WorldWideScience

Sample records for butane

  1. Future butanes supply/demand

    International Nuclear Information System (INIS)

    This paper graphically depicts, through in-depth supply/demand analysis, how environmental regulations can be both bad and good for an industry. In the case of n-butane, the Environmental Protection Agency (EPA) summertime gasoline volatility regulations are a culprit - threatening to ultimately destroy refinery demand for the product as a gasoline blendstock. Waiting in the wings are environmental regulations that should eventually prove to be n-butane's savior. The regulations referred to here are the Clean Air Act (CAA) of 1990's mandate for motor fuel oxygenates. The negative impact of gasoline volatility regulations on U.S. n-butane demand and the positive impact that should come from the use of n-butane as a MTBE precursor are covered. Many variables exist which make studying the effects of these environmental regulations very difficult. Over the past three years RPC Group has conducted numerous studies on n-butane supply/demand, as impacted by both EPA gasoline volatility and fuel oxygenate regulations

  2. The Effect of Sulfate Ion on the Isomerization of n-Butane to iso-Butane

    Institute of Scientific and Technical Information of China (English)

    Sugeng Triwahyono; Zalizawati Abdullah; Aishah Abdul Jalil

    2006-01-01

    The effect of sulfate ion (SO24-) loading on the properties of Pt/SO24--ZrO2 and on the catalytic isomerization of n-butane to iso-butane was studied. The catalyst was prepared by impregnation of Zr(OH)4 with H2SO4 and platinum solution followed by calcination at 600 ℃. Ammonia TPD and FT-IR were used to confirm the distribution of acid sites and the structure of the sulfate species. Nitrogen physisorption and X-ray diffraction were used to confirm the physical structures of Pt/SO24--ZrO2. XRD pattern showed that the presence of sulfate ion stabilized the metastable tetragonal phase of zirconia and hindered the transition of amorphous phase to monoclinic phase of zirconia. Ammonia TPD profiles indicated the distributions of weak and medium acid sites observed on 0.1 N and 1.0 N sulfate in the loaded catalysts. The addition of 2.0 N and 4.0 N sulfate ion generated strong acid site and decreased the weak and medium acid sites. However, the XRD results and the specific surface area of the catalysts indicated that the excessive amount of sulfate ion collapsed the structure of the catalyst. The catalysts showed high activity and stability for isomerization of n-butane to iso-butane at 200 ℃ under hydrogen atmosphere. The conversion of n-butane to iso-butane per specific surface area of the catalyst increased with the increasing amount of sulfate ion owing to the existence of the bidentate sulfate and/or polynucleic sulfate species ((ZrO)2SO2), which acts as an active site for the isomerization.

  3. Product Identification and Mass Spectrometric Analysis of n-Butane and i-Butane Pyrolysis at Low Pressure

    Institute of Scientific and Technical Information of China (English)

    Yi-jun Zhang; Wen-hao Yuan; Jiang-huai Cai; Li-dong Zhang; Fei Qi; Yu-yang Li

    2013-01-01

    The pyrolysis of n-butane andi-butane at low pressure was investigated from 823-1823 K in an electrically heated flow reactor using synchrotron vacuum ultraviolet photoionization mass spectrometry.More than 20 species,especially several radicals and isomers,were detected and identified from the measurements of photoionization efficiency (PIE) spectra.Based on the mass spectrometric analysis,the characteristics of n-butane and i-butane pyrolysis were discussed,which provided experimental evidences for the discussion of decomposition pathways of butane isomers.It is concluded that the isomeric structures of n-butane and i-butane have strong influence on their main decomposition pathways,and lead to dramatic differences in their mass spectra and PIE spectra such as the different dominant products and isomeric structures of butene products.Furthermore,compared with n-butane,i-butane can produce strong signals of benzene at low temperature in its pyrolysis due to the enhanced formation of benzene precursors like propargyl and C4 species,which provides experimental clues to explain the higher sooting tendencies of iso-alkanes than n-alkanes.

  4. Supply/demand of N-butane at Mont Belvieu

    International Nuclear Information System (INIS)

    The new federal regulations, known as the Clean Air Act of 1990 (CAA), has mandated that the refining industry must supply a cleaner burning gasoline. In order to achieve that end of the spectrum, some focus has been put on the natural gas liquids sector, specifically butanes. Is methyl tertiary butyl ether (MTBE) the name of the game for the future? If so, where do we stand on butane supply?

  5. Liquid butane filled load for a liner driven Pegasus experiment

    CERN Document Server

    Salazar, M A; Atchison, W; Armijo, E; Bartos, Yu; García, F; Randolph, B; Sheppard, M G

    2001-01-01

    Summary form only given, as follows. A hydrogen rich, low density liquid, contained within the internal volume of a cylindrical liner, was requested of the Polymers and Coatings Group (MST-7) of the Los Alamos Materials Science Division for one of the last liner driven experiments conducted on the Los Alamos Pegasus facility. The experiment required massive tungsten glide planes for inertial confinement of the liner fill media during implosion. Shallow sinusoidal perturbations were machined on the inside surface of the liner to seed instabilities, also true of the previous experiments. Butane was selected for a relatively low equilibrium vapor pressure, a practical attribute for use in the Pegasus vacuum power flow channel. Butane safety topics at Pegasus will be addressed. Glide planes were sealed to the liner by use of butane compatible o-rings. A sintered form of tungsten was used for the glide planes to facilitate machining the relatively complex shapes that were required. Porosity of the tungsten was sea...

  6. French butane propane committee. 2003 activity report; Comite Francais du Butane et du Propane. Rapport d'activite 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-05-01

    This activity report presents the 2003 status of the actions carried out by the French butane and propane committee (CFBP) for the development of the liquefied petroleum gas (LPG) industry in France. While the past year has seen the butane, propane and LPG-fuel sales following the decay started 4 years ago, in 2004 the CFBP has reinforced its actions of public information about the LPG energy choice and has carried out several projects in order to improve the safety of LPG tanks and storage facilities, one of the first concern of LPG industry. (J.S.)

  7. Elimination of butanal from odorous air by a labscale biofilter

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Vriens, L.; Verachtert, H.

    1991-01-01

    Butanal was chosen as a model compound for testing the performance of biofilters. It's a member of an important class of odour compounds released by waste water treatment plants of animal rendering and food processing industry. The influence of nutrient supplementation has been investigated using tw

  8. Diffusion of 1-iodo-butane (1); helium (2)

    Science.gov (United States)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of (1) 1-iodo-butane; (2) helium

  9. Diffusion of 2-iodo-butane (1); helium (2)

    Science.gov (United States)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of (1) 2-iodo-butane; (2) helium

  10. French butane propane committee. 2004 activity report; Comite francais du butane et du propane. Rapport d'activite 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This activity report presents the French butane-propane committee (CFBP), an association for the promotion of liquefied petroleum gases (LPG), the characteristics of LPG fuels, the LPG market and its evolution, the CFBP's missions and the 2004 highlights: representation of subscribing companies, participation to standardization works, making techniques and regulations change, improving the safety of equipments and installations, training and information, promoting LPG products. (J.S.)

  11. French butane propane committee. 2003 activity report; Comite francais du butane et du propane. Rapport d'activite 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This activity report presents the French butane-propane committee (CFBP), an association for the promotion of liquefied petroleum gases (LPG), the characteristics of LPG fuels, the LPG market and its evolution, the CFBP's missions and the 2003 highlights: representation of subscribing companies, participation to standardization works, making techniques and regulations change, improving the safety of equipments and installations, training and information, promoting LPG products. (J.S.)

  12. Butane Hash Oil Burns Associated with Marijuana Liberalization in Colorado.

    Science.gov (United States)

    Bell, Cameron; Slim, Jessica; Flaten, Hanna K; Lindberg, Gordon; Arek, Wiktor; Monte, Andrew A

    2015-12-01

    Butane hash oil (BHO), also known as "amber," "dab," "glass," "honey," "shatter," or "wax," is a potent marijuana concentrate, containing up to 90 % tetrahydrocannabinol (THC). BHO is easily manufactured using highly volatile butane as a solvent. Our objective was to characterize hydrocarbon burns associated with BHO manufacture in Colorado. This was a cross-sectional study utilizing the National Burn Repository to capture all hydrocarbon burns reported to the local burn center from January 1st, 2008, through August 31st, 2014. We abstracted demographic and clinical variables from medical records for patients admitted for hydrocarbon burns associated with butane hash oil extraction. Twenty-nine cases of BHO burns were admitted to the local burn center during the study period. Zero cases presented prior to medical liberalization, 19 (61.3 %) during medical liberalization (Oct 2009-Dec 2013), and 12 (38.7 %) in 2014 since legalization. The majority of cases were Caucasian (72.4 %) males (89.7 %). Median age was 26 (range 15-58). The median total-body-surface-area (TBSA) burn size was 10 % (TBSA range 1-90 %). Median length of hospital admission was 10 days. Six required intubation for airway protection (21 %). Nineteen required skin grafting, eight wound care only, one required surgical fracture repair, and one required surgical debridement. Hydrocarbon burns associated with hash oil production have increased since the liberalization of marijuana policy in Colorado. A combination of public health messaging, standardization of manufacturing processes, and worker safety regulations are needed to decrease the risks associated with BHO production. PMID:26289652

  13. 2,3-Bis[(3-methylbiphenyl-4-ylimino]butane

    Directory of Open Access Journals (Sweden)

    Jingjing Chen

    2014-04-01

    Full Text Available The title compound, C30H28N2, is a product of the condensation reaction of 2-methyl-4-phenylaniline and butane-2,3-dione. The molecule lies on a crystallographic inversion centre. The C=N bond has an E conformation. The dihedral angle between the two benzene rings of the 4-phenyl-2-methylphenyl group is 29.19 (76°. The 1,4-diazabutadiene plane makes an angle of 70.1 (10° with the N-bonded methylphenyl ring and an angle of 81.08 (97° with the terminal phenyl group.

  14. Radiation chemical behavior of aqueous butanal oxime solutions irradiated with helium ion beams

    Science.gov (United States)

    Costagliola, A.; Venault, L.; Deroche, A.; Garaix, G.; Vermeulen, J.; Omnee, R.; Duval, F.; Blain, G.; Vandenborre, J.; Fattahi-Vanani, M.; Vigier, N.

    2016-02-01

    Samples of butanal oxime in aqueous solution have been irradiated with the helion (4He2+) beam of the ARRONAX (Nantes) and the CEMHTI (Orléans) cyclotrons. The consumption yield of butanal oxime has been measured by gas-chromatography coupled with mass spectrometry. Yields of gaseous products (mainly H2) have also been measured by micro-gas-chromatography. Butanal oxime can react with H• radicals by abstraction mechanism to enhance H2 production. Yields of liquid phase products (hydrogen peroxide and nitrite ion) have been measured by colorimetric methods. Butanal oxime acts as a scavenger of OH• radical to inhibit the production of H2O2. The observation of the radiolytic products allows then to discuss a degradation mechanism of butanal oxime in aqueous solutions.

  15. Infrared spectroscopy and phase behavior of n-butane aerosols and thin films at cryogenic temperatures.

    Science.gov (United States)

    Lang, E Kathrin; Knox, Kerry J; Momose, Takamasa; Signorell, Ruth

    2013-11-21

    Spectroscopic studies of two phase transitions of solid n-butane aerosol droplets performed under conditions representative of those in the lower atmosphere of Titan are presented. Pure n-butane aerosols and mixed ensembles of n-butane/acetylene, n-butane/carbon dioxide and n-butane/water aerosols were generated in a bath gas cooling cell at 78 K and their phase transition dynamics monitored using infrared extinction spectroscopy. For pure n-butane aerosols the volume and surface nucleation constants were found to range from JV = 10(12) -10(14) cm(-3) s(-1) and JS = 10(13) -10(15) cm(-2) s(-1), respectively, for the first observed transition, and JV = 10(9) -10(11) cm(-3) s(-1) and JS = 10(11) -10(13) cm(-2) s(-1) for the second observed transition. The phases of the n-butane aerosols were determined by comparing their spectroscopic signatures with spectra collected from thin films of liquid and solid n-butane. The first observed transition was from an amorphous-annealed phase into the metastable crystalline phase II of n-butane. The second transition was from the metastable crystalline phase II into the crystalline phase III. The effect of the presence of a second aerosol substance (acetylene, carbon dioxide or water) was examined; while this accelerated the first phase transition, it did not directly influence the rate of the second phase transition. The kinetic studies might be important for the understanding of cloud formation on Titan, while the spectral data provided, which include the first reported spectrum of liquid n-butane close to the melting point, are expected to be of use for remote sensing applications. PMID:23668828

  16. Dehydrogenation of n-butane over vanadia catalysts supported on silica gel

    Institute of Scientific and Technical Information of China (English)

    Yuebing Xu; Jiangyin Lu; Mei Zhong; Jide Wang

    2009-01-01

    VOx/SiO2 catalysts prepared by impregnation method were used for catalytic dehydrogenation of n-butane to butenes and characterized by X-ray diffraction,FT-IR,UV-vis,Raman,and BET measurements.The effects of VOx loading and the reaction temperature on the VOx/SiO2 catalysts and their catalytic performances for the dehydrogenation of n-butane were studied.When the VOx loading was 12% g/gcat and reaction temperature was between 590 ℃ and 600 ℃,n-butane conversion and butenes yields reached the highest value under H2 flux of 10 ml/min and n-butane flux of 10 ml/min.Product distribution,such as the ratio of 2-butene to 1-butene and the ratio of cis-2-butene to trans-2-butene,was mainly influenced by the reaction temperature.

  17. Butane and kerosene in data. 26 economical, technical and practical charts

    International Nuclear Information System (INIS)

    Collecting available informations on the butane and kerosene connections in Western African sahelian countries, the aim of this report with its 26 dossiers is to present economical, technical and practical data concerning butane and kerosene present (1990) and potential consumption, utilization and prices, with the overall objective to reduce wood consumption for domestic use. Regional and national data are given and compared. Oil prices, production and consumption in Western Africa are also examined

  18. MTBE, the evolution of a commodity and its impact on US butanes

    International Nuclear Information System (INIS)

    Since 1990, members of the gas processing and natural gas liquids communities have watched with eager anticipation the growth and development of methyl tertiary butyl ether. MTBE, as it is more commonly known, is a motor fuel oxygenate and octane enhancer. Not too long ago there were several butane-based MTBE plants in the engineering or construction phase and many more were on the drawing board. At one time the demand outlook for butanes that could potentially be consumed by existing and planned butane-based MTBE facilities exceeded 150,000 b/d. That outlook has been downgraded substantially over the past two years as technical and economic factors forced several companies to scrap their plans for worldscale butane-based MTBE plants. A look at the evolution of MTBE as a commodity may explain what has happened, and why demand for butanes by this market sector is no longer as promising as it was only two short years ago. This paper reviews first the impact that government regulations and legislation played in creating the need for MTBE. This will be followed by a discussion of how subsequent proposals and legislation have led to downward revisions in the US outlook for MTBE and butanes

  19. Combustion Characteristics of Butane Porous Burner for Thermoelectric Power Generation

    Directory of Open Access Journals (Sweden)

    K. F. Mustafa

    2015-01-01

    Full Text Available The present study explores the utilization of a porous burner for thermoelectric power generation. The porous burner was tested with butane gas using two sets of configurations: single layer porcelain and a stacked-up double layer alumina and porcelain. Six PbSnTe thermoelectric (TE modules with a total area of 54 cm2 were attached to the wall of the burner. Fins were also added to the cold side of the TE modules. Fuel-air equivalence ratio was varied between the blowoff and flashback limit and the corresponding temperature, current-voltage, and emissions were recorded. The stacked-up double layer negatively affected the combustion efficiency at an equivalence ratio of 0.20 to 0.42, but single layer porcelain shows diminishing trend in the equivalence ratio of 0.60 to 0.90. The surface temperature of a stacked-up porous media is considerably higher than the single layer. Carbon monoxide emission is independent for both porous media configurations, but moderate reduction was recorded for single layer porcelain at lean fuel-air equivalence ratio. Nitrogen oxides is insensitive in the lean fuel-air equivalence ratio for both configurations, even though slight reduction was observed in the rich region for single layer porcelain. Power output was found to be highly dependent on the temperature gradient.

  20. Chloroform Cometabolism by Butane-Grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and Methane-Grown Methylosinus trichosporium OB3b

    OpenAIRE

    Hamamura, N.; Page, C.; Long, T; Semprini, L; Arp, D J

    1997-01-01

    Chloroform (CF) degradation by a butane-grown enrichment culture, CF8, was compared to that by butane-grown Pseudomonas butanovora and Mycobacterium vaccae JOB5 and to that by a known CF degrader, Methylosinus trichosporium OB3b. All three butane-grown bacteria were able to degrade CF at rates comparable to that of M. trichosporium. CF degradation by all four bacteria required O(inf2). Butane inhibited CF degradation by the butane-grown bacteria, suggesting that butane monooxygenase is respon...

  1. Easy to use plastic optical fiber-based biosensor for detection of butanal.

    Directory of Open Access Journals (Sweden)

    Nunzio Cennamo

    Full Text Available The final goal of this work is to achieve a selective detection of butanal by the realization of a simple, small-size and low cost experimental approach. To this end, a porcine odorant-binding protein was used in connection with surface plasmon resonance transduction in a plastic optical fiber tool for the selective detection of butanal by a competitive assay. This allows to reduce the cost and the size of the sensing device and it offers the possibility to design a "Lab-on-a-chip" platform. The obtained results showed that this system approach is able to selectively detect the presence of butanal in the concentration range from 20 μM to 1000 μM.

  2. Structure–Activity Correlations for TON, FER, and MOR in the Hydroisomerization of n-Butane

    NARCIS (Netherlands)

    Pieterse, Johannis A.Z.; Seshan, K.; Lercher, Johannes A.

    2000-01-01

    n-Butane hydroconversion was studied over (Pt-loaded) molecular sieves with TON, FER, and MOR morphology. The conversion occurs via a complex interplay of mono- and bimolecular bifunctional acid mechanism and monofunctional platinum-catalyzed hydrogenolysis. Hydroisomerization occurs bimolecularly a

  3. Dehydroisomerization of n-Butane over Pt–ZSM5: II. Kinetic and Thermodynamic Aspects

    NARCIS (Netherlands)

    Pirngruber, G.D.; Seshan, K.; Lercher, J.A.

    2000-01-01

    A kinetic model is applied to describe the dehydroisomerization of n-butane to isobutene over Pt–ZSM5. It is compared with experimental data and used to show how a combination of kinetics and thermodynamics affects the obtained yields. High temperatures reduced the selectivity to by-product formatio

  4. Thermal diffusion and partial molar enthalpy variations of n-butane in silicalite-1.

    Science.gov (United States)

    Inzoli, I; Simon, J M; Bedeaux, D; Kjelstrup, S

    2008-11-27

    We report for the first time the heat of transfer and the Soret coefficient for n-butane in silicalite-1. The heat of transfer was typically 10 kJ/mol. The Soret coefficient was typically 0.006 K(-1) at 360 K. Both varied with the temperature and the concentration. The thermal conductivity of the crystal with butane adsorbed was 1.46 +/- 0.07 W/m K. Literature values of the isosteric enthalpy of adsorption, the concentration at saturation, and the diffusion coefficients were reproduced. Nonequilibrium molecular dynamics simulations were used to find these results, and a modified heat-exchange algorithm, Soft-HEX, was developed for the purpose. Enthalpies of butane were also determined. We use these results to give numerical proof for a recently proposed relation, that the heat of transfer plus the partial molar enthalpy of butane is constant at a given temperature. The proof is offered for a regime where the partial molar enthalpy can be approximated by the molar internal energy. This result may add to the understanding of the sign of the Soret coefficient. The technical importance of the heat of transfer is discussed.

  5. Direct Conversion of n-Butane to Isobutene over Pt–MCM22

    NARCIS (Netherlands)

    Pirngruber, G.D.; Seshan, K.; Lercher, J.A.

    2000-01-01

    MCM22 is a very active and selective catalyst for the skeletal isomerization of butene. At temperatures up to 775 K, Pt–MCM22 gives good results in the dehydroisomerization of n-butane, achieving higher yields of isobutene than does Pt–ZSM5. Most notably, the formation of cracking products is low. A

  6. THE HEAT CAPACITY OF FLUORINATED PROPANE AND BUTANE DERIVATIVES BY DIFFERENTIAL SCANNING CALORIMETRY

    Science.gov (United States)

    The paper gives results of the measurement (to 3% accuracy) of the constant-pressure liquid-phase heat capacities of 21 hydrogen-containing fluorinated propane and butane derivatives and one fluorinated ether (CF3OCF2H) with boiling points ranging from -34.6 to 76.7 C, using diff...

  7. Selective conversion of butane into liquid hydrocarbon fuels on alkane metathesis catalysts

    KAUST Repository

    Szeto, Kaï Chung

    2012-01-01

    We report a selective direct conversion of n-butane into higher molecular weight alkanes (C 5+) by alkane metathesis reaction catalysed by silica-alumina supported tungsten or tantalum hydrides at moderate temperature and pressure. The product is unprecedented, asymmetrically distributed towards heavier alkanes. This journal is © 2012 The Royal Society of Chemistry.

  8. Fundamental Studies of Butane Oxidation over Model-Supported Vanadium Oxide Catalysts: Molecular Structure-Reactivity Relationships

    OpenAIRE

    Wachs, I.E.; Jehng, J.M.; Deo, G.; Weckhuysen, B. M.; Guliants, V.V.; Benziger, J. B.; Sundaresan, S.

    1997-01-01

    The oxidation of n-butane to maleic anhydride was investigated over a series of model-supported vanadia catalysts where the vanadia phase was present as a two-dimensional metal oxide overlayer on the different oxide supports (TiO2, ZrO2, CeO2, Nb2O5, Al2O3, and SiO2). No correlation was found between the properties of the terminal V==O bond and the butane oxidation turnover frequency (TOF) during in situ Raman spectroscopy study. Furthermore, neither the n-butane oxidation TOF nor maleic anhy...

  9. High-pressure cloud point data for the system glycerol + olive oil + n-butane + AOT

    Directory of Open Access Journals (Sweden)

    J. P. Bender

    2008-09-01

    Full Text Available This work reports high-pressure cloud point data for the quaternary system glycerol + olive oil + n-butane + AOT surfactant. The static synthetic method, using a variable-volume view cell, was employed for obtaining the experimental data at pressures up to 27 MPa. The effects of glycerol/olive oil concentration and surfactant addition on the pressure transition values were evaluated in the temperature range from 303 K to 343 K. For the system investigated, vapor-liquid (VLE, liquid-liquid (LLE and vapor-liquid-liquid (VLLE equilibrium were recorded. It was experimentally observed that, at a given temperature and surfactant content, an increase in the concentration of glycerol/oil ratio led to a pronounced increase in the slope of the liquid-liquid coexistence curve. A comparison with results reported for the same system but using propane as solvent showed that much lower pressure transition values are obtained when using n-butane.

  10. Oxidative Dehydrogenation of Butane to Butadiene and Butene Using a Novel Inert Membrane Reactor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The oxidative dehydrogenation of butane to butadiene and butene was studied using a conventional fixed-bed ractor (FBR), inert membrane reactor (IMR) and mixed inert membrane reactor (MIMR). When IMR and MIMR were employed, a ceramic membrane modified by partially coating with glaze was used to distribute oxygen to a fixed-bed of 24-V-Mg-O catalyst. The oxygen partial pressure in the catalyst bed could be decreased. The effect of feeding modes and operation conditions were investigated. The selectivity of C4 dehydrogenation products (butene and butadiene) was found to be higher in IMR than in FBR. The feeding mode with 20% of air mixing with butane in MIMR was found to be more efficient than the feeding mode with all air permeating through ceramic membrane. The MIMR gave the most smooth temperature profile along the bed.

  11. Selective oxidation of carbon monoxide in the presence of butane and maleic anhydride

    Energy Technology Data Exchange (ETDEWEB)

    Corbin, D.R.; Bonifaz, C. (DuPont Company, Wilmington, DE (United States))

    1994-03-01

    The selective oxidation of carbon monoxide in the presence of butane and maleic anhydride has been studied over platinum- and palladium-containing zeolites as well as palladium-on-silica (Pd/SiO[sub 2]) catalysts. The results show that although a zeolite support is needed in many systems to effect a kinetic control to improve selectivity, thermodynamic control using Pd([approximately]2-4 ppm)/SiO[sub 2] is sufficient to give the desired selectivities in this system. In addition, a palladium-containing vanadium-phosphate catalyst was prepared that showed complete oxidation of carbon monoxide, conversion of butane to maleic anhydride, and no observable decomposition of the maleic anhydride. 14 refs., 4 tabs.

  12. The liquid phase oxidation of n-butane: a search for plausible mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, C.C. [Celanese Ltd., TX (United States). Corpus Christi Technical Center

    1998-12-31

    This articles deals with an approach that has given some key information about the mechanisms of the liquid phase oxidation of butane to acetic acid. This procedure has been developed over the last 34 years; however, much of what will be discussed represents a synthesis of previous insights. Many of the observations are relatively recent and have not been previously published. In principle, this approach should be applicable to many oxidation processes. (orig.)

  13. n-Butane Oxidation over γ-Al2O3 Supported Vanadium Phosphate Catalysts

    Institute of Scientific and Technical Information of China (English)

    Y.H.Taufiq-Yap; L.K.Leong; R.Irmawati

    2007-01-01

    Four vanadium phosphate catalysts supported on γ-Al2O3(20 wt%)were synthesized via 75 h)at 673 K in a reaction flow of n-butane/air mixture.The samples calcined for 6 and 10 h produced only a single phase of(VO)2P2O7.However,the VOPO4 phase(β-VOPO4)was detected and became more prominent with only a minor pyrophosphate peaks were found after 30 h of calcination.All these pyrophosphate peaks disappeared after 75 h of calcination.The formation of V5+ phase Was also observed in the SEM micrographs.The redox properties and the nature of oxidants of the catalysts employed in this study were investigated by H2-TPR analysis.Selective oxidation of n-butane to maleic anhydride (MA) over these catalysts shows that the percentage of n-butane conversion decreases with the transformation of the catalysts from V4+ to V5+ phases.An appropriate ratio of V5+/V4+ can enhance the performance of the VPO catalyst.However,a higher amount of V5+ and its associated oxygen species are responsible to promote the MA selectivity.

  14. Experimental and modeling study of the oxidation of n- and iso-butanal

    KAUST Repository

    Veloo, Peter S.

    2013-09-01

    Understanding the kinetics of large molecular weight aldehydes is essential in the context of both conventional and alternative fuels. For example, they are key intermediates formed during the low-temperature oxidation of hydrocarbons as well as during the high-temperature oxidation of oxygenated fuels such as alcohols. In this study, an experimental and kinetic modeling investigation of n-butanal (. n-butyraldehyde) and iso-butanal (. iso-butyraldehyde or 2-methylpropanal) oxidation kinetics was performed. Experiments were performed in a jet stirred reactor and in counterflow flames over a wide range of equivalence ratios, temperatures, and pressures. The jet stirred reactor was utilized to observe the evolution of stable intermediates and products for the oxidation of n- and iso-butanal at elevated pressures and low to intermediate temperatures. The counterflow configuration was utilized for the determination of laminar flame speeds. A detailed chemical kinetic interpretative model was developed and validated consisting of 244 species and 1198 reactions derived from a previous study of the oxidation of propanal (propionaldehyde). Extensive reaction pathway and sensitivity analysis was performed to provide detailed insight into the mechanisms governing low-, intermediate-, and high-temperature reactivity. The simulation results using the present model are in good agreement with the experimental laminar flame speeds and well within a factor of two of the speciation data obtained in the jet stirred reactor. © 2013 The Combustion Institute.

  15. Hydroisomerization of n-Butane over Platinum-Promoted Cesium Hydrogen Salt of 12-Tungstophosphoric Acid

    Directory of Open Access Journals (Sweden)

    Yanyong Liu

    2009-12-01

    Full Text Available The hydroisomerization of n-butane was carried out in a fixed-bed gas-flow reactor over Pt-promoted Cs2.5H0.5PW12O40 (denoted as Cs2.5. Two kinds of catalysts, a direct impregnation of Pt on Cs2.5 (denoted as Pt/Cs2.5, as well as a mechanical mixture of Pt/Al2O3 and Cs2.5 (denoted as Pt/Al2O3+Cs2.5, were used for the hydroisomerization. Pt/Al2O3+Cs2.5 showed a higher stationary activity than Pt/Cs2.5 because the Pt particles supported on Al2O3 were much smaller than those supported on Cs2.5. The initial activity decreased with increasing H2 pressure over Pt/Al2O3+Cs2.5. This indicates that the hydroisomerization of n-butane over Pt/Al2O3+Cs2.5 proceeded through a bifunctional mechanism, in which n-butane was hydrogenated/dehydrogenated on Pt sites and was isomerized on acid sites of Cs2.5. For the hydroisomerization of n-butane over Pt/Al2O3+Cs2.5 the hydrogenation/dehydrogenation on Pt sites is a limiting step at a low Pt loading and the isomerization on solid acid sites is a limiting step at a high Pt loading. During the reaction, hydrogen molecules were dissociated to active hydrogen atoms on Pt sites, and then the formed active hydrogen atoms moved to the solid acid sites of Cs2.5 (spillover effect to eliminate the carbonaceous deposits and suppress the catalyst deactivation. Because Cs2.5 has suitably strong and uniformly-distributed solid acid sites, Pt/Al2O3+Cs2.5 showed a higher stationary activity than Pt/Al2O3+H-ZSM-5 and Pt/Al2O3+SO4/ZrO2 for the hydroisomerization of n-butane at a low H2 pressure.

  16. Ring-strain-enabled reaction discovery: new heterocycles from bicyclo[1.1.0]butanes.

    Science.gov (United States)

    Walczak, Maciej A A; Krainz, Tanja; Wipf, Peter

    2015-04-21

    Mechanistically as well as synthetically, bicyclo[1.1.0]butanes represent one of the most fascinating classes of organic compounds. They offer a unique blend of compact size (four carbon atoms), high reactivity (strain energy of 66 kcal/mol), and mechanistic pathway diversity that can be harvested for the rapid assembly of complex scaffolds. The C(1)-C(3) bond combines the electronic features of both σ and π bonds with facile homolytic and heterolytic bond dissociation properties and thereby readily engages pericyclic, transition-metal-mediated, nucleophilic, and electrophilic pathways as well as radical acceptor and donor substrates. Despite this multifaceted reaction profile and recent advances in the preparation of bicylo[1.1.0]butanes, the current portfolio of synthetic applications is still limited compared with those of cyclopropanes and cyclobutanes. In this Account, we describe our work over the past decade on the exploration of substituent effects on the ring strain and the reactivity of bicyclo[1.1.0]butanes, particularly in the context of metal-mediated processes. We first describe Rh(I)-catalyzed cycloisomerization reactions of N-allyl amines to give pyrrolidine and azepine heterocycles. The regioselectivity of the C,C-bond insertion/ring-opening step in these reactions is controlled by the phosphine ligand. After metal carbene formation, an intramolecular cyclopropanation adds a second fused ring system. A proposed mechanism rationalizes why rhodium(I) complexes with monodentate ligands favor five-membered heterocycles, as opposed to Rh(I)-bidentate ligand catalysts, which rearrange N-allyl amines to seven-membered heterocycles. The scope of Rh(I)-catalyzed cycloisomerization reactions was extended to allyl ethers, which provide a mixture of five- and seven-membered cyclic ethers regardless of the nature of the phosphine additive and Rh(I) precatalyst. The chemical diversity of these cycloisomerization products was further expanded by a consecutive

  17. Viscosities of binary mixtures of toluene with butan-1-ol and 2-methylpropan-2-ol

    Directory of Open Access Journals (Sweden)

    VASILE DUMITRESCU

    2005-11-01

    Full Text Available The viscosities of binary liquid mixtures of toluene with butan-1-ol and 2-methylpropan-2-ol have been determined at 298.15, 303.15, 308.15, 313.15 and 318.15 K over the whole concentration range. The Hind, Grunberg–Nissan, Wijk, Auslander and McAllister models were used to calculate the viscosity coefficients and these were compared with the experimental data for the mixtures. Excess viscosities were also calculated and fitted to the Redlich–Kister equation. Various thermodynamic properties of viscous flow activation were determined and their variations with composition are discussed.

  18. Effects of Silylation on Zn-IM5 and Its Catalytic Activity for Butane Aromatization

    Institute of Scientific and Technical Information of China (English)

    Yu Lei; Yi Dezhi; Lu Yannan; Shi Li; Chen Junwen; Meng Xuan

    2016-01-01

    Effects of silylation on surface properties and catalytic performance of Zn-IM5 for butane aromatization were studied in this paper. Collidine-IR and NH3-TPD analyses revealed that the silylation treatment not only decreased the quantity of both strong and weak acid sites but also led to a slightly reduced intensity of weak acidity. Silylation of the catalyst promoted the selec-tivity of BTX by narrowing the channel and cutting the acidity. The effect of temperature of silylation and amount of Si loading were evaluated. The best condition has speciifed a temperature of 50℃and a SiO2 loading of 4.0%.

  19. High-pressure cloud point data for the system glycerol + olive oil + n-butane + AOT

    OpenAIRE

    J. P. Bender; A. Junges; Franceschi, E.; F. C. Corazza; C. Dariva; J. Vladimir Oliveira; M. L. Corazza

    2008-01-01

    This work reports high-pressure cloud point data for the quaternary system glycerol + olive oil + n-butane + AOT surfactant. The static synthetic method, using a variable-volume view cell, was employed for obtaining the experimental data at pressures up to 27 MPa. The effects of glycerol/olive oil concentration and surfactant addition on the pressure transition values were evaluated in the temperature range from 303 K to 343 K. For the system investigated, vapor-liquid (VLE), liquid-liquid (L...

  20. Selective Oxidation of n-Butane over VPO Catalyst Modified by Different Additives

    Institute of Scientific and Technical Information of China (English)

    Hong Liang; Daiqi Ye

    2005-01-01

    A series of vanadyl pyrophosphate catalyst (VPO) modified by different additives have been prepared with the aim to study the performance for selective conversion of n-butane to maleic anhydride(MA). The addition of various promoters improved the catalytic performance remarkably on both activity and selectivity. The correlation of activity and selectivity of the catalysts with their structure has been discussed. The increase in BET surface areas and surface redox sites leads to an enhanced activity. However,good selectivity can only be obtained on those surfaces with suitable surface acid sites.

  1. Molecular dynamics studies of the melting of butane and hexane monolayers adsorbed on the basal-plane surface of graphite

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Newton, J. C.; Taub, H.

    1993-01-01

    The effect of molecular steric properties on the melting of quasi-two-dimensional solids is investigated by comparing results of molecular dynamics simulations of the melting of butane and hexane monolayers adsorbed on the basal-plane surface of graphite. These molecules differ only in their length......, being members of the n-alkane series [CH3(CH2)n−2CH3] where n=4 for butane and n=6 for hexane. The simulations employ a skeletal model, which does not include the hydrogen atoms explicitly, to represent the intermolecular and molecule–substrate interactions. Nearest-neighbor intramolecular bonds...... are fixed in length, but the molecular flexibility is preserved by allowing the bend and dihedral torsion angles to vary. The simulations show a qualitatively different melting behavior for the butane and hexane monolayers consistent with neutron and x-ray scattering experiments. The melting of the low...

  2. Low-temperature superacid catalysis: Reactions of n - butane and propane catalyzed by iron- and manganese-promoted sulfated zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.; Gates, B.C. [Univ. of California, Davis, CA (United States)

    1995-12-31

    The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part from coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.

  3. 6-Methyl-1,3,5-triazine-2,4-diamine butane-1,4-diol monosolvate

    Directory of Open Access Journals (Sweden)

    Rajni M. Bhardwaj

    2012-12-01

    Full Text Available The title co-crystal, C4H7N5·C4H10O2, crystallizes with one molecule of 6-methyl-1,3,5-triazine-2,4-diamine (DMT and one molecule of butane-1,4-diol in the asymmetric unit. The DMT molecules form ribbons involving centrosymmetric R22(8 dimer motifs between DMT molecules along the c-axis direction. These ribbons are further hydrogen bonded to each other through butane-1,4-diol, forming sheets parallel to (121.

  4. Pipeline design software and the simulation of liquid propane/butane-light oils pipeline operations

    Energy Technology Data Exchange (ETDEWEB)

    Peters, J. [Monenco AGRA Inc., Calgary, Alberta (Canada)

    1996-12-31

    A comprehensive and integrated suite of computer software routines has been developed to simulate the flow of liquids in pipelines. The fluid properties module accommodates Newtonian and non-Newtonian liquids or mixtures including corrections for changes in properties with temperature and pressure. The hydraulic model calculates pressure drop in single or looped pipelines based on the diameter, route (length) and profile data provided. For multi-product pipelines the hydraulics module estimates energy loss for any sequence of batches given the size and fluid properties of each batch, and the velocity in the pipeline. When the characteristics of existing or proposed pipeline pumps are included, location and size of pumps can be optimized. The effect of heat loss on pressure drop is predicted by invoking the module which calculates the fluid temperature profile based on operating conditions, fluid properties, pipe and insulation conductivity and soil heat transfer data. Modules, created to simulate heater or cooler operations, can be incorporated to compensate for changes in temperature. Input data and calculated results can be presented in a format customized by the user. The simulation software has been successfully applied to multi-product, fuel oil, and non-Newtonian emulsion pipelines. The simulation and operation of a refinery products pipeline for the transportation of propane, butane, gasline, jet and diesel batches will be discussed. The impact of high vapor pressure batches (i.e., propane and butane) on the operation of the pipeline and on the upstream and downstream facilities will be examined in detail.

  5. Efficacy of water spray protection against propane and butane jet fires impinging on LPG storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Shirvill, L.C. [Shell Global Solutions (UK), Chester (United Kingdom)

    2004-03-01

    Liquefied petroleum gas (LPG) storage tanks are often provided with water sprays to protect them in the event of a fire. This protection has been shown to be effective in a hydrocarbon pool fire but uncertainties remained regarding the degree of protection afforded in a jet fire resulting from a liquid or two-phase release of LPG. Two projects, sponsored by the Health and Safety Executive, have been undertaken to study, at full scale, the performance of a water spray system on an empty 13 tonne LPG vessel under conditions of jet fire impingement from nearby releases of liquid propane and butane. The results showed that a typical water deluge system found on an LPG storage vessel cannot be relied upon to maintain a water film over the whole vessel surface in an impinging propane or butane jet fire scenario. The deluge affects the fire itself, reducing the luminosity and smoke, resulting in a lower rate of wall temperature rise at the dry patches, when compared with the undeluged case. The results of these studies will be used by the HSE in assessing the risk of accidental fires on LPG installations leading to boiling liquid expanding vapour explosion (BLEVE) incidents. (Author)

  6. Detailed product analysis during the low temperature oxidation of n-butane.

    Science.gov (United States)

    Herbinet, Olivier; Battin-Leclerc, Frédérique; Bax, Sarah; Le Gall, Hervé; Glaude, Pierre-Alexandre; Fournet, René; Zhou, Zhongyue; Deng, Liulin; Guo, Huijun; Xie, Mingfeng; Qi, Fei

    2011-01-01

    The products obtained from the low-temperature oxidation of n-butane in a jet-stirred reactor (JSR) have been analysed using two methods: gas chromatography analysis of the outlet gas and reflectron time-of-flight mass spectrometry. The mass spectrometer was combined with tunable synchrotron vacuum ultraviolet photoionization and coupled with a JSR via a molecular-beam sampling system. Experiments were performed under quasi-atmospheric pressure, for temperatures between 550 and 800 K, at a mean residence time of 6 s and with a stoichiometric n-butane/oxygen/argon mixture (composition = 4/26/70 in mol%). 36 reaction products have been quantified, including in addition to the usual oxidation products, acetic acid, hydrogen peroxide, C(1), C(2) and C(4) alkylhydroperoxides and C(4) ketohydroperoxides. Evidence of the possible formation of products (dihydrofuranes, furanones) derived from cyclic ethers has also been found. The performance of a detailed kinetic model of the literature has been assessed with the simulation of the formation of this extended range of species. These simulations have also allowed the analysis of possible pathways for the formation of some obtained products. PMID:21031192

  7. Synthesis, crystal structure and photochemistry of Hexakis(butan-1-aminium) heptamolybdate(VI) tetrahydrate

    Indian Academy of Sciences (India)

    SAVITA S KHANDOLKAR; ASHISH R NAIK; CHRISTIAN NÄTHER; WOLFGANG BENSCH; BIKSHANDARKOILR SRINIVASAN

    2016-11-01

    The synthesis, crystal structure, spectral characterization, photochemistry, electrochemical and thermal studies of the hexakis(butan-1-aminium) heptamolybdate(VI) tetrahydrate (1) are reported. Dissolution of a mixed mono-hepta compound (BuNH₃)₈[(Mo₇O₂₄)(MoO₄)]·3H₂O in water results in its transformation to the title compound viz., (BuNH₃)₆ [Mo₇O₂₄]·4H₂O 1 (BuNH₃ = butan-1-aminium). The structure of the title compound consists of two crystallographically unique [Mo₇O₂₄]⁶⁻ anions, twelve independent (BuNH₃)⁺ cations and eight unique lattice water molecules, all of which are interlinked with the aid of three varieties of Hbonding interactions. Solar irradiation of 1 results in the formation of a bis(μ2-oxo) bridged diheptamolybdateproduct. Electrochemical studies reveal the role of 1 in the photodimerization process. Thermal decomposition of 1 results in the formation of crystalline α-MoO₃.

  8. Combined oxidative and non-oxidative dehydrogenation of n-butane over VOX species supported on HMS

    OpenAIRE

    Setnička, Michal; Čičmanec, Pavel; Tvarůžková, Eva; Bulánek, Roman

    2013-01-01

    The combination of oxidative and non-oxidative dehydrogenation of n-butane as an attractive possibility for production of C4 olefins was studied over VOX based catalyst. Long-term activity and selectivity to desired products could be achieved over the catalysts with well dispersed monomeric vanadium oxide species supported on mesoporous silica support.

  9. Effect of Cr and Co Promoters Addition on Vanadium Phosphate Catalysts for Mild Oxidation of n-Butane

    Institute of Scientific and Technical Information of China (English)

    Yun Hin Taufiq-Yap

    2006-01-01

    In this study, Cr and Co promoted, as well as unpromoted vanadium phosphate (VPO)catalysts were synthesized by the reaction of V2O5 and o-H3PO4 in organic medium followed by calcination in n-butane/air environment at 673 K. The physico-chemical properties and the catalytic behavior were affected by the addition of Cr and Co dopants. H2-TPR was used to investigate the nature of oxidants in the unpromoted and promoted catalysts. The results showed that both the Cr and Co promoters remarkably lowered the temperature of the reduction peak associated with V5+. The amount of oxygen species originated from the active phase, V4+, removed was significantly increased for Co and Cr-promoted catalysts. Both Cr and Co dopants improve strongly the n-butane conversion without sacrificing the MA selectivity. A good correlation was observed between the amount of oxygen species removed from V4+ phase and the activity for n-butane oxidation to maleic anhydride. This suggested that V4+-O was the center for the activation of n-butane.

  10. Oxidation and combustion of fuel-rich N-butane-oxygen mixture in a standard 20-liter explosion vessel

    NARCIS (Netherlands)

    Frolov, S.M.; Basevich, V.Y.; Smetanyuk, V.A.; Belyaev, A.A.; Pasman, H.J.

    2006-01-01

    Experiments on forced ignition of extremely fuel-rich n-butane-oxygen mixture with the equivalence ratio of 23 in the standard 20-liter spherical vessel at elevated initial pressure (4.1 bar) and temperature (500 K) reveal the nonmonotonic influence of the forced ignition delay time on the maximum e

  11. Numerical and Experimental Study on Negative Buoyance Induced Vortices in N-Butane Jet Flames

    KAUST Repository

    Xiong, Yuan

    2015-07-26

    Near nozzle flow field in flickering n-butane diffusion jet flames was investigated with a special focus on transient flow patterns of negative buoyance induced vortices. The flow structures were obtained through Mie scattering imaging with seed particles in a fuel stream using continuous-wave (CW) Argon-ion laser. Velocity fields were also quantified with particle mage velocimetry (PIV) system having kHz repetition rate. The results showed that the dynamic motion of negative buoyance induced vortices near the nozzle exit was coupled strongly with a flame flickering instability. Typically during the flame flickering, the negative buoyant vortices oscillated at the flickering frequency. The vortices were distorted by the flickering motion and exhibited complicated transient vortical patterns, such as tilting and stretching. Numerical simulations were also implemented based on an open source C++ package, LaminarSMOKE, for further validations.

  12. Phase behavior of olive and soybean oils in compressed propane and n-butane

    Directory of Open Access Journals (Sweden)

    P. M. Ndiaye

    2006-09-01

    Full Text Available The aim of this work is to report the experimental data and thermodynamic modeling of phase equilibrium of binary systems containing soybean and olive oils with propane and n-butane. Phase equilibrium experiments were carried out using the static synthetic method in a high-pressure variable-volume view cell in the temperature range from 30 to 70ºC and varying the solvent overall composition from 5 to 98 wt%. Vapor-liquid, liquid-liquid and vapor-liquid-liquid phase transitions were observed at relatively low pressures. The Peng-Robinson and the SAFT equations of state without any binary interaction parameters were employed in an attempt at representing the phase behavior of the systems. Results show the satisfactory performance of SAFT-EoS in predicting qualitatively all phase transitions reported in this work.

  13. Batch adsorption of iodo-butane on silver-zeolite with henry isotherm

    International Nuclear Information System (INIS)

    Adsorption of 1-iodo-butane in n-dodecane on silver zeolite (of Ionex Research Corp., U.S.A.) was carried out in a batch tank at 50, 60 and 70degC. The adsorbate bulk concentration-time data measured at various times before the equilibrium reached gave the values of surface diffusivity, particle-fluid mass transfer coefficient and the Henry's adsorption equilibrium constant. The mass transfer coefficient was found to be in terms of Sherwood number from 2∼∞, i.e., the same theoretical curve which agreed with the measured data was predicted with any Sherwood number greater than two. This indicated that the adsorption was controlled by the mass transfer within the adsorbent particle. The adsorption equilibrium constant and surface diffusivity were, respectively, expressed by the Arrhenius type equations. (author)

  14. Effect of Temperature on the Formation and Decomposition of Butan-2-3-dione in Wort Brewed with Sorghum and Barley During Fermentation

    OpenAIRE

    Nkiko, M.O.; Taiwo, E.A.; Uruebor, A.; Ogunyemi, A.

    2006-01-01

    The rate of breakdown of fermentable sugar and the formation/ decomposition of butan-2,3-dione (diacetyl) in wort made with unmalted sorghum, malted sorghum, malted barley and sorghum/barley malt adjunct during fermentation was studied as a function of temperature. The rate of fermentation of sugar, formation and decomposition of butan-2,3-dione increases with increasing temperature and is dependent on the nature of the substrate. The decomposition of butan-2,3-dione is faster in wort made wi...

  15. Quantum Chemical Calculations of the Structure, Property and Stability of Penta-coordinated Carbonium Ions Derived from Normal Butane

    Institute of Scientific and Technical Information of China (English)

    Tao Haiqiao; Long Jun; Zhou Han; Xie Chaogang; Dai Zhenyu; Wei Xiaoli

    2009-01-01

    The structure and energy of the carbonium ions formed upon protonation of butane were studied by the DFT methods. Four stable structures are identified for the protonated form of n-butane, the energy increases in the following order: C2HC3C1HC2>C2HH>C1HH. The stability of the penta-enordinated carbonium ions may be explained by the electron distribution in the three-center-two-electron bonds. The delocalization of the penta-eoordinated carbonium ion CHC with three-center-two-electron bonds on positive charges was stronger than that of the penta-coordinated carbonium ion CHH with three-center-two-electron bonds and its stability was higher than that of the penta-coordinated earbonium ion CHH with three-center-two-electron bonds.

  16. Synthesis and evaluation of inhaled [11C]butane and intravenously injected [11C]acetone as potential radiotracers for studying inhalant abuse.

    Science.gov (United States)

    Gerasimov, Madina R; Ferrieri, Richard A; Pareto, Deborah; Logan, Jean; Alexoff, David; Ding, Yu-Shin

    2005-02-01

    The phenomenon of inhalant abuse is a growing problem in the US and many countries around the world. Yet, relatively little is known about the pharmacokinetic properties of inhalants that underlie their abuse potential. While the synthesis of 11C-labeled toluene, acetone and butane has been proposed in the literature, none of these compounds has been developed as radiotracers for PET studies. In the present report we extend our previous studies with [11C]toluene to include [11C]acetone and [11C]butane with the goal of comparing the pharmacokinetic profiles of these three volatile abused substances. Both [11C]toluene and [11C]acetone were administered intravenously and [11C]butane was administered via inhalation to anesthesized baboons. Rapid and efficient uptake of radiolabeled toluene and acetone into the brain was followed by fast clearance in the case of toluene and slower kinetics in the case of acetone. [11C]Butane was detected in the blood and brain following inhalation, but the levels of radioactivity in both tissues dropped to half of the maximal values over the period of less than a minute. To our knowledge, this is the first reported study of the in vivo brain pharmacokinetics of labeled acetone and butane in nonhuman primates. These data provide insight into the pharmacokinetic features possibly associated with the abuse liability of toluene, acetone and butane.

  17. Synthesis and evaluation of inhaled [11C]butane and intravenously injected [11C]acetone as potential radiotracers for studying inhalant abuse

    International Nuclear Information System (INIS)

    The phenomenon of inhalant abuse is a growing problem in the US and many countries around the world. Yet, relatively little is known about the pharmacokinetic properties of inhalants that underlie their abuse potential. While the synthesis of 11C-labeled toluene, acetone and butane has been proposed in the literature, none of these compounds has been developed as radiotracers for PET studies. In the present report we extend our previous studies with [11C]toluene to include [11C]acetone and [11C]butane with the goal of comparing the pharmacokinetic profiles of these three volatile abused substances. Both [11C]toluene and [11C]acetone were administered intravenously and [11C]butane was administered via inhalation to anesthesized baboons. Rapid and efficient uptake of radiolabeled toluene and acetone into the brain was followed by fast clearance in the case of toluene and slower kinetics in the case of acetone. [11C]Butane was detected in the blood and brain following inhalation, but the levels of radioactivity in both tissues dropped to half of the maximal values over the period of less than a minute. To our knowledge, this is the first reported study of the in vivo brain pharmacokinetics of labeled acetone and butane in nonhuman primates. These data provide insight into the pharmacokinetic features possibly associated with the abuse liability of toluene, acetone and butane

  18. Viscosities and densities of hexane + butan-1-ol, + hexan-1-ol, and + octan-1-ol at 298. 15 K

    Energy Technology Data Exchange (ETDEWEB)

    Franjo, C.; Jimenez, E. (Univ. de La Coruna (Spain). Dept. of Fisica); Iglesias, T.P.; Legido, J.L. (Univ. de Vigo (Spain). Dept. de Fisica Aplicada); Andrade, M.I.P. (Univ. de Santiago (Spain). Dept. de Fisica Aplicada)

    Viscosities and densities have been measured for hexane + butan-1-ol, + hexan-1-ol, and + octan-1-ol at 298.15 K and atmospheric pressure. Kinematic viscosities was determined using a capillary viscosimeter, and densities were measured by vibrating-tube densimetry. The viscosity deviations were evaluated Viscosity results were fitted to the equations of Grunberg-Nissan, McAllister, Auslander, and Teja.

  19. Viscosities and densities of octane + butan-1-ol, hexan-1-ol, and octan-1-ol at 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Franjo, C.; Menaut, C.P.; Jimenez, E. [Univ. de La Coruna (Spain). Dept. de Fisica; Legido, J.L. [Univ. de Vigo (Spain); Andrade, M.I.P. [Univ. de Santiago (Spain)

    1995-07-01

    Viscosities and densities have been measured for octane + butan-1-ol, hexan-1-ol and octan-1-ol at 298.15 K and at atmospheric pressure. Kinematic viscosities were determined using a capillary viscosimeter, and densities were measured by vibrating-tube densimetry. The results were fitted to the equations of Grunberg-Nissan, McAllister, Auslander, and Teja. The experimental excess molar volumes were compared with the results obtained with the Nitta-Chao model.

  20. Samarium-modified vanadium phosphate catalyst for the selective oxidation of n-butane to maleic anhydride

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hua-Yi [State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Wang, Hai-Bo [Fushun Res InstPetr& Petrochem, Fushun, 113001 (China); Liu, Xin-Hua; Li, Jian-Hui; Yang, Mei-Hua [State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Huang, Chuan-Jing, E-mail: huangcj@xmu.edu.cn [State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Weng, Wei-Zheng [State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Wan, Hui-Lin, E-mail: hlwan@xmu.edu.cn [State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2015-10-01

    Graphical abstract: The addition of a small amount of Sm into VPO catalyst brought about great changes in its physicochemical properties such as surface area, surface morphology, phase composition and redox property, thus leading to a higher catalytic performance in the selective oxidation of n-butane to maleic anhydride, as compared to the undoped VPO catalyst. - Highlights: • The addition of Sm leads to great changes in the structure of VPO catalyst. • Sm improves performance of VPO for oxidation of n-butane to maleic anhydride. • Catalytic performance is closely related to structure of VPO catalyst. - Abstract: A series of samarium-modified vanadium phosphate catalysts were prepared and studied in selective oxidation of n-butane to maleic anhydride. The catalytic evaluation showed that Sm modification significantly increased the overall n-butane conversion and intrinsic activity. N{sub 2}-adsorption, XRD, SEM, Raman, XPS, EPR and H{sub 2}-TPR techniques were used to investigate the intrinsic difference among these catalysts. The results revealed that the addition of Sm to VPO catalyst can increase the surface area of the catalyst, lead to a significant change in catalyst morphology from plate-like structure into rosette-shape clusters, and largely promote the formation of (VO){sub 2}P{sub 2}O{sub 7}. All of these were related to the different catalytic performance of Sm-doped and undoped VPO catalysts. The roles of the different VOPO{sub 4} phases and the influence of Sm were also described and discussed.

  1. Determining predictive uncertainties and global sensitivities for large parameter systems: A case study for n-butane oxidation

    OpenAIRE

    Hébrard, Eric; Tomlin, Alison; Bounaceur, Roda; Battin-Leclerc, Frédérique

    2014-01-01

    A global sampling approach based on low discrepancy sequences has been applied in order to propose error bars on simulations performed using a detailed kinetic model for the oxidation of n-butane (including 1111 reactions). A two parameter uncertainty factor has been assigned to each considered rate constant. The cases of ignition and oxidation in a jet-stirred reactor (JSR) have both been considered. For the JSR, not only the reactant mole fraction has been considered, but also that of some ...

  2. 4-(Phenylsulfanyl)butan-2-One Suppresses Melanin Synthesis and Melanosome Maturation In Vitro and In Vivo

    OpenAIRE

    Shing-Yi Sean Wu; Hui-Min David Wang; Yi-Shan Wen; Wangta Liu; Pin-Hui Li; Chien-Chih Chiu; Pei-Chin Chen; Chiung-Yao Huang; Jyh-Horng Sheu; Zhi-Hong Wen

    2015-01-01

    In this study, we screened compounds with skin whitening properties and favorable safety profiles from a series of marine related natural products, which were isolated from Formosan soft coral Cladiella australis. Our results indicated that 4-(phenylsulfanyl)butan-2-one could successfully inhibit pigment generation processes in mushroom tyrosinase platform assay, probably through the suppression of tyrosinase activity to be a non-competitive inhibitor of tyrosinase. In cell-based viability e...

  3. Fundamental Studies of Butane Oxidation over Model-Supported Vanadium Oxide Catalysts: Molecular Structure-Reactivity Relationships

    NARCIS (Netherlands)

    Wachs, I.E.; Jehng, J.M.; Deo, G.; Weckhuysen, B.M.; Guliants, V.V.; Benziger, J.B.; Sundaresan, S.

    1997-01-01

    The oxidation of n-butane to maleic anhydride was investigated over a series of model-supported vanadia catalysts where the vanadia phase was present as a two-dimensional metal oxide overlayer on the different oxide supports (TiO2, ZrO2, CeO2, Nb2O5, Al2O3, and SiO2). No correlation was found betwee

  4. In-situ-infrarotspektroskopische Untersuchung der Aldolkondensation von n-Butanal an basischen Festkörperkatalysatoren

    OpenAIRE

    Rymsa, Ute

    2001-01-01

    Die Aldolkondensation von n-Butanal ist eine technisch wichtige Reaktion. Das Reaktionsprodukt 2-Ethylhexenal wird nach Hydrierung zum gesättigten Alkohol in der Weichmacherproduktion eingesetzt. Beim Einsatz von festen Basen als Katalysatoren tritt eine schnelle Katalysatordesaktivierung auf. Durch direkte infrarotspektroskopische Beobachtung der basischen Festkörperkatalysatoren während der Kondensationsreaktion sollte untersucht werden, wodurch die Desaktiverung verursacht wird. Beim Ei...

  5. Biocatalytic hydroxylation of n-butane with in situ cofactor regeneration at low temperature and under normal pressure

    Directory of Open Access Journals (Sweden)

    Svenja Staudt

    2012-02-01

    Full Text Available The hydroxylation of n-alkanes, which proceeds in the presence of a P450-monooxygenase advantageously at temperatures significantly below room temperature, is described. In addition, an enzymatic hydroxylation of the “liquid gas” n-butane with in situ cofactor regeneration, which does not require high-pressure conditions, was developed. The resulting 2-butanol was obtained as the only regioisomer, at a product concentration of 0.16 g/L.

  6. Non-drug toxicoderma by a respiratory or probable percutaneous route (fluorocarbons, butane, phenyl-azo-beta-naphthol)

    Energy Technology Data Exchange (ETDEWEB)

    Jeanmougin, M.; Bonvalet, D.; Civatte, J.; Ramelet, A.A.; Vilmer, C.

    1984-01-01

    Four cases of cutaneous rash, clinically more or less similar to erythema multiforme have been observed in patient who either stayed in a room with an accidentally high content of fluorocarbons, or had a skin contact with butane or phenyl-azo-beta-naphthol. The cutaneous lesions appear to be secondary to absorption of the toxic product, and probably induced by inhalation rather than by percutaneous penetration. Arguments for the responsibility of the substances rely on anamnestic data.

  7. 4-(Phenylsulfanyl)butan-2-One Suppresses Melanin Synthesis and Melanosome Maturation In Vitro and In Vivo

    Science.gov (United States)

    Wu, Shing-Yi Sean; Wang, Hui-Min David; Wen, Yi-Shan; Liu, Wangta; Li, Pin-Hui; Chiu, Chien-Chih; Chen, Pei-Chin; Huang, Chiung-Yao; Sheu, Jyh-Horng; Wen, Zhi-Hong

    2015-01-01

    In this study, we screened compounds with skin whitening properties and favorable safety profiles from a series of marine related natural products, which were isolated from Formosan soft coral Cladiella australis. Our results indicated that 4-(phenylsulfanyl)butan-2-one could successfully inhibit pigment generation processes in mushroom tyrosinase platform assay, probably through the suppression of tyrosinase activity to be a non-competitive inhibitor of tyrosinase. In cell-based viability examinations, it demonstrated low cytotoxicity on melanoma cells and other normal human cells. It exhibited stronger inhibitions of melanin production and tyrosinase activity than arbutin or 1-phenyl-2-thiourea (PTU). Also, we discovered that 4-(phenylsulfanyl)butan-2-one reduces the protein expressions of melanin synthesis-related proteins, including the microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (Trp-1), dopachrome tautomerase (DCT, Trp-2), and glycoprotein 100 (GP100). In an in vivo zebrafish model, it presented a remarkable suppression in melanogenesis after 48 h. In summary, our in vitro and in vivo biological assays showed that 4-(phenylsulfanyl)butan-2-one possesses anti-melanogenic properties that are significant in medical cosmetology.

  8. Implications of sterically constrained n-butane oxidation reactions on the reaction mechanism and selectivity to 1-butanol

    Science.gov (United States)

    Dix, Sean T.; Gómez-Gualdrón, Diego A.; Getman, Rachel B.

    2016-11-01

    Density functional theory (DFT) is used to analyze the reaction network in n-butane oxidation to 1-butanol over a Ag/Pd alloy catalyst under steric constraints, and the implications on the ability to produce 1-butanol selectively using MOF-encapsulated catalysts are discussed. MOFs are porous crystalline solids comprised of metal nodes linked by organic molecules. Recently, they have been successfully grown around metal nanoparticle catalysts. The resulting porous networks have been shown to promote regioselective chemistry, i.e., hydrogenation of trans-1,3-hexadiene to 3-hexene, presumably by forcing the linear alkene to stand "upright" on the catalyst surface and allowing only the terminal C-H bonds to be activated. In this work, we extend this concept to alkane oxidation. Our goal is to determine if a MOF-encapsulated catalyst could be used to selectively produce 1-butanol. Reaction energies and activation barriers are presented for more than 40 reactions in the pathway for n-butane oxidation. We find that C-H bond activation proceeds through an oxygen-assisted pathway and that butanal and 1-butanol are some of the possible products.

  9. Quasielastic neutron scattering and molecular dynamics simulation studies of the melting transition in butane and hexane monolayers adsorbed on graphite

    DEFF Research Database (Denmark)

    Hervig, K.W.; Wu, Z.; Dai, P.;

    1997-01-01

    Quasielastic neutron scattering experiments and molecular dynamics (MD) simulations have been used to investigate molecular diffusive motion near the melting transition of monolayers of flexible rod-shaped molecules. The experiments were conducted on butane and hexane monolayers adsorbed on an ex......Quasielastic neutron scattering experiments and molecular dynamics (MD) simulations have been used to investigate molecular diffusive motion near the melting transition of monolayers of flexible rod-shaped molecules. The experiments were conducted on butane and hexane monolayers adsorbed...... on an exfoliated graphite substrate, For butane, quasielastic scattering broader than the experimental energy resolution width of 70 mu eV appears abruptly at the monolayer melting point of T-m = 116 K, whereas, for the hexane monolayer, it appears 20 K below the melting transition (T-m = 170 K). To facilitate...... comparison with experiment, quasielastic spectra calculated from the MD simulations were analyzed using the same models and fitting algorithms as for the neutron spectra. This combination of techniques gives a microscopic picture of the melting process in these two monolayers which is consistent with earlier...

  10. 4-(Phenylsulfanyl)butan-2-One Suppresses Melanin Synthesis and Melanosome Maturation In Vitro and In Vivo.

    Science.gov (United States)

    Wu, Shing-Yi Sean; Wang, Hui-Min David; Wen, Yi-Shan; Liu, Wangta; Li, Pin-Hui; Chiu, Chien-Chih; Chen, Pei-Chin; Huang, Chiung-Yao; Sheu, Jyh-Horng; Wen, Zhi-Hong

    2015-01-01

    In this study, we screened compounds with skin whitening properties and favorable safety profiles from a series of marine related natural products, which were isolated from Formosan soft coral Cladiella australis. Our results indicated that 4-(phenylsulfanyl)butan-2-one could successfully inhibit pigment generation processes in mushroom tyrosinase platform assay, probably through the suppression of tyrosinase activity to be a non-competitive inhibitor of tyrosinase. In cell-based viability examinations, it demonstrated low cytotoxicity on melanoma cells and other normal human cells. It exhibited stronger inhibitions of melanin production and tyrosinase activity than arbutin or 1-phenyl-2-thiourea (PTU). Also, we discovered that 4-(phenylsulfanyl)butan-2-one reduces the protein expressions of melanin synthesis-related proteins, including the microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (Trp-1), dopachrome tautomerase (DCT, Trp-2), and glycoprotein 100 (GP100). In an in vivo zebrafish model, it presented a remarkable suppression in melanogenesis after 48 h. In summary, our in vitro and in vivo biological assays showed that 4-(phenylsulfanyl)butan-2-one possesses anti-melanogenic properties that are significant in medical cosmetology. PMID:26404245

  11. Conversion of n-Butane to iso-Butene on Gallium/HZSM-5 Catalysts

    Directory of Open Access Journals (Sweden)

    S.M. Gheno

    2002-07-01

    Full Text Available The conversion of n-butane to iso-butene on gallium/HZSM-5 catalysts at 350ºC and WHSV=2.5h8-1 was studied. The catalysts were prepared by ion exchange from a Ga(NO32 solution and further submitted to calcination in air at 530ºC. TEM analysis with an EDAX detector and TPR-H2 data showed that after calcination the Ga species were present mainly as Ga2O3, which are reduced to Ga2O at temperatures near 610ºC. The specific acid activity (SAA of the catalysts increased with the increase in aluminum content in the zeolite, and for a fixed Si/Al ratio, the SAA increased with Ga content. Values for specific hydro/dehydrogenation activity (SH/DHA were significantly higher than those for SAA, indicating that the catalytic process is controlled by the kinetics on acid sites. Moreover, the production of iso-butene with a selectivity higher than 25% was a evidence that in gallium/HZSM-5-based catalysts the rate of the hydrogenation reaction is lower than that of the dehydrogenation reaction; this behavior confirmed the dehydrogenation nature of gallium species, thereby showing great promise for iso-butene production.

  12. Partial Oxidation of n-Butane over a Sol-Gel Prepared Vanadium Phosphorous Oxide

    Directory of Open Access Journals (Sweden)

    Juan M. Salazar

    2013-01-01

    Full Text Available Vanadium phosphorous oxide (VPO is traditionally manufactured from solid vanadium oxides by synthesizing VOHPO4∙0.5H2O (the precursor followed by in situ activation to produce (VO2P2O7 (the active phase. This paper discusses an alternative synthesis method based on sol-gel techniques. Vanadium (V triisopropoxide oxide was reacted with ortho-phosphoric acid in an aprotic solvent. The products were dried at high pressure in an autoclave with a controlled excess of solvent. This procedure produced a gel of VOPO4 with interlayer entrapped molecules. The surface area of the obtained materials was between 50 and 120 m2/g. Alcohol produced by the alkoxide hydrolysis reduced the vanadium during the drying step, thus VOPO4 was converted to the precursor. This procedure yielded non-agglomerated platelets, which were dehydrated and evaluated in a butane-air mixture. Catalysts were significantly more selective than the traditionally prepared materials with similar intrinsic activity. It is suggested that the small crystallite size obtained increased their selectivity towards maleic anhydride.

  13. Benchmarking Experimental and Computational Thermochemical Data: A Case Study of the Butane Conformers.

    Science.gov (United States)

    Barna, Dóra; Nagy, Balázs; Csontos, József; Császár, Attila G; Tasi, Gyula

    2012-02-14

    Due to its crucial importance, numerous studies have been conducted to determine the enthalpy difference between the conformers of butane. However, it is shown here that the most reliable experimental values are biased due to the statistical model utilized during the evaluation of the raw experimental data. In this study, using the appropriate statistical model, both the experimental expectation values and the associated uncertainties are revised. For the 133-196 and 223-297 K temperature ranges, 668 ± 20 and 653 ± 125 cal mol(-1), respectively, are recommended as reference values. Furthermore, to show that present-day quantum chemistry is a favorable alternative to experimental techniques in the determination of enthalpy differences of conformers, a focal-point analysis, based on coupled-cluster electronic structure computations, has been performed that included contributions of up to perturbative quadruple excitations as well as small correction terms beyond the Born-Oppenheimer and nonrelativistic approximations. For the 133-196 and 223-297 K temperature ranges, in exceptional agreement with the corresponding revised experimental data, our computations yielded 668 ± 3 and 650 ± 6 cal mol(-1), respectively. The most reliable enthalpy difference values for 0 and 298.15 K are also provided by the computational approach, 680.9 ± 2.5 and 647.4 ± 7.0 cal mol(-1), respectively.

  14. Mechanism of n-butane hydrogenolysis promoted by Ta-hydrides supported on silica

    KAUST Repository

    Pasha, Farhan Ahmad

    2014-06-06

    The mechanism of hydrogenolysis of alkanes, promoted by Ta-hydrides supported on silica via 2 ≡ Si-O- bonds, has been studied with a density functional theory (DFT) approach. Our study suggests that the initial monohydride (≡ Si-O-)2Ta(III)H is rapidly trapped by molecular hydrogen to form the more stable tris-hydride (≡ Si-O-) 2Ta(V)H3. Loading of n-butane to the Ta-center occurs through C-H activation concerted with elimination of molecular hydrogen (σ-bond metathesis). Once the Ta-alkyl species is formed, the C-C activation step corresponds to a β-alkyl transfer to the metal with elimination of an olefin. According to these calculations, an α-alkyl transfer to the metal to form a Ta-carbene species is of higher energy. The olefins formed during the C-C activation step can be rapidly hydrogenated by both mono- and tris-Ta-hydride species, making the overall process of alkane cracking thermodynamically favored. © 2014 American Chemical Society.

