neuronal loss. Reactive microglial cells have been recognized as a neuropathologic feature, contributing to local inflammation and retinal neurodegeneration. In a recent in vitro work (organotypic cultures), we demonstrated that blockade of adenosine A2A receptor (A2AR) prevents the neuroinflammatory response and affords protection to retinal ganglion cells (RGCs) against exposure to elevated hydrostatic pressure (EHP), to mimic elevated intraocular pressure (IOP), the main risk factor for glaucoma development. Herein, we investigated whether a selective A2AR antagonist (SCH 58261) could modulate retinal microglia reactivity and their inflammatory response. Furthermore, we took advantage of the high IOP-induced transient ischemia (ischemia-reperfusion, I-R) animal model to evaluate the protective role of A2AR blockade in the control of retinal neuroinflammation and neurodegeneration. Primary microglial cell cultures were challenged either with lipopolysaccharide or with EHP, in the presence or absence of A2AR antagonist SCH 58261 (50 nM). In addition, I-R injury was induced in adult Wistar rats after intravitreal administration of SCH 58261 (100 nM, 5 μL). Our results showed that SCH 58261 attenuated microglia reactivity and the increased expression and release of proinflammatory cytokines. Moreover, intravitreal administration of SCH 58261 prevented I-R-induced cell death and RGC loss, by controlling microglial-mediated neuroinflammatory response. These results prompt the proposal that A2AR blockade may have great potential in the management of retinal neurodegenerative diseases characterized by microglia reactivity and RGC death, such as glaucoma and ischemic diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A dual role for microglia in promoting tissue inhibitor of metalloproteinase (TIMP expression in glial cells in response to neuroinflammatory stimuli

    Directory of Open Access Journals (Sweden)

    Milner Richard

    2011-06-01

    Full Text Available Abstract Background By neutralizing the effect of the matrix metalloproteinases (MMPs, the tissue inhibitors of matrix metalloproteinases (TIMPs play a critical role in maintaining tissue proteolysis in balance. As the major reactive glial cell types in the central nervous system (CNS, microglia and astrocytes play fundamental roles in mediating tissue breakdown and repair. As such, it is important to define the TIMP expression profile in these cells, as well as the mechanisms of regulation by neuroinflammatory stimuli. Methods Primary mixed glial cultures (MGC, pure microglia, and pure astrocytes were used in this study. To study astrocytes, we employed a recently described pure astrocyte culture system, which has the major advantage of totally lacking microglia. The three different types of culture were treated with lipopolysaccharide (LPS or individual cytokines, and cell culture supernatants assayed for TIMP-1 or TIMP-2 protein expression by western blot. Results LPS induced TIMP-1 expression in MGC, but not in pure astrocyte or microglial cultures. When pure astrocytes were treated with the cytokines IL-1β, IFN-γ, TNF or TGF-β1, only IL-1β induced TIMP-1 expression. Significantly, astrocyte TIMP-1 expression was restored in LPS-treated astrocyte cultures after the addition of microglia, or conditioned medium taken from LPS-activated microglia (MG-CM. Furthermore, this effect was lost after depletion of IL-1β from MG-CM. By contrast, TIMP-2 was constitutively expressed by astrocytes, whereas microglia expressed TIMP-2 only after exposure to serum. Conclusions Taken together, these results demonstrate an important concept in glial interactions, by showing that microglia play a central role in regulating glial cell expression of TIMPs, and identify microglial IL-1β as playing a key role in mediating microglial-astrocyte communication.

  17. Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties.

    Science.gov (United States)

    Prajeeth, Chittappen K; Kronisch, Julius; Khorooshi, Reza; Knier, Benjamin; Toft-Hansen, Henrik; Gudi, Viktoria; Floess, Stefan; Huehn, Jochen; Owens, Trevor; Korn, Thomas; Stangel, Martin

    2017-10-16

    Autoreactive Th1 and Th17 cells are believed to mediate the pathology of multiple sclerosis in the central nervous system (CNS). Their interaction with microglia and astrocytes in the CNS is crucial for the regulation of the neuroinflammation. Previously, we have shown that only Th1 but not Th17 effectors activate microglia. However, it is not clear which cells are targets of Th17 effectors in the CNS. To understand the effects driven by Th17 cells in the CNS, we induced experimental autoimmune encephalomyelitis in wild-type mice and CD4 + T cell-specific integrin α4-deficient mice where trafficking of Th1 cells into the CNS was affected. We compared microglial and astrocyte response in the brain and spinal cord of these mice. We further treated astrocytes with supernatants from highly pure Th1 and Th17 cultures and assessed the messenger RNA expression of neurotrophic factors, cytokines and chemokines, using real-time PCR. Data obtained was analyzed using the Kruskal-Wallis test. We observed in α4-deficient mice weak microglial activation but comparable astrogliosis to that of wild-type mice in the regions of the brain populated with Th17 infiltrates, suggesting that Th17 cells target astrocytes and not microglia. In vitro, in response to supernatants from Th1 and Th17 cultures, astrocytes showed altered expression of neurotrophic factors, pro-inflammatory cytokines and chemokines. Furthermore, increased expression of chemokines in Th1- and Th17-treated astrocytes enhanced recruitment of microglia and transendothelial migration of Th17 cells in vitro. Our results demonstrate the delicate interaction between T cell subsets and glial cells and how they communicate to mediate their effects. Effectors of Th1 act on both microglia and astrocytes whereas Th17 effectors preferentially target astrocytes to promote neuroinflammation.

  18. Microglia are mediators of Borrelia burgdorferi-induced apoptosis in SH-SY5Y neuronal cells.

    Directory of Open Access Journals (Sweden)

    Tereance A Myers

    2009-11-01

    Full Text Available Inflammation has long been implicated as a contributor to pathogenesis in many CNS illnesses, including Lyme neuroborreliosis. Borrelia burgdorferi is the spirochete that causes Lyme disease and it is known to potently induce the production of inflammatory mediators in a variety of cells. In experiments where B. burgdorferi was co-cultured in vitro with primary microglia, we observed robust expression and release of IL-6 and IL-8, CCL2 (MCP-1, CCL3 (MIP-1alpha, CCL4 (MIP-1beta and CCL5 (RANTES, but we detected no induction of microglial apoptosis. In contrast, SH-SY5Y (SY neuroblastoma cells co-cultured with B. burgdorferi expressed negligible amounts of inflammatory mediators and also remained resistant to apoptosis. When SY cells were co-cultured with microglia and B. burgdorferi, significant neuronal apoptosis consistently occurred. Confocal microscopy imaging of these cell cultures stained for apoptosis and with cell type-specific markers confirmed that it was predominantly the SY cells that were dying. Microarray analysis demonstrated an intense microglia-mediated inflammatory response to B. burgdorferi including up-regulation in gene transcripts for TLR-2 and NFkappabeta. Surprisingly, a pathway that exhibited profound changes in regard to inflammatory signaling was triggering receptor expressed on myeloid cells-1 (TREM1. Significant transcript alterations in essential p53 pathway genes also occurred in SY cells cultured in the presence of microglia and B. burgdorferi, which indicated a shift from cell survival to preparation for apoptosis when compared to SY cells cultured in the presence of B. burgdorferi alone. Taken together, these findings indicate that B. burgdorferi is not directly toxic to SY cells; rather, these cells become distressed and die in the inflammatory surroundings generated by microglia through a bystander effect. If, as we hypothesized, neuronal apoptosis is the key pathogenic event in Lyme neuroborreliosis, then

  19. Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain.

    Science.gov (United States)

    Zhang, Zhi-Jun; Jiang, Bao-Chun; Gao, Yong-Jing

    2017-09-01

    Neuropathic pain resulting from damage or dysfunction of the nervous system is a highly debilitating chronic pain state and is often resistant to currently available treatments. It has become clear that neuroinflammation, mainly mediated by proinflammatory cytokines and chemokines, plays an important role in the establishment and maintenance of neuropathic pain. Chemokines were originally identified as regulators of peripheral immune cell trafficking and were also expressed in neurons and glial cells in the central nervous system. In recent years, accumulating studies have revealed the expression, distribution and function of chemokines in the spinal cord under chronic pain conditions. In this review, we provide evidence showing that several chemokines are upregulated after peripheral nerve injury and contribute to the pathogenesis of neuropathic pain via different forms of neuron-glia interaction in the spinal cord. First, chemokine CX3CL1 is expressed in primary afferents and spinal neurons and induces microglial activation via its microglial receptor CX3CR1 (neuron-to-microglia signaling). Second, CCL2 and CXCL1 are expressed in spinal astrocytes and act on CCR2 and CXCR2 in spinal neurons to increase excitatory synaptic transmission (astrocyte-to-neuron signaling). Third, we recently identified that CXCL13 is highly upregulated in spinal neurons after spinal nerve ligation and induces spinal astrocyte activation via receptor CXCR5 (neuron-to-astrocyte signaling). Strategies that target chemokine-mediated neuron-glia interactions may lead to novel therapies for the treatment of neuropathic pain.

  20. Comparison of microglia and infiltrating CD11c+ cells as antigen presenting cells for T cell proliferation and cytokine response

    DEFF Research Database (Denmark)

    Wlodarczyk, Agnieszka; Løbner, Morten; Cédile, Oriane

    2014-01-01

    (DC) and macrophages infiltrate the CNS during experimental autoimmune encephalomyelitis (EAE). Microglia are not considered to be as effective APC as DC or macrophages. METHODS: In this work we compared the antigen presenting capacity of CD11c+ and CD11c- microglia subsets with infiltrating CD11c......+ APC, which include DC. The microglial subpopulations (CD11c- CD45dim CD11b+ and CD11c+ CD45dim CD11b+) as well as infiltrating CD11c+ CD45high cells were sorted from CNS of C57BL/6 mice with EAE. Sorted cells were characterised by flow cytometry for surface phenotype and by quantitative real-time PCR...... for cytokine expression. They were co-cultured with primed T cells to measure induction of T cell proliferation and cytokine response. RESULTS: The number of CD11c+ microglia cells increased dramatically in EAE. They expressed equivalent levels of major histocompatibility complex and co-stimulatory ligands CD...

  1. Enhanced microglial pro-inflammatory response to lipopolysaccharide correlates with brain infiltration and blood-brain barrier dysregulation in a mouse model of telomere shortening

    NARCIS (Netherlands)

    Raj, D.D.; Moser, J.; van der Pol, S.M.A.; van Os, R.P.; Holtman, I.R.; Brouwer, N.; Oeseburg, H.; Schaafsma, W.; Wesseling, E.M.; den Dunnen, W.; Biber, K.P.; de Vries, H.E.; Eggen, B.J.; Boddeke, H.W.G.M.

    2015-01-01

    Microglia are a proliferative population of resident brain macrophages that under physiological conditions self-renew independent of hematopoiesis. Microglia are innate immune cells actively surveying the brain and are the earliest responders to injury. During aging, microglia elicit an enhanced

  2. Transferrin, carbonic anhydrase C and ferritin in dissociated murine brain cell cultures.

    Science.gov (United States)

    Griot, C; Vandevelde, M

    1988-07-01

    It is shown here that transferrin (Tf), the iron transport protein and carbonic anhydrase C (CA C) are specifically located within oligodendrocytes in murine brain cell cultures. Ferritin (F), the major iron storage protein, was demonstrated in oligodendrocytes, as well as in astrocytes and microglial cells and was more prominent in the former. CA C and Tf were seen first after 6-7 days in culture. CA C and F positivity increased rapidly and at day 20, 80-85% of galactocerebroside + oligodendrocytes were positive for both proteins. Only a small number of oligodendrocytes was Tf+ up to day 14, after which their numbers increased rapidly until day 20, when 67% of the oligodendrocytes were Tf+. Because of the presence of Tf and F in oligodendrocytes it is suggested that these cells may play an important role in the metabolism of iron within the central nervous system.

  3. Isolation of murine postnatal brain microglia for phenotypic characterization using magnetic cell separation technology.

    Science.gov (United States)

    Harms, Ashley S; Tansey, Malú G

    2013-01-01

    To shorten the time between brain harvesting and microglia isolation, and characterization, we utilized the MACS(®) neural dissociation kit followed by OctoMACS(®) CD11b magnetic bead isolation technique to positively select for brain microglia expressing the pan-microglial marker CD11b, a key subunit of the membrane attack complex (MAC). This protocol yields a viable and highly pure (>95%) microglial population of approximately 500,000 cells per pup that is amenable for in vitro characterization within hours or days after being harvested from brain tissue. Primary microglia from C57Bl/6 mice were plated for next-day analyses of morphology and cellular markers by immunocytochemistry or for analysis of gene expression under resting or LPS-stimulated conditions. The ease of isolation enables investigators to perform molecular and cellular analyses without having to wait 1-2 weeks to isolate microglia by conventional methods involving mechanical agitation to dislodge these from astrocyte beds.

  4. Tubulin cofactor B regulates microtubule densities during microglia transition to the reactive states

    International Nuclear Information System (INIS)

    Fanarraga, M.L.; Villegas, J.C.; Carranza, G.; Castano, R.; Zabala, J.C.

    2009-01-01

    Microglia are highly dynamic cells of the CNS that continuously survey the welfare of the neural parenchyma and play key roles modulating neurogenesis and neuronal cell death. In response to injury or pathogen invasion parenchymal microglia transforms into a more active cell that proliferates, migrates and behaves as a macrophage. The acquisition of these extra skills implicates enormous modifications o