WorldWideScience

Sample records for burnt fuel core

  1. Monte-Carlo code calculation of 3D reactor core model with usage of burnt fuel isotopic compositions, obtained by engineering codes

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, Sergey S.; Gorodkov, Sergey S.; Shcherenko, Anna I. [National Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2016-09-15

    A burn-up calculation of large systems by Monte-Carlo code (MCU) is complex process and it requires large computational costs. Previously prepared isotopic compositions are proposed to be used for the Monte-Carlo code calculations of different system states with burnt fuel. Isotopic compositions are calculated by an approximation method. The approximation method is based on usage of a spectral functionality and reference isotopic compositions, that are calculated by the engineering codes (TVS-M, BIPR-7A and PERMAK-A). The multiplication factors and power distributions of FAs from a 3-D reactor core are calculated in this work by the Monte-Carlo code MCU using earlier prepared isotopic compositions. The separate conditions of the burnt core are observed. The results of MCU calculations were compared with those that were obtained by engineering codes.

  2. Nuclear reactor with a fixed system of neutron poison, which can be burnt up, introduced into the reactor core

    International Nuclear Information System (INIS)

    Mueller, E.; Roegler, H.J.; Wickert, M.

    1985-01-01

    The fixed system consists of neutron poison which can be burnt up, in an uneven distribution, and with adjustable absorber rods for output control, which are driven into the reactor core from the side along the fuel elements. There is an excess of neutron poison which can be burnt up, overall, on the side of the reactor core away from the absorber rods. The reactor core is free of neutron poison which can be burnt up on the side where the absorber rods are driven in, so that the ratio of maximum to mean power density with reference to a possible absorber rod positions is less than for homogeneous distribution of the neutron poison which can be burnt up. (orig./HP) [de

  3. Design of a proteus lattice representative of a burnt and fresh fuel interface at power conditions in light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hursin, M.; Perret, G. [Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland)

    2012-07-01

    The research program LIFE (Large-scale Irradiated Fuel Experiment) between PSI and Swissnuclear has been started in 2006 to study the interaction between large sets of burnt and fresh fuel pins in conditions representative of power light water reactors. Reactor physics parameters such as flux ratios and reaction rate distributions ({sup 235}U and {sup 238}U fissions and {sup 238}U capture) are calculated to estimate an appropriate arrangement of burnt and fresh fuel pins within the central element of the test zone of the zero-power research reactor PROTEUS. The arrangement should minimize the number of burnt fuel pins to ease fuel handling and reduce costs, whilst guaranteeing that the neutron spectrum in both burnt and fresh fuel regions and at their interface is representative of a large uniform array of burnt and fresh pins in the same moderation conditions. First results are encouraging, showing that the burnt/fresh fuel interface is well represented with a 6 x 6 bundle of burnt pins. The second part of the project involves the use of TSUNAMI, CASMO-4E and DAKOTA to perform parametric and optimization studies on the PROTEUS lattice by varying its pitch (P) and fraction of D{sub 2}O in moderator (F{sub D2O}) to be as representative as possible of a power light water reactor core at hot full power conditions at beginning of cycle (BOC). The parameters P and F{sub D2O} that best represent a PWR at BOC are 1.36 cm and 5% respectively. (authors)

  4. Utilization of freshly induced high-energy gamma-ray activity as a measure of fission rates in re-irradiated burnt UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M. F.; Perret, G. [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); Krohnert, H.; Chawla, R. [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2009-07-01

    In the frame of the LIFE-PROTEUS (Large-scale Irradiation Fuel Experiments at PROTEUS) program, a measurement technique is being developed to measure fission rates in burnt fuel, following re-irradiation in a zero-power research reactor. In the presented approach, the fission rates are estimated by measuring high energy gamma-rays (above 2000 keV) emitted by short-lived fission products freshly produced in the fuel. Due to their high energies, these gamma-rays can be discriminated against the high intrinsic gamma-ray activity of the burnt fuel, which reaches energies up to 2000 keV. To demonstrate the feasibility of this approach, fresh and burnt fuel samples (with burn-ups varying from 36 to 64 MWd/kg) were irradiated in the PROTEUS reactor at the Paul Scherrer Institut, and their emitted gamma-ray spectra were recorded shortly after irradiation. It was possible, for the first time, to detect the short-lived gamma-ray activity in the high-energy region, even in the presence of the intrinsic gamma-ray background of the burnt fuel samples. Using the short-lived gamma-ray lines {sup 142}La (2542 keV), {sup 89}Rb (2570 keV), 95Y (2632 keV), {sup 138}Cs (2640 keV) and {sup 95}Y (3576 keV), relative fission rates between different core positions were derived for a fresh sample as well as for a burnt sample with a burn-up of 36 MWd/kg. It was shown that, for both the fresh and burnt fuel samples, the measured fission rate ratios agreed well, i.e. within the statistical uncertainties, with calculation results obtained by Monte Carlo simulations. (authors)

  5. Reactivity Measurements On Burnt And Reference Fuel Samples In LWR-PROTEUS Phase II

    International Nuclear Information System (INIS)

    Murphy, M.; Jatuff, F.; Grimm, P.; Seiler, R.; Luethi, A.; Van Geemert, R.; Brogli, R.; Chawla, R.; Meier, G.; Berger, H.-D.

    2003-01-01

    During the year 2002, the PROTEUS research reactor was used to make a series of reactivity measurements on Pressurised Water Reactor (PWR) burnt fuel samples, and on a series of specially prepared standards. These investigations have been made in two different neutron spectra. In addition, the intrinsic neutron emissions of the burnt fuel samples have been determined. (author)

  6. Investigation into fuel pin reshuffling options in PWR in-core fuel management for enhancement of efficient use of nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Daing, Aung Tharn, E-mail: atdaing@khu.ac.kr; Kim, Myung Hyun, E-mail: mhkim@khu.ac.kr

    2014-07-01

    Highlights: • This paper discusses an alternative option, fuel pin reshuffling for maximization of cycle energy production. • The prediction results of isotopic compositions of each burnt pin are verified. • The operating performance is analyzed at equilibrium core with fuel pin reshuffling. • The possibility of reuse of spent fuel pins for reduction of fresh fuel assemblies is investigated. - Abstract: An alternative way to enhance efficient use of nuclear fuel is investigated through fuel pin reshuffling options within PWR fuel assembly (FA). In modeling FA with reshuffled pins, as prerequisite, the single pin calculation method is proposed to estimate the isotopic compositions of each pin of burnt FA in the core-wide environment. Subsequently, such estimation has been verified by comparing with the neutronic performance of the reference design. Two scenarios are concerned, i.e., first scenario was targeted on the improvement of the uniform flux spatial distribution and on the enhancement of neutron economy by simply reshuffling the existing fuel pins in once-burnt fuel assemblies, and second one was focused on reduction of fresh fuel loading and discharged fuel assemblies with more economic incentives by reusing some available spent fuel pins still carrying enough reactivity that are mechanically sound ascertained. In scenario-1, the operating time was merely somewhat increased for few minutes when treating eight FAs by keeping enough safety margins. The scenario-2 was proved to reduce four fresh FAs loading without largely losing any targeted parameters from the safety aspect despite loss of 14 effective full power days for operation at reference plant full rated power.

  7. Post-processor for simulations of the ORIGEN program and calculation of the composition of the activity of a burnt fuel core by a BWR type reactor

    International Nuclear Information System (INIS)

    Sandoval V, S.