  15. Study of an Oil Field (Hassi Messaoud) by Injection of Tritiated Methane, Ethane, Propane and Butane

    International Nuclear Information System (INIS)

    Gas is injected into a deposit to increase the yield of oil contained in the rock and to maintain the pressure of the fluids at a value sufficient for the wells to remain naturally eruptive. The efficiency of this technique depends mainly on establishing a uniform displacement front in spite of heterogeneities. When the gas is injected simultaneously into several wells, the gas-oil displacement can be checked only if the origin of the gas reaching the producer wells is known with certainty. This is achieved by mixing with the gas from each of the injection wells a radioactive tracer whose path in the oil-bearing rock faithfully reproduces the movement of the gas-oil front. The tracers used are tritiated methane, ethane, propane and butane, which are injected respectively into four wells in amounts of up to 200 Ci. The distance separating each injection well from a producer well is considerable (1-6 km) and the oil volume is great, so that the radioactive tracer undergoes very marked dilution during its displacement. For industrial-scale detection of the arrival of the different tracers at the producers, it is therefore necessary to use very sensitive methods. Samples of oil are taken at the head of the producers at a pressure of approx. 50 kg/cm2. The gas in solution in the oil is separated into four fractions, which are respectively rich in C1, C2, C3 and C4 with a degree of purity better than 90%. The beta radiation of each of the fractions is then measured using a double-envelope proportional counter placed in a lead container and connected to an anti-coincidence counting system. The long-term possibility of isotopic exchange between the different tracers and the hydrocarbons present in the rock were studied experimentally under the conditions of pressure and temperature at the deposit. (author)

  16. Catalytic Performance of Bare Supporters and Supported KVO3 Catalysts for Cracking n-Butane to Produce Light Olefins

    Institute of Scientific and Technical Information of China (English)

    LuJiangyin; ZhaoZhen; XuChunming; ZhangPu

    2005-01-01

    Supported KVO3 catalysts were prepared by impregnating different kinds of.supporters (α-Al2O3,γ-Al2O3 and SiO2 powders) with a KVO3 solution. The activity of the bare supporters and supported catalysts were evaluated in a continuous micro-reactivity test unit, with n-butane as a raw material. The results show that KVO3 has no catalytic activity, but it can increase the selectivity to light olefins. The supporter of γ-Al2O3 has good catalytic performance for nbutane cracking when the reaction temperature is below 700℃.

  17. The Selective Oxidation of n-Butane to Maleic Anhydride : Comparison of Bulk and Supported V-P-O Catalysts

    OpenAIRE

    Koningsberger, D.C.; Ruitenbeek, M.; van Dillen, A.J.; BARBON, A; Faassen, E.E.H. van; Geus, John W.

    1998-01-01

    V P O catalysts supported on the surface of silica and titania particles were studied and compared with bulk V P O. The catalytic performance was tested in the n-butane oxidation reaction to maleic anhydride, and the structure of the equilibrated catalysts was characterised with X-ray absorption spectroscopy (EXAFS) and (low-temperature) ESR spectroscopy. Our results show considerable differences in catalytic performance between VPO/TiO_{2} on the one hand, and VPO/SiO_{2} and VPO/bulk on the...

  18. Positive and Negative Contributions in the Solvation Enthalpy due to Specific Interactions in Binary Mixtures of C1-C4 n-Alkanols and Chloroform with Butan-2-one.

    Science.gov (United States)

    Varfolomeev, Mikhail A; Rakipov, Ilnaz T; Solomonov, Boris N; Lodowski, Piotr; Marczak, Wojciech

    2015-06-25

    In the paper, results of calorimetric measurements, IR spectra, and calculated ab initio stabilization energies of dimers are reported for binary systems butan-2-one + (methanol, ethanol, propan-1-ol, butan-1-ol, and chloroform). Changes in the total enthalpy of specific interactions due to dissolution of butan-2-one in the alcohols, calculated using equations derived in previous works, are positive. That results from the endothermic breaking of the O-H···O-H bonds not completely compensated by the exothermic effects of formation of the O-H···O═C ones. Moreover, the concentration of nonbonded molecules of butan-2-one is significant even in dilute solutions, as is evidenced by the shape of the C═O stretching vibrations band in the IR spectra. Apart from that, the spectra do not confirm 1:2 complexes in spite of two lone electron pairs in the carbonyl group of butan-2-one capable of forming the hydrogen bonds. The changes in enthalpy of specific interactions are negative for dilute solutions of alcohols and chloroform in butan-2-one and of butan-2-one in chloroform, because no hydrogen bonds occur in pure butan-2-one. The experimental results are positively correlated with the enthalpies estimated from the ab initio energies using a simple "chemical reaction" approach. PMID:26012694

  19. Positive and Negative Contributions in the Solvation Enthalpy due to Specific Interactions in Binary Mixtures of C1-C4 n-Alkanols and Chloroform with Butan-2-one.

    Science.gov (United States)

    Varfolomeev, Mikhail A; Rakipov, Ilnaz T; Solomonov, Boris N; Lodowski, Piotr; Marczak, Wojciech

    2015-06-25

    In the paper, results of calorimetric measurements, IR spectra, and calculated ab initio stabilization energies of dimers are reported for binary systems butan-2-one + (methanol, ethanol, propan-1-ol, butan-1-ol, and chloroform). Changes in the total enthalpy of specific interactions due to dissolution of butan-2-one in the alcohols, calculated using equations derived in previous works, are positive. That results from the endothermic breaking of the O-H···O-H bonds not completely compensated by the exothermic effects of formation of the O-H···O═C ones. Moreover, the concentration of nonbonded molecules of butan-2-one is significant even in dilute solutions, as is evidenced by the shape of the C═O stretching vibrations band in the IR spectra. Apart from that, the spectra do not confirm 1:2 complexes in spite of two lone electron pairs in the carbonyl group of butan-2-one capable of forming the hydrogen bonds. The changes in enthalpy of specific interactions are negative for dilute solutions of alcohols and chloroform in butan-2-one and of butan-2-one in chloroform, because no hydrogen bonds occur in pure butan-2-one. The experimental results are positively correlated with the enthalpies estimated from the ab initio energies using a simple "chemical reaction" approach.

  20. Species active in the selective catalytic reduction of no with iso-butane on iron-exchanged ZSM-5 zeolites

    Directory of Open Access Journals (Sweden)

    M. S. Batista

    2005-09-01

    Full Text Available Fe-ZSM-5 catalysts were prepared by ion exchange in aqueous medium or in the solid state and tested in the catalytic reduction of NO with iso-butane. X-ray powder diffraction (XRD, atomic absorption spectroscopy (AAS, electron paramagnetic resonance spectroscopy (EPR, X-ray absorption spectroscopy (XANES, EXAFS, temperature-programmed reduction by H2 (H2-TPR and Mössbauer spectroscopy (MÖS-S were used for sample characterisation. Irrespective of the method used in catalyst preparation, EPR, XANES and MÖS-S showed Fe atoms in the oxidation state of 3+. MÖS-S and H2-TPR data on Fe-ZSM-5 prepared by ion exchange in the solid state allowed quantification of a lower hematite (Fe2O3 concentration and a higher proportion of Fe cations than samples prepared in an aqueous medium. In all the catalysts studied these Fe cations were the active sites in the reduction of NO to N2 and in the oxidation of iso-butane. It is further suggested that coordination of Fe species is another important aspect to be considered in their behaviour.

  1. Mechanosynthesis and mechanochemical treatment of bismuth doped vanadium phosphorus oxide catalysts for the partial oxidation of n-butane to maleic anhydride

    Institute of Scientific and Technical Information of China (English)

    Y H.Taufiq-Yap; Y C.Wong; Y Kamiya; W.J.Tang

    2008-01-01

    Three Bi-doped vanadyl pyrophosphate catalysts were prepared via dihydrate route(VPD method),which consisted of different preparation methods including mechanosvnthesis,mechanochemical treatment,and the conventional reflux method.The catalysts produced by the above three methods were characterized by x-ray diffraction(XRD),scanning electron microscopy(SEM),and temperature programmed reduction(TPR).Catalytic evaluation for the partial oxidation of n-butane to maleic anhydride (MA) was also carried out.The XRD patterns of all the Bi-doped catalysts showed the main peaks of pyrophosphate phase.Lower intensity peaks were observed for the mechanochemically treated Bi-doped catalyst(VPDBiMill)with two additional small DeakS corresponding to the presence of a small amount of V5+ phase.The TPR profiles showed that the highest amount of active oxygen species.i.e.V4+-O- pair,responsible for n-butane activation,was removed from VPDBiMill.Furthermore.from the catalytic test results.the graph of selectivity to MA as a function of the conversion of n-butane demonstrated that VPDBiMill was the most selective catalyst.This suggests that the mechanochemical treatment of vanadium phosphate catalyst(VPDBiMill)is a potential method to improve the catalytic properties for the partial oxidation of n-butane to maleic anhydride.

  2. Direct Dehydrogenation of n-Butane Over Pt/Sn/Zn-K/Al2O3 Catalyst: Effect of Hydrogen in the Feed.

    Science.gov (United States)

    Lee, Jong Kwon; Seo, Hyun; Kim, Jeong Kwon; Seo, Hanuk; Cho, Hye-Ran; Lee, Jinsuk; Chang, Hosik; Song, In Kyu

    2016-05-01

    Al2O3 was prepared by a sol-gel method for use as a support. Pt/Sn/Zn-K/Al2O3 catalyst was then prepared by a sequential impregnation method, and it was applied to the direct dehydrogenation of n-butane to n-butenes and 1,3-butadiene. Physicochemical properties of Pt/Sn/Zn-K/Al2O3 catalyst were examined by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherm, inductively coupled plasma atomic emission spectroscopy (ICP-AES), temperature-programmed reduction (TPR), CO chemisorption, and temperature-programmed oxidation (TPO) measurements. In order to improve the catalyst stability, the effect of hydrogen in the feed on the catalytic performance in the direct dehydrogenation of n-butane was studied. The catalyst stability and reusability in the direct dehydrogenation of n-butane was also investigated. Experimental results revealed that the addition of hydrogen in the feed decreased conversion of n-butane and yield for total dehydrogenation products but improved the stability of the catalyst. The catalytic activity and stability of regenerated Pt/Sn/Zn-K/Al2O3 catalyst in the presence of hydrogen slightly decreased compared to those of fresh Pt/Sn/Zn-K/Al2O3 catalyst due to the slight sintering of platinum particles.

  3. Direct Dehydrogenation of n-Butane Over Pt/Sn/Zn-K/Al2O3 Catalyst: Effect of Hydrogen in the Feed.

    Science.gov (United States)

    Lee, Jong Kwon; Seo, Hyun; Kim, Jeong Kwon; Seo, Hanuk; Cho, Hye-Ran; Lee, Jinsuk; Chang, Hosik; Song, In Kyu

    2016-05-01

    Al2O3 was prepared by a sol-gel method for use as a support. Pt/Sn/Zn-K/Al2O3 catalyst was then prepared by a sequential impregnation method, and it was applied to the direct dehydrogenation of n-butane to n-butenes and 1,3-butadiene. Physicochemical properties of Pt/Sn/Zn-K/Al2O3 catalyst were examined by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherm, inductively coupled plasma atomic emission spectroscopy (ICP-AES), temperature-programmed reduction (TPR), CO chemisorption, and temperature-programmed oxidation (TPO) measurements. In order to improve the catalyst stability, the effect of hydrogen in the feed on the catalytic performance in the direct dehydrogenation of n-butane was studied. The catalyst stability and reusability in the direct dehydrogenation of n-butane was also investigated. Experimental results revealed that the addition of hydrogen in the feed decreased conversion of n-butane and yield for total dehydrogenation products but improved the stability of the catalyst. The catalytic activity and stability of regenerated Pt/Sn/Zn-K/Al2O3 catalyst in the presence of hydrogen slightly decreased compared to those of fresh Pt/Sn/Zn-K/Al2O3 catalyst due to the slight sintering of platinum particles. PMID:27483794

  4. Solubility of n-butane and 2-methylpropane (isobutane) in 1-alkyl-3-methylimidazolium-based ionic liquids with linear and branched alkyl side-chains.

    Science.gov (United States)

    Pison, Laure; Shimizu, Karina; Tamas, George; Lopes, José Nuno Canongia; Quitevis, Edward L; Gomes, Margarida F Costa

    2015-11-11

    The solubility of n-butane and 2-methylpropane (isobutane) in three ionic liquids - 1-(2-methylpropyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [(2mC3)C1im][Ntf2], 1-(3-methylbutyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [(3mC4)C1im][Ntf2] and 1-methyl-3-pentylimidazolium bis(trifluoromethylsulfonyl)imide [C5C1im][Ntf2] - has been measured at atmospheric pressure from 303 to 343 K. Isobutane is less soluble than n-butane in all the ionic liquids. Henry's constant values range from 13.8 × 10(5) Pa for n-butane in [C5C1im][Ntf2] at 303 K to 64.5 × 10(5) Pa for isobutane in [(2mC3)C1im][Ntf2] at 343 K. The difference in solubility between the two gases can be explained by a more negative enthalpy of solvation for n-butane. A structural analysis of the pure solvents and of the solutions of the gases, probed by molecular dynamics simulations, could explain the differences found in the systems: (i) the nonpolar domains of the ionic liquids accommodate better the long and more flexible n-butane solute; (ii) the small differences in solubility of each gas in the ionic liquids with the same number of carbon atoms in the alkyl side-chains are explained by the absence of large structural differences in the pure solvents. In all cases, the structural analysis of the four ionic liquids confirms that the studied gases can act as probes of the molecular structure of the ionic liquids, the simulations being always compatible with the experimental solubility data.

  5. L'engelure causée par le butane commercial au cours d’un accident industriel

    Science.gov (United States)

    Assi-Dje Bi Dje, V.; Abhe, C.M.; Sie-Essoh, J.B.; Kouamé, K.; Vilasco, B.

    2014-01-01

    Summary Les engelures sont encore exceptionnelles en Afrique sub-saharienne, mais l’essor des industries pétrochimiques en rapport avec la promotion d’une large utilisation du gaz domestique (butane commercial) expose au risque de survenue de ce type de brûlures abusivement dites gelures. Nous rapportons un cas de brûlures au froid par gaz de pétrole liquéfié (GPL) en milieu professionnel dont le diagnostic de gravité et la prise en charge tardifs ont défavorisé l’évolution locale. Le respect des mesures de sécurité au sein des usines reste néanmoins le principal moyen de prévention de ce type de brûlures méconnues. PMID:26170791

  6. Improved performance of Nb-doped vanadyl pyrophosphate, catalyst for n-butane oxidation to maleic anhydride

    Energy Technology Data Exchange (ETDEWEB)

    Pavarelli, G.; Caldarelli, A.; Cavani, F. [Bologna Univ. (Italy). Dipt. di Chimica Industriale ' Toso Montanari' ; Cortelli, C.; Luciani, S. [Polynt SpA, Scanzorosciate (Italy)

    2013-11-01

    We report here about an investigation on the role of Nb{sup 5+} when used as a promoter for vanadyl pyrophosphate, catalyst for the oxidation of n-butane to maleic anhydride. The effect of Nb was very complex, a function of both its amount and the reaction temperature used. The optimal catalytic behavior was shown for very low Nb contents, i.e., for a V/Nb atomic ratio as low as 150. The main role of Nb was that of accelerating the formation of a limited amount of {gamma}-VOPO{sub 4} on the surface of vanadyl pyrophosphate, by accelerating the oxidation of V{sup 4+} into V{sup 5+} under reaction conditions. (orig.)

  7. Monolayer behaviour of chiral compounds at the air-water interface: 4-hexadecyloxy-butane-1,2-diol

    DEFF Research Database (Denmark)

    Rietz, R.; Rettig, W.; Brezesinski, G.;

    1996-01-01

    Monolayers of the pure S-enantiomer (x(S) = 1) and of two mixtures x(S) = 0.75 and x(S) = 0.5 (racemate) of 4-hexadecyloxy-butane-1,2-diol (C16H33-O-CH2-CH2-CHOH-CH2OH) (HOBD) have been studied at the air-water interface by thermodynamic measurements, fluorescence microscopy and X-ray diffraction...... clockwise and counterclockwise. The number of the left- and right-handed arms depends on the mixing ratio. At lower lateral pressures S-HOBD and the mixture with x(S) = 0.75 exhibit a chiral structure. At pressures above 25 mN m(-1) a centered rectangular structure with a tilt of the molecules towards...

  8. Use of butane-isobutane refrigerant spray in the management of a mucocoele in a visually impaired child.

    Science.gov (United States)

    Birapu, Uday Chowdary; Puppala, Ravindar; Kethineni, Balaji; Banavath, Sunitha

    2016-01-01

    Mucocoeles are commonly observed lesions in children and young adults. Conventional management using a scalpel aims at enucleation, requiring psychological preparation of the parent as well as the child because of inherent fear and apprehension towards surgery. This is still more complex in children with visual impairment. The other management techniques are laser, cryotherapy and micromarsupialisation, management strategies that, being painless and tolerable, reduce the anxiety of the child and are therefore more acceptable. The basic technique of cryotherapy stresses on rapid cooling, gradual thawing and repeated freezing to ensure tissue destruction. We report a case of a 13-year-old boy with visual impairment, presenting with a mucocoele on the lower lip, which was managed using butane-isobutane refrigerant spray, which is otherwise routinely employed for pulp vitality testing. A single, 2 min freeze/thaw cycle was used. The healing was uneventful.

  9. Momentum Profile and Final Correlation Effects of Iso-butane Inner Valence by Binary (e,2e) Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    DENG Jing-Kang; GAO Nai-Fei; WANG Yan; CHEN Xue-Jun; ZHENG Yan-Yon; LI Gui-Qin; HE Yao; HUANG Jian-Dong; DENG Hui; WANG Xiao-Dong; WANG Fang; ZHANG Yi-An; NING Chuan-Gang

    2000-01-01

    The binding energy spectra and the momentum distributions of the valence orbitals of iso-butane, also known as methylpropane (CH3CH(CH3)CH3), are studied by using a high resolution binary (e, 2e) electron momentum spectrometer, at an impact energy of 1200eV plus the binding energy (8-32eV) with symmetric non-coplanar kinematics. Binding energy spectra of the valence shell are obtained at a coincidence energy resolution of 0.95 eV in full width at half maximum. The experimental momentum profiles of the inner valence orbitals are obtained and compared with the theoretical momentum distributions calculated by using Hartree-Fock and density functional theory methods with the basis sets 6-31G and 6-311++G**. The pole strengths of the inner orbitals are estimated and the final correlation effects are discussed.

  10. Catalytic Dehydrogenation of n-Butane over V/SiO2 Catalyst: A Comparison with Cr/SiO2 Catalyst

    Institute of Scientific and Technical Information of China (English)

    Xu Yuebing; Fu Wenting; Lu Jiangyin; Wang Jide

    2008-01-01

    V/SiO2 catalysts compared to Cr/SiO2 catalysts were studied for dehydrogenation of n-butane to butenes.Several methods for characterization of catalysts such as FT-IR,UV-vis and Raman spectroscopies were used.Some differences between two catalysts were showed,including the performances of catalysts,distribution of products and mechanism of reactions.The results showed that prepared catalysts with 12m% of active component loading all demonstrated best conversion of n-butane to butene at a reaction temperature of around 590℃.Two different reaction mechanisms were mentioned to well explain why iso-butene was produced on V/SiO2 catalysts but not on Cr/SiO2 catalysts.

  11. Effects of Calcination Temperature on the Acidity and Catalytic Performances of HZSM-5 Zeolite Catalysts for the Catalytic Cracking of n-Butane

    Institute of Scientific and Technical Information of China (English)

    Jiangyin Lu; Zhen Zhao; Chunming Xu; Aijun Duan; Pu Zhang

    2005-01-01

    The acidic modulations of a series of HZSM-5 catalysts were successfully made by calcination at different treatment temperatures, i.e. 500, 600, 650, 700 and 800 ℃, respectively. The results indicated that the total acid amounts, their density and the amount of B-type acid of HZSM-5 catalysts rapidly decreased, while the amounts of L-type acid had almost no change and thus the ratio of L/B was obviously enhanced with the increase of calcination temperature (excluding 800 ℃). The catalytic performances of modified HZSM-5 catalysts for the cracking of n-butane were also investigated. The main properties of these catalysts were characterized by means of XRD, N2 adsorption at low temperature, NH3-TPD, FTIR of pyridine adsorption and BET surface area measurements. The results showed that HZSM-5 zeolite pretreated at 800 ℃ had very low catalytic activity for n-butane cracking. In the calcination temperature range of 500-700 ℃, the total selectivity to olefins, propylene and butene were increased with the increase of calcination temperature, while, the selectivity for arene decreased with the calcination temperature.The HZSM-5 zeolite calcined at 700 ℃ produced light olefins with high yield, at the reaction temperature of 650 ℃ the yields of total olefins and ethylene were 52.8% and 29.4%, respectively. Besides, the more important role is that high calcination temperature treatment improved the duration stability of HZSM-5zeolites. The effect of calcination temperature on the physico-chemical properties and catalytic performance of HZSM-5 for cracking of n-butane was explored. It was found that the calcination temperature had large effects on the surface area, crystallinity and acid properties of HZSM-5 catalyst, which further affected the catalytic performance for n-butane cracking.

  12. Comparative Study of Molecular Interactions in Binary Liquid Mixtures of 4 –Methyl-2-pentanoneWith Butan-2-One, Furfuraldehyde, Cyclohexanone At 308 K

    Directory of Open Access Journals (Sweden)

    D. Ubagaramary

    2016-03-01

    Full Text Available Molecular interaction studies using ultrasonic technique in the binary liquid mixtures of 4 –Methyl-2-pentanone With Butan-2-One,Furfuraldehyde and Cyclohexanonehas been carried out at different temperature. Using the measured values of ultrasonic velocity, density and viscosity, acoustical parameters and their excess values are evaluated. From these excess parametersare used to discussing about the nature and strength of the interactions in these binary systems.

  13. Catalytic asymmetric synthesis of butane diacetal-protected (4S,5S)-dihydroxycyclohexen-1-one and use in natural product synthesis.

    Science.gov (United States)

    Burns, David J; Hachisu, Shuji; O'Brien, Peter; Taylor, Richard J K

    2012-10-14

    Due to the lack of availability of unnatural (+)-quinic acid as a starting material, a 6-step synthesis of butane diacetal-protected (4S,5S)-dihydroxycyclohexen-1-one (formally derived from (+)-quinic acid) has been devised. The key catalytic asymmetric step involves a chiral Co-salen-catalysed epoxide ring-opening reaction. (4S,5S)-Dihydroxycyclohexen-1-one was utilised in the synthesis of two cyclohexenone natural products isolated from the mycelia of Lasiodiplodia theobromae. PMID:22930235

  14. Effects of Light Rare Earth on Acidity and Catalytic Performance of HZSM-5 Zeolite for Catalytic Cracking of Butane to Light Olefins

    Institute of Scientific and Technical Information of China (English)

    Wang Xiaoning; Zhao Zhen; Xu Chunming; Duan Aijun; Zhang Li; Jiang Guiyuan

    2007-01-01

    The effects of rare earth (RE) on the structure, acidity, and catalytic performance of HZSM-5 zeolite were investigated. A series of RE/HZSM-5 catalysts, containing 7.54% RE (RE=La, Ce, Pr, Nd, Sm, Eu or Gd), were prepared by the impregnation of the ZSM-5 type zeolites (Si/Al=64:1) with the corresponding RE nitrate aqueous solutions. The catalysts were characterized by means of FT-IR, UV-Vis, NH3-TPD, and IR spectroscopy of adsorbed pyridine. The catalytic performances of the RE/HZSM-5 for the catalytic cracking of mixed butane to light olefins were also measured with a fixed bed microreactor. The results revealed that the addition of light rare earth metal on the HZSM-5 catalyst greatly enhanced the selectivity to olefins, especially to propylene, thus increasing the total yield of olefins in the catalytic cracking of butane. Among the RE-modified HZSM-5 samples, Ce/HZSM-5 gave the highest yield of total olefins, and Nd/HZSM-5 gave the highest yield of propene at a reaction temperature of 600℃. The presence of rare earth metal on the HZSM-5 sample, not only modified the acidic properties of HZSM-5 including the amount of acid sites and acid type, that is, the ratio of L/B (Lewis acid/Bronsted acid), but also altered the basic properties of it, which in turn promoted the catalytic performance of HZSM-5 for the catalytic cracking of butane.

  15. Oxidative Dehydrogenation of n-Butane over LaV Catalysts Supported on TiO2

    Directory of Open Access Journals (Sweden)

    Le Minh Cam

    2013-01-01

    Full Text Available The catalytic performance of vanadia catalysts with 15 wt% V supported on TiO2 and (15 wt% V + 4.6 wt% La supported on TiO2 in oxidative dehydrogenation (ODH of n-butane was investigated. The catalysts were characterized by means of TPD-NH3, TPR-H2, UV-Vis, and BET. Testing of samples showed that vanadia catalysts were active for the reaction. It was found that La doping of V/TiO2 catalyst had a negative effect on the dispersion of V species and led to formation of V2O5 clusters. This resulted in a loss of activity. Although slight improvement of selectivity was observed in comparison to undoped V/TiO2 samples due to lower acidity of La-doped –V/TiO2, this could not compensate the loss of activity and finally did not lead to higher butene yields.

  16. An Experimental Measurement on Laminar Burning Velocities and Markstein Length of Iso-Butane-Air Mixtures at Ambient Conditions

    Directory of Open Access Journals (Sweden)

    Yousif Alaeldeen Altag

    2016-01-01

    Full Text Available In the present work, experimental investigation on laminar combustion of iso-butane-air mixtures was conducted in constant volume explosion vessel. The experiments were conducted at wide range of equivalence ratios ranging between Ф = 0.6 and 1.4 and atmospheric pressure of 0.1 MPa and ambient temperature of 303K. Using spherically expanding flame method, flame parameters including stretched, unstretched flame propagation speeds, laminar burning velocities and Markstein length were calculated. For laminar burning velocities the method of error bars of 95% confidence level was applied. In addition, values of Markstein lengths were measured in wide range of equivalence ratios to study the influence of stretch rate on flame instability and burning velocity. It was found that the stretched flame speed and laminar burning velocities increased with equivalence ratios and the peak value was obtained at equivalence ratio of Ф = 1.1. The Markstein length decreased with the increases in equivalence ratios, which indicates that the diffusion thermal flame instability increased at high equivalence ratios in richer mixture side. However, the total deviations in the laminar burning velocities have discrepancies of 1.2-2.9% for all investigated mixtures.

  17. Autoignited laminar lifted flames of methane, ethylene, ethane, and n-butane jets in coflow air with elevated temperature

    KAUST Repository

    Choi, Byungchul

    2010-12-01

    The autoignition characteristics of laminar lifted flames of methane, ethylene, ethane, and n-butane fuels have been investigated experimentally in coflow air with elevated temperature over 800. K. The lifted flames were categorized into three regimes depending on the initial temperature and fuel mole fraction: (1) non-autoignited lifted flame, (2) autoignited lifted flame with tribrachial (or triple) edge, and (3) autoignited lifted flame with mild combustion. For the non-autoignited lifted flames at relatively low temperature, the existence of lifted flame depended on the Schmidt number of fuel, such that only the fuels with Sc > 1 exhibited stationary lifted flames. The balance mechanism between the propagation speed of tribrachial flame and local flow velocity stabilized the lifted flames. At relatively high initial temperatures, either autoignited lifted flames having tribrachial edge or autoignited lifted flames with mild combustion existed regardless of the Schmidt number of fuel. The adiabatic ignition delay time played a crucial role for the stabilization of autoignited flames. Especially, heat loss during the ignition process should be accounted for, such that the characteristic convection time, defined by the autoignition height divided by jet velocity was correlated well with the square of the adiabatic ignition delay time for the critical autoignition conditions. The liftoff height was also correlated well with the square of the adiabatic ignition delay time. © 2010 The Combustion Institute.

  18. Site-Specific Rate Constant Measurements for Primary and Secondary H- and D-Abstraction by OH Radicals: Propane and n -Butane

    KAUST Repository

    Badra, Jihad

    2014-07-03

    Site-specific rate constants for hydrogen (H) and deuterium (D) abstraction by hydroxyl (OH) radicals were determined experimentally by monitoring the reaction of OH with two normal and six deuterated alkanes. The studied alkanes include propane (C3H8), propane 2,2 D2 (CH 3CD2CH3), propane 1,1,1-3,3,3 D6 (CD 3CH2CD3), propane D8 (C3D 8), n-butane (n-C4H10), butane 2,2-3,3 D4 (CH3CD2CD2CH3), butane 1,1,1-4,4,4 D6 (CD3CH2CH2CD3), and butane D10 (C4D10). Rate constant measurements were carried out over 840-1470 K and 1.2-2.1 atm using a shock tube and OH laser absorption. Previous low-temperature data were combined with the current high-temperature measurements to generate three-parameter fits which were then used to determine the site-specific rate constants. Two primary (P1,H and P 1,D) and four secondary (S00,H, S00,D, S 01,H, and S01,D) H- and D-abstraction rate constants, in which the subscripts refer to the number of C atoms connected to the next-nearest-neighbor C atom, are obtained. The modified Arrhenius expressions for the six site-specific abstractions by OH radicals are P1,H = 1.90 × 10-18T2.00 exp(-340.87 K/T) cm 3molecule-1s-1 (210-1294 K); P1,D= 2.72 × 10-17 T1.60 exp(-895.57 K/T) cm 3molecule-1s-1 (295-1317 K); S00,H = 4.40 × 10-18 T1.93 exp(121.50 K/T) cm 3molecule-1s-1 (210-1294 K); S00,D = 1.45 × 10-20 T2.69 exp(282.36 K/T) cm 3molecule-1s-1 (295-1341 K); S01,H = 4.65 × 10-17 T1.60 exp(-236.98 K/T) cm 3molecule-1s-1 (235-1407 K); S01,D = 1.26 × 10-18 T2.07 exp(-77.00 K/T) cm 3molecule-1s-1 (294-1412 K). © 2014 American Chemical Society.

  19. n-BUTANE ISOMERIZATION OVER PERSULFATE-MODIFIED Al2 O3-ZrO2 CATALYSTS%过硫酸盐改性的Al2O3-ZrO2催化剂上的正丁烷异构化反应

    Institute of Scientific and Technical Information of China (English)

    夏勇德; 华伟明; 高滋

    1999-01-01

    @@ The conversion of n-butane to isobutane over strong acid catalysts is an important process in the petrochemical refining industry, because isobutane is a valuable precursor to methyl-tert-butyl ether and other fuel additives. Many reports dealing with sulfate promoted zirconia as catalysts for n-butane isomerization have appeared[1, 2].

  20. Photophysical Behavior and Computational Investigation of Novel 1,4-Bis(2-(2-Phenylpyrimido[1,2-a]Benzimidazol-4-Yl)Phenoxy)Butan (BPPB) Macromolecule.

    Science.gov (United States)

    Saleh, Tamer S; Hussein, Mahmoud A; Osman, Osman I; Alamry, Khalid A; Mekky, Ahmed E M; Asiri, Abdullah M; El-Daly, Samy A

    2016-09-01

    A new macromolecule pyrimido[l,2-a]benzimidazole derivative named 1,4-bis(2-(2-phenylpyrimido[1,2-a]benzimidazol-4-yl)phenoxy)butan (BPPB) has been synthesized in accepted yield using microwave assistance. The new compound BPPB has been formed by the interaction of 3,3'-((butane-1,4-diylbis(oxy))bis(2,1-phenylene))bis(1-phenylprop-2-en-1-one) (3) with 2- aminobenzimidazole (4) in the presence of potassium hydroxide as a basic catalyst in dimethylformamide (DMF) under microwave radiation for 20 min. The chemical structure of this novel compound was elucidated by elemental and spectral techniques including: FT-IR, (1)H-NMR, (13)C-NMR and mass spectra. The electronic absorption and emission spectra of BPPB were measured in different solvents. BPPB displayed a solvatochromic effect of the emission spectrum that is reflected by red shifts of its fluorescence emission maxima on increasing the solvent polarity, indicating a change of electronic charge distribution upon excitation. BPPB crystalline solids gave excimer-like emission at 535 nm with a bandwidth of ca. 60 nm. Ground and excited states electronic geometry optimizations using density functional theory (DFT) and time-dependent density functional theory (TD-DFT), respectively, complemented these spectral findings. The intramolecular charge transfer was investigated by natural bond orbital (NBO) technique. PMID:27476069

  1. High-valued Utilization of China Fir Sawdust Extracted Essential Oil: Preparation of Granular Activated Carbons for n-Butane Adsorption

    Institute of Scientific and Technical Information of China (English)

    ZHU Guang-zhen; DENG Xian-lun; LIU Xiao-min

    2011-01-01

    [Objective] The aim was to study on the high-valued utilization of China Fir sawdust extracted essential oil. [Method] In the field of fir essential oil extraction, the processed China fir sawdust was used to prepare low-valued products. The high-valued utilization of China fir sawdust extracted essential oil (CFSEEO), namely as a precursor to prepare granular activated carbons (GACs), was attempted. The materials were characterized by ultimate analysis, SEM and XRD. [Rusult] A butane working capacity (BWC) of 14.3 g/100 ml was obtained by using the GACs with apparent density of 0.25 g/ml. It was available to introduce the technology of extracting essential oil from the China fir sawdust (CFS) in the industrial production process of activated carbons with high BWC (12.0 -16.5 g/100 ml) and high surface area (2 000 -2 630m2/g) using phosphoric acid based on previous studies of the authors. [Conclusion] The resulting carbon prepared with the raw materials containing lower moisture exhibited a better property on n-butane adsorption.

  2. The Fabrication of Ga2O3/ZSM-5 Hollow Fibers for Efficient Catalytic Conversion of n-Butane into Light Olefins and Aromatics

    Directory of Open Access Journals (Sweden)

    Jing Han

    2016-01-01

    Full Text Available In this study, the dehydrogenation component of Ga2O3 was introduced into ZSM-5 nanocrystals to prepare Ga2O3/ZSM-5 hollow fiber-based bifunctional catalysts. The physicochemical features of as-prepared catalysts were characterized by means of XRD, BET, SEM, STEM, NH3-TPD, etc., and their performances for the catalytic conversion of n-butane to produce light olefins and aromatics were investigated. The results indicated that a very small amount of gallium can cause a marked enhancement in the catalytic activity of ZSM-5 because of the synergistic effect of the dehydrogenation and aromatization properties of Ga2O3 and the cracking function of ZSM-5. Compared with Ga2O3/ZSM-5 nanoparticles, the unique hierarchical macro-meso-microporosity of the as-prepared hollow fibers can effectively enlarge the bifunctionality by enhancing the accessibility of active sites and the diffusion. Consequently, Ga2O3/ZSM-5 hollow fibers show excellent catalytic conversion of n-butane, with the highest yield of light olefins plus aromatics at 600 °C by 87.6%, which is 56.3%, 24.6%, and 13.3% higher than that of ZSM-5, ZSM-5 zeolite fibers, and Ga2O3/ZSM-5, respectively.

  3. Temperature measurement of axi- symmetric butane diffusion flame under the influence of upward decreasing gradient magnetic field using digital holographic interferometry

    Science.gov (United States)

    Kumar, Varun; Kumar, Manoj; Shakher, Chandra

    2015-08-01

    In this paper, digital holographic interferometry (DHI) is implemented to investigate the effect of upward decreasing gradient magnetic field on the temperature and temperature profile of diffusion flame created by butane torch burner. In the experiment double exposure digital holographic interferometry is used to calculate the temperature distribution inside the flame. First a digital hologram is recorded in the absence of flame and second hologram is recorded in the presence of flame. Phases in two different states of air (i.e. in absence of flame and presence of flame) are reconstructed individually by numerical method. The phase difference map is obtained by subtracting the reconstructed phase of air in presence and absence of flame. Refractive index inside the flame is obtained from the axi-symmetric phase difference data using the Abel inversion integral. Temperature distribution inside the flame is calculated from the refractive index data using Lorentz - Lorentz equation. Experiment is conducted on a diffusion flame created by butane torch burner in the absence of magnetic field and in presence of upward decreasing gradient magnetic field. Experimental investigations reveal that the maximum temperature inside the flame increases under the influence of upward decreasing magnetic field.

  4. The Investigation of Model of Consumers Responses to Brand Equity Based on Marketing Mix Efforts, Corporate Image and Brand Equity Relation (case stady : Butane Campany

    Directory of Open Access Journals (Sweden)

    Ahmad Sardari

    2014-07-01

    Full Text Available Abstract For keeping and continuing their perpetuity in nowadays, companies and should focus on competitive advantages and getting more consumers’ satisfaction for sale and more market shares.One of the useful tools that makes the company less vulnerable in face of market competitive activities and consumption liability and repetition is brand equity. The purpose of this paper is investigating the consumers’ responses on marketing- mix efforts, corporate image and brand equity relation using Kim & Hyun model(2011 and Buil & Martı´nez model(2013.This research is considered as applied based on goal and descriptive-survey based on data collection. Hypotheses were tested using structural equation modeling or SEM (in Lisrel and P.L.S software and consumers’ data Butane corporation productes in Tehran. Findings corroborate the positive impact of brand equity on consumers’ responses.The results of hypotheses analysis illustrate marketing- mix efforts positively impacts on brand equity and corporate image plays a significant role in creation of brand equity for Butane.So company managers should designate special places for distribution system growth, after sale services development, pricing, promotion in investment matrix for marketing mixed efforts.

  5. Synthesis and characterization of a three dimensional zinc(II) metal-organic framework constructed from flexible 1,2,3,4-tetra-(4-pyridyl)-butane ligand

    Science.gov (United States)

    Lin, Jianguo; Wu, Peiheng; Kang, Lin; Lu, Changsheng; Meng, Qingjin

    2011-08-01

    Employing the flexible tetrapodal ligand 1,2,3,4-tetra-(4-pyridyl)-butane (TPB) along with fumaric acid (H 2FMA) as the bridges, a metal-organic framework of [Zn(TPB)(FMA)·(2H 2O)] ( 1) was obtained and characterized by elemental analysis, spectral method (IR), single crystal X-ray diffraction, thermal gravimetric analysis (TGA) and fluorescent property. This polymer exhibits a three dimensional (3D) dense network with an interesting (4,4)-connected PtS topology. It also displays good thermal stability and strong photoluminescence in the blue region band. Thus it may serve as a candidate of thermally stable blue-light-emitting photoluminescent material.

  6. Kinetics of phosphotungstic acid catalyzed oxidation of propan-1,3-diol and butan-1,4-diol by N-chlorosaccharin

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar Singh

    2011-09-01

    Full Text Available The kinetic studies of N-chlorosaccharin (NCSA oxidation of propan-1,3-diol and butan-1,4-diol have been reported in presence of phophotungstic acid and in aqueous acetic acid medium. The reactions follow first-order in NCSA and one to zero order with respect to substrate and phosphotungstic acid. Increase in the concentration of added perchloric acid increases the rate of oxidation. A negative effect on the oxidation rate is observed for solvent whereas the ionic strength does not influence the rate of reaction. Addition of the reaction product, saccharin, exhibited retarding effect. Various activation parameters have been evaluated. The products of the reactions were identified as the corresponding aldehydes. A suitable scheme of mechanism consistent with the experimental results has been proposed.

  7. Thermodynamic Property Surfaces for Adsorption of R507A, R134a, and n -Butane on Pitch-Based Carbonaceous Porous Materials

    KAUST Repository

    Chakraborty, Anutosh

    2010-10-01

    The thermodynamic property surfaces of R507A, R134a, and n-butane on pitch-based carbonaceous porous material (Maxsorb III) are developed from rigorous classical thermodynamics and experimentally measured adsorption isotherm data. These property fields enable us to compute the entropy, enthalpy, internal energy, and heat of adsorption as a function of pressure, temperature, and the amount of adsorbate. The entropy and enthalpy maps are necessary for the analysis of adsorption cooling cycle and gas storage. We have shown here that it is possible to plot an adsorption cooling cycle on the temperature-entropy (T-s) and enthalpy-uptake (h-x) maps. Copyright © Taylor and Francis Group, LLC 2010.

  8. Partial Oxidation of Butane to Syngas over Nickel SupportedCatalysts Modified by Alkali Metal Oxide and Rare-Earth Metal Oxide

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The partial oxidation of butane (POB) to syngas over nickel supported catalysts was first investigated with a flow-reactor, TG and UVRRS. The NiO/g-Al2O3 is the most suitable for the POB among NiO/g-Al2O3, NiO/MgO and NiO/SiO2. And the reaction performance of the NiO/g-Al2O3 shows little difference from those of the nickel supported catalysts modified by alkali metal oxide and rare-earth metal oxide. However, modification with Li2O and La2O3 can suppress carbon-deposition of the NiO/g-Al2O3, which contains graphite-like species during the POB reaction.

  9. Experimental and modeling study of the oxidation of n-butane in a jet stirred reactor using cw-CRDS measurements.

    Science.gov (United States)

    Bahrini, Chiheb; Morajkar, Pranay; Schoemaecker, Coralie; Frottier, Ophélie; Herbinet, Olivier; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Fittschen, Christa

    2013-12-01

    The gas-phase oxidation of n-butane has been studied in an atmospheric jet-stirred reactor (JSR) at temperatures up to 950 K. For the first time, continuous wave cavity ring-down spectroscopy (cw-CRDS) in the near-infrared has been used, together with gas chromatography (GC), to analyze the products formed during its oxidation. In addition to the quantification of formaldehyde and water, which is always difficult by GC, cw-CRDS allowed as well the quantification of hydrogen peroxide (H2O2). A comparison of the obtained mole fraction temperature profiles with simulations using a detailed gas-phase mechanism shows a good agreement at temperatures below 750 K, but an overestimation of the overall reactivity above this temperature. Also, a strong overestimation was found for the H2O2 mole fraction at higher temperatures. In order to improve the agreement between model and experimental results, two modifications have been implemented to the model: (a) the rate constant for the decomposition of H2O2 (+M) ↔ 2OH (+M) has been updated to the value recently proposed by Troe (Combust. Flame, 2011, 158, 594-601) and (b) a temperature dependent heterogeneous destruction of H2O2 on the hot reactor walls with assumed rate parameters has been added. The improvement (a) slows down the overall reactivity at higher temperatures, but has a negligible impact on the maximal H2O2 mole fraction. Improvement (b) has also a small impact on the overall reactivity at higher temperatures, but a large effect on the maximal H2O2 mole fraction. Both modifications lead to an improved agreement between model and experiment for the oxidation of n-butane in a JSR at temperatures above 750 K. PMID:24135810

  10. Volumetric behavior of the ternary system (methyl tert-butyl ether + methylbenzene + butan-1-ol) and its binary sub-system (methyl tert-butyl ether + butan-1-ol) within the temperature range (298.15 to 328.15) K

    International Nuclear Information System (INIS)

    Highlights: • Excess molar volume determined from experimental density values. • Excess adiabatic compressibility. • Excess isobaric thermal expansivity. • Peng–Robinson equation of state. • ERAS model. - Abstract: Values of the density and speed of sound were measured for the ternary system (methyl tert-butyl ether + methylbenzene + butan-1-ol) within the temperature range (298.15 to 328.15) K at atmospheric pressure by a vibrating-tube densimeter DSA 5000. Two binary sub-systems were studied and published previously while the binary sub-system (methyl tert-butyl ether + butan-1-ol) is a new study in this work. Excess molar volume, adiabatic compressibility, and isobaric thermal expansivity were calculated from the experimental values of density and speed of sound. The excess quantities were correlated using the Redlich–Kister equation. The experimental excess molar volumes were analyzed by means of both the Extended Real Associated Solution (ERAS) model and the Peng–Robinson equation of state. The novelty of this work is the qualitative prediction of ternary excess molar volumes for the system containing auto-associative compound and two compounds that can hetero-associate. The combination of the ERAS model and Peng–Robinson equation of state could help to qualitatively estimate the real behavior of the studied systems because the experimental results lie between these two predictions

  11. Foaming Properties of 1,1,3- Triethoxy Butane and Dipropyl Glycol Butyl Ether%1,1,3-三乙氧基丁烷与二丙基二醇丁醚的起泡性能*

    Institute of Scientific and Technical Information of China (English)

    朱一民

    2011-01-01

    1,1,3-三乙氧基丁烷(代号TEB)与二丙基二醇丁醚是同分异构体,根据浮选药剂的同分异构原理,二丙基二醇丁醚亦应与TEB相似,都是良好的起泡剂,并通过某铜矿浮选实践得到了证明.%1,1,3 -triethoxy butane(TEB) and dipropyl glycol butyl ether are isomers. According to the isomerism principle of flotation agent, their floatation performances are also similar. 1,1,3 - triethoxy butane and dipropyl glycol butyl ether are both good foaming agents. It had been found that this deduction was correct by floatation practice of a copper ore.

  12. Effect of modification methods on the surface properties and n-butane isomerization performance of La/Ni-promoted SO42-/ZrO2-Al2O3

    Science.gov (United States)

    Wang, Pengzhao; Zhang, Jiaoyu; Han, Chaoyi; Yang, Chaohe; Li, Chunyi

    2016-08-01

    The La and/or Ni was introduced into alumina-promoted sulfated zirconia by impregnation and co-precipitation to improve the catalytic property of n-butane isomerization. Catalysts characterization shows that the addition of La/Ni has a remarkable influence on the surface and textual properties depending on the modification method. The impregnation of La/Ni facilitates the transformation of a small amount of tetragonal zirconia into monoclinic phase, while the co-precipitation improves the stability of tetragonal ZrO2. H2-TPR indicates that the addition of La/Ni changes the interaction between SO42- and supports, which affects the acidity on the surface. Specifically, the Lewis acidity is significantly enhanced by either modification method. The co-precipitation reserves almost all of the Brønsted acid sites, while the impregnation causes a remarkable decrease of Brønsted acid sites. Reaction results demonstrate that the co-precipitation exhibits a significant advantage over impregnation that the higher conversion of n-butane and selectivity to isobutane are obtained on the catalyst prepared by co-precipitation. The increase of catalytic activity is ascribed to the accelerated activation rate of n-butane molecules by hydride subtraction on the Lewis acid sites at higher reaction temperature. Furthermore, the addition of La/Ni improves the selectivity to isobutane by inhibiting the bimolecular reaction.

  13. Phase equilibrium at high pressure of heavy oil fraction in propane and n-butane; Equilibrio de fases em alta pressao de fracoes pesadas do petroleo em propano e n-butano

    Energy Technology Data Exchange (ETDEWEB)

    Canziani, Daniel B.; Ndiaye, Papa M. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Oliveira, Jose V. de; Corazza, Marcos L. [Universidade Regional Integrada, Erechim, RS (Brazil)

    2008-07-01

    One of the biggest challenge of the oil industry is the preparation and adequacy of existing refineries for processing of heavy oil in large quantities. Specifically aims of this work is to measure phase equilibria date at high-pressure with systems involving GOP (Heavy Gasoil), RAT (Atmospheric Residue) and Marlim (crude oil) in n-butane and propane, using the static-synthetic method. The influence of the addition of methanol on the transition pressure is also investigated. With regard to tests made with the use of methanol as a co-solvent, those with higher levels of methanol (5% in mass fraction) had presented transition pressures a little higher than systems with 1% of methanol and systems without methanol. The systems without methanol showed similar pressures. All systems are PT diagrams of the type Lower Critical Solution Temperature (LCST). Among the solvents used the n-butane shown to be the most soluble for all solutes, in particular for the RAT. With the n-butane were observed only liquid-vapour equilibria, and with propane the liquid-liquid, liquid-liquid-vapour and liquid-liquid-fluid equilibria could be observed. The system Propane-5%Methanol-GOP presented liquid-liquid-vapour transitions, indicates be a diagram of the type V (according to the classification of van Konynenburg and Scott). (author)

  14. Preparation of Polyvinyl Alcohol/Xylan Blending Films with 1,2,3,4-Butane Tetracarboxylic Acid as a New Plasticizer

    Directory of Open Access Journals (Sweden)

    Cun-dian Gao

    2014-01-01

    Full Text Available Miscible, biodegradable polyvinyl alcohol (PVA/xylan blending films were firstly prepared in the range of the PVA/xylan weight ratio from 1 : 2 to 3 : 1 by casting method using 1,2,3,4-butane tetracarboxylic acid (BTCA as a new plasticizer. The properties of blending films as functions of PVA/xylan weight ratio and BTCA amount were discussed. XRD and FT-IR were applied to characterize the blending films. Experimental results indicated that tensile strength (TS and elongation at break (EAB of blending films decreased along with the decrease of the PVA/xylan weight ratio. Both of TS and EAB firstly increased and then decreased as the amount of BTCA was increased. More importantly, blending films were biodegraded almost by 41% with an addition of 10% BTCA in blending films within 30 days in soil. For all hydroxyl functionalized polymers (xylan and PVA, their molecular interactions and miscibility with BTCA endowed blending films with the biocompatibility and biodegradability. Therefore, these blending films are environmentally friendly materials which could be applied as biodegradable plastics for food packaging and agricultural applications.

  15. A novel radial anode layer ion source for inner wall pipe coating and materials modification--hydrogenated diamond-like carbon coatings from butane gas.

    Science.gov (United States)

    Murmu, Peter P; Markwitz, Andreas; Suschke, Konrad; Futter, John

    2014-08-01

    We report a new ion source development for inner wall pipe coating and materials modification. The ion source deposits coatings simultaneously in a 360° radial geometry and can be used to coat inner walls of pipelines by simply moving the ion source in the pipe. Rotating parts are not required, making the source ideal for rough environments and minimizing maintenance and replacements of parts. First results are reported for diamond-like carbon (DLC) coatings on Si and stainless steel substrates deposited using a novel 360° ion source design. The ion source operates with permanent magnets and uses a single power supply for the anode voltage and ion acceleration up to 10 kV. Butane (C4H10) gas is used to coat the inner wall of pipes with smooth and homogeneous DLC coatings with thicknesses up to 5 μm in a short time using a deposition rate of 70 ± 10 nm min(-1). Rutherford backscattering spectrometry results showed that DLC coatings contain hydrogen up to 30 ± 3% indicating deposition of hydrogenated DLC (a-C:H) coatings. Coatings with good adhesion are achieved when using a multiple energy implantation regime. Raman spectroscopy results suggest slightly larger disordered DLC layers when using low ion energy, indicating higher sp(3) bonds in DLC coatings. The results show that commercially interesting coatings can be achieved in short time. PMID:25173323

  16. N(1)-(quinolin-2-ylmethyl)butane-1,4-diamine, a polyamine analogue, attenuated injury in in vitro and in vivo models of cerebral ischemia.

    Science.gov (United States)

    Cen, Juan; Liu, Lu; He, Ling; Liu, Man; Wang, Chao-Jie; Ji, Bian-Sheng

    2012-11-01

    It has been widely recognized that glutamate (Glu)-induced cytotoxicity, intracellular calcium overload and excessive free radical production are the key players in the development and progression of ischemic brain injury. Since MK-801, an antagonist of N-methyl-d-aspartate (NMDA) receptor, showed many adverse reactions that hampered its clinical applications, development of safe and effective agent for the treatment of cerebral ischemia is eagerly required. This study was to investigate the effects of N(1)-(quinolin-2-ylmethyl)butane-1,4-diamine (QMA), a polyamine analogue, on the in vitro and in vivo models of cerebral ischemic damage. The results revealed that pretreatment with QMA could attenuate Glu, putrescine (Put) and oxygen-glucose deprivation (OGD)-induced cell death, lipid peroxidation as well as the elevation of reactive oxygen species (ROS) and intracellular [Ca(2+)](i) in pheochromocytoma (PC12) cells and in rat primary cortical neurons. The results also demonstrated that QMA could inhibit NMDA-mediated intracellular [Ca(2+)](i) accumulation in rat primary cortical neurons and reduce brain infarct volume in middle cerebral artery occlusion (MCAO) rats. The present report suggested that polyamines played a crucial role in the pathological processes of cerebral ischemic damage and that QMA or other novel polyamine analogues could be promising therapeutic candidates for stroke by virtue of their anti-hypoxia and antioxidation property.

  17. Oxidative Dehydrogenation of n-butane on VOx/SiO2 Catalyst%VOx/SiO2催化剂上正丁烷氧化脱氢

    Institute of Scientific and Technical Information of China (English)

    陆江银; 杨朋坤

    2011-01-01

    A series of VOx/SiO2 catalyst are prepared by an impregnation method. The effect of loading VOx, react temperature, n-butane/O2, space velocity and the react time are studied. When the react temperature at 550℃, the loading VOx is 3%, n-butane/O2/N2=4/4/42, the feed weight space velocity is 1.5x104mol. h-1 . (g cat)-1, the n-butane conversion and C4 alkene yield are 40.l% and 18.8% respectively.These catalysts were thoroughly characterized using BET, XRD, NH3-TPD, H2-TPR, and FT-IR. The XRD and H2-TPR results show that VOx on support can be better disperse with low content, the V2O5 crystal appears at the high loading and easily causes profound oxidation. The NH3-TPD results show that the exterior acidity of catalyst mostly is the weak acid, and the acid amount enhance the catalyst active,vanadium on the surface of the catalysts can improve the catalyst activity, and also cause n-butane unduly oxidation.%采用浸渍法制备了系列VOx/SiO2催化剂,研究了VOx负载量、反应温度、n-butane/O2,空速及反应时间对反应的影响.在反应温度为550℃,VOx负载为3%,n-butane/O2/N2=4/4/42(摩尔比),原料气重时空速为1.5×104mol·h-1·(g·cat)-1时最佳,此时正丁烷转化率和C4烯烃收率分别为40.1%和18.8%,并通过BET、XRD、NH3-TPD、H2-TPR、FT-IR对催化剂进行了表征,XRD,H2-TPR表征结果表明,在低负载量下,VOx能在载体上分散,高负载量时V2O5晶体出现.NH3-TPD表征结果说明,催化剂表面的酸性以弱酸位为主,催化剂活性钒物种表面的酸性增加会提高催化剂的活性,同时也会加剧正丁烷深度氧化反应的程度.

  18. Experimental and theoretical charge-density analysis of 1,4-bis(5-hexyl-2-thienyl)butane-1,4-dione: applications of a virtual-atom model.

    Science.gov (United States)

    Ahmed, Maqsood; Nassour, Ayoub; Noureen, Sajida; Lecomte, Claude; Jelsch, Christian

    2016-02-01

    The experimental and theoretical charge densities of 1,4-bis(5-hexyl-2-thienyl)butane-1,4-dione, a precursor in the synthesis of thiophene-based semiconductors and organic solar cells, are presented. A dummy bond charges spherical atom model is applied besides the multipolar atom model. The results show that the dummy bond charges model is accurate enough to calculate electrostatic-derived properties which are comparable with those obtained by the multipolar atom model. The refinement statistics and the residual electron density values are found to be intermediate between the independent atom and the multipolar formalisms.

  19. Volumetric Behaviour of the (2,2,4-Trimethylpentane + Methylbenzene + Butan-1-ol) Ternary System and Its Binary Sub-Systems within the Temperature Range (298.15–328.15) K

    OpenAIRE

    Morávková, L. (Lenka); Troncoso, J.; Machanová, K. (Karolina); Sedláková, Z.

    2013-01-01

    Densities and speeds of sound of the (2,2,4-trimethylpentane + methylbenzene + butan-1-ol) ternary system as well as all its binary sub-systems were measured at four temperatures, namely 298.15 K, 308.15 K, 318.15 K, and 328.15 K at atmospheric pressure by a vibrating-tube densimeter DSA 5000. The binary (isooctane + toluene) system was studied previously. Excess quantities (molar volume, adiabatic compressibility, and isobaric thermal expansivity) of the mixtures studied were calculated from...

  20. Role of Conformational Structures and Torsional Anharmonicity in Controlling Chemical Reaction Rates and Relative Yields. Butanal + HO2 Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jingjing [Univ. of Minnesota, Minneapolis, MN (United States); Seal, Prasenjit [Univ. of Minnesota, Minneapolis, MN (United States); Truhlar, Donald G. [Univ. of Minnesota, Minneapolis, MN (United States)

    2012-09-24

    Aldehyde–radical reactions are important in atmospheric and combustion chemistry, and the reactions studied here also serve more generally to illustrate a fundamental aspect of chemical kinetics that has been relatively unexplored from a quantitative point of view, in particular the roles of multiple structures and torsional anharmonicity in determining the rate constants and branching ratios (product yields). We consider hydrogen abstraction from four carbon sites of butanal (carbonyl-C, a-C, b-C and g-C) by hydroperoxyl radical. We employed multi-structural variational transition state theory for studying the first three channels; this uses a multi-faceted dividing surface and allows us to include the contributions of multiple structures of both reacting species and transition states. Multiconfigurational Shepard interpolation (MCSI) was used to obtain the geometries and energies of the potential energy surface along the minimum-energy paths, with gradients and Hessians calculated by the M08-HX/maug-cc-pVTZ method. We find the numbers of structures obtained for the transition states are 46, 60, 72 and 76respectively for the H abstraction at the carbonyl C, the a position, the b position and the g position. Our results show that neglecting the factors arising from multiple structures and torsional anharmonicity would lead to errors at 300, 1000 and 2400 K of factors of 8, 11 and 10 for abstraction at the carbonyl-O, 2, 11 and 25 at the a-C position, 2, 23 and 47 at the b-C position, and 0.6, 8 and 18 at the g-C position. The errors would be even larger at high temperature for the reverse of the H abstraction at the b-C. Relative yields are changed as much as a factor of 7.0 at 200 K, a factor of 5.0 at 298 K, and a factor of 3.7 in the other direction at 2400 K. The strong dependence of the product ratios on the multi-structural anharmonicity factors shows that such factors play an important role in controlling branching ratios in reaction mechanism networks.

  1. Bipodal surface organometallic complexes with surface N-donor ligands and application to the catalytic cleavage of C-H and C-C bonds in n -Butane

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa

    2013-11-27

    We present a new generation of "true vicinal" functions well-distributed on the inner surface of SBA15: [(Sî - Si-NH 2)(≡Si-OH)] (1) and [(≡Si-NH2)2] (2). From these amine-modified SBA15s, two new well-defined surface organometallic species [(≡Si-NH-)(≡Si-O-)]Zr(CH2tBu) 2 (3) and [(≡Si-NH-)2]Zr(CH2tBu) 2 (4) have been obtained by reaction with Zr(CH2tBu) 4. The surfaces were characterized with 2D multiple-quantum 1H-1H NMR and infrared spectroscopies. Energy-filtered transmission electron microscopy (EFTEM), mass balance, and elemental analysis unambiguously proved that Zr(CH2tBu)4 reacts with these vicinal amine-modified surfaces to give mainly bipodal bis(neopentyl)zirconium complexes (3) and (4), uniformly distributed in the channels of SBA15. (3) and (4) react with hydrogen to give the homologous hydrides (5) and (6). Hydrogenolysis of n-butane catalyzed by these hydrides was carried out at low temperature (100 C) and low pressure (1 atm). While (6) exhibits a bis(silylamido)zirconium bishydride, [(≡Si-NH-)2]Zr(H) 2 (6a) (60%), and a bis(silylamido)silyloxozirconium monohydride, [(≡Si-NH-)2(≡Si-O-)]ZrH (6b) (40%), (5) displays a new surface organometallic complex characterized by an 1H NMR signal at 14.46 ppm. The latter is assigned to a (silylimido)(silyloxo)zirconium monohydride, [(≡Si-Nî)(≡Si-O-)]ZrH (5b) (30%), coexistent with a (silylamido)(silyloxo)zirconium bishydride, [(≡Si-NH-)(≡Si-O-)] Zr(H)2 (5a) (45%), and a silylamidobis(silyloxo)zirconium monohydride, [(≡Si-NH-)(≡Si-O-)2]ZrH (5c) (25%). Surprisingly, nitrogen surface ligands possess catalytic properties already encountered with silicon oxide surfaces, but interestingly, catalyst (5) with chelating [N,O] shows better activity than (6) with chelating [N,N]. © 2013 American Chemical Society.

  2. Mise en évidence d'états excités dans les spectres de photoionisation du cyclohexane et du diméthyl 2-2-butane liquides

    Science.gov (United States)

    Casanovas, J.; Guelfucci, J. P.; Caselles, O.

    1991-07-01

    Excited states are probably occurring, at an intermediate stage, in the VUV photoionization process of liquid hydrocarbons, as suggested by a Stern-Volmer behaviour when interacting with electron quenchers. They are here detected in the VUV photoionization spectrum of cyclohexane and dimethyl-2-2-butane in liquid phase. Some of the discernable peaks can be assigned as valence and Rydberg states, yet observed in gas phase. Supplementary peaks are observed, the existence of which is to be interpretated. L'existence d'états excités dans le processus de photoionisation VUV des hydrocarbures en phase liquide - précédemment suggérée par l'observation de la loi de Stern-Volmer lors de l'interaction avec des capteurs d'électrons - est ici détectée en traçant le spectre de photoionisation VUV du cyclohexane et du diméthyl-2-2-butane purs en phase liquide. Certains des pics observés coïncident avec les états de valence et de Rydberg de ces mêmes corps en phase gaz. Il apparaît des pics supplémentaires dont la nature doit être précisée.

  3. Syntheses, structures and photoluminescent properties of Zn(Ⅱ)/Co(Ⅱ) coordination polymers based on flexible tetracarboxylate ligand of 5,5‧-(butane-1,4-diyl)-bis(oxy)-di isophthalic acid

    Science.gov (United States)

    Gao, Yan-Peng; Guo, Le; Dong, Wei; Jia, Min; Zhang, Jing-Xue; Sun, Zhong; Chang, Fei

    2016-08-01

    Three new mixed-ligand metal-organic frameworks based on 5,5‧-(butane-1,4- diyl)-bis(oxy)-diisophthalic acid and transitional metal cations with the help of two ancillary bridging N-donor pyridyl and imidazole linkers, [Zn(L)0.5(4,4‧-bpy)]·2(H2O) (1), [M(L)0.5(bib)]·4(H2O) (M = Zn (2), Co (3)), (4,4‧-bpy=4,4‧-bipyridine, bib=1,4-bis (1H-imidazol-1-yl)-butane), have been synthesized under solvothermal conditions. Their structures and properties were determined by single-crystal and powder X-ray diffraction analyses, IR spectra, elemental analyses and thermogravimetric analyses (TGA). Compounds 1-3 display a 3D 3-fold interpenetrated frameworks linked by the L4- ligands, ancillary N-donor linkers and the free water molecules in the crystal lattice. Topological analysis reveals that 1-3 are a (4,4)-connected bbf topology net with the (64·82)(66) topology. The effects of the L4- anions, the N-donor ligands, and the metal ions on the structures of the coordination polymers have been discussed. Furthermore, luminescence properties and thermogravimetric properties of these compounds were investigated.

  4. Experiment and Modeling of Pure and Binary Adsorption of n-Butane and Butene-1 on ZSM-5 Zeolites with Different Si/Al Ratios%正丁烷及丁烯-1在不同硅铝比ZSM-5分子筛上吸附的实验与模型

    Institute of Scientific and Technical Information of China (English)

    王斐; 汪文川; 黄世萍; 滕加伟; 谢在库

    2007-01-01

    Four ZSM-5 zeolite catalysts with different Si/Al ratios for the catalytic cracking of C4 fractions to produce ethylene and propylene were prepared in this study.First, the adsorption isotherms of pure n-butane and butene-1 and their mixtures on these catalysts at 300K and p=0-100kPa were measured using the intelligent gravimetric analyzer.The experimental results indicate that the presence of Al can significantly affect the adsorption of butene-1 than that of n-butane on ZSM-5 zeolites.Then, the double Langmuir (DL) model was applied to study the pure gas adsorption on ZSM-5 zeolites for pure n-butane and butene-1.By combining the DL model with the ideal adsorbed solution theory (IAST), the IAST-DL model was applied to model the butene-1 (l)/n-butane (2) binary mixture adsorption on ZSM-5 zeolites with different Si/Al ratios.The calculated results are in good agreement with the experimental data, indicating that the IAST-DL model is effective for the present systems.Finally, the adsorption over a wide range of variables was predicted at low pressure and 300K by the model proposed.It is found that the selectivity of butene-1 over n-butane increases linearly with the decrease of Si/Al ratio.A correlation between the selectivity and Si/Al ratio of the sample was proposed at 300K and p=0.08MPa.

  5. catena-Poly[[[aquasilver(I]-μ-1,1′-(butane-1,4-diyldi-1H-imidazole-κ2N3:N3′] hemi(biphenyl-4,4′-dicarboxylate dihydrate

    Directory of Open Access Journals (Sweden)

    Zheyu Zhang

    2009-12-01

    Full Text Available In the title compound, {[Ag(C10H14N4(H2O](C14H8O40.5·2H2O}n, the AgI ion is three-coordinated by two N atoms from two independent 1,1′-(butane-1,4-diyldi-1H-imidazole (BBI ligands and one water O atom in a distorted T-shaped coordination geometry. The biphenyl-4,4′-dicarboxylate (BPDC dianions do not coordinate to AgI ions but act as counter-ions. The AgI ions are linked by BBI ligands, forming a zigzag chain. These chains are linked into a two-dimensional supramolecular architecture by O—H...O hydrogen-bonding interactions between water molecules and carboxylate O atoms of the BPDC dianions.

  6. Role of the reaction intermediates in determining PHIP (parahydrogen induced polarization) effect in the hydrogenation of acetylene dicarboxylic acid with the complex [Rh (dppb)]{sup +} (dppb: 1,4-bis(diphenylphosphino)butane)

    Energy Technology Data Exchange (ETDEWEB)

    Reineri, F.; Aime, S. [Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10123 Torino (Italy); Gobetto, R.; Nervi, C. [Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino (Italy)

    2014-03-07

    This study deals with the parahydrogenation of the symmetric substrate acetylene dicarboxylic acid catalyzed by a Rh(I) complex bearing the chelating diphosphine dppb (1,4-bis(diphenylphosphino)butane). The two magnetically equivalent protons of the product yield a hyperpolarized emission signal in the {sup 1}H-NMR spectrum. Their polarization intensity varies upon changing the reaction solvent from methanol to acetone. A detailed analysis of the hydrogenation pathway is carried out by means of density functional theory calculations to assess the structure of hydrogenation intermediates and their stability in the two solvents. The observed polarization effects have been accounted on the basis of the obtained structures. Insights into the lifetime of a short-lived reaction intermediate are also obtained.

  7. Henry's constants and infinite dilution activity coefficients of propane, propene, butane, isobutane, 1-butene, isobutene, trans-2-butene, and 1,3-butadiene in isobutanol and tert-butanol

    International Nuclear Information System (INIS)

    The Henry's constants and the infinite dilution activity coefficients of propane, propene, butane, isobutane, 1-butene, isobutene, trans-2-butene and 1,3-butadiene in isobutanol at T = (250 to 330) K and tert-butanol at T (300 to 330) K are measured by a gas stripping method. The rigorous formula for evaluating the Henry's constants from the gas stripping measurements is used for data reduction of these highly volatile mixtures. The accuracy of the measurements is about 2% for Henry's constants and 3% for the estimated infinite dilution activity coefficients. In the evaluations for the infinite dilution activity coefficients, the nonideality of the solute such as the fugacity coefficient and the Pointing correction is not negligible, especially at higher temperatures, and the estimation uncertainty in the infinite dilution activity coefficients includes 1% for nonideality

  8. Henry's law constants and infinite dilution activity coefficients of propane, propene, butane, isobutane, 1-butene, isobutene, trans-2-butene, and 1,3-butadiene in 1-pentanol, 2-pentanol, and 3-pentanol

    International Nuclear Information System (INIS)

    Henry's law constants and infinite dilution activity coefficients of propane, propene, butane, isobutane, 1-butene, isobutene, trans-2-butene, and 1,3-butadiene in 1-pentanol, 2-pentanol in the temperature range of (250 to 330) K and 3-pentanol in the temperature range of (260 to 330) K were measured by a gas stripping method. A rigorous formula for evaluating the Henry's law constants from the gas stripping measurements was used for the data reduction of these highly volatile mixtures. The uncertainty is about 2% for the Henry's law constants and 3% for the estimated infinite dilution activity coefficients. In the evaluation of the infinite dilution activity coefficients, the nonideality of the solute such as the fugacity coefficient and Pointing correction factor cannot be neglected, especially at higher temperatures. The estimated uncertainty of the infinite dilution activity coefficients includes 1% for nonideality

  9. Oxidation of butane and butene on the (100) face of (VO) sub 2 P sub 2 O sub 7 : A dynamic view in terms of the crystallochemical model of active sites

    Energy Technology Data Exchange (ETDEWEB)

    Ziolkowski, J. (Institute of Catalysis and Surface Chemistry, Krakow (Poland)); Bordes, E.; Courtine, P. (Universite de Technologie de Compiegne (France))

    1990-03-01

    The structure of the (100) face of (VO){sub 2}P{sub 2}O{sub 7} and its performance in the oxidation of n-butane and butenes to maleic anhydride have been analyzed in terms of the crystallochemical model of active sites (CMAS). Analysis involves the heats of adsorption of oxygen, hydrogen (as a component of OH), and water as well as the heats of their movement along the surface, which allows determination of the energetically easiest pathways of elementary steps and gives insight into the reaction dynamics. The catalyst (100) (VO){sub 2}P{sub 2}O{sub 7} is found to work in a surface-oxidized state, all cations being covered with oxygen. The active site for the direct oxidation of n-butane to maleic anhydride is found to be situated between four protruding, undersaturated oxygens (2 {times} V-O, 2 {times} P-O). The reaction is thought to be initiated by H bonding at both terminal carbons. The desorption of water and migration of surface oxygen (which produces the pairs of adjacent vacancies to be filled by O{sub 2} molecules) that constitute a substep of the concerted reoxidation seem to be rate determining. Oxidation of butenes on (100) (VO){sub 2}P{sub 2}O{sub 7} is thought to be initiated by adsorption of C{double bond}C over unsaturated oxygens. In view of the surface structure, this adsorption limits the number of active oxygens with which the hydrocarbon may interact and favors a mild and nonselective oxidation to epoxybutanes, crotonaldehyde, hydrofuran, furan, and acetaldehyde. Minor yields are expected due to difficult reoxidation and competitive adsorption. Theoretical predictions are shown to agree with experimental data.

  10. Incineration of oxygenated volatile organic compounds. Experimental study and kinetic modeling of the oxidation of methyl ethyl ketone, ethyl acetate and butan-2-ol in methane flames; Incineration de composes organiques volatils oxygenes. Etude experimentale et modelisation cinetique de l'oxydation de la methyl ethyl cetone, de l'acetate d'ethyle et du butan-2-ol dans des flammes de methane

    Energy Technology Data Exchange (ETDEWEB)

    Decottignies, V.

    2000-12-01

    This work deals with the low pressure (0.05 atm) degradation of three volatile organic compounds (VOCs): methyl-ethyl-ketone, ethyl acetate and butan-2-ol, in premixed stoichiometric laminar methane flames seeded with 1 to 3% of each VOC. Molar fraction profiles of species have been obtained using microprobe sampling coupled with a gas chromatography and a mass spectroscopy analysis. Temperature profiles have been obtained using the covered thermocouple technique in the presence of the microprobe. The addition of a VOC in the initial reagents mixture leads to an increase of the quantity of intermediate hydrocarbon compounds and in particular of some soot precursor species. The degradation of VOCs leads to the formation of oxygenated intermediates like methanol, dimethyl-ether, acetaldehyde, propanal, acetone and vinyl acetate, the type of VOC having an effect on the quantities produced. The degradation of a VOC can lead to the formation of more toxic or polluting compounds (methyl vinyl ketone, acetic acid and acrolein) than the VOC itself. In the conditions of the study, the intermediate compounds are totally destructed inside the reactional area of the flame front and are no more present in the burnt gases. Sub-mechanisms of VOC oxidation have been developed using experimental observations and the most recent recommendations of the literature. These sub-mechanisms comprise 49 species involved in 241 elementary reactions. Their validation has been performed by comparing the experiment with the kinetic modeling on the molar fraction profiles of the detected species. Experimental data are well reproduced by the model for most species. The addition of a VOC inside the initial reagents mixture creates an important reactivity increase, in particular in the case of butan-2-ol seeded flames. The analysis of reactional ways has permitted to draw out the main reactions responsible for the degradation of the 3 VOCs and the ways of formation and consumption of the

  11. Preparation and Catalytic Performance of Catalyst for the Oxidation of n-Butane to Maleic Anhydride%正丁烷氧化制顺酐催化剂的制备及其催化性能

    Institute of Scientific and Technical Information of China (English)

    徐俊峰; 顾龙勤; 曾炜; 陈亮; 赵欣

    2015-01-01

    A vanadium phosphate (VPO) catalyst with excellent catalytic performance for the oxidation of n-butane to maleic anhydride was prepared by the organic method. The detailed preparation process of catalyst was investigated by the techniques of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), N2 adsorption-desorption, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TG). The phase, valence state, structure and BET surface area of catalyst in the preparation process were analyzed. The reaction conditions for the oxidation of n-butane to maleic anhydride were studied in a fixed-bed reactor, and the influences of temperature, concentration of n-butane and space velocity on the catalytic performance of catalyst were investigated. The results indicated that the main phase of the precursor is VOHPO4·0.5H2O. The main active phases of catalyst are (VO)2P2O7 (V4+), VOPO4 (V5+) and V/P mica phase (mixed phase of V4+ and V5+). The obtained catalyst has a lamellar structure and a surface area of 24.08 m2/g. The preparation of the catalyst includes drying, calcination and activation, which are all very important to performance of the catalyst. The best reaction condition is as following: the temperature is 395℃, the molar fraction ofn-butane is 1.4%~1.5%, and the space velocity is 2 000 h-1. Then-butane conversion and the selectivity to maleic anhydride are 85%~87% and 59%~60%, respectively.%采用有机相法制备了具有优异催化性能的正丁烷氧化制顺酐钒磷氧(VPO)催化剂。通过X射线衍射(XRD)、傅里叶红外光谱(FT-IR)、扫描电镜(SEM)、氮气吸附脱附、X射线光电子能谱(XPS)、热重分析(TG)等方法对催化剂的制备过程进行了研究,分析了催化剂在整个制备过程中物相、价态、形貌和比表面积的变化。在固定床反应器上对正丁烷氧化制顺酐的反应条件进行研究,考察了

  12. Extraction Process and Quality Research of Macadamia Nut Oil by Subcritical Butane%亚临界丁烷萃取澳洲坚果油的工艺及品质研究

    Institute of Scientific and Technical Information of China (English)

    许良; 叶丽君; 邱瑞霞; 秦广雍; 黄雪松

    2015-01-01

    为提高澳洲坚果的出油率,采用亚临界丁烷萃取技术提取其油脂,优化温度、时间、料液比、萃取次数等工艺参数,并分析其主要理化指标及脂肪酸组成等品质指标。结果表明,亚临界丁烷萃取澳洲坚果油的最佳工艺参数为:萃取温度45℃、萃取时间15 min、料液比1∶5 g/mL、萃取4次,该条件下澳洲坚果油得率可达80.7%。所制备的油脂品质好,可省去大部分精炼工序;脂肪酸组成以油酸(58.99%)和棕榈油酸(17.59%)为主,并含少量的棕榈酸(9.29%)和硬脂酸(4.15%)。上述结果表明,亚临界丁烷提取澳洲坚果油脂具有操作温度低、产品质量优良的特点。%In order to improve oil extraction rate of Macadamia nut,the Macadamia nut oil was extracted by subcritical butane,and the process parameters such as temperature,extraction time,the ratio of solid to liquid and the extraction times were optimized.The main physicochemical properties and fatty acid composition were also ana-lyzed.An optimum oil extraction yield of 80.7% was extracted under condition that 1∶5 g/mL subcritical butane at the temperature of 45 ℃ for 4 times,and 15 min each time.Comparing to the hot pressing,most of refining proces-ses could be omitted by above extraction.The quality of the oil extracted was excellent with long oxidation induction time,and oleic acid(58.99%)and palmitoleic acid(17.59%)were the main unsaturated fatty acids(UFA)while palmitic acid(9.29%)and stearic acid (4.15%)were the main saturated fatty acids(SFA)present in the Maca-damia nut oil.It was concluded from above results that the Macadamia nut oil extracted by subcritical butane was characterized by both lower operating temperature and better quality.

  13. Theoretical study and design of a low-grade heat-driven pilot ejector refrigeration machine operating with butane and isobutane and intended for cooling of gas transported in a gas-main pipeline

    KAUST Repository

    Petrenko, V.O.

    2011-11-01

    This paper describes the construction and performance of a novel combined system intended for natural gas transportation and power production, and for cooling of gas transported in a gas-main pipeline. The proposed system includes a gas turbine compressor, a combined electrogenerating plant and an ejector refrigeration unit operating with a hydrocarbon refrigerant. The combined electrogenerating plant consists of a high-temperature steam-power cycle and a low-temperature hydrocarbon vapor power cycle, which together comprise a binary vapor system. The combined system is designed for the highest possible effectiveness of power generation and could find wide application in gas-transmission systems of gas-main pipelines. Application of the proposed system would enable year-round power generation and provide cooling of natural gas during periods of high ambient temperature operation. This paper presents the main results of a theoretical study and design performance specifications of a low-grade heat-driven pilot ejector refrigeration machine operating with butane and isobutane. © 2010 Elsevier Ltd and IIR. All rights reserved.

  14. Crystal structure of (μ-1,4-di-carb-oxy-butane-1,4-di-carboxyl-ato)bis-[bis-(tri-phenyl-phosphane)silver(I)] di-chloro-methane tris-olvate.

    Science.gov (United States)

    Frenzel, Peter; Korb, Marcus; Lang, Heinrich

    2016-02-01

    The mol-ecular structure of the tetra-kis(tri-phenyl-phosphan-yl)disilver salt of butane-1,1,4,4-tetra-carb-oxy-lic acid, [Ag2(C8H8O8)(C18H15P)4]·3CH2Cl2, crystallizes with one and a half mol-ecules of di-chloro-methane in the asymmetric unit. The coordination complex exhibits an inversion centre through the central CH2-CH2 bond. The Ag(I) atom has a distorted trigonal-planar P2O coordination environment. The packing is characterized by inter-molecular T-shaped π-π inter-actions between the phenyl rings of the PPh3 substituents in neighbouring mol-ecules, forming a ladder-type superstructure parallel to [010]. These ladders are arranged in layers parallel to (101). Intra-molecular hydrogen bonds between the OH group and one O atom of the Ag-bonded carboxyl-ate group results in an asymmetric bidendate coordination of the carboxyl-ate moiety to the Ag(I) ion. PMID:26958391

  15. Crystal structure of (E)-2-[4-(4-hy­droxy­phen­yl)butan-2-yl­idene]hydrazine-1-carbo­thio­amide

    Science.gov (United States)

    de Oliveira, Adriano Bof; Beck, Johannes; Landvogt, Christian; Feitosa, Bárbara Regina Santos; Rocha, Fillipe Vieira

    2015-01-01

    The title compound, C11H15N3OS, is a thio­semicarbazone derivative of the raspberry ketone rheosmin [systematic name: 4-(4-hy­droxy­phen­yl)butane-2-one]. The mol­ecule deviates from planarity, with the bridging C—C—C=N torsion angle equal to −101.3 (2)°. The maximum deviation from the mean plane of the non-H atoms of the thio­semicarbazone fragment [C=N—N—C(= S)—N] is 0.085 (5) Å for the Schiff base N atom, and the dihedral angle between this mean plane and the aromatic ring is 50.31 (8)°. In the crystal, mol­ecules are linked by N—H⋯O, N—H⋯S and O—H⋯S hydrogen bonds, forming a three-dimensional structure, with the mol­ecules stacked along [011]. PMID:25705493

  16. Preparation of USY zeolite VOx supported catalysts from V(AcAc)3 and NH4VO3. Catalytic properties for the dehydrogenation of n-butane in oxygen-free atmosphere.

    Science.gov (United States)

    Garcia, Elba M; Sanchez, Miguel D; Tonetto, Gabriela; Volpe, María A

    2005-12-01

    The preparation of different samples of vanadia supported on ultrastable zeolite (VO(x)/USY) is discussed. The samples were prepared in order to obtain highly dispersed V-species, avoiding the formation of crystalline vanadia and the destruction of the zeolite framework. Two methods were employed for preparing VO(x)/USY samples: an organic route using V(AcAc)3 and an inorganic route using NH4VO3. The characterization of the samples was performed with XRD, TPR, NH3-TPD, and N2 isotherms. From these results it is concluded that when VO(x) is supported on the surface of USY from acidic aqueous solution of ammonium metavanadate, the destruction of the zeolite framework is accomplished. For higher pH values in the impregnating solution, undesired V2O5 is formed on the USY surface. On the other hand, VO(x)/USY prepared from the organic precursor shows no destruction of the USY structure. In addition, highly dispersed VO(x) are formed, though for relatively high V loadings (6%) an obstruction of the zeolite windows takes place. The samples are tested as catalysts for gas phase dehydrogenation of n-butane to olefins. The catalysts prepared from NH4VO3 are almost inactive for the reaction. On the other hand, both samples prepared from V(AcAc)3 present initial conversion levels in the 8-12% range. However, the selectivity depends on the V loading, the catalysts with 6% loading being the most selective (75%). The catalytic patterns of the samples (activity and selectivity) are in agreement with the physicochemical features of the VO(x)/USY surface. PMID:16023658

  17. C-H and C-C activation of n -butane with zirconium hydrides supported on SBA15 containing N-donor ligands: [(≡SiNH-)(≡SiX-)ZrH2], [(≡SiNH-)(≡SiX-)2ZrH], and[(≡SiN=)(≡SiX-)ZrH] (X = -NH-, -O-). A DFT study

    KAUST Repository

    Pasha, Farhan Ahmad

    2014-07-01

    Density functional theory (DFT) was used to elucidate the mechanism of n-butane hydrogenolysis (into propane, ethane, and methane) on well-defined zirconium hydrides supported on SBA15 coordinated to the surface via N-donor surface pincer ligands: [(≡SiNH-)(≡SiO-)ZrH2] (A), [(≡SiNH-)2ZrH2] (B), [(≡SiNH-)(≡SiO-) 2ZrH] (C), [(≡SiNH-)2(≡SiO-)ZrH] (D), [(≡SiN=)(≡Si-O-)ZrH] (E), and [(≡SiN=)(≡SiNH-)ZrH] (F). The roles of these hydrides have been investigated in C-H/C-C bond activation and cleavage. The dihydride A linked via a chelating [N,O] surface ligand was found to be more active than B, linked to the chelating [N,N] surface ligand. Moreover, the dihydride zirconium complexes are also more active than their corresponding monohydrides C-F. The C-C cleavage step occurs preferentially via β-alkyl transfer, which is the rate-limiting step in the alkane hydrogenolysis. The energetics of the comparative pathways over the potential energy surface diagram (PES) reveals the hydrogenolysis of n-butane into propane and ethane. © 2014 American Chemical Society.

  18. (2R)-4-Oxo-4[3-(Trifluoromethyl)-5,6-diihydro:1,2,4}triazolo[4,3-a}pyrazin-7(8H)-y1]-1-(2,4,5-trifluorophenyl)butan-2-amine: A Potent, Orally Active Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type 2 Diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.; Wang, L.; Beconi, M.; Eiermann, G.; Fisher, M.; He, H.; Hickey, G.; Kowalchick, Jennifer; Leiting, Barbara; Lyons, K.; Marsilio, F.; McCann, F.; Patel, R.; Petrov, A.; Scapin, G.; Patel, S.; Roy, R.; Wu, J.; Wyvratt, M.; Zhang, B.; Zhu, L.; Thornberry, N.; Weber, A. (Merck)

    2010-11-10

    A novel series of {beta}-amino amides incorporating fused heterocycles, i.e., triazolopiperazines, were synthesized and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-IV) for the treatment of type 2 diabetes. (2R)-4-Oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine (1) is a potent, orally active DPP-IV inhibitor (IC{sub 50} = 18 nM) with excellent selectivity over other proline-selective peptidases, oral bioavailability in preclinical species, and in vivo efficacy in animal models. MK-0431, the phosphate salt of compound 1, was selected for development as a potential new treatment for type 2 diabetes.

  19. Crystal structure of poly[[μ-1,1′-(butane-1,4-diylbis(1H-benzimidazole-κ2N3:N3′]{μ-4,4′-[1,4-phenylenebis(oxy]dibenzoato-κ4O,O′:O′′,O′′′}cobalt(II

    Directory of Open Access Journals (Sweden)

    Chen Xie

    2015-06-01

    Full Text Available In the title compound, [Co(C20H12O6(C18H18N4]n, the CoII atom, located on a twofold rotation axis, is hexacoordinated to four O from two bis-bidentate 4,4′-[phenylenebis(oxy]dibenzoate (L ligands and two N atoms from two 1,1′-(butane-1,4-diylbis(1H-benzimidazole (bbbm ligands, forming a distorted octahedral cis-N2O4 coordination environment. Polymeric zigzag chains along [102] are built up by the bridging L ligands. These chains are additionally connected by the bbbm ligands to produce a two-dimensional coordination polymer parallel too (010.

  20. 21 CFR 184.1165 - n-Butane and iso-butane.

    Science.gov (United States)

    2010-04-01

    ... gas by fractionation following absorption in oil, adsorption to surface-active agents, or refrigeration. (b) The ingredients must be of a purity suitable for their intended use. (c) In accordance...

  1. Antinociceptive activities of crude methanolic extract and phases, n-butanolic, chloroformic and ethyl acetate from Caulerpa racemosa (Caulerpaceae Atividade antinociceptiva do extrato metanólico bruto e das fases n-butanólica, clorofórmica e acetato de etila de Caulerpa recemosa (Caulerpaceae

    Directory of Open Access Journals (Sweden)

    Everton T. Souza

    2009-03-01

    Full Text Available In this study, we attempted to identify the possible antinociceptive actions of n-butanolic phase, chloroformic phase, ethyl acetate phase and crude methanolic extract obtained from Caulerpa racemosa. This seaweed is cosmopolitan in world, mainly in tropical regions. The n-butanolic, chloroformic, ethyl acetate phases and crude methanolic extract, all administered orally in the concentration of 100 mg/kg, reduced the nociception produced by acetic acid by 47.39%, 70.51%, 76.11% and 72.24%, respectively. In the hotplate test the chloroformic and ethyl acetate phase were activite in this models. In the neurogenic phase on formalin test, were observed that crude methanolic extract (51.77%, n-butanolic phase (35.12%, chloroformic phase (32.70% and indomethacin (32.06% were effective in inhibit the nociceptive response. In the inflammatory phase, only the ethyl acetate phase (75.43% and indomethacin (47.83% inhibited significantly the nociceptive response. Based on these data, we can infer that the ethyl acetate phase shows a significant anti-inflammatory profile, whose power has not yet been determined. However, pharmacological and chemical studies are continuing in order to characterize the mechanism(s responsible for the antinociceptive action and also to identify other active principles present in Caulerpa racemosa.Neste estudo, tentamos identificar a atividade antinociceptiva do extrato metanólico bruto e das fases n-butanólica, clorofórmica e acetato de etila provenientes da alga Caulerpa racemosa. Esta alga é cosmopolita no mundo, principalmente em regiões tropicais. O extrato metanólico bruto e as fases n-butanólica, clorofórmica e acetato de etila foram administrados por via oral, na concentração de 100 mg/kg. Estes foram capazes de reduzir a nocicepção produzida pelo ácido acético, sendo 47,39%, 70,51%, 76,11% e 72,24%, respectivamente. No ensaio da placa quente as fases clorofórmica e acetato de etila foram ativas neste

  2. Magnetic investigations of a two-dimensional coordination polymer with a three-dimensional supramolecular framework: poly[[bis[μ2-1,4-bis(1,2,4-triazol-1-yl)butane]bis(thiocyanato-κN)cobalt(II)] dihydrate].

    Science.gov (United States)

    Tao, Jian-Qing; Mao, Dan; Wang, Jun

    2013-06-01

    In the title mixed-ligand metal-organic polymeric complex, {[Co(NCS)2(C8H12N6)2]·2H2O}n, the asymmetric unit contains a divalent Co(II) cation, which sits on an inversion centre, two halves of two crystallographically distinct and centrosymmetric 1,4-bis(1,2,4-triazol-1-yl)butane (BTB) ligands, one N-bound thiocyanate ligand and one solvent water molecule. The Co(II) atom possesses a distorted {CoN6} octahedral geometry, with the equatorial positions taken up by triazole N atoms from four different BTB ligands. The axial positions are filled by thiocyanate N atoms. In the crystal, each Co(II) atom is linked covalently to four others through the distal donors of the tethering BTB ligands, forming a neutral (4,4)-topology two-dimensional rhomboid grid layer motif, which is coincident with the (121) crystal planes. Magnetic investigations show that weak antiferromagnetic coupling exists between Co(II) atoms in the complex. PMID:23744375

  3. French Committee of Butane and Propane. 2006 activity report

    International Nuclear Information System (INIS)

    This document presents the 2006 highlights of the French LPG fuels industry: 1 - presentation of the CFBP association and promotion of the LPG industry; 2 - share of LPG fuels in the French energy mix; 3 - improvement of energy efficiency in the residential sector; 4 - advantages of LPG fuels; 5 - safety aspects. (J.S.)

  4. French Committee of Butane and Propane. 2005 activity report; Comite francais du butane et du propane. Rapport d'activite 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This document presents the 2005 highlights of the French LPG fuels industry: 1 - presentation of the CFBP association and promotion of the LPG industry; 2 - information about the LPG fuels advantages; 3 - LPG market; 4 - CFBP's commitments for end-users, professionals and public authorities: energy efficiency improvement, environment protection, energy supply of French rural towns, safety improvements. (J.S.)

  5. French Committee of Butane and Propane. 2006 activity report; Comite francais du butane et du propane. Rapport d'activite 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This document presents the 2006 highlights of the French LPG fuels industry: 1 - presentation of the CFBP association and promotion of the LPG industry; 2 - share of LPG fuels in the French energy mix; 3 - improvement of energy efficiency in the residential sector; 4 - advantages of LPG fuels; 5 - safety aspects. (J.S.)

  6. 4-Hydr­oxy-4,4-diphenyl­butan-2-one

    OpenAIRE

    Arnold, Dennis P.; McMurtrie, John C.

    2008-01-01

    The mol­ecules of the title compound, C16H16O2, display an intra­molecular O—H⋯O hydrogen bond between the hydroxyl donor and the ketone acceptor. Inter­molecular C—H⋯π inter­actions connect adjacent mol­ecules into chains that propagate parallel to the ac diagonal. The chains are arranged in sheets, and mol­ecules in adjacent sheets inter­act via inter­molecular O—H⋯O hydrogen bonds.

  7. Simulated consumer exposure to dimethyl ether and propane/butane in hairsprays.

    Science.gov (United States)

    Hartop, P J; Cook, T L; Adams, M G

    1991-08-01

    Synopsis The potential human exposures from use of dimethyl ether (DME) and 'liquefied petroleum gas'(LPG) arising from use in hairsprays have been assessed. DME and LPG concentrations were measured in the 'breathing zone' of an experimental manikin and an 'accompanying child' designed to simulate human use of hairsprays in a domestic situation and in the breathing zone of a 'stylist' and 'customer' under salon conditions. Results were expressed as the 10 min time weighted average in the air (TWA10) and as the peak concentration in the breathing zone of the 'user'. Following a 10s use of hairspray containing 50% DME or 26% LPG, TWA10 values for an adult user in a closed room (volume 21 m(3)) were on average 114 ppm and 73 ppm respectively. The child TWA10 values were 89 ppm (DME) and 80 ppm (LPG). Leaving the door open during spraying did not significantly alter these values. The peak concentrations measured in the user breathing zone were 1577 ppm of DME and 671 ppm of LPG. Simulated salon use of a hairspray gave a calculated value of 55 ppm DME and 88 ppm LPG for the stylist over an 8 h working period.

  8. Cascade anionotropy of the halogen in 3-acetoxy-4-bromo(chloro)-2-methyl-1-butanes

    Energy Technology Data Exchange (ETDEWEB)

    Gevorkyan, A.A.; Kazaryan, P.I.; Avakyan, S.V.

    1987-10-20

    The authors determined that the title compounds, which contain the halogen at the homoallylic position, undergo anionotropy without skeletal isomerization when heated or under the influence of acidic catalysts. Temperature ranges for the bromine and chlorine variants of the compounds were established. Gas-liquid chromatography was used along with IR and NMR spectroscopy to identify the compounds. Chemical shifts and spin-spin coupling constants were analyzed.

  9. Design-theoretical study of cascade CO2 sub-critical mechanical compression/butane ejector cooling cycle

    KAUST Repository

    Petrenko, V.O.

    2011-11-01

    In this paper an innovative micro-trigeneration system composed of a cogeneration system and a cascade refrigeration cycle is proposed. The cogeneration system is a combined heat and power system for electricity generation and heat production. The cascade refrigeration cycle is the combination of a CO2 mechanical compression refrigerating machine (MCRM), powered by generated electricity, and an ejector cooling machine (ECM), driven by waste heat and using refrigerant R600. Effect of the cycle operating conditions on ejector and ejector cycle performances is studied. Optimal geometry of the ejector and performance characteristics of ECM are determined at wide range of the operating conditions. The paper also describes a theoretical analysis of the CO2 sub-critical cycle and shows the effect of the MCRM evaporating temperature on the cascade system performance. The obtained data provide necessary information to design a small-scale cascade system with cooling capacity of 10 kW for application in micro-trigeneration systems. © 2010 Elsevier Ltd and IIR. All rights reserved.

  10. Bis($\\mu$-phenyl 2-pyridyl ketone $N^4$,$N^4$-butane-1,4-diylthiosemicarbazonato)bis[chlorocopper(II)

    OpenAIRE

    A. Sreekanth; Suni, V; John, Rohith P; Nethaji, Munirathinam; Kurup, Prathapachandra MR

    2005-01-01

    The title compound, $[Cu_2(C_{17}H_{17}N_{4}S)_{2}C_{l2}]$, exhibits a dimeric structure related by a centre of symmetry. The monomers are linked to each other by the longest Cu-S apical distance observed to date among $Cu^{II}$ square-pyramidal complexes of $N^4$-substituted thiosemicarbazones. Each $Cu^{II}$ atom deviates from the coordination square plane, which contains the pyridyl and imine N atoms, the thiolate S atom and the $Cl^-$ anion, towards the S atom of the adjacent monomer. The...

  11. (E)-1-Phenyl­butan-2-one (2,4-dinitro­phen­yl)hydrazone

    OpenAIRE

    Lima, Carlos F. R. A. C.; Gomes, Ligia R.; Santos, Luís M. N. B. F.; Rodriguez-Borges, José E.; Low, John Nicolson

    2009-01-01

    In the title compound, C16H16N4O4, the dihedral angle between the aromatic rings is 79.04 (8)° and an intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, weak C—H.·O and C—H..π inter­actions link the mol­ecules, forming sheets.

  12. (S)-1-[(S)-4-Benzyl-2-thioxothia­zolidin-3-yl]-3-hydroxy­butan-1-one

    OpenAIRE

    Jian-hong Yang; Cui-fen Lu; Zu-xing Chen; Gui-chun Yang

    2007-01-01

    The title compound, C14H17NO2S2, was synthesized by asymmetric aldol condensation of N-acylthiazolidinethione with acetaldehyde. In the molecule, the thiazolidine five-membered ring assumes an envelope conformation. Intermolecular C—H...O and intramolecular O—H...O and C—H...S hydrogen bonding helps to stabilize the structure.

  13. 2,2′-{1,1′-[Butane-1,4-diylbis(oxynitrilo]diethylidyne}di-1-naphthol

    Directory of Open Access Journals (Sweden)

    Wen-Kui Dong

    2009-06-01

    Full Text Available The title compound, C28H28N2O4, was synthesized by the reaction of 2-acetyl-1-naphthol with 1,4-bis(aminooxybutane in ethanol. The molecule, which lies about an inversion centre, adopts a linear structure, in which the oxime groups and naphthalene ring systems assume an anti conformation. The intramolecular interplanar distance between parallel naphthalene rings is 1.054 (3 Å. Intramolecular O—H...N hydrogen bonds are formed between the oxime nitrogen and hydroxy groups.

  14. (R)-N-{2-tert-Butyl-2-[(R)-tert-butyl­sulfonamido]ethylidene}-tert-butane­sulfonamide

    OpenAIRE

    Cong-Bin Fan; Xiao-Xia Sun; Yu Hu

    2008-01-01

    The title compound, C14H30N2O2S2, is the product of the monoaddition reaction of tert-butyl magnesium chloride with bis-[(R)-N-tert-butanesulfinyl]ethanediimine. There are two almost identical molecules in the asymmetric unit, the molecular conformation of which is stabilized by an intramolecular N—H...N hydrogen bond.

  15. Crystal structure of [butane-2,3-dione bis(4-methylthiosemicarbazonato-κ4S,N1,N1′,S′](pyridine-κNzinc(II

    Directory of Open Access Journals (Sweden)

    Oliver C. Brown

    2015-11-01

    Full Text Available In the structure of the title complex, [Zn(C8H14N6S2(C5H5N], the ZnII ion has a pseudo-square-pyramidal coordination environment and is displaced by 0.490 Å from the plane of best fit defined by the bis(thiosemicarbazonate N2S2 donor atoms. Chains sustained by intermolecular N—H...N and N—H...S hydrogen-bonding interactions extend parallel to [10-1].

  16. Carbon Aerogel-Supported Pt Catalysts for the Hydrogenolysis and Isomerization of n-Butane: Influence of the Carbonization Temperature of the Support and Pt Particle Size

    Directory of Open Access Journals (Sweden)

    Marta B. Dawidziuk

    2012-10-01

    Full Text Available Carbon aerogels prepared at different carbonization temperatures and with varying mesopore volumes were used as supports for Pt catalysts to study the n-C4H10/H2 reaction. Mean Pt particle size depended on the mesopore volume of the support, showing a linear decrease when the mesopore volume increased. The turnover frequency (TOF for hydrogenolysis was much higher than for isomerization in catalysts supported on carbon aerogels obtained at 900–950 °C. However, both TOF values were similar in catalysts supported on the carbon aerogel obtained at 500 °C. TOF for hydrogenolysis and isomerization were related to the mean Pt particle size in catalysts supported on carbon aerogels obtained at 900–950 °C. In addition, both reactions showed a compensation effect between the activation energy and pre-exponential factor, indicating that they have the same intermediate, i.e., the chemisorbed dehydrogenated alkane.

  17. The Investigation of Model of Consumers Responses to Brand Equity Based on Marketing Mix Efforts, Corporate Image and Brand Equity Relation (case stady : Butane Campany)

    OpenAIRE

    Ahmad Sardari; Zohreh Dehdashti; Farzaneh Ahmadvand

    2014-01-01

    Abstract For keeping and continuing their perpetuity in nowadays, companies and should focus on competitive advantages and getting more consumers’ satisfaction for sale and more market shares.One of the useful tools that makes the company less vulnerable in face of market competitive activities and consumption liability and repetition is brand equity. The purpose of this paper is investigating the consumers’ responses on marketing- mix efforts, corporate image and brand equity relat...

  18. Promotional Effect of Bismuth as Dopant in Bi-Doped Vanadyl Pyrophosphate Catalysts for Selective Oxidation of n-Butane to Maleic Anhydride

    Institute of Scientific and Technical Information of China (English)

    Y.H.Taufiq-Yap; Y.Kamiya; K.P.Tan

    2006-01-01

    Bismuth-promoted (1% and 3%) vanadyl pyrophosphate catalysts were prepared by refluxing creased the surface area and lowered the overall V oxidation state. Profiles of temperature programmed reduction (TPR) in H2 show a significant shift of the maxima of major reduction peaks to lower temperatures for the Bi-promoted catalysts. A new peak was also observed at the low temperature region for the catalyst with 3% of Bi dopant. The addition of Bi also increased the total amount of oxygen removed from the catalysts. The reduction pattern and reactivity information provide fundamental insight into the catalytic properties of the catalysts. Bi-promoted catalysts were found to be highly active (71% and 81%conversion for 1% and 3% Bi promoted catalysts, respectively, at 703 K), as compared to the unpromoted material (47% conversion). The higher activity of the Bi-promoted catalysts is due to that these catalysts possess highly active and labile lattice oxygen. The better catalytic performance can also be attributed to the larger surface area.

  19. Alkyl levulinates as `green chemistry' precursors: butane-1,4-diyl bis(4-oxopentanoate) and hexane-1,6-diyl bis(4-oxopentanoate).

    Science.gov (United States)

    Gainsford, Graeme J; Hinkley, Simon

    2013-06-01

    Levulinic acid derivatives are potential `green chemistry' renewably sourced molecules with utility in industrial coatings applications. Suitable single crystals of the centrosymmetric title compounds, C14H22O6 and C16H26O6, respectively, were obtained with difficulty. The data for the latter hexane-1,6-diyl compound were extracted from the major fragment of a three-component twinned crystal. Both compounds crystallize in similar-sized unit cells with identical symmetry, utilizing the same weak nonconventional attractive C-H···O(ketone) hydrogen bonds via C(4) and C(5) motifs, which expand to R(2)(2)(30) ring and C(2)(2)(14) chain motifs. Their different packing orientations in similar-sized unit cells suggest that crystal growth involving packing mixes could lead to intergrowths or twins.

  20. N,N′-Bis(2-hydr­oxy-3-eth­oxybenzyl­idene)butane-1,4-diamine

    OpenAIRE

    Fun, Hoong-Kun; Kia, Reza; Kargar, Hadi; Jamshidvand, Arezoo

    2009-01-01

    The title Schiff base compound, C22H28N2O4, lies across a crystallographic inversion centre and adopts an E configuration with respect to the C=N bond. Pairs of weak inter­molecular C—H⋯O inter­actions link neighbouring mol­ecules into dimers with an R 2 2(28) ring motif. The crystal structure is stabilized by inter­molecular C—H⋯π inter­actions. An intramolecular O—H⋯N hydrogen bond occurs.

  1. Alkyl levulinates as `green chemistry' precursors: butane-1,4-diyl bis(4-oxopentanoate) and hexane-1,6-diyl bis(4-oxopentanoate).

    Science.gov (United States)

    Gainsford, Graeme J; Hinkley, Simon

    2013-06-01

    Levulinic acid derivatives are potential `green chemistry' renewably sourced molecules with utility in industrial coatings applications. Suitable single crystals of the centrosymmetric title compounds, C14H22O6 and C16H26O6, respectively, were obtained with difficulty. The data for the latter hexane-1,6-diyl compound were extracted from the major fragment of a three-component twinned crystal. Both compounds crystallize in similar-sized unit cells with identical symmetry, utilizing the same weak nonconventional attractive C-H···O(ketone) hydrogen bonds via C(4) and C(5) motifs, which expand to R(2)(2)(30) ring and C(2)(2)(14) chain motifs. Their different packing orientations in similar-sized unit cells suggest that crystal growth involving packing mixes could lead to intergrowths or twins. PMID:23744390

  2. Partial oxidation of Raffinate II and other mixtures of n-Butane and n-Butenes to maleic anhydride in a fixed-bed reactor

    OpenAIRE

    Brandstädter, Willi Michael

    2008-01-01

    The utilisation of the C4 streams of steamcrackers by converting raffinate II to maleic anhydride was studied. The oxidation reactions were investigated in a laboratory-scale fixed-bed reactor to determine reaction kinetics. The effects of pore diffusional resistance were investigated and explained. A two-dimensional pseudo-homogeneous reactor model was used for the simulation of a production-scale fixed-bed reactor. A flow scheme of the reactor section including a recycle was proposed.

  3. 萃取精馏分离丁烷/丁烯%Selection of solvents for separating butane and butene by extractive distillation

    Institute of Scientific and Technical Information of China (English)

    雷志刚; 许峥; 周晓颖; 廖波; 易波

    2000-01-01

    介绍了两种分离丁烷/丁烯的方法,即乙腈(ACN)法和二甲基甲酰胺 (DMF) 法.对两种工艺流程进行了计算对比,DMF 法工艺流程比ACN 法简单,只需3个塔.计算结果表明,DMF法再沸器和冷凝器能耗分别比ACN法降低33.7%和22.7%,选择DMF法萃取精馏分离丁烷/丁烯效果较好.

  4. Studies on reactions of cerium(4) reduction with alcohols. Part 3. Reactions of cerium(4) reduction with butane-2,3-diol, butane-1,3-diol and cis-butene-2-diol-1,4 in aqueous solutions of perchloric acid

    International Nuclear Information System (INIS)

    The basic study of the red-ox reaction kinetics of cerium ions -diols-water systems in presence of the perchloric acid is given. Dependence of the various agents and its concentrations on equilibrium constants the complex formation reactions and complex stability are discussed and compared. (B.Cz.)

  5. n-Butane catalytic dehydrogenation to butene on VOX/SiO2 catalysts%VOx/SiO2催化剂上正丁烷催化脱氢制正丁烯

    Institute of Scientific and Technical Information of China (English)

    胥月兵; 陆江银; 钟梅; 王吉德

    2008-01-01

    在微型固定床反应器上考察了催化剂的焙烧温度、钒氧化物负载量、反应温度、H2/n-C4H10比及空速对负载法制备的VOX/SiO2催化剂上正丁烷催化脱氢制正丁烯的反应性能的影响.结果表明:V205负载量为12%(质量分数)、焙烧温度为550℃为最佳催化剂制备条件,反应温度在590~600℃,氢烃摩尔比为1~2及空速在(2~4)×103ml(h·g)范围可获得最佳正丁烯收率30.6%;正丁烯中1.丁烯及2.丁烯产物分布受反应温度影响较大,而几乎不受氢烃比和空速的影响.

  6. 金属改性VOx/SiO2催化剂上正丁烷氧化脱氢%Oxidative dehydrogenation of n-butane on MO-doped VOx/SiO2 catalyst

    Institute of Scientific and Technical Information of China (English)

    杨朋坤; 陆江银; 田润丰

    2010-01-01

    在3%VOx/SiO2催化剂对正丁烷氧化脱氢(ODH)效果良好的基础上,采用共同浸渍的方法,添加金属Li、K、Ca、Sr、Al、Ni、Zn、Fe的金属氧化物为改进剂.实验结果表明:加入Li、Ca、Sr、Zn等金属虽然降低了催化剂的活性,但可以大大改善对正丁烷深度氧化的程度;Al、Fe不但降低了催化剂的活性,同时也使正丁烷深度氧化程度大增;K有利于正丁烷发生裂解反应,而不利于脱氢产物的生成;Ni可以显著改善C4烯烃的选择性,有利于1,3-丁二烯生成不利于正丁烯的生成,同时也降低了催化剂的活性.通过H2-TPR研究表明:NiO和VOx相结合形成了新物种,其还原温度介于两者之间;FeOx和VOx结合生成了更强氧化性物种;Li、K、Ca、Sr、Al、Zn改性后均未出现新的氢消耗峰,并且其氢消耗峰均向高温移动,说明金属改进剂的加入使钒活性组分更难被还原.

  7. Catalytic behavior of Ni/Zr{sub x}Ti{sub 1-x}O{sub 2} and the effect of SiO{sub 2} doping in oxidative steam reforming of n-butane

    Energy Technology Data Exchange (ETDEWEB)

    Sago, Fumiaki [Department of Applied Chemistry, Faculty of Engineering, Oita University, 700 Dannoharu, Oita City, Oita 870-1192 (Japan); KYOCERA Corporation (Japan); Fukuda, Sho; Nagaoka, Katsutoshi; Nishiguchi, Hiroyasu; Takita, Yusaku [Department of Applied Chemistry, Faculty of Engineering, Oita University, 700 Dannoharu, Oita City, Oita 870-1192 (Japan); Sato, Katsutoshi [Department of Applied Chemistry, Faculty of Engineering, Oita University, 700 Dannoharu, Oita City, Oita 870-1192 (Japan); Research Fellow of the Japan Society for the Promotion of Science, Washington, DC (United States)

    2009-10-15

    Catalytic behaviors of TiO{sub 2}-, Zr{sub 0.5}Ti{sub 0.5}O{sub 2}-, and ZrO{sub 2}-supported Ni catalysts were investigated for oxidative steam reforming of n-C{sub 4}H{sub 10} at 723 K. The composite oxide support, Zr{sub 0.5}Ti{sub 0.5}O{sub 2}, shows high specific surface area (136 m{sup 2}/g), leading to fine Ni particles. Thus, the Ni/Zr{sub 0.5}Ti{sub 0.5}O{sub 2} catalyst exhibits higher and more stable activity than that exhibited by other catalysts. However, relatively large amounts of coke are deposited on the catalyst during reaction. Thus, to retard carbon deposition, the influence of SiO{sub 2} additive was studied. Large amounts of SiO{sub 2} additive (5 or 10 mol%) decrease initial activity; at 10 mol%, degradation is also induced by oxidation of Ni{sup 0}. However, small amounts of SiO{sub 2} additive (1.5 mol%) effectively retard coking without lowering initial activity. The resultant Ni/Zr{sub 0.5}Ti{sub 0.5}O{sub 2}-SiO{sub 2} (1.5 mol%) catalyst exhibits high and stable activity without coking. (author)

  8. Structural and spectral studies of an iron(III) complex [Fe(Pranthas) 2][FeCl 4] derived from 2-acetylpyridine- N(4), N(4)-(butane-1, 4-diyl) thiosemicarbazone (HPranthas)

    Science.gov (United States)

    Sreekanth, A.; Fun, Hoong-Kun; Prathapachandra Kurup, M. R.

    2005-02-01

    A novel iron(III) complex of 2-acetylpyridine N(4), N(4)-(butyl-1, 4-diyl) thiosemicarbazone (HPranthas), [Fe(Pranthas) 2]FeCl 4 was synthesized and physico-chemically characterized by means of partial elemental analysis, magnetic measurements (polycrystalline state), UV-Vis and IR spectroscopies. The presence of spin-paired iron(III) cation with dxz2dyz2dxy1 ground state is revealed by the EPR and Mössbauer spectral data. Structure of the free ligand HPranthas and the complex [Fe(Pranthas) 2]FeCl 4 were solved by single crystal X-ray diffraction. The framework of iron(III) complex consists of a discrete monomeric cationic entity containing low spin iron(III) in a slightly distorted octahedral environment. The metal ion is bonded to one sulfur and two nitrogens of each thiosemicarbazone molecule. The tetrachloroferrate(III) ion acts as counterion.

  9. The Study on The Determination of The Content of Aerosol Frankincense Rheumatism Propelled by Propane-Butane%丙丁烷-乳香风湿气雾剂含量测定方法的研究

    Institute of Scientific and Technical Information of China (English)

    林文辉; 万来鸿; 林广怡; 林柳清

    2007-01-01

    目的:建立乳香风湿气雾剂(以丙丁烷替代氯氟化碳类CFCs作为环保型抛射剂)的含量测定方法,为本品抛射剂CFCs替代研究提供依据.方法:采用气相色谱法[1]测定乳香风湿气雾剂中主要成份水杨酸甲酯的含量.结果与结论:水杨酸甲酯平均回收率为99.865,RSD=0.51%.含量测定方法简便、准确、重现性好,丙丁烷等辅料对水杨酸甲酯含量测定无干扰.可用于乳香风湿气雾剂质量控制.

  10. A study of the removal of heavy metals from aqueous solutions by Moringa oleifera seeds and amine-based ligand 1,4-bis[N,N-bis(2-picoyl)amino]butane

    Energy Technology Data Exchange (ETDEWEB)

    Obuseng, Veronica; Nareetsile, Florence [Department of Chemistry, University of Botswana, Private Bag UB 00704, Gaborone (Botswana); Kwaambwa, Habauka M., E-mail: hmkwaambwa@yahoo.com [Department of Chemistry, University of Botswana, Private Bag UB 00704, Gaborone (Botswana)

    2012-06-12

    Highlights: Black-Right-Pointing-Pointer Materials are effective and selective in simultaneous removal of heavy metal ions. Black-Right-Pointing-Pointer Use of composite adsorbent of both materials may result in more effective material. Black-Right-Pointing-Pointer Seeds biomass has various functional groups involves in metal removal. Black-Right-Pointing-Pointer Attainment of sorption equilibrium is rapid for the seeds biomass. Black-Right-Pointing-Pointer Seeds biomass effectiveness is not affected over wide effective pH range. - Abstract: Uptake for lead, copper, cadmium, nickel and manganese from aqueous solution using the Moringa oleifera seeds biomass (MOSB) and amine-based ligand (ABL) was investigated. Experiments on two synthetic multi-solute systems revealed that MOSB performed well in the biosorption and followed the decreasing orders Pb(II) > Cu(II) > Cd(II) > Ni(II) > Mn(II) and Zn(II) > Cu(II) > Ni(II). The general trend of the heavy metal ions uptake by the amine-based ligand followed decreased in the order Mn > Cd > Cu > Ni > Pb, which is the reverse trend for what was observed for MOSB. Comparing the single- and multi-metal solutions, there was no clear effect in the biosorption capacity of MOSB suggesting the presence of sufficient active binding sites for all metal ions studied. The MOSB performance is also not affected by pH in the range 3.5-8.

  11. Hydro- und Carboborierungs-/Oxidationsreaktionen von Tricyclo[4.1.0.02,7]heptan-Derivaten sowie Synthese und Solvolyse-Reaktionen von exo,exo-Bicyclo[1.1.0]butan-2,4-dimethanoldimethansulfonat

    OpenAIRE

    Herberth, Edith

    2003-01-01

    Die bekannte Umwandlung des Bromtricycloheptans 4 in den Homoallylalkohol 76 durch Hydroborierung/Oxidation wurde anders als früher mit einer in situ aus Natriumborhydrid und elementarem Iod erzeugten Boran-THF-Lösung bewirkt. Darüber hinaus konnten unter den gleichen Bedingungen das Chlortricycloheptan 26 und das Methyltricycloheptan 62 in den Homoallylalkohol 108 bzw. 109 überführt werden. Über 4, 26, 62 und das Phenyltricycloheptan 15 hinaus, dessen Hydroborierung/ Oxidation zum Homoallyla...

  12. Synthesis and Characterization of Rhenium(V) Complexes Having 3-(4-m-Chlorophenylpiperazin-1-yl)butane-1-thiol as Coligand toward 5HT2A Specific Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Many imaging agents suitable for positron emission tomography bearing 11C and 18F as a radiotracer were developed on the basis of known 5HT2A receptor antagonist. Imaging agents for single photon emission computed tomography (SPECT) labeled with 123I or 125I were also developed. Preparation of technetium-99m-labeled imaging agent for the 5HT2A receptor stems from mimicking the receptor binding compounds as biologically active molecules (BAMs) which bind to the metals to form proper metal complex with other ligands to accommodate all coordination sites. A novel '3+1' mixed ligand rhenium oxo complex can be generated from the combination of tridentate ligand and monodentate BAM. A few reports describe the synthesis and evaluation of technetium(V) and rhenium(V) complex for 5HT2A serotonin receptor binding based on the ketanserin and its derivatives. A ligand used for BAM based on ketanserin can be designed on the basis of two structural units i. e. quinazoline as part A and phenyl piperidinyl ketone as part B. Either part A or B can be used for BAM while the other part goes as metal binding site

  13. Crystal structure of [butane-2,3-dione bis-(4-methyl-thio-semicarbazonato)-κ(4) S,N (1),N (1'),S'](pyridine-κN)zinc(II).

    Science.gov (United States)

    Brown, Oliver C; Tocher, Derek A; Blower, Philip J; Went, Michael J

    2015-11-01

    In the structure of the title complex, [Zn(C8H14N6S2)(C5H5N)], the Zn(II) ion has a pseudo-square-pyramidal coordination environment and is displaced by 0.490 Å from the plane of best fit defined by the bis-(thio-semicarbazonate) N2S2 donor atoms. Chains sustained by intermolecular N-H⋯N and N-H⋯S hydrogen-bonding interactions extend parallel to [10-1]. PMID:26594508

  14. 78 FR 69815 - Foreign-Trade Zone (FTZ) 3-San Francisco, CA; Notification of Proposed Production Activity...

    Science.gov (United States)

    2013-11-21

    ...; naphthalene; high aromatic mixtures; carbon black oil; methane/natural gas; refinery gases: Ethane, propane, and butanes, and mixtures of such gases; liquefied refinery gas: Propane, iso-butane, and mixed butane... processed under Section 400.31 of the FTZ Board's regulations (B-89-2013, 78 FR 64196, 10/28/2013)....

  15. Planar gas chromatography column on aluminum plate with multi-walled carbon nanotubes as stationary phase

    Science.gov (United States)

    Platonov, I. A.; Platonov, V. I.; Pavelyev, V. S.

    2016-04-01

    The high selectivity of the adsorption layer for low-boiling alkanes is shown, the separation factor (α) couple iso-butane / butane is 1.9 at a column temperature of 50 °C.The paper presents sorption and selective properties of planar gas chromatography column on aluminum plate with multi-walled carbon nanotubes as the stationary phase.

  16. Impact of molecular structure on the lubricant squeeze-out between curved surfaces with long range elasticity

    DEFF Research Database (Denmark)

    Tartaglino, Ugo; Sivebæk, Ion Marius; Persson, B N J;

    2006-01-01

    isobutane. With n-butane possessing a slightly lower viscosity at high pressures, our result refutes the view that squeeze-out should be harder for higher viscosities; on the other hand our results are consistent with wear experiments in which n-butane were shown to protect steel surfaces better than...

  17. Synthesis of a new intercalating nucleic acid 6H-INDOLO[2,3-b] quinoxaline oligonucleotides to improve thermal stability of Hoogsteen-type triplexes

    DEFF Research Database (Denmark)

    Osman, Amany M A; Pedersen, Erik Bjerregaard; Bergman, Jan

    2013-01-01

    conditions with trimethylsilylacetylene (TMSA) to achieve the TMS protected (S)-4-(4-((trimethylsilyl)ethynyl)phenoxy)butane-1,2-diol. Tetrabutylammonium flouride was used to remove the silyl protecting group to obtain (S)-4-(4-ethynylphenoxy)butane-1,2-diol which was coupled under Sonogashira conditions...

  18. Adsorption and diffusion of alkanes in CuBTC crystals investigated using infra-red microscopy and molecular simulations

    NARCIS (Netherlands)

    C. Chmelik; J. Kärger; M. Wiebcke; J. Caro; J.M. van Baten; R. Krishna

    2009-01-01

    The adsorption and intra-crystalline diffusion of n-butane (nC4), iso-butane (iC4), 2-methylbutane (2MB), and 2,2-dimethylpropane (neoP) in CuBTC (Cu-3(BTC)(2) where BTC = benzene-1,3,5-tricarboxylate) has been investigated using infrared microscopy (IRM), combined with molecular simulations. Both e

  19. Determination of Henry’s law constant of light hydrocarbon gases at low temperatures

    International Nuclear Information System (INIS)

    Highlights: ► Henry’s constants of light hydrocarbon gases are reported at low temperatures. ► Solubility of iso-butane in water at low temperatures (275 K to 293 K) was measured. ► An expression of Krichevsky–Kasarnovsky equation is reported. - Abstract: The solubility of i-butane in water at the low temperatures was measured (274 K to 293 K). Additionally, Henry’s law constants of light hydrocarbons (methane, ethane, propane, i-butane, and n-butane) in water at the low temperatures are reported. A modified equation based on Krichevsky–Kasarnovsky equation is proposed to consider the effect of pressure and temperature on the equation parameters. Results show that Henry’s law constant of the selected components depends on temperature. It is deduced that pressure has a considerable effect on Henry’s law constant for methane, ethane, and propane, whereas this dependency for butanes is negligible.

  20. OXIDATIVE DEHYDROGENATION OF n-BUTANE ON MgO-MODIFIED Vox/SiO2 CATALYST%MgO改性VOx/SiO2催化剂上正丁烷氧化脱氢反应性能

    Institute of Scientific and Technical Information of China (English)

    陆江银; 杨朋坤; 柳彦从

    2010-01-01

    研究VOx/SiO2催化剂上正丁烷氧化脱氢制丁烯的反应性能,考察VOx负载量和助剂MgO对VOx/SiO2催化性能的影响.结果表明,综合考虑反应物转化率和目标产物正丁烯和1,3-丁二烯选择性,VOx的最佳负载量为3%;助剂MgO的加入可以提高丁烯和1,3-丁二烯的选择性,抑制正丁烷的裂解,提高C4烯烃的总收率.

  1. 钒钼复合氧化物表面上激光促进异丁烷选择氧化制甲基丙烯酸%Laser Stimulated Selective Oxidation of i-Butane to Methacrylic Acid over Mo4V6O24

    Institute of Scientific and Technical Information of China (English)

    陶跃武; 钟顺和

    2001-01-01

    用共沉淀法制备了V和Mo的复合氧化物.运用XRD、IR、TPD和LSSR技术研究了其晶体结构、表面构造、化学吸附特性和激光促进异丁烷选择氧化反应性能.结果表明:V—Mo—O的主体物相为Mo4V6O24,它具有MoO3和V2O4交替排列的层状结构;其表面上存在着Lewis碱位Mo=O和Mo—O—V键中的O2-及Lewis酸位V4+;异丁烷的2个甲基H分别吸附在2个相邻的Lewis碱位Mo=O上形成双位分子吸附态;在常压和200℃条件下,用一定频率的激光激发Mo=O键1000次,异丁烷的转化率为6.5%,其反应产物是异丁烯、甲基丙烯醛和甲基丙烯酸,其中甲基丙烯酸的选择性为78%.根据实验结果,探讨了激光促进异丁烷选择氧化为甲基丙烯酸的表面反应机理.%A Mo/V complex oxide was prepared from (NH4)6Mo7O26.4H2O andNH4VO3 by a coprecipitation method. The surface composition, structure, chemsorption and behavior of laser stimulated selective oxidation of isobutane have been investigated by XRD, IR, TPD and microreactor. The results showed that the main phase of the complex oxide is Mo4V6O24, which has a storeyed structure composed of MoO3 and V2O4. There are both Lewis base sites, O2- in the surface Mo=O or Mo—O—V bonds, and Lewis acid site, V4+ appeared on the surface of complex oxide. Two methyl hydrogens in isobutane molecule can be chemisorbed on the terminal oxygen of the neibouring Mo=O bonds on the surface of the complex oxide. Under the conditions of 0.1 MPa, 200 ℃ and 1000 times of laser excitation with 972 cm-1on the MoObonds, about 6.5% isobutane were converted to isobutene, methyl propenal and methacrylic aicd, among them 78% were the latter. A mechanism is proposed for isobutane selective oxidation.

  2. Superacid catalysis of light hydrocarbon conversion. Final report, August 26, 1993--August 26, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gates, B.C.

    1996-12-31

    Motivated by the goal of finding improved catalysts for low- temperature conversion of light alkanes into fuel components or precursors of fuel components, the researchers have investigated sulfated zirconia and promoted sulfated zirconia for conversion of butane, propane, and ethane. Catalyst performance data for sulfated zirconia promoted with iron and manganese show that it is the most active noncorrosive, nonhalide catalyst known for n-butane isomerization, and it is an excellent candidate catalyst for new low- temperature n-butane isomerization processes to make isobutane, which can be converted by established technology into methyl t-butyl ether (MTBE). Various transition metals have been found to work as promoters of sulfated zirconia for n-butane isomerization. The combination of iron and manganese is the best known combination of promoters yet discovered. The iron- and manganese-promoted sulfated zirconia is also a catalyst for conversion of propane and of ethane. Ethane is converted into ethylene and butanes in the presence of the iron- and manganese-promoted sulfated zirconia; propane is also converted into butane, among other products. However, the activities of the catalyst for these reactions are orders of magnitude less than the activity for n-butane conversion, and there is no evidence that the catalyst would be of practical value for conversion of alkanes lighter than butane. The product distribution data for ethane and propane conversion provide new insights into the nature of the catalyst and its acidity. These data suggest the involvement of Olah superacid chemistry, whereby the catalyst protonates the alkane itself, giving carbonium ions (as transition states). The mechanism of protonation of the alkane may also pertain to the conversion of butane, but there is good evidence that the butane conversion also proceeds via alkene intermediates by conventional mechanisms of carbenium ion formation and rearrangement.

  3. Macrochain configuration, stucture of free volume and transport properties of poly(1-trimethylsilyl-1-propyne) and poly(1-trimethylgermyl-1-propyne)

    KAUST Repository

    Matson, Samira M.

    2012-08-01

    The relationship between poly(1-trimethylsilyl-1-propyne) (PTMSP) and poly(1-trimethylger- myl-1-propyne) (PTMGP) microstructure, gas permeability and structure of free volume is reported. n-Butane/methane mixed-gas permeation properties of PTMSP and PTMGP membranes with different cis-/trans-composition have been investigated. The n-butane/methane selectivities for mixed gas are by an order higher than the selectivities calculated from pure gas measurements (the mixed-gas n-butane/methane selectivities are 20-40 for PTMSP and 22-35 for PTMGP). Gas permeability and n-butane/methane selec- tivity essentially differ in polymers with different cis-/trans-composition. Positron annihilation lifetime spec- troscopy investigation of PTMSP and PTMGP with different microstructure has determined distinctions in total amount and structure of free volume, i.e. distribution of free volume elements. The correlation between total amount of free volume and gas transport parameters is established: PTMSP and PTMGP with bigger free volume exhibit higher n-butane permeability and mixed-gas n-butane/methane selectivity. Such behav- ior is discussed in relation to the submolecular structure of polymers with different microstructure and sorp- tion of n-butane in polymers with different free volume. © Pleiades Publishing, Ltd., 2012.

  4. Two simple amine hydrochlorides from the soft coral Lobophytum strictum

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Naik, C.G.; Das, B.; Kamat, S.Y.

    Two simple amine hydrochlorides, viz., 1-amino-1, 1-dimethyl-3-oxo-butane hydrochloride (1) (Diacetonamine) and 2, 2, 6, 6-tetramethylpiperidone hydrochloride (2) have been isolated from the fraction of the methanolic extract of the soft coral...

  5. Sulforaphane inhibits pancreatic cancer through disrupting Hsp90-p50Cdc37complex and direct interactions with amino acids residues of Hsp90

    NARCIS (Netherlands)

    Li, Yanyan; Karagöz, G. Elif; Seo, Young Ho; Zhang, Tao; Jiang, Yiqun; Yu, Yanke; Duarte, Afonso M.S.; Schwartz, Steven J.; Boelens, Rolf; Carroll, Kate; Rüdiger, Stefan G.D.; Sun, Duxin

    2012-01-01

    Sulforaphane [1-isothiocyanato-4-(methyl-sulfinyl) butane)], an isothiocyanate derived from cruciferous vegetables, has been shown to possess potent chemopreventive activity. We analyzed the effect of sulforaphane on the proliferation of pancreatic cancer cells. Sulforaphane inhibited pancreatic can

  6. Parent's Guide to Preventing Inhalant Abuse

    Science.gov (United States)

    ... 11 year-old boy collapsed in a public bathroom. A butane cigarette lighter fuel container and a ... CPSC: Recalls Safety Education Regulations, Laws & Standards Research & Statistics Business & Manufacturing Small Business Resources International Newsroom About ...

  7. Rate Constants for the Reactions of Hydroxyl Radical with Several Alkanes, Cycloalkanes, and Dimethyl Ether

    Science.gov (United States)

    DeMore, W.; Bayes, K.

    1998-01-01

    Relative rate experiements were used to measure rate constants and temperature denpendencies of the reactions of OH with propane, n-butane, n-pentane, n-hexane, cyclopropane, cyclobutane, cyclopentane, and dimethyl ether.

  8. Secondhand Smoke: What It Means to You

    Science.gov (United States)

    ... in paint thinners Hydrogen Cyanide Used in chemical weapons Butane Used in lighter fluid Ammonia Used in ... 14 Secondhand smoke may cause disease in other parts of your body. We know that smoking causes ...

  9. Drug vaping applied to cannabis: Is “Cannavaping” a therapeutic alternative to marijuana?

    OpenAIRE

    Vincent Varlet; Nicolas Concha-Lozano; Aurélie Berthet; Grégory Plateel; Bernard Favrat; Mariangela De Cesare; Estelle Lauer; Marc Augsburger; Aurélien Thomas; Christian Giroud

    2016-01-01

    Therapeutic cannabis administration is increasingly used in Western countries due to its positive role in several pathologies. Dronabinol or tetrahydrocannabinol (THC) pills, ethanolic cannabis tinctures, oromucosal sprays or table vaporizing devices are available but other cannabinoids forms can be used. Inspired by the illegal practice of dabbing of butane hashish oil (BHO), cannabinoids from cannabis were extracted with butane gas, and the resulting concentrate (BHO) was atomized with spec...

  10. [Ventricular fibrillation following deodorant spray inhalation].

    Science.gov (United States)

    Girard, F; Le Tacon, S; Maria, M; Pierrard, O; Monin, P

    2008-01-01

    We report one case of out-of-hospital cardiac arrest with ventricular fibrillation following butane poisoning after inhalation of antiperspiration aerosol. An early management using semi-automatic defibrillator explained the success of the resuscitation. The mechanism of butane toxicity could be an increased sensitivity of cardiac receptors to circulating catecholamines, responsible for cardiac arrest during exercise and for resuscitation difficulties. The indication of epinephrine is discussed.

  11. Impact of molecular structure on the lubricant squeeze-out between curved surfaces with long range elasticity

    OpenAIRE

    Tartaglino, Ugo; Sivebæk, Ion Marius; Persson, B. N. J.; Tosatti, E.

    2006-01-01

    The properties of butane (C4H10) lubricants confined between two approaching solids are investigated by a model that accounts for the curvature and elastic properties of the solid surfaces. We consider the linear n-butane and the branched isobutane. For the linear molecule, well defined molecular layers develop in the lubricant film when the width is of the order of a few atomic diameters. The branched isobutane forms more disordered structures which permit it to stay liquidlike at smaller su...

  12. Natural gas liquids markets in the United States

    International Nuclear Information System (INIS)

    Changes in natural gas liquids (NGL) markets in the USA, brought about primarily by environmental issues and actions, are reviewed. Three aspects of the Clean Air Act amendments are exerting a powerful influence on NGL product demands. Regulatory limits on Reed vapor pressure (RVP) reduce the amount of evaporative hydrocarbon emissions, and lower-RVP gasoline is leaner in the more volatile hydrocarbons. This means primarily a lower n-butane content, and during the 1990-91 summer blending season it is estimated that half of total U.S. gas plant production of n-butane was being eliminated from the traditional refinery blending market. N-butane prices fell, making n-butane attractive as a petrochemical feedstock. Regulatory requirements for reformulated and oxygenated gasolines, for which methyl tertiary butyl ether (MTBE) will be the largest single source of oxygenate, have increased demand for NGL butanes used as the basic raw material in MBTE manufacture. This demand should increase enough to absorb all the n-butane dislodged from the gasoline blending market. The amendments also specify that in selected metropolitan areas having severe air quality problems, an alternative fuels program must be established. In the alternative fuels market, propane is already well-established due to favorable economics and proven performance, and significant new demand for propane in metropolitan markets is expected. Ethylene, the basic raw material for plastics manufacture, is mainly derived from NGLs and the continued strong demand for plastics will have a positive effect on the NGL market. NGL product demand profiles and projections are presented in graph form for ethane, propane, butanes, and pentanes plus. 4 figs

  13. Impact of molecular structure on the lubricant squeeze-out between curved surfaces with long range elasticity.

    Science.gov (United States)

    Tartaglino, U; Sivebaek, I M; Persson, B N J; Tosatti, E

    2006-07-01

    The properties of butane (C4H10) lubricants confined between two approaching solids are investigated by a model that accounts for the curvature and elastic properties of the solid surfaces. We consider the linear n-butane and the branched isobutane. For the linear molecule, well defined molecular layers develop in the lubricant film when the width is of the order of a few atomic diameters. The branched isobutane forms more disordered structures which permit it to stay liquidlike at smaller surface separations. During squeezing the solvation forces show oscillations corresponding to the width of a molecule. At low speeds (lubricant layer has molecular thickness, one expects n-butane to be a better boundary lubricant than isobutane. With n-butane possessing a slightly lower viscosity at high pressures, our result refutes the view that squeeze-out should be harder for higher viscosities; on the other hand our results are consistent with wear experiments in which n-butane were shown to protect steel surfaces better than isobutane. PMID:16863321

  14. Impurities in mixed streams that affect specification products

    International Nuclear Information System (INIS)

    In the 1960's new markets were recognized for natural gas liquids. These new markets, butanes as a gasoline additive and propane as a potential motor fuel, brought with them the problems that high levels of contaminants, chiefly sulfur compounds and unwanted olefins, caused. This paper reports that the Clean Air Act of 1990 will require the gas processing industry to reduce the contaminants in its products. One of the early steps in this quality control program was the industry approval of HD-5 as a propane specification. The use of NGL butanes in the new Methyl Tertiary Butyl Ether (MTBE) market indicates the need for similar butane specifications. While some companies have established specifications for certain situations, the need for acceptable specifications on an industry wide basis is apparent. These should be developed under the guidance and direction of the entire gas processing industry

  15. Effect of palladium on gas sensing properties of Sn(Sb2O3)O2 nanoparticles synthesized by sonochemical processing at room temperature

    Science.gov (United States)

    Majumdar, Sanhita

    2016-07-01

    Palladium catalyzed Sn(Sb2O3)O2 nanoparticles prepared by the sonication assisted method exhibited a Pd dependent selectivity to butane as well as methane. Attempts have been made to correlate powder properties such as surface area, particle size, crystallite size and rate of agglomeration with sensor properties like resistance, percent sensitivity, response and recovery times. Sample with 3 wt% Pd exhibited the lowest rate of agglomeration amongst the prepared samples and around 70% sensitivity towards butane at 400 °C operating temperature. 5 wt% Pd loaded sample, on the other hand, exhibited about 98% methane sensitivity at 350 °C operating temperature. Results confirmed that either by varying the amount of palladium or by changing the operating temperature, it was possible to tune the selective sensitivity of the fabricated sensors towards either butane or methane.

  16. Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation

    Science.gov (United States)

    Ma, Xiaodong; Ouyang, Feng

    2013-03-01

    Activated carbon prepared from spent coffee grounds and pomelo skin by phosphoric acid activation had been employed as the adsorbent for ethylene and n-butane at room temperature. Prepared activated carbon was characterized by means of nitrogen adsorption-desorption, X-ray powder diffraction, scanning electron microscope and Fourier transform infrared spectroscope. It was confirmed that pore structure played an important role during the adsorption testes. Adsorption isotherms of ethylene and n-butane fitted well with Langmuir equation. The prepared samples owned better adsorption capacity for n-butane than commercial activated carbon. Isosteric heats of adsorptions at different coverage were calculated through Clausius-Clapeyron equation. Micropore filling effect was explained in a thermodynamic way.

  17. Tailoring the Transport Properties of Zeolitic Imidazolate Frameworks by Post-Synthetic Thermal Modification.

    Science.gov (United States)

    Zhang, Chen; Koros, William J

    2015-10-28

    Understanding how to control transport properties of zeolitic imidazolate frameworks (ZIFs) is critical to extend ZIF-based membranes and adsorbents to a wide spectrum of gas and vapor separations. In this work, we report a facile post-synthetic thermal modification (PSTM) technique to tailor ZIFs' transport properties by balancing diffusivity and diffusion selectivity. With controllable dissociation of framework methyl groups from a precursor ZIF (ZIF-8), we have prepared thermally modified ZIFs showing substantially increased n-butane diffusivity and attractive n/iso-butane diffusion selectivity. Hybrid ZIF/polymer mixed-matrix membranes formed using these thermally modified ZIFs are expected to deliver attractive butane isomer separation performance. Membranes based on such materials can potentially be used to retrofit refinery alkylation units for producing premium gasoline blending stocks. PMID:26451850

  18. Mechanical stress induced activity and phase composition changes in sulfated zirconia catalysts

    OpenAIRE

    Klose, B; Jentoft, R.; Hahn, A.; T. Ressler; Kröhnert, J.; Wrabetz, S.; X. Yang; Jentoft, F.

    2003-01-01

    Sulfated zirconia and Mn-promoted sulfated zirconia (0.5 and 2.0 wt% Mn) catalysts were subjected to mechanical stress. Pressing (10 min 540 MPa), milling (10 min vibrating mill), and grinding (manually, 10 min agate mortar) effected a partial phase transformation from the tetragonal to the monoclinic phase of ZrO2. The mechanical stress also reduced the n-butane isomerization rate (1 kPa n-butane, 323-378K, atmospheric pressure) to 30% and less of that measured for untreated catalyst. Standa...

  19. The North American natural gas liquids markets are chaotic

    OpenAIRE

    Serletis, Apostolos; Gogas, Periklis

    1999-01-01

    In this paper we test for deterministic chaos (i.e., nonlinear deterministic processes which look random) in seven Mont Belview, Texas hydrocarbon markets, using monthly data from 1985:1 to 1996:12--the markets are those of ethane, propane, normal butane, iso-butane, naptha, crude oil, and natural gas. In doing so, we use the Lyapunov exponent estimator of Nychka, Ellner, Gallant, and McCaffrey (1992). We conclude that there is evidence consistent with a chaotic nonlinear generation process i...

  20. The North American natural gas liquids markets are chaotic

    Energy Technology Data Exchange (ETDEWEB)

    Serletis, A.; Gogas, P. (Univ. of Calgary, Alberta (Canada). Dept. of Economics)

    1999-01-01

    In this paper the authors test for deterministic chaos (i.e., nonlinear deterministic processes which look random) in seven Mont Belview, Texas hydrocarbon markets, using monthly data from 1985:1 to 1996:12--the markets are those of ethane, propane, normal butane, iso-butane, naptha, crude oil, and natural gas. In doing so, they use the Lyapunov exponent estimator of Nychka, Ellner, Gallant, and McCaffrey. They conclude that there is evidence consistent with a chaotic nonlinear generation process in all five natural gas liquids markets.

  1. The North American natural gas liquids markets are chaotic

    International Nuclear Information System (INIS)

    In this paper the authors test for deterministic chaos (i.e., nonlinear deterministic processes which look random) in seven Mont Belview, Texas hydrocarbon markets, using monthly data from 1985:1 to 1996:12--the markets are those of ethane, propane, normal butane, iso-butane, naptha, crude oil, and natural gas. In doing so, they use the Lyapunov exponent estimator of Nychka, Ellner, Gallant, and McCaffrey. They conclude that there is evidence consistent with a chaotic nonlinear generation process in all five natural gas liquids markets

  2. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    Science.gov (United States)

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  3. 29 CFR 779.361 - Classification of other fuel oil sales.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Classification of other fuel oil sales. 779.361 Section 779... Establishments Liquefied-Petroleum-Gas and Fuel Oil Dealers § 779.361 Classification of other fuel oil sales. (a) Sales of fuel oil (as differentiated from sales of butane and propane gases) are classified as...

  4. Growth of n-alkane films on a single-crystal substrate

    DEFF Research Database (Denmark)

    Wu, Z. U.; Ehrlich, S. N.; Matthies, B.;

    2001-01-01

    reveal that growth of all films is preempted between two and three layers by nucleation of bulk particles oriented with a single bulk crystal plane parallel to the film. In the case of butane, the bulk particles also have a fixed azimuthal relationship with the film resulting in complete epitaxy....

  5. Chain Length Effects of Linear Alkanes in Zeolite Ferrierite. 1. Sorption and 13C NMR Experiments

    NARCIS (Netherlands)

    Well, van Willy J.M.; Cottin, Xavier; Haan, vde Jan W.; Smit, Berend; Nivarthy, Gautam; Lercher, Johannes A.; Hooff, van Jan H.C.; Santen, van Rutger A.

    1998-01-01

    Temperature-programmed desorption, heat of adsorption, adsorption isotherm, and 13C NMR measurements are used to study the sorption properties of linear alkanes in ferrierite. Some remarkable chain length effects are found in these properties. While propane, n-butane, and n-pentane fill the ferrieri

  6. In situ vibrational spectroscopic investigation of C{sub 4} hydrocarbon selective oxidation over vanadium-phosphorus-oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Z.Y.

    1999-05-10

    n-Butane selective oxidation over the VPO catalyst to maleic anhydride is the first and only commercialized process of light alkane selective oxidation. The mechanism of this reaction is still not well known despite over twenty years of extensive studies, which can partially be attributed to the extreme difficulties to characterize catalytic reactions real-time under typical reaction conditions. In situ spectroscopic characterization techniques such as Infrared spectroscopy and laser Raman spectroscopy were used in the current mechanistic investigations of n-butane oxidation over VPO catalysts. To identify the reaction intermediates, oxidation of n-butane, 1,3-butadiene and related oxygenates on the VPO catalyst were monitored using FTIR spectroscopy under transient conditions. n-Butane was found to adsorb on the VPO catalyst to form olefinic species, which were further oxidized to unsaturated, noncyclic carbonyl species. The open chain dicarbonyl species then experienced cycloaddition to form maleic anhydride. VPO catalyst phase transformations were investigated using in situ laser Raman spectroscopy. This report contains Chapter 1: General introduction; Chapter 2: Literature review; and Chapter 5: Conclusion and recommendations.

  7. Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol.

    Science.gov (United States)

    Xie, Li-Hua; Akao, Teruaki; Hamasaki, Kenjiro; Deyama, Takeshi; Hattori, Masao

    2003-05-01

    By anaerobic incubation of pinoresinol diglucoside (1) from the bark of Eucommia ulmoides with a fecal suspension of humans, eleven metabolites were formed, and their structures were identified as (+)-pinoresinol (2), (+)-lariciresinol (3), 3'-demethyl-(+)-lariciresinol (4), (-)-secoisolariciresinol (5), (-)-3-(3", 4"-dihydroxybenzyl)-2-(4'-hydroxy-3'-methoxybenzyl)butane-1, 4-diol (6), 2-(3', 4'-dihydroxybenzyl)-3-(3", 4"-dihydroxybenzyl)butane-1, 4-diol (7), 3-(3"-hydroxybenzyl)-2-(4'-hydroxy-3'-methoxybenzyl)butane-1, 4-diol (8), 2-(3', 4'-dihydroxybenzyl)-3-(3"-hydroxybenzyl)butane-1, 4-diol (9), (-)-enterodiol (10), (-)-(2R, 3R)-3-(3", 4"-dihydroxybenzyl)-2-(4'-hydroxy-3'-methoxybenzyl)butyrolactone (11), (-)-(2R, 3R)-2-(3', 4'-dihydroxybenzyl)-3-(3", 4"-dihydroxybenzyl)butyrolactone (12), (-)-(2R, 3R)-3-(3"-hydroxybenzyl)-2-(4'-hydroxy-3'-methoxybenzyl)butyrolactone (13), 2-(3', 4'-dihydroxybenzyl)-3-(3"-hydroxybenzyl)butyrolactone (14), 2-(3'-hydroxybenzyl)-3-(3", 4"-dihydroxybenzyl)butyrolactone (15) and (-)-(2R, 3R)-enterolactone (16) by various spectroscopic means, including two dimensional (2D)-NMR, mass spectrometry and circular dichroism. A possible metabolic pathway was proposed on the basis of their structures and time course experiments monitored by thin-layer chromatography. Furthermore, a bacterial strain responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol was isolated from a human fecal suspension and identified as Enterococcus faecalis strain PDG-1.

  8. MEMS-based fuel cells with integrated catalytic fuel processor and method thereof

    Science.gov (United States)

    Jankowski, Alan F.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Havstad, Mark A.

    2011-08-09

    Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.

  9. Inhalants

    Science.gov (United States)

    ... liquids that vaporize at room temperature Industrial or household products , including paint thinners or removers, degreasers, dry-cleaning ... oil sprays Gases —found in household or commercial products and used as medical anesthetics Household or commercial products , including butane lighters and propane ...

  10. Tetraaryl-, Pentaaryl-, and Hexaaryl-1,4-dihydropyrrolo 3,2-b pyrroles: Synthesis and Optical Properties

    DEFF Research Database (Denmark)

    Krzeszewski, M.; Thorsted, B.; Brewer, J.;

    2014-01-01

    Efficient conditions for the synthesis of tetra-, penta-, and hexasubstituted derivatives of 1,4-dihydropyrrolo[3,2-b]pyrrole were developed. The tetraaryl derivatives were obtained in a novel one-pot reaction among aromatic aldehydes, aromatic amines, and butane-2,3-dione. After a thorough exami...

  11. Guide On Analysis Of Dangerous And Harmful Object

    International Nuclear Information System (INIS)

    This book lists the dangerous and harmful object, which are Acetaldehyde, Acetic acid, Acetone, Acrolein, Aldrin Ammonia, Arsenic, Asphalt, Barium, Benzene, Benzyl chloride, Butane, Butylamine, Butyl mercaptan, Cadmium, Cadmium chloride, Cadmium nitrate, Cadmium sulfate, Calcium, Calcium carbonate, Calcium chloride, Calcium cyanamide, Calcium oxide, Captan, Carbon black, Carbon dioxide, Carbon disulfide, Catechol, Chlordane, Chlorine, Chlorine dioxide, Chlorine trifluoride and Chloroacetic acid.

  12. Assessing guest diffusivities in porous hosts from transient concentration profiles

    NARCIS (Netherlands)

    L. Heinke; D. Tzoulaki; C. Chmelik; F. Hibbe; J.M. van Baten; H. Lim; Y. Li; R. Krishna; J. Kärger

    2009-01-01

    Using the short-chain-length alkanes from ethane to n-butane as guest molecules, transient concentration profiles during uptake or release (via interference microscopy) and tracer exchange (via IR microimaging) in Zn(tbip), a particularly stable representative of a novel family of nanoporous materia

  13. Pharmacokinetics, Pharmacodynamics, and Stereoselective Metabolism of the 1,2,4-Triazole Fungicide, Triadimefon, in Vertebrate Species

    Science.gov (United States)

    Questions Agricultural and pharmaceutical 1,2,4-triazole fungicides are potent cytochrome P450 modulators that can disrupt mammalian steroid biosynthesis. Triadimefon [(RS)-1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)butan-2-one] is unique with respect to tumorige...

  14. Selective hydrogenation of 1,3-butadiene from crude C{sub 4} cracker stream with a solid catalyst with ionic liquid layer (SCILL). DSC and solubility study

    Energy Technology Data Exchange (ETDEWEB)

    Mangartz, T.; Korth, W.; Kern, C.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2013-11-01

    In petroleum as well as in fine chemical industry, selective catalytic hydrogenation is an important reaction. The selective hydrogenation of 1,3-butadiene (BD) to butene (trans-,1- and cis-butene) from the crude C4 steam cracker fraction represents one example, but under today's technical conditions undesired butane forms inevitably in relevant amounts. To increase the butene yield, the concept of Solid Catalyst with Ionic Liquid Layer (SCILL) was employed. The SCILL catalyst, in contrast to the uncoated catalyst, yielded a remarkably high selectivity to butenes (S{sub butenes} > 99 %) even at high residence times or at high hydrogen partial pressure. Nearly no butane (S{sub butane} {approx} 0 %) was analytically detected. We expected that due to different solubility, the poorer soluble compounds discharged from the ionic liquid and, thus, caused the shift in selectivity to a great extent. Temperature dependent solubility measurements in the used ionic liquid ([DMIM][DMP]) revealed that the order of increasing solubility is 1,3-butadiene > butenes > butane which matches the assumption. However, since differences in solubility cannot explain this SCILL effect satisfyingly, ionic liquids are expected to affect the surface of the catalyst (side-specific ligand-type effect). Investigations using spectroscopic methods (e.g. FTIR) confirmed this suggestion. (orig.)

  15. Conjugation of a 3-(1H-phenanthro[9,10-d]imidazol-2-yl)-1H-indole intercalator to a triplex oligonucleotide and to a three-way junction

    DEFF Research Database (Denmark)

    Fatthalla, Maha I; Elkholy, Yehya M; Abbas, Nermeen S;

    2012-01-01

    A new intercalating nucleic acid monomer M comprising a 4-(1-indole)-butane-1,2-diol moiety was synthesized via a classical alkylation reaction of indole-3-carboxaldehyde followed by a condensation reaction with phenanthrene-9,10-dione in the presence of ammonium acetate to form a phenanthroimida...

  16. Stoichiometric Experiments with Alkane Combustion: A Classroom Demonstration

    Science.gov (United States)

    Zhilin, Denis M.

    2012-01-01

    A simple, effective demonstration of the concept of limiting and excess reagent is presented. Mixtures of either air/methane (from a gas line) or air/butane (from a disposable cigarette lighter) contained in a plastic 2 L soda bottles are ignited. The mixtures combust readily when air/fuel ratios are stoichiometric, but not at a 2-fold excess of…

  17. In situ Raman spectroscopy studies of bulk and surface metal

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.; Jehng, J.M.; Deo, G.; Guliants, V.V.; Benziger, J.B.

    1996-01-01

    Bulk V-P-O and model supported vanadia catalysts were investigated with in situ Raman spectroscopy during n-butane oxidation to maleic anhydride in order to determine the fundamental molecular structure-reactivity/selectivity insights that can be obtained from such experiments. The in situ Raman stu

  18. Hydrogen Bonding in Thermoplastic Polyurethane Elastomers: IR Thermal Analysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The hydrogen bond percentage and its temperature dependence of the three TPU samples synthesized from polytetrahydrofuran, 4,4-diphenylmethane diisocyanate, N-methyl diethanol amine or 1,4-butane diol were studied by means of IR thermal analysis. The enthalpy and the entropy of the hydrogen bond dissociation were determined by the Vant Hoff plot.

  19. THE VIRIAL OF ANGLE-DEPENDENT POTENTIALS IN MOLECULAR-DYNAMICS SIMULATIONS

    NARCIS (Netherlands)

    BEKKER, H; AHLSTROM, P

    1994-01-01

    It is proved that the scalar virial of potentials that only depend on angles is zero. This is proved for nonperiodic boundary conditions as well as periodic boundary condition (PBC) systems. This theory is tested on an molecular dynamics simulation of butane with PBC.

  20. Synthesis of Hyperbranched Glycoconjugates by the Combined Action of Potato Phosphorylase and Glycogen Branching Enzyme from Deinococcus geothermalis

    NARCIS (Netherlands)

    van der Vlist, Jeroen; Faber, Martin; Loen, Lizette; Dijkman, Teunis J.; Asri, Lia A. T. W.; Loos, Katja

    2012-01-01

    Potato phosphorylase is able to synthesize linear polyglucans from maltoheptaose primers. By coupling maltoheptaose to butane diamine, tris(2-aminoethyl)amine and amine functionalized amine functionalized poly ethyleneglycol (PEG), new primer molecules became available. The resulting di-, tri- and m

  1. Parametric Optimization of Regenerative Organic Rankine Cycle System for Diesel Engine Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Hongjin Wang

    2015-09-01

    Full Text Available To efficiently recover the waste heat from a diesel engine exhaust, a regenerative organic Rankine cycle (RORC system was employed, and butane, R124, R416A, and R134a were used as the working fluids. The resulting diesel engine-RORC combined system was defined and the relevant evaluation indexes were proposed. First, the variation tendency of the exhaust energy rate under various diesel engine operating conditions was analyzed using experimental data. The thermodynamic model of the RORC system was established based on the first and second laws of thermodynamics, and the net power output and exergy destruction rate of the RORC system were selected as the objective functions. A particle swarm optimization (PSO algorithm was used to optimize the operating parameters of the RORC system, including evaporating pressure, intermediate pressure, and degree of superheat. The operating performances of the RORC system and diesel engine-RORC combined system were studied for the four selected working fluids under various operating conditions of the diesel engine. The results show that the operating performances of the RORC system and the combined system using butane are optimal on the basis of optimizing the operating parameters; when the engine speed is 2200 r/min and engine torque is 1215 N·m, the net power output of the RORC system using butane is 36.57 kW, and the power output increasing ratio (POIR of the combined system using butane is 11.56%.

  2. Melting mechanism in monolayers of flexible rod-shaped molecules

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Taub, H.

    1992-01-01

    The melting of butane and hexane monolayers adsorbed on a graphite basal-plane surface has been studied by molecular-dynamics simulations and experimentally by neutron diffraction. The simulation results are qualitatively consistent with the observed diffraction patterns and suggest a general...

  3. Role of LPG as an energy substitute in Algeria; Role des G.P.L. comme energie de substitution en Algerie

    Energy Technology Data Exchange (ETDEWEB)

    Boukadoum, Abdelhamid; Houghlaouene, Samir

    2010-09-15

    Algeria is a leader country in LPG industry. The availability of resources and the upstream production development efforts have oriented the large energy choices in terms of domestic market need satisfaction. LPG (propane and butane) plays a massive role in the change towards clean energy (case of LPG versus gas) and towards more practical energy (i.e. the case of bulk propane versus the packed butane, or versus natural gas). [French] L'Algerie est un pays leader dans l'industrie des GPL. La disponibilite des ressources et les efforts de developpement de la production en amont ont oriente les grands choix energetiques en matiere de satisfaction des besoins du marche domestique. En effet, les GPL (propane et butane) jouent un role majeur dans la substitution vers les sources d'energie propres (cas du GPL/C par rapport aux essences) et vers des energies plus commodes (par exemple le cas du propane vrac par rapport au butane conditionne, voire par rapport au gaz naturel).

  4. Active groups for oxidative activation of C-H bond in C{sub 2}-C{sub 5} paraffins on V-P-O catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zazhigalov, V.A. [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Fizicheskoj Khimii

    1998-12-31

    For the first time in scientific literature, in our joint work with Dr. G. Ladwig in 1978 it was established phase portraite of the oxide vanadium-phosphorus system within wide range of P/V ratios from 0.5 to 3.2. Some later those data were confirmed. By investigation of the properties of individual vanadium-phosphorus phases it was also shown that the active component of such catalysts in n-butane oxidation was vanadyl pyrophosphate phase (VO){sub 2}Pr{sub 2}O{sub 7}. From then the conclusion has been evidenced by numerous publications and at present it has been out of doubt practically all over the world. It was hypothized that the unique properties of (VO){sub 2}P{sub 2}O{sub 7} in the reaction of n-butane oxidation could be explained by the presence of paired vanadyl groups and nearness of the distances between neighbouring vanadyl pairs and that between the first and fourth carbon atoms in n-butane molecule. The molecule activation occured at the latter atoms by proton abstraction. A comparison of the results on n-butane and butenes oxidation over vanadyl pyrophosphate allowed to conclude that the paraffin oxidation did not take place due to the molecule dehydrogenation process at the first stage of its conversion. Up to now, more than 100 papers related to paraffins oxidation over vanadyl pyrophosphate and the physico-chemical properties of the catalyst have been published. The process of n-butane oxidation is realized in practice. But still, the question about the nature of active sites of the catalyst and the reaction mechanism remains open and provokes further investigations. The present paper deals with our opinion about the problem and the experimental results supporting it. (orig.)

  5. Physics of the multi-functionality of lanthanum ferrite ceramics

    Science.gov (United States)

    Bhargav, K. K.; Ram, S.; Majumder, S. B.

    2014-05-01

    In the present work, we have illustrated the physics of the multifunctional characteristics of nano-crystalline LaFeO3 powder prepared using auto-combustion synthesis. The synthesized powders were phase pure and crystallized into centro-symmetric Pnma space group. The temperature dependence of dielectric constant of pure LaFeO3 exhibits dielectric maxima similar to that observed in ferroelectric ceramics with non-centrosymmetric point group. The dielectric relaxation of LaFeO3 correlates well with small polaron conduction. The occurrence of polarization hysteresis in LaFeO3 (with centro-symmetric Pnma space group) is thought to be spin current induced type. The canting of the Fe3+ spins induce weak ferromagnetism in nano-crystalline LaFeO3. Room temperature saturation magnetization of pure LaFeO3 is reported to be 3.0 emu/g. Due to the presence of both ferromagnetic as well as polarization ordering, LaFeO3 behaves like a single phase multiferroic ceramics. The magneto-electric coupling in this system has been demonstrated through the magneto-dielectric measurements which yield about 0.8% dielectric tuning (at 10 kHz) with the application of 2 T magnetic field. As a typical application of the synthesized nano-crystalline LaFeO3 powder, we have studied its butane sensing characteristics. The efficient butane sensing characteristics have been correlated to their catalytic activity towards oxidation of butane. Through X-ray photoelectron spectroscopy analyses, we detect the surface adsorbed oxygen species on LaFeO3 surface. Surface adsorbed oxygen species play major role in their low temperature butane sensing. Finally, we have hypothesized that the desorbed H2O and O2 (originate from surface adsorbed hydroxyl and oxygen) initiate the catalytic oxidative dehydrogenation of n-butane resulting in weakening of the electrostatics of the gas molecules.

  6. Liquefied Petroleum Gases (LPG) and the fight against deforestation: the Senegal example

    International Nuclear Information System (INIS)

    Domestic LPG consumption in Senegal is over 40,000 tonnes in 1992, thus preserving more than 33,000 hectares of forest. Three reasons explain the success of the 'butanization' policy implemented by the country in its fight against deforestation: political desire, constant cooperation between the public authorities and distributors, but also a supply of gas and inexpensive cookers. The penetration of these butane cookers on the market occurred mainly in urban areas (it is the leading household appliance of urban families in Senegal), but it is also quite visible in rural areas as well, explained Mr. Boubacar Barry General Manager of Totalgaz Senegal in his speech 'How to fight the Growing Desert with Simple Means and a little imagination' during the 6th World LPG Meeting last October in Marrakech. 2 figs., 3 photos

  7. Theoretical Studies on Critical Properties of Binary System with Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new expression of mixing rule is suggested according to the Mayson′s mixing rule in this paper, which adopts the Redlich-Kwong cubic equation of state and the modified Chueh-Prausnitz method to calculate the experiment critical points of six binary mixtures CO2+toluene, CO2+cyclohexane, CO2+n-butanal, CO2+i-butanal, CO2+methanol, CO2+ethanol. The coefficients of interaction parameter in the expression of mixing rule were optimized from experimental data. The calculated results of critical temperature and critical pressure meet the experiment data well. The maximum relative errors of temperature and pressure between the calculation results and experiment data are 1.493% and 5.2236% respectively, indicating that the proposed expression of mixing rule is reasonable. This may provide a fundamental method for studying and predicting the properties of supercritical fluids.

  8. Volatile organic compound ratios as probes of halogen atom chemistry in the Arctic

    Directory of Open Access Journals (Sweden)

    P. B. Shepson

    2008-03-01

    Full Text Available Volatile organic compound concentration ratios can be used as indicators of halogen chemistry that occurs during ozone depletion events in the Arctic during spring. Here we use a combination of modeling and measurements of [acetone]/[propanal] as an indicator of bromine chemistry, and [isobutane]/[n-butane] and [methyl ethyl ketone]/[n-butane] are used to study the extent of chlorine chemistry during four ozone depletion events during the Polar Sunrise Experiment of 1995. Using a 0-D photochemistry model in which the input of halogen atoms is controlled and varied, the approximate ratio of [Br]/[Cl] can be estimated for each ozone depletion event. It is concluded that there must be an additional source of propanal (likely from the snowpack to correctly simulate the VOC chemistry of the Arctic, and further evidence that the ratio of Br atoms to Cl atoms can vary greatly during ozone depletion events is presented.

  9. Volatile organic compound ratios as probes of halogen atom chemistry in the Arctic

    Directory of Open Access Journals (Sweden)

    A. E. Cavender

    2007-08-01

    Full Text Available Volatile organic compound concentration ratios can be used as indicators of halogen chemistry that occurs during ozone depletion events in the Arctic during spring. Here we use a combination of modeling and measurements of [acetone]/[propanal] as an indicator of bromine chemistry, and [isobutane]/[n-butane] and [methyl ethyl ketone]/[n-butane] are used to study the extent of chlorine chemistry during four ozone depletion events during the Polar Sunrise Experiment of 1995. Using a 0-D photochemistry model in which the input of halogen atoms is controlled and varied, the approximate ratio of [Br]/[Cl] can be estimated for each ozone depletion event. It is concluded that there must be an additional source of propanal (likely from the snowpack to correctly simulate the VOC chemistry of the Arctic, and that the ratio of Br atoms to Cl atoms can vary greatly during ozone depletion events.

  10. Oxidative dehydrogenation of isobutane over a titanium pyrophosphate catalyst

    Directory of Open Access Journals (Sweden)

    IOAN-CEZAR MARCU

    2005-06-01

    Full Text Available The catalytic properties of titanium pyrophosphate in the oxidative dehydrogenation of isobutane to isobutylene were investigated in the 400 – 550 ºC temperature range. Asignificant change of the product distribution and of the apparent activation energy of the reactionwas observed at about 490 ºC. This phenomenon, already observed in the oxidative dehydrogenation of n-butane, has been interpreted by the existence of two reaction mechanisms depending upon the reaction temperature. Comparison with the n-butane reaction allowed different activation pathways for the activation of alkanes to be proposed. The catalytic properties of TiP2O7 in the oxidative dehydrogenation of isobutane was also compared to those obtained previously with several other pyrophosphates and TiP2O7 was found to be less active and selective for this reaction.

  11. Thermodynamic and acoustical properties of mixtures p-anisaldehyde—alkanols (C1-C4)—2-methyl-1-propanol at 303.15 K

    Science.gov (United States)

    Saini, Balwinder; Kumar, Ashwani; Rani, Ruby; Bamezai, Rajinder K.

    2016-07-01

    The density, viscosity and speed of sound of pure p-anisaldehyde and some alkanols, for example, methanol, ethanol, propan-1-ol, propan-2-ol, butan-1-ol, butan-2-ol, 2-methylpropan-1-ol, and the binary mixtures of p-anisaldehyde with these alkanols were measured over the entire composition range at 303.15 K. From the experimental data, various thermodynamic parameters such as excess molar volume ( V E), excess Gibbs free energy of activation (Δ G*E), and deviation parameters like viscosity (Δη), speed of sound (Δ u), isentropic compressibility (Δκs), are calculated. The excess as well as deviation parameters are fitted to Redlich—Kister equation. Additionally, the viscosity data for the systems has been used to correlate the application of empirical relation given by Grunberg and Nissan, Katti and Chaudhari, and Hind et al. The results are discussed in terms of specific interactions present in the mixtures.

  12. A Quick Estimate of the Correlation Energy for Alkanes

    Institute of Scientific and Technical Information of China (English)

    黎书华; 李伟; 马晶

    2003-01-01

    Within the localized molecular orbital description, the intraand interorbital pair correlation energies calculated with the coupled cluster doubles (CCD) theory have been obtained for methane, ethane, propane, butane, isobutane, pentane,isopentane and neopentane using the 6-31G* basis set. The results showed the quantitative transferability of pair correlation energies and gross orbital correlation energies within this series of molecules. Based on the gross orbital correlation energies of five sample alkanes (butane, isobutane, pentane,isopentane and neopentane), we have derived a simple linear relationship to estimate the CCD correlation energy for an arbitrary large alkane. The correlation energy predicted by this simple relationship remarkably recovers more than 98.9% of the exact CCD correlation energy for a number of alkanes containing six to eight carbon atoms. The relative stability of less branched isomers can be correctly predicted.

  13. Radiation chemistry of hydrocarbon and alkyl halide systems. Interim progress report, June 1, 1984-July 31, 1985

    International Nuclear Information System (INIS)

    Experimental work in progress includes studies of gas phase OH radical reaction using argon sensitized pulse radiolysis and studies of the radiolytic oxidation of butane. Work on interpretation of results, writing, and revision of manuscripts is still in progress on several investigations including studies of the photochemistry and mass spectrometry of CF3I-CH3I mixtures; an investigation of the radiolytic oxidation of propane; and certain parts of the study of radiolytic reactions in the H2 - CO system. Work on experimental aspects of the radiolytic oxidation of butane nearing completion. It appears that the results do parallel the propane system as we anticipated, with major products being the C4 alcohols and olefins

  14. Solvothermal synthesis of vanadium phosphates in the form of xerogels, aerogels and mesostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sydorchuk, V.; Zazhigalov, V. [Institute of Sorption and Endoecology, National Academy of Sciences of Ukraine, 13 General Naumov Str., Kyiv 03164 (Ukraine); Khalameida, S., E-mail: svkhal@ukr.net [Institute of Sorption and Endoecology, National Academy of Sciences of Ukraine, 13 General Naumov Str., Kyiv 03164 (Ukraine); Diyuk, E. [Institute of Sorption and Endoecology, National Academy of Sciences of Ukraine, 13 General Naumov Str., Kyiv 03164 (Ukraine); Skubiszewska-Zieba, J.; Leboda, R. [Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin (Poland); Kuznetsova, L. [Institute of Sorption and Endoecology, National Academy of Sciences of Ukraine, 13 General Naumov Str., Kyiv 03164 (Ukraine)

    2010-09-15

    Regularities and peculiarities of physicochemical changes, first of all phase transformations, during solvothermal treatment (with conventional and microwave heating) of the vanadium pentoxide and orthophosphoric acid mixture in organic solvents in the presence of reducing agents have been studied. Hemihydrate of vanadium hydrophosphate - the precursor of vanadium pyrophosphate, the active phase for n-butane to maleic anhydride oxidation, and ion exchanger with variable physicochemical characteristics, i.e. crystal structure, specific surface area, crystallite size and acidic properties - has been synthesized in the temperature range 170-200 {sup o}C. The obtained phases were examined using XRD, DTA-TG, SEM, FTIR spectroscopy, nitrogen adsorption as well as gas chromatographic determination of acidity through organic bases adsorption. The catalytic activity of prepared samples for n-butane oxidation has been investigated.

  15. A Novel Method for Preparation of Silicalite-1 Zeolite Membrane in Vapor Phase%一种气相合成Silicalite-1沸石膜的新方法

    Institute of Scientific and Technical Information of China (English)

    李军; 龙英才

    2001-01-01

    A silicalite-1 zeolite membrane was in situ crystallized from a layer of silica species prepared by a novel method of low temperature chemical vapor deposition (LTCVD) on a porous cordierite substrate. XRD patterns show that the membrane consists of MFI type zeolite crystals. The investigation with SEM indicats that the membrane is about 50 μm thick, and covered with well-intergrowth MFI zeolite crystals of about 10 μm in size. The EDX analysis confirms that the membrane is composed of silica in the absence of Al, indicating high silica MFI(Silicalite-1) zeolite grown on the support. The ratio of pure gas permeation is 296 for H2/iso-butane and 13.7 for n/iso-butane at room temperature respectively, confirming that the membrane synthesized on the support of cordierite is high quality without pinhole.

  16. Preliminary assessment of future refining impacts of the Clean Air Act Amendments of 1990

    International Nuclear Information System (INIS)

    A preliminary assessment of the future refining impacts of the Clean Air Act Amendments of 1990 has been performed with the Navy Mobility Fuels Forecasting Systems. The assessment suggests that gasoline reformulation costs in domestic coastal and near-coastal refining regions in the year 2000 could be 3.5 to 5.6 cents per gallon (in terms of 1989 currency). For heating value equivalent to one gallon of conventional gasoline, the regional total added costs (including reformulation costs) for reformulated gasoline could be 5.9 to 8.0 cents. In blending reformulated gasolines, the reduction of butane for lower Reid vapor pressure and the reduction of reformate for lower aromatics are generally compensated by increased percentages of alkylate and/or straight run naphthas. Relatively larger refinery process capacity additions are required for butane isomerization, alkylation, aromatics recovery, and distillate hydrotreating. 21 refs., 3 figs., 18 tabs

  17. Determination of alternative fuels combustion products: Phase 2 final report

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, K.A.

    1997-06-01

    This report describes the laboratory efforts to accomplish four independent tasks: (1) speciation of hydrocarbon exhaust emissions from a light-duty vehicle operated over the chassis dynamometer portion of the light-duty FTP after modifications for operation on butane and butane blends; (2) evaluation of NREL`s Variable Conductance Vacuum Insulated Catalytic Converter Test Article 4 for the reduction of cold-start FTP exhaust emissions after extended soak periods for a Ford FFV Taurus operating on E85; (3) support of UDRI in an attempt to define correlations between engine-out combustion products identified by SwRI during chassis dynamometer testing, and those found during flow tube reactor experiments conducted by UDRI; and (4) characterization of small-diameter particulate matter from a Ford Taurus FFV operating in a simulated fuel-rich failure mode on CNG, LPG, M85, E85, and reformulated gasoline. 22 refs., 18 figs., 17 tabs.

  18. The Balance Between Reactivity and Stability of Modified Oxide Surfaces Illustrated by the Behavior of Sulfated Zirconia Catalysts

    OpenAIRE

    Klose-Schubert, B.; Jentoft, R.; Jentoft, F.

    2011-01-01

    The stability of a series of sulfated zirconia catalysts, promoted with up to 2 wt% iron or manganese, in their calcined state was investigated. Phase composition, nature of surface sulfate species, degree of hydroxylation, and butane isomerization activity changed during aging over months in various atmospheres and during milling. The metastability of small oxide particles is discussed, including literature data on alumina, titania and other oxides. Catalytically active fractions of a materi...

  19. Thermophysical properties from the speed of sound

    OpenAIRE

    Goodwin, A.R.H.

    1988-01-01

    The speed of sound in various gases between 250 and 350 K has been obtained from measurements of the frequencies of the radial modes of spherical acoustic resonators; two resonators were used and both apparatus are described. The radius of each resonator was obtained from the speed of sound in argon. Measurements with the 60 mm radius resonator were made below 115 kPa on the six substances: n-butane; methyipropane; n-pentane; methylbutane; dimethylpropane; and, methano...

  20. Improvement of a New Gas Ionization Chamber

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to identify heavier elements, we have developed a new longitudinal field gas ionization chamber (IC)with an angle of 30° of plate (as shown in Fig.1). The IC is operated in flowing iso-butane gas at a pressure of 10kPa. After testing by using a 3- component α particle source and comparing with the old longitudinal field

  1. Active coke: Carbonaceous materials as catalysts for alkane dehydrogenation

    OpenAIRE

    McGregor, J.; Huang, Z; Parrott, E.; Zeitler, J.; Nguyen, K.; Rawson, J.; Carley, A; Hansen, T.; Tessonnier, J.; Su, D.; Teschner, D; Vass, E.; Knop-Gericke, A.; Schlögl, R.; Gladden, L.

    2010-01-01

    The catalytic dehydrogenation (DH) and oxidative dehydrogenation (ODH) of light alkanes are of significant industrial importance. In this work both carbonaceous materials deposited on VOx/Al2O3 catalysts during reaction and unsupported carbon nanofibres (CNFs) are shown to be active for the dehydrogenation of butane in the absence of gas-phase oxygen. Their activity in these reactions is shown to be dependent upon their structure, with different reaction temperatures yielding structurally dif...

  2. Forecasting: Canada's NGL [natural gas liquids] supply outlook

    International Nuclear Information System (INIS)

    A perspective is given on Canada's supply and demand balance of ethane, propane, and butane, and Canada's participation in meeting the expected increases in United States import requirements. Increases in Canadian natural gas liquids (NGL) supply depends on increases in natural gas production. Since new production (except for the Shell Caroline gas discovery) is tending to have lower yields of liquids, NGL supply will not increase as much as the increase in natural gas production. Nearly 50% of Canadian NGLs are produced in straddle plants located at the inlet of gas transmission lines. Surpluses of ethane and high capital costs means that new straddle plants will not be built in the near future, but expansions of existing plants will occur to maximize propane and butane production. The potential ethane supply will increase, notably from the Shell Caroline project. The primary market for ethane in Canada is the Alberta petrochemical industry, and a new ethylene plant to be started up in 1994 will increase demand. The use of ethane for miscible flooding will decrease to the end of the decade. Propane production is expected to increase to a total of 180,000 bbl/d by 2000; demand growth in traditional markets such as heating and cooking is expected to be marginal, and the petrochemical sector is expected to show the largest growth in propane demand. The use of butane for producing methyl tertiary butyl ether is expected to increase butane demand for the rest of the decade. Exports of NGL to the USA are largely via the Cochin pipeline system. Modest increases in NGL exports are expected. A number of gas pipeline projects are at various stages of planning, and completion of these projects would enable an increase in Canadian exports. 8 figs

  3. Determination of volatile aroma compounds of Ganoderma lucidum by gas chromatography mass spectrometry (HS-GC/MS).

    Science.gov (United States)

    Taşkın, Hatıra; Kafkas, Ebru; Çakıroğlu, Özgün; Büyükalaca, Saadet

    2013-01-01

    This study was conducted at Horticulture Department of Cukurova University, Adana, Turkey during 2010-2011. Fresh sample of Ganoderma lucidum collected from Mersin province of Turkey was used as material. Volatile aroma compounds were performed by Headspace Gas Chromatography (HS-GC/MS). Alcohols, aldehydes, acids, phenol, L-Alanine, d-Alanine, 3Methyl, 2-Butanamine, 2-Propanamine were determined. 1-Octen-3-ol (Alcohol) and 3-methyl butanal (Aldehyde) were identified as major aroma compounds.

  4. Antibacterial performance of Chlorhexidine acetate treated plain cotton and β-cyclodextrin treated cotton

    OpenAIRE

    Bhaskara, U.R.; Nabers, M.G.D.; Agrawal, P.B.; Warmoeskerken, M.M.C.G.

    2014-01-01

    Cotton was treated with β-cyclodextrin via a crosslinker 1, 2, 3, 4, butane tetracarboxylic acid. β-cyclodextrin attached cotton and plain cotton was treated with the antimicrobial agent Chlorhexidine acetate. The difference in amount of Chlorhexidine acetate loaded onto the two types of fabrics for same application concentrations was noted. These two types of fabrics were then tested for antibacterial performance. The antibacterial activity was tested according to the JIS L 1902 standard usi...

  5. Synthesis and Catalytic Performance of Organic–Inorganic Hybrid Mesoporous Material Having Basic Nanospace

    OpenAIRE

    Shishido, Tetsuya; Kawaguchi, Toru; Iwashige, Tomohito; Teramura, Kentaro; Hitomi, Yutaka; Tanaka, Tsunehiro

    2010-01-01

    Basic nanospace was synthesized by the homogeneous modification of FSM-16 with 3-(triethoxysilyl)pyridine, which is a rigid substrate without an alkyl chain as linker. Aldol condensation of butanal gave the corresponding dimer in high yields over 3-(triethoxysilyl)pyridine-modified FSM-16. A copper-pyridine complex was immobilized within the interior of FSM-16 using the modified pyridyl group as a ligand and the oxidative coupling polymerization of 2,5-dimethylphenol proceeded with high regio...

  6. Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris

    OpenAIRE

    Crombie, Andrew T.; Murrell, J. Colin

    2014-01-01

    The climate-active gas methane is generated both by biological processes and by thermogenic decomposition of fossil organic material, which forms methane and short-chain alkanes, principally ethane, propane and butane1, 2. In addition to natural sources, environments are exposed to anthropogenic inputs of all these gases from oil and gas extraction and distribution. The gases provide carbon and/or energy for a diverse range of microorganisms that can metabolize them in both anoxic3 and oxic z...

  7. Heat pumps: which refrigerant will win?; Welche Kaeltemittel werden sich durchsetzen?

    Energy Technology Data Exchange (ETDEWEB)

    Genath, B.

    2004-07-01

    This article discusses the alternatives available to the refrigeration industry when new regulations concerning the use of hydrochlorofluorocarbons (HCFC) come into force. The alternatives include water, carbon dioxide, iso-butane and propene. Work being done in Europe and America is discussed and examples of installations using these alternative refrigerants are described. Global Warming and the persistence of the refrigerants in the atmosphere are discussed, as is their flammability. Further environmentally-relative characteristics of the various refrigerants are listed.

  8. Study of the production of polyesters for polyurethanes at pilot plant scale

    OpenAIRE

    Matos, Sandro Filipe dos Santos

    2010-01-01

    In the present work during an internship in ICTPOL (IST), we tried to develop a relationship between all the works done. Understanding variables that affect production of unsaturated polyester polyols based on dimer fatty acids Unidyme®14 andUnidyme®18 with ethylene glycol and 1,4-butane diol that were synthesized via the polycondensation reaction mechanism. We studied a fast way to determine molecular weight, which usually takes a lot of time and tha...

  9. Smartphone Schlieren

    CERN Document Server

    Miller, Victor A

    2016-01-01

    We present a schlieren system comprised of 3D printed optical mounts, a sub-$10 mirror, and a smartphone camera. The system is intended to make schlieren imaging accessible to K-through-12 students, educators, as well as hobbyists. In the manuscript, we detail the design of the system, provide source files for continued iteration, and show some example schlieren images and videos of a butane lighter, a jet of compressed air, and an electric stove.

  10. Understanding water effect on Candida antarctica lipase B activity and enantioselectivity towards secondary alcohols.

    OpenAIRE

    Léonard, Valérie; Marton, Z; Lamare, Sylvain; Hult, Karl; Graber, Marianne

    2009-01-01

    6 pages International audience The effect of water activity (aW) on Candida antarctica lipase B (CALB) activity and enantioselectivity towards secondary alcohols was assessed. Experimental results for the resolution of racemic pentan-2-ol, hexan-3-ol, butan-2-ol and octan-4-ol by immobilized CALB-catalyzed acylation with methyl propanoate, were obtained by using a solid/gas reactor. Water and substrate adsorption mechanism on immobilized CALB, were then studied using moisture sorption a...

  11. A stronger perfume for LPG

    Energy Technology Data Exchange (ETDEWEB)

    Willcox, C.K.

    1996-11-01

    The odorisation of Liquefied Petroleum Gas (LPG) is undertaken to improve the safe use and transport of this popular fuel. Effective LPG odorisation should enable leaks to be detected by any person with a normal sense of smell before gas concentrations reach a hazardous level. The objective is identical to that for odorising natural gas. However, the physical characteristics of propane and butane present particular difficulties. These do not occur with natural gas, which has a dynamic, flowing, simple-phase system. (author)

  12. Fatal fulminant hepatic failure in a 'solvent abuser'.

    OpenAIRE

    McIntyre, A S; Long, R G

    1992-01-01

    The case of a 17 year old abuser of butane aerosols who developed fulminant hepatic failure after taking a proprietary engine or carburetor cleaner is described. Fatalities as a result of liver failure due to volatile hydrocarbons or solvents have not previously been reported. The likely toxins included isopropyl alcohol, methyl amyl alcohol, butylated hydroxytoluene as well as petroleum products, and evidence for their toxicity is reviewed. The possibility of increased susceptibility to hepa...

  13. Olfactory Impact of Higher Alcohols on Red Wine Fruity Ester Aroma Expression in Model Solution.

    Science.gov (United States)

    Cameleyre, Margaux; Lytra, Georgia; Tempere, Sophie; Barbe, Jean-Christophe

    2015-11-11

    This study focused on the impact of five higher alcohols on the perception of fruity aroma in red wines. Various aromatic reconstitutions were prepared, consisting of 13 ethyl esters and acetates and 5 higher alcohols, all at the average concentrations found in red wine. These aromatic reconstitutions were prepared in several matrices. Sensory analysis revealed the interesting behavior of certain compounds among the five higher alcohols following their individual addition or omission. The "olfactory threshold" of the fruity pool was evaluated in several matrices: dilute alcohol solution, dilute alcohol solution containing 3-methylbutan-1-ol or butan-1-ol individually, and dilute alcohol solution containing the mixture of five higher alcohols, blended together at various concentrations. The presence of 3-methylbutan-1-ol or butan-1-ol alone led to a significant decrease in the "olfactory threshold" of the fruity reconstitution, whereas the mixture of alcohols raised the olfactory threshold. Sensory profiles highlighted changes in the perception of fruity nuances in the presence of the mixture of higher alcohols, with specific perceptive interactions, including a relevant masking effect on fresh- and jammy-fruit notes of the fruity mixture in both dilute alcohol solution and dearomatized red wine matrices. When either 3-methylbutan-1-ol or butan-1-ol was added to the fruity reconstitution in dilute alcohol solution, an enhancement of butyric notes was reported with 3-methylbutan-1-ol and fresh- and jammy-fruit with butan-1-ol. This study, the first to focus on the impact of higher alcohols on fruity aromatic expression, revealed that these compounds participate, both quantitatively and qualitatively, in masking fruity aroma perception in a model fruity wine mixture. PMID:26529563

  14. Olfactory Impact of Higher Alcohols on Red Wine Fruity Ester Aroma Expression in Model Solution.

    Science.gov (United States)

    Cameleyre, Margaux; Lytra, Georgia; Tempere, Sophie; Barbe, Jean-Christophe

    2015-11-11

    This study focused on the impact of five higher alcohols on the perception of fruity aroma in red wines. Various aromatic reconstitutions were prepared, consisting of 13 ethyl esters and acetates and 5 higher alcohols, all at the average concentrations found in red wine. These aromatic reconstitutions were prepared in several matrices. Sensory analysis revealed the interesting behavior of certain compounds among the five higher alcohols following their individual addition or omission. The "olfactory threshold" of the fruity pool was evaluated in several matrices: dilute alcohol solution, dilute alcohol solution containing 3-methylbutan-1-ol or butan-1-ol individually, and dilute alcohol solution containing the mixture of five higher alcohols, blended together at various concentrations. The presence of 3-methylbutan-1-ol or butan-1-ol alone led to a significant decrease in the "olfactory threshold" of the fruity reconstitution, whereas the mixture of alcohols raised the olfactory threshold. Sensory profiles highlighted changes in the perception of fruity nuances in the presence of the mixture of higher alcohols, with specific perceptive interactions, including a relevant masking effect on fresh- and jammy-fruit notes of the fruity mixture in both dilute alcohol solution and dearomatized red wine matrices. When either 3-methylbutan-1-ol or butan-1-ol was added to the fruity reconstitution in dilute alcohol solution, an enhancement of butyric notes was reported with 3-methylbutan-1-ol and fresh- and jammy-fruit with butan-1-ol. This study, the first to focus on the impact of higher alcohols on fruity aromatic expression, revealed that these compounds participate, both quantitatively and qualitatively, in masking fruity aroma perception in a model fruity wine mixture.

  15. Viscosity kernel of molecular fluids

    DEFF Research Database (Denmark)

    Puscasu, Ruslan; Todd, Billy; Daivis, Peter;

    2010-01-01

    The wave-vector dependent shear viscosities for butane and freely jointed chains have been determined. The transverse momentum density and stress autocorrelation functions have been determined by equilibrium molecular dynamics in both atomic and molecular hydrodynamic formalisms. The density, tem...... that generalized hydrodynamics must be applied in predicting the flow properties of molecular fluids on length scales where the strain rate varies sufficiently in the order of these dimensions (e.g., nanofluidic flows)....

  16. Modelling , of Polyurethanes Based on Hydroxyl- Terminated Polybutadiene

    OpenAIRE

    Manohar Singh; Kanungo, B. K.; T.K. Bansal; M. Rama Rao

    1998-01-01

    Forty formulations based on four different grades ofhydroxyl-terminated polybutadiene, HTPB(hydroxyl value 20- 40 mg KOHlg) at r = [NCO] / [OH] values in the range 0.7 -1.0 with varyingamounts of trimethylol propane and butane diol and containing 86 per cent solid loading wereconsidered to test the applicability of a.-model of Marsh, et al. for prediction of the mechanicalproperties of composite solid propellants. Two network parameters, crosslink density (Ve) andeffective chain length (LX), ...

  17. Viscosity kernel of molecular fluids

    DEFF Research Database (Denmark)

    Puscasu, Ruslan; Todd, Billy; Daivis, Peter;

    2010-01-01

    The wave-vector dependent shear viscosities for butane and freely jointed chains have been determined. The transverse momentum density and stress autocorrelation functions have been determined by equilibrium molecular dynamics in both atomic and molecular hydrodynamic formalisms. The density...... that generalized hydrodynamics must be applied in predicting the flow properties of molecular fluids on length scales where the strain rate varies sufficiently in the order of these dimensions (e.g., nanofluidic flows)....

  18. Chemotherapeutic properties of phospho-nonsteroidal anti-inflammatory drugs, a new class of anticancer compounds

    OpenAIRE

    Huang, Liqun; Mackenzie, Gerardo G; Sun, Yu; Ouyang, Nengtai; Xie, Gang; Vrankova, Kvetoslava; Komninou, Despina; Rigas, Basil

    2011-01-01

    Non-steroidal anti-Inflammatory drugs (NSAIDs) exhibit antineoplastic properties, but conventional NSAIDs do not fully meet safety and efficacy criteria for use as anti-cancer agents. In this study, we evaluated the chemotherapeutic efficacy of five novel phospho-NSAIDs, each of which includes in addition to the NSAID moiety a diethylphosphate linked through a butane moiety. All five compounds inhibited the growth of human breast, colon and pancreatic cancer cell lines with micromolar potency...

  19. Quinoxaline derivatives as corrosion inhibitors for mild steel in hydrochloric acid medium: Electrochemical and quantum chemical studies

    Science.gov (United States)

    Olasunkanmi, Lukman O.; Kabanda, Mwadham M.; Ebenso, Eno E.

    2016-02-01

    The corrosion inhibition potential of four quinoxaline derivatives namely, 1-[3-(4-methylphenyl)-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-1-yl]butan-1-one (Me-4-PQPB), 1-(3-(4-methoxyphenyl)-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-1-yl)butan-1-one (Mt-4-PQPB), 1-[3-(3-methoxyphenyl)-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-1-yl]butan-1-one (Mt-3-PQPB) and 1-[3-(2H-1,3-benzodioxol-5-yl)-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-1-yl]butan-1-one (Oxo-1,3-PQPB) was studied for mild steel corrosion in 1 M HCl solution using electrochemical, spectroscopic techniques and quantum chemical calculations. The results of both potentiodynamic polarization and electrochemical impedance spectroscopic studies revealed that the compounds are mixed-type inhibitors and the order of corrosion inhibition efficiency at 100 ppm is Me-4-PQPB>Mt-3-PQPB>Oxo-1,3-PQPB>Mt-4-PQPB. Fourier transform infrared (FTIR) and ultraviolet-visible (UV-vis) spectroscopic analyses confirmed the presence of chemical interactions between the inhibitors and mild steel surface. The adsorption of the inhibitor molecules on mild steel surface was found to be both physisorption and chemisorption but predominantly chemisorption. The experimental data obey Langmuir adsorption isotherm. Scanning electron microscopy studies revealed the formation of protective films of the inhibitors on mild steel surface. Quantum chemical parameters obtained from density functional theory (DFT) calculations support experimental results.

  20. New trends in the kitchen: propellants assessment of edible food aerosol sprays used on food.

    Science.gov (United States)

    Varlet, V; Smith, F; Augsburger, M

    2014-01-01

    New products available for food creations include a wide variety of "supposed" food grade aerosol sprays. However, the gas propellants used cannot be considered as safe. The different legislations available did not rule any maximum residue limits, even though these compounds have some limits when used for other food purposes. This study shows a preliminary monitoring of propane, butane and dimethyl ether residues, in cakes and chocolate after spraying, when these gases are used as propellants in food aerosol sprays. Release kinetics of propane, butane and dimethyl ether were measured over one day with sprayed food, left at room temperature or in the fridge after spraying. The alkanes and dimethyl ether analyses were performed by headspace-gas chromatography-mass spectrometry/thermal conductivity detection, using monodeuterated propane and butane generated in situ as internal standards. According to the obtained results and regardingthe extrapolations of the maximum residue limits existing for these substances, different delays should be respected according to the storage conditions and the gas propellant to consume safely the sprayed food. PMID:24001847

  1. Comparative study of energy consumption in phase 1. train (turbine) with phase 2. train (motor) at GP1/Z plant, Algeria; Etude comparative de la consommation energetique d'un train de phase 1. (turbine) et d'un train de phase 2. (moteur) du complexe GP1/Z (Algerie)

    Energy Technology Data Exchange (ETDEWEB)

    Belfatmi, A.; Saad Azzouz, M. [Sonatrach, Dir. Production, Hydra, Alger (Algeria)

    2000-07-01

    LPG is one of the Sonatrach developing schema priority. The increase of the production capacity of LPG plant from 4.8 x 10{sup 6} to 7.2 x 10{sup 6} Tons per year is part of a large developing schema of the co-hole LPG production line. This schema consisting into recovering large quantities of LPG from the East south Algerian fields, transporting them into the separation plants so as to valorize and sell them in local and overseas markets, thereby increasing the exportation capacity of commercial butane and propane. Six production trains of 1.2 x 10{sup 6} Tons yearly capacity each, two being recently constructed, are separating the LPG load into propane and butane so as to cool them to storage temperature of 41 deg. C for propane and -10 deg. C for butane. The cooling process in the forth trains of phase I is achieved by propane centrifugal compressors driven by a 4250 kw Sulzer S-3 type gas turbines whereas in phase II, a 4750 kw capacity electric motors are used. The main energies consumed in both type of trains are electric power, natural gas and ethane. The objective of this paper is to carry out a comparative analysis of energy consumption in each type of trains. (authors)

  2. Geochemical assessment of light gaseous hydrocarbons in near-surface soils of Kutch–Saurashtra: Implication for hydrocarbon prospects

    Indian Academy of Sciences (India)

    P Lakshmi Srinivasa Rao; T Madhavi; D Srinu; M S Kalpana; D J Patil; A M Dayal

    2013-02-01

    Light hydrocarbons in soil have been used as direct indicators in geochemical hydrocarbon exploration, which remains an unconventional path in the petroleum industry. The occurrence of adsorbed soil gases, methane and heavier homologues were recorded in the near-surface soil samples collected from Kutch–Saurashtra, India. Soil gas alkanes were interpreted to be derived from deep-seated hydrocarbon sources and have migrated to the surface through structural discontinuities. The source of hydrocarbons is assessed to be thermogenic and could have been primarily derived from humic organic matter with partial contribution from sapropelic matter. Gas chromatographic analyses of hydrocarbons desorbed from soil samples through acid extraction technique showed the presence of methane through -butane and the observed concentrations (in ppb) vary from: methane (C1) from 4–291, ethane (C2) from 0–84, propane (C3) from 0–37, i-butane (iC4) from 0–5 and -butane (nC4) from 0–4. Carbon isotopes measured for methane and ethane by GC-C-IRMS, range between −42.9‰ to −13.3‰ (Pee Dee Belemnite – PDB) and −21.2‰ to −12.4‰ (PDB), respectively. The increased occurrence of hydrocarbons in the areas near Anjar of Kutch and the area south to Rajkot of Saurashtra signifies the area potential for oil and gas.

  3. Analysis of volatiles in meat from Iberian pigs and lean pigs after refrigeration and cooking by using SPME-GC-MS.

    Science.gov (United States)

    Estévez, Mario; Morcuende, David; Ventanas, Sonia; Cava, Ramón

    2003-05-21

    The volatile compounds generated in meat from Iberian and lean pigs after four different treatments (raw, refrigerated, cooked, and refrigerated cooked meat) were analyzed. The different treatments showed different volatile profiles. Methyl alcohols and ketones (such as 2-ethyl-hexan-1-ol, 2-methyl-butan-1-ol, 3-methyl-butan-1-ol, and 3-hydroxy-butan-2-one) were the most representative in refrigerated meat because of the degradation of carbohydrates and proteins together with the Strecker degradation pathway. Lipid-derived volatiles were the most abundant in cooked meat and refrigerated cooked meat. Meat from different pig breeds presented different volatile profiles, probably due to different enzymatic and oxidative deterioration susceptibility. Otherwise, the fat content and its compositional characteristics also played an important role in the generation of volatiles. As compared to samples from lean pigs, muscles from Iberian pigs showed a higher content of heme iron that may have promoted the generation of higher content of total lipid-derived volatiles during the refrigeration of cooked meat. Despite that, the formation of volatiles with low thresholds and related to intense rancidity perception likely to be derived from polyunsaturated fatty acids was higher in lean pork than in meat from Iberian pigs. This might be expected to lead to a more intense development of a warmed over flavor during refrigeration of cooked samples from lean pigs.

  4. Mass transfer and adsorption equilibrium study in MFI zeolites: application to the separation of mono and di-branched hydrocarbons in silicalite; Etude et modelisation de l'adsorption et du transfert de matiere dans les zeolithes de structure MFI. Application a la separation des hydrocarbures satures mono et di-branches

    Energy Technology Data Exchange (ETDEWEB)

    Jolimaitre, E.

    1999-11-30

    The aim of this study was to develop a model representing the breakthrough of hydrocarbon mixtures in fixed bed, and to estimate the parameters of this model. Equilibrium isotherms and effective diffusivities of 3-methyl-pentane, isopentane and 2,2-dimethyl-butane in silicalite were measured between 150 and 300 deg. C and for different concentrations, with a linear chromatography technique. Parameter estimation was made by mean of a linear model developed for this work, on which a parameter identifiability study was made. The method used for the parameter identifiability study can be applied to any linear fixed bed model. Experimental single component and mixtures breakthrough curves of 2-methyl-pentane, isopentane and 2,2-dimethyl-butane were then realized at 200 deg. C. Adsorption isotherms and self diffusivities were estimated from single-component curves, using a non linear model of the bed. The non-linear model was also developed and validated during this work. These parameters were injected into the non-linear model to simulate the experimental mixture breakthrough curves. Influence of the velocity variation in the bed and of the diffusion driving-force (Maxwell-Stefan or Fick theory) was studied. Most of the experimental breakthrough curves are correctly predicted by the model, expect for the isopentane-2,2-dimethyl-butane mixture, for which predicted breakthrough time is inferior to experimental values. (author)

  5. Differential aerobic and anaerobic oxidation of hydrocarbon gases discharged at mud volcanoes in the Nile deep-sea fan

    Science.gov (United States)

    Mastalerz, Vincent; de Lange, Gert J.; Dählmann, Anke

    2009-07-01

    The present study investigates hydrocarbon oxidation processes at Isis and Amon mud volcanoes (MV's), in the eastern Nile deep-sea fan. In the water column, molecular and carbon isotopic signatures of light hydrocarbons indicate that gases rapidly dissolve in seawater and are partially oxidized. In the upper sediments, anaerobic oxidation of the light hydrocarbons takes place, as clearly shown by their molecular and isotopic composition. These processes lead to the presence of a distinct Sulfate-Hydrocarbon Interface at 120-145 cm and 20-50 cm below the seafloor, for Isis and Amon MV's, respectively. In contrast to processes occurring in the water column, a clear preferential oxidation of methane, propane and n-butane over ethane and i-butane is observed in the anoxic sediments. Furthermore, for the first time, fractionation factors have been determined for the anaerobic oxidation of propane and butane, being respectively -4.80‰ and -0.7‰ for δ 13C, and -43.3‰ for δ 2H of propane.

  6. Synthesis of a new intercalating nucleic acid 6H-INDOLO[2,3-b] quinoxaline oligonucleotides to improve thermal stability of Hoogsteen-type triplexes.

    Science.gov (United States)

    Osman, Amany M A; Pedersen, Erik B; Bergman, Jan

    2013-01-01

    A new intercalating nucleic acid monomer X was obtained in high yield starting from alkylation of 4-iodophenol with (S)-(+)-2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethanol under Mitsunobu conditions followed by hydrolysis with 80% aqueous acetic acid to give a diol which was coupled under Sonogashira conditions with trimethylsilylacetylene (TMSA) to achieve the TMS protected (S)-4-(4-((trimethylsilyl)ethynyl)phenoxy)butane-1,2-diol. Tetrabutylammonium flouride was used to remove the silyl protecting group to obtain (S)-4-(4-ethynylphenoxy)butane-1,2-diol which was coupled under Sonogashira conditions with 2-(9-bromo-6H-indolo[2,3-b]quinoxalin-6-yl)-N,N-dimethylethanamine to achieve (S)-4-(4-((6-(2-(dimethylamino)ethyl)-6H-indolo[2,3-b]quinoxalin-9-yl)ethynyl)phenoxy)butane-1,2-diol. This compound was tritylated with 4,4'-dimethoxytrityl chloride followed by treatment with 2-cyanoethyltetraisopropylphosphordiamidite in the presence of N,N'-diisopropyl ammonium tetrazolide to afford the corresponding phosphoramidite. This phosphoramidite was used to insert the monomer X into an oligonucleotide which was used for thermal denaturation studies of a corresponding parallel triplex.

  7. Fluidization Characteristics of a Prototype Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    F. ABERUAGBA

    2005-01-01

    Full Text Available The fluidization characteristics of a prototype-fluidized bed laboratory reactor were understudied in order to investigate the suitable conditions at which the dehydrogenation reaction of butane could be carried out. To achieve this, a reactor with an effective volume of 1100ml was fabricated and coupled with temperature and pressure accessories.Zeolites were obtained from the market and clay obtained from different sources and pre-treated was used as catalyst. Airflow at high velocity between 3000-7000ml/hr was used as the fluidising medium to obtain the bed characteristics while butane gas was used to obtain the dehydrogenation kinetics.The temperature of the reactor system was varied between 353K and 413K while maintaining constant pressure of 1.5 105 N/m2 through a manifold gauge and a constant catalyst weight. Various methods such as pressure fluctuations, visual observations, and bed expansion were used to determine the transition velocity at which fluidization begins. It was observed that this depends on factors such as mean particle size, particle size distribution, and column diameter.The minimum fluidizing velocity obtained for zeolite was 0.0133m/s and 0.0102m/s for treated clay materials both for a particle size of 250μm. The conversion of butane over the catalysts showed an increase in both cases with a maximum at 0.9813 at 413K. This decreases as the reaction progresses.

  8. One-pot synthesis of cyclic aldol tetramer and,β-unsaturated aldol from linear aldehydes using quaternary ammonium combined with sodium hydroxide as catalysts

    Institute of Scientific and Technical Information of China (English)

    许海峰; 钟宏; 王帅; 李方旭

    2015-01-01

    One-pot synthesis of cyclic aldol tetramer anda,β-unsaturated aldol from C3−C8 linear aldehydes using phase-transfer catalyst (PTC), quaternary ammonium, combined with sodium hydroxide as catalysts was investigated. Butanal was subjected for detail investigations to study the effect of parameters. It was found that the selectivity of cyclic aldol tetramer depends greatly on the operating conditions of the reaction, especially the PTC/butanal molar ratio. The average selectivity of 2-hydroxy-6-propyl-l, 3, 5-triethyl-3-cyclohexene-1-carboxaldehyde (HPTECHCA) was 54.41% using tetrabutylammonium chloride combined with 14% (mass fraction) NaOH as catalysts at 60 °C for 2 h with a PTC-to-butanal molar ratio of 0.09:1. Pentanal was more likely to generate cyclic aldol tetramer compared with other aldehydes under the optimum experimental conditions. Recovery of the PTC through water washing followed by adding enough sodium hydroxide from the washings was also demonstrated.

  9. Photoacoustic sensor for VOCs: first step towards a lung cancer breath test

    Science.gov (United States)

    Wolff, Marcus; Groninga, Hinrich G.; Dressler, Matthias; Harde, Hermann

    2005-08-01

    Development of new optical sensor technologies has a major impact on the progression of diagnostic methods. Specifically, the optical analysis of breath is an extraordinarily promising technique. Spectroscopic sensors for the non-invasive 13C-breath tests (the Urea Breath Test for detection of Helicobacter pylori is most prominent) are meanwhile well established. However, recent research and development go beyond gastroenterological applications. Sensitive and selective detection of certain volatile organic compounds (VOCs) in a patient's breath, could enable the diagnosis of diseases that are very difficult to diagnose with contemporary techniques. For instance, an appropriate VOC biomarker for early-stage bronchial carcinoma (lung cancer) is n-butane (C4H10). We present a new optical detection scheme for VOCs that employs an especially compact and simple set-up based on photoacoustic spectroscopy (PAS). This method makes use of the transformation of absorbed modulated radiation into a sound wave. Employing a wavelength-modulated distributed feedback (DFB) diode laser and taking advantage of acoustical resonances of the sample cell, we performed very sensitive and selective measurements on butane. A detection limit for butane in air in the ppb range was achieved. In subsequent research the sensitivity will be successively improved to match the requirements of the medical application. Upon optimization, our photoacoustic sensor has the potential to enable future breath tests for early-stage lung cancer diagnostics.

  10. Propene concentration sensing for combustion gases using quantum-cascade laser absorption near 11 μm

    KAUST Repository

    Chrystie, Robin

    2015-05-29

    We report on a strategy to measure, in situ, the concentration of propene (C3H6) in combustion gases using laser absorption spectroscopy. Pyrolysis of n-butane was conducted in a shock tube, in which the resultant gases were probed using an extended cavity quantum-cascade laser. A differential absorption approach using online and offline wavelengths near λ = 10.9 μm enabled discrimination of propene, cancelling the effects of spectral interference from the simultaneous presence of intermediate hydrocarbon species during combustion. Such interference-free measurements were facilitated by exploiting the =C–H bending mode characteristic to alkenes (olefins). It was confirmed, for intermediate species present during pyrolysis of n-butane, that their absorption cross sections were the same magnitude for both online and offline wavelengths. Hence, this allowed time profiles of propene concentration to be measured during pyrolysis of n-butane in a shock tube. Time profiles of propene subsequent to a passing shock wave exhibit trends similar to that predicted by the well-established JetSurF 1.0 chemical kinetic mechanism, albeit lower by a factor of two. Such a laser diagnostic is a first step to experimentally determining propene in real time with sufficient time resolution, thus aiding the refinement and development of chemical kinetic models for combustion. © 2015 Springer-Verlag Berlin Heidelberg

  11. Physics of the multi-functionality of lanthanum ferrite ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Bhargav, K. K.; Ram, S.; Majumder, S. B., E-mail: subhasish@matsc.iitkgp.ernet.in [Materials Science Centre, Indian Institute of Technology, Kharagpur 721302 (India)

    2014-05-28

    In the present work, we have illustrated the physics of the multifunctional characteristics of nano-crystalline LaFeO{sub 3} powder prepared using auto-combustion synthesis. The synthesized powders were phase pure and crystallized into centro-symmetric Pnma space group. The temperature dependence of dielectric constant of pure LaFeO{sub 3} exhibits dielectric maxima similar to that observed in ferroelectric ceramics with non-centrosymmetric point group. The dielectric relaxation of LaFeO{sub 3} correlates well with small polaron conduction. The occurrence of polarization hysteresis in LaFeO{sub 3} (with centro-symmetric Pnma space group) is thought to be spin current induced type. The canting of the Fe{sup 3+} spins induce weak ferromagnetism in nano-crystalline LaFeO{sub 3}. Room temperature saturation magnetization of pure LaFeO{sub 3} is reported to be 3.0 emu/g. Due to the presence of both ferromagnetic as well as polarization ordering, LaFeO{sub 3} behaves like a single phase multiferroic ceramics. The magneto-electric coupling in this system has been demonstrated through the magneto-dielectric measurements which yield about 0.8% dielectric tuning (at 10 kHz) with the application of 2 T magnetic field. As a typical application of the synthesized nano-crystalline LaFeO{sub 3} powder, we have studied its butane sensing characteristics. The efficient butane sensing characteristics have been correlated to their catalytic activity towards oxidation of butane. Through X-ray photoelectron spectroscopy analyses, we detect the surface adsorbed oxygen species on LaFeO{sub 3} surface. Surface adsorbed oxygen species play major role in their low temperature butane sensing. Finally, we have hypothesized that the desorbed H{sub 2}O and O{sub 2} (originate from surface adsorbed hydroxyl and oxygen) initiate the catalytic oxidative dehydrogenation of n-butane resulting in weakening of the electrostatics of the gas molecules.

  12. Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites.

    Science.gov (United States)

    Rzepiela, Andrzej J; Louhivuori, Martti; Peter, Christine; Marrink, Siewert J

    2011-06-14

    Hybrid simulations, in which part of the system is represented at atomic resolution and the remaining part at a reduced, coarse-grained, level offer a powerful way to combine the accuracy associated with the atomistic force fields to the sampling speed obtained with coarse-grained (CG) potentials. In this work we introduce a straightforward scheme to perform hybrid simulations, making use of virtual sites to couple the two levels of resolution. With the help of these virtual sites interactions between molecules at different levels of resolution, i.e. between CG and atomistic molecules, are treated the same way as the pure CG-CG interactions. To test our method, we combine the Gromos atomistic force field with a number of coarse-grained potentials, obtained through several approaches that are designed to obtain CG potentials based on an existing atomistic model, namely iterative Boltzmann inversion, force matching, and a potential of mean force subtraction procedure (SB). We also explore the use of the MARTINI force field for the CG potential. A simple system, consisting of atomistic butane molecules dissolved in CG butane, is used to study the performance of our hybrid scheme. Based on the potentials of mean force for atomistic butane in CG solvent, and the properties of 1:1 mixtures of atomistic and CG butane which should exhibit ideal mixing behavior, we conclude that the MARTINI and SB potentials are particularly suited to be combined with the atomistic force field. The MARTINI potential is subsequently used to perform hybrid simulations of atomistic dialanine peptides in both CG butane and water. Compared to a fully atomistic description of the system, the hybrid description gives similar results provided that the dielectric screening of water is accounted for. Within the field of biomolecules, our method appears ideally suited to study e.g. protein-ligand binding, where the active site and ligand are modeled in atomistic detail and the rest of the protein

  13. Synthesis of self-assembled nanorod vanadium oxide bundles by sonochemical treatment

    Institute of Scientific and Technical Information of China (English)

    Y. H. Taufiq-Yap; Y.C. Wong; Z. Zainal; M.Z. Hussein

    2009-01-01

    Self-assembled nanorod of vanadium oxide bundles were synthesized by treating bulk V_2O_5 with high intensity sonochemical technique. The synthesized materials were characterized by X-ray diffraction (XRD),scanning electron microscope (SEM),transmission electron microscope (TEM) and temperature-programmed reduction (TPR) in H_2. Catalytic behaviour of the materials over anaerobic n-butane oxidation was studied through temperature-programmed reaction (TPRn). Catalytic evaluation of the sonochemical treated V_2O_5 products was also studied on microreactor. XRD patterns of all the vanadium samples were perfectly indexed to V_2O_5. The morphologies of the nanorod vanadium oxides as shown in SEM and TEM depended on the duration of the ultrasound irradiation. Prolonging the ultrasound irradiation duration resulted in materials with uniform,well defined shapes and surface structures and smaller size of nanorod vanadium oxide bundles. H_2-TPR profiles showed that larger amount of oxygen species were removed from the nanorod V_2O_5 compared to the bulk. Furthermore,the nanorod vanadium oxide bundles,which were produced after 90,120 and 180 min of sonochemical treatment,showed an additional reduction peak at lower temperature (~850 K),suggesting the presence of some highly active oxygen species. TPRn in n-butane/He over these materials showed that the nanorod V_2O_5 with highly active oxygen species showed markedly higher activity than the bulk material,which was further proven by catalytic oxidation of n-butane.

  14. Investigation on the performance of the supercritical Brayton cycle with CO2-based binary mixture as working fluid for an energy transportation system of a nuclear reactor

    International Nuclear Information System (INIS)

    In this study, the performance of a SBC (supercritical gas Brayton cycle) using CO2-based binary mixtures as the working fluids have been studied. Based on the thermodynamic analyses, an in-house code has been developed to determine the cycle efficiency and the amounts of heat transfer in the HTR (high temperature recuperator) and the LTR (low temperature recuperator) with different CO2/additive gas ratios. Several gases are selected as potential additives, including O2, He, Ar, Kr, butane and cyclohexane. Compared with the Brayton cycle with pure S–CO2 (supercritical carbon dioxide) as the working fluid, it is found that both CO2–He and CO2–Kr mixtures can improve the thermodynamic performances of the SBC by increasing the cycle efficiency and decreasing the amounts of heat transfer in the HTR and LTR. For the cycles with the pure S–CO2 mixture, CO2–butane mixture and CO2–cyclohexane mixture as the working fluids, the cycle efficiencies decrease with increasing main compressor inlet temperature. However, when the main compressor inlet temperature is above the critical temperature of pure CO2, the cycle efficiencies of the cycles with CO2–butane mixture and CO2–cyclohexane mixture are higher than that of the cycle with pure CO2 as the working fluid. For the cycles with CO2-based binary mixtures and pure S–CO2 as the working fluids, the higher reactor outlet temperature always results into higher cycle efficiencies and larger amount of heat transfer in the HTR and smaller amount of heat transfer in the LTR. - Highlights: • The Brayton cycle performance with different mixtures as working fluids is studied. • Thermodynamic analysis is carried out to evaluate cycle efficiency and heat transfer in HTR and LTR. • The optimum working parameters of the Brayton cycle is proposed to improve working performance

  15. Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species

    Science.gov (United States)

    König, Georg; Brunda, Monika; Puxbaum, Hans; Hewitt, C. Nicholas; Duckham, S. Craig; Rudolph, Jochen

    Emission rates of more than 50 individual VOCs were determined for eight plant species and three different types of grass land typical for natural deciduous and agricultural vegetation in Austria. In addition to the emissions of isoprene and monoterpenes, 33 biogenic oxygenated volatile organic compounds (BOVOCs) were detected. Of these, 2-methyl-l-propanol, 1-butanal, 2-butanal, 1-pentanol, 3-pentanol, 1-hexanol, 6-methyl-5-hepten-2-one, butanal and ethylhexylacetate were observed for the first time as plant emissions. In terms of prevalence of one of the groups of emitted VOCs (isoprene, terpenes, BOVOCs) the grain plants wheat and rye, grape, oilseed rape and the decidous trees hombeam and birch could be classified as "BOVOC"-emitters. For the grass plots examined, BOVOCs and terpenes appear to be of equal importance. The emission rates of the total assigned organic plant emissions ranged from 0.01 μ g -1 h -1 for wheat to 0.8 μg g -1 h -1 for oak (based on dry leaf weight). Intercomparison with available data from other studies show that our emission rates are rather at the lower end of reported ranges. The influence of the stage of growth was examined for rye, rape (comparing emissions of blossoming and nonblossoming plants) and for grape (with and without fruit). Emission rate differences for different stages of growth varied from nondetectable for blossoming and nonblossoming rye to a factor of six for the grape with fruits vs grape without fruits (emission rate based on dry leaf weight). The major decidous tree in Austria (beech) is a terpene emitter, with the contribution of BOVOCs below 5% of the total assigned emissions of 0.2 μg g -1 h -1 for the investigations of 20°C.

  16. The anaerobic degradation of gaseous, nonmethane alkanes — From in situ processes to microorganisms

    Directory of Open Access Journals (Sweden)

    Florin Musat

    2015-01-01

    Full Text Available The short chain, gaseous alkanes ethane, propane, n- and iso-butane are released in significant amounts into the atmosphere, where they contribute to tropospheric chemistry and ozone formation. Biodegradation of gaseous alkanes by aerobic microorganisms, mostly bacteria and fungi isolated from terrestrial environments, has been known for several decades. The first indications for short chain alkane anaerobic degradation were provided by geochemical studies of deep-sea environments around hydrocarbon seeps, and included the uncoupling of the sulfate-reduction and anaerobic oxidation of methane rates, the consumption of gaseous alkanes in anoxic sediments, or the enrichment in 13C of gases in interstitial water vs. the source gas. Microorganisms able to degrade gaseous alkanes were recently obtained from deep-sea and terrestrial sediments around hydrocarbon seeps. Up to date, only sulfate-reducing pure or enriched cultures with ethane, propane and n-butane have been reported. The only pure culture presently available, strain BuS5, is affiliated to the Desulfosarcina–Desulfococcus cluster of the Deltaproteobacteria. Other phylotypes involved in gaseous alkane degradation have been identified based on stable-isotope labeling and whole-cell hybridization. Under anoxic conditions, propane and n-butane are activated similar to the higher alkanes, by homolytic cleavage of the CH bond of a subterminal carbon atom, and addition of the ensuing radical to fumarate, yielding methylalkylsuccinates. An additional mechanism of activation at the terminal carbon atoms was demonstrated for propane, which could in principle be employed also for the activation of ethane.

  17. Catalyst for Gas Phase Hydrogenation of Aldehydes Successfully Developed by Daqing Chemical Research Center

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ A national invention patent has been granted to the method for preparation of the Cu-Zn-Al system catalyst for gas phase hydrogenation of aldehydes developed by the Daqing Chemi-cal Research Center (DCRC) under the PetroChina Petro-chemical Research Institute. This technology is mainly ap-plied to the gas phase process for hydrogenation of butanal/crotonaldehyde to manufacture butanol/octanol and has brought about hundreds of million RMB of economic ben-efits since its application.

  18. Sulfated binary and trinary oxide solid superacids

    Institute of Scientific and Technical Information of China (English)

    缪长喜; 华伟明; 陈建民; 高滋

    1996-01-01

    A series of sulfated binary and trinary oxide solid superacids were prepared, and their catalytic activities for n-butane isomerization at low temperature were measured. The incorporation of different metal oxides into ZrO2 may produce a positive or negative effect on the acid strength and catalytic activity of the solid superacids. Sulfated oxides of Cr-Zr, Fe-Cr-Zr and Fe-V-Zr are 2 - 3 times more active than the reported sulfated Fe-Mn-Zr oxide. The enhancement in the superacidity and catalytic activity of these new solid superacids has been discussed on account of the results of various characteriation techniques.

  19. Impact of fractionator and pipeline projects on Gulf Coast NGL markets: 1992--1997

    International Nuclear Information System (INIS)

    This paper focuses on the impact of major pipeline and fractionation expansion projects on Gulf Coast NGL supply/demand balances over the next five years. Specific projects that are included in this evaluation are summarized below: NGL pipeline expansions -- (1) Seminole pipeline, MAPCO (purity products and raw mix) and (2) Sterling pipeline, Koch (purity products); Mont Belvieu fractionator expansions -- (1) Enterprise Products Company (raw mix), (2) Warren Petroleum Company (raw mix), and (3) Trident, et al. Gulf Coast II Fractionator (raw mix); Westlake Petrochemical Company (E/P splitter). The impact of these projects is evaluated for specific NGL products including: purity ethane; E/P mix; propane; N-butane

  20. Experimental study of THGEM detector with mini-rim

    CERN Document Server

    Zhang, Ai-Wu; Xie, Yu-Guang; Liu, Hong-Bang; An, Zheng-Hua; Wang, Zhi-Gang; Cai, Xiao; Sun, Xi-Lei; Shi, Feng; Fang, Jian; Xue, Zhen; Lu, Qi-Wen; Sun, Li-Jun; Ge, Yong-Shuai; Liu, Ying-Biao; Hu, Tao; Zhou, Li; Lu, Jun-Guang

    2011-01-01

    The gas gain and energy resolution of single and double THGEM detectors (5{\\times}5cm2 effective area) with mini-rims (rim is less than 10{\\mu}m) were studied. The maximum gain can reach 5{\\times}103 and 2{\\times}105 for single and double THGEM respectively, while the energy resolution of 5.9 keV X-ray varied from 18% to 28% for both single and double THGEM detectors of different hole sizes and thicknesses.All the experiments were investigated in mixture of noble gases(argon,neon) and small content of other gases(iso-butane,methane) at atmospheric pressure.

  1. Towards reproducible, scalable lateral molecular electronic devices

    Science.gov (United States)

    Durkan, Colm; Zhang, Qian

    2014-08-01

    An approach to reproducibly fabricate molecular electronic devices is presented. Lateral nanometer-scale gaps with high yield are formed in Au/Pd nanowires by a combination of electromigration and Joule-heating-induced thermomechanical stress. The resulting nanogap devices are used to measure the electrical properties of small numbers of two different molecular species with different end-groups, namely 1,4-butane dithiol and 1,5-diamino-2-methylpentane. Fluctuations in the current reveal that in the case of the dithiol molecule devices, individual molecules conduct intermittently, with the fluctuations becoming more pronounced at larger biases.

  2. Towards reproducible, scalable lateral molecular electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Durkan, Colm, E-mail: cd229@eng.cam.ac.uk; Zhang, Qian [Nanoscience Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2014-08-25

    An approach to reproducibly fabricate molecular electronic devices is presented. Lateral nanometer-scale gaps with high yield are formed in Au/Pd nanowires by a combination of electromigration and Joule-heating-induced thermomechanical stress. The resulting nanogap devices are used to measure the electrical properties of small numbers of two different molecular species with different end-groups, namely 1,4-butane dithiol and 1,5-diamino-2-methylpentane. Fluctuations in the current reveal that in the case of the dithiol molecule devices, individual molecules conduct intermittently, with the fluctuations becoming more pronounced at larger biases.

  3. Adsorption of light alkanes on coconut nanoporous activated carbon

    Directory of Open Access Journals (Sweden)

    K. S. Walton

    2006-12-01

    Full Text Available This paper presents experimental results for adsorption equilibrium of methane, ethane, and butane on nanoporous activated carbon obtained from coconut shells. The adsorption data were obtained gravimetrically at temperatures between 260 and 300K and pressures up to 1 bar. The Toth isotherm was used to correlate the data, showing good agreement with measured values. Low-coverage equilibrium constants were estimated using virial plots. Heats of adsorption at different loadings were also estimated from the equilibrium data. Adsorption properties for this material are compared to the same properties for BPL activated carbon and BAX activated carbon.

  4. Dehidroisomerización de n-butano sobre catalizadores bifuncionales tipo Al-MCM-41 y Ga-MCM-41 impregnados con Pt o Ga

    Directory of Open Access Journals (Sweden)

    Dino Brisigotti

    2006-05-01

    Full Text Available A series of bi-functional catalysts was prepared by using Al-MCM-41 and Ga-MCM-41 with Si/Me ratios of 15 and 50 impregnated with 0,5 Wt% of Pt or Ga. The n-butane dehydroisomerization was studied at 773 K. Catalysts based on Pt/Al-MCM-41 were less selective (more hydrogenolyzing than those based on Ga-MCM-41. For the latter, Ga species segregated to extra-framework positions might exercise a kind of geometric effect on the Pt clusters inhibiting hydrogenolysis. The catalyst Ga/Al-MCM-41 showed the closest approach to the ideal dehydroisomerization catalyst.

  5. Four antibacterial monoterpenoid derivatives from the herba of Senecio Cannabifolius less

    Directory of Open Access Journals (Sweden)

    Wu B

    2006-01-01

    Full Text Available Fractionation of a butanol extract of Senecio cannabifolius Less. led to the isolation of two novel monoterpenoid derivatives, named cannabiside D and cannabiside E, whose structures were determined by spectroscopic analyses as 1-(2-hydroxy-2,6,6-trimethyl-4-β-D- glucosyloxy-cyclohexylidene-butane-2, 3-dione, 6-Hydroxy-3-(3-O-β-D-glucopyranosyl- but-1-enyl-2, 4,4-trimethyl-cyclohex-2-enone, along with two known glycosides. All the compounds had antibacterial activity, showing particularly potent activity against Staphylococcus aureus IFO 3060 and Bacillus subtilis .

  6. Influence of adsorption on the diffusion selectivity for mixture permeation across mesoporous membranes

    NARCIS (Netherlands)

    R. Krishna; J.M. van Baten

    2011-01-01

    Molecular dynamics (MD) simulations were carried out to determine the self-diffusivities, D-1,D-self, and D-2,D-self for a variety of binary mixtures: methane (C1)-ethane (C2), Cl-propane (C3), C1-n-butane (nC4), C1-n-hexane (nC6), C2-nC4, C2-nC6, Ar-C1, Ar-C2, Ar-C3, Ar-nC4, Ar-nC6, and Ar - Kr in

  7. Cosmic ray tests of a 4.6 m-long test drift chamber for JLC

    CERN Document Server

    Kurihara, Y; Sudo, S; Abe, T; Fujii, K; Ishihara, N; Khalatyan, N; Matsui, T; Nitoh, O; Ohama, T; Okuno, H; Sugiyama, A; Takahashi, K; Watanabe, T; Yoshida, T

    2000-01-01

    Performance of a 4.6 m-long drift chamber filled with a CO sub 2 iso-butane (90:10) mixture was studied using cosmic-ray data, in the course of detector R and D for JLC. After correcting the data for wire displacements due to gravitational and electrostatic forces, a spatial resolution of 100 mu m per wire was achieved over the full length of the chamber. The relation between wire efficiency and oxygen remnant in the chamber gas is also discussed.

  8. Cosmic ray tests of a 4.6 m-long test drift chamber for JLC

    International Nuclear Information System (INIS)

    Performance of a 4.6 m-long drift chamber filled with a CO2 iso-butane (90:10) mixture was studied using cosmic-ray data, in the course of detector R and D for JLC. After correcting the data for wire displacements due to gravitational and electrostatic forces, a spatial resolution of 100 μm per wire was achieved over the full length of the chamber. The relation between wire efficiency and oxygen remnant in the chamber gas is also discussed

  9. Nanorheology of Liquid Alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.A., Cochran, H.D., Cummings, P.T. [Tennessee Univ., Knoxville, TN (United States). Dept. of Chemical Engineering], [Oak Ridge National Lab., TN (United States)

    1997-09-01

    We report molecular dynamics simulations of liquid alkanes, squalane and tetracosane, confined between moving walls to which butane chains are tethered, effectively screening the details of the wall. As in an experiment, heat is removed by thermostatting the tethered molecules. Results obtained at high strain rates, typical of practical applications, suggest little or no difference between the bulk rheology and confined flow, and the occurrence of a high degree of slip at the wall-fluid interface at the conditions studied. At relatively low velocities and high densities, tetracosane shows the formation of fully-extended chains at certain wall spacings.

  10. Flavonóides O-glicosilados de Croton campestris St. Hill. (Euphorbiaceae) Glycosyl flavonoids from Croton campestris St. Hill. (Euphorbiaceae)

    OpenAIRE

    Paula M.L. dos Santos; Jan Schripsema; Ricardo M. Kuster

    2005-01-01

    Do extrato butanólico de Croton campestris St. Hill. (Euphorbiaceae) foram isolados quatro flavonóides, todos O-glicosídeos da quercetina. Estas substâncias foram identificadas como 3-O-b-D-apiofuranosil-(1®2)-galactopiranosil quercetina (1), 3-O-b-D-galactopiranosil quercetina (hiperina) (2), 3-O-a-L-arabinopiranosil quercetina (guaijaverina) (3) e 3-O-a-L-ramnopiranosil quercetina (quercitrina) (4).O presente trabalho relata a presença destas substâncias pela primeira vez para esta espécie ...

  11. Modeling vapor-liquid interfaces with the gradient theory in combination with the CPA equation of state

    DEFF Research Database (Denmark)

    Queimada, Antonio; Miqueu, C; Marrucho, IM;

    2005-01-01

    and discussed. The good description of equilibrium properties such as vapor pressure and liquid and vapor phase densities is shown in the full range of the vapor-liquid saturation line. For non-associating components, results are compared with those from the Soave-Redlich-Kwong and Peng-Robinson equations...... and the correct phase equilibrium of water + hydrocarbon systems already obtained from CPA. In this work, preliminary studies involving the vapor-liquid interfacial tensions of some selected associating and non-associating pure components (water, ethanol, n-butane, n-pentane, n-hexane, n-heptane) are presented...

  12. Dehidroisomerización de n-butano sobre catalizadores bifuncionales tipo Al-MCM-41 y Ga-MCM-41 impregnados con Pt o Ga

    OpenAIRE

    Dino Brisigotti; Yván Campos; Francisco J. Machado; Virginia Sazo

    2006-01-01

    A series of bi-functional catalysts was prepared by using Al-MCM-41 and Ga-MCM-41 with Si/Me ratios of 15 and 50 impregnated with 0,5 Wt% of Pt or Ga. The n-butane dehydroisomerization was studied at 773 K. Catalysts based on Pt/Al-MCM-41 were less selective (more hydrogenolyzing) than those based on Ga-MCM-41. For the latter, Ga species segregated to extra-framework positions might exercise a kind of geometric effect on the Pt clusters inhibiting hydrogenolysis. The catalyst Ga/Al-MCM-41 sho...

  13. Emission characteristics of nonmethane hydrocarbons from private cars and taxis at different driving speeds in Hong Kong

    Science.gov (United States)

    Guo, H.; Zou, S. C.; Tsai, W. Y.; Chan, L. Y.; Blake, D. R.

    2011-05-01

    Vehicular emissions are the major sources of a number of air pollutants including nonmethane hydrocarbons (NMHCs) in urban area. The emission composition and emission factors of NMHCs from vehicles are currently lacking in Hong Kong. In this study, speciation and emission factors of NMHCs emitted from gasoline-fuelled private cars and liquefied petroleum gas (LPG)-fuelled taxis at different driving speeds were constructed using a chassis dynamometer. Large variations in the contributions of individual NMHC species to total emission were observed for different private cars at different driving speeds. The variations of individual NMHC emissions were relatively smaller for taxis due to their relatively homogeneous year of manufacture and mileages. Incomplete combustion products like ethane, ethene and propene were the major component of both types of vehicles, while unburned fuel component was also abundant in the exhausts of private cars and taxis (i.e. i-pentane and toluene for private car, and propane and butanes for taxi). Emission factors of major NMHCs emitted from private cars and taxis were estimated. High emission factors of ethane, n-butane, i/ n-pentanes, methylpentanes, trimethylpentanes, ethene, propene, i-butene, benzene, toluene and xylenes were found for private cars, whereas propane and i/ n-butanes had the highest values for taxis. By evaluating the effect of vehicular emissions on the ozone formation potential (OFP), it was found that the contributions of olefinic and aromatic hydrocarbons to OFP were higher than that from paraffinic hydrocarbons for private car, whereas the contributions of propane and i/ n-butanes were the highest for taxis. The total OFP value was higher at lower speeds (≤50 km h -1) for private cars while a minimum value at driving speed of 100 km h -1 was found for taxis. At the steady driving speeds, the total contribution of NMHCs emitted from LPG-fuelled taxis to the OFP was much lower than that from gasoline

  14. Perfluorocarbons and their use in Cooling Systems for Semiconductor Particle Detectors

    CERN Document Server

    Vacek, V; Ilie, S; Lindsay, S

    2000-01-01

    We report on the development of evaporative fluorocarbon cooling for the semiconductor pixel and micro-strip sensors of inner tracking detector of the ATLAS experiment at the future CERN Large Hadron Collider (LHC). We proceeded with studies using perfluoro-n-propane (3M-"PFG 5030"; C3F8), perfluoro-n-butane (3M-"PFG 5040"; C4F10), trifluoro-iodo-methane (CF3I) and custom C3F8/C4F10 mixtures. Certain thermo-physical properties had to be verified for these fluids.

  15. Electricity Generation and the Present Challenges in the Nigerian Power Sector

    Energy Technology Data Exchange (ETDEWEB)

    Sambo, Abubakar Sani; Garba, Bashiru; Zarma, Ismaila Haliru; Gaji, Muhammed Musa

    2010-09-15

    Adequate power supply is an unavoidable prerequisite to any nation's development, and electricity generation, transmission and distribution are capital-intensive requiring huge resources for both funds and capacity. In Nigeria where funds are available and has an estimated of 176 trillion cubic feet of proven natural gas reserves, giving the country one of the top ten natural gas endowments in Africa. Natural gas is a natural occurring gaseous mixture of hydrocarbons gases found in underground reservoirs. It consists mainly of methane (70% - 95%). With small percentage of ethane, butane and other heavier hydrocarbons with some impurities such as water vapour, etc.

  16. Future perspectives of using hollow fibers as structured packings in light hydrocarbon distillation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dali [Los Alamos National Laboratory; Orler, Bruce [Los Alamos National Laboratory; Tornga, Stephanie [Los Alamos National Laboratory; Welch, Cindy [Los Alamos National Laboratory

    2011-01-26

    Olefin and paraffin are the largest chemical commodities. Furthermore, they are major building blocks for the petrochemical industry. Each year, petroleum refining, consumes 4,500 TBtu/yr in separation energy, making it one of the most energy-intensive industries in the United States). Just considering liquefied petroleum gas (ethane/propane/butane) and olefins (ethylene and propylene) alone, the distillation energy consumption is about 400 TBtu/yr in the US. Since petroleum distillation is a mature technology, incremental improvements in column/tray design will only provide a few percent improvements in the performance. However, each percent saving in net energy use amounts to savings of 10 TBtu/yr and reduces CO{sub 2} emissions by 0.2 MTon/yr. In practice, distillation columns require 100 to 200 trays to achieve the desired separation. The height of a transfer unit (HTU) of conventional packings is typical in the range of 36-60 inch. Since 2006, we had explored using several non-selective membranes as the structured packings to replace the conventional packing materials used in propane and propylene distillation. We obtained the lowest HTU of < 8 inch for the hollow fiber column, which was >5 times shorter than that of the conventional packing materials. In 2008, we also investigated this type of packing materials in iso-/n-butane distillation. Because of a slightly larger relative volatility of iso-/n-butane than that of propane/propylene, a wider and a more stable operational range was obtained for the iso-/n-butane pair. However, all of the experiments were conducted on a small scale with flowrate of < 25 gram/min. Recently, we demonstrated this technology on a larger scale (<250 gram/min). Within the loading range of F-factor < 2.2 Pa{sup 0.5}, a pressure drop on the vapor side is below 50 mbar/m, which suggests that the pressure drop of hollow fibers packings is not an engineering barrier for the applications in distillations. The thermal stability study

  17. Growing worldwide gas processing market improving

    International Nuclear Information System (INIS)

    International LPG markets will be relatively tight for the remainder of the 1990s. Demand growth in developing countries, particularly Asia, remains strong. In North America, despite continued strengths in natural-gas markets, Purvin ampersand Gertz inc., Dallas, believes NGL pricing will improve gradually, gas pricing will moderate, and gas-processing economics will begin recovering. The paper discusses worldwide LPG and NGL supplies and margins; supply outlook; European and Asian production; world demand; US gas supply; processing economics; US NGL supply; butane supply; increases in US NGL demand; and plant feedstocks

  18. Modification of the performance of WO3-ZrO2 catalysts by metal addition in hydrocarbon reactions

    Directory of Open Access Journals (Sweden)

    Gerardo Carlos Torres

    2012-01-01

    Full Text Available A study of the different hydrocarbon reactions over Ni doped WO3-ZrO2 catalysts was performed. Ni was found as NiO at low Ni concentration while at high Ni concentrations a small fraction was present as a metal. For both cases, Ni strongly modified total acidity and concentration of strong acid sites. In the cyclohexane dehydrogenation reaction, Ni addition promotes both benzene and methyl cyclopentane production. The hydroconversion activity (n-butane and n-octane increases with the augment of total acidity produced by Ni. The selectivity to reaction products is modified according to the acid strength distribution changes produced by Ni addition.

  19. Gaseous [M - H]+ ions of alpha,omega-diphenylalkanes: cyclization to [M + H]+ type ions of benzocycloalkanes as recognized by chain-length dependent proton exchange

    OpenAIRE

    Kuck, Dietmar

    1992-01-01

    Metastable [M - H]+ ions of alpha,omega-diphenylalkanes C6H5(CH2)xC6H5 where x = 3-6 (structures 3-6 respectively), generated by hydride abstraction in the chemical ionization (i-butane) source, eliminate benzene after proton exchange between the aromatic rings. The proton exchange is slow for ions [3 - H]+ and [4 - H]+, but fast and apparently complete for ions [5 - H]+ and [6 - H]+. These observations, combined with collision activation experiments, suggest the cyclization of the [M - H]+ i...

  20. Direct dissociative chemisorption of alkanes on Pt(111): Influence of molecular complexity

    International Nuclear Information System (INIS)

    The direct dissociative chemisorption of ethane, propane, n-butane, isobutane, and neopentane on Pt(111) was investigated as a function of the initial translational energy, ET, polar angle of incidence, θi, initial vibrational temperature, and surface temperature using supersonic molecular beam techniques. For each alkane, the initial probability for direct dissociative chemisorption scales with the initial normal energy of the alkanes, En=ET cos2 θi, and is independent of both the surface temperature and initial vibrational energy of the alkanes under the experimental conditions employed. Above initial normal energies of approximately 125 kJ/mol, at constant En, the dissociation probability decreases with increasing chain length of the C2-C4 linear alkanes; however, the dissociation probability of neopentane is greater than that of isobutane, and both isobutane and neopentane are more reactive than n-butane. By assuming that cleavage of primary C-H bonds is the dominant reaction pathway for all of the alkanes investigated here, the trends in reactivity are best explained by considering the differences in the steric factors for primary C-H bond cleavage for these alkanes. Secondary C-H bond cleavage does appear to contribute to the reactivity of propane and n-butane but only at the highest energies examined. Additionally, the reaction probabilities of each of these alkanes were estimated using a statistical model recently proposed by Ukrainstev and Harrison [J. Chem. Phys. 101, 1564 (1994)]. Assuming cleavage of only primary C-H bonds, the trends in reactivity for ethane, propane, n-butane, and isobutane were qualitatively reproduced by the statistical model; however, except for ethane, which was used to obtain the necessary parameters for the theory, there was poor quantitative agreement, and the predictions for neopentane were significantly lower than the measured values. The model also predicts that the dissociation probability is enhanced by increasing the

  1. Synthesis and characterization of fluorinated copolyetherimides with -CH2-C6F13 side chains based on the ULTEM structure

    OpenAIRE

    Kaba, Meriyam; Romero, Ricardo Escarcena; Essamri, Azzouz; MAS, Andre

    2005-01-01

    International audience Step polymn. of bisphenol A diphthalic anhydride (BAPA) with various mixts. from m-phenylene diamine (m-PDA) and 2-(perfluorohexylmethyl)butan-1,4-diamine (TFD) led to hydrophobic copolyetherimides bearing RF = CH2C6F13 side chains that were characterized by NMR, element anal., DSC, TGA and surface energy anal. By increasing the TFD unit %, the glass transition temp. (Tg) decreases according to the Fox equation from 217° (m-PDA 100% and TFD 0% like in ULTEM 1000) to ...

  2. Modification of the performance of WO{sub 3}-ZrO{sub 2} catalysts by metal addition in hydrocarbon reactions

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Gerardo Carlos; Manuale, Debora Laura; Benitez, Viviana Monica; Vera, Carlos Roman; Yori, Juan Carlos, E-mail: jyori@fiq.unl.edu.ar [Instituto de Investigaciones en Catalisis y Petroquimica, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Cientifica y Tecnicas, Santiago del Estero Santa Fe (Argentina)

    2012-07-01

    A study of the different hydrocarbon reactions over Ni doped WO{sub 3}-ZrO{sub 2} catalysts was performed. Ni was found as NiO at low Ni concentration while at high Ni concentrations a small fraction was present as a metal. For both cases, Ni strongly modified total acidity and concentration of strong acid sites. In the cyclohexane dehydrogenation reaction, Ni addition promotes both benzene and methyl cyclopentane production. The hydroconversion activity (n-butane and n-octane) increases with the augment of total acidity produced by Ni. The selectivity to reaction products is modified according to the acid strength distribution changes produced by Ni addition. (author)

  3. Volatiles in a sausage surface model-influence of Penicillium nalgiovense, Pediococcus pentosaceus, ascorbate, nitrate and temperature

    DEFF Research Database (Denmark)

    Sunesen, Lars Oddershede; Trihaas, Jeorgos; Stahnke, Louise Heller

    2003-01-01

    Thirty-two agar sausage models were arranged in a 2((5-1)) fractional factorial design to analyse the effects of Penicillium nalgio-vense growth, Pediococcus pentosaceus starter, sodium ascorbate, sodium nitrate and temperature on 79 volatiles produced during incubation. The model focused...... on the outer 10 millimeters of sausages. Ascorbate addition showed clear antioxidative effects, and reduced the amount of more than half of all volatiles but increased concentrations of 2-methyl-propanal and 3-methyl-butanal. The effects of P. pentosaceus and Micrococcaceae were confounded, but together...

  4. Regioselective alkane oxygenation with H2O2 catalyzed by titanosilicalite TS-1

    OpenAIRE

    Shul’pin, Georgiy B.; Sooknoi, Tawan; Romakh, Vladimir B.; Süss-Fink, Georg; Shul’pina, Lidia S.

    2009-01-01

    Titanosilicalite TS-1 catalyses oxidation of light (methane, ethane, propane and n-butane) and normal higher (hexane, heptane, octane and nonane) alkanes to give the corresponding isomeric alcohols and ketones. The oxidation of higher alkanes proceeds in many cases with a unique regioselectivity. Thus, in the reaction with n-heptane the CH2 groups in position 3 exhibited a reactivity 2.5 times higher than those of the other methylene groups. This selectivity can be enhanced if hexan-3-ol is a...

  5. Predicting enhanced absorption of light gases in polyethylene using simplified PC-SAFT and SAFT-VR

    DEFF Research Database (Denmark)

    Haslam, Andrew J.; von Solms, Nicolas; Adjiman, Claire S.;

    2006-01-01

    , propane or nitrogen, are partially or completely replaced by less-volatile butane or pentane for a reactor pressure similar to 2 MPa. In the case of a co-polymerisation reaction, it is predicted that increases in absorption of both co-monomers may be obtained in roughly equal proportion. Our findings cast...... in the presence of, e.g., pentane instead of hexene, but without the change in the branch structure of the produced polymer that is inevitable when the amount of co-monomer is increased. (c) 2006 Elsevier B.V. All rights reserved....

  6. Study of Methanol Conversion over Fe-Zn-Zr Catalyst

    Institute of Scientific and Technical Information of China (English)

    Xiaoming Ni; Yisheng Tan; Yizhuo Han

    2007-01-01

    The methanol conversion over Fe-Zn-Zr catalyst was studied at 0.1 MPa and 280-360℃.The experimental results indicate that the main products of methanol conversion are methane and butane,and that other hydrocarbons are scarcely produced.All results show that propylene is most probably the olefin formed first in methanol conversion rather than ethene over Fe-Zn-Zr catalyst.Methane is formed from methoxy group,and C4 is possibly yielded on the surface from propylene through binding with a methoxy group.

  7. Synthesis and in vitro sodium channel blocking activity evaluation of novel homochiral mexiletine analogs.

    Science.gov (United States)

    Carocci, Alessia; Catalano, Alessia; Bruno, Claudio; Lentini, Giovanni; Franchini, Carlo; De Bellis, Michela; De Luca, Annamaria; Conte Camerino, Diana

    2010-03-01

    New chiral mexiletine analogs were synthesized in their optically active forms and evaluated in vitro as use-dependent blockers of skeletal muscle sodium channels. Tests carried out on sodium currents of single muscle fibers of Rana esculenta demonstrated that all of them exerted a higher use-dependent block than mexiletine. The most potent analog, (S)-3-(2,6-dimethylphenoxy)-1-phenylpropan-1-amine (S)-(5), was six-fold more potent than (R)-Mex in producing a tonic block. As observed with mexiletine, the newly synthesized compounds exhibit modest enantioselective behavior, that is more evident in 3-(2,6-dimethylphenoxy)butan-1-amine (3). PMID:19544349

  8. Synthesis and characterization of segmented polyurethanes based on amphiphilic polyether diols.

    Science.gov (United States)

    Lan, P N; Corneillie, S; Schacht, E; Davies, M; Shard, A

    1996-12-01

    Segmented polyurethanes (SPUs) based on polyethylene glycol (PEG), polypropylene glycol (PPG) and a series of Pluronics with different ethylene oxide/propylene oxide ratios (EO/PO) and molecular weights were prepared. Different diisocyanates were used for making SPUs: 4,4-diphenylmethane diisocyanate (MDI), 4,4-dicyclohexylmethane diisocyanate (MDCI), hexamethylene diisocyanate (HMDI) and isophorone diisocyanate (IPDI). 1,4-Butane diol (BD) and ethylene diamine (ED) were used as chain extenders. The polymers obtained were characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). The microphase morphology (phase separation and phase mixing) is discussed in more detail. PMID:8968523

  9. Mass-spectral identification and purification of phycoerythrobilin and phycocyanobilin

    Energy Technology Data Exchange (ETDEWEB)

    Fu, E.; Friedman, L.; Siegelman, H.W.

    1979-01-01

    The bile-pigment chromophores of C-phycoerythrin (phycoerythrobilin) and C-phycocyanin (phycocyanobilin) were cleaved from their respective proteins with boiling methanol or butan-1-ol. They were purified as dicarboxylic acids by preparative reverse-phase liquid chromatography. Each pigment existed in two principal forms, which were characterized by using 20 pmol samples by proton-transfer chemical-ionization mass spectroscopy. These two principal forms were isomeric species, and all had protonated parent molecular ions with m/e 587, corresponding to a molecular weight of 586.

  10. Synthesis and characterization of new polyimide/organo clay nano composites containing benzophenone moieties in the main chain

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, K.; Ashouri, M.; Feyzi, A., E-mail: k-faghihi@araku.ac.ir [Arak University, Faculty of Science, Organic Polymer Chemistry Research Laboratory, 38158-879 Arak (Iran, Islamic Republic of)

    2013-08-01

    A series of nano composites consist of organic polyimide and organo-modified clay content varying from 0 to 5 wt %, were successfully prepared by in situ polymerization. Polyimide used as a matrix of nano composite was prepared through the reaction of 1,4-bis [4-aminophenoxy] butane and 3,3,4,4-benzophenone tetra carboxylic dianhydride in N,N-dimethylacetamide (Dmac). The resulting nano composite films were characterized by Ft-IR spectroscopy, X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. (Author)

  11. Regioselective alkane hydroxylation with a mutant CYP153A6 enzyme

    Science.gov (United States)

    Koch, Daniel J.; Arnold, Frances H.

    2013-01-29

    Cytochrome P450 CYP153A6 from Myobacterium sp. strain HXN1500 was engineered using in-vivo directed evolution to hydroxylate small-chain alkanes regioselectively. Mutant CYP153A6-BMO1 selectively hydroxylates butane and pentane at the terminal carbon to form 1-butanol and 1-pentanol, respectively, at rates greater than wild-type CYP153A6 enzymes. This biocatalyst is highly active for small-chain alkane substrates and the regioselectivity is retained in whole-cell biotransformations.

  12. Highly efficient resistive plate chambers for high rate environment

    International Nuclear Information System (INIS)

    The full scale prototype of an Inverted Double Gap RPC module for ME-1/1 station of the CMS detector was tested in the Gamma Irradiation Facility at the CERN SPS muon beam. The chamber made of medium resistivity bakelite and filled with 'green gas' mixture of C2H2F4/iso-butane/SF6 has wide efficiency plateau and good timing properties when operated in avalanche mode under continuous irradiation with strong 137Cs source for rates up to about 5 kHz/cm2/gap

  13. Electronic Structure of Vanadium Phosphorus Oxides

    OpenAIRE

    Willinger, M.

    2005-01-01

    Vanadium Phosphor Oxide (VPO) zeichnen sich durch ihre strukturelle Komplexität und die Existenz einer Vielzahl von unterschiedlichen Polymorphen aus, welche leicht ineinander überführt werden können. Mit dieser Eigenschaft verbunden ist ihre Anwendung in der Katalyse, wo sie als Katalysatoren in der Synthese von Maleinsäure Anhydrid aus n-Butan Verwendung finden. Aufgrund der Komplexität der Reaktion werden dem aktiven Katalysator im Wechselspiel mit den aus der Gasphase adsorbierten Molekül...

  14. Structure of molecules and internal rotation

    CERN Document Server

    Mizushima, San-Ichiro

    1954-01-01

    Structure of Molecules and Internal Rotation reviews early studies on dihalogenoethanes. This book is organized into two parts encompassing 8 chapters that evaluate the Raman effect in ethane derivatives, the energy difference between rotational isomers, and the infrared absorption of ethane derivatives. Some of the topics covered in the book are the potential barrier to internal rotation; nature of the hindering potential; entropy difference between the rotational isomers; internal rotation in butane, pentane, and hexane; and internal rotation in long chain n-paraffins. Other chapters deal wi

  15. Cytotoxic Compounds Isolated from Murraya tetramera Huang

    OpenAIRE

    Chun-Xue You; Kai Yang; Cheng-Fang Wang; Wen-Juan Zhang; Ying Wang; Jiao Han; Li Fan; Shu-Shan Du; Zhu-Feng Geng; Zhi-Wei Deng

    2014-01-01

    A new compound and seven known compounds were isolated from Murraya tetramera Huang for the first time, and they were identified with NMR and MS spectral analysis. It was confirmed that the new compound was 10-methoxy-7-methyl-2H-benzo[g]chromen-2-one (3) and the others were β-eudesmol (1), trans-3β-(1-hydroxy-1-methylethyl)-8aβ-methyl-5-methylenedecalin-2-one (2), 5,7-dimethoxy-8-[(Z)-3'-methyl-butan-1',3'-dienyl]coumarin (4), 7-geranyloxy-6-methoxycoumarin (5), 5,7-dimethoxy-8-(3-methyl-2-o...

  16. Structure of Titan's evaporites

    CERN Document Server

    Cordier, D; Barnes, J W; MacKenzie, S M; Bahers, T Le; Nna-Mvondo, D; Rannou, P; Ferreira, A G

    2015-01-01

    Numerous geological features that could be evaporitic in origin have been identified on the surface of Titan. Although they seem to be water-ice poor, their main properties -chemical composition, thickness, stratification- are essentially unknown. In this paper, which follows on a previous one focusing on the surface composition (Cordier et al., 2013), we provide some answers to these questions derived from a new model. This model, based on the up-to-date thermodynamic theory known as "PC-SAFT", has been validated with available laboratory measurements and specifically developed for our purpose. 1-D models confirm the possibility of an acetylene and/or butane enriched central layer of evaporitic deposit. The estimated thickness of this acetylene-butane layer could explain the strong RADAR brightness of the evaporites. The 2-D computations indicate an accumulation of poorly soluble species at the deposit's margin. Among these species, HCN or aerosols similar to tholins could play a dominant role. Our model pre...

  17. View of the LP gas supply/demand in Asia and a survey of the Middle East trend; Asia no LP gas jukyu tenbo to Chuto doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    A study was made on the LP gas supply/demand in Asia including an outlook for 2000. Eleven countries in Asia including NIES countries, ASEAN countries, China and India have been continuing their rapid growth of economy and have rapidly been increasing their energy consumption. There, LP gas spreads as a home use fuel, and countries excluding some LP gas producing countries depend considerably upon the import from the Middle East. The LP gas consumption quantity is steadily increasing in China and India having huge population, etc., and dependence of LP gas is increasing upon LP gas producing countries of the Middle East. Nevertheless, in the Middle East, the domestic consumption of LP gas, mostly butane, is increasing. Namely, butane is used as raw material of MTBE, and LP gas as that of petroleum chemicals. The Middle East has a lot of plant projects of a sizable size in the future, which predicts that LP gas export from LP gas producing countries of the Middle East is decreasing. 2 refs., 62 figs., 57 tabs.

  18. Total-factor energy efficiency of regions in Japan

    International Nuclear Information System (INIS)

    This study computes the regional total-factor energy efficiency (TFEE) in Japan by employing the data envelopment analysis (DEA). A dataset of 47 prefectures in Japan for the period 1993-2003 is constructed. There are 14 inputs, including three production factors (labor employment, private, and public capital stocks) and 11 energy sources (electric power for commercial and industrial use, electric power for residential use, gasoline, kerosene, heavy oil, light oil, city gas, butane gas, propane gas, coal, and coke). GDP is the sole output. Following Fukao and Yue [2000. Regional factor inputs and convergence in Japan-how much can we apply closed economy neoclassical growth models? Economic Review 51, 136-151 (in Japanese)], data on private and public capital stocks are extended. All the nominal variables are transformed into real variables, taking into consideration the 1995 price level. For kerosene, gas oil, heavy oil, butane gas, coal, and coke, there are a few prefectures with TFEEs less than 0.7. The five most inefficient prefectures are Niigata, Wakayama, Hyogo, Chiba, and Yamaguchi. Inland regions and most regions along the Sea of Japan are efficient in energy use. Most of the inefficient prefectures that are developing mainly upon energy-intensive industries are located along the Pacific Belt Zone. A U-shaped relation similar to the environmental Kuznets curve (EKC) is discovered between energy efficiency and per capita income for the regions in Japan

  19. Driving characteristics of a motorcycle fuelled with hydrogen-rich gas produced by an onboard plasma reformer

    Energy Technology Data Exchange (ETDEWEB)

    Rong-Fang, Horng; Chih-Sheng, Wen; Chihng-Tsung, Liauh [Department of Mechanical Engineering, Kun Shan University, No. 949, Da-Wan Road, Yang-Kung City, Tainan County, Taiwan 710 (China); Yu, Chao [Institute of Nuclear Energy Research, Atomic Energy Council (China); Ching-Tsuen, Huang [Fuel Cycle and Materials Administration, Atomic Energy Council (China)

    2008-12-15

    The driving performance and emission characteristics of a 125 cc motorcycle equipped with an onboard plasma reformer for producing hydrogen-rich gas were investigated. Butane with suitable air flow rate was induced into the plasma reformer to produce hydrogen-rich gas, which was used as supplementary fuel for the internal combustion engine. The motorcycle was run under steady and transient conditions on a chassis dynamometer to assess the driving performance and exhaust emissions. Prior to the driving, the operation parameters of the plasma reformer were optimized in a series of tests and the results were an O{sub 2}/C ratio of 0.55 and a butane supply rate of 1.16 L/min. It was shown that under a constant speed of 40 km/h, with the CO and HC emissions similar to that of the original engine, the NO{sub x} emission was found to be improved by 56.8%. During transient driving condition, the improvement of 16%-41% in NO{sub x} concentration was achieved by adding hydrogen-rich gas. The emissions of the motorcycle were also analyzed on a chassis dynamometer tracing an ECE-40 driving pattern. The NO{sub x} emission was improved by 34% as was the HC emission by 4.08%, although the CO emission was increased. Simultaneously, the acceleration characteristics of the vehicle were tested, and were similar under both fuelling systems. (author)

  20. 自适应求积公式在混LPG浓度计算中的应用%Application of Adaptivity Integral in Calculation of Mixed LPG Concentration

    Institute of Scientific and Technical Information of China (English)

    乔伟彪; 马贵阳; 陈杨; 齐国栋

    2011-01-01

    Mixture strength of LPG products in the process of batch transportation was studied, the model of mixture strength was established and calculated by adaptivity integral, application software was used to write simulation program to obtain the data of mixed LPG concentration, and batch transportation was simulated. Then example demonstration was carried out in the LPG pipeline of a LPG Co.,Ltd. The results show that when propane is prior to butane during batch transportation, the mixed LPG concentration is less; however, when butane is prior to propane, the mixed LPG concentration is more.%针对LPC产品的顺序输送中混液量问题进行了研究,建立混液量模型后用自适应积分法进行计算,并用应用软件编制模拟程序实现混液浓度的数据输出,以及进行顺序输送模拟.并通过某石化厂到某液化气有限公司的原料气管道进行实例应用.结论:当前行丙烷时,掺混量较少,当前行丁烷时,由于丁烷的密度比较大,所以掺混量较多.

  1. Drug vaping applied to cannabis: Is “Cannavaping” a therapeutic alternative to marijuana?

    Science.gov (United States)

    Varlet, Vincent; Concha-Lozano, Nicolas; Berthet, Aurélie; Plateel, Grégory; Favrat, Bernard; De Cesare, Mariangela; Lauer, Estelle; Augsburger, Marc; Thomas, Aurélien; Giroud, Christian

    2016-01-01

    Therapeutic cannabis administration is increasingly used in Western countries due to its positive role in several pathologies. Dronabinol or tetrahydrocannabinol (THC) pills, ethanolic cannabis tinctures, oromucosal sprays or table vaporizing devices are available but other cannabinoids forms can be used. Inspired by the illegal practice of dabbing of butane hashish oil (BHO), cannabinoids from cannabis were extracted with butane gas, and the resulting concentrate (BHO) was atomized with specific vaporizing devices. The efficiency of “cannavaping,” defined as the “vaping” of liquid refills for e-cigarettes enriched with cannabinoids, including BHO, was studied as an alternative route of administration for therapeutic cannabinoids. The results showed that illegal cannavaping would be subjected to marginal development due to the poor solubility of BHO in commercial liquid refills (especially those with high glycerin content). This prevents the manufacture of liquid refills with high BHO concentrations adopted by most recreational users of cannabis to feel the psychoactive effects more rapidly and extensively. Conversely, “therapeutic cannavaping” could be an efficient route for cannabinoids administration because less concentrated cannabinoids-enriched liquid refills are required. However, the electronic device marketed for therapeutic cannavaping should be carefully designed to minimize potential overheating and contaminant generation. PMID:27228348

  2. Two Cadmium(Ⅱ) Coordination Polymers from Flexible Bis(imidazolyl) Ligands%Two Cadmium(Ⅱ) Coordination Polymers from Flexible Bis(imidazolyl) Ligands

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Ju; GUO Xiao-Fang; MA Guang-Chao

    2012-01-01

    The hydrothermal reaction of 1,4-bis(imidazol-1-yl)butane (bimb) and 1,4-bis(2- methylimidazol-1'-yl)butane (bmib) with CdBr2·4H2O gave rise to two coordination polymers, [Cd(bimb)2Br2]n (1) and [Cd(bmib)Br2]n (2), respectively. Single-crystal X-ray diffraction analysis reveals that 1 and 2 crystallize in the monoclinic space group P21/n and the orthorhombic space group Pccn, respectively. In 1, bimb adopts an anti-anti-anti conformation and bridges adjacent Cd(Ⅱ) to form a two-dimensional (2D) network containing rhombohedral rings. The 2D layers are arranged in an offset ABCABC sequence to fill large void in the rhombohedral rings. In 2, bmib also exhibits an anti-anti-anti conformation, but it links neighboring Cd(Ⅱ) into a one-dimensional (1 D) chain. Br in 1 and 2 serves as a monodentate ligand to balance charge.

  3. Selection of Optimum Working Fluid for Organic Rankine Cycles by Exergy and Exergy-Economic Analyses

    Directory of Open Access Journals (Sweden)

    Kamyar Darvish

    2015-11-01

    Full Text Available The thermodynamic performance of a regenerative organic Rankine cycle that utilizes low temperature heat sources to facilitate the selection of proper organic working fluids is simulated. Thermodynamic models are used to investigate thermodynamic parameters such as output power, and energy efficiency of the ORC (Organic Rankine Cycle. In addition, the cost rate of electricity is examined with exergo-economic analysis. Nine working fluids are considered as part of the investigation to assess which yields the highest output power and exergy efficiency, within system constraints. Exergy efficiency and cost rate of electricity are used as objective functions for system optimization, and each fluid is assessed in terms of the optimal operating condition. The degree of superheat and the pressure ratio are independent variables in the optimization. R134a and iso-butane are found to exhibit the highest energy and exergy efficiencies, while they have output powers in between the systems using other working fluids. For a source temperature was equal to 120 °C, the exergy efficiencies for the systems using R134a and iso-butane are observed to be 19.6% and 20.3%, respectively. The largest exergy destructions occur in the boiler and the expander. The electricity cost rates for the system vary from 0.08 USD/kWh to 0.12 USD/kWh, depending on the fuel input cost, for the system using R134a as a working fluid.

  4. Ultrahigh and High Resolution Structures and Mutational Analysis of Monomeric Streptococcus pyogenes SpeB Reveal a Functional Role for the Glycine-rich C-terminal Loop

    Energy Technology Data Exchange (ETDEWEB)

    González-Páez, Gonzalo E.; Wolan, Dennis W. (Scripps)

    2012-09-05

    Cysteine protease SpeB is secreted from Streptococcus pyogenes and has been studied as a potential virulence factor since its identification almost 70 years ago. Here, we report the crystal structures of apo mature SpeB to 1.06 {angstrom} resolution as well as complexes with the general cysteine protease inhibitor trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane and a novel substrate mimetic peptide inhibitor. These structures uncover conformational changes associated with maturation of SpeB from the inactive zymogen to its active form and identify the residues required for substrate binding. With the use of a newly developed fluorogenic tripeptide substrate to measure SpeB activity, we determined IC{sub 50} values for trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane and our new peptide inhibitor and the effects of mutations within the C-terminal active site loop. The structures and mutational analysis suggest that the conformational movements of the glycine-rich C-terminal loop are important for the recognition and recruitment of biological substrates and release of hydrolyzed products.

  5. Selective Oxidation of Light Hydrocarbons Using Lattice Oxygen Instead of Molecular Oxygen

    Institute of Scientific and Technical Information of China (English)

    沈师孔; 李然家; 周吉萍; 余长春

    2003-01-01

    In this paper, selective oxidation of n-butane to maleic anhydride (MA) and partial oxidation of methane to synthesis gas with lattice oxygen instead of molecular oxygen are investigated. For the oxidation of butane to MA in the absence of molecular oxygen, the Ce-Fe promoted VPO catalyst has more available lattice oxygen and provides higher conversion and selectivity than that of the unpromoted one. It is supposed that the introduction of Ce-Fe complex oxides improves redox performance of VPO catalyst and increases the activity of lattice oxygen.For partial oxidation of methane to synthesis gas over LaFeO3 and Lao.8Sro.gFeO3 oxides, the reaction with flow switched between 11% O2-Ar and 11% CH4-He at 900℃ was carried out. The results show that methane can be oxidized to CO and H2 with selectivity over 93% by the lattice oxygen of the catalyst in an appropriate reaction condition, while the lost lattice oxygen can be supplemented by air re-oxidation. It is viable for the lattice oxygen of the LaFeO3 and La0.8Sr0.2FeO3 catalyst instead of molecular oxygen to react with methane to synthesis gas in the redox mode.

  6. Splitting a C-O bond in dialkylethers with bis(1,2,4-tri-t-butylcyclopentadienyl) cerium-hydride does not occur by a sigma-bond metathesis pathway: a combined experimental and DFT computational study

    Energy Technology Data Exchange (ETDEWEB)

    Werkema, Evan; Yahia, Ahmed; Maron, Laurent; Eisenstein, Odile; Andersen, Richard

    2010-04-06

    Addition of diethylether to [1,2,4(Me3C)3C5H2]2CeH, abbreviated Cp'2CeH, gives Cp'2CeOEt and ethane. Similarly, di-n-propyl- or di-n-butylether gives Cp'2Ce(O-n-Pr) and propane or Cp'2Ce(O-n-Bu) and butane, respectively. Using Cp'2CeD, the propane and butane contain deuterium predominantly in their methyl groups. Mechanisms, formulated on the basis of DFT computational studies, show that the reactions begin by an alpha or beta-CH activation with comparable activation barriers but only the beta-CH activation intermediate evolves into the alkoxide product and an olefin. The olefin then inserts into the Ce-H bond forming the alkyl derivative, Cp'2CeR, that eliminates alkane. The alpha-CH activation intermediate is in equilibrium with the starting reagents, Cp'2CeH and the ether, which accounts for the deuterium label in the methyl groups of the alkane. The one-step sigma-bond metathesis mechanism has a much higher activation barrier than either of the two-step mechanisms.

  7. Performance of Structured Packing in High Pressure Distillation

    Institute of Scientific and Technical Information of China (English)

    张鹏; 刘春江; 等

    2002-01-01

    Performance of Mellapak 250Y and 350Y corrugated structured packing in distillation applications at pressures ranging from 0.3 to 2.0MPa is analysed by using HTU-NTU method.These data are obtained in distillation column with 0.15m diameter operated with n-butane/n-pentane system at total reflux.In considering the axial backmixing effects.the height of an overall gas phase transfer unit,HTUOG,is divided into two parts.One part represents the height of an overall gas phase transfer unit,without backmixing, designated as HUTOG,and the other part,designated as the height of a backmixing unit(HBUO),accounts for the backmixing effects.The HTUOG is evaluated from the measured concentration profile of n-butane in liquid phase.The HBUO obtained experimentally is correlated in terms of the properties of the materials being separated and the equivalent diameter of the structured packing.Our result shows that HBUO varies from 0.12 to 0.34m as pressure increases from 1.0 to 1.9MPa.It indicates that the overall efficiency of the structured packing decreas gradually at high pressure,as a result of the vapor backmixing.

  8. Direct and Convenient Mass Spectrometry Sampling with Ambient Flame Ionization

    Science.gov (United States)

    Liu, Xiao-Pan; Wang, Hao-Yang; Zhang, Jun-Ting; Wu, Meng-Xi; Qi, Wan-Shu; Zhu, Hui; Guo, Yin-Long

    2015-11-01

    Recent innovations in ambient ionization technology for the direct analysis of various samples in their native environment facilitate the development and applications of mass spectrometry in natural science. Presented here is a novel, convenient and flame-based ambient ionization method for mass spectrometric analysis of organic compounds, termed as the ambient flame ionization (AFI) ion source. The key features of AFI ion source were no requirement of (high) voltages, laser beams and spray gases, but just using small size of n-butane flame (height approximately 1 cm, about 500 oC) to accomplish the rapid desorption and ionization for direct analysis of gaseous-, liquid- and solid-phase organic compounds, as well as real-world samples. This method has high sensitivity with a limit of detection of 1 picogram for propyphenazone, which allows consuming trace amount of samples. Compared to previous ionization methods, this ion source device is extremely simple, maintain-free, low-cost, user-friendly so that even an ordinary lighter (with n-butane as fuel) can achieve efficient ionization. A new orientation to mass spectrometry ion source exploitation might emerge from such a convenient, easy and inexpensive AFI ion source.

  9. Structure of Titan's evaporites

    Science.gov (United States)

    Cordier, D.; Cornet, T.; Barnes, J. W.; MacKenzie, S. M.; Le Bahers, T.; Nna-Mvondo, D.; Rannou, P.; Ferreira, A. G.

    2016-05-01

    Numerous geological features that could be evaporitic in origin have been identified on the surface of Titan. Although they seem to be water-ice poor, their main properties - chemical composition, thickness, stratification - are essentially unknown. In this paper, which follows on a previous one focusing on the surface composition (Cordier, D., Barnes, J.W., Ferreira, A.G. [2013b]. Icarus 226(2),1431-1437), we provide some answers to these questions derived from a new model. This model, based on the up-to-date thermodynamic theory known as "PC-SAFT", has been validated with available laboratory measurements and specifically developed for our purpose. 1-D models confirm the possibility of an acetylene and/or butane enriched central layer of evaporitic deposit. The estimated thickness of this acetylene-butane layer could explain the strong RADAR brightness of the evaporites. The 2-D computations indicate an accumulation of poorly soluble species at the deposit's margin. Among these species, HCN or aerosols similar to tholins could play a dominant role. Our model predicts the existence of chemically trimodal "bathtub rings" which is consistent with what it is observed at the south polar lake Ontario Lacus. This work also provides plausible explanations to the lack of evaporites in the south polar region and to the high radar reflectivity of dry lakebeds.

  10. Chemical and isotopic compositions of natural gases from the Japanese major oil and gas fields

    International Nuclear Information System (INIS)

    Carbon isotopic ratios (13C/12C) and chemical compositions of methane (C1), ethane (C2), propane (C3), i-butane (i-C4) and n-butane (n-C4) were measured for natural gases from the Japanese major oil and gas fields. The C1/(C2+C3) vs. δ13C(C1) plot suggests that most samples analyzed in the present study are of thermogenic origin with a minor contribution of biogenic gases. Some gases show unusually high ratios of C2/C3 and i-C4/n-C4, and low ratios cf C3/i-C4 (Unusual-Hydrocarbon-Ratio gases: UHR gases). The carbon isotopic ratios and hydrocarbon compositions strongly suggest that these unusual ratios were caused by the chromatographic effect of sediments during migration of the gases. By comparing hydrocarbon ratios (C1/C2, C2/C3, C2/i-C4, C2/n-C4, C3/i-C4, C3/n-C4 and i-C4/n-C4) of the UHR and normal gases, it was found that the natural gases tend to lose their hydrocarbons during migration in the order: n-C4 ≅ C3 > C2 ≅ i-C4 > C1. (author)

  11. Syntheses and electrochromic and fluorescence properties of three double dithienylpyrroles derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Wang Gang [College of Chemistry and Chemical Engineering, Research Institute of Applied Chemistry Southwest University, Key Laboratory of Applied Chemistry of Chongqing Municipality, Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing 400715 (China); Fu Xiangkai, E-mail: fxk@swu.edu.cn [College of Chemistry and Chemical Engineering, Research Institute of Applied Chemistry Southwest University, Key Laboratory of Applied Chemistry of Chongqing Municipality, Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing 400715 (China); Huang Jing; Wu Chuanlong; Wu Liu; Deng Jun; Du Qiuliang [College of Chemistry and Chemical Engineering, Research Institute of Applied Chemistry Southwest University, Key Laboratory of Applied Chemistry of Chongqing Municipality, Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing 400715 (China); Zou Xiaochuan [Department of Biological and Chemical Engineering, Chongqing Education College, Chongqing 400067 (China)

    2011-07-15

    Highlights: > Three kinds of double dithienylpyrroles derivatives have been successfully prepared by the Knorr-Paal condensation between 1,4-di(thiophen-2-yl) butane-1,4-dione and aromatic diamines. > Their polymer films were successfully synthesized via electropolymerization. > The polymer films had stable and well-defined reversible redox process, low optical band gap and multicolor electrochromic behavior. > All the monomers and polymers exhibited different intensity emission bands at different wavelengths. - Abstract: Three double dithienylpyrroles derivatives have been successfully prepared by performing a Knorr-Paal condensation between 1,4-di(thiophen-2-yl) butane-1,4-dione and various aromatic diamines. Additionally, their corresponding polymer films were synthesized via electropolymerization. Their electrochemical, spectroelectrochemical and electrochromic behaviors were further investigated by thermogravimetric analysis, scanning electron microscopy, cyclic voltammetry, UV-vis absorption and fluorescence emission spectra. Scanning electron microscopy and thermogravimetric analysis demonstrated that the polymer films possessed homogeneous, compact and smooth layer structures and thermal stabilities (up to nearly 180 deg. C). Cyclic voltammograms and UV-vis absorption spectra studies showed that the polymer films have stable, well-defined, reversible redox processes, low optical band gaps (E{sub g} < 2.2 eV) and multicolor electrochromic behaviors. Additionally, the fluorescence spectra study showed that all of the monomers and polymers exhibited different intensity emission bands at different wavelengths.

  12. Syntheses and electrochromic and fluorescence properties of three double dithienylpyrroles derivatives

    International Nuclear Information System (INIS)

    Highlights: → Three kinds of double dithienylpyrroles derivatives have been successfully prepared by the Knorr-Paal condensation between 1,4-di(thiophen-2-yl) butane-1,4-dione and aromatic diamines. → Their polymer films were successfully synthesized via electropolymerization. → The polymer films had stable and well-defined reversible redox process, low optical band gap and multicolor electrochromic behavior. → All the monomers and polymers exhibited different intensity emission bands at different wavelengths. - Abstract: Three double dithienylpyrroles derivatives have been successfully prepared by performing a Knorr-Paal condensation between 1,4-di(thiophen-2-yl) butane-1,4-dione and various aromatic diamines. Additionally, their corresponding polymer films were synthesized via electropolymerization. Their electrochemical, spectroelectrochemical and electrochromic behaviors were further investigated by thermogravimetric analysis, scanning electron microscopy, cyclic voltammetry, UV-vis absorption and fluorescence emission spectra. Scanning electron microscopy and thermogravimetric analysis demonstrated that the polymer films possessed homogeneous, compact and smooth layer structures and thermal stabilities (up to nearly 180 deg. C). Cyclic voltammograms and UV-vis absorption spectra studies showed that the polymer films have stable, well-defined, reversible redox processes, low optical band gaps (Eg < 2.2 eV) and multicolor electrochromic behaviors. Additionally, the fluorescence spectra study showed that all of the monomers and polymers exhibited different intensity emission bands at different wavelengths.

  13. Surface Charge Density Determines the Efficiency of Cationic Gemini Surfactant Based Lipofection

    Science.gov (United States)

    Ryhänen, Samppa J.; Säily, Matti J.; Paukku, Tommi; Borocci, Stefano; Mancini, Giovanna; Holopainen, Juha M.; Kinnunen, Paavo K. J.

    2003-01-01

    The efficiencies of the binary liposomes composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and cationic gemini surfactant, (2S,3R)-2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide as transfection vectors, were measured using the enhanced green fluorescent protein coding plasmid and COS-1 cells. Strong correlation between the transfection efficiency and lipid stoichiometry was observed. Accordingly, liposomes with XSR−1 ≥ 0.50 conveyed the enhanced green fluorescent protein coding plasmid effectively into cells. The condensation of DNA by liposomes with XSR−1 > 0.50 was indicated by static light scattering and ethidium bromide intercalation assay, whereas differential scanning calorimetry and fluorescence anisotropy of diphenylhexatriene revealed stoichiometry dependent reorganization in the headgroup region of the liposome bilayer, in alignment with our previous Langmuir-balance study. Surface charge density and the organization of positive charges appear to determine the mode of interaction of DNA with (2S,3R)-2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide/1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomes, only resulting in DNA condensation when XSR−1 > 0.50. Condensation of DNA in turn seems to be required for efficient transfection. PMID:12524311

  14. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, July--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States)

    1992-12-31

    The experimental study of coal swelling ratios have been determined with a wide variety of solvents. Only marginal levels of coal swelling were observed for the hydrocarbon solvents, but high levels were found with solvents having heteroatom functionality. Blends were superior to pure solvents. The activity of various catalyst precursors for pyrene hydrogenation and coal conversion was measured. Higher coal conversions were observed for the S0{sub 2}-treated coal than the raw coal, regardless of catalyst type. Coal conversions were highest for Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively. Bottoms processing consists of a combination of the ASCOT process coupling solvent deasphalting with delayed coking. Initial results indicate that a blend of butane and pentane used near the critical temperature of butane is the best solvent blend for producing a yield/temperature relationship of proper sensitivity and yet retaining an asphalt phase of reasonable viscosity. The literature concerning coal swelling, both alone and in combination with coal liquefaction, and the use of dispersed or unsupported catalysts in coal liquefaction has been updated.

  15. Drug vaping applied to cannabis: Is "Cannavaping" a therapeutic alternative to marijuana?

    Science.gov (United States)

    Varlet, Vincent; Concha-Lozano, Nicolas; Berthet, Aurélie; Plateel, Grégory; Favrat, Bernard; De Cesare, Mariangela; Lauer, Estelle; Augsburger, Marc; Thomas, Aurélien; Giroud, Christian

    2016-05-26

    Therapeutic cannabis administration is increasingly used in Western countries due to its positive role in several pathologies. Dronabinol or tetrahydrocannabinol (THC) pills, ethanolic cannabis tinctures, oromucosal sprays or table vaporizing devices are available but other cannabinoids forms can be used. Inspired by the illegal practice of dabbing of butane hashish oil (BHO), cannabinoids from cannabis were extracted with butane gas, and the resulting concentrate (BHO) was atomized with specific vaporizing devices. The efficiency of "cannavaping," defined as the "vaping" of liquid refills for e-cigarettes enriched with cannabinoids, including BHO, was studied as an alternative route of administration for therapeutic cannabinoids. The results showed that illegal cannavaping would be subjected to marginal development due to the poor solubility of BHO in commercial liquid refills (especially those with high glycerin content). This prevents the manufacture of liquid refills with high BHO concentrations adopted by most recreational users of cannabis to feel the psychoactive effects more rapidly and extensively. Conversely, "therapeutic cannavaping" could be an efficient route for cannabinoids administration because less concentrated cannabinoids-enriched liquid refills are required. However, the electronic device marketed for therapeutic cannavaping should be carefully designed to minimize potential overheating and contaminant generation.

  16. Integrated network-diversity analyses suggest suppressive effect of Hodgkin’s lymphoma and slightly relieving effect of chemotherapy on human milk microbiome

    Science.gov (United States)

    Ma, Zhanshan (Sam); Li, Lianwei; Li, Wendy; Li, Jie; Chen, Hongju

    2016-01-01

    We aim to investigate the effects of Hodgkin’s lymphoma and the chemotherapy for treating the disease on the human milk microbiome through integrated network and community diversity analyses. Our analyses suggest that Hodgkin’s lymphoma seems to have a suppressing effect on the milk microbiome by lowering the milk microbial community diversity, as measured by the Hill numbers profiles. Although the diversity analysis did not reveal an effect of chemotherapy on community diversity, bacterial species interaction network analysis shows that chemotherapy may help to slightly restore the milk microbiome impacted by Hodgkin’s lymphoma through its influence on the interactions among species (or OTUs). We further constructed diversity-metabolites network, which suggests that the milk microbial diversity is positively correlated with some beneficial milk metabolites such as DHA (DocosaHexaenoic Acid), and that the diversity is negatively correlated with some potentially harmful metabolites such as Butanal. We hence postulate that higher milk microbial diversity should be a signature of healthy mothers and beneficial to infants. Finally, we constructed metabolites OTU correlation networks, from which we identified some special OTUs. These OTUs deserve further investigations given their apparent involvements in regulating the levels of critical milk metabolites such as DHA, Inositol and Butanal. PMID:27386954

  17. Integrated network-diversity analyses suggest suppressive effect of Hodgkin's lymphoma and slightly relieving effect of chemotherapy on human milk microbiome.

    Science.gov (United States)

    Ma, Zhanshan Sam; Li, Lianwei; Li, Wendy; Li, Jie; Chen, Hongju

    2016-01-01

    We aim to investigate the effects of Hodgkin's lymphoma and the chemotherapy for treating the disease on the human milk microbiome through integrated network and community diversity analyses. Our analyses suggest that Hodgkin's lymphoma seems to have a suppressing effect on the milk microbiome by lowering the milk microbial community diversity, as measured by the Hill numbers profiles. Although the diversity analysis did not reveal an effect of chemotherapy on community diversity, bacterial species interaction network analysis shows that chemotherapy may help to slightly restore the milk microbiome impacted by Hodgkin's lymphoma through its influence on the interactions among species (or OTUs). We further constructed diversity-metabolites network, which suggests that the milk microbial diversity is positively correlated with some beneficial milk metabolites such as DHA (DocosaHexaenoic Acid), and that the diversity is negatively correlated with some potentially harmful metabolites such as Butanal. We hence postulate that higher milk microbial diversity should be a signature of healthy mothers and beneficial to infants. Finally, we constructed metabolites OTU correlation networks, from which we identified some special OTUs. These OTUs deserve further investigations given their apparent involvements in regulating the levels of critical milk metabolites such as DHA, Inositol and Butanal. PMID:27386954

  18. Total-factor energy efficiency of regions in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Honma, Satoshi [Faculty of Economics, Kyushu Sangyo University, 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503 (Japan); Hu, Jin-Li [Institute of Business and Management, National Chiao Tung University (China)

    2008-02-15

    This study computes the regional total-factor energy efficiency (TFEE) in Japan by employing the data envelopment analysis (DEA). A dataset of 47 prefectures in Japan for the period 1993-2003 is constructed. There are 14 inputs, including three production factors (labor employment, private, and public capital stocks) and 11 energy sources (electric power for commercial and industrial use, electric power for residential use, gasoline, kerosene, heavy oil, light oil, city gas, butane gas, propane gas, coal, and coke). GDP is the sole output. Following Fukao and Yue [2000. Regional factor inputs and convergence in Japan - how much can we apply closed economy neoclassical growth models? Economic Review 51, 136-151 (in Japanese)], data on private and public capital stocks are extended. All the nominal variables are transformed into real variables, taking into consideration the 1995 price level. For kerosene, gas oil, heavy oil, butane gas, coal, and coke, there are a few prefectures with TFEEs less than 0.7. The five most inefficient prefectures are Niigata, Wakayama, Hyogo, Chiba, and Yamaguchi. Inland regions and most regions along the Sea of Japan are efficient in energy use. Most of the inefficient prefectures that are developing mainly upon energy-intensive industries are located along the Pacific Belt Zone. A U-shaped relation similar to the environmental Kuznets curve (EKC) is discovered between energy efficiency and per capita income for the regions in Japan. (author)

  19. Best C4+ and C5+ Beams of the Kei2 ECR Ion Source%Kei2 ECR离子源C4+、C5+束流的最佳结果

    Institute of Scientific and Technical Information of China (English)

    A.G.Drentje; M.Muramatsu; A.Kitagawa

    2007-01-01

    With the prototype ECR ion source for the next carbon therapy facility in Japan a new series of measurements has been performed in order(a)to find the highest beam currents of C4+ ions,and(b)to study the effect of"special"gas-mixing by using a chemical compound as a feed gas. An isotopic effect has been found in a previous experiment:with deuterated methane(CD4 gas)the C5+ beam currents are about 10% higher than with regular methane(CH4 gas).For butane gases(C4D10 and C4H10 respectively)the isotopic effect for C5+ production is even stronger(>15%).For production of C4+ ions the isotopic effect appears to be absent.It turns out that the relative amount of carbon is much more important:acetylene gives 15%higher C4+ current than butane,which in turn gives about 10% higher C4+ ion currents than methane.

  20. Implementing and Comparison between Two Algorithms to Make a Decision in a Wireless Sensors Network

    Directory of Open Access Journals (Sweden)

    Fouad Essahlaoui

    2016-08-01

    Full Text Available The clinical presentation of acute CO poisoning and hydrocarbon gas (Butane CAS 106-97-8 varies depending on terrain, humidity, temperature, duration of exposure and the concentration of gas toxic: From then consciousness disorders (100 ppm or 15% rapidly limiting miners to ambient air and under oxygen until sudden coma (300 ppm or 45% required hospitalization monitoring unit, if not the result in few minutes it’s death in the poisoning site [1]. Leakage of the filling butane gas in the plant and very close to the latter position at the Faculty and under gas detection project. Has met a set of sensors to warn of possible leak, which can affect students, teachers and staff of the institution. Therefore, this document describes the implementation of two methods: the first is Average filter and the second as Cusum algorithm, to make a warning decision swished a signal given by the wireless sensors [9] [14-15]. Which installed in the inner side of Faculty of Science and Technology in Errachidia.

  1. Nanostructured composite TiO{sub 2}/carbon catalysts of high activity for dehydration of n-butanol

    Energy Technology Data Exchange (ETDEWEB)

    Cyganiuk, Aleksandra [Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun (Poland); Klimkiewicz, Roman [Institute of Low Temperature and Structure Research PAN, 50-422 Wroclaw (Poland); Bumajdad, Ali [Faculty of Science, Kuwait University, PO Box 5969 Safat, Kuwait 13060 (Kuwait); Ilnicka, Anna [Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun (Poland); Lukaszewicz, Jerzy P., E-mail: jerzy_lukaszewicz@o2.pl [Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun (Poland)

    2015-08-15

    Highlights: • New biotechnological method for fabrication of composite catalysts. • In situ synthesis of nanosized TiO{sub 2} clusters in the carbon matrix. • High dispersion of TiO{sub 2} in carbon matrix. • High catalytic activity achieved for very low active phase content. • Efficient dehydration of n-butanol to butane-1. - Abstract: A novel method of wood impregnation with titanium ions is presented. Titanium(IV) ions were complexed to peroxo/hydroxo complexes which were obtained by treating a TiCl{sub 4} water solution with H{sub 2}O{sub 2}. The solution of chelated titanium ions was used for the impregnation of living stems of Salix viminalis wood. Saturated stems were carbonized at 600–800 °C, yielding a microporous carbon matrix, in which nanoparticles of TiO{sub 2} were uniformly distributed. A series of composite TiO{sub 2}–carbon catalysts was manufactured and tested in the process of n-butanol conversion to butane-1. The composite catalysts exhibited very high selectivity (ca. 80%) and yield (ca. 30%) despite a low content of titanium (ca. 0.5% atomic). The research proved that the proposed functionalization led to high dispersion of the catalytic phase (TiO{sub 2}), which played a crucial role in the catalyst performance. High dispersion of TiO{sub 2} was achieved due to a natural transport of complexed titanium ions in living plant stems.

  2. Benchmark thermochemistry of the C_nH_{2n+2} alkane isomers (n=2--8) and performance of DFT and composite ab initio methods for dispersion-driven isomeric equilibria

    CERN Document Server

    Karton, Amir; Martin, Jan M L

    2009-01-01

    The thermochemistry of linear and branched alkanes with up to eight carbons has been reexamined by means of W4, W3.2lite and W1h theories. `Quasi-W4' atomization energies have been obtained via isodesmic and hypohomodesmotic reactions. Our best atomization energies at 0 K (in kcal/mol) are: 1220.04 n-butane, 1497.01 n-pentane, 1774.15 n-hexane, 2051.17 n-heptane, 2328.30 n-octane, 1221.73 isobutane, 1498.27 isopentane, 1501.01 neopentane, 1775.22 isohexane, 1774.61 3-methylpentane, 1775.67 diisopropyl, 1777.27 neohexane, 2052.43 isoheptane, 2054.41 neoheptane, 2330.67 isooctane, and 2330.81 hexamethylethane. Our best estimates for $\\Delta H^\\circ_{f,298K}$ are: -30.00 n-butane, -34.84 n-pentane, -39.84 n-hexane, -44.74 n-heptane, -49.71 n-octane, -32.01 isobutane, -36.49 isopentane, -39.69 neopentane, -41.42 isohexane, -40.72 3-methylpentane, -42.08 diisopropyl, -43.77 neohexane, -46.43 isoheptane, -48.84 neoheptane, -53.29 isooctane, and -53.68 hexamethylethane. These are in excellent agreement (typically be...

  3. Screening of volatile composition of Lavandula hybrida Reverchon II honey using headspace solid-phase microextraction and ultrasonic solvent extraction.

    Science.gov (United States)

    Jerković, Igor; Marijanović, Zvonimir

    2009-03-01

    The volatiles of unifloral Lavandula hybrida Reverchon II honey were isolated by means of headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE) and analyzed by gas chromatography and mass spectrometry (GC, GC/MS). A total of 23 compounds were identified in the headspace with hexan-1-ol, hexanal, acetic acid, hotrienol, and 2-phenylacetaldehyde as the principal components. Three solvents of different polarity were used for USE, and a total of 53 compounds were identified. The extracts with pentane/Et(2)O 1 : 2 (v/v) were the most representative for USE method containing the majority of the honey floral origin compounds and potential biomarkers (hexanol, acetic acid, butane-1,3-diol, butane-2,3-diol, benzoic acid, coumarin, and 2-phenylacetic acid). The total number of identified compounds (USE and HS-SPME) was 59. In general, the comparison with volatiles of other lavandin honeys of different geographic origins indicated several similarities, while acetic and formic acids were identified with high percentages in L. hybrida Reverchon II honey. PMID:19319870

  4. Sensors for online determination of CNG gas quality; Sensorer foer onlinebestaemnning av fordonsgaskvalitet

    Energy Technology Data Exchange (ETDEWEB)

    Stenlaaaas, Ola; Roedjegaard, Henrik

    2012-07-01

    Swedish automotive gas has until now been a very uniform, high quality automotive fuel. Elsewhere in Europe the quality of automotive gas varies significantly. Gas from different sources with different flammability require engine settings adjusted to the chosen gas' unique composition. The prospects for a vehicle-mounted sensor based on infrared technology for gas quality measurement has been studied and solutions are presented with questions that must be answered in a possible future work. The proposed vehicle mounted sensor is based on two channels, one of which measures the partial pressure of methane and the other measures the partial pressure of heavier hydrocarbons in 'equivalents of butane'. Ethane produces a signal of about 0.6 equivalents of butane and propane about 0.8 equivalents. The sensor can be accommodated in a cube with 5 cm side and should be equipped with nipple connections to the existing system. The sensor is expected to work throughout their entire lifetime without manual calibration, through continuous automatic calibration, so-called ABC (Automatic Baseline Compensation). The sensor will have to meet tough quality and environmental standards in which primarily contact ring, vibration and prevention of leakage are identified as extra difficult. Working temperatures and the electrical conditions of power supply and communication interface is considered less challenging. In one million volumes, the cost per sensor could be 200 to 300 SEK.

  5. The synthesis and spectroscopic study of stable free radicals related to piperidine-n-oxyl, including a stable bi-radical; Syntheses et etudes spectroscopiques de radicaux libres piperidiniques et d'un biradical stable, du type nitroxyde

    Energy Technology Data Exchange (ETDEWEB)

    Briere, R. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires, Laboratoire de chimie organique physique

    1967-06-01

    A new synthesis of di-tert-butyl nitroxide using the reaction between tert-butyl magnesium chloride and nitro-tert-butane is presented in the first section. Synthesis and investigation of stable free piperidine-N-oxyl radicals are described in the second section. All these nitroxides have been characterised by their I. R., U. V. and E. P. R. absorption spectra. The final section contains a description of the synthesis of a stable bi-radical of the nitroxide type by condensation of 2,2, 6, 6-tetramethyl-piperid-4-one-l-oxyl with hydrazine. (author) [French] La premiere partie expose une nouvelle methode de synthase du di-t-butyl nitroxyde, par action d'halogenures de t-butyl magnesium sur le nitro-t-butane (Rdt maximum 45 pour cert, purete 86 pour cent). Une etude de radicaux. libres stables pipericliniques est faite dans une seconde partie. Ces composes sont obtenus par oxydation de derives de la triacetonamine. Les caracteristiques spectroscopiques ultra-violette, infra-rouge, et paramagnetique electronique de ces radicaux sont donnees. La grande inertie chimique du groupement nitroxyde a permis la syn-these d'un biradical stable par formation d'azine d'une cetone radicalaire, ce qui fait 1'objet de la troisieme partie. (auteur)

  6. Phase behaviour in water/hydrocarbon mixtures involved in gas production systems; etude des equilibres des systemes: eau-hydrocarbures-gaz acides dans le cadre de la production de gaz

    Energy Technology Data Exchange (ETDEWEB)

    Chapoy, A.

    2004-11-15

    Inside wells, natural gases frequently coexist with water. The gases are in equilibrium with the sub-adjacent aquifer. Many problems are associated with the presence of water during the production, transport and processing of natural gases. Accurate knowledge of the thermodynamic properties of the water/hydrocarbon and water-inhibitor/hydrocarbon equilibria near the hydrate forming conditions, at sub-sea pipeline conditions and during the transport is crucial for the petroleum industry. An apparatus based on a static/analytic method combined with a dilutor apparatus to calibrate on the gas chromatograph (GC) detectors with water was used to measure the water content of binary systems (i.e.: water - methane, ethane - water, nitrogen - water...) as well of a synthetic hydrocarbon gas mixture (i.e.: 94% methane, 4% ethane and 2% n-butane) with and without inhibitor. This same apparatus was also used generate data of methane, ethane, propane, n-butane and nitrogen solubility in water and also the solubilities of a synthetic mixture in water. In-house software has been developed in order to fit and model the experimental data. (author)

  7. Honeydew volatile emission acts as a kairomonal message for the Asian lady beetle Harmonia axyridis (Coleoptera:Coccinellidae)

    Institute of Scientific and Technical Information of China (English)

    Pascal D. Leroy; Eric Haubruge; Stéphanie Heuskin; Ahmed Sabri; Fran(c)ois J. Verheggen; Julien Farmakidis; Georges Lognay; Philippe Thonart; Jean-Paul Wathelet; Yves Brostaux

    2012-01-01

    The Asian lady beetle Harmonia axyridis Pallas is considered as an invasive species in most territories where it has been introduced.Because aphid honeydew acts as an attractant for many aphid predators and parasitoids,the objectives of this work were to collect and identify the volatile compounds released from the aphid excretory product to evaluate how these semiochemicals could affect the H.axyridis foraging behavior.Twelve volatile chemicals were identified from the Megoura viciae Buckton honeydew including four alcohols,three ketones,three aldehydes,a pyrazine and a monoterpene.The volatiles 3-methyl-1-butanol and 3-methyl-butanal were highlighted as the two most abundant semiochemicals released from the M.viciae honeydew.Vicia faba L.plants treated with crude honeydew attracted more than 80% of the tested individuals with 40% of attracted beetles located on the plant.Four volatile compounds (3-hydroxy-2-butanone,3-methyl-butanal,3-methyl-1-butanol and limonene) were also highlighted to attract more than 75% of the coccinellids toward the odor source and to locate about 35% of them on the plants.Limonene was the most efficient attractant since 89% of the H.axyridis responded to this odor.The use of the identified semiochemicals as well as the composition of an artificial honeydew could certainly be helpful to control the dispersal of the Asian lady beetle H.axyridis.

  8. Volatile substance misuse: an updated review of toxicity and treatment.

    Science.gov (United States)

    Ford, Jonathan B; Sutter, Mark E; Owen, Kelly P; Albertson, Timothy E

    2014-02-01

    Educational campaigns and legislative actions may have led to an overall decrease in the prevalence of volatile substance misuse (VSM) in many countries; however, it is still a common practice throughout the world. Studies currently suggest that girls are misusing volatile substances more than before and at a prevalence rate equal to or exceeding that of boys in several countries. Products that may be misused are ubiquitous and relatively easy to acquire. The most commonly misused substances in recent studies are fuels such as butane or petrol and compressed gas dusters and deodorants that may contain fluorocarbons and/or butane. Detection of VSM is challenging, therefore physicians must maintain a high level of suspicion based on history and clinical presentation. Clues to misuse are often subtle and may include the patient's proximity to a volatile substance or paraphernalia when found intoxicated, dermal burns, blisters, pigments, or rashes, and chemical odors. The primary targets of toxicity are the brain and the heart. The leading cause of death from VSM is from ventricular dysrhythmias. Treatment of toxicity begins with support of airway, breathing, and circulation. Exogenous catecholamines should be avoided if possible due to the theoretical "sensitized" and irritable myocardium. In the case of ventricular dysrhythmias, direct current defibrillation and/or beta-adrenergic receptor antagonism should be used. New evidence demonstrates the addictive potential of VSM yet effective therapy remains uncertain. Further research is needed in developing methods for preventing, detecting, and treating the harmful effects of VSM.

  9. 主产地泽泻药材顶空萃取挥发性成分的GC-MS分析

    Institute of Scientific and Technical Information of China (English)

    李兰; 吴启南

    2009-01-01

    目的 对福建、江西、四川产泽泻药材的挥发性成分进行研究.方法 顶空萃取泽泻药材中的挥发性成分,利用气相色谱一质谱联用技术对其进行分析.结果 经毛细管气相色谱分离、质谱分析工作站NIST标准图库检索,参照有关文献,确认了17种共有成分.含量较高的有:δ-elemene(δ-榄香烯),3-mthyl-butanal(三甲基正丁醛),2-methyl-butanal(二甲基正丁醛),hxanoie aeid,ethyl ester(己酸己酯),β-elemene(β-榄香烯),beta-caryophyUene(β-石竹烯),2一pentyl-furan(二戊基呋喃),α-caryophyllene(蛇麻烯),elixene,caryophynene oxide(氧化石竹烯)等.化合物类型主要为倍半萜类.结论 利用GC-MS法分析鏊定泽泻挥发性成分,具有快速、稳定、重现性好的特点,可用于泽泻药材挥发性成分的分析.

  10. Distribution, abundance and carbon isotopic composition of gaseous hydrocarbons in Big Soda Lake, Nevada: an alkaline, meromictic lake

    International Nuclear Information System (INIS)

    Distribution and isotopic composition (delta13C) of low molecular weight hydrocarbon gases were studied in Big Soda Lake, an alkaline, meromictic lake with permanently anoxic bottom waters. Methane increased with depth in the anoxic mixolimnion, reached uniform concentrations in the monimolimnion and again increased with depth in monimolimnion bottom sediments. The delta13C[CH4] values in bottom sediment below 1 m sub-bottom depth increased with vertical distance up the core. Monimolimnion delta13C[CH4] values were greater than most delta13C[CH4] values found in the anoxic mixolimnion. No significant concentrations of ethylene or propylene were found in the lake. However ethane, propane, isobutane and n-butane concentrations all increased with water column depth, with respective maximum concentrations of 260, 80, 23 and 22 nM/l encountered between 50 to 60 m depth. Concentrations of ethane, propane and butanes decreased with depth in the bottom sediments. Ratios of CH4/[C2H6 + C3H8] were high in the anoxic mixolimnion, decreased in the monimolimnion and increased with depth in the sediment. We concluded that methane has a biogenic origin in both the sediments and the anoxic water column and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. (author)

  11. Levels and source apportionment of volatile organic compounds in southwestern area of Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Rodolfo Sosa, E. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico); Humberto Bravo, A. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico)], E-mail: hbravo@servidor.unam.mx; Violeta Mugica, A. [Universidad Autonoma Metropolitana, Azcapotzalco, D.F. (Mexico); Pablo Sanchez, A. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico); Emma Bueno, L. [Centro Nacional de Investigacion y Capacitacion Ambiental, Instituto Nacional de Ecologia (Mexico); Krupa, Sagar [Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108 (United States)

    2009-03-15

    Thirteen volatile organic compounds (VOCs) were quantified at three sites in southwestern Mexico City from July 2000 to February 2001. High concentrations of different VOCs were found at a Gasoline refueling station (GS), a Condominium area (CA), and at University Center for Atmospheric Sciences (CAS). The most abundant VOCs at CA and CAS were propane, n-butane, toluene, acetylene and pentane. In comparison, at GS the most abundant were toluene, pentane, propane, n-butane, and acetylene. Benzene, a known carcinogenic compound had average levels of 28, 35 and 250 ppbC at CAS, CA, and GS respectively. The main contributing sources of the measured VOCs at CA and CAS were the handling and management of LP (Liquid Propane) gas, vehicle exhaust, asphalt works, and use of solvents. At GS almost all of the VOCs came from vehicle exhaust and fuel evaporation, although components of LP gas were also present. Based on the overall results possible abatement strategies are discussed. - Volatile organic compounds were quantified in order to perform their source apportionment in southwestern area of Mexico City.

  12. Saudi decree encourages MTBE, Chevron aromatics plant

    International Nuclear Information System (INIS)

    Chevron Chemical (Houston), encouraged by a new Saudi royal decree that establishes extremely low feedstock prices, is in final negotiations to build a novel aromatics plant in Saudi Arabia. Chevron says it plans to close the deal and announce details the first week of March. The unit will be based on Chevron's Aromax reforming process, which uses a zeolite catalyst to convert light naphtha into benzene and toluene. No existing plant is using the technology, but Chevron is building a $250-million, 150-million gal/year Aromax unit at its refinery site in Pascagoula, MS, and Idemitsu has licensed the process for a plant in Chiba, Japan. The Saudi decree, issued late last year, pegs domestic feedstocks - propane, butane, and naphthas - at 30% below the lowest price of the prior quarter in major non-domestic markets. That clarifies and guarantees the Saudi feedstock price, which has always been nebulous, and thus allows project feasibility to be more clearly assessed. The decree is designed to encourage further private petrochemical investment in the country. In particular, the Saudi government hopes guaranteed low prices for butane will encourage more methyl tert-butyl ether (MTBE) projects. Arabian American Chemical, a 50/50 joint venture between Mobile and Arabian Chemical Investments, said in October of last year that its 830,000-m.t./year MTBE project at Yanbu, Saudi Arabia, would go ahead if feedstock questions could be resolved. The decree apparently resolves those questions

  13. A simulation for predicting potential cooling effect on LPG-fuelled vehicles

    Science.gov (United States)

    Setiyo, M.; Soeparman, S.; Wahyudi, S.; Hamidi, N.

    2016-03-01

    Liquefied Petroleum Gas vehicles (LPG Vehicles) provide a potential cooling effect about 430 kJ/kg LPG consumption. This cooling effect is obtained from the LPG phase change from liquid to vapor in the vaporizer. In the existing system, energy to evaporate LPG is obtained from the coolant which is circulated around the vaporizer. One advantage is that the LPG (70/30 propane / butane) when expanded from 8 bar to at 1.2 bar, the temperature is less than -25 °C. These conditions provide opportunities to evaporate LPG with ambient air flow, then produce a cooling effect for cooling car's cabin. In this study, some LPG mix was investigated to determine the optimum condition. A simulation was carried out to estimate potential cooling effects of 2000 cc engine from 1000 rpm to 6000 rpm. In this case, the mass flow rate of LPG is a function of fuel consumption. The simulation result shows that the LPG (70/30 propane/butane) provide the greatest cooling effect compared with other mixtures. In conclusion, the 2000 cc engine fueled LPG at 3000 rpm provides potential cooling effect more than 1.3 kW, despite in the low engine speed (1000 rpm) only provides about 0.5 kW.

  14. ESTIMATION OF VOLATILE CONSTITUENTS IN THE FISH FLESH FROM WILD AND FARMED CIRRHINA MRIGALA AND CYPRINUS CARPIO

    Institute of Scientific and Technical Information of China (English)

    Shahid Mahboob; Bilal Hussain; Zahid Iqbal; Abdul Shakoor Chaudhry

    2009-01-01

    Analysis of fish meat using gas chromatography is described. Flavor is the sensation arising from the interplay of the signals of sensing smell, taste and irritating stimuli from food stuff. For human, flavor and nutrition are inseparable. In fish, trace amount of volatile organic compounds (VOCs) are the major compounds to affect consumer's preference, which are produced during storage and spoilage. In the present study, volatile compounds were extracted by Likens-Nickerson con-current distillation apparatus from wild and farmed Cirrhina mrigala and Cyprinus carpio. The quantitative and qualitative estimation of volatiles was made by gas chromatography. Wild and farmed fish of different fish sizes were compared for these compounds (appearing in the form of peaks), which were identified from their retention time by comparing with the stand-ards. Fifteen major VOCs were found in these species which included hexadecane, 3-octanol, hexanal, decane, 3-hexene-1-ol, 2-undecanone, 2-heptanone, butanal, 2-nonanone, 1-heptanal, furaldehyde, 3-methyl-1-butanal, trans-3-hexene-1-ol, octanal and decanal. These compounds varied qualitatively and quantitatively in both wild and farmed fish of different fish sizes.

  15. Analysis of the Properties of Working Substances for the Organic Rankine Cycle based Database “REFPROP”

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2016-01-01

    Full Text Available The object of the study are substances that are used as a working fluid in systems operating on the basis of an organic Rankine cycle. The purpose of research is to find substances with the best thermodynamic, thermal and environmental properties. Research conducted on the basis of the analysis of thermodynamic and thermal properties of substances from the base “REFPROP” and with the help of numerical simulation of combined-cycle plant utilization triple cycle, where the lower cycle is an organic Rankine cycle. Base “REFPROP” describes and allows to calculate the thermodynamic and thermophysical parameters of most of the main substances used in production processes. On the basis of scientific publications on the use of working fluids in an organic Rankine cycle analysis were selected ozone-friendly low-boiling substances: ammonia, butane, pentane and Freon: R134a, R152a, R236fa and R245fa. For these substances have been identified and tabulated molecular weight, temperature of the triple point, boiling point, at atmospheric pressure, the parameters of the critical point, the value of the derivative of the temperature on the entropy of the saturated vapor line and the potential ozone depletion and global warming. It was also identified and tabulated thermodynamic and thermophysical parameters of the steam and liquid substances in a state of saturation at a temperature of 15 °C. This temperature is adopted as the minimum temperature of heat removal in the Rankine cycle when working on the water. Studies have shown that the best thermodynamic, thermal and environmental properties of the considered substances are pentane, butane and R245fa. For a more thorough analysis based on a gas turbine plant NK-36ST it has developed a mathematical model of combined cycle gas turbine (CCGT triple cycle, where the lower cycle is an organic Rankine cycle, and is used as the air cooler condenser. Air condenser allows stating material at a temperature

  16. Impact of Hong Kong's Voluntary Catalytic Converter Replacement Programme on Roadside Air Quality

    Science.gov (United States)

    Simpson, I. J.; Guo, H.; Louie, P. K. K.; Luk, C.; Lyu, X.; Meinardi, S.; Yam, Y. S.; Blake, D. R.

    2015-12-01

    As part of its ongoing policies to improve roadside air quality, in 2013 the Hong Kong government launched an incentive programme to replace catalytic converters and oxygen sensors in taxis and light buses mainly fueled by liquefied petroleum gas (LPG). The majority of replacements occurred from October 2013 to April 2014, with 75% of eligible vehicles participating in the programme, or 16,472 vehicles. Based on taxi exhaust measurements at a Hong Kong vehicle testing facility, the concentrations of n-butane, propane and i-butane (the primary components of LPG) decreased by 97% following the replacements. To determine the impact of the programme on roadside air quality, long-term measurements of volatile organic compounds (VOCs) were analyzed before, during and after the replacement programme, mainly at a busy roadside location in Mong Kok, Hong Kong. A clear decrease in the levels of major pollutants associated with LPG vehicle exhaust was observed at the roadside. For example, average (± 1 standard deviation) n-butane levels from October to April decreased from 13.0 ± 3.6 and 13.9 ± 2.6 ppbv in the two years preceding the programme, to 9.2 ± 2.9 ppbv during the programme, to 6.2 ± 1.7 ppbv the year after the programme. By contrast, compounds such as i-pentane that are not strongly associated with LPG or with LPG exhaust remained steady, averaging 0.90 ± 0.34, 1.01 ± 0.31, 0.93 ± 0.37, and 0.91 ± 0.42 ppbv from October to April of 2011/12, 2012/13, 2013/14 and 2014/15, respectively. Impacts of the programme on roadside levels of nitrogen oxides (NOx) and ozone (O3) will also be discussed. Because many taxis are high mileage vehicles that travel several hundred kilometers daily, their catalytic converters need to be replaced approximately every 18 months. Therefore ongoing vehicle maintenance will be required in order to preserve the gains made from this initial subsidy programme.

  17. Responses of dissolved trace gases (CH4, N2O, CO, NMHCs, CH3Cl) to phytoplankton bloom during in situ iron enrichment (SEEDII) in the western subarctic Pacific

    Science.gov (United States)

    Kameyama, S.; Nakagawa, F.; Sasakawa, M.; Yamaguchi, J.; Komatsu, D. D.; Ijiri, A.; Tsunogai, U.; Horiguchi, T.; Kawamura, H.; Tsuda, A.

    2006-12-01

    Biogeochemical processes in ocean surface are known to play important roles in the global circulation of many trace gases: not only CO2 but also non-CO2 gases, such as CH4, N2O, CO, NMHCs and CH3Cl. The mixing ratios of these components in air are highly responsible for controlling global warming, stratospheric and tropospheric O3, tropospheric OH, organic aerosols, and peroxides. While future global changes could alter air-sea fluxes of these components in ocean surface, the detailed processes to produce/consume these components, as well as the range of the variations, are not clarified as yet. The iron fertilization experiment offers us a wonderful chance to quantify the effect of phytoplankton bloom to the production of the trace gases. During 2004 iron-enrichment experiment in the northwest subarctic Pacific (SEEDSII), we monitored mixing ratios of the trace gases (CH4, N2O, CO, NMHCs and CH3Cl) within the phytoplankton bloom. Besides, the stable isotopic ratios were also monitored to clarify the processes that are responsible for the variations. Both the mixing ratios and the stable isotopic ratios of dissolved CH4, N2O and CH3Cl exhibit little changes during the 23 days observation. On the other hand, dissolved CO exhibit remarkable change in the carbon isotopic composition as phytoplankton bloomed. The maximum variation reached to about 25‰ depletion in δ13C. We conclude that the enrichment of the CO precursor must be responsible for the variation. Furthermore, in accordance with the phytoplankton bloomed, the concentration of NMHCs, especially alkane, exhibit remarkable enrichment in the mixing rations: 3 times for ethane, 4 times for propane, 13 times for butane compared with those prior to the bloom. In accordance with the enrichment, the stable carbon isotopic composition of ethane and propane increased, while that of butane decreased. To clarify the source of alkane during the bloom, we determined both concentration and δ13C of alkane emitted from

  18. Analysis of the Properties of Working Substances for the Organic Rankine Cycle based Database "REFPROP"

    Science.gov (United States)

    Galashov, Nikolay; Tsibulskiy, Svyatoslav; Serova, Tatiana

    2016-02-01

    The object of the study are substances that are used as a working fluid in systems operating on the basis of an organic Rankine cycle. The purpose of research is to find substances with the best thermodynamic, thermal and environmental properties. Research conducted on the basis of the analysis of thermodynamic and thermal properties of substances from the base "REFPROP" and with the help of numerical simulation of combined-cycle plant utilization triple cycle, where the lower cycle is an organic Rankine cycle. Base "REFPROP" describes and allows to calculate the thermodynamic and thermophysical parameters of most of the main substances used in production processes. On the basis of scientific publications on the use of working fluids in an organic Rankine cycle analysis were selected ozone-friendly low-boiling substances: ammonia, butane, pentane and Freon: R134a, R152a, R236fa and R245fa. For these substances have been identified and tabulated molecular weight, temperature of the triple point, boiling point, at atmospheric pressure, the parameters of the critical point, the value of the derivative of the temperature on the entropy of the saturated vapor line and the potential ozone depletion and global warming. It was also identified and tabulated thermodynamic and thermophysical parameters of the steam and liquid substances in a state of saturation at a temperature of 15 °C. This temperature is adopted as the minimum temperature of heat removal in the Rankine cycle when working on the water. Studies have shown that the best thermodynamic, thermal and environmental properties of the considered substances are pentane, butane and R245fa. For a more thorough analysis based on a gas turbine plant NK-36ST it has developed a mathematical model of combined cycle gas turbine (CCGT) triple cycle, where the lower cycle is an organic Rankine cycle, and is used as the air cooler condenser. Air condenser allows stating material at a temperature below 0 °C. Calculation of the

  19. Shock tube measurements of the rate constants for seven large alkanes+OH

    KAUST Repository

    Badra, Jihad

    2015-01-01

    Reaction rate constants for seven large alkanes + hydroxyl (OH) radicals were measured behind reflected shock waves using OH laser absorption. The alkanes, n-hexane, 2-methyl-pentane, 3-methyl-pentane, 2,2-dimethyl-butane, 2,3-dimethyl-butane, 2-methyl-heptane, and 4-methyl-heptane, were selected to investigate the rates of site-specific H-abstraction by OH at secondary and tertiary carbons. Hydroxyl radicals were monitored using narrow-line-width ring-dye laser absorption of the R1(5) transition of the OH spectrum near 306.7 nm. The high sensitivity of the diagnostic enabled the use of low reactant concentrations and pseudo-first-order kinetics. Rate constants were measured at temperatures ranging from 880 K to 1440 K and pressures near 1.5 atm. High-temperature measurements of the rate constants for OH + n-hexane and OH + 2,2-dimethyl-butane are in agreement with earlier studies, and the rate constants of the five other alkanes with OH, we believe, are the first direct measurements at combustion temperatures. Using these measurements and the site-specific H-abstraction measurements of Sivaramakrishnan and Michael (2009) [1,2], general expressions for three secondary and two tertiary abstraction rates were determined as follows (the subscripts indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon): S20=1.58×10-11exp(-1550K/T)cm3molecule-1s-1(887-1327K)S30=2.37×10-11exp(-1850K/T)cm3molecule-1s-1(887-1327K)S21=4.5×10-12exp(-793.7K/T)cm3molecule-1s-1(833-1440K)T100=2.85×10-11exp(-1138.3K/T)cm3molecule-1s-1(878-1375K)T101=7.16×10-12exp(-993K/T)cm3molecule-1s-1(883-1362K) © 2014 The Combustion Institute.

  20. Geochemical characteristics and origin of gases from the Upper,Lower Paleozoic and the Mesozoic reservoirs in the Ordos Basin,China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Ordos Basin,the second largest sedimentary basin in China,contains the broad distribution of natural gas types.So far,several giant gas fields have been discovered in the Upper and Lower Paleozoic in this basin,each having over 1000×10 8 m 3 of proven gas reserves,and several gas pools have also been discovered in the Mesozoic.This paper collected the data of natural gases and elucidated the geochemical characteristics of gases from different reservoirs,and then discussed their origin.For hydrocarbons preserved in the Upper Paleozoic,the elevatedδ13C values of methane,ethane and propane indicate that the gases would be mainly coal-formed gases;the singular reversal in the stable carbon isotopes of gaseous alkanes suggests the mixed gases from humic sources with different maturity.In the Lower Paleozoic,theδ13C 1 values are mostly similar with those in the Upper Paleozoic,but theδ13C 2 andδ13C 3 values are slightly lighter,suggesting that the gases would be mixing of coal-type gases as a main member and oil-type gases.There are multiple reversals in carbon isotopes for gaseous alkanes,especially abnormal reversal for methane and ethane(i.e.δ13C 1 >δ13C 2 ),inferring that gases would be mixed between high-mature coal-formed gases and oil-type gases.In the Mesozoic,the δ13Cvalues for gaseous alkanes are enriched in 12C,indicating that the gases are mainly derived from sapropelic sources;the carbon isotopic reversal for propane and butane in the Mesozoic is caused by microbial oxidation and mixing of gases from sapropelic sources with different maturity.In contrast to the Upper Paleozoic gases,the Mesozoic gases are characterized by heavier carbon isotopes of iso-butane than normal butane,which may be caused by gases generated from different kerogen types. Finally,according toδ13C 1 -Ro relationship and extremely low total organic carbon contents,the Low Paleozoic gases would not be generated from the Ordovician source as a main gas source,bycontrast, the

  1. Interaction between active ruthenium complex [RuCl3(dppb)(VPy)] and phospholipid Langmuir monolayers: Effects on membrane electrical properties

    Science.gov (United States)

    Sandrino, B.; Wrobel, E. C.; Nobre, T. M.; Caseli, L.; Lazaro, S. R.; Júnior, A. C.; Garcia, J. R.; Oliveira, O. N.; Wohnrath, K.

    2016-04-01

    We report on the interaction between mer-[RuCl3(dppb)(VPy)] (dppb = 1,4-bis(diphenylphosphine)butane and VPy = 4-vinylpyridine) (RuVPy) and dipalmitoyl phosphatidyl serine (DPPS), in Langmuir and Langmuir-Blodgett (LB) films. Interaction of RuVPy with DPPS, which predominates in cancer cell membranes, should be weaker than for other phospholipids since RuVPy is less toxic to cancer cells than to healthy cells. Incorporation of RuVPy induced smaller changes in electrochemical properties of LB films of DPPS than for other phospholipids, but the same did not apply to surface pressure isotherms. This calls for caution in establishing correlations between effects from a single property and phenomena on cell membranes.

  2. SOFT ROBOTICS. A 3D-printed, functionally graded soft robot powered by combustion.

    Science.gov (United States)

    Bartlett, Nicholas W; Tolley, Michael T; Overvelde, Johannes T B; Weaver, James C; Mosadegh, Bobak; Bertoldi, Katia; Whitesides, George M; Wood, Robert J

    2015-07-10

    Roboticists have begun to design biologically inspired robots with soft or partially soft bodies, which have the potential to be more robust and adaptable, and safer for human interaction, than traditional rigid robots. However, key challenges in the design and manufacture of soft robots include the complex fabrication processes and the interfacing of soft and rigid components. We used multimaterial three-dimensional (3D) printing to manufacture a combustion-powered robot whose body transitions from a rigid core to a soft exterior. This stiffness gradient, spanning three orders of magnitude in modulus, enables reliable interfacing between rigid driving components (controller, battery, etc.) and the primarily soft body, and also enhances performance. Powered by the combustion of butane and oxygen, this robot is able to perform untethered jumping. PMID:26160940

  3. (η5-Pentamethylcyclopentadienyl(η6-4-phenylbutan-2-oneruthenium(II tetraphenylborate

    Directory of Open Access Journals (Sweden)

    Bradley T. Loughrey

    2010-12-01

    Full Text Available The title compound, [Ru(C10H15(C10H12O][B(C6H54], crystallizes as discrete (η5-pentamethylcyclopentadienylRu(η6-4-phenylbutan-2-one]+ cations and [BPh4]− anions. In the cation, the non-H atoms of the butan-2-one group are approximately planar (r.m.s. deviation = 0.056 Å and lie nearly perpendicular to the plane of the phenyl ring with a dihedral angle between the two planes of 69.3 (1°. No significant C—H...O interactions are observed between the methyl and phenyl H atoms and the carbonyl O atom.

  4. Microwave-assisted processes (MAP{sup TM}) : an energy efficient 'green processing technology'

    Energy Technology Data Exchange (ETDEWEB)

    Pare, J.R.J.; Belanger, J.M.R. [Environment Canada, Ottawa, ON (Canada). Environmental Technology Advancement Directorate

    2000-07-01

    Environment Canada holds patent rights to the microwave-assisted process (MAP{sup TM}) which is an energy efficient processing technology developed for the extraction of essential oils from natural resources. MAP uses localized heating phenomena as opposed to bulk heating in other processes. This process makes it possible to use lower toxicity solvents or even no solvents at all. Because the system requires low energy it conserves resources and reduces greenhouse gas emissions. This paper reported on the characteristics of using microwaves in the extraction industry and presented an overview of various MAP applications in liquid- and gas-phase extractions. The extraction of canola oil was given as an example. New equipment where hexane will be replaced by butane was also discussed. 14 refs.

  5. Minutes of the tenth meeting of the centers for the analysis of thermal/mechanical energy conversion concepts

    Energy Technology Data Exchange (ETDEWEB)

    DiPippo, R.

    1981-03-01

    The agenda, list of participants, and minutes of the meeting are presented. Included in the appendices are figures, data, outlines, etc. from the following presentations: 500 kW Direct-Contact Heat Exchanger Pilot Plant; LBL/EPRI Heat Exchanger Field Test, Critical Temperature and Pressure Comparisons for n-Butane/n-Pentane Mixtures; Second Law Techniques in the Correlation of Cost-Optimized Binary Power Plants; Outline of Chapter on Geothermal Well Logging; Outline and Highlights from Geothermal Drilling and Completion Technology Development Program Annual Progress: October 1979-September 1980; Geothermal Well Stimulation; World Update on Installed Geothermal Power Plants; Baca No. 1 Demonstration Flask Plant: Technical and Cost Data; Heber Binary Project; 45 mw Demonstration Plant; Raft River 5 mw Geothermal Dual-Boiling-Cycle Plant; Materials Considerations in the Design of Geothermal Power Plants; Raft River Brine Treatment for Tower Make-up; and Site Photographs of Raft River Valley.

  6. Micro-structure of graphite-intercalated tin oxide and its influence on SnO2-based gas sensors

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yinhong; HE Yunqiu

    2007-01-01

    A nano-scaled graphite oxide(GO)was prepared with a micro-layer structure for intercalation.Graphite-intercalated SnO2 was obtained at temperatures lower than 100℃.The morphology,microstructure,crystalline phases and thermal property of this intercalative composite were studied by atomic force microscopy(AFM),field-emission scanning electron microscopy(FE-SEM),X-ray diffractometry(XRD) and differential scanning calorimetry-thermogravimetry(DSC-TG)doped with a proper amount of graphite-intercalated composites(GITs),GIT-SnO2 composite was obtained after heat treatment.This combined gas sensor reveals low resistance and high sensitivity to butane between 200℃ and 300℃.

  7. Fabrication and Characterisation of Oil-Free Large Bakelite Resistive Plate Chamber

    CERN Document Server

    Ganai, Rajesh; Agarwal, Kshitij; Ahammed, Zubayer; Choudhury, Subikash; Chattopadhyay, Subhasis

    2015-01-01

    A large (240 cm $\\times$ 120 cm $\\times$ 0.2 cm) oil-free bakelite Resistive Plate Chamber (RPC) has been developed at VECC-Kolkata using locally available P-301 OLTC grade bakelite paper laminates. The chamber has been operated in streamer mode using Argon, Freon(R134a) and Iso-butane in a ratio of 34:57:9 by volume. The electrodes and glue samples were characterised by measuring their electrical parameters like bulk resistivity and surface resistivity. The performance of the chamber was studied by measuring the efficiency, time resolution and uniformity in detection of cosmic muons. The chamber showed an efficiency $>$95$\\%$ and time resolution ($\\sigma$) of $\\sim$0.83 ns. Details of the material characterisation, fabrication procedure and performance studies have been discussed.

  8. Method for forming a chemical microreactor

    Science.gov (United States)

    Morse, Jeffrey D.; Jankowski, Alan

    2009-05-19

    Disclosed is a chemical microreactor that provides a means to generate hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water. The microreactor contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. Two distinct embodiment styles are discussed. One embodiment style employs a packed catalyst capillary microchannel and at least one porous membrane. Another embodiment style employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m.sup.2/cm.sup.3. Various methods to form packed catalyst capillary microchannels, porous membranes and porous membrane support structures are also disclosed.

  9. Inorganic nanoparticle thin film that suppresses flammability of polyurethane with only a single electrostatically-assembled bilayer.

    Science.gov (United States)

    Patra, Debabrata; Vangal, Prithvi; Cain, Amanda A; Cho, Chungyeon; Regev, Oren; Grunlan, Jaime C

    2014-10-01

    In an effort to reduce the flammability of polyurethane foam, a thin film of renewable inorganic nanoparticles (i.e., anionic vermiculite [VMT] and cationic boehmite [BMT]) was deposited on polyurethane foam via layer-by-layer (LbL) assembly. One, two, and three bilayers (BL) of BMT-VMT resulted in foam with retained shape after being exposed to a butane flame for 10 s, while uncoated foam was completely consumed. Cone calorimetry confirmed that the coated foam exhibited a 55% reduction in peak heat release rate with only a single bilayer deposited. Moreover, this protective nanocoating reduced total smoke release by 50% relative to untreated foam. This study revealed that 1 BL, adding just 4.5 wt % to PU foam, is an effective and conformal flame retardant coating. These results demonstrate one of the most efficient and renewable nanocoatings prepared using LbL assembly, taking this technology another step closer to commercial viability. PMID:25211181

  10. Gas Sorption, Diffusion and Permeation in a Polymer of Intrinsic Microporosity (PIM-7)

    KAUST Repository

    Alaslai, Nasser Y.

    2013-05-08

    of He, H2, N2, O2, CH4, CO2, C2H6, C3H8 and n-C4H10 were measured at 35 oC and 2 atm feed pressure using a home-made constant-volume/variable pressure pure-gas permeation system. Hydrocarbon-induced plasticization of PIM-7 was confirmed by measuring the permeability coefficients of C3H8 and n-C4H10 as function of pressure at 35 oC. Diffusion coefficients were calculated from the permeability and solubility data at 2 atm for all penetrants tested and as function of pressure for C3H8 and n-C4H10; the values for C3 and C4 increased significantly with pressure because of plasticization. Physical aging was studied by measuring the permeability coefficients of a number of gases in fresh and aged films. Mixed-gas permeation tests were performed for a feed mixture of 2 vol% n-butane and 98 vol% methane. Based on BET surface area measurements using N2 as a probe molecule, PIM-7 is a microporous polymer (S = 690 m2/g) and it was expected to exhibit selectivity for n-butane over methane, as previously observed for other microporous polymers, such as PIM-1 and PTMSP. Surprisingly, PIM-7 is more permeable to methane than n-butane and exhibits a mixed-gas methane/n-butane selectivity of up to 2.3. This result indicates that the micropore size in PIM-7 is smaller than that in other PIMs materials. Consequently, PIM-7 is not a suitable candidate membrane material for separation of higher hydrocarbons from methane.

  11. High Temperature PEM Fuel Cells - Degradation and Durability

    DEFF Research Database (Denmark)

    Araya, Samuel Simon

    A harmonious mix of renewable and alternative energy sources, including fuel cells is necessary to mitigate problems associated with the current fossil fuel based energy system, like air pollution, Greenhouse Gas (GHG) emissions, and economic dependence on oil, and therefore on unstable areas...... of the globe. Fuel cells can harness the excess energy from other renewable sources, such as the big players in the renewable energy market, Photovoltaic (PV) panels and wind turbines, which inherently suffer from intermittency problems. The excess energy can be used to produce hydrogen from water or can...... be stored in liquid alcohols such as methanol, which can be sources of hydrogen for fuel cell applications. In addition, fuel cells unlike other technologies can use a variety of other fuels that can provide a source of hydrogen, such as biogas, methane, butane, etc. More fuel flexibility combined...

  12. Electric energy generation using biomass gasification; Generacion de energia electrica a partir de la gasificacion de biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, J.; Arauzo, J.; Gonzalo, Alberto; Sanchez, Jose Luis [Universidad de Zaragoza, Aragon (Spain). Inst. de Investigacion. Grupo de Procesos Termoquimicos; Rocha, J.D. [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico (NIPE); Mesa Perez, J.M. [Bioware Tecnologia, Campinas, SP (Brazil)

    2004-07-01

    Gasification experiments have been carried out with a atmospheric pressure down draft gasifier of a capacity of 250 kg/h of biomass. Biomass used have been almond shells and olive cut. Results obtained show a similar behaviour in gas composition with two biomass. A small fraction of the generated gas from the gasifier has been fed to a small generator of 4 kV A. The gas has been previously cleaned and dried by means of a scrubber and a condenser, to remove tar products. The generator has been operated with a great stability without any modification, and energy generated with gas from gasification are relatively close to the values obtained with conventional fuels such as gasoline or commercial butane. (author)

  13. Synthesis of Luminescent Copper(Ⅰ)β-Diketone Complex by a New Preparation Method%一种新方法合成荧光β-二酮铜(Ⅰ)配合物

    Institute of Scientific and Technical Information of China (English)

    郭利兵; 朱靖; 蒋凯; 张传建

    2004-01-01

    At room temperature, the reducing reaction between the bis(diphenylphosphino)butane (dppb) ligand and the compound [Cu(tfac)2] (tfac=2-thenoyltrifluoroacetone) gave luminescent copper(Ⅰ) complex [Cu(dppb)(tfac)]2. They have been characterized by physicochemical and spectroscopic methods. Crystal structure of the title complex shows that 2-thenoyltrifluoroacetone behaves as chelating ligand and dppb coordinates as bridging bidentate ligand to Cu(Ⅰ) atoms in the newly prepared copper(Ⅰ) complex. The crystal is monoclinic, space group P21/n, with cell parameters a = 1.031 0(2) nm, b = 1.873 0(4) nm, c= 1.763 0(4) nm, β = 95.10(3)°, Z = 4, V = 3.391 0(12)nm3, R = 0.0603, wR = 0.1434. CCDC: 228393.

  14. Influence of mass transport towards deactivation in tert-butyl-source driven isobutane/2-butene alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Aschauer, S.J.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2011-07-01

    The deactivation of i-butane/trans-2-butene alkylation using tert-butyl-halide promoted ionic liquid catalysts is studied.Here, the mass transport was modified by varying the feed rate and the type of promoter addition. The experimental data show that the deactivation increases with increasing feed rate. Moreover, a biliquid foam is formed when feed rates above 1 g/min are adjusted. As the results indicate a strong influence of the biliquid foam and its formation on deactivation, both aspects are also discussed.When the promoter is added to the feed mixture an increase of conversion with time on stream is observed. A deactivation in continuous promoter addition mode could not be noted in the investigated time-on-stream range. (orig.)

  15. Volatile compounds of dry-cured Iberian ham as affected by the length of the curing process.

    Science.gov (United States)

    Ruiz, J; Ventanas, J; Cava, R; Andrés, A; García, C

    1999-05-01

    Volatile compounds from 10 dry-cured Iberian hams ripened for two different processing times, a prolonged traditional one (600 days) and a shortened process (420 days), were analysed by purge and trap coupled to gas chromatography-mass spectroscopy. Eighty-three compounds were identified which agreed with the major classes found in other ham types. The amount of methyl branched alkanes was much higher than in other dry-cured ham types, probably due to the feeding regime. The percentages of 2- and 3-methylbutanal were higher (p<0.0001 and p<0.0003, respectively) in the longer aged hams, whereas the amounts of some compounds from lipid oxidation decreased from 420 to 600 days aging. In agreement with these observations, 600-day hams had higher scores for those odour and flavour traits usually considered to be positive attributes and lower scores for rancidity. A positive and significant correlation between 2-methyl butanal and cured flavour was found.

  16. Catalytic cracking of the C5+ fraction of natural gasoline using HZSM-5 zeolite; Craqueamento catalitico de uma fracao de C5+ do GN utilizando a zeolita HZSM-5

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Marcelo J.B.; Silva, Antonio O.S. [Rio Grande do Norte Univ., Natal, RN (Brazil). Dept. de Engenharia Quimica]. E-mail: marcelojbs@yahoo.com.br; Fernandes Junior, Valter J.; Araujo, Antonio S. [Rio Grande do Norte Univ., Natal, RN (Brazil). Dept. de Quimica

    2003-07-01

    In this work was realized a study of the catalytic cracking of the C5+ fraction from Polo of Guamare (RN) over acid the HZSM-5 zeolite. The ZSM-5 zeolite was synthesized by hydrothermal crystallization with subsequent, filtering, washing and calcination to obtain the sodium form (NaZSM-5). To obtain the acidic form (HZSM-5), the NaZSM-5 zeolite was submitted to ion exchange with ammonium chloride solution. The obtained material was characterized by x ray diffraction, infrared spectroscopy, atomic absorption spectrophotometry and acidity via TG/DTG. The catalytic cracking reactions of the C5+ feedstock were performed in a fixed bed continuous flow reactor and the reaction products were analyzed in a gas chromatography coupled in a mass spectrometer (GC/MS). The obtained result shown the formation of high aggregate value hydrocarbons as: LPG (propane and butane) and industrial gas (ethane and ethene). (author)

  17. Calorimetric Determination of Enthalpy of Formation of Natural Gas Hydrates%天然气水合物生成焓的实验研究

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper reports the measurements of enthalpies of natural gas hydrates in typical natural gas mixturecontaining methane, ethane, propane and iso-butane at pressure in the vicinity of 2000 kPa (300 psi) and 6900 kPa(1000psi). The measurements were made in a multi-cell differential scanning calorimeter using modified highpressure cells. The enthalpy of water and the enthalpy of dissociation of the gas hydrate were determined fromthe calorimeter response during slow temperature scanning at constant pressure. The amount of gas released fromthe dissociation of hydrate was determined from the pumped volume of the high pressure pump. The occupationratio (mole ratio) of the water to gas and the enthalpy of hydrate formation are subject to uncertainty of 1.5%.The results show that the enthalpy of hydrate formation and the occupation ratio are essentially independent of pressure.

  18. Calorimetric Determination of Enthalpy of Formation of Natural Gas Hydrates

    Institute of Scientific and Technical Information of China (English)

    高军; KennethN.Marsh

    2003-01-01

    This paper reports the measurements of enthalpies of natural gas hydrates in typical natural gas mixture containing methane, ethane, propane and iso-butane at pressure in the vicinity of 2000 kPa (300 psi) and 6900 kPa(1000psi). The measurements were made in a multi-cell differential scanning calorimeter using modified high pressure cells. The enthalpy of water and the enthalpy of dissociation of the gas hydrate were determined from the calorimeter response during slow temperature scanning at constant pressure. The amount of gas released from the dissociation of hydrate was determined from the pumped volume of the high pressure pump. The occupation ratio (mole ratio) of the water to gas and the enthalpy of hydrate formation are subject to uncertainty of 1.5%.The results show that the enthalpy of hydrate formation and the occupation ratio are essentially independent of pressure.

  19. Effect of positron-atom interactions on the annihilation gamma spectra of molecules

    CERN Document Server

    Green, D G; Wang, F; Gribakin, G F; Surko, C M

    2012-01-01

    Calculations of gamma spectra for positron annihilation on a selection of molecules, including methane and its fluoro-substitutes, ethane, propane, butane and benzene are presented. The annihilation gamma spectra characterise the momentum distribution of the electron-positron pair at the instant of annihilation. The contribution to the gamma spectra from individual molecular orbitals is obtained from electron momentum densities calculated using modern computational quantum chemistry density functional theory tools. The calculation, in its simplest form, effectively treats the low-energy (thermalised, room-temperature) positron as a plane wave and gives annihilation gamma spectra that are about 40% broader than experiment, although the main chemical trends are reproduced. We show that this effective "narrowing" of the experimental spectra is due to the action of the molecular potential on the positron, chiefly, due to the positron repulsion from the nuclei. It leads to a suppression of the contribution of smal...

  20. Fuels for homogeneous self-igniting combustion processes; Brennstoffe fuer homogene selbstgezuendete Verbrennungsprozesse - Jahresbericht 2006

    Energy Technology Data Exchange (ETDEWEB)

    Escher, A; Boulouchos, K.

    2006-12-15

    This annual report for the Swiss Federal Office of Energy (SFOE) reports on work done in 2006 at the Laboratory for Aero-thermochemistry and Combustion Systems at the Swiss Federal Institute of Technology ETH in Zurich, Switzerland, on the simulation of homogeneous self-igniting combustion. It also presents the results of experimental work on the ignition of n-butane and n-heptane in the institute's one-stroke test engine. Two simulation methods are discussed, both of which corresponded well with the results of experiments carried out. The authors note that the results provide a deeper insight into the mechanisms of self-ignition in homogeneous mixtures.

  1. New series of aromatic/ five-membered heteroaromatic butanesulfonyl hydrazones as potent biological agents: Synthesis, physicochemical and electronic properties

    Science.gov (United States)

    Hamurcu, Fatma; Mamaş, Serhat; Ozdemir, Ummuhan Ozmen; Gündüzalp, Ayla Balaban; Senturk, Ozan Sanlı

    2016-08-01

    The aromatic/five-membered heteroaromatic butanesulfonylhydrazone derivatives; 5-bromosalicylaldehydebutanesulfonylhydrazone(1), 2-hydroxy-1-naphthaldehydebutane sulfonylhydrazone(2), indole-3-carboxaldehydebutanesulfonylhydrazone (3), 2-acetylfuran- carboxyaldehydebutanesulfonylhydrazone(4), 2-acetylthiophenecarboxyaldehydebutane- sulfonylhydrazone(5) and 2-acetyl-5-chlorothiophenecarboxyaldehydebutanesulfonyl hydrazone (6) were synthesized by the reaction of butane sulfonic acid hydrazide with aldehydes/ketones and characterized by using elemental analysis, 1H NMR, 13C NMR and FT-IR technique. Their geometric parameters and electronic properties consist of global reactivity descriptors were also determined by theoretical methods. The electrochemical behavior of the butanesulfonylhydrazones were investigated by using cyclic voltammetry (CV), controlled potential electrolysis and chronoamperometry (CA) techniques. The number of electrons transferred (n), diffusion coefficient (D) and standard heterogeneous rate constants (ks) were determined by electrochemical methods.

  2. A set of molecular models based on quantum mechanical ab initio calculations and thermodynamic data

    CERN Document Server

    Eckl, Bernhard; Hasse, Hans

    2009-01-01

    A parameterization strategy for molecular models on the basis of force fields is proposed, which allows a rapid development of models for small molecules by using results from quantum mechanical (QM) ab initio calculations and thermodynamic data. The geometry of the molecular models is specified according to the atom positions determined by QM energy minimization. The electrostatic interactions are modeled by reducing the electron density distribution to point dipoles and point quadrupoles located in the center of mass of the molecules. Dispersive and repulsive interactions are described by Lennard-Jones sites, for which the parameters are iteratively optimized to experimental vapor-liquid equilibrium (VLE) data, i.e. vapor pressure, saturated liquid density, and enthalpy of vaporization of the considered substance. The proposed modeling strategy was applied to a sample set of ten molecules from different substance classes. New molecular models are presented for iso-butane, cyclohexane, formaldehyde, dimethyl...

  3. CFBP and LPG market in 2004

    International Nuclear Information System (INIS)

    The French butane and propane committee (CFBP) has presented its activities in liquefied petroleum gases in its 2004 annual report. The success of its initiatives of promotion during the year 2004 has led the CFBP to launch a new campaign of advertisement since January 31, 2005. In its report, the CFBP stresses on the re-start up of the LPG fuel market. The sales of propane gas in tanks have raised by 5.2% between 2003 and 2004. The decay of the traditional market of gas cylinders has been practically stopped thanks to the sales dynamism of small (5-6 kg) cylinders and to the innovations added by some retailers on the 13 kg cylinders (level indicator). The sales of automotive LPG fuels have shown a slower decay during 2004. (J.S.)

  4. An unusual cause of cold injury: liquified petroleum gas leakage.

    Science.gov (United States)

    Seyhan, Nevra; Jasharllari, Lorenc; Kayapınar, Muhammed; Savacı, Nedim

    2011-11-01

    Liquefied petroleum gas (LPG) is an odorless and colorless gas that is a mixture of hydrocarbons (propane and butane). It is now more commonly preferred among drivers as an auto-gas throughout the world because it is cheaper than petrol or diesel and produces the same amount of energy. Because of its rapid vaporization and consequent lowering of temperature, it may cause severe cold injuries. A 33-year-old male who suffered from hand burn due to LPG is presented in this article. In LPG-converted cars, if the conversion has not been done properly, LPG may leak. Thus, the public must be informed of this potential danger while undertaking repairs of their vehicles. PMID:22290012

  5. Effect of vorticity flip-over on the premixed flame structure: First experimental observation of type I inflection flames

    CERN Document Server

    El-Rabii, Hazem

    2015-01-01

    Premixed flames propagating in horizontal tubes are observed to take on shape convex towards the fresh mixture, which is commonly explained as a buoyancy effect. A recent rigorous analysis has shown, on the contrary, that this process is driven by the balance of vorticity generated by a curved flame front with the baroclinic vorticity, and predicted existence of a regime in which the leading edge of the flame front is concave. We report first experimental realization of this regime. Our experiments on ethane and n-butane mixtures with air show that flames with an inflection point on the front are regularly produced in lean mixtures, provided that a sufficiently weak ignition is used. The observed flame shape perfectly agrees with the theoretically predicted.

  6. Trends in bond dissociation energies of alcohols and aldehydes computed with multireference averaged coupled-pair functional theory.

    Science.gov (United States)

    Oyeyemi, Victor B; Keith, John A; Carter, Emily A

    2014-05-01

    As part of our ongoing investigation of the combustion chemistry of oxygenated molecules using multireference correlated wave function methods, we report bond dissociation energies (BDEs) in C1-C4 alcohols (from methanol to the four isomers of butanol) and C1-C4 aldehydes (from methanal to butanal). The BDEs are calculated with a multireference averaged coupled-pair functional-based scheme. We compare these multireference BDEs with those derived from experiment and single-reference methods. Trends in BDEs for the alcohols and aldehydes are rationalized by considering geometry relaxations of dissociated radical fragments, resonance stabilization, and hyperconjugation. Lastly, we discuss the conjectured association between bond strengths and rates of hydrogen abstraction by hydroxyl radicals. In general, abstraction reaction rates are higher at sites where the C-H bond energies are lower (and vice versa). However, comparison with available rate data shows this inverse relationship between bond strengths and abstraction rates does not hold at all temperatures.

  7. Beowawe Bottoming Binary Unit - Final Technical Report for EE0002856

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Dale Edward

    2013-02-12

    This binary plant is the first high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a butane based cycle are not necessary. The unit is modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. This project proves the technical feasibility of using low temperature brine The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy for Nevada, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  8. Koolwaterstoffen. De toekomst van koeling?; Hydrocarbons. The future of cooling?

    Energy Technology Data Exchange (ETDEWEB)

    Kauffeld, M. [Hochschule Karlsruhe, Karlsruhe (Germany)

    2012-01-15

    The development of CFCs in the 1930s and their subsequent triumphal procession consigned propane and butane and similar hydrocarbons to oblivion. Only the petro-chemical and the chemical industries continued to use them. Hydrocarbons can realize better cooling performances than their halogenated family members. [Dutch] Door de ontwikkeling van CFK's in de jaren dertig van de vorige eeuw en hun daaropvolgende triomftocht over de hele wereld raakten propaan, butaan en soortgelijke koolwaterstoffen praktisch in de vergetelheid. Alleen in de (petro-)chemische industrie werden ze nog steeds gebruikt in de tijden van CFK's en HCFK's. Met koolwaterstoffen kunnen namelijk betere koelprestaties behaald worden dan met hun gehalogeneerde familieleden.

  9. Koolwaterstoffen. De toekomst van koeling? Part 2; Hydrocarbons. The future of cooling? Deel 2

    Energy Technology Data Exchange (ETDEWEB)

    Kauffeld, M. [Hochschule Karlsruhe, Karlsruhe (Germany)

    2012-02-15

    The development of CFCs in the 1930s and their subsequent triumphal procession consigned propane and butane and similar hydrocarbons to oblivion. Only the petro-chemical and the chemical industries continued to use them. Hydrocarbons can realize better cooling performances than their halogenated family members. [Dutch] Door de ontwikkeling van CFK's in de jaren dertig van de vorige eeuw en hun daaropvolgende triomftocht over de hele wereld raakten propaan, butaan en soortgelijke koolwaterstoffen praktisch in de vergetelheid. Alleen in de (petro-)chemische industrie werden ze nog steeds gebruikt in de tijden van CFK's en HCFK's. Met koolwaterstoffen kunnen namelijk betere koelprestaties behaald worden dan met hun gehalogeneerde familieleden.

  10. Preparation, characterisation, engine performance and emission characteristics of coconut oil based hybrid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pranil J.; Singh, Anirudh [Division of Physics, School of Engineering and Physics, Faculty of Science, Technology and Environment, University of the South Pacific, 325 Fletcher Road, Suva (Fiji); Khurma, Jagjit [Division of Chemistry, School of Biological, Chemical and Environmental Sciences, Faculty of Science, Technology and Environment, University of the South Pacific, Suva (Fiji)

    2010-09-15

    In this study, hybrid fuels consisting of coconut oil, aqueous ethanol and a surfactant (butan-1-ol) were prepared and tested as a fuel in a direct injection diesel engine. After determining fuel properties such as the density, viscosity and gross calorific values of these fuels, they were used to run a diesel engine. The engine performance and exhaust emissions were investigated and compared with that of diesel. The experimental results show that the efficiency of the hybrid fuels is comparable to that of diesel. As the viscosity of the hybrid fuels decreased and approached that of diesel, the efficiency increased progressively towards that of diesel. The exhaust emissions were lower than those for diesel, except carbon monoxide emissions, which increased. Hence, it is concluded that these hybrid fuels can be used successfully as an alternative fuel in diesel engines without any modifications. Their completely renewable nature ensures that they are environmentally friendly with regard to their emissions characteristics. (author)

  11. Session 5: the different aspects of gas sales

    International Nuclear Information System (INIS)

    Here are given the summaries of the speeches of Mr Regis Halgand (Gaz de France): the different gas markets; of Mr Joel Pedessac (Comite Francais du Butane et du Propane (CFBP): the uses of LPG; of Mr Yves Tournie (Total): DME, market and demonstration pilot of the JFE process; of Mr Pierre Yves Burban (Doris Engineering): the export of gas under the form of CNG (compressed natural gas); and of Mr Eric Caprani (Axens): first balance of the ENI/IFP/AXENS GTL plan. All these speeches have been presented at the AFTP petroleum yearly days (12-13 October 2005) during the session 5 concerning the different aspects of gas sales. (O.M.)

  12. Feasibility of the preparation of silica monoliths for gas chromatography: fast separation of light hydrocarbons.

    Science.gov (United States)

    Azzouz, Imadeddine; Essoussi, Anouar; Fleury, Joachim; Haudebourg, Raphael; Thiebaut, Didier; Vial, Jerome

    2015-02-27

    The preparation conditions of silica monoliths for gas chromatography were investigated. Silica-based monolithic capillary columns based on sol-gel process were tested in the course of high-speed gas chromatographic separations of light hydrocarbons mixture (C1-C4). The impact of modifying the amount of porogen and/or catalyst on the monolith properties were studied. At the best precursor/catalyst/porogen ratio evaluated, a column efficiency of about 6500 theoretical plates per meter was reached with a very good resolution (4.3) for very light compounds (C1-C2). The test mixture was baseline separated on a 70cm column. To our knowledge for the first time a silica-based monolithic capillary column was able to separate light hydrocarbons from methane to n-butane at room temperature with a back pressure in the range of gas chromatography facilities (under 4.1bar). PMID:25622518

  13. Effect of vorticity flip-over on the premixed flame structure: Experimental observation of type-I inflection flames.

    Science.gov (United States)

    El-Rabii, Hazem; Kazakov, Kirill A

    2015-12-01

    Premixed flames propagating in horizontal tubes are observed to take on a convex shape towards the fresh mixture, which is commonly explained as a buoyancy effect. A recent rigorous analysis has shown, on the contrary, that this process is driven by the balance of vorticity generated by a curved flame front with the baroclinic vorticity, and predicted existence of a regime in which the leading edge of the flame front is concave. We report experimental realization of this regime. Our experiments on ethane and n-butane mixtures with air show that flames with an inflection point on the front are regularly produced in lean mixtures, provided that a sufficiently weak ignition is used. The observed flame shape perfectly agrees with that theoretically predicted. PMID:26764801

  14. Electrocatalytic Production of C3-C4 Compounds by Conversion of CO2 on a Chloride-Induced Bi-Phasic Cu2O-Cu Catalyst.

    Science.gov (United States)

    Lee, Seunghwa; Kim, Dahee; Lee, Jaeyoung

    2015-12-01

    Electrocatalytic conversion of carbon dioxide (CO2) has recently received considerable attention as one of the most feasible CO2 utilization techniques. In particular, copper and copper-derived catalysts have exhibited the ability to produce a number of organic molecules from CO2. Herein, we report a chloride (Cl)-induced bi-phasic cuprous oxide (Cu2O) and metallic copper (Cu) electrode (Cu2OCl) as an efficient catalyst for the formation of high-carbon organic molecules by CO2 conversion, and identify the origin of electroselectivity toward the formation of high-carbon organic compounds. The Cu2OCl electrocatalyst results in the preferential formation of multi-carbon fuels, including n-propanol and n-butane C3-C4 compounds. We propose that the remarkable electrocatalytic conversion behavior is due to the favorable affinity between the reaction intermediates and the catalytic surface.

  15. Isomorphic Viscosity Equation of State for Binary Fluid Mixtures.

    Science.gov (United States)

    Behnejad, Hassan; Cheshmpak, Hashem; Jamali, Asma

    2015-01-01

    The thermodynamic behavior of the simple binary mixtures in the vicinity of critical line has a universal character and can be mapped from pure components using the isomorphism hypothesis. Consequently, based upon the principle of isomorphism, critical phenomena and similarity between P-ρ-T and T-η-(viscosity)-P relationships, the viscosity model has been developed adopting two cubic, Soave-Redlich-Kwong (SRK) and Peng-Robinson (PR), equations of state (EsoS) for predicting the viscosity of the binary mixtures. This procedure has been applied to the methane-butane mixture and predicted its viscosity data. Reasonable agreement with the experimental data has been observed. In conclusion, we have shown that the isomorphism principle in conjunction with the mapped viscosity EoS suggests a reliable model for calculating the viscosity of mixture of hydrocarbons over a wide pressure range up to 35 MPa within the stated experimental errors. PMID:26680701

  16. SOFT ROBOTICS. A 3D-printed, functionally graded soft robot powered by combustion.

    Science.gov (United States)

    Bartlett, Nicholas W; Tolley, Michael T; Overvelde, Johannes T B; Weaver, James C; Mosadegh, Bobak; Bertoldi, Katia; Whitesides, George M; Wood, Robert J

    2015-07-10

    Roboticists have begun to design biologically inspired robots with soft or partially soft bodies, which have the potential to be more robust and adaptable, and safer for human interaction, than traditional rigid robots. However, key challenges in the design and manufacture of soft robots include the complex fabrication processes and the interfacing of soft and rigid components. We used multimaterial three-dimensional (3D) printing to manufacture a combustion-powered robot whose body transitions from a rigid core to a soft exterior. This stiffness gradient, spanning three orders of magnitude in modulus, enables reliable interfacing between rigid driving components (controller, battery, etc.) and the primarily soft body, and also enhances performance. Powered by the combustion of butane and oxygen, this robot is able to perform untethered jumping.

  17. Research Progres s of Process and Re actor of Maleic Anhydride%顺酐生产工艺与反应器研究进展

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      阐述了苯氧化法、C4烯烃氧化法、正丁烷氧化法生产顺酐的工艺过程及特点,综述了顺酐生产反应器的要求及类型,展望了顺酐生产工艺与反应器的发展方向。%The paper discusses the benzene oxidation , C4 olefin oxidation, n-butane oxidation maleic anhydride production process and characteristics .It also summarizes the requirements and types of maleic anhydride produc-tion reactor and prospects the development direction of maleic anhydride production process and reactor

  18. Synthesis and Characterization of Poly BAMO Suitable for Binder Application%BAMO聚合物的合成与表征

    Institute of Scientific and Technical Information of China (English)

    M.V.Maheshkumar; M.J.Joseph; K.Sreekumar; H-G.Ang

    2006-01-01

    A new synthetic methodology has been developed for the synthesis of poly BAMO and poly BAMO-co-THF with controlled molecular weight and narrow molecular weight distribution. The synthesis of BCMO,the precursor of the BAMO monomer was accomplished using the reaction of Vilsmeir reagent with pentaerythritol. The BAMO monomer could be synthesized with an over all yield of 60% and polymerized using BF3·Et2O as the initiator and 1,4-butane diol as the co-initiator. Computational evaluation of the energy releasing properties of the poly BAMO derivatives was performed using Gaussian algorithm. The theoretically calculated values agreed very well with the experimentally determined ones.

  19. Efficient control of odors and VOC emissions via activated carbon technology.

    Science.gov (United States)

    Mohamed, Farhana; Kim, James; Huang, Ruey; Nu, Huong Ton; Lorenzo, Vlad

    2014-07-01

    This research study was undertaken to enhance the efficiency and economy of carbon scrubbers in controlling odors and volatile organic compounds (VOCs) at the wastewater collection and treatment facilities of the Bureau of Sanitation, City of Los Angeles. The butane activity and hydrogen sulfide breakthrough capacity of activated carbon were assessed. Air streams were measured for odorous gases and VOCs and removal efficiency (RE) determined. Carbon towers showed average to excellent removal of odorous compounds, VOCs, and siloxanes; whereas, wet scrubbers demonstrated good removal of odorous compounds but low to negative removal of VOCs. It was observed that the relative humidity and empty bed contact time are one of the most important operating parameters of carbon towers impacting the pollutant RE. Regular monitoring of activated carbon and VOCs has resulted in useful information on carbon change-out frequency, packing recommendations, and means to improve performance of carbon towers.

  20. Energy from forests in the countries of the Congo Basin; L'energie forestiere dans les pays du bassin du Congo

    Energy Technology Data Exchange (ETDEWEB)

    Boundzanga, G.C. [Centre National d' Inventaire et d' Amenagement des Ressources Forestieres et Fauniques du Zaire (Zaire); Loumeto, J. [Brazzaville Univ., Brazzaville (Congo, The Democratic Republic of the). Faculty of Science

    2009-07-15

    Deforestation and overexploitation of timber in the forests of the Congo Basin in Central Africa has resulted in environmental damage. This article listed the consumption of wood energy for Cameroon, the Central African Republic, Gabon, Republic of the Congo, Democratic Republic of the Congo, and Equatorial Guinea and emphasized the need to create a process to enable better management of forest resources by assigning more transparent concessions and establishing standards for the regeneration of the forest. Wood energy continues to be used in urban centres despite advances being made to promote the use of butane gas. As such, the ecological damage is visible in densely populated areas despite the fact that vast amounts of land would be well suited for tree plantations. 2 refs., 1 tab., 2 figs.

  1. Petroleum and natural gas economy in Arab countries and in Angola, Gabon, Iran, Nigeria

    International Nuclear Information System (INIS)

    This paper gives informations about petroleum and natural gas industry, petroleum market and prices, trade and contracts, prospection and production. In Saudi Arabia, the debate about the price reduction of butane used to produce methyl tertiary butyl ether (MTBE) is responsible of the cancellation of joint venture project between Mobil and Arabian Chemical Investment Corp. In Algeria, Japan brings its support to the development of Liquefied Petroleum Gases industry and has signed two exports contracts. New petroleum discoveries have been made in Oman, near Suneinah and in Egypt near Belayim offshore oil field. Petroleum production has reached 3.6 millions barrels per day in Iran, 0.35 millions barrels per day in Gabon and 0.177 millions barrels per day in Nigeria

  2. Distribution of Complex Chemicals in Oil-Water Systems

    DEFF Research Database (Denmark)

    Riaz, Muhammad

    The deepwater energy sector represents one of the major growth areas of the oil and gas industry today. In order to meet the challenges of hydrate formation, corrosion, scaling and foaming the oil and gas industry uses many chemicals and their use has increased significantly over the years...... of ill-defined components in decane plus fraction. When methanol and MEG are used as gas hydrate inhibitors, the most significant disadvantage, especially for methanol, is their loss in hydrocarbon phase(s). The successful estimation of inhibitor loss would enable the inhibitors injection optimization...... as a function of the system parameters such as temperature and water cut. In this project the distribution of water and inhibitors (methanol, MEG) in various phases is modeled using the CPA EoS. The hydrocarbon phase consists of mixture-1 (methane, ethane, n-butane) or mixture-2 (methane, ethane, propane, n...

  3. Chile exploits LNG

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    Simultaneously with its exploitation of offshore hydrocarbon reservoirs Chile is developing the production and selling of LNG. Chile produces a large quantity of associated gas from its reservoirs at Megallanes and processes it at the Manantiales, Cullen and Posesion plants recovering propane, butane and natural gas liguids. The stripped gas is reinjected for pressure maintenance operations. With the completion of the LNG program full use of the gas will be achieved. It will totally meet the needs of combustible liquids for the central and northern parts of the country, a volume of 2200 million cu m/yr. For its treatment natural gas is sent through gas pipelines to the LNG plant at Cabo Negro. By means of a cooling process, the gas is cooled to -160 C where it becomes a liquid and its volume is reduced by a factor of 600. It is then stored in tanks at atmospheric pressure.

  4. Tasks and goals of the gas industry in Turkmenistan

    International Nuclear Information System (INIS)

    There are two key gas producing regions in central Asia: Amudarinskyi and Murgabskiy. Gas resources in Turkmenistan are light and contain mostly methane. The majority of gas fields are complex: 45 of them contain condensate, 14 helium and ethane, propane and butane. Sulphur dioxide with the total of 893 billion cubic metres is found in 18 gas fields. Within the complex political and economic situation, Turkmen Ministry of Oil and Gas undertook the following measures: technical rehabilitation and refurbishment of the gas industry and research on the gas export pipelines projects. The accounts show that the Turkmen natural gas will find customers in Turkey and other European countries at the prices which will prevail at the time the pipeline is finished. The project costs are 9 billion US dollars and it cannot be finalized without international support

  5. A cationic gemini-surfactant as effective inhibitor for mild steel in HCl solutions

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiumei [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168 (China); Yang Huaiyu [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)], E-mail: hyyang@imr.ac.cn; Wang Fuhui [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2010-04-15

    A cationic gemini-surfactant, namely 1,4-bis (1-chlorobenzyl-benzimidazolyl)-butane (CBB) was synthesized and its inhibition effect on the corrosion of mild steel in 0.5 M HCl solution was investigated by weight loss and electrochemical techniques. The results showed that CBB acts as an excellent corrosion inhibitor in 0.5 M HCl by suppressing simultaneously the cathodic and anodic processes via chemical adsorption on the surface of steel, which followed the Langmuir adsorption isotherm. The inhibition efficiency increased with the increase of CBB concentration and temperature. The adsorption mechanism of the compound was discussed in terms of thermodynamic and kinetic parameters deduced from the experimental data.

  6. Aroma compound analysis of Eruca sativa (Brassicaceae) SPME headspace leaf samples using GC, GC-MS, and olfactometry.

    Science.gov (United States)

    Jirovetz, Leopold; Smith, David; Buchbauer, Gerhard

    2002-07-31

    The aroma compounds of rocket salad (Eruca sativa) SPME headspace samples of fresh leaves were analyzed using GC, GC-MS, and olfactometry. More than 50 constituents of the Eruca headspace could be identified to be essential volatiles, responsible for the characteristic intense green; herbal; nutty and almond-like; Brassicaceae-like (direction of cabbage, broccoli, and mustard); and horseradish-like aroma of these salad leaves. As aroma impact compounds, especially isothiocyanates, and derivatives of butane, hexane, octane, and nonane were identified. 4-Methylthiobutyl isothiocyanate (14.2%), cis-3-hexen-1-ol (11.0%), cis-3-hexenyl butanoate (10.8%), 5-methylthiopentyl isothiocyanate (9.3%), cis-3-hexenyl 2-methylbutanoate (5.4%), and 5-methylthiopentanenitrile (5.0%) were found in concentrations higher than 5.0% (calculated as % peak area of GC analysis using a nonpolar column).

  7. Performance investigation of a waste heat driven pressurized adsorption refrigeration cycle

    Science.gov (United States)

    Habib, K.

    2015-12-01

    This article presents performance investigation of a waste heat driven two bed pressurised adsorption refrigeration system. In this study, highly porous activated carbon (AC) of type Maxsorb III has been selected as adsorbent while n-butane, R-134a, R410a, R507a and carbon dioxide (CO2) are chosen as refrigerants. All the five refrigerants work at above atmospheric pressure. Among the five pairs studied, the best pairs will be identified which will be used to provide sufficient cooling capacity for a driving heat source temperature above 60°C. Results indicate that for a driving source temperature above 60°C, AC-R410a pair provides highest cooling capacity while AC-CO2 pairs works better when the heat source temperature falls below 60°C.

  8. Chemical reduction of complex kinetic models of combustion; Reduction chimique des modeles cinetiques complexes de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fournet, R.; Glaude, P.A.; Warth, V.; Battin-Leclerc, F.; Scacchi, G.; Come, G.M. [Institut National Polytechnique de Lorraine, Ecole Nationale Superieure des Industries Chimiques, CNRS UMR 7630, INPL ENSIC, Dept. de Chimie Physique des Reacteurs, 54 - Nancy (France)

    2001-07-01

    This paper presents an automatized method allowing to notably reduce the size of the primary mechanism of alkane combustion. The free radicals having the same raw formulation and the same functional groups are presented in a global way as a unique species. In this way, the number of radicals can be divided by a factor of 16 in the case of n-heptane combustion. The kinetic parameters linked with the global mechanism are obtained from a weighted average of the kinetic constants of the detailed mechanism, and this without any adjustment.The simulations performed for the combustion mechanisms of the n-heptane and of a mixture of n-heptane and 2,2,3 trimethyl butane are presented in order to show the validity of the proposed method. (J.S.)

  9. A Gas Chromatographic Analysis of Light Hydrocarbons on a Column Packed with Modified Silica Gel

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A one-meter long column packed with silica gel is used to separate light hydrocarbons. The silica gel has been modified with several kinds of gas chromatography stationary phases. Among these, PEG 2000 shows fairly good effect when using 80-100 meshes silica gel for the separation of mixture of methane, ethane, ethylene, acetylene, propane, propylene and n-, i-butane. The different behavior of silica gel between batch to batch is also found. When silica gel is coated with a small amount of Al2O3 prepared with sol-gel method, better resolution has been observed on a 2-meter column compared with the non-modified silica gel.

  10. Conditional solvation of isoleucine in model extended and helical peptides: context dependence of hydrophobic hydration and the failure of the group-transfer model

    CERN Document Server

    Tomar, Dheeraj; Pettitt, B M; Asthagiri, D

    2013-01-01

    The hydration thermodynamics of the GXG tripeptide relative to the reference GGG defines the \\textit{conditional} hydration contribution of X. This quantity or the hydration thermodynamics of a small molecule analog of the side-chain or some combination of such estimates, have anchored the interpretation of many of the seminal experiments on protein stability and folding and in the genesis of the current views on dominant interactions stabilizing proteins. We show that such procedures to model protein hydration have significant limitations. We study the conditional hydration thermodynamics of the isoleucine side-chain in an extended pentapeptide and in helical deca-peptides, using as appropriate an extended penta-glycine or appropriate helical deca-peptides as reference. Hydration of butane in the gauche conformation provides a small molecule reference for the side-chain. We use the quasichemical theory to parse the hydration thermodynamics into chemical, packing, and long-range interaction contributions. The...

  11. Air pollutants from hydrocarbons and derivatives in micropropagation laboratories: toxicity symptoms on tissue culture of the cherry rootstock Colt (Prunus avium x P. pseudocerasus).

    Science.gov (United States)

    Righetti, B

    1990-11-01

    Several air pollutants in research and micropropagation laboratories originate from the combustion of hydrocarbons and their derivatives. The combustion products of some natural gases (propane-butane, propane, methane) and ethanol were analyzed, and the atmosphere composition was investigated inside the laminar flow box, inside the room where transplanting is performed and inside the culture vessels after transplanting. Large quantities of ethylene and other biologically active compounds are produced when hydrocarbons are partially oxidized or unevenly combusted and when ethanol is used for sterilization of dissecting instruments during transplanting operations. Air pollutants' effects have been tested on Prunus Colt shoot cultures; the toxicity symptoms observed suggest the elimination of gas combustion and alcohols during transplanting operations. PMID:24227058

  12. Sudden death due to inhalant abuse in youth: Case report

    Directory of Open Access Journals (Sweden)

    Ramazan Akcan

    2010-06-01

    Full Text Available Intentional inhalation or abuse of volatile substances is a common public health problem all over the world. As these substances generate euphoria frequency of use among adolescents and young adults is increasing steadily. In cases using inhalants to achieve a euphoric state -without knowing possible consequences- sudden death may occurdue to acute cardio-pulmonary dysfunction.Here we present a case of sudden death of a nineteen-year-old female due to inhalation of volatile from butane containing lighter gas tube, with the findings of autopsy and death scene investigation.In the context of this case; it was aimed to draw attention to the risk of sudden death and steady increase of frequencyof volatile substance abuse among adolescents and young adults due to various psycho-social factors.

  13. Supercritical fluid extraction of plant flavors and fragrances.

    Science.gov (United States)

    Capuzzo, Andrea; Maffei, Massimo E; Occhipinti, Andrea

    2013-06-19

    Supercritical fluid extraction (SFE) of plant material with solvents like CO₂, propane, butane, or ethylene is a topic of growing interest. SFE allows the processing of plant material at low temperatures, hence limiting thermal degradation, and avoids the use of toxic solvents. Although today SFE is mainly used for decaffeination of coffee and tea as well as production of hop extracts on a large scale, there is also a growing interest in this extraction method for other industrial applications operating at different scales. In this review we update the literature data on SFE technology, with particular reference to flavors and fragrance, by comparing traditional extraction techniques of some industrial medicinal and aromatic crops with SFE. Moreover, we describe the biological activity of SFE extracts by describing their insecticidal, acaricidal, antimycotic, antimicrobial, cytotoxic and antioxidant properties. Finally, we discuss the process modelling, mass-transfer mechanisms, kinetics parameters and thermodynamic by giving an overview of SFE potential in the flavors and fragrances arena.

  14. Efeitos de extratos de Nierembergia veitchii (Hook) Solanaceae sobre a fertilidade de ratas e morfologia óssea dos fetos The effects of Nierembergia veitchii (Hook) Solanaceae extracts in rat fertility and fetal skeleton morphology

    OpenAIRE

    João Roberto Braga de Mello; Augusto Langeloh; Gerhard Habermehl; Hans Krebs; Fernanda Bastos; Fernanda Alvares

    2000-01-01

    Os efeitos da administração oral dos extratos aquoso (NvH2O), metanólico (NvmeOH), butanólico (Nvbut) e hexano (Nvhex), obtidos, seqüencialmente, de 500g de Nierembergia veitchii (planta seca), foram comparados aos obtidos com vitamina D3 (2,5mg.kg-1) e aos de um grupo controle (solução fisiológica - SF), quando administrados, durante todo o período de gestação (21 dias), a ratas albinas Wistar. A redução do ganho de peso foi evidente nas fêmeas tratadas com Nvhex, Nvbut e vitamina D3. Nesses...

  15. Synthesis and mesomorphic behaviour of lithocholic acid derivatives

    Indian Academy of Sciences (India)

    V A E Shaikh; N N Maldar; S V Lonikar

    2003-08-01

    A series of liquid crystalline derivatives of lithocholic acid were prepared using simple chemical reactions involving the terminal functional group—hydroxyl at C-3 and/or carboxyl at C-24. Thus methyl -3-(3-carboxy propionyl) lithocholate (I), 3-(3-carboxy propionyl) lithocholic acid (II), 3-acetyl lithocholic acid (III), 3-propionyl lithocholic acid (IV), 3-benzoyl lithocholic acid (V), 3-(4-nitrobenzoyl) lithocholic acid (VI), 3-cinnamoyl lithocholic acid (VII), methyl-3-(4-nitrobenzoyl) lithocholate (VIII) and 1,4-bis [cholan-24-methoxy carbonyl-3-oxycarbonyl] butane (IX) were prepared in good yields and characterized by IR, NMR and polarizing optical microscopy. Compounds (I) and (IX) exhibited monotropic behaviour while the others were enantiotropic. Some of the compounds also showed a high tendency of super cooling. Compounds (V), (VI) and (IX) formed cholesteric phase while the remaining compounds displayed smectic phase.

  16. Pollution characteristic of VOCs of ambient air in winter and spring in Shijiazhuang City

    Directory of Open Access Journals (Sweden)

    Qing CHANG

    2015-06-01

    Full Text Available In order to further explore the pollution characteristics of volatile organic compounds in ambient air in winter and spring in Shijiazhuang City, the pollution characteristics of 62 volatile organic compounds (VOCs, monthly and quarterly variation, the correlation between VOCs and PM2.5, and the main sources of VOCs are investigated by using EPA TO-15 method. It shows that 40 organic compounds of the 64 VOCs have been quantitatively determined in winter and spring in the city, which are mainly acetone, benzene, carbon tetrachloride, dichloromethane, toluene, ethyl acetate, etc.. In the no-quantitatively determined components, higher ethanol, butyl acetate, butane etc. are detected. The VOCs concentration has positive correlation with the PM2.5 concentration during haze days.

  17. Session 6: High Throughput Screening of VOC Removal Catalysts in Scanning Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Yaccato, K.; Hagemeyer, A.; Lefort, L.; Turner, H.; Volpe, A.; Weinberg, H. [Symyx Technologies Inc., Santa Clara, CA (United States)

    2004-07-01

    Volatile organic compounds (VOCs) are considered an important group of air pollutants. We have targeted more efficient VOC removal catalysts with high activity for total combustion at low temperature, negligible organics slip, high selectivity to CO{sub 2} without production of intermediate CO, oxygenates or cracking products. Butane was used as the model feed for VOC in Symyx' high-throughput Scanning Mass Spectrometer. The screening protocol encompassed bulk (unsupported) mixed metal oxides calcined in air at 400 C. Transition metals M{sub 1} known to have some oxidation activity M{sub 1}=Ti, V, Cr, Mo, W, Mn, Re, Fe, Co, Ni, Cu and Ag, were combined with each other into binaries as well as doped with M{sub 2} = K, Cs, Mg, Sr, Sc, Y, Ce, Sm, Zr, Nb, Ta, Zn, Cd, B, Al, In, Sn, Pb, P, Sb, Bi and Te, using 5- point compositional gradients (5 different compositions per binary). Five M/Z values were monitored, namely 44, 68, 70, 72 and 98. CO{sub 2} at M/Z equal to 44 is the dominant product, and only traces of oxygenates are formed. Co, Cr, Ni, Mn, Cu are identified as the most active metals. Subsequently, CoCrM{sub 3} and CrZnM{sub 3} ternaries were synthesized and screened with M{sub 3} selected from M{sub 3} Li, K, Cs, Mg, Sr, Y, Mo, Ru, Rh, Pd, Pt, Ag, Zn, Al, Ga, In, Sn, Pb, P, Sb and Bi, (M{sub 3} {<=} 10%, 15 different compositions/ternaries; 3 copies: (a) unsupported, calcined at 400 C, (b) unsupported, calcined at 600 C, (c) Al{sub 2}O{sub 3}, calcined at 400 C). CoCr ternaries from Symyx' library archive were also screened. High CO{sub 2} production for the CoCr/400 C systems was observed. Catalyst compositions were then optimized in focus libraries. An example for a CoCrTi/CoVSi bis-ternary focus library will be discussed in detail. VPO catalysts were used as 'standards' to establish the correlation between primary and tertiary screening. High CO{sub 2} signals were also observed for Co-rich CoCr and CoCrTi systems. The best Co

  18. Thailandepsin A

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2011-11-01

    Full Text Available Thailandepsin A [systematic name: (E-(1S,5S,6R,9S,20R-6-[(2S-butan-2-yl]-5-hydroxy-20-[2-(methylsulfanylethyl]-2-oxa-11,12-dithia-7,19,22-triazabicyclo[7.7.6]docosa-15-ene-3,8,18,21-tetraone], C23H37N3O6S3, is a newly reported [Wang et al. (2011. J. Nat. Prod. doi:10.1021/np200324x] bicyclic depsipeptide that has potent histone deacetylase inhibitory activity and broad-spectrum antiproliferative activity. The absolute configuration of thailandepsin A has been determined from the anomalous dispersion and the stereochemistry of all chiral C atoms. Intramolecular N—H...O and N—H...S hydrogen bonds occur. Intermolecular N—H...O and O—H...O hydrogen bonds are observed in the crystal structure.

  19. Descomposicion termica del diperoxido de pinacolona (3,6-diterbutil-3,6-dimetil-1,2,4,5-tetraoxaciclohexano en solución de 2-metoxietanol

    Directory of Open Access Journals (Sweden)

    Eyler Gladys N.

    2002-01-01

    Full Text Available The thermal decomposition reaction of pinacolone diperoxide (DPP; 0.02 mol kg-1 in 2-methoxyethanol solution studied in the temperature range of 110.0-150.0 °C, follows a first-order kinetic law up to at least 50% DPP conversion. The organic products observed were pinacolone, methane and tert-butane. A stepwise mechanism of decomposition was proposed where the first step is the homolytic unimolecular rupture of the O-O bond. The activation enthalpy and activation entropy for DPP in 2-methoxyethanol were calculated (deltaH# = 43.8 ± 1.0 kcal mol-1 and deltaS# = 31.9 ± 2.6 cal mol-1K-1 and compared with those obtained in other solvents to evaluate the solvent effect.

  20. Novel sensing approach for LPG leakage detection: Part I: Operating Mechanism and Preliminary Results

    KAUST Repository

    Mukhopadhyay, Subhas

    2015-10-30

    Gas sensing technology has been among the topical research work for quite some time. This paper showcases the research done on the detection mechanism of leakage of domestic cooking gas at ambient conditions. MEMS-based interdigital sensors were fabricated on oxidized single crystal silicon surfaces by maskless photolithography technique. The electrochemical impedance analysis of these sensors was done to detect liquefied petroleum gas (LPG) with and without coated particles of tin oxide (SnO2) in form of thin layer.A thin-film of SnO2 was spin-coated on the sensing surface of the interdigital sensor to induce selectivity to LPG that consists of a 60/40 mixture of propane and butane respectively. The paper reports a novel strategy for gas detection under ambient temperature and humidity conditions. The response time of the coated sensor was encouraging and own a promising potential to the development of a complete efficient gas sensing system.

  1. Markov state models and molecular alchemy

    Science.gov (United States)

    Schütte, Christof; Nielsen, Adam; Weber, Marcus

    2015-01-01

    In recent years, Markov state models (MSMs) have attracted a considerable amount of attention with regard to modelling conformation changes and associated function of biomolecular systems. They have been used successfully, e.g. for peptides including time-resolved spectroscopic experiments, protein function and protein folding , DNA and RNA, and ligand-receptor interaction in drug design and more complicated multivalent scenarios. In this article, a novel reweighting scheme is introduced that allows to construct an MSM for certain molecular system out of an MSM for a similar system. This permits studying how molecular properties on long timescales differ between similar molecular systems without performing full molecular dynamics simulations for each system under consideration. The performance of the reweighting scheme is illustrated for simple test cases, including one where the main wells of the respective energy landscapes are located differently and an alchemical transformation of butane to pentane where the dimension of the state space is changed.

  2. Hydrophobic Effects on a Molecular Scale

    CERN Document Server

    Hummer, G; García, A; Paulaitis, M E; Pratt, L R

    1998-01-01

    A theoretical approach is developed to quantify hydrophobic hydration and interactions on a molecular scale, with the goal of gaining insight into the molecular origins of hydrophobic effects. The model is based on the fundamental relation between the probability for cavity formation in bulk water resulting from molecular-scale density fluctuations, and the hydration free energy of the simplest hydrophobic solute, a hard particle. This probability is estimated using an information theory (IT) approach, incorporating experimentally available properties of bulk water -- the density and radial distribution function. The IT approach reproduces the simplest hydrophobic effects: hydration of spherical nonpolar solutes, the potential of mean force between methane molecules, and solvent contributions to the torsional equilibrium of butane. Applications of this approach to study temperature and pressure effects provide new insights into the thermodynamics and kinetics of protein folding. The IT model relates the hydro...

  3. Synthesis of Hyperbranched Glycoconjugates by the Combined Action of Potato Phosphorylase and Glycogen Branching Enzyme from Deinococcus geothermalis

    Directory of Open Access Journals (Sweden)

    Katja Loos

    2012-02-01

    Full Text Available Potato phosphorylase is able to synthesize linear polyglucans from maltoheptaose primers. By coupling maltoheptaose to butane diamine, tris(2-aminoethylamine and amine functionalized amine functionalized poly ethyleneglycol (PEG, new primer molecules became available. The resulting di-, tri- and macro-primers were incubated with potato phosphorylase and glycogen branching enzyme from Deinococcus geothermalis. Due to the action of both enzymes, hyperbranched polyglucan arms were grown from the maltoheptaose derivatives with a maximum degree of branching of 11%. The size of the synthesized hyperbranched polyglucans could be controlled by the ratio monomer over primer. About 60%–80% of the monomers were incorporated in the glycoconjugates. The resulting hyperbranched glycoconjugates were subjected to Dynamic Light Scattering (DLS measurements in order to determine the hydrodynamic radius and it became obvious that the structures formed agglomerates in the range of 14–32 nm.

  4. Energy consumptions per sector; Les consommations d'energie par secteur

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document presents the energy consumption data of France per energy type and sector of use in the form of tables and graphics for the last decade and sometimes before: 1 - residential and tertiary sector: energy consumption per energy source, energy consumption per use (coal, heavy and domestic fuels, natural gas, LPG (butane, propane), electricity), comparison of the share of each energy source between 1973 and 2003, 20 years of space heating data in main dwellings (1982-2002), district heating networks from 1987 to 1997; 2 - transportation sector: fuel consumption of individual cars in France (1990-2003, 1990-2002, 1990-2001, 1987-1999), some indicators about the energy consumption in transports in France (2000-2001); 3 - industry sector: consumption of fuel substitutes in the cement industry in 2001, importance and limitations. (J.S.)

  5. Design of a heat pipe governed thermal control system for the Solar Electric Propulsion Stage /SEPS/

    Science.gov (United States)

    Ruttner, L. E.; Wright, J. P.

    1975-01-01

    A 2200-w capacity spacecraft heat rejection system designed for the SEPS and utilizing heat pipe radiator panels has been investigated. The total thermal control system consists of two radiator panels connected to the heat source by variable conductance heat pipes (VCHP's). The system was designed to operate in the 223 to 333 temperature range. The radiators have an emittance of 0.88 at their operational temperature and a fin efficiency of approximately 80 percent. The radiators are thermally isolated from the SEPS and environment by multilayer insulation and thermal shields. Butane was selected as the working fluid for the VCHP because of its low freezing point (135), which is necessary to prevent diffusion freezeout of the liquid during the cold outbond missions. Helium was selected for the control gas. This paper describes the VCHP system, discusses the system design parameters and presents the results of the analyses.

  6. Speciation of non-methane hydrocarbons (NMHCs) from anthropogenic sources in Beirut, Lebanon.

    Science.gov (United States)

    Salameh, T; Afif, C; Sauvage, S; Borbon, A; Locoge, N

    2014-09-01

    The chemical composition of emissions from the different anthropogenic sources of non-methane hydrocarbons (NMHC) is essential for modeling and source apportionment studies. The speciated profiles of major NMHC sources in Lebanon, including road transport, gasoline vapor, power generation, and solvent use were established. Field sampling have been carried out by canisters in 2012. Around 67 NMHC (C2 to C9) were identified and quantified by using a gas chromatograph equipped with a flame ionization detector. Typical features of the roadway emissions included high percentages of isopentane, butane, toluene, xylenes, ethylene, and ethyne. Gasoline evaporation profiles included high percentage of the C4-C5 saturated hydrocarbons reaching 59 %. The main compounds of the power generator emissions are related to combustion. Toluene and C8-C9 aromatics were the most abundant species in emissions from paint applications. Finally, the impact of the use of region-specific source profile is tackled regarding the implication on air quality. PMID:24833189

  7. Exergy Analysis of Vapor Compression Cycle Driven by Organic Rankine Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Hoon [Kumoh Nat' l Institute of Technology, Gumi (Korea, Republic of)

    2013-12-15

    In this study, exergy analysis of a thermally activated refrigeration cycle, a combined organic Rankine cycle (ORC), and a vapor compression cycle (VCC) were conducted. It is considered that a system uses a low-temperature heat source in the form of sensible heat, such as various renewable energy sources or waste heat from industries, and one of eight working fluids: R143a, R22, R134a, propane, isobutane, butane, R245fa, or R123. The effects of turbine inlet pressure and the working fluid selected on the exergy destructions (anergies) at various system components as well as the COP and exergy efficiency of the system were analyzed and discussed. The results show that the component of the greatest exergy destruction in the system varies sensitively with the turbine inlet pressure and/or working fluid.

  8. Velocity of sound measurements in gaseous per-fluorocarbons and their custom mixtures

    CERN Document Server

    Vacek, V; Lindsay, S

    2000-01-01

    An inexpensive sonar instrument was prepared for measurements of sound velocity in two fluorocarbon vapors; per-fluoro-n-propane (C3F8), per-fluoro-n-butane (C4F10), and their custom mixtures. The apparatus, measurement principle and instrument software are described. All sound velocity measurements in per-fluorocarbons were made in the low pressure range between 0.01 and 0.4 MPa, and at temperatures between 253 and 303 K. The purity of the C3F8 and C4F10 samples was checked using gas chromatography. Uncertainties in the speed of sound measurements were better than ± 0.1 %. Comparisons were made with theoretical predictions of sound velocity for the two individual components. The instrument was then used for concentration monitoring of custom C3F8/C4F10 mixtures.

  9. Carbon mediated catalysis:A review on oxidative dehydrogenation

    Institute of Scientific and Technical Information of China (English)

    De Chen; Anders Holmen; Zhijun Sui; Xinggui Zhou

    2014-01-01

    Carbon mediated catalysis has gained an increasing attention in both areas of nanocatalysis and nanomaterials. The progress in carbon nanomaterials provides many new opportunities to manip-ulate the types and properties of active sites of catalysts through manipulating structures, function-alities and properties of carbon surfaces. The present review focuses on progresses in carbon medi-ated oxidative dehydrogenation reactions of ethylbenzene, propane, and butane. The state-of-the-art of the developments of carbon mediated catalysis is discussed in terms of fundamental studies on adsorption of oxygen and hydrocarbons, reaction mechanism as well as effects of carbon nano-material structures and surface functional groups on the catalytic performance. We highlight the importance and challenges in tuning of the electron density of carbon and oxygen on carbon surfac-es for improving selectivity in oxidative dehydrogenation reactions.

  10. A new approach to the non-oxidative conversion of gaseous alkanes in a barrier discharge and features of the reaction mechanism

    Science.gov (United States)

    Kudryashov, S.; Ryabov, A.; Shchyogoleva, G.

    2016-01-01

    A new approach to the non-oxidative conversion of C1-C4 alkanes into gaseous and liquid products in a barrier discharge is proposed. It consists in inhibiting the formation of deposits on the reactor electrode surfaces due to the addition of distilled water into the flow of hydrocarbon gases. The energy consumption on hydrocarbon conversion decreases from methane to n-butane from ~46 to 35 eV molecule-1. The main gaseous products of the conversion of light alkanes are hydrogen and C2-C4 hydrocarbons. The liquid reaction products contain C5+ alkanes with a predominantly isomeric structure. The results of modeling the kinetics of chemical reactions show that an increase in the molecular weight of the reaction products is mainly due to processes involving CH2 radical and the recombination of alkyl radicals.

  11. Crystal structure of cyproconazole

    OpenAIRE

    Gihaeng Kang; Jineun Kim; Eunjin Kwon; Tae Ho Kim

    2015-01-01

    The title compound [systematic name: 2-(4-chlorophenyl)-3-cyclopropyl-1-(1H-1,2,4-triazol-1-yl)butan-2-ol], C15H18ClN3O, is a conazole fungicide. The asymmetric unit comprises two enantiomeric pairs (molecules A and B) in which the dihedral angles between the chlorophenyl and triazole rings are 46.54 (9) (molecule A) and 67.03 (8)° (molecule B). In the crystal, C—H...O, O—H...N and C—H...Cl hydrogen bonds and weak C—H...π interactions [3.473 (2) Å] link adjacent molecules, forming columns alo...

  12. Crystal structure of cyproconazole

    OpenAIRE

    Kang, Gihaeng; Kim, Jineun; Kwon, Eunjin; Kim, Tae Ho

    2015-01-01

    The title compound [systematic name: 2-(4-chloro­phen­yl)-3-cyclo­propyl-1-(1H-1,2,4-triazol-1-yl)butan-2-ol], C15H18ClN3O, is a conazole fungicide. The asymmetric unit comprises two enanti­omeric pairs (mol­ecules A and B) in which the dihedral angles between the chloro­phenyl and triazole rings are 46.54 (9) (mol­ecule A) and 67.03 (8)° (mol­ecule B). In the crystal, C—H⋯O, O—H⋯N and C—H⋯Cl hydrogen bonds and weak C—H⋯π inter­actions [3.473 (2) Å] link adjacent mol­ecules, forming columns a...

  13. Study of the Low-Frequency Molecular Motions in Polyethylene and the N-Paraffins by Slow-Neutron Inelastic Scattering

    International Nuclear Information System (INIS)

    The time-of-flight spectra of slow neutrons inelastically scattered from samples of highly crystalline polyethylene at room temperature have been measured. A comparison has been made between the observed structure in the spectra and calculations of intra- and intermolecular motions of crystalline polyethylene. With the exception of a peak at 300 cm-1, all of the structure has been accounted for in this manner. The possible origin of this peak is also discussed. The time-of-flight spectra of slow neutrons scattered from samples of solid n-butane, n-pentane, n-hexane and n-heptane were also obtained. Tentative identification of the observed frequencies on the basis of a normal mode calculation of intramolecular vibrations is made. In addition, a simple explanation for the behaviour of the melting temperature as a function of chain length is proposed. (author)

  14. Alkane Activation Initiated by Hydride Transfer: Co-conversion of Propane and Methanol over H-ZSM-5 Zeolite.

    Science.gov (United States)

    Yu, Si-Min; Wu, Jian-Feng; Liu, Chong; Liu, Wei; Bai, Shi; Huang, Jun; Wang, Wei

    2015-06-15

    Co-conversion of alkane with another reactant over zeolite catalysts has emerged as a new approach to the long-standing challenge of alkane transformation. With the aid of solid-state NMR spectroscopy and GC-MS analysis, it was found that the co-conversion of propane and methanol can be readily initiated by hydride transfer at temperatures of ≥449 K over the acidic zeolite H-ZSM-5. The formation of (13)C-labeled methane and singly (13)C-labeled n-butanes in selective labeling experiments provided the first evidence for the initial hydride transfer from propane to surface methoxy intermediates. The results not only provide new insight into carbocation chemistry of solid acids, but also shed light on the low-temperature transformation of alkanes for industrial applications. PMID:25959356

  15. Synthesis of carbon nanoparticles from commercially available liquified petroleum gas

    Science.gov (United States)

    Nandiyanto, A. B. D.; Fadhlulloh, M. A.; Rahman, T.; Mudzakir, A.

    2016-04-01

    The aim of this study was to synthesize carbon nanoparticles (CNPs) from commercially available liquefied petroleum gas (LPG). In the research procedure, LPG was reacted with air to construct CNPs. To confirm the successful synthesis of CNPs, we conducted several sample analyses: Gas Chromatography-Mass Spectrometry (GC-MS), Transmission Electron Microscope (TEM), X-ray Diffraction (XRD), and Infrared Spectra (FTIR). We also varied LPG and oxygen mole ratios at 0.8; 2.4; 4.8; and 7.2. The GC-MS results indicated the composition of LPG was propane (58.90%), isobutane (18.35%), butane (22.26%), and butane, 2-methyl (0.48%). The TEM results showed that the particles were spheres with sizes of between 25 and 35 nm. The sizes of particles were controllable, depending on the mole ratio. The XRD results showed mole ratios of LPG and oxygen of 0.80 and 2.40 were natural graphite, whereas the mole ratios of 4.80 and 7.20 were hexagonal graphite. FT-IR results showed CNPs have absorption peaks at wave number (i) 752 (C-H bend sp2); (ii) 835 (C=C); (iii) 1274 (C-O-C vibration); (iv) 1400 and 1600 (C-C stretch aromatic); (v) 2800 (C-H sp2); (vi) 2900 (CH sp3); (vii) 3100 (C-H aromatic); and (viii) 3400 cm-1 (O-H). From the FTIR analysis results, the sample contained allotrope graphite due to detection of peaks at 1400 and 1600 cm-1 (C-C stretch aromatic) and 3100 cm-1 (C-H aromatic).

  16. Volatile Organic Compounds in the Global Atmosphere (Invited)

    Science.gov (United States)

    Helmig, D.; Bottenheim, J. W.; Galbally, I.; Lewis, A. C.; Masarie, K.; Milton, M.; Penkett, S.; Plass-Duelmer, C.; Reimann, S.; Steinbrecher, R.; Tans, P. P.; Thiel, S.

    2010-12-01

    The World Meteorological Organization (WMO) - Global Atmospheric Watch (GAW) has been guiding the implementation of a global program for the monitoring of atmospheric volatile organic compounds (VOC). Essential features are 1. regular, in-situ, high temporal resolution measurements of VOC at surface stations, 2. VOC analyses in samples collected within flask sampling networks for wide geographical coverage, and 3. a concerted calibration and data quality control effort. A centerpiece of the flask sampling component builds upon the US NOAA Earth System Research Laboratory - Global Cooperative Air Sampling Network. Nine non-methane hydrocarbon species (NMHC; ethane, propane, iso-butane, n-butane, iso-pentane, n-pentane, isoprene, benzene, toluene) are currently analyzed by an automated gas chromatography system at the University of Colorado’s Institute of Arctic and Alpine Research (INSTAAR) in pairs of samples collected bi-weekly at 41 global background monitoring sites. Since the implementation of this program in 2004 more than 7000 measurements have been obtained. The obtained data allow elucidating the geographical and seasonal behavior of atmospheric NMHC, as well as interannual variations. Results show a wide dynamic range of mixing ratio changes. Concentration maxima and seasonal cycles are most pronounced in regions of highest emission sources and highest changes in the seasonal OH radical sink, i.e. the northern high and mid-latitudes. Seasonal southern hemisphere (SH) maxima are ~7 times and ~20 times lower for ethane and propane than in the northern hemisphere, which mainly reflects the smaller source strength of these gases in the SH. The richness of information in these data will help constraining the variability in global atmospheric oxidation chemistry and regional budgets of greenhouse gases, such as of methane and CO2, and most certainly stimulate further interests and applications in many fields of atmospheric chemistry and climate research

  17. Chemical characterization of Brickellia cavanillesii (Asteraceae) using gas chromatographic methods.

    Science.gov (United States)

    Eshiet, Etetor R; Zhu, Jinqiu; Anderson, Todd A; Smith, Ernest E

    2014-03-01

    A methanol extract of lyophilized Brickellia cavanillesii was quantitatively analyzed using gas chromatographic (GC) techniques. The chromatographic methods employed were (i) GC-flame ionization detector (GC-FID), (ii) GC-mass spectrometry (GC-MS), and (iii) purge and trap GC-MS (P&T GC-MS). Thirteen compounds were identified with a quality match of 90% and above using GC-MS. The compounds were (1) Cyclohexene, 6-ethenyl-6-methyl-1-(1-methylethyl)-3-(1-methylethylidene)-, (S)-; (2) Bicylo (2.2.1) heptan-2-one, 1, 7, 7-trimethyl-(1S, 4S)-; (3) Phenol, 2-methoxy-4-(1-propenyl)-; (4) Benzene, 1-(1, 5-dimethyl-4-hexenyl)-4-methyl-; (5) Naphthalene, 1, 2, 3, 5, 6, 8a-hexahydro4, 7-dimethyl-1-1-(1-methylethyl)-, (1S-cis)-; (6) Phenol, 2-methoxy-; (7) Benzaldehyde, 3-hydroxy-4-methoxy-; (8) 11, 13-Eicosadienoic acid, methyl ester; (9) 2-Furancarboxaldehyde, 5-methyl-; (10) Maltol; (11) Phenol; (12) Hydroquinone; (13) 1H-Indene, 1-ethylideneoctahydro-7a-methyl-, (1E, 3a.alpha, 7a.beta.). Other compounds (14) 3-methyl butanal; (15) (D)-Limonene; (16) 1-methyl-4-(1-methyl ethyl) benzene; (17) Butanoic acid methyl ester; (18) 2-methyl propanal; (19) 2-butanone; (20) 2-pentanone; and (21) 2-methyl butane were also identified when P&T GC-MS was performed. Of the 21 compounds identified, 12 were validated using chemical standards. The identified compounds were found to be terpenes, derivatives of terpenes, esters, ketones, aldehydes, and phenol-derived aromatic compounds; these are the primary constituents of the essential oils of many plants and flowers. PMID:24804069

  18. Fragmentation, auto-modification and post ionisation proton bound dimer ion formation: the differential mobility spectrometry of low molecular weight alcohols.

    Science.gov (United States)

    Ruszkiewicz, D M; Thomas, C L P; Eiceman, G A

    2016-08-01

    Differential mobility spectrometry (DMS) is currently being used for environmental monitoring of space craft atmospheres and has been proposed for the rapid assessment of patients at accident and emergency receptions. Three studies investigated hitherto undescribed complexity in the DMS spectra of methanol, ethanol, propan-1-ol and butan-1-ol product ions formed from a (63)Ni ionisation source. 54 000 DMS spectra obtained over a concentration range of 0.01 mg m(-3)(g) to 1.80 g m(-3)(g) revealed the phenomenon of auto-modification of the product ions. This occurred when the neutral vapour concentration exceeded the level required to induce a neutral-ion collision during the low field portion of the dispersion field waveform. Further, post-ionisation cluster-ion formation or protonated monomer/proton bound dimer inter-conversion within the ion-filter was indicated by apparent shifts in the values of the protonated monomer compensation field maximum; indicative of post-ionisation conversion of the protonated monomer to a proton-bound dimer. APCI-DMS-quadrupole mass spectrometry studies enabled the ion dissociation products from dispersion-field heating to be monitored and product ion fragmentation relationships to be proposed. Methanol was not observed to dissociate, while propan-1-ol and butan-1-ol underwent dissociation reactions consistent with dehydration processes that led ultimately to the generation of what is tentatively assigned as a cyclo-C3H3(+) ion (m/z 39) and hydrated protons. Studies of the interaction of ion filter temperature with dispersion-field heating of product ions isolated dissociation/fragmentation product ions that have not been previously described in DMS. The implications of these combined findings with regard to data sharing and data interpretation were highlighted. PMID:27227997

  19. Alkyl sulfonic acide hydrazides: Synthesis, characterization, computational studies and anticancer, antibacterial, anticarbonic anhydrase II (hCA II) activities

    Science.gov (United States)

    O. Ozdemir, Ummuhan; İlbiz, Firdevs; Balaban Gunduzalp, Ayla; Ozbek, Neslihan; Karagoz Genç, Zuhal; Hamurcu, Fatma; Tekin, Suat

    2015-11-01

    Methane sulfonic acide hydrazide, CH3SO2NHNH2 (1), ethane sulfonic acide hydrazide, CH3CH2SO2NHNH2 (2), propane sulfonic acide hydrazide, CH3CH2CH2SO2NHNH2 (3) and butane sulfonic acide hydrazide, CH3CH2CH2CH2SO2NHNH2 (4) have been synthesized as homologous series and characterized by using elemental analysis, spectrophotometric methods (1H-13C NMR, FT-IR, LC-MS). In order to gain insight into the structure of the compounds, we have performed computational studies by using 6-311G(d, p) functional in which B3LYP functional were implemented. The geometry of the sulfonic acide hydrazides were optimized at the DFT method with Gaussian 09 program package. A conformational analysis of compounds were performed by using NMR theoretical calculations with DFT/B3LYP/6-311++G(2d, 2p) level of theory by applying the (GIAO) approach. The anticancer activities of these compounds on MCF-7 human breast cancer cell line investigated by comparing IC50 values. The antibacterial activities of synthesized compounds were studied against Gram positive bacteria; Staphylococcus aureus ATCC 6538, Bacillus subtilis ATCC 6633, Bacillus cereus NRRL-B-3711, Enterococcus faecalis ATCC 29212 and Gram negative bacteria; Escherichia coli ATCC 11230, Pseudomonas aeruginosa ATCC 15442, Klebsiella pneumonia ATCC 70063 by using the disc diffusion method. The inhibition activities of these compounds on carbonic anhydrase II enzyme (hCA II) have been investigated by comparing IC50 and Ki values. The biological activity screening shows that butane sulfonic acide hydrazide (4) has more activity than the others against tested breast cancer cell lines MCF-7, Gram negative/Gram positive bacteria and carbonic anhydrase II (hCA II) isoenzyme.

  20. Anthropogenic non-methane volatile hydrocarbons at Mt. Cimone (2165 m a.s.l., Italy): Impact of sources and transport on atmospheric composition

    Science.gov (United States)

    Lo Vullo, Eleonora; Furlani, Francesco; Arduini, Jgor; Giostra, Umberto; Graziosi, Francesco; Cristofanelli, Paolo; Williams, Martin L.; Maione, Michela

    2016-09-01

    To advance our understanding of the factors that affect pollution in mountainous areas, long-term, high frequency measurements of thirteen Non Methane Volatile Organic Compounds (NMVOCs) have been carried out at the atmospheric observatory on the top of Mt. Cimone (2165 m a.s.l.), whose location is ideal for sampling both aged air masses representing the regional background and polluted air masses coming from nearby sources of anthropogenic pollution. An analysis of the NMVOC time series available at Mt. Cimone during 2010-2014 was used to examine the influence of transport processes on NMVOC atmospheric composition and to derive information on the emission sources. We performed a multifactor principal component analysis whose results allowed us to identify the source categories emitting the NMVOCs measured at Mt. Cimone as well as to assess transport ranges in winter and summer. Aged air masses, due to long-range transport and related to vehicular traffic exhaust emissions accounted for 78% of the NMVOC variability in winter and 62% in summer, whereas evaporative emissions, likely to be associated with fresh emissions from nearby sources, accounted for 12% of the NMVOC variability and 24% in winter and summer, respectively. Such results have been confirmed by a further analysis in which the NMVOC variability as a function of their atmospheric lifetimes has been evaluated. The ratios of alkane isomers potentially provides a metric to investigate seasonal changes in NMVOCs composition and in the emission fields of butanes and pentanes, suggesting that during the summer the butanes are originating mainly from the European domain and that for pentanes non-anthropogenic sources may be contributing to the measured concentrations.

  1. An exploratory study on the peroxyl-radical-scavenging activity of 2,6-dimethyl-5-hepten-2-ol and its heterocyclic analogues

    Science.gov (United States)

    Stobiecka, Agnieszka; Sikora, Magdalena; Bonikowski, Radosław; Kula, Józef

    2016-03-01

    The structural properties and radical scavenging activity of 2,6-dimethyl-5-hepten-2-ol (1) and its new heterocyclic analogues, i.e. 2-methyl-4-(5-methylfuran-2-yl)-butan-2-ol (2) and 2-methyl-4-(5-methylthiophen-2-yl)-butan-2-ol (3) and have been studied by using the experimental and theoretical methods for the first time. Activity of title compounds against the peroxyl radical was determined by using standard fluorimetric test, i.e. the Oxygen Radical Absorbance Capacity assay (ORACFL). Furthermore, the electron-donating ability of odorants has been evaluated by using colorimetric ABTS assay. According to the experimental results obtained from the ORACFL test 2,6-dimethyl-5-hepten-2-ol was characterized by the highest activity in comparison with the novel counterparts. Nevertheless, all investigated compounds exhibited pronounced anti-peroxyl radical activity comparable to that exerted by the one of the most prominent antioxidant among the monoterpene alcohols, i.e. by linalool. On the other hand, the title compounds exerted relatively low capacity to quench the radical cation of ABTS. Theoretical calculations based on the Density Functional Theory (DFT) method with the hybrid functional B3LYP were carried out in order to investigate selected structural and electronic properties including the geometrical parameters as well as the energy of frontier molecular orbitals of parent molecules and the resulting radicals. Furthermore, the possible mechanism of peroxyl-radical-scavenging has been determined by using the thermodynamic descriptors such as the bond dissociation enthalpies (BDEs) and ionization potentials (IPs). These theoretical data pointed out the relevance of HAT mechanism in the peroxyl-radical-scavenging exhibited by 2,6-dimethyl-5-hepten-2-ol and its new heterocyclic analogues in polar and non-polar medium.

  2. Catalytic Combustion Characteristics of H2/n-CaH10/Air Mixtures in Swiss-Roll Combustor%H2/n-C4H10/Air预混气在Swiss—roll燃烧器中的催化燃烧特性

    Institute of Scientific and Technical Information of China (English)

    杨帆; 钟北京

    2012-01-01

    In micro catalytic combustion, due to the competitive adsorption between fuel and oxygen molecular on the catalyst surface, the lower combustion limits are at the fuel rich condition. To enhance the utilization of fuel and enlarge the flammable range, hydrogen was added into the n-butane/air mixtures. Then catalytic combustion characteristics of H2/n-C4H10/air mixtures in Swiss-roll combustor were studied. Experimental results indicate that the addition of hydrogen and enlarge the flammable range of n-butane and the lower limits is fuel lean. Thus the utilization of fuel is high. The steady state combustion experiments show that the highest temperature of combustor is at fuel rich.%在微尺度催化燃烧中,由于燃料和氧气对于催化剂表面活性位的竞争,导致了可燃下限为富燃的情况。为了提高燃料利用率,拓宽可燃范围,本文在正丁烷/空气的混合气中加入一定量的氢气,在Swiss—roll燃烧器内研究了氯气/正丁烷/空气预混气的燃烧特性。结果表明,氢气能够有效拓宽正丁烷的可燃范围,可燃下限能够低于1,以贫燃的条件实现高燃料利用率。对于稳定燃烧温度的实验结果表明,燃烧器最高温度出现在富燃料一侧。

  3. Sources of Volatile Organic Compounds (VOCs) in the UAE

    Science.gov (United States)

    Abbasi, Naveed; Majeed, Tariq; Iqbal, Mazhar; Riemer, Daniel; Apel, Eric; Lootah, Nadia

    The gas chromatography-flame ionization detection/mass spectrometry system has been used to identify major volatile organic compounds (VOCs) sources in the UAE (latitude 24.45N; longitude 54.22E). VOCs are emitted from an extensive number of sources in urban environments including fuel production, distribution, and consumption. Transport sources contribute a substantial portion of the VOC burden to the urban atmosphere in developed regions. UAE is located at the edge of the Persian Gulf and is highly affected by emissions from petrochemical industries in neighbouring Saudi Arabia, Qatar, and Iran. VOCs emerging from these industries can be transported to the UAE with jet streams. The analysis of the collected air samples at three locations in Sharjah, UAE during the autumn and winter seasons indicates the presence of more than 100 VOC species. The concentrations of these species vary in magnitudes but the most prominent are: acetylene, ethane, propane, butane, pentane, benzene, and toluene. The possible tracers for various emission sources have also been identified such as 2-methylpentane, 1, 3-butadiene and 2, 2-dimethlybutane for vehicle exhaust, the light hydrocarbons, namely n-butane, trans-2-butene, and n-pentane for gasoline vapor, and n-nonane, n-decane, and n-undecane for diesel vapor and asphalt application processes. As various emission sources are characterized by overlapping VOC species, the ratio of possible VOC tracers are used to quantify the contribution of different sources. Our aim in this paper is to explore and discuss possible impacts of transported emissions on the local VOC emission inventory from various sources for the UAE. This work is partially supported by Office of Development and Alumni Affairs at the American University of Sharjah, U.A.E.

  4. Purification and biological evaluation of the metabolites produced by Streptomyces sp. TK-VL_333.

    Science.gov (United States)

    Kavitha, Alapati; Prabhakar, Peddikotla; Vijayalakshmi, Muvva; Venkateswarlu, Yenamandra

    2010-06-01

    An Actinobacterium strain isolated from laterite soils of the Guntur region was identified as Streptomyces sp. TK-VL_333 by 16S rRNA analysis. Cultural, morphological and physiological characteristics of the strain were recorded. The secondary metabolites produced by the strain cultured on galactose-tyrosine broth were extracted and concentrated followed by defatting of the crude extract with cyclohexane to afford polar and non-polar residues. Purification of the two residues by column chromatography led to isolation of five polar and one non-polar fraction. Bioactivity- guided fractions were rechromatographed on a silica gel column to obtain four compounds, namely 1H-indole-3-carboxylic acid, 2,3-dihydroxy-5-(hydroxymethyl) benzaldehyde, 4-(4-hydroxyphenoxy) butan-2-one and acetic acid-2-hydroxy-6-(3-oxo-butyl)-phenyl ester from three active polar fractions and 8-methyl decanoic acid from one non-polar fraction. The structure of the compounds was elucidated on the basis of FT-IR, mass and NMR spectroscopy. The antimicrobial activity of the bioactive compounds produced by the strain was tested against the bacteria and fungi and expressed in terms of minimum inhibitory concentration. Antifungal activity of indole-3-carboxylic acid was further evaluated under in vitro and in vivo conditions. This is the first report of 2,3-dihydroxy-5-(hydroxymethyl) benzaldehyde, 4-(4-hydroxyphenoxy) butan-2-one, acetic acid-2-hydroxy-6-(3-oxo-butyl)-phenyl ester and 8-methyl decanoic acid from the genus Streptomyces.

  5. Analysis of volatile compounds of Ilex paraguariensis A. St. - Hil. and its main adulterating species Ilex theizans Mart. ex Reissek and Ilex dumosa Reissek Análise de compostos voláteis de Ilex paraguariensis A. St. - Hil. e suas principais espécies adulterantes Ilex theizans Mart. ex Reissek e Ilex dumosa Reissek

    Directory of Open Access Journals (Sweden)

    Rogério Marcos Dallago

    2011-12-01

    Full Text Available The adulteration of the product Ilex paraguariensis with other Ilex species is a mAjor problem for maté tea producers. In this work, three species of Ilex were evaluated for their volatile composition by headspace solid phase microextraction coupled to gas chromatography and mass spectrum detector (HS-SPME/GC-MS. The adulterating species I. dumnosa and I. theizans Mart. ex Reissek presented a different profile of volatile organic compounds when compared to I. paraguariensis. Aldehydes methyl-butanal, pentanal, hexanal, heptanal and nonanal were detected only in the adulterating species. This result suggests that such compounds are potential chemical markers for identification of adulteration and quality analysis of products based on Ilex paraguariensis.A adulteração do produto Ilex paraguariensis com outras espécies de Ilex é um dos principais problemas dos produtores de erva-mate. Neste trabalho, três espécies de Ilex foram avaliadas quanto à sua composição volátil por microextração em fase sólida acoplada à cromatografia gasosa e detector de espectro de massas (HS-SPME/GC-MS. As espécies adulterantes I. dumnosa e I. theizans Mart. ex Reissek apresentaram um perfil diferente de compostos orgânicos voláteis, quando comparadas com a I. paraguariensis. Os aldeídos metil-butanal, pentanal, hexanal, heptanal e nonanal foram detectados apenas nas espécies adulterantes. Esse resultado sugere que esses compostos químicos são marcadores potenciais para a identificação de adulteração e análise da qualidade dos produtos à base de Ilex paraguariensis.

  6. SmoXYB1C1Z of Mycobacterium sp. strain NBB4: a soluble methane monooxygenase (sMMO)-like enzyme, active on C2 to C4 alkanes and alkenes.

    Science.gov (United States)

    Martin, Kiri E; Ozsvar, Jazmin; Coleman, Nicholas V

    2014-09-01

    Monooxygenase (MO) enzymes initiate the aerobic oxidation of alkanes and alkenes in bacteria. A cluster of MO genes (smoXYB1C1Z) of thus-far-unknown function was found previously in the genomes of two Mycobacterium strains (NBB3 and NBB4) which grow on hydrocarbons. The predicted Smo enzymes have only moderate amino acid identity (30 to 60%) to their closest homologs, the soluble methane and butane MOs (sMMO and sBMO), and the smo gene cluster has a different organization from those of sMMO and sBMO. The smoXYB1C1Z genes of NBB4 were cloned into pMycoFos to make pSmo, which was transformed into Mycobacterium smegmatis mc(2)-155. Cells of mc(2)-155(pSmo) metabolized C2 to C4 alkanes, alkenes, and chlorinated hydrocarbons. The activities of mc(2)-155(pSmo) cells were 0.94, 0.57, 0.12, and 0.04 nmol/min/mg of protein with ethene, ethane, propane, and butane as substrates, respectively. The mc(2)-155(pSmo) cells made epoxides from ethene, propene, and 1-butene, confirming that Smo was an oxygenase. Epoxides were not produced from larger alkenes (1-octene and styrene). Vinyl chloride and 1,2-dichloroethane were biodegraded by cells expressing Smo, with production of inorganic chloride. This study shows that Smo is a functional oxygenase which is active against small hydrocarbons. M. smegmatis mc(2)-155(pSmo) provides a new model for studying sMMO-like monooxygenases. PMID:25015887

  7. Arctic springtime observations of volatile organic compounds during the OASIS-2009 campaign

    Science.gov (United States)

    Hornbrook, Rebecca S.; Hills, Alan J.; Riemer, Daniel D.; Abdelhamid, Aroob; Flocke, Frank M.; Hall, Samuel R.; Huey, L. Gregory; Knapp, David J.; Liao, Jin; Mauldin, Roy L.; Montzka, Denise D.; Orlando, John J.; Shepson, Paul B.; Sive, Barkley; Staebler, Ralf M.; Tanner, David. J.; Thompson, Chelsea R.; Turnipseed, Andrew; Ullmann, Kirk; Weinheimer, Andrew J.; Apel, Eric C.

    2016-08-01

    Gas-phase volatile organic compounds (VOCs) were measured at three vertical levels between 0.6 m and 5.4 m in the Arctic boundary layer in Barrow, Alaska, for the Ocean-Atmosphere-Sea Ice-Snowpack (OASIS)-2009 field campaign during March-April 2009. C4-C8 nonmethane hydrocarbons (NMHCs) and oxygenated VOCs (OVOCs), including alcohols, aldehydes, and ketones, were quantified multiple times per hour, day and night, during the campaign using in situ fast gas chromatography-mass spectrometry. Three canister samples were also collected daily and subsequently analyzed for C2-C5 NMHCs. The NMHCs and aldehydes demonstrated an overall decrease in mixing ratios during the experiment, whereas acetone and 2-butanone showed increases. Calculations of time-integrated concentrations of Br atoms, ∫[Br]dt, yielded values as high as (1.34 ± 0.27) × 1014 cm-3 s during the longest observed ozone depletion event (ODE) of the campaign and were correlated with the steady state Br calculated at the site during this time. Both chlorine and bromine chemistry contributed to the large perturbations on the production and losses of VOCs. Notably, acetaldehyde, propanal, and butanal mixing ratios dropped below the detection limit of the instrument (3 parts per trillion by volume (pptv) for acetaldehyde and propanal, 2 pptv for butanal) during several ODEs due to Br chemistry. Chemical flux calculations of OVOC production and loss are consistent with localized high Cl-atom concentrations either regionally or within a very shallow surface layer, while the deeper Arctic boundary layer provides a continuous source of precursor alkanes to maintain the OVOC mixing ratios.

  8. Universal Indicators for Oil and Gas Prospecting Based on Bacterial Communities Shaped by Light-Hydrocarbon Microseepage in China.

    Science.gov (United States)

    Deng, Chunping; Yu, Xuejian; Yang, Jinshui; Li, Baozhen; Sun, Weilin; Yuan, Hongli

    2016-07-28

    Light hydrocarbons accumulated in subsurface soil by long-term microseepage could favor the anomalous growth of indigenous hydrocarbon-oxidizing microorganisms, which could be crucial indicators of underlying petroleum reservoirs. Here, Illumina MiSeq sequencing of the 16S rRNA gene was conducted to determine the bacterial community structures in soil samples collected from three typical oil and gas fields at different locations in China. Incubation with n-butane at the laboratory scale was performed to confirm the presence of "universal microbes" in light-hydrocarbon microseepage ecosystems. The results indicated significantly higher bacterial diversity in next-to-well samples compared with background samples at two of the three sites, which were notably different to oil-contaminated environments. Variation partitioning analysis showed that the bacterial community structures above the oil and gas fields at the scale of the present study were shaped mainly by environmental parameters, and geographic location was able to explain only 7.05% of the variation independently. The linear discriminant analysis effect size method revealed that the oil and gas fields significantly favored the growth of Mycobacterium, Flavobacterium, and Pseudomonas, as well as other related bacteria. The relative abundance of Mycobacterium and Pseudomonas increased notably after n-butane cultivation, which highlighted their potential as biomarkers of underlying oil deposits. This work contributes to a broader perspective on the bacterial community structures shaped by long-term light-hydrocarbon microseepage and proposes relatively universal indicators, providing an additional resource for the improvement of microbial prospecting of oil and gas. PMID:27116995

  9. Experimental Study of MHD-Assisted Mixing and Combustion Under Low Pressure Conditions

    Science.gov (United States)

    Gao, Ling; Zhang, Bailing; Li, Yiwen; Fan, Hao; Duan, Chengduo; Wang, Yutian

    2016-08-01

    In order to reveal the mechanism of MHD-assisted mixing, and analyse the major parameters which influence the effect of MHD-assisted mixing, experiments of MHD-assisted mixing are carried out with a non-premixed butane-air combustion system. The evolvement of the discharge section and the effect of MHD-assisted mixing on combustion are investigated by changing the magnetic flux density and airflow velocity. The results show that the discharge area not only bends but also rotates around the centered wire electrode, which are mainly caused by the Lorentz force. Moreover, the highest curvature occurs near the centered wire electrode. The discharge localizes near the surface of the wire electrode and annular electrode when there is no ponderomotive force. However, if the ponderomotive force is applied, the discharge happens between these two electrodes and it gradually shrinks with time. The discharge area cannot localize near the annular electrode, which is due to the increase of energy loss in the airflow. When the airflow velocity exceeds a certain value, the discharge section becomes unstable because the injected energy cannot maintain the discharge. The rotation motion of the discharge section could enlarge the contact surface between butane and air, and is therefore beneficial for mixing and combustion. Magnetic flux density and airflow velocity are critical parameters for MHD-assisted mixing. supported by National Natural Science Foundation of China (No. 11372352) and the Mechanism Research on Near Electrode Thermal-Electromagnetic-Flow of High Temperature Supersonic MHD Generation (No. 51306207), and Natural Science Foundation of Shaanxi Province of China (No. 2015JM5184)

  10. Effect of strain rate on sooting limits in counterflow diffusion flames of gaseous hydrocarbon fuels: Sooting temperature index and sooting sensitivity index

    KAUST Repository

    Wang, Yu

    2014-05-01

    The effect of the strain rate on the sooting limits in counterflow diffusion flames was investigated in various gaseous hydrocarbon fuels by varying the nitrogen dilution in the fuel and oxidizer streams. The sooting limit was defined as the critical fuel and oxygen mole fraction at which soot started to appear in the elastic light scattering signal. The sooting region for normal alkane fuels at a specified strain rate, in terms of the fuel and oxygen mole fraction, expanded as the number of carbon atoms increased. The alkene fuels (ethylene, propene) tested had a higher propensity for sooting as compared with alkane fuels with the same carbon numbers (ethane, propane). Branched iso-butane had a higher propensity for sooting than did n-butane. An increase in the strain rate reduced the tendency for sooting in all the fuels tested. The sensitivity of the sooting limit to the strain rate was more pronounced for less sooting fuels. When plotted in terms of calculated flame temperature, the critical oxygen mole fraction exhibited an Arrhenius form under sooting limit conditions, which can be utilized to significantly reduce the effort required to determine sooting limits at different strain rates. We found that the limiting temperatures of soot formation flames are viable sooting metrics for quantitatively rating the sooting tendency of various fuels, based on comparisons with threshold soot index and normalized smoke point data. We also introduce a sooting temperature index and a sooting sensitivity index, two quantitative measures to describe sooting propensity and its dependence on strain rate. © 2013 The Combustion Institute.

  11. Study of wet incineration of organic matters under ultrasounds

    International Nuclear Information System (INIS)

    The purpose of this study is to investigate the potentiality of power ultrasound for minimizing the volumes of solid waste and effluents generated by the spent nuclear fuel refining industry. In the first part, the advantages of power ultrasound for the decontamination of ion exchange resins (IER) is demonstrated: 1) sonication allows to remove 100 % of the 137Cs and more than 20 % of the 60Co initially present in the contaminated resins, 2) the decontamination is fast, 3) very simple experimental conditions are necessary (water, air or argon as saturating gas and weak electric intensity). The study of different chemical and sono-chemical parameters shows that decontamination seems to be related to the effects induced by cavitation: micro-streaming and solid erosion or disruption. In the second part, the selectivity of power ultrasound for the elimination of nitrogen (nitrate, nitro) aliphatic derivatives diluted in the PUREX process solvent is established. The nitrogen derivatives of butane or dodecane are removed under sonication while the solvent is scarcely damaged. The nitrogen derivatives of butane are quickly eliminated according to a thermal way in the cavitation bubble. A great number of kinetic data have been obtained and the influence of different parameters has been studied. The mechanisms are complex and initiated mainly by the homolytic cleavage of the O-N bond of butyl nitrate or nitrite and the C-N bond of nitrobutane. The elimination of nitrogen derivatives of dodecane is slower than the four-carbon component one. This preliminary kinetic study was difficult as the kinetic order was undetermined and a steady state concentration was reached after a short time of sonication. Unlike the four-carbon derivatives, the decomposition rate was not controlled by the boiling point of the long-chain derivatives. Nevertheless, good carbon balance (dodecane is the major product) has been obtained and led to potential mechanisms. (author)

  12. Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality.

    Science.gov (United States)

    Bertrand, B; Boulanger, R; Dussert, S; Ribeyre, F; Berthiot, L; Descroix, F; Joët, T

    2012-12-15

    Coffee grown at high elevations fetches a better price than that grown in lowland regions. This study was aimed at determining whether climatic conditions during bean development affected sensory perception of the coffee beverage and combinations of volatile compounds in green coffee. Green coffee samples from 16 plots representative of the broad range of climatic variations in Réunion Island were compared by sensory analysis. Volatiles were extracted by solid phase micro-extraction and the volatile compounds were analysed by GC-MS. The results revealed that, among the climatic factors, the mean air temperature during seed development greatly influenced the sensory profile. Positive quality attributes such as acidity, fruity character and flavour quality were correlated and typical of coffees produced at cool climates. Two volatile compounds (ethanal and acetone) were identified as indicators of these cool temperatures. Among detected volatiles, most of the alcohols, aldehydes, hydrocarbons and ketones appeared to be positively linked to elevated temperatures and high solar radiation, while the sensory profiles displayed major defects (i.e. green, earthy flavour). Two alcohols (butan-1,3-diol and butan-2,3-diol) were closely correlated with a reduction in aromatic quality, acidity and an increase in earthy and green flavours. We assumed that high temperatures induce accumulation of these compounds in green coffee, and would be detected as off-flavours, even after roasting. Climate change, which generally involves a substantial increase in average temperatures in mountainous tropical regions, could be expected to have a negative impact on coffee quality. PMID:22980845

  13. Performance analysis and binary working fluid selection of combined flash-binary geothermal cycle

    International Nuclear Information System (INIS)

    Performance of the combined flash-binary geothermal power cycle for geofluid temperatures between 150 and 250 °C is studied. A thermodynamic model is developed, and the suitable binary working fluids for different geofluid temperatures are identified from a list of thirty working fluid candidates, consisting environmental friendly refrigerants and hydrocarbons. The overall system exergy destruction and Vapor Expansion Ratio across the binary cycle turbine are selected as key performance indicators. The results show that for low-temperature heat sources using refrigerants as binary working fluids result in higher overall cycle efficiency and for medium and high-temperature resources, hydrocarbons are more suitable. For combined flash-binary cycle, secondary working fluids; R-152a, Butane and Cis-butane show the best performances at geofluid temperatures 150, 200 and 250 °C respectively. The overall second law efficiency is calculated as high as 0.48, 0.55 and 0.58 for geofluid temperatures equal 150, 200 and 250 °C respectively. The flash separator pressure found to has important effects on cycle operation and performance. Separator pressure dictates the work production share of steam and binary parts of the system. And there is an optimal separator pressure at which overall exergy destruction of the cycle achieves its minimum value. - Highlights: • Performance of the combined flash-binary geothermal cycle is investigated. • Thirty different fluids are screened to find the most suitable ORC working fluid. • Optimum cycle operation conditions presented for geofluids between 150 °C and 250 °C. • Refrigerants are more suitable for the ORC at geothermal sources temperature ≤200 °C. • Hydrocarbons are more suitable for the ORC at geothermal sources temperature >200 °C

  14. 亚临界流体萃取胡麻籽低温压榨饼中油脂%Subcritical fluid extraction of oil from cold press linseed cake

    Institute of Scientific and Technical Information of China (English)

    万楚筠; 黄凤洪; 张明; 李文林; 黄庆德

    2014-01-01

    linseed, a solvent extraction has to be used. However, solvent extraction with petroleum distillates, such as hexane, is not allowed, due to its high temperature process. In order to obtain high quality linseed oil from cold press linseed cake, subcritical butane is used to extract linseed oil and then the quality of the oil and meal obtained is studied, compared with n-hexane extraction. The affection of factors, which includes extraction temperature, time and ratio of solvent to material effecting on oil yield, is investigated, and the extraction parameters are optimized by D-optimum response surface methodology. The model equation for predicting the optimum response values is established by Design Expert software. The adequacy of the model equation for predicting the optimum response values was effectively verified by the validation. The experiment result indicates that affection of ratio of solvent to material and extraction time on oil yield are more significant than extraction temperature. The interaction between extraction temperature and ratio of solvent to material has a significant affection on oil yield. The optimum operation parameters of subcritical butane extraction are:extraction temperature 26℃,ratio of solvent to material 8.4 mL/g, and extraction time 40 min. In this optimal condition, the oil yield is 96.50%and is similar to the 96.82%predicted as maximum oil yield by the mathematical model under the condition of temperature 25.77℃and ratio of solvent to material 8.36 mL/g with extraction time 40 min. The subcritical butane extraction of linseed oil from cold press linseed cake has a nice color and better acid and peroxide value compared to n-hexane extraction. The phospholipid content of oil extracted with subcritical butane is 0.67 mg/g, which is about 1/10 of the n-hexane extraction, and the vitamin E content are 43.78 mg/100 g, which is a little larger than the n-hexane extraction process. The linseed meal obtained from cold press linseed cake

  15. 'You can get there from here': Advanced low cost propulsion concepts for small satellites beyond LEO

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Adam M.; Silva Curiel, Alex da; Sweeting, Martin [Surrey Satellite Technology Ltd., Surrey (United Kingdom); Schaffner, Jake [California Polytechnic State Univ., San Luis Obispo, CA (United States)

    2005-10-15

    Small satellites have historically been forced to use low cost propulsion, or to do without in order to maintain low cost. Since 1999 an increasing number of SSTL's customers have demanded the capability to precisely position and subsequently manoeuvre their satellites, driven largely by the current attraction of small satellite constellations such as Disaster Monitoring (DMC), which require propulsion for launcher injection error correction, drag compensation, constellation phasing and proximity manoeuvring and rendezvous. SSTL has successfully flight qualified a simple, low cost propulsion system based on a low power (15-100 W) resistojet employing green propellants such as butane and xenon, and demonstrated key constellation manoeuvres. The system is capable of up to 60 m/s deltaV and will be described here. The SSTL low power resistojet is however limited by a low Isp ( about 50s for Xenon in the present design, and about 100s with nitrogen and butane) and a slow reaction time (10 min warm-up required). An increasing desire to apply small satellite technology to high deltaV missions while retaining the low cost aspect demands new solutions. 'Industry standard' solutions based on cryogenic propulsion, or toxic, carcinogenic storable propellants such as hydrazine/nitrogen oxides combination are not favourable for small satellite missions developed within SSTL's low cost engineering environment. This paper describes a number of strawman missions with high deltaV and/or precision manoeuvring requirements and some low cost propulsion solutions which have been explored at the Surrey Space Centre to meet future needs: (1) Deployment of a complex constellation of nano- or pico-satellites from a secondary launch to a new orbit. The S3TV concept has been developed to allow deployment up to 12 payloads from an 'off-the-shelf' thrust tube, using a restartable nitrous oxide hybrid engine, operating in a dual mode with resistojets for attitude

  16. “You can get there from here”: Advanced low cost propulsion concepts for small satellites beyond LEO

    Science.gov (United States)

    Baker, Adam M.; da Silva Curiel, Alex; Schaffner, Jake; Sweeting, Martin

    2005-07-01

    Small satellites have historically been forced to use low cost propulsion, or to do without in order to maintain low cost. Since 1999 an increasing number of SSTL's customers have demanded the capability to precisely position and subsequently manoeuvre their satellites, driven largely by the current attraction of small satellite constellations such as Disaster Monitoring (DMC), which require propulsion for launcher injection error correction, drag compensation, constellation phasing and proximity manoeuvring and rendezvous. SSTL has successfully flight qualified a simple, low cost propulsion system based on a low power (15-100 W) resistojet employing green propellants such as butane and xenon, and demonstrated key constellation manoeuvres. The system is capable of up to 60 m/s deltaV and will be described here. The SSTL low power resistojet is however limited by a low Isp ( ˜50s for Xenon in the present design, and ˜100s with nitrogen and butane) and a slow reaction time ( 10min warm-up required). An increasing desire to apply small satellite technology to high deltaV missions while retaining the low cost aspect demands new solutions. 'Industry standard' solutions based on cryogenic propulsion, or toxic, carcinogenic storable propellants such as hydrazine/nitrogen oxides combination are not favourable for small satellite missions developed within SSTL's low cost engineering environment. This paper describes a number of strawman missions with high deltaV and/or precision manoeuvring requirements and some low cost propulsion solutions which have been explored at the Surrey Space Centre to meet future needs: Deployment of a complex constellation of nano- or pico-satellites from a secondary launch to a new orbit. The S3TV concept has been developed to allow deployment up to 12 payloads from an 'off-the-shelf' thrust tube, using a restartable nitrous oxide hybrid engine, operating in a dual mode with resistojets for attitude control. Orbit transfer of an enhanced

  17. Effects of dairy system, herd within dairy system, and individual cow characteristics on the volatile organic compound profile of ripened model cheeses.

    Science.gov (United States)

    Bergamaschi, M; Aprea, E; Betta, E; Biasioli, F; Cipolat-Gotet, C; Cecchinato, A; Bittante, G; Gasperi, F

    2015-04-01

    The objective of this work was to study the effect of dairy system, herd within dairy system, and characteristics of individual cows (parity, days in milk, and daily milk yield) on the volatile organic compound profile of model cheeses produced under controlled conditions from the milk of individual cows of the Brown Swiss breed. One hundred fifty model cheeses were selected from 1,272 produced for a wider study of the phenotypic and genetic variability of Brown Swiss cows. In our study, we selected 30 herds representing 5 different dairy systems. The cows sampled presented different milk yields (12.3-43.2kg/d), stages of lactation (10-412 d in milk), and parity (1-7). In total, 55 volatile compounds were detected by solid-phase microextraction and gas chromatography-mass spectrometry, including 14 alcohols, 13 esters, 11 free fatty acids, 8 ketones, 4 aldehydes, 3 lactones, 1 terpene, and 1 pyrazine. The most important sources of variation in the volatile organic profiles of model cheeses were dairy system (18 compounds) and days in milk (10 compounds), followed by parity (3 compounds) and milk yield (5 compounds). The model cheeses produced from the milk of tied cows reared on traditional farms had lower quantities of 3-methyl-butan-1-ol, 6-pentyloxan-2-one, 2-phenylethanol, and dihydrofuran-2(3H)-one compared with those reared in freestalls on modern farms. Of these, milk from farms using total mixed rations had higher contents of alcohols (hexan-1-ol, octan-1-ol) and esters (ethyl butanoate, ethyl pentanoate, ethyl hexanoate, and ethyl octanoate) and lower contents of acetic acid compared with those using separate feeds. Moreover, dairy systems that added silage to the total mixed ration produced cheeses with lower levels of volatile organic compounds, in particular alcohols (butan-1-ol, pentan-1-ol, heptan-1-ol), compared with those that did not. The amounts of butan-2-ol, butanoic acid, ethyl-2-methylpropanoate, ethyl-3-methylbutanoate, and 6-propyloxan-2-one

  18. Development of a novel heterogeneous flow reactor -- Soot formation and nanoparticle catalysis

    Science.gov (United States)

    Camacho, Joaquin

    The development of novel experimental approaches to investigate fundamental surface kinetics is presented. Specifically, fundamental soot formation and surface catalysis processes are examined in isolation from other competing processes. In terms of soot formation, two experimental techniques are presented: the Burner Stabilized Stagnation (BSS) flame configuration is extended to isolate the effect of the parent fuel structure on soot formation and the fundamental rate of surface oxidation for nascent soot is measured in a novel aerosol flow reactor. In terms of nanoparticles, the physical and chemical properties of freely suspended nanoparticles are investigated in a novel aerosol flow reactor for methane oxidation catalyzed by palladium. The role of parent fuel structure within soot formation is examined by following the time resolved formation nascent soot from the onset of nucleation to later growth stages for premixed BSS flames. Specifically, the evolution of the detailed particle size distribution function (PSDF) is compared for butanol, butane and C6 hydrocarbons in two separate studies where the C/O ratio and temperature are fixed. Under this constraint, the overall sooting process were comparable as evidenced by similar time resolved bimodal PSDF. However, the nucleation time and the persistence of nucleation with time is strongly dependent upon the structure of the parent fuel. For the C6 hydrocarbon fuels, the fastest onset of soot nucleation is observed in cyclohexane and benzene flames and this may be due to significant aromatic formation that is predicted in the pre-flame region. In addition, the evolution of the PSDF shows that nucleation ends sooner in cylclohexane and benzene flames and this may be due to relatively quick depletion of soot precursors such as acetylene and benzene. Interestingly,within the butanol fuels studied the effect of the branched chain in i-butanol and i-butane was more significant than the presence of fuel bound oxygen. A

  19. Energy barriers for the addition of H, *CH3, and *C2H5 to *CH2=CHX [X = H, CH3, OH] and for H-atom addition to RCH=O [R = H, CH3, *C2H5, n-C3H7]: implications for the gas-phase chemistry of enols.

    Science.gov (United States)

    Simmie, John M; Curran, Henry J

    2009-07-01

    Although enols have been identified in alcohol and other flames and in interstellar space and have been implicated in the formation of carboxylic acids in the urban troposphere in the past few years, the reactions that give rise to them are virtually unknown. To address this data deficit, particularly with regard to biobutanol combustion, we have carried out a number of ab initio calculations with the multilevel methods CBS-QB3 and CBS-APNO to determine the activation enthalpies for methyl addition to the CH(2) group of CH(2)=CHX where X = H, OH, and CH(3). These average at 26.3 +/- 1.0 kJ mol(-1) and are not influenced by the nature of X; addition to the CHX end is energetically costlier and does show the influence of group X = OH and CH(3). Replacing the attacking methyl radical by ethyl makes very little difference to addition at CH(2) and follows the same trend of a higher barrier for addition to the CH(OH) end. In the case of H-addition it is more problematic to draw general conclusions since the DFT-based methodology, CBS-QB3, struggles to locate transition states for some reactions. However, the increase in barrier heights in reaction at the CHX end in comparison to addition at the methylene end is evident. For hydrogen atom reaction with the carbonyl group in the compounds methanal, ethanal, propanal, and butanal we see that for addition at the O-center the barrier heights of ca. 38 kJ mol(-1) are not influenced by the nature of the alkyl group whereas addition at the C-center is different on going from H --> alkyl but seems to be invariant at 20 kJ mol(-1) once alkylated. Rate constants for H-atom elimination from 1-hydroxyethyl, 1-hydroxypropyl, and 1-hydroxybutyl radicals, valid over the range 800-2000 K, are reported. These demonstrate that enols are more prevalent than previously suspected and that 1-buten-1-ol should be almost as abundant as its isomeric aldehyde 1-butanal during the combustion of 1-butanol and that this will also be the case for

  20. Biogenesis of «fusty» defect in virgin olive oils

    Directory of Open Access Journals (Sweden)

    Angerosa, F.

    1996-06-01

    Full Text Available The biogenesis of «fusty» defect was studied by chemical and microbial analyses on olives stored in piles for different times and their resulting oils. The fusty defect was perceived by tasters after four days of storage. The quali-quantitative composition of oil volatile fraction was a very suitable way to emphasize metabolites produced by microorganisms involved during the fruit storage. Some volatile compounds, such as 2- and 3- methyl butan-1-al, their corresponding alcohols and propionic acid, 2- methyl propionic acid and 3-methyl butanoic acid, were produced. At the same time, it was observed a dramatic development of Clostridium sp. and, in a lower proportion, of Pseudomonas sp. Furthermore, during the storage the evident softening of fruits has to be attributed to microorganisms in rapid growth belonging to Enterobacter sp. and moulds, that have in its enzymatic store pectinolytic enzymes.

    La biogénesis del atrojado ha sido estudiada química y microbiológicamente en aceitunas amontonadas durante diferentes períodos de tiempo; además ha sido evaluado el aceite procedente de la elaboración de dichos frutos. La percepción de atrojado era percibida por el panel de catadores sólo después de cuatro días de almacenamiento de las aceitunas. La determinación cuanti-cualitativa de los compuestos aromáticos del aceite resultante se ha relacionado con los microorganismos implicados en la degradación de los frutos. Se han encontrado algunos compuestos volátiles como el 2- y 3- metil butan-1-al y sus correspondientes alcoholes, el ácido propiónico, el ácido 2-metil propiónico y el 3-metil butanoico. Al mismo tiempo, ha sido observado el fuerte desarrollo de especies del género Clostridium y, en menor proporción, de Pseudomonas. Asimismo, durante el almacenamiento se produjo un ablandamiento de los frutos a causa de la acción de las enzimas pectolíticas de microorganismos de r

  1. Monitoring of an esterification reaction by on-line direct liquid sampling mass spectrometry and in-line mid infrared spectrometry with an attenuated total reflectance probe

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Andrew W.; McAulay, Edith A.J. [WestCHEM, Department of Pure and Applied Chemistry and CPACT, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL (United Kingdom); Nordon, Alison, E-mail: alison.nordon@strath.ac.uk [WestCHEM, Department of Pure and Applied Chemistry and CPACT, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL (United Kingdom); Littlejohn, David, E-mail: d.littlejohn@strath.ac.uk [WestCHEM, Department of Pure and Applied Chemistry and CPACT, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL (United Kingdom); Lynch, Thomas P. [WestCHEM, Department of Pure and Applied Chemistry and CPACT, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL (United Kingdom); Lancaster, J. Steven [Hull Research and Technology Centre, BP Chemicals, Hull, HU12 8DS (United Kingdom); Wright, Robert G. [Thermo Fisher Scientific, Winsford, Cheshire, CW7 3GA (United Kingdom)

    2014-11-07

    Highlights: • High efficiency thermal vaporiser designed and used for on-line reaction monitoring. • Concentration profiles of all reactants and products obtained from mass spectra. • By-product formed from the presence of an impurity detected by MS but not MIR. • Mass spectrometry can detect trace and bulk components unlike molecular spectrometry. - Abstract: A specially designed thermal vaporiser was used with a process mass spectrometer designed for gas analysis to monitor the esterification of butan-1-ol and acetic anhydride. The reaction was conducted at two scales: in a 150 mL flask and a 1 L jacketed batch reactor, with liquid delivery flow rates to the vaporiser of 0.1 and 1.0 mL min{sup −1}, respectively. Mass spectrometry measurements were made at selected ion masses, and classical least squares multivariate linear regression was used to produce concentration profiles for the reactants, products and catalyst. The extent of reaction was obtained from the butyl acetate profile and found to be 83% and 76% at 40 °C and 20 °C, respectively, at the 1 L scale. Reactions in the 1 L reactor were also monitored by in-line mid-infrared (MIR) spectrometry; off-line gas chromatography (GC) was used as a reference technique when building partial least squares (PLS) multivariate calibration models for prediction of butyl acetate concentrations from the MIR spectra. In validation experiments, good agreement was achieved between the concentration of butyl acetate obtained from in-line MIR spectra and off-line GC. In the initial few minutes of the reaction the profiles for butyl acetate derived from on-line direct liquid sampling mass spectrometry (DLSMS) differed from those of in-line MIR spectrometry owing to the 2 min transfer time between the reactor and mass spectrometer. As the reaction proceeded, however, the difference between the concentration profiles became less noticeable. DLSMS had advantages over in-line MIR spectrometry as it was easier to

  2. Smoke Point in Co-flow Experiment

    Science.gov (United States)

    Urban, David L.; Sunderland, Peter B.; Yuan, Zeng-Guang

    2009-01-01

    The Smoke Point In Co-flow Experiment (SPICE) determines the point at which gas-jet flames (similar to a butane-lighter flame) begin to emit soot (dark carbonaceous particulate formed inside the flame) in microgravity. Studying a soot emitting flame is important in understanding the ability of fires to spread and in control of soot in practical combustion systems space. Previous experiments show that soot dominates the heat emitted from flames in normal gravity and microgravity fires. Control of this heat emission is critical for prevention of the spread of fires on Earth and in space for the design of efficient combustion systems (jet engines and power generation boilers). The onset of soot emission from small gas jet flames (similar to a butane-lighter flame) will be studied to provide a database that can be used to assess the interaction between fuel chemistry and flow conditions on soot formation. These results will be used to support combustion theories and to assess fire behavior in microgravity. The Smoke Point In Co-flow Experiment (SPICE) will lead to a o improved design of practical combustors through improved control of soot formation; o improved understanding of and ability to predict heat release, soot production and emission in microgravity fires; o improved flammability criteria for selection of materials for use in the next generation of spacecraft. The Smoke Point In Co-flow Experiment (SPICE) will continue the study of fundamental phenomena related to understanding the mechanisms controlling the stability and extinction of jet diffusion flames begun with the Laminar Soot Processes (LSP) on STS-94. SPICE will stabilize an enclosed laminar flame in a co-flowing oxidizer, measure the overall flame shape to validate the theoretical and numerical predictions, measure the flame stabilization heights, and measure the temperature field to verify flame structure predictions. SPICE will determine the laminar smoke point properties of non-buoyant jet

  3. Distribution of VOCs between air and snow at the Jungfraujoch high alpine research station, Switzerland, during CLACE 5 (winter 2006

    Directory of Open Access Journals (Sweden)

    E. Starokozhev

    2009-05-01

    Full Text Available Volatile organic compounds (VOCs were analyzed in air and snow samples at the Jungfraujoch high alpine research station in Switzerland as part of CLACE 5 (CLoud and Aerosol Characterization Experiment during February/March 2006. The fluxes of individual compounds in ambient air were calculated from gas phase concentrations and wind speed. The highest concentrations and flux values were observed for the aromatic hydrocarbons benzene (14.3 μg.m−2 s−1, 1,3,5-trimethylbenzene (5.27 μg.m−2 s−1, toluene (4.40 μg.m−2 −1, and the aliphatic hydrocarbons i-butane (7.87 μg.m−2 s−1, i-pentane (3.61 μg.m−2 s−1 and n-butane (3.23 μg.m−2 s−1. The measured concentrations and fluxes were used to calculate the efficiency of removal of VOCs by snow, which is defined as difference between the initial and final concentration/flux values of compounds before and after wet deposition. The removal efficiency was calculated at −24°C (−13.7°C and ranged from 37% (35% for o-xylene to 93% (63% for i-pentane. The distribution coefficients of VOCs between the air and snow phases were derived from published poly-parameter linear free energy relationship (pp-LFER data, and compared with distribution coefficients obtained from the simultaneous measurements of VOC concentrations in air and snow at Jungfraujoch. The coefficients calculated from pp-LFER exceeded those values measured in the present study, which indicates more efficient snow scavenging of the VOCs investigated than suggested by theoretical predictions.

  4. Generation and reactivity of putative support systems, Ce-Al neutral binary oxide nanoclusters: CO oxidation and C–H bond activation

    International Nuclear Information System (INIS)

    Both ceria (CeO2) and alumina (Al2O3) are very important catalyst support materials. Neutral binary oxide nanoclusters (NBONCs), CexAlyOz, are generated and detected in the gas phase and their reactivity with carbon monoxide (CO) and butane (C4H10) is studied. The very active species CeAlO4• can react with CO and butane via O atom transfer (OAT) and H atom transfer (HAT), respectively. Other CexAlyOz NBONCs do not show reactivities toward CO and C4H10. The structures, as well as the reactivities, of CexAlyOz NBONCs are studied theoretically employing density functional theory (DFT) calculations. The ground state CeAlO4• NBONC possesses a kite-shaped structure with an OtCeObObAlOt configuration (Ot, terminal oxygen; Ob, bridging oxygen). An unpaired electron is localized on the Ot atom of the AlOt moiety rather than the CeOt moiety: this Ot centered radical moiety plays a very important role for the reactivity of the CeAlO4• NBONC. The reactivities of Ce2O4, CeAlO4•, and Al2O4 toward CO are compared, emphasizing the importance of a spin-localized terminal oxygen for these reactions. Intramolecular charge distributions do not appear to play a role in the reactivities of these neutral clusters, but could be important for charged isoelectronic BONCs. DFT studies show that the reaction of CeAlO4• with C4H10 to form the CeAlO4H•C4H9• encounter complex is barrierless. While HAT processes have been previously characterized for cationic and anionic oxide clusters, the reported study is the first observation of a HAT process supported by a ground state neutral oxide cluster. Mechanisms for catalytic oxidation of CO over surfaces of AlxOy/MmOn or MmOn/AlxOy materials are proposed consistent with the presented experimental and theoretical results

  5. Production of carbon molecular sieves from Illinois coal

    Science.gov (United States)

    Lizzio, A.A.; Rostam-Abadi, M.

    1993-01-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for application in the separation of gas molecules that vary in size and shape. A study is in progress at the Illinois State Geological Survey to determine whether Illinois basin coals are suitable feedstocks for the production of CMS and to evaluate their potential application in gas separation processes of commercial importance. Chars were prepared from Illinois coal in a fixed-bed reactor under a wide range of heat treatment and activation conditions. The effects of various coal/char pretreatments, including coal demineralization, preoxidation, char activation, and carbon deposition, on the molecular sieve properties of the chars were also investigated. Chars with commercially significant BET surface areas of 1500 m2/g were produced by chemical activation using potassium hydroxide as the activant. These high-surface-area (HSA) chars had more than twice the adsorption capacity of commercial carbon and zeolite molecular sieves. The kinetics of adsorption of various gases, e.g., N2, O2, CO2, CH4, CO and H2, on these chars at 25??C was measured. The O2/N2 molecular sieve properties of one char prepared without chemical activation were similar to those of a commercial CMS. On the other hand, the O2/N2 selectivity of the HSA char was comparable to that of a commercial activated carbon, i.e., essentially unity. Carbon deposition, using methane as the cracking gas, increased the O2/N2 selectivity of the HSA char, but significantly decreased its adsorption capacity. Several chars showed good potential for efficient CO2/CH4 separation; both a relatively high CO2 adsorption capacity and CO2/CH4 selectivity were achieved. The micropore size distribution of selected chars was estimated by equilibrium adsorption of carbon dioxide, n-butane and iso-butane at O??C. The extent of adsorption of each gas corresponded to the effective surface area contained in pores with diameters greater than 3

  6. Gas and Gas Hydrate Potential Offshore Amasra,Bartin and Zonguldak and Possible Agent for Multiple BSR Occurrence

    Science.gov (United States)

    Mert Küçük, Hilmi; Dondurur, Derman; Özel, Özkan; Sınayuç, Çağlar; Merey, Şükrü; Parlaktuna, Mahmut; Çifçi, Günay

    2015-04-01

    Gas hydrates, shallow gases and mud volcanoes have been studied intensively in the Black Sea in recent years. Researches have shown that the Black Sea region has an important potential about hydrocarbon. BSR reflections in the seismic sections and seabed sampling studies also have proven the formations of hydrates clearly. In this respect, total of 2400 km multichannel seismic reflection, chirp and multibeam bathymetry data were collected along shelf to abyssal plain in 2010 and 2012 offshore Amasra, Bartın, Zonguldak-Kozlu in the central Black Sea.. Collected data represent BSRs, bright spots and transparent zones. It has been clearly observed that possible gas chimneys cross the base of gas hydrate stability zones as a result of possible weak zones in the gas hydrate bearing sediments. Seabed samples were collected closely to possible gas chimneys due to shallow gas anomalies in the data. Head space gas cromatography was applied to seabed samples to observe gas composition and the gas cromatography results represented hydrocarbon gases such as Methane, Ethane, Propane, i-Butane, n-Butane, i-Pentane, n-Pentane and Hexane. Thermogenic gas production by Turkish Petroleum Corp. from Akçakoca-1 and Ayazlı-1 well is just located at the southwest of the study area and the observations of the study area point out there is also thermogenic gas potential at the eastern side of the Akçakoca. In addition, multiple-BSRs were observed in the study area and it is thought the key point of the multiple-BSRs are different gas compositions. This suggests that hydrate formations can be formed by gas mixtures. Changing of the thermobaric conditions can trigger dissociation of the gas hydrates in the marine sediments due to sedimentary load and changing of the water temperature around seabed. Our gas hydrate modelling study suggest that gas hydrates are behaving while their dissociation process if the gas hydrates are generated by gas mixture. Monitoring of our gas hydrate

  7. Effects of Smoking Cessation on Eight Urinary Tobacco Carcinogen and Toxicant Biomarkers

    Science.gov (United States)

    Carmella, Steven G.; Chen, Menglan; Han, Shaomei; Briggs, Anna; Jensen, Joni; Hatsukami, Dorothy K.; Hecht, Stephen S.

    2009-01-01

    We determined the persistence at various times (3, 7, 14, 21, 28, 42 and 56 days) of eight tobacco smoke carcinogen and toxicant biomarkers in the urine of 17 smokers who stopped smoking. The biomarkers were 1-hydroxy-2-(N-acetylcysteinyl)-3-butene (1) and 1-(N-acetylcysteinyl)-2-hydroxy-3-butene (2) [collectively called MHBMA for monohydroxybutyl mercapturic acid] and 1,2-dihydroxy-4-(N-acetylcysteinyl)butane (3) [DHBMA for dihydroxybutyl mercapturic acid], metabolites of 1,3-butadiene; 1-(N-acetylcysteinyl)-propan-3-ol (4, HPMA for 3-hydroxypropyl mercapturic acid), a metabolite of acrolein; 2-(N-acetylcysteinyl)butan-4-ol (5, HBMA for 4-hydroxybut-2-yl mercapturic acid), a metabolite of crotonaldehyde; (N-acetylcysteinyl)benzene (6, SPMA for S-phenyl mercapturic acid), a metabolite of benzene; (N-acetylcysteinyl)ethanol (7, HEMA for 2-hydroxyethyl mercapturic acid), a metabolite of ethylene oxide; 1-hydroxypyrene (8) and its glucuronides (1-HOP), metabolites of pyrene; and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (9) and its glucuronides (total NNAL), a biomarker of exposure to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). These biomarkers represent some of the major carcinogens and toxicants in cigarette smoke: 1,3-butadiene, acrolein, crotonaldehyde, benzene, ethylene oxide, polycyclic aromatic hydrocarbons (PAH), and NNK. With the exception of DHBMA, levels of which did not change after cessation of smoking, all other biomarkers decreased significantly after 3 days of cessation (P<0.001). The decreases in MHBMA, HPMA, HBMA, SPMA, and HEMA were rapid, nearly reaching their ultimate levels (81 – 91% reduction) after 3 days. The decrease in total NNAL was gradual, reaching 92% after 42 days, while reduction in 1-HOP was variable among subjects to about 50% of baseline. Since DHBMA did not change upon smoking cessation, there appear to be sources of this metabolite other than 1,3-butadiene. The results of this study demonstrate that the tobacco

  8. Effectiveness of replacing catalytic converters in LPG-fueled vehicles in Hong Kong

    Science.gov (United States)

    Lyu, Xiaopu; Guo, Hai; Simpson, Isobel J.; Meinardi, Simone; Louie, Peter K. K.; Ling, Zhenhao; Wang, Yu; Liu, Ming; Luk, Connie W. Y.; Wang, Nan; Blake, Donald R.

    2016-05-01

    Many taxis and public buses are powered by liquefied petroleum gas (LPG) in Hong Kong. With more vehicles using LPG, they have become the major contributor to ambient volatile organic compounds (VOCs) in Hong Kong. An intervention program which aimed to reduce the emissions of VOCs and nitrogen oxides (NOx) from LPG-fueled vehicles was implemented by the Hong Kong government in September 2013. Long-term real-time measurements indicated that the program was remarkably effective in reducing LPG-related VOCs, NOx and nitric oxide (NO) in the atmosphere. Receptor modeling results further revealed that propane, propene, i-butane, n-butane and NO in LPG-fueled vehicle exhaust emissions decreased by 40.8 ± 0.1, 45.7 ± 0.2, 35.7 ± 0.1, 47.8 ± 0.1 and 88.6 ± 0.7 %, respectively, during the implementation of the program. In contrast, despite the reduction of VOCs and NOx, O3 following the program increased by 0.40 ± 0.03 ppbv (˜ 5.6 %). The LPG-fueled vehicle exhaust was generally destructive to OH and HO2. However, the destruction effect weakened for OH and it even turned to positive contribution to HO2 during the program. These changes led to the increases of OH, HO2 and HO2 / OH ratio, which might explain the positive O3 increment. Analysis of O3-VOCs-NOx sensitivity in ambient air indicated VOC-limited regimes in the O3 formation before and during the program. Moreover, a maximum reduction percentage of NOx (i.e., 69 %) and the lowest reduction ratio of VOCs / NOx (i.e., 1.1) in LPG-fueled vehicle exhaust were determined to give a zero O3 increment. The findings are of great help to future formulation and implementation of control strategies on vehicle emissions in Hong Kong, and could be extended to other regions in China and around the world.

  9. Crossover Equation of State for Selected Hydrocarbons (C4-C7)☆

    Institute of Scientific and Technical Information of China (English)

    Aijing Shen; Qiang Liu; Yuanyuan Duan; Zhen Yang

    2014-01-01

    The organic Rankine cycle (ORC) has attracted attention for waste heat recovery and renewable energy systems. An accurate prediction for thermodynamic properties of working fluids is of great importance for cycle performance evaluations and system design. Particularly, hydrocarbons are promising for their good performance and low global warming potentials. Moreover, the thermal efficiency of the ORC is higher when the evaporation temperature is closer to the critical temperature, which makes the properties in the critical region rather important. Recent research has shown that using mixture as working fluid can achieve better temperature matches. Therefore, an equation of state (EoS) that can be extended to mixture calculations is more attractive. Specific EoS for selected hydrocarbons is precise, but very complex. Cubic EoSs, such as widely used Peng–Robinson EoS and Soave–Redlich–Kwong (SRK) EoS, fail to accurately predict liquid densities over wide pressure ranges or pressure–density–temperature (pρT) properties in the near-critical region. This work combines the volume translation approach and the crossover method to provide better prediction for thermodynamic properties in the critical region and in regions far from the critical point. A crossover volume translation SRK EoS is developed and used for n-butane, i-butane, n-pentane, i-pentane, n-hexane, i-hexane and n-heptane. The volume translation term is set as a constant to ensure the accuracy of the saturated liquid density at low reduced temperatures. Then, the crossover method is introduced into the volume translation EoS to improve the predictions of thermodynamic properties in the critical region. Six crossover parameters are used, which are constants or functions of acentric factor and critical parameters. Therefore, none of the parameters in the crossover volume translation SRK EoS is adjustable, which makes the crossover EoS totally predictive and easily extend to mixtures. Comparisons show

  10. Di-, tri-, and tetranuclear nickel(II) complexes with oximato bridges: magnetism and catecholase-like activity of two tetranuclear complexes possessing rhombic topology.

    Science.gov (United States)

    Das, Lakshmi Kanta; Biswas, Apurba; Kinyon, Jared S; Dalal, Naresh S; Zhou, Haidong; Ghosh, Ashutosh

    2013-10-21

    Oxime-based tridentate Schiff base ligands 3-[2-(diethylamino)ethylimino]butan-2-one oxime (HL(1)) and 3-[3-(dimethylamino)propylimino]butan-2-one oxime (HL(2)) produced the dinuclear complex [Ni2L(1)2](ClO4)2 (1) and trinuclear complex [Ni3(HL(2))3(μ3-O)](ClO4)4·CH3CN (2), respectively, upon reaction with Ni(ClO4)2·6H2O. However, in a slightly alkaline medium, both of the ligands underwent hydrolysis and resulted in tetranuclear complexes [{Ni(deen)(H2O)}2(μ3-OH)2{Ni2(moda)4}](ClO4)2·2CH3CN (3) and [{Ni(dmpn)(CH3CN)2}2(μ3-OH)2{Ni2(moda)4}](ClO4)2·CH3CN (4), where deen = 2-(diethylamino)ethylamine, dmpn = 3-(dimethylamino)-1-propylamine, and modaH = diacetyl monoxime. All four complexes have been structurally characterized. Complex 1 is a centrosymmetric dimer where the square planar nickel(II) atoms are joined solely by the oximato bridges. In complex 2, three square planar nickel atoms form a triangular core through a central oxido (μ3-O) and peripheral oximato bridges. Tetranuclear complexes 3 and 4 consist of four distorted octahedral nickel(II) ions held together in a rhombic chair arrangement by two central μ3-OH and four peripheral oximato bridges. Magnetic susceptibility measurements indicated that dinuclear 1 and trinuclear 2 exhibited diamagnetic behavior, while tetranuclear complexes 3 and 4 were found to have dominant antiferromagnetic intramolecular coupling with concomitant ferromagnetic interactions. Despite its singlet ground state, both 3 and 4 serve as useful examples of Kahn's model for competing spin interactions. High-frequency EPR studies were also attempted, but no signal was detected, likely due to the large energy gap between the ground and first excited state. Complexes 3 and 4 exhibited excellent catecholase-like activity in the aerial oxidation of 3,5-di-tert-butylcatechol to the corresponding o-quinone, whereas 1 and 2 did not show such catalytic activity. Kinetic data analyses of this oxidation reaction in acetonitrile

  11. Di-, tri-, and tetranuclear nickel(II) complexes with oximato bridges: magnetism and catecholase-like activity of two tetranuclear complexes possessing rhombic topology.

    Science.gov (United States)

    Das, Lakshmi Kanta; Biswas, Apurba; Kinyon, Jared S; Dalal, Naresh S; Zhou, Haidong; Ghosh, Ashutosh

    2013-10-21

    Oxime-based tridentate Schiff base ligands 3-[2-(diethylamino)ethylimino]butan-2-one oxime (HL(1)) and 3-[3-(dimethylamino)propylimino]butan-2-one oxime (HL(2)) produced the dinuclear complex [Ni2L(1)2](ClO4)2 (1) and trinuclear complex [Ni3(HL(2))3(μ3-O)](ClO4)4·CH3CN (2), respectively, upon reaction with Ni(ClO4)2·6H2O. However, in a slightly alkaline medium, both of the ligands underwent hydrolysis and resulted in tetranuclear complexes [{Ni(deen)(H2O)}2(μ3-OH)2{Ni2(moda)4}](ClO4)2·2CH3CN (3) and [{Ni(dmpn)(CH3CN)2}2(μ3-OH)2{Ni2(moda)4}](ClO4)2·CH3CN (4), where deen = 2-(diethylamino)ethylamine, dmpn = 3-(dimethylamino)-1-propylamine, and modaH = diacetyl monoxime. All four complexes have been structurally characterized. Complex 1 is a centrosymmetric dimer where the square planar nickel(II) atoms are joined solely by the oximato bridges. In complex 2, three square planar nickel atoms form a triangular core through a central oxido (μ3-O) and peripheral oximato bridges. Tetranuclear complexes 3 and 4 consist of four distorted octahedral nickel(II) ions held together in a rhombic chair arrangement by two central μ3-OH and four peripheral oximato bridges. Magnetic susceptibility measurements indicated that dinuclear 1 and trinuclear 2 exhibited diamagnetic behavior, while tetranuclear complexes 3 and 4 were found to have dominant antiferromagnetic intramolecular coupling with concomitant ferromagnetic interactions. Despite its singlet ground state, both 3 and 4 serve as useful examples of Kahn's model for competing spin interactions. High-frequency EPR studies were also attempted, but no signal was detected, likely due to the large energy gap between the ground and first excited state. Complexes 3 and 4 exhibited excellent catecholase-like activity in the aerial oxidation of 3,5-di-tert-butylcatechol to the corresponding o-quinone, whereas 1 and 2 did not show such catalytic activity. Kinetic data analyses of this oxidation reaction in acetonitrile

  12. Quantitative analysis of volatile organic compounds released and consumed by rat L6 skeletal muscle cells in vitro.

    Science.gov (United States)

    Mochalski, Paweł; Al-Zoairy, Ramona; Niederwanger, Andreas; Unterkofler, Karl; Amann, Anton

    2014-12-01

    Knowledge of the release of volatile organic compounds (VOCs) by cells provides important information on the origin of VOCs in exhaled breath. Muscle cells are particularly important, since their release of volatiles during the exertion of an effort contributes considerably to breath concentration profiles. Presently, the cultivation of human skeletal muscle cells is encountering a number of obstacles, necessitating the use of animal muscle cells in in vitro studies. Rat L6 skeletal muscle cells are therefore commonly used as a model for studying the molecular mechanisms of human skeletal muscle differentiation and functions, and facilitate the study of the origin and metabolic fate of the endogenously produced compounds observed in breath and skin emanations. Within this study the production and uptake of VOCs by rat L6 skeletal muscle cells were investigated using gas chromatography with mass spectrometric detection, combined with head-space needle trap extraction as the pre-concentration technique (HS-NTE-GC-MS). Seven compounds were found to be produced, whereas sixteen species were consumed (Wilcoxon signed-rank test, p < 0.05) by the cells being studied. The set of released volatiles included two ketones (2-pentanone and 2-nonanone), two volatile sulphur compounds (dimethyl sulfide and methyl 5-methyl-2-furyl sulphide), and three hydrocarbons (2-methyl 1-propene, n-pentane and isoprene). Of the metabolized species there were thirteen aldehydes (2-propenal, 2-methyl 2-propenal, 2-methyl propanal, 2-butenal, 2-methyl butanal, 3-methyl butanal, n-pentanal, 2-methyl 2-butenal, n-hexanal, benzaldehyde, n-octanal, n-nonanal and n-decanal), two esters (n-propyl propionate and n-butyl acetate), and one volatile sulphur compound (dimethyl disulfide). The possible metabolic pathways leading to the uptake and release of these compounds by L6 cells are proposed and discussed. An analysis of the VOCs showed them to have huge potential for the identification and

  13. Monitoring of an esterification reaction by on-line direct liquid sampling mass spectrometry and in-line mid infrared spectrometry with an attenuated total reflectance probe

    International Nuclear Information System (INIS)

    Highlights: • High efficiency thermal vaporiser designed and used for on-line reaction monitoring. • Concentration profiles of all reactants and products obtained from mass spectra. • By-product formed from the presence of an impurity detected by MS but not MIR. • Mass spectrometry can detect trace and bulk components unlike molecular spectrometry. - Abstract: A specially designed thermal vaporiser was used with a process mass spectrometer designed for gas analysis to monitor the esterification of butan-1-ol and acetic anhydride. The reaction was conducted at two scales: in a 150 mL flask and a 1 L jacketed batch reactor, with liquid delivery flow rates to the vaporiser of 0.1 and 1.0 mL min−1, respectively. Mass spectrometry measurements were made at selected ion masses, and classical least squares multivariate linear regression was used to produce concentration profiles for the reactants, products and catalyst. The extent of reaction was obtained from the butyl acetate profile and found to be 83% and 76% at 40 °C and 20 °C, respectively, at the 1 L scale. Reactions in the 1 L reactor were also monitored by in-line mid-infrared (MIR) spectrometry; off-line gas chromatography (GC) was used as a reference technique when building partial least squares (PLS) multivariate calibration models for prediction of butyl acetate concentrations from the MIR spectra. In validation experiments, good agreement was achieved between the concentration of butyl acetate obtained from in-line MIR spectra and off-line GC. In the initial few minutes of the reaction the profiles for butyl acetate derived from on-line direct liquid sampling mass spectrometry (DLSMS) differed from those of in-line MIR spectrometry owing to the 2 min transfer time between the reactor and mass spectrometer. As the reaction proceeded, however, the difference between the concentration profiles became less noticeable. DLSMS had advantages over in-line MIR spectrometry as it was easier to generate

  14. Studies of aldehydes in an atmosphere simulation chamber

    Energy Technology Data Exchange (ETDEWEB)

    Bossmeyer, J.

    2006-05-15

    In the course of this thesis, a DOAS instrument using a multiple reflection system of the White design was installed at the atmosphere simulation chamber SAPHIR (Forschungszentrum Juelich, Germany). The DOAS instrument allowed to detect NO{sub 3} at SAPHIR for the first time. A loss process of NO{sub 3} was identified in the dry chamber and characterised with a lifetime of (42{+-}4) min. Apart from that, the chamber was used in three ways. (1) The DOAS could be compared to other detection methods under controlled conditions, which was done for the trace gases NO{sub 2}, O{sub 3}, HONO, H{sub 2}O, benzene and m-xylene. The agreement between DOAS and the other methods was very good (13% maximum deviation in the absolute value, correlation coefficients higher than 0.92). (2) The DOAS could be compared to time profiles of trace gas injections (of benzaldehyde, toluene and HCHO) into the chamber, which were calculated from the sample weight and from fundamental chamber properties. The agreement between the DOAS and the calculations was also good (19% maximum deviation, R higher than 0.94). Thus, the scaling of the differential absorption cross section of HCHO used in the DOAS evaluations was confirmed. (3) Measurements of the DOAS and other instruments could be used to validate current chemistry models. The OH reactivity in the sunlit chamber was derived from DOAS measurements of benzene and m-xylene and matched a direct OH measurement excellently. Moreover, the HCHO yield from the ethene-ozone reaction was studied. A discrepancy was observed between a model calculation and the measurement, which originated from the model assumptions made for kinetics of reaction intermediates in the ethene-ozone mechanism. Finally, absolute rate studies of the NO{sub 3} reaction with ethanal (2.6{+-}0.5), propanal (5.8{+-}1.0), butanal (11.9{+-}1.4) and benzaldehyde (2.2{+-}0.6, all in cm{sup 3} s{sup -1} at 300 K) corroborated the rate coefficients of current literature

  15. Analysis of Volatile Components in Semen Sojae Praepatum with Automatic Static Headspace and Gas Chromatography-Mass Spectrometry%静态顶空-气质联用分析淡豆豉中挥发性成分

    Institute of Scientific and Technical Information of China (English)

    柴川; 于生; 崔小兵; 张爱华; 朱栋; 单晨啸; 文红梅

    2013-01-01

    It was the first report on the volatile components contained in Semen Sojae Praepatum. For the analysis, the Semen Sojae Praepatum was analyzed by automatic static headspace and gas Chromatography-mass Spectrometry. A total of 27 compounds were identified in Semen Sojae Praepatum through the computer retrieval on the NIST5 mass spectral library. They consisted of 11 generality components, such as 2-Butanone, Butanal 3-methyl-, Butanal 2-methyl-, Limonene and 16 special components, such as copaene, Pyrazine, tetramethyl-, 2,3,5-Trimethyl-6-ethylpyrazine, Bicyclo[2.2.1]heptan-2-ol,1,7,7-trimethyl-,acetate,(1S-endo)-. Meanwhile, the quantitative analysis was taken using area normalization method, which showed that some difference was detected among six batches of Semen Sojae Praepatum. The results indicated that automatic static headspace and gas chromatography-mass spectrometry was a fast,easy,efficient and accurate method to analyze the volatile components in Semen Sojae Praepatum , and we thought that the findings may promote the fingerprint research of the volatile components in Semen Sojae Praepatum , to provide a scientific basis for the establishment of the quality standard.%  采用自动化静态顶空(HS)-气质联用(GC-MS)技术对6个批次淡豆豉的挥发性成分进行快速分析鉴定。从测定到的40多种成分中确定了2-丁酮、3-甲基丁醛、2-甲基丁醛、香芹烯等11种共有化合物及2,3,5-三甲基吡嗪、L-乙酸冰片酯、古巴烯、四甲基吡嗪等16种非共有化合物;同时使用峰面积归一化法计算了27种挥发性成分的相对含量,各组分的质量分数存在一定差异。研究表明,使用自动化静态顶空气质联用法测定淡豆豉的挥发性成分快速简便,且在一定程度上促进了淡豆豉挥发性成分的指纹图谱构建,为淡豆豉质量标准的建立提供了参考。

  16. 炼厂碳四资源的利用途径%Utilization ways of refinery C4

    Institute of Scientific and Technical Information of China (English)

    王定博

    2014-01-01

    对国内炼厂碳四的利用状况进行了分析,对混合碳四与甲醇合成甲基叔丁基醚,正丁烯经水合、脱氢反应制备甲乙酮和正丁烯与乙酸反应制备乙酸仲丁酯的生产情况进行了介绍;对醚后混合碳四制丙烯和乙烯、异构化制异丁烯、芳构化、与乙酸反应制备乙酸仲丁酯的应用和研究状况进行了分析,认为利用醚后混合碳四制备丙烯和制备乙酸仲丁酯是未来的发展方向;对异丁烷脱氢、异丁烷选择氧化、正丁烷制顺酐等技术研究进展和使用现状进行简述,认为异丁烷的利用是未来的研究重点。%This paper analyzes utilization of C4 in China,and introduces the manufactures of methyl tert-butyl ether synthesized from mixed C4 and methanol,methyl ethyl ketone prepared by n-butene through hydration reaction and dehydrogenation reaction,sec-butyl acetate from n-butene and acetic acid. Also,it briefly describes the investigations on reactions of mixed C4 after production of MTBE to prepare propylene and ethylene,isobutene by isomerization,sec-butyl acetate by reaction with acetic acid,and aromatization. Accordingly,it forecasts their market prospects respectively. Preparations of propylene and sec-butyl acetate from mixed C4 are proved to be the most promising ways. Through comparing the technologies of isobutane dehydrogenation,selective oxidation of isobutane,and reaction of n-butane to prepare maleic anhydride,utilization of iso-butane is thought to be future research focus.

  17. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments.

    Directory of Open Access Journals (Sweden)

    Arpita eBose

    2013-12-01

    Full Text Available Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2-C5 and longer alkanes. C2-C4 alkanes such as ethane, propane and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To better understand the anaerobic oxidation of short-chain n-alkanes coupled with sulfate-reduction, hydrocarbon-rich sediments from the Gulf of Mexico were amended with artificial, sulfate-replete seawater and one of four n-alkanes (C1-C4 then incubated under strict anaerobic conditions. Measured rates of alkane oxidation and sulfate reduction closely follow stoichiometric predictions that assume the complete oxidation of alkanes to CO2 (though other sinks for alkane carbon likely exist. Changes in the δ13C of all the alkanes in the reactors show enrichment over the course of the incubation, with the C3 and C4 incubations showing the greatest enrichment (4.4‰ and 4.5‰ respectively. The concurrent depletion in the δ13C of dissolved inorganic carbon (DIC implies a transfer of carbon from the alkane to the DIC pool (-3.5 and -6.7‰ for C3 and C4 incubations, respectively. Microbial community analyses reveal that certain members of the class Deltaproteobacteria are selectively enriched as the incubations degrade C1-C4 alkanes. Phylogenetic analyses indicate that distinct phylotypes are enriched in the ethane reactors, while phylotypes in the propane and butane reactors align with previously identified C3-C4 alkane-oxidizing sulfate-reducers. These data further constrain the potential influence of alkane oxidation on sulfate reduction rates in cold hydrocarbon-rich sediments, provide insight into their contribution to local carbon cycling, and illustrate the extent to which short-chain alkanes can serve as electron donors and govern microbial community

  18. Nitric esters of polyoles. The conformation of nitroglycerin. NMR and dipolar moment

    Energy Technology Data Exchange (ETDEWEB)

    Lemanceau, B.; Caire-Maurisier, M.

    1980-12-01

    The NMR spectrum on nitroglycerin of the type ABCA'B' was analyzed. The results show that the molecule is symmetric with respect to the HCO plane passing through the central atom. The protonic coupling constants were interpreted assuming a rigid structure of the -CH/sub 2/-CH-CH/sub 2/- chain with two possible conformations such that two neighbouring > Csup(H)sub(O) groupings are in an ecliptic position. The same holds for the -CH/sub 2/ONO/sub 2/ and the -CHONO/sub 2/ groupings of the propane-1,2-diole and butane-1,2,4-triole nitric esters. Dipole moment calculations were carried out considering the possible conformation of the -CH/sub 2/-CH-CH/sub 2/- chain and the rotation of the -ONO/sub 2/ groups around the C-O band. The results show that rotation is of the same importance as conformation. So it is not necessary to assume a change in the -CH/sub 2/-CH-CH/sub 2/- chain to explain the variation of the dipole moment in different solvents.

  19. Factors controlling volatile organic compounds in dwellings in Melbourne, Australia.

    Science.gov (United States)

    Cheng, M; Galbally, I E; Molloy, S B; Selleck, P W; Keywood, M D; Lawson, S J; Powell, J C; Gillett, R W; Dunne, E

    2016-04-01

    This study characterized indoor volatile organic compounds (VOCs) and investigated the effects of the dwelling characteristics, building materials, occupant activities, and environmental conditions on indoor VOC concentrations in 40 dwellings located in Melbourne, Australia, in 2008 and 2009. A total of 97 VOCs were identified. Nine VOCs, n-butane, 2-methylbutane, toluene, formaldehyde, acetaldehyde, d-limonene, ethanol, 2-propanol, and acetic acid, accounted for 68% of the sum of all VOCs. The median indoor concentrations of all VOCs were greater than those measured outdoors. The occupant density was positively associated with indoor VOC concentrations via occupant activities, including respiration and combustion. Terpenes were associated with the use of household cleaning and laundry products. A petroleum-like indoor VOC signature of alkanes and aromatics was associated with the proximity of major roads. The indoor VOC concentrations were negatively correlated (P < 0.05) with ventilation. Levels of VOCs in these Australian dwellings were lower than those from previous studies in North America and Europe, probably due to a combination of an ongoing temporal decrease in indoor VOC concentrations and the leakier nature of Australian dwellings. PMID:25788118

  20. Mechanical and Thermal Properties and Morphology of Thermoplastic Polyurethane (TPU/Clay Composites

    Directory of Open Access Journals (Sweden)

    Leandro Pizzatto

    2015-11-01

    Full Text Available In this study, thermoplastic polyurethane (TPU composites were prepared with different nanoclay contents (1, 3 and 10 wt%. The nanoclay Cloisite ®30B (C30B was dispersed in the TPU matrix by melt processing using a twin-screw extruder. The synthesis method of TPU involved the two-step bulk polymerization of polyesterpolyol and 4,4’ diphenylmethanediisocyanate with butane-1,4-diol as the chain extender. The dispersion of the nanoclay particles and its effect on the mechanical and thermal properties of the composites was investigated. The characterization of TPU/nanoclay composites was carried out by means of scanning electron microscopy, energy dispersion microanalysis and X ray diffraction. The mechanical characterization was performed through determination of the tensile strength. The TPU 3 wt% composite showed the best improvement with increases in stress and tensile at break (28% and 35%, respectively, compared to the neat TPU (sample without nanoclay. The differential scanning calorimetry and thermogravimetry analyses for composites indicated that the nanoclay did not affect significantly the glass transition, melt, and degradation temperatures of the polymeric matrix, but reduces the molecular mobility.

  1. Extensive analysis of hydrogen costs

    Energy Technology Data Exchange (ETDEWEB)

    Guinea, D.M.; Martin, D.; Garcia-Alegre, M.C.; Guinea, D. [Consejo Superior de Investigaciones Cientificas, Arganda, Madrid (Spain). Inst. de Automatica Industrial; Agila, W.E. [Acciona Infraestructuras, Alcobendas, Madrid (Spain). Dept. I+D+i

    2010-07-01

    Cost is a key issue in the spreading of any technology. In this work, the cost of hydrogen is analyzed and determined, for hydrogen obtained by electrolysis. Different contributing partial costs are taken into account to calculate the hydrogen final cost, such as energy and electrolyzers taxes. Energy cost data is taken from official URLs, while electrolyzer costs are obtained from commercial companies. The analysis is accomplished under different hypothesis, and for different countries: Germany, France, Austria, Switzerland, Spain and the Canadian region of Ontario. Finally, the obtained costs are compared to those of the most used fossil fuels, both in the automotive industry (gasoline and diesel) and in the residential sector (butane, coal, town gas and wood), and the possibilities of hydrogen competing against fuels are discussed. According to this work, in the automotive industry, even neglecting subsidies, hydrogen can compete with fossil fuels. Hydrogen can also compete with gaseous domestic fuels. Electrolyzer prices were found to have the highest influence on hydrogen prices. (orig.)

  2. Behavior of short silica monolithic columns in high pressure gas chromatography.

    Science.gov (United States)

    Maniquet, Adrien; Bruyer, Nicolas; Raffin, Guy; Baco-Antoniali, Franck; Demesmay, Claire; Dugas, Vincent; Randon, Jérôme

    2016-08-19

    In order to analyze light hydrocarbons mixtures with silica monolithic columns, a conventional gas chromatograph was modified to work with carrier gas pressure as high as 60bar. To understand hydrodynamic flow and retention with short columns (less than 30cm), special attention was required due to the temperature difference between the oven area and the FID detector which contain a significant length of the column. Efficiency and selectivity using various carrier gases (helium, nitrogen and carbon dioxide) at different inlet pressure for different oven temperature were studied. Carrier gas nature was a very significant parameter: on one side, linked to adsorption mechanism for gases like nitrogen and carbon dioxide onto the stationary phase modifying retention and selectivity, on the other side in relation to the minimum theoretical plate height which was as low as 15μm (66 000 platem(-1)) using carbon dioxide as carrier gas. The chromatographic system was then used to separate methane, ethane, ethylene, acetylene, propane, cyclopropane, and butane in less than 30s. PMID:27432790

  3. Ruthenium(III)/phosphine/pyridine complexes applied in the hydrogenation reactions of polar and apolar double bonds

    Science.gov (United States)

    Rodrigues, Claudia; Delolo, Fábio G.; Ferreira, Lucas M.; da S. Maia, Pedro I.; Deflon, Victor M.; Rabeah, Jabor; Brückner, Angelika; Norinder, Jakob; Börner, Armin; Bogado, André L.; Batista, Alzir A.

    2016-05-01

    In this work, five ruthenium(III) complexes containing phosphine and pyridine based ligands with general formula mer-[RuCl3(dppb)(N)] [where dppb = 1,4-bis(diphenylphosphino)butane and N = pyridine (py), 4-methylpyridine (4-Mepy), 4-vinylpyridine (4-Vpy), 4-tert-butylpyridine (4-tBupy) and 4-phenylpyridine (4-Phpy)] were synthesized and characterized using spectroscopic and electrochemical techniques, as well as magnetic susceptibility to check the paramagnetism of these compounds. These complexes were tested as catalytic precursors in hydrogenation reactions with cyclohexene, undecanal and cyclohexanecarboxaldehyde, as compounds bearing Cdbnd C and Cdbnd O groups. Broad screening was carried out in order to find the optimal reaction conditions with the highest conversion. It was found that by using a ratio of Ru-catalyst/substrate = 1:530 at 80 °C and 15 bar of H2 for 24 h, cyclohexene can be reduced. Hydrogenation of undecanal was possible using a Ru-catalyst/substrate ratio of 1:100 at 160 °C and 100 bar for 24 h, and for the reduction of cyclohexanecarboxaldehyde the reaction conditions were Ru-catalyst/substrate ratio of 1:100 at 160 °C and 50 bar for 24 h.

  4. Process for improving phosphorus-vanadium oxide and phosphorus-vanadium-co-metal oxide catalysts

    International Nuclear Information System (INIS)

    A process is described for the improvement of a vanadium-phosphorus-oxygen catalyst having a phosphorus to vanadium atomic ratio of about 2:1 to about 0.8:1 which catalyst is present on a catalyst bed having a portion therof containing an initial exotherm of reaction. The catalyst is suitable for use in the manufacture of maleic anhydride from a feed gas stream comprising C/sub 4/ hydrocarbons, benzene, or butane which process comprises: applying to the catalyst bed, simultaneously with introduction of the feed gas stream thereon, water and a phosphorus compound in an amount sufficient to initiate (a) deactivation of the portion of the catalyst containing the initial exotherm, and (b) formation of a new exotherm downstream in the catalyst bed from the initial exotherm, and thereafter reducing or discontinuing application of the phosphorus compound at a point in time when the initial exotherm portion of the catalyst bed is still undergoing deactivation, thereby allowing the partially deactivated exotherm portion to reactivate by producing a more isothermal catalyst bed

  5. Applications of open-path Fourier transform infrared for identification of volatile organic compound pollution sources and characterization of source emission behaviors.

    Science.gov (United States)

    Lin, Chitsan; Liou, Naiwei; Sun, Endy

    2008-06-01

    An open-path Fourier transform infrared spectroscopy (OP-FTIR) system was set up for 3-day continuous line-averaged volatile organic compound (VOC) monitoring in a paint manufacturing plant. Seven VOCs (toluene, m-xylene, p-xylene, styrene, methanol, acetone, and 2-butanone) were identified in the ambient environment. Daytime-only batch operation mode was well explained by the time-series concentration plots. Major sources of methanol, m-xylene, acetone, and 2-butanone were identified in the southeast direction where paint solvent manufacturing processes are located. However, an attempt to uncover sources of styrene was not successful because the method detection limit (MDL) of the OP-FTIR system was not sensitive enough to produce conclusive data. In the second scenario, the OP-FTIR system was set up in an industrial complex to distinguish the origins of several VOCs. Eight major VOCs were identified in the ambient environment. The pollutant detected wind-rose percentage plots that clearly showed that ethylene, propylene, 2-butanone, and toluene mainly originated from the tank storage area, whereas the source of n-butane was mainly from the butadiene manufacturing processes of the refinery plant, and ammonia was identified as an accompanying reduction product in the gasoline desulfuration process. Advantages of OP-FTIR include its ability to simultaneously and continuously analyze many compounds, and its long path length monitoring has also shown advantages in obtaining more comprehensive data than the traditional multiple, single-point monitoring methods.

  6. Effect of liquefied petroleum gas on ozone formation in Guadalajara and Mexico City.

    Science.gov (United States)

    Jaimes-López, J Luis; Sandoval-Fernández, Julio; González-Ortíz, Emmanuel; Vázquez-García, Marcos; González-Macías, Uriel; Zambrano-García, Angel

    2005-06-01

    Leakages of liquefied petroleum gas (LPG) are suspected to contribute greatly to ozone (O3) formation in Mexico City. We tested such a hypothesis by outdoor captive-air irradiation (CAI) experiments in the two largest Mexican metropolitan areas: Guadalajara (GMA) in 1997 and Mexico City (MCMA) in 2000. O3 was monitored in each city for 20 days (8:00 a.m.-6:00 p.m.) in smog chambers containing unaltered morning air or morning air enriched with either commercial LPG or LPG synthetic mixture 60/40 (propane and butane). Tested additions of both components were 35% (by volume) in GMA and 60% (by volume) in MCMA. The addition effects on O3 (max) were compared with effects from diluting LPG components or total nonmethane hydrocarbons (tNMHCs) by 50%. Diluting tNMHCs had the greatest absolute effect at both cities: it lowered O3 (max) by 24% in GMA and 55% in MCMA. Adding commercial LPG increased O3 (max) by 6% in GMA and 28% in MCMA; whereas adding LPG synthetic mixture 60/40 caused a similar increase in O3 (max), 4 and 21% in GMA and MCMA, respectively. Compared with dilution of tNMHCs, dilution of LPG-associated compounds had a smaller decreasing effect on O3 (max), only 4% in GMA and 15% in MCMA. These results show that commercial LPG and LPG synthetic mixture 60/40 affect O3 formation to a lesser extent than estimated previously.

  7. The Role of Markstein Number on the Turbulent Flame Speed and Its Scaling

    CERN Document Server

    Chaudhuri, Swetaprovo; Law, Chung K

    2012-01-01

    In this paper we clarify the role of the Markstein Number (Mk) on the turbulent flame speed and its scaling, from experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame speed data are presented for methane, ethylene and n-butane-air premixed flames with negative and positive Mk, propagating in nearly homogenous isotropic turbulence in a dual-chamber, fan-stirred vessel. The cold flow is characterized by high-speed particle image velocimetry, while the flame propagation rate is obtained by tracking high-speed Schlieren images. For all fuel-air mixtures of C1-C4 hydrocarbons presented in this work, the normalized turbulent flame speed data follows the recent theoretical [Chaudhuri, Akkerman and Law, Physical Review E, 84, (2011) 026322] and experimental [Chaudhuri, Wu, Zhu and Law, Physical Review Letters, 108, (2012), 044503], [Re_{T,f}]^{0.5} scaling, where the average radius is the length scale and thermal diffusivity is the transport property. For a constant Re_{T,f} it i...

  8. TOPEM DSC study of glass transition region of polyurethane cationomers

    International Nuclear Information System (INIS)

    Highlights: ► TOPEM DSC method was employed to investigate the glass transition (Tg) region of fluorinated polyurethane cationomers. ► Introduction of fluorine compounds significantly changes thermal behaviour of cationomers in the Tg region of hard segments. ► Introduction of fluorine compound leads to changes of the slope in activation diagram of glass transition. - Abstract: In this paper TOPEM DSC method was employed to investigate the glass transition region of fluorinated polyurethane cationomers. Fluorinated polyurethane cationomers have been synthesised in the reaction of MDI with poly(ethylene glycol) (600) and butane1,4-diol or N-methyl- or N-butyldiethanolamine and 2,2,3,3-tetrafluoro-1,4-butanediol. Better rigidity was found for generally amorphous cationomer coats. It was found that introduction of fluorine compound changes thermal behaviour of polyurethane cationomers as well as leads to changes in the slope in activation diagram profiles of glass transition in comparison to polyuretahene cationomer without fluorine compound. Application of TOPEM DSC allows to obtain more information concerning frequency dependence of glass transition region and thermodynamical stability of polyurethane structures.

  9. Modeling of NO sensitization of IC engines surrogate fuels auto-ignition and combustion

    CERN Document Server

    Anderlohr, Jörg; Bounaceur, Roda; Battin-Leclerc, Frédérique

    2009-01-01

    This paper presents a new chemical kinetic model developed for the simulation of auto-ignition and combustion of engine surrogate fuel mixtures sensitized by the presence of NOx. The chemical mechanism is based on the PRF auto-ignition model (n-heptane/iso-octane) of Buda et al. [1] and the NO/n-butane/n-pentane model of Glaude et al. [2]. The later mechanism has been taken as a reference for the reactions of NOx with larger alcanes (n-heptane, iso-octane). A coherent two components engine fuel surrogate mechanism has been generated which accounts for the influence of NOx on auto-ignition. The mechanism has been validated for temperatures between 700 K and 1100 K and pressures between 1 and 10 atm covering the temperature and pressure ranges characteristic of engine post-oxidation thermodynamic conditions. Experiments used for validation include jet stirred reactor conditions for species evolution as a function of temperature, as well as diesel HCCI engine experiments for auto-ignition delay time measurements...

  10. Astrochemistry Lecture and Laboratory Courses at the University of Illinois: Applied Spectroscopy

    Science.gov (United States)

    Woon, David E.; McCall, Benjamin J.

    2016-06-01

    The Department of Chemistry at the University of Illinois at Urbana-Champaign offers two courses in astrochemistry, one lecture (Chem 450) and one laboratory (Chem 451). Both courses present the opportunity for advanced undergraduate and graduate students to learn about various spectroscopic concepts as they are applied toward an exotic subject, astrochemistry. In the lecture course, each student devotes a substantial fraction of the course work to one of the known astromolecules, building a wiki page for it during the semester, presenting a brief oral description about it in class, and then finally writing a paper about it. The course covers electronic, vibrational, and rotational spectroscopy, along with Einstein coefficients, line widths, and the interpretation of actual astronomical spectra. It also covers relevant reactions and reaction networks. Students learn to use pgopher for modeling rotational spectra. The lab course focuses on the methylidyne radical (CH). It begins with its chemistry and spectroscopy and then moves on to laboratory study of its electronic spectrum as observed in a butane flame and then collected with the university's 12" f/15 Brashear refracting telescope in the campus observatory built in 1896. Students learn to use IGOR to reduce CCD data.

  11. End use energy consumption data base: transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  12. Increased expression of stefin B in the nucleus of T98G astrocytoma cells delays caspase activation

    Directory of Open Access Journals (Sweden)

    Tao eSun

    2012-09-01

    Full Text Available Stefin B (cystatin B is an endogenous inhibitor of cysteine proteinases localized in the nucleus and the cytosol. Loss-of-function mutations in the stefin B gene (CSTB gene were reported in patients with Unverricht-Lundborg disease (EPM1. Our previous results showed that thymocytes isolated from stefin B-deficient mice are more sensitive to apoptosis induced by the protein kinase C inhibitor staurosporin (STS than the wild-type control cells. We have also shown that the increased expression of stefin B in the nucleus of T98G astrocytoma cells delayed cell cycle progression through the S phase. In the present study we examined if the nuclear or cytosolic functions of stefin B are responsible for the accelerated induction of apoptosis observed in the cells from stefin B-deficient mice. We have shown that the overexpression of stefin B in the nucleus, but not in the cytosol of astrocytoma T98G cells, delayed caspase-3 and-7 activation. Pretreatment of cells with the pan-caspase inhibitor z-Val-Ala-Asp(OMe-fluoromethylketone completely inhibited caspase activation, while treatment with the inhibitor of calpains- and papain-like cathepsins (2S,3S-trans-epoxysuccinyl-leucylamido-3-methyl-butane ethyl ester did not prevent caspase activation. We concluded that the delay of caspase activation in T98G cells overexpressing stefin B in the nucleus is independent of cathepsin inhibition.

  13. Interaction of bovine serum albumin (BSA) with novel gemini surfactants studied by synchrotron radiation scattering (SR-SAXS), circular dichroism (CD), and nuclear magnetic resonance (NMR).

    Science.gov (United States)

    Gospodarczyk, W; Szutkowski, K; Kozak, M

    2014-07-24

    The interaction of three dicationic (gemini) surfactants-3,3'-[1,6-(2,5-dioxahexane)]bis(1-dodecylimidazolium) chloride (oxyC2), 3,3'-[1,16-(2,15-dioxahexadecane)]bis(1-dodecylimidazolium) chloride (oxyC12), and 1,4-bis(butane)imidazole-1-yl-3-dodecylimidazolium chloride (C4)--with bovine serum albumin (BSA) has been studied by the use of small-angle X-ray scattering (SAXS), circular dichroism (CD), and (1)H nuclear magnetic resonance diffusometry. The results of CD studies show that the conformation of BSA was changed dramatically in the presence of all studied surfactants. The greater decrease (from 56 to 24%) in the α-helical structure of BSA was observed for oxyC2 surfactant. The radii of gyration estimated from SAXS data varied between 3 and 26 nm for the BSA/oxyC2 and BSA/oxyC12 systems. The hydrodynamic radius of the BSA/surfactant system estimated from NMR diffusometry varies between 5 and 11 nm for BSA/oxyC2 and 5 and 8 nm for BSA/oxyC12.

  14. A micro-solid oxide fuel cell system as battery replacement

    Science.gov (United States)

    Bieberle-Hütter, Anja; Beckel, Daniel; Infortuna, Anna; Muecke, Ulrich P.; Rupp, Jennifer L. M.; Gauckler, Ludwig J.; Rey-Mermet, Samuel; Muralt, Paul; Bieri, Nicole R.; Hotz, Nico; Stutz, Michael J.; Poulikakos, Dimos; Heeb, Peter; Müller, Patrik; Bernard, André; Gmür, Roman; Hocker, Thomas

    The concept and the design of a micro-solid oxide fuel cell system is described and discussed. The system in this study is called the ONEBAT system and consists of the fuel cell PEN (positive electrode - electrolyte - negative electrode) element, a gas processing unit, and a thermal system. PEN elements of free-standing multi-layer membranes are fabricated on Foturan ® and on Si substrates using thin film deposition and microfabrication techniques. Open circuit voltages of up to 1.06 V and power of 150 mW cm -2 are achieved at 550 °C. The membranes are stable up to 600 °C. The gas processing unit allows butane conversion of 95% and hydrogen selectivity of 83% at 550 °C in the reformer and efficient after-burning of hydrogen, carbon monoxide, and lower hydrocarbons in the post-combustor. Thermal system simulations prove that a large thermal gradient of more than 500 °C between the hot module and its exterior are feasible. The correlation between electrical power output - system size and thermal conductivity - heat-transfer coefficient of the thermal insulation material are shown. The system design studies show that the single sub-systems can be integrated into a complete system and that the requirements for portable electronic devices can be achieved with a base unit of 2.5 W and a modular approach.

  15. ExxonMobil and QGPC sign EGU agreement

    International Nuclear Information System (INIS)

    ExxonMobil Middle East Gas Marketing Ltd., an Exxon Mobil Corporation subsidiary, and Qatar General Petroleum Corporation (QGPC) announced on May 2 that they have signed a Development and Production Sharing Agreement (DPSA) for the Enhancement Gas Utilization (EGU) project. Under the EGU project, additional North Field gas will be developed for pipeline sales to domestic projects and regional gas exports. The signing ceremony was attended by HE Abdulla Bin Hamad Al Attiyah, Minister of Energy, Industry, Electricity and Water and Chairman of QGPC, Mr Lucio A. Noto, Vice Chairman, Exxon Mobil Corporation, and Mr Harry J. Longwell, Senior Vice President, Exxon Mobil Corporation. The signing of the agreement follows the signing of the Heads of Agreement (HOA) for the project i December 1998. The EGU project will produce gas from the North Field with nominal capacity of 1.75 billion cubic feet per day (1.75 BCFPD) of gas sales to supply domestic demand and export to regional markets. The project will also produce condensate, butane and propane for export, as well as ethane for feedstock to future petrochemical ventures. (author)

  16. Insertion of singlet chlorocarbenes across C-H bonds in alkanes: Evidence for two phase mechanism

    Indian Academy of Sciences (India)

    M Ramalingam; K Ramasami; P Venuvanalingam

    2007-09-01

    Transition states for the insertion reactions of singlet mono and dichlorocarbenes (1CHCl and 1CCl2) into C-H bonds of alkanes (methane, ethane, propane and -butane) have been investigated at MP2 and DFT levels with 6-31g ( , ) basis set. The of 1CHCl and 1CCl2 may interact with alkane’s filled fragment orbital of either or symmetry. So chlorocarbenes insertion reactions have been investigated for both (/) approaches. The approach has been adjudicated to be the minimum energy path over the approach both at the MP2 and DFT levels. Mulliken, NPA and ESP derived charge analyses have been carried out along the minimal energy reaction path using the IRC method for 1CHCl and 1CCl2 insertions into the primary and secondary C-H bonds of propane. The occurrence of TSs either in the electrophilic or nucleophilic phase has been identified through NBO charge analyses in addition to the net charge flow from alkane to the carbene moiety.

  17. Emissions and photochemistry of oxygenated VOCs in urban plumes in the Northeastern United States

    Directory of Open Access Journals (Sweden)

    R. Sommariva

    2011-07-01

    Full Text Available Photochemical processes inside urban plumes in the Northeast of the United States have been studied using a highly detailed chemical model, based upon the Master Chemical Mechanism (MCM. The model results have been compared to measurements of oxygenated VOCs (acetone, methyl ethyl ketone, acetaldehyde, acetic acid and methanol obtained during several flights of the NOAA WP-3D aircraft, which sampled plumes from the New York City area during the ICARTT campaign in 2004. The agreement between the model and the measurements was within 40–60 % for all species, except acetic acid.

    The model results have been used to study the formation and photochemical evolution of acetone, methyl ethyl ketone and acetaldehyde. Under the conditions encountered during the ICARTT campaign, acetone is produced from the oxidation of propane (24–28 % and i-propanol (<15 % and from a number of products of i-pentane oxidation. Methyl ethyl ketone (MEK is mostly produced from the oxidation of n-butane (20–30 % and 3-methylpentane (<40 %. Acetaldehyde is formed from several precursors, mostly small alkenes, >C5 alkanes, propanal and MEK. Ethane and ethanol oxidation account, respectively, for 6–23 % and 5–25 % of acetaldehyde photochemical formation. The results highlight the importance of alkanes for the photochemical production of ketones and the role of hydroperoxides in sustaining their formation far from the emission sources.

  18. Critical roles for excretory-secretory cysteine proteases during tissue invasion of Paragonimus westermani newly excysted metacercariae.

    Science.gov (United States)

    Na, Byoung-Kuk; Kim, Seon-Hee; Lee, Eung-Goo; Kim, Tong-Soo; Bae, Young-An; Kang, Insug; Yu, Jae-Ran; Sohn, Woon-Mok; Cho, Seung-Yull; Kong, Yoon

    2006-06-01

    Paragonimus westermani is a trematode parasite, which causes pulmonary and/or extrapulmonary granulomatous disease in humans. Successful invasion of the host tissue is critical for the survival of this tissue-invasive parasite. The enzymatic hydrolysis of host proteins is clearly a prerequisite of this process. In this study, we have investigated the functional roles of the excretory-secretory cysteine proteases of P. westermani newly excysted metacercariae (PwNEM) in tissue invasion. The 27 and 28 kDa enzymes (PwMc27 and PwMc28) purified from PwNEM excretory-secretory products (ESP), preferentially degraded fibrillar proteins, but not globular proteins. PwMc28 significantly facilitated the invasion of PwNEM into mouse peritoneum, whereas a diffusible cysteine protease inhibitor, trans-epoxysuccinyl-L-leuciloamido-(4-guanidino) butane (E-64) inhibited this process dose-dependently. Two distinct isoforms of PwMc28 (PwMc28a and PwMc28b), which exhibited two amino acid differences in their mature domains, were identified by tandem mass spectrometry and sequence analysis. Both enzymes were localized at the tegument on the anterior border and on the oral sucker, which suggests excretion-secretion via exocytosis or via the excretory canal network. The mRNA transcripts of PwMc28a and b were expressed abundantly during the active invasion/migration through the host's tissues, suggesting their relevant function to tissue invasion/migration in the definitive host.

  19. Orbital responses to methyl sites in CnH2n+2 (n=1-6)

    Institute of Scientific and Technical Information of China (English)

    Yang Ze-Jin; Cheng Xin-Lu; Zhu Zheng-He; Yang Xiang-Dong

    2012-01-01

    Orbital responses to methyl sites in CnH2n+2 (n =1-6) are studied by B3LYP/TZVP based on the most stable geometries using the B3LYP/aug-cc-pVTZ method.Vertical ionization energies are produced using the SAOP/et-pVQZ model for the complete valence space.The highest occupied molecular orbital (HOMO) investigations indicate the pelectron profiles in methane,ethane,propane,and n-butane.By increasing the number of carbon-carbon bonds in lower momentum regions,the s,p-hybridized orbitals are built and display strong exchange and correlation interactions in lower momentum space (P (≤) 0.50 a.u.).Meanwhile,the relative intensities of the isomers in lower momentum space show the strong bonding number dependence of the carbon-carbon bonds,meaning that more electrons have contributed to orbital construction.The study of representative valence orbital momentum distribution further confirms that the structural changes lead to evident electronic rearrangement over the whole valence space.An analysis based on the isomers reveals that the valence orbitals are isomer-dependent and the valence ionization energy experiences an apparent shift in the inner valence space.However,such shifts are greatly reduced in the outer valence space.Meanwhile,the opposite energy shift trend is found in the intermediate valence space.

  20. Monitoring of DNA damage in individuals exposed to petroleum hydrocarbons in Ecuador.

    Science.gov (United States)

    Paz-y-Miño, César; López-Cortés, Andrés; Arévalo, Melissa; Sánchez, María Eugenia

    2008-10-01

    Currently, it is known that several chemical agents used or generated by the oil industry are classified as mutagens and/or carcinogens. Among these we have gasoline, diesel, butane gas, styrene, benzene, chloroform, and others. Studies have verified that these chemicals have effects in fertility (abortions, sterility); produce various upheavals, such as dizziness, nausea, muscular pain; and produce chromosomal damage at the DNA level, which in the long or medium run, can develop into cancer and leukemia. The genetic damage in exposed individuals was measured by means of the comet test, chromosomal alterations test, and the study of the CYP 1A1 and MSH2 genes. These methods were applied to determine the genotoxicity of hydrocarbons and their residue in human beings. When conducting these tests on the blood samples of individuals exposed to hydrocarbons (workers of oil companies) and of a control population of the area of study and Quito, it was found that, in effect, the exposed individuals presented a greater amount of damage at the DNA level as well as at the chromosomal level than the individuals from the control populations (Poil impact has been greater.