    2006-01-01

    The composition calculation and the activity of nuclear materials subject to processes of burnt, irradiation and decay periods are of utility for diverse activities inside the nuclear industry, as they are it: the processes design and operations that manage radioactive material, the calculation of the inventory and activity of a core of burnt nuclear fuel, for studies of type Probabilistic Safety Analysis (APS), as well as for regulation processes and licensing of nuclear facilities. ORIGEN is a program for computer that calculates the composition and the activity of nuclear materials subject to periods of burnt, irradiation and decay. ORIGEN generates a great quantity of information whose processing and analysis are laborious, and it requires thoroughness to avoid errors. The automation of the extraction, conditioning and classification of that information is of great utility for the analyst. By means of the use of the post-processor presented in this work it is facilitated, it speeds up and wide the capacity of analysis of results, since diverse consultations with several classification options and filtrate of results can be made. As illustration of the utility of the post-processor, and as an analysis of interest for itself, it is also presented in this work the composition of the activity of a burned core in a BWR type reactor according to the following classification criteria: by type of radioisotope (fission products, activation products and actinides), by specie type (gassy, volatile, semi-volatile and not volatile), by element and by chemical group. The results show that the total activity of the studied core is dominated by the fission products and for the actinides, in proportion four to one, and that the gassy and volatile species conform a fifth part of the total activity of the core. (Author)

  8. Reactivity and neutron emission measurements of highly burnt PWR fuel rod samples

    International Nuclear Information System (INIS)

    Murphy, M.F.; Jatuff, F.; Grimm, P.; Seiler, R.; Brogli, R.; Meier, G.; Berger, H.-D.; Chawla, R.

    2006-01-01

    Fuel rods with burnup values beyond 50 GWd/t are characterised by relatively large amounts of fission products and a high abundance of major and minor actinides. Of particular interest is the change in the reactivity of the fuel as a function of burnup and the capability of modern codes to predict this change. In addition, the neutron emission from burnt fuel has important implications for the design of transport and storage facilities. Measurements have been made of the reactivity effects and the neutron emission rates of highly burnt uranium oxide and mixed oxide fuel rod samples coming from a pressurised water reactor (PWR). The reactivity measurements have been made in a PWR lattice in the PROTEUS zero-energy reactor moderated in turn with: water, a water and heavy water mixture and water containing boron. A combined transport flask and sample changer was used to insert the 400 mm long burnt fuel rod segments into the reactor. Both control rod compensation and reactor period methods were used to determine the reactivities of the samples. For the range of burnup values investigated, an interesting exponential relationship has been found between the neutron emission rate and the measured reactivity

  9. Store for burnt-up fuel elements of nuclear reactors

    International Nuclear Information System (INIS)

    Kumpf, H.

    1981-01-01

    Burnt-up fuel elements of nuclear reactors have to be cooled during storage. For this reason the boxes which surround the fuel elements can have cooling air flowing round them in natural flow. This air is taken through the walls of a storage building through zones of parallel pipes, whose diameter and spacing are in the ratio of 1 : 0.5 to 1 : 2. The pipes have dust filters. Prefilters with fan drive are situated in parallel with the inlet pipe zones. (orig.) [de

  10. Gamma-ray spectrometric measurements of fission rate ratios between fresh and burnt fuel following irradiation in a zero-power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kröhnert, H., E-mail: hanna.kroehnert@ensi.ch [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Perret, G.; Murphy, M.F. [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); Chawla, R. [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2013-01-11

    The gamma-ray activity from short-lived fission products has been measured in fresh and burnt UO{sub 2} fuel samples after irradiation in a zero-power reactor. For the first time, short-lived gamma-ray activity from fresh and burnt fuel has been compared and fresh-to-burnt fuel fission rate ratios have been derived. For the measurements, well characterized fresh and burnt fuel samples, with burn-ups up to 46 GWd/t, were irradiated in the zero-power research reactor PROTEUS. Fission rate ratios were derived based on the counting of high-energy gamma-rays above 2200 keV, in order to discriminate against the high intrinsic activity of the burnt fuel. This paper presents the measured fresh-to-burnt fuel fission rate ratios based on the {sup 142}La (2542 keV), {sup 89}Rb (2570 keV), {sup 138}Cs (2640 keV) and {sup 95}Y (3576 keV) high-energy gamma-ray lines. Comparisons are made with the results of Monte Carlo modeling of the experimental configuration, carried out using the MCNPX code. The measured fission rate ratios have 1σ uncertainties of 1.7–3.4%. The comparisons with calculated predictions show an agreement within 1–3σ, although there appears to be a slight bias (∼3%).

  11. Usage of burnt fuel isotopic compositions from engineering codes in Monte-Carlo code calculations

    International Nuclear Information System (INIS)

    Aleshin, Sergey S.; Gorodkov, Sergey S.; Shcherenko, Anna I.

    2015-01-01

    A burn-up calculation of VVER's cores by Monte-Carlo code is complex process and requires large computational costs. This fact makes Monte-Carlo codes usage complicated for project and operating calculations. Previously prepared isotopic compositions are proposed to use for the Monte-Carlo code (MCU) calculations of different states of VVER's core with burnt fuel. Isotopic compositions are proposed to calculate by an approximation method. The approximation method is based on usage of a spectral functionality and reference isotopic compositions, that are calculated by engineering codes (TVS-M, PERMAK-A). The multiplication factors and power distributions of FA and VVER with infinite height are calculated in this work by the Monte-Carlo code MCU using earlier prepared isotopic compositions. The MCU calculation data were compared with the data which were obtained by engineering codes.

  12. Analysis of reactivity worths of highly-burnt PWR fuel samples measured in LWR-PROTEUS Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Peter; Murphy, Michael F.; Jatuff, Fabian; Seiler, Rudolf [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2008-07-01

    The reactivity loss of PWR fuel with burnup has been determined experimentally by inserting fresh and highly-burnt fuel samples in a PWR test lattice in the framework of the LWR-PROTEUS Phase II programme. Seven UO{sub 2} samples irradiated in a Swiss PWR plant with burnups ranging from approx40 to approx120 MWd/kg and four MOX samples with burnups up to approx70 MWd/kg were oscillated in a test region constituted of actual PWR UO{sub 2} fuel rods in the centre of the PROTEUS zero-power experimental facility. The measurements were analyzed using the CASMO-4E fuel assembly code and a cross section library based on the ENDF/B-VI evaluation. The results show close proximity between calculated and measured reactivity effects and no trend for a deterioration of the quality of the prediction at high burnup. The analysis thus demonstrates the high accuracy of the calculation of the reactivity of highly-burnt fuel. (authors)

  13. Store for radioactive waste and burnt-up fuel elements

    International Nuclear Information System (INIS)

    Spilker, H.; Rox, R.; Peschl, H.W.

    1985-01-01

    The invention concerns a concrete storage block in which there are several vertical storage and cooling ducts for radioactive waste and burnt-up fuel elements. The storage block is assembled from several square concrete blocks. Several vertical ducts are made in these. The square blocks are placed on a concrete baseplate. The aligned ducts of several square blocks placed above each other form storage and cooling ducts for tubular storage containers. An annular gap is left for cooling air between the outside wall of the storage containers and the inside wall of the storage and cooling ducts. (orig./HP) [de

  14. Analysis of burnt nuclear fuel elements by gamma-spectrometry

    International Nuclear Information System (INIS)

    Lammer, M.

    1978-01-01

    Gamma-spectrometry allows a non-destructive determination of the fission and activation product content of spent nuclear fuel. The concentration of some of these products depends significantly on the so-called fuel parameters which describe the irradiation history and the fuel composition. The use of these dependences for deriving ''unknown fuel parameters'' from measured fission product activities is investigated in this work. Relevant application fields are burnup determination, fuel testing and inspections within the nuclear materials safeguards programme. The present thesis investigates how these dependences can be used to derive unknown fuel parameters. The possibilities and basic limitations of deriving information from a measured gamma spectrum are considered on principle. The main conclusion is that only ratios of fission product activities allow the development of an interpretation method which is generally applicable to all types of fuel from different reactors. The dependence of activity ratios on cooling time, irradiation time, integrated and final neutron flux, fuel composition, as well as fission and breeding rates are then investigated and presented graphically in a way suitable for applicaton. These relationships can be used for the analysis of spent fuel, and the detailed procedures, which depend on the applicaton field, are worked out in this work. In order to test the interpretation methods, samples of nuclear fuel have been irradiated and the gamma spectra analysed. The methods developed in this work can be applied successfully to the analysis of burnt fuel in the frame of fuel testing programmes and to safeguards verification purposes. If however, apart from a gamma spectrum, no information on the investigated fuel is available, the above-mentioned parameters can be derived with low accuracy only. (author)

  15. Equilibrium cycle of 18 months at 120% of the original nominal power with optimized fuel discharge burnt for the CLV

    International Nuclear Information System (INIS)

    Perusquia, R.; Montes, J.L.; Hernandez, J.L.; Ortiz, J.J.; Hernandez, H.; Castillo, A.

    2007-01-01

    The Federal Commission of Electricity carries out works at the moment related with the one increase from the power to original 120% of the nominal one in the rectors of water in boil (BWR) of the Laguna Verde Central (CLV). In the National Institute of Nuclear Research (ININ) are carried out studies of the impact on the design of the fuel recharge derived of this increase. As option in the ININ the feasibility of continuing using the same type of fuel assemble that one has come using recently in the CLV, the type GE12 is analyzed. To achieve it was diminished the LPPF of the power cells from 1.43 to 1.24. It was verified, with the recently acquired CMS codes system that the use of fuel assemble GE12 type with cells of low peak of local power and low gadolinia concentration (ININ4) they are suitable for cycles of 18 months at 120% of the original nominal power in the reactors of the CLV. It was decreased the recharge from 148 to 140 when using the ININ4 fuel assemble instead of one conventionally designed. This brings itself appreciable economic savings. However, the above mentioned brought itself an increase of the dispersion in the burnt of definitive fuel discharges. All this when it had already been fulfilled the goals and requirements imposed in the design of the balance cycle. It was necessary to establish a principle with base to the one which it was developed a method that allowed to reduce in efficient form the dispersion of the burnt of discharge and at the same time to already have a low impact in the operational parameters reached. The method was applied in the cycle of balance of 18 months to 120% of the original nominal power using the fuel assemble of low peak of local power being achieved the following results; it was decreased the dispersion of the burnt of definitive discharge from 5.4% to 2.2%, the maximum burnt of discharge was diminished from 50.694 GWD/M to 47.443 GWD/TM, it was increased the minimum burnt of discharge from 41.369 GWD/TM to 42

  16. The thermal-mechanical behavior of fuel pins during power's maneuvering regime at stationary core loading on 2nd unit of KHNPP

    International Nuclear Information System (INIS)

    Ieremenko, M.; Ovdiyenko, Y.; Khalimonchuk, V.

    2007-01-01

    Results of thermal-mechanical behaviour of fuel pins during daily power's maneuvering regime that were proposed for second unit of Khmelnitsky NPP are presented. Calculations were performed for campaign's moments 100 and 160 fpd and for different type of regulation. Additionally calculations were performed for campaign 7. It is the design variant of the campaign and reactor core contains the high burnt fuel. Calculations of macro-core parameters (Kq, Kv) was performed by spatial computer code DYN3D. Calculations of micro-core parameters (fuel pin power) was performed by computer code DERAB. Calculations of thermal-mechanical behaviour of fuel pins was performed by computer code TRANSURANUS (Authors)

  17. Fuel element burnup measurements for the equilibrium LEU silicide RSG GAS (MPR-30) core under a new fuel management strategy

    International Nuclear Information System (INIS)

    Pinem, Surian; Liem, Peng Hong; Sembiring, Tagor Malem; Surbakti, Tukiran

    2016-01-01

    Highlights: • Burnup measurement of fuel elements comprising the new equilibrium LEU silicide core of RSG GAS. • The burnup measurement method is based on a linear relationship between reactivity and burnup. • Burnup verification was conducted using an in-house, in-core fuel management code BATAN-FUEL. • A good agreement between the measured and calculated burnup was confirmed. • The new fuel management strategy was confirmed and validated. - Abstract: After the equilibrium LEU silicide core of RSG GAS was achieved, there was a strong need to validate the new fuel management strategy by measuring burnup of fuel elements comprising the core. Since the regulatory body had a great concern on the safety limit of the silicide fuel element burnup, amongst the 35 burnt fuel elements we selected 22 fuel elements with high burnup classes i.e. from 20 to 53% loss of U-235 (declared values) for the present measurements. The burnup measurement method was based on a linear relationship between reactivity and burnup where the measurements were conducted under subcritical conditions using two fission counters of the reactor startup channel. The measurement results were compared with the declared burnup evaluated by an in-house in-core fuel management code, BATAN-FUEL. A good agreement between the measured burnup values and the calculated ones was found within 8% uncertainties. Possible major sources of differences were identified, i.e. large statistical errors (i.e. low fission counters’ count rates), variation of initial U-235 loading per fuel element and accuracy of control rod indicators. The measured burnup of the 22 fuel elements provided the confirmation of the core burnup distribution planned for the equilibrium LEU silicide core under the new fuel management strategy.

  18. A delayed neutron technique for measuring induced fission rates in fresh and burnt LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K.A., E-mail: kajordan@gmail.co [Paul Scherrer Institut, Laboratory for Reactor Physics and System Behaviour, 5232 Villigen (Switzerland); Perret, G. [Paul Scherrer Institut, Laboratory for Reactor Physics and System Behaviour, 5232 Villigen (Switzerland)

    2011-04-01

    The LIFE-PROTEUS program at the Paul Scherrer Institut is being undertaken to characterize the interfaces between burnt and fresh fuel assemblies in modern LWRs. Techniques are being developed to measure fission rates in burnt fuel following re-irradiation in the zero-power PROTEUS research reactor. One such technique utilizes the measurement of delayed neutrons. To demonstrate the feasibility of the delayed neutron technique, fresh and burnt UO{sub 2} fuel samples were irradiated in different positions in the PROTEUS reactor, and their neutron outputs were recorded shortly after irradiation. Fission rate ratios of the same sample irradiated in two different positions (inter-positional) and of two different samples irradiated in the same position (inter-sample) were derived from the measurements and compared with Monte Carlo predictions. Derivation of fission rate ratios from the delayed neutron measured signal requires correcting the signal for the delayed neutron source properties, the efficiency of the measurement setup, and the time dependency of the signal. In particular, delayed neutron source properties strongly depend on the fissile and fertile isotopes present in the irradiated sample and must be accounted for when deriving inter-sample fission rate ratios. Measured inter-positional fission rate ratios generally agree within 1{sigma} uncertainty (on the order of 1.0%) with the calculation predictions. For a particular irradiation position, however, a bias of about 2% is observed and is currently under investigation. Calculated and measured inter-sample fission rate ratios have C/E values deviating from unity by less than 1% and within 2{sigma} of the statistical uncertainties. Uncertainty arising from delayed neutron data is also assessed, and is found to give an additional 3% uncertainty factor. The measurement data indicate that uncertainty is overestimated.

  19. Application of genetic algorithms to in-core nuclear fuel management optimization

    International Nuclear Information System (INIS)

    Poon, P.W.; Parks, G.T.

    1993-01-01

    The search for an optimal arrangement of fresh and burnt fuel and control material within the core of a PWR represents a formidable optimization problem. The approach of combining the robust optimization capabilities of the Simulated Annealing (SA) algorithm with the computational speed of a Generalized Perturbation Theory (GPT) based evaluation methodology in the code FORMOSA has proved to be very effective. In this paper, we show that the incorporation of another stochastic search technique, a Genetic Algorithm, results in comparable optimization performance on serial computers and offers substantially superior performance on parallel machines. (orig.)

  20. A core concept for the self-consistent nuclear energy system based on the promising future technology

    International Nuclear Information System (INIS)

    Arie, K.; Suzuki, M.; Kawashima, M.; Igashira, M.; Shimizu, A.; Fujii-e, Y.

    1995-01-01

    Feasibility of FP burning while maintaining fuel breeding capability for the Self-Consistent Nuclear Energy System is evaluated through neutron balance and a fast reactor core. It is shown that all radioactive FPs produced by itself can be burnt by a fast reactor while maintaining breeding capability, assuming separation of radioactive FP and stable FP isotopes. Assuming that the recovery system of fuel and FPs to be burnt is based on a pyro-chemical process, the major long-lived FPs of I, Pd, Tc, Sn, Se can be burnt with keeping breeding capability by suitability arranging materials in the fast reactor core. (Author)

  1. PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle

    International Nuclear Information System (INIS)

    Bi, G.; Liu, C.; Si, S.

    2012-01-01

    This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade 233 U-Thorium (U 3 ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade 233 U extracted from burnt PuThOX fuel was used to fabrication of U 3 ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U 3 ThOX mixed core, the well designed U 3 ThOX FAs with 1.94 w/o fissile uranium (mainly 233 U) were located on the periphery of core as a blanket region. U 3 ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U 3 ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U 3 ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U 3 ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U 3 ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared

  2. Post-processor for simulations of the ORIGEN program and calculation of the composition of the activity of a burnt fuel core by a BWR type reactor; Post-procesador para simulaciones del programa ORIGEN y calculo de la composicion de la actividad de un nucleo de combustible quemado por un reactor tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval V, S. [IIE, Av. Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico)]. e-mail: sandoval@iie.org.mx

    2006-07-01

    The composition calculation and the activity of nuclear materials subject to processes of burnt, irradiation and decay periods are of utility for diverse activities inside the nuclear industry, as they are it: the processes design and operations that manage radioactive material, the calculation of the inventory and activity of a core of burnt nuclear fuel, for studies of type Probabilistic Safety Analysis (APS), as well as for regulation processes and licensing of nuclear facilities. ORIGEN is a program for computer that calculates the composition and the activity of nuclear materials subject to periods of burnt, irradiation and decay. ORIGEN generates a great quantity of information whose processing and analysis are laborious, and it requires thoroughness to avoid errors. The automation of the extraction, conditioning and classification of that information is of great utility for the analyst. By means of the use of the post-processor presented in this work it is facilitated, it speeds up and wide the capacity of analysis of results, since diverse consultations with several classification options and filtrate of results can be made. As illustration of the utility of the post-processor, and as an analysis of interest for itself, it is also presented in this work the composition of the activity of a burned core in a BWR type reactor according to the following classification criteria: by type of radioisotope (fission products, activation products and actinides), by specie type (gassy, volatile, semi-volatile and not volatile), by element and by chemical group. The results show that the total activity of the studied core is dominated by the fission products and for the actinides, in proportion four to one, and that the gassy and volatile species conform a fifth part of the total activity of the core. (Author)

  3. Start-up fuel and power flattening of sodium-cooled candle core

    International Nuclear Information System (INIS)

    Takaki, Naoyuki; Sagawa, Yu; Umino, Akitake; Sekimoto, Hiroshi

    2013-01-01

    The hard neutron spectrum and unique power shape of CANDLE enable its distinctive performances such as achieving high burnup more than 30% and exempting necessity of both enrichment and reprocessing. On the other hand, they also cause several challenging problems. One is how the initial fuel can be prepared to start up the first CANDLE reactor because the equilibrium fuel composition that enables stable CANDLE burning is complex both in axial and radial directions. Another prominent problem is high radial power peaking factor that worsens averaged burnup, namely resource utilization factor in once-through mode and shorten the life time of structure materials. The purposes of this study are to solve these two problems. Several ideas for core configurations and startup fuel using single enrichment uranium and iron as a substitute of fission products are studied. As a result, it is found that low enriched uranium is applicable to ignite the core but all concepts examined here exceeded heat limits. Adjustment in enrichment and height of active and burnt zone is opened for future work. Sodium duct assemblies and thorium fuel assemblies loaded in the center region are studied as measures to reduce radial power peaking factor. Replacing 37 fuels by thorium fuel assemblies in the zeroth to third row provides well-balanced performance with flattened radial power distribution. The CANDLE core loaded with natural uranium in the outer and thorium in the center region achieved 35.6% of averaged burnup and 7.0 years of cladding life time owing to mitigated local fast neutron irradiation at the center. Using thorium with natural or depleted uranium in CANDLE reactor is also beneficial to diversifying fission resource and extending available term of fission energy without expansion of needs for enrichment and reprocessing

  4. Reactivity and neutron emission measurements of burnt PWR fuel rod samples in LWR-PROTEUS phase II

    International Nuclear Information System (INIS)

    Murphy, M. F.; Jatuff, F.; Grimm, P.; Seiler, R.; Brogli, R.; Meier, G.; Berger, H. D.; Chawla, R.

    2004-01-01

    Measurements have been made of the reactivity effects and the neutron emission rates of uranium oxide and mixed oxide burnt fuel samples having a wide range of burnup values and coming from a Pressurised Water Reactor (PWR). The reactivity measurements have been made in a PWR lattice moderated in turn with: water, a water and heavy water mixture, and water containing boron. An interesting relationship has been found between the neutron emission rate and the measured reactivity. (authors)

  5. Guide for the estimation of the α and β coefficients in the Average enrichment equation as burnt function by fuel type

    International Nuclear Information System (INIS)

    Montes T, J.L.; Cortes C, C.C.

    1992-08-01

    The objective of the report is to determine manually or by means of a calculation sheet, the coefficients α and β of the average enrichment equation as function of the fuel burnt (B) using the Lineal Reactivity Pattern, with information generated by the RECORD code of the FMS package. (Author)

  6. Analysis of a homogenous and heterogeneous stylized half core of a CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    EL-Khawlani, Afrah [Physics Department, Sana' a (Yemen); Aziz, Moustafa [Nuclear and radiological regulatory authority, Cairo (Egypt); Ismail, Mahmud Yehia; Ellithi, Ali Yehia [Cairo Univ. (Egypt). Faculty of Science

    2015-03-15

    The MCNPX (Monte Carlo N-Particle Transport Code System) code has been used for modeling and simulation of a half core of CANDU (CANada Deuterium-Uranium) reactor, both homogenous and heterogeneous model for the reactor core are designed. The fuel is burnt in normal operation conditions of CANDU reactors. Natural uranium fuel is used in the model. The multiplication factor for homogeneous and heterogeneous reactor core is calculated and compared during fuel burnup. The concentration of both uranium and plutonium isotopes are analysed in the model. The flux and power distributions through channels are calculated.

  7. Freshly induced short-lived gamma-ray activity as a measure of fission rates in lightly re-irradiated spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kroehnert, H., E-mail: hanna.kroehnert@psi.c [Paul Scherrer Institut (PSI), OPRA-E07, CH-5232 Villigen (Switzerland); Perret, G., E-mail: gregory.perret@psi.c [Paul Scherrer Institut (PSI), OPRA-E07, CH-5232 Villigen (Switzerland); Murphy, M.F., E-mail: mike.murphy@psi.c [Paul Scherrer Institut (PSI), OPRA-E07, CH-5232 Villigen (Switzerland); Chawla, R., E-mail: rakesh.chawla@epfl.c [Paul Scherrer Institut (PSI), OPRA-E07, CH-5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2010-12-01

    A new measurement technique has been developed to determine fission rates in burnt fuel, following re-irradiation in a zero-power research reactor. The development has been made in the frame of the LIFE-PROTEUS program at the Paul Scherrer Institute, which aims at characterizing the interfaces between fresh and highly burnt fuel assemblies in modern LWRs. To discriminate against the high intrinsic gamma-ray activity of the burnt fuel, the proposed measurement technique uses high-energy gamma-rays, above 2000 keV, emitted by short-lived fission products freshly produced in the fuel. To demonstrate the feasibility of this technique, a fresh UO{sub 2} sample and a 36 GWd/t burnt UO{sub 2} sample were irradiated in the PROTEUS reactor and their gamma-ray activities were recorded directly after irradiation. For both fresh and the burnt fuel samples, relative fission rates were derived for different core positions, based on the short-lived {sup 142}La (2542 keV), {sup 89}Rb (2570 keV), {sup 138}Cs (2640 keV) and {sup 95}Y (3576 keV) gamma-ray lines. Uncertainties on the inter-position fission rate ratios were mainly due to the uncertainties on the net-area of the gamma-ray peaks and were about 1-3% for the fresh sample, and 3-6% for the burnt one. Thus, for the first time, it has been shown that the short-lived gamma-ray activity, induced in burnt fuel by irradiation in a zero-power reactor, can be used as a quantitative measure of the fission rate. For both fresh and burnt fuel, the measured results agreed, within the uncertainties, with Monte Carlo (MCNPX) predictions.

  8. In-Core Fuel Managements for PWRs: Investigation on solution for optimal utilization of PWR fuel through the use of fuel assemblies with differently enriched 235U fuel pins

    International Nuclear Information System (INIS)

    Caprioli, Sara

    2004-04-01

    not fully burnt in the preceding cycles. In fact, the shorter cycle lengths of the transition cycles indicate that some fuel bundles are only partially burnt. These bundles add an excess of reactivity at the beginning of cycle 21. The excess of reactivity with which cycle 21 is loaded allows for a higher cycle burnup. One of the most relevant results arising from the entire work is the fact that the fuel bundles optimization in terms of the internal peaking factor plays a central role. In fact, the achievement of a lower and flatter internal peaking factor is much more significant than the acquired deviations and adjustments in the bundle reactivity. As seen in the cycle simulations, fresh fuel bundles with a higher internal peaking factor than in the respective standard bundles increase the core peaking factors. At the assembly level, the differences between assemblies with a central highly enriched region and a peripheric low enriched region, and assemblies with reversed configuration are not significant. At the core level, the relative position of these assembly differently configurated could play a significant role. In fact, if the radial neutron leakage is to be reduced from the periphery of the core, the low enriched fuel bundle regions should be placed towards the periphery of the core. In this case, the multiplication factor would play an important role in the core economy. However, it is always profitable to have a low internal peaking factor. The fact that cycle 21 carries all the desired features is certainly a promising result. Nevertheless, further simulation should be performed until equilibrium is achieved, that is, until the cycle parameters converge. Besides, one could investigate different geometries. The results could be more pronounced if variations in the average enrichment level of the bundle were allowed. Finally, an accurate safety and risk analysis, and economical calculations for the fuel types and the cores should be performed

  9. In-Core Fuel Managements for PWRs: Investigation on solution for optimal utilization of PWR fuel through the use of fuel assemblies with differently enriched {sup 235}U fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Caprioli, Sara

    2004-04-01

    bundles which are not fully burnt in the preceding cycles. In fact, the shorter cycle lengths of the transition cycles indicate that some fuel bundles are only partially burnt. These bundles add an excess of reactivity at the beginning of cycle 21. The excess of reactivity with which cycle 21 is loaded allows for a higher cycle burnup. One of the most relevant results arising from the entire work is the fact that the fuel bundles optimization in terms of the internal peaking factor plays a central role. In fact, the achievement of a lower and flatter internal peaking factor is much more significant than the acquired deviations and adjustments in the bundle reactivity. As seen in the cycle simulations, fresh fuel bundles with a higher internal peaking factor than in the respective standard bundles increase the core peaking factors. [abstract truncated

  10. Nuclear-fuel-cycle education: Module 5. In-core fuel management

    International Nuclear Information System (INIS)

    Levine, S.H.

    1980-07-01

    The purpose of this project was to develop a series of educational modules for use in nuclear-fuel-cycle education. These modules are designed for use in a traditional classroom setting by lectures or in a self-paced, personalized system of instruction. This module on in-core fuel management contains information on computational methods and theory; in-core fuel management using the Virginia Polytechnic Institute and State University computer modules; pressurized water reactor in-core fuel management; boiling water reactor in-core fuel management; and in-core fuel management for gas-cooled and fast reactors

  11. Fission rates measured using high-energy gamma-rays from short half-life fission products in fresh and spent nuclear fuel

    International Nuclear Information System (INIS)

    Kroehnert, H.

    2011-02-01

    In recent years, higher discharge burn-ups and initial fuel enrichments have led to more and more heterogeneous core configurations in light water reactors (LWRs), especially at the beginning of cycle when fresh fuel assemblies are loaded next to highly burnt ones. As this trend is expected to continue in the future, the Paul Scherrer Institute has, in collaboration with the Swiss Association of Nuclear Utilities, swissnuclear, launched the experimental programme LIFE(at)PROTEUS. The LIFE(at)PROTEUS programme aims to better characterise interfaces between burnt and fresh UO 2 fuel assemblies in modern LWRs. Thereby, a novel experimental database is to be made available for enabling the validation of neutronics calculations of strongly heterogeneous LWR core configurations. During the programme, mixed fresh and highly burnt UO 2 fuel lattices will be investigated in the zero-power research reactor PROTEUS. One of the main types of investigations will be to irradiate the fuel in PROTEUS and measure the resulting fission rate distributions across the interface between fresh and burnt fuel zones. The measurement of fission rates in burnt fuel re-irradiated in a zero-power reactor requires, however, the development of new experimental techniques which are able to discriminate against the high intrinsic activity of the fuel. The principal goal of the present research work has been to develop such a new measurement technique. The selected approach is based on the detection of high-energy gamma-ray lines above the intrinsic background (i.e. above 2200 keV), which are emitted by short-lived fission products freshly created in the fuel. The fission products 88 Kr, 142 La, 138 Cs, 84 Br, 89 Rb, 95 Y, 90m Rb and 90 Rb, with half-lives between 2.6 min and 2.8 h, have been identified as potential candidates. During the present research work, the gamma-ray activity of short-lived fission products has, for the first time, been measured and quantitatively evaluated for re

  12. Layout Guide for Burnt and Un-burnt Tropical Forest: The Diversity of Forest Plants and Insetcs for Sustainable Environmental

    Science.gov (United States)

    Watiniasih, N. L.; Tambunan, J.; Merdana, I. M.; Antara, I. N. G.

    2018-04-01

    Forest fire is a common phenomenon in tropical forest likes in Indonesia. Beside the effect of soaring heat and lack of rain during dry season due to the tropical climate, farming system is also reported as one reason of forest fire in Indonesia. People of surrounding areas and neighbouring countries are suffering from the effect of forest fire. Plants and animals are the most suffer from this occurrence that they cannot escape. This study aimed to investigate the effect of previously burnt and un-burnt tropical forest in Borneo Island on the plant and insect diversity of the tropical forest. The result of the study found that the plants in previously burnt forest area was dominated by one species, while higher and more stable plant diversity was found in un-burnt forest. Although the number of individual insects was higher in previously burnt tropical forest, but the insects was more diverse in un-burnt tropical forest. The alteration of environmental conditions in previously burnt and un-burnt forest indicate that the energy held in natural forest support higher number and more stable insects than previously burnt forest.

  13. The verification of PWR-fuel code for PWR in-core fuel management

    International Nuclear Information System (INIS)

    Surian Pinem; Tagor M Sembiring; Tukiran

    2015-01-01

    In-core fuel management for PWR is not easy because of the number of fuel assemblies in the core as much as 192 assemblies so many possibilities for placement of the fuel in the core. Configuration of fuel assemblies in the core must be precise and accurate so that the reactor operates safely and economically. It is necessary for verification of PWR-FUEL code that will be used in-core fuel management for PWR. PWR-FUEL code based on neutron transport theory and solved with the approach of multi-dimensional nodal diffusion method many groups and diffusion finite difference method (FDM). The goal is to check whether the program works fine, especially for the design and in-core fuel management for PWR. Verification is done with equilibrium core search model at three conditions that boron free, 1000 ppm boron concentration and critical boron concentration. The result of the average burn up fuel assemblies distribution and power distribution at BOC and EOC showed a consistent trend where the fuel with high power at BOC will produce a high burn up in the EOC. On the core without boron is obtained a high multiplication factor because absence of boron in the core and the effect of fission products on the core around 3.8 %. Reactivity effect at 1000 ppm boron solution of BOC and EOC is 6.44 % and 1.703 % respectively. Distribution neutron flux and power density using NODAL and FDM methods have the same result. The results show that the verification PWR-FUEL code work properly, especially for core design and in-core fuel management for PWR. (author)

  14. Fission rates measured using high-energy gamma-rays from short half-life fission products in fresh and spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kroehnert, H.

    2011-02-15

    In recent years, higher discharge burn-ups and initial fuel enrichments have led to more and more heterogeneous core configurations in light water reactors (LWRs), especially at the beginning of cycle when fresh fuel assemblies are loaded next to highly burnt ones. As this trend is expected to continue in the future, the Paul Scherrer Institute has, in collaboration with the Swiss Association of Nuclear Utilities, swissnuclear, launched the experimental programme LIFE(at)PROTEUS. The LIFE(at)PROTEUS programme aims to better characterise interfaces between burnt and fresh UO{sub 2} fuel assemblies in modern LWRs. Thereby, a novel experimental database is to be made available for enabling the validation of neutronics calculations of strongly heterogeneous LWR core configurations. During the programme, mixed fresh and highly burnt UO{sub 2} fuel lattices will be investigated in the zero-power research reactor PROTEUS. One of the main types of investigations will be to irradiate the fuel in PROTEUS and measure the resulting fission rate distributions across the interface between fresh and burnt fuel zones. The measurement of fission rates in burnt fuel re-irradiated in a zero-power reactor requires, however, the development of new experimental techniques which are able to discriminate against the high intrinsic activity of the fuel. The principal goal of the present research work has been to develop such a new measurement technique. The selected approach is based on the detection of high-energy gamma-ray lines above the intrinsic background (i.e. above 2200 keV), which are emitted by short-lived fission products freshly created in the fuel. The fission products {sup 88}Kr, {sup 142}La, {sup 138}Cs, {sup 84}Br, {sup 89}Rb, {sup 95}Y, {sup 90m}Rb and {sup 90}Rb, with half-lives between 2.6 min and 2.8 h, have been identified as potential candidates. During the present research work, the gamma-ray activity of short-lived fission products has, for the first time, been

  15. Solution of a benchmark set problems for BWR and PWR reactors with UO2 and MOX fuels using CASMO-4

    International Nuclear Information System (INIS)

    Martinez F, M.A.; Valle G, E. del; Alonso V, G.

    2007-01-01

    In this work some of the results for a group of benchmark problems of light water reactors that allow to study the physics of the fuels of these reactors are presented. These benchmark problems were proposed by Akio Yamamoto and collaborators in 2002 and they include two fuel types; uranium dioxide (UO 2 ) and mixed oxides (MOX). The range of problems that its cover embraces three different configurations: unitary cell for a fuel bar, fuel assemble of PWR and fuel assemble of BWR what allows to carry out an understanding analysis of the problems related with the fuel performance of new generation in light water reactors with high burnt. Also these benchmark problems help to understand the fuel administration in core of a BWR like of a PWR. The calculations were carried out with CMS (of their initials in English Core Management Software), particularly with CASMO-4 that is a code designed to carry out analysis of fuels burnt of fuel bars cells as well as fuel assemblies as much for PWR as for BWR and that it is part in turn of the CMS code. (Author)

  16. Fuel and core design study of the sodium-cooled fast reactors. Studies on metallic fuel cores in the JFY2002

    International Nuclear Information System (INIS)

    Sugino, Kazuteru; Mizuno, Tomoyasu

    2003-06-01

    Based on the results obtained in the former feasibility study, the metallic fueled core of ordinary-type, that is, 2-region homogeneous core, has been established aiming at the improvement in the core performance, and subsequent comparison has been performed with the mixed oxide fueled core. Further, the attractive concept of the metallic fueled core of high outlet temperature has been constructed which has good nuclear features as a metallic fueled core and has identical outlet temperature to mixed oxide fuelled core. Following items have been found as a result of the investigation on the ordinary-type core. The metallic fueled core whose maximum fast neutron fluence (En>0.1MeV) is set identical (5x10 23 n/cm 2 ) to the mixed oxide fueled cores with core discharge burnup 150GWd/t has sufficient core performances as a metallic fueled core, e.g. higher breeding ratio and longer operation period compared with mixed oxide fueled cores, but the core discharge burnup is limited up to 100GWd/t. However effective discharge burnup including the contribution of the blanket region is comparative to mixed oxide cores under the same breeding ratio condition. In order to enlarge the core discharge burnup to 150GWd/t keeping the core performance identical to above mentioned core's, the irradiation deformation of structural material should be reduced to that of mixed oxide fueled cores. Further the maximum fast neutron fluence reaches to 7-8x10 23 n/cm 2 (En>0.1MeV). The investigations on the core of high outlet temperature have clarified following items. Even in the change of core regions by pin-diameter form 3-region to 2-region and in the limited maximum fuel pin diameter 8.5 mm, realization of the identical outlet/inlet temperatures to the mixed oxide cores (550/395degC) is feasible under the criteria of the maximum temperature 650degC at the inner surface of the cladding. The constructed core accommodates the targets of breeding ratio from about 1.0 to 1.2 only by adjusting

  17. Conceptual design study of LMFBR core with carbide fuel

    International Nuclear Information System (INIS)

    Tezuka, H.; Hojuyama, T.; Osada, H.; Ishii, T.; Hattori, S.; Nishimura, T.

    1987-01-01

    Carbide fuel is a hopeful candidate for demonstration FBR(DFBR) fuel from the plant cost reduction point of view. High thermal conductivity and high heavy metal content of carbide fuel lead to high linear heat rate and high breeding ratio. We have analyzed carbide fuel core characteristics and have clarified the concept of carbide fuel core. By survey calculation, we have obtained a correlation map between core parameters and core characteristics. From the map, we have selected a high efficiency core whose features are better than those of an oxide core, and have obtained reactivity coefficients. The core volume and the reactor fuel inventory are approximately 20% smaller, and the burn-up reactivity loss is 50% smaller compared with the oxide fuel core. These results will reduce the capital cost. The core reactivity coefficients are similar to the conventional oxide DFBR's. Therefore the carbide fuel core is regarded as safe as the oxide core. Except neutron fluence, the carbide fuel core has better nuclear features than the oxide core

  18. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Yuchi, Yoko; Aoyama, Motoo; Haikawa, Katsumasa; Yamanaka, Akihiro; Koyama, Jun-ichi.

    1996-01-01

    In a fuel assembly of a BWR type reactor, a region substantially containing burnable poison is divided into an upper region and a lower region having different average concentrations of burnable poison along a transverse cross section perpendicular to the axial direction. The ratio of burnable poison contents of both regions is determined to not more than 80%, and the average concentration of the burnable poison in the lower region is determined to not less than 9% by weight. An infinite multiplication factor at an initial stage of the burning of the fuel assembly is controlled effectively by the burnable poisons. Namely, the ratio of the axial power can be controlled by the distribution of the enrichment degree of uranium fuels and the distribution of the burnable poison concentration in the axial direction. Since the average enrichment degree of the reactor core has to be increased in order to provide an initially loaded reactor core at high burnup degree. Distortion of the power distribution in the axial direction of the reactor core to which fuel assemblies at high enrichment degree are loaded is flattened to improve thermal margin, to extend continuous operation period and increase a burnup degree upon take-out thereby improving fuel economy without worsening the reactor core characteristics of the initially loaded reactor core. (N.H.)

  19. In-core fuel management activities in China

    International Nuclear Information System (INIS)

    Ruan Keqiang; Chen Renji; Hu Chuanwen

    1990-01-01

    The development of nuclear power in China has reached such a stage that PWR in-core fuel management becomes an urgent problem. At present the main effort is concentrated on solving the Qinshan nuclear power plant and Daya Bay nuclear power plant fuel management problems. For the Qinshan PWR (300 MWe) two packages of in-core fuel management code were developed, one with simplified nodal diffusion method and the other uses advanced Green's function nodal method. Both were used in the PWR core design. With the help of the two code packages first two cycles of the Qinshan PWR core burn-up were calculated. Besides, several research works are under way in the following areas: improvement of the nodal diffusion method and other coarse mesh method in terms of computing speed and accuracy; backward diffusion technique for fuel management application; optimization technique in the fuel loading pattern searching. As for the Daya Bay PWR plant (twin 900 MWe unit), the problem about using what kind of code package for in-core fuel management is still under discussion. In principle the above mentioned code packages are also applicable to it. Besides PWR, in-core fuel management research works are also under way for research reactors, for example, heavy water research reactor and high flux research reactor in some institutes in China. China also takes active participation in international in-core fuel management activities. (author). 19 refs

  20. Evaluation of In-Core Fuel Management for the Transition Cores of RSG-GAS Reactor to Full-Silicide Core

    International Nuclear Information System (INIS)

    S, Tukiran; MS, Tagor; P, Surian

    2003-01-01

    The core conversion of RSG-GAS reactor from oxide to silicide core with meat density of 2.96 gU/cc has been done. The core-of RSG-GAS reactor has been operated full core of silicide fuels which is started with the mixed core of oxide-silicide start from core 36. Based on previous work, the calculated core parameter for the cores were obtained and it is needed 9 transition cores (core 36 - 44) to achieve a full-silicide core (core 45). The objective of this work is to acquire the effect of the increment of the number of silicide fuel on the core parameters. Conversion core was achieved by transition cores mixed oxide-silicide fuels. Each transition core is calculated and measured core parameter such as, excess reactivity and shutdown margin. Calculation done by Batan-EQUIL-2D code and measurement of the core parameters was carried out using the method of compensation of couple control rods. The results of calculation and experiment shows that the excess reactivity trends lower with the increment of the number of silicide fuel in the core. However, the shutdown margin is not change with the increment of the number of silicide fuel. Therefore, the transition cores can be operated safely to a full-silicide core

  1. Multitemporal burnt area mapping using Landsat 8: merging multiple burnt area indices to highlight burnt areas

    CSIR Research Space (South Africa)

    Vhengani, L

    2015-07-01

    Full Text Available gases. These, makes the study of wildfires important. The study of fires is in three phases. Firstly it is forecasting, which uses Fire Danger Index (FDI), secondly it is the mapping of active fires and thirdly, the mapping of burnt areas to access...

  2. Design study on metal fuel FBR cores

    International Nuclear Information System (INIS)

    Yokoo, T.; Tanaka, Y.; Ogata, T.

    1991-01-01

    A design approach for metal fuel FBR core to maintain fuel integrity during transient events by limiting eutectic/liquid phase formation is proposed based on the current status of metallic fuel development. Its impact as the limitation on the core outlet temperature is assessed through its application to two of CRIEPI's core concepts, high linear power 1000 MWe homogeneous design and medium linear power 300 MWe radially heterogeneous design. SESAME/SALT code is used in this study to analyze steady state and transient fuel behavior. SE2-FA code is developed based on SUPERENERGY-2 and used to analyze core thermal-hydraulics with uncertainties. As the result, the core outlet temperatures of both designs are found to be limited to ≤500degC if it is required to prevent eutectic/liquid phase formation during operational transients in order to guarantee the fuel integrity. Additional assessment is made assuming an advanced limiting condition that allows small liquid phase formation based on the liquid phase penetration rate derived from existing experimental results. The result indicates possibility of raising core outlet temperature to ∼ 530degC. Also, it is found that core design technology improvements such as hot spot factors reduction can contribute to the core outlet temperature extension by 10 ∼ 20degC. (author)

  3. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Domoto, Noboru; Masuda, Hiroyuki

    1989-01-01

    In a nuclear fuel assembly loaded with a plurality of fuel rods, the inside of a fuel rod disposed at a high neutron flux region is divided into an inner region and an outer region, and more burnable poisons are mixed in the inner region than in the outer region. Alternatively, the central portion of a pellet disposed in a high neutron flux region is made hollow, in which burnable poisons are charged. This can prevent neutron infinite multiplication factor from decreasing extremely at the initial burning stage. Further, the burnable poisons are not rapidly burnt completely and local peaking coefficient can be controlled. Accordingly, in a case of suppressing a predetermined excess reactivity by using a fuel rod incorporated with the burnable poison, the fuel economy can be improved more and the reactor core controllability can also be improved as compared with the usual case. (T.M.)

  4. Study on HANARO core conversion using U-Mo fuel

    International Nuclear Information System (INIS)

    Lee, K.H.; Lee, C.S.; Seo, C.G.; Park, S.J.; Kim, H.; Kim, C.K.

    2002-01-01

    Two types of fuel rods with different fuel meat diameter and uranium density are considered for HANARO core conversion with high density U-Mo fuel. Arranging standard fuels of 5.0 g U/cc and 6.35 mm in diameter at the inner ring of an assembly and reduced fuels of 4.3 g U/cc and 5.49 mm in diameter at the outer ring of an assembly flattens the assembly power distribution and avoids the increase of linear heat generation rate due to using higher uranium density and less number of fuel rods. The maximum linear heat generation rate is similar with the current reference core and four fuel sites at the outer core in the reflector tank is converted to the irradiation sites to suit more demand on fuel tests and radioisotope production at outer core sites. This new core has 32% longer fuel cycle than the current reference core. (author)

  5. The ORR Whole-Core LEU Fuel Demonstration

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Snelgrove, J.L.

    1990-01-01

    The ORR Whole-Core LEU Fuel Demonstration, conducted as part of the US Reduced Enrichment Research and Test Reactor Program, has been successfully completed. Using commercially-fabricated U 3 Si 2 -Al 20%-enriched fuel elements (4.8 g U/cc) and fuel followers (3.5 g U/cc), the 30-MW Oak Ridge Research Reactor was safely converted from an all-HEU core, through a series of HEU/LEU mixed transition cores, to an all-LEU core. There were no fuel element failures and average discharge burnups were measured to be as high as 50% for the standard elements and 75% for the fuel followers. Experimental results for burnup-dependent critical configurations, cycle-averaged fuel element powers, and fuel-element-averaged 235 U burnups validated predictions based on three-dimensional depletion calculations. Calculated values for plutonium production and isotopic mass ratios as functions of 235 U burnup support the corresponding measured quantities. In general, calculations for reaction rate distributions, control rod worths, prompt neutron decay constants, and isothermal temperature coefficients were found to agree with corresponding measured values. Experimentally determined critical configurations for fresh HEU and LEU cores radially reflected with water and with beryllium are well-predicted by both Monte Carlo and diffusion calculations. 17 refs

  6. ETRR-2 in-core fuel management strategy

    International Nuclear Information System (INIS)

    Khalil, M.Y.; Amin, Esmat; Belal, M.G.

    2005-01-01

    The Egypt second research reactor has many irradiation channels, beam tubes and irradiation boxes, inside and outside the reactor core. The core reload configuration has great effect on the core performance and fluxes in the irradiation channels. This paper deals with the design and safety analysis that were performed for the determination of ETRR2 in-core fuel management strategy which fulfills neutronic design criteria, safety reactor operation, utility optimization and achieve the overall fuel management criteria. The core is divided into 8 zones, in order to obtain the minimum and adjacent fuel movement scheme that is recommended from the operational point of view. Then a search for the initial core using backward iteration, one get different initial cores, one initial core would assume the equilibrium core after 250 full power days of operation, while the other assumes equilibrium after 199 full power days, and shows a better performance of power peaking factor. (author)

  7. In-core fuel management benchmarks for PHWRs

    International Nuclear Information System (INIS)

    1996-06-01

    Under its in-core fuel management activities, the IAEA set up two co-ordinated research programmes (CRPs) on complete in-core fuel management code packages. At a consultant meeting in November 1988 the outline of the CRP on in-core fuel management benchmars for PHWRs was prepared, three benchmarks were specified and the corresponding parameters were defined. At the first research co-ordination meeting in December 1990, seven more benchmarks were specified. The objective of this TECDOC is to provide reference cases for the verification of code packages used for reactor physics and fuel management of PHWRs. 91 refs, figs, tabs

  8. The EFR project: core and fuel

    International Nuclear Information System (INIS)

    Francillon, E.; Barnes, D.W.; Pay, A.; Wehmann, U.

    1991-01-01

    The draft studies on EFR has beginning, in March 1988. The first part of the summary draft has consisted in the core and fuel domains to harmonize the different approaches used in national projects (SPX2-SNR2-CDFR). Rapidly, the core First Consistent Design has been defined with references to the anterior conceptions. Since this definition, studies have been engaged on the management (mean burnup amelioration) and on the conception (breeding gain, sodium void coefficient reduction). After a presentation of the basis options and on the general conception of the fuel assemblies we make a point on the core and the interfaces with the fuel cycle [fr

  9. Core design and fuel management studies

    International Nuclear Information System (INIS)

    Min, Byung Joo; Chan, P.

    1997-06-01

    The design target for the CANDU 9 requires a 20% increase in electrical power output from an existing 480-channel CANDU core. Assuming a net electrical output of 861 MW(e) for a natural uranium fuelled Bruce-B/Darlington reactor in a warm water site, the net electrical output of the reference CANDU 9 reactor would be 1033 MW(e). This report documents the result of the physics studies for the design of the CANDU 9 480/SEU core. The results of the core design and fuel management studies of the CANDU 9 480/SEU reactor indicated that up to 1033 MW(e) output can be achieved in a 480-channel CANDU core by using SEU core can easily be maintained indefinitely using an automated refuelling program. Fuel performance evaluation based on the data of the 500 FPDs refuelling simulation concluded that SEU fuel failure is not expected. (author). 2 tabs., 38 figs., 5 refs

  10. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Aoyama, Motoo; Koyama, Jun-ichi; Uchikawa, Sadao; Bessho, Yasunori; Nakajima, Akiyoshi; Maruyama, Hiromi; Ozawa, Michihiro; Nakamura, Mitsuya.

    1990-01-01

    The present invention concerns fuel assemblies charged in a BWR type reactor and the reactor core. The fuel assembly comprises fuel rods containing burnable poisons and fuel rods not containing burnable poisons. Both of the highest and the lowest gadolinia concentrations of the fuel rods containing gadolinia as burnable poisons are present in the lower region of the fuel assembly. This can increase the spectral shift effect without increasing the maximum linear power density. (I.N.)

  11. A study on 80 fuel assemblies core for HFETR

    International Nuclear Information System (INIS)

    Sun Shouhua; Wu Yinghua; Bu Yongxi; Liu Shuiqing; Duan Tianyuan; Zhang Liangwan; Lin Jisen

    1996-12-01

    The performance of 80 and 60 fuel assemblies cores for High Flux Engineering Test Reactor (HFETR) has been compared with theoretical analysis and operating results. These results show that the core performance of 80 fuel assemblies is the same as that of 60 fuel assemblies in the following aspects: the permission power of core, the irradiation test of materials, the transmutation doping of single crystalline silicon, the production of Mo-Tc isotopes, etc. The core of 80 fuel assemblies is more convenient in operation after 500 kw test loop installed, and in greatly raising the production of 60 Co source with high specific radioactivity and the usage of fuel. As compared to the production of 60 Co source of 60 fuel assemblies core, the benefit of 80 fuel assemblies core can increase more than 3.8 millions RMB yuan per year. (2 refs., 2 tabs.)

  12. Fuel management at the Petten high flux reactor

    International Nuclear Information System (INIS)

    Thijssen, P.J.M.

    1999-01-01

    Several years ago the shipment of spent fuel of the High Flux Reactor (HFR) at Petten has come to a standstill resulting in an ever growing stock of fuel elements that are labelled 'fully burnt up'. Examination of those elements showed that a reasonably number of them have a relatively high 235 U mass left. A reactor physics analysis showed that the use of such elements in the peripheral core zone allows the loading of four instead of five fresh fuel elements in many cycle cores. For the assessment of safety and performance parameters of HFR cores a new calculational tool is being developed. It is based on AEA Technology's Reactor physics code suite Winfrith Improved Multigroup Scheme (WIMS). NRG produced pre- and post-processing facilities to feed input data into WIMS's 2D transport code CACTUS and to extract relevant parameters from the output. The processing facilities can be used for many different types of application. (author)

  13. [King Injo's disease and burnt needle therapy].

    Science.gov (United States)

    Kim, In-Sook

    2004-12-01

    This paper investigates an interrelationship between burnt needle therapy and King Injo's disease. From 1633 (Year 11 in King Injo's reign) to May 5, 1649 (Year 27 in King Injo's reign), right before his death, King Injo was treated with burnt needles by Yi Hyeongik, an acupuncturist when the king had health problems. This study arises from two questions: why was King Injo often treated with burnt needles? and what effect did burnt needles have?Burnt needle therapy is a combined form of acupuncture and moxibustion. Yi Hyeongik was famous for eradicating pathogenic factors. He was appointed as a doctor in the Royal Hospital. The medical definition for pathogenic factors is that they are disease-causing factors. Understanding the pathogenic factor for King Injo's disease could make it possible to find the interrelationship between burnt needles and the king's disease. In the Joseon ear, the prevalent belief about diseases was that diseases could be caused by homeopathic magic. Some people thought homeopathic magic caused King Injo's disease. The actual reasons for King Injo's disease were the participation in the excessive rites of Queen Mother Inmok's funeral and the constant oppression from the Ching Dynasty after disgraceful defeat in the war. When King Injo started to be sick, homeopathic magic cases were found in the royal palace. The king's incurable disease was believed to have happened as a result of homeopathic magic. King Injo's suspicion toward Princess Jeongmyeong derived from her mother, Queen Mother Inmok. Moral justification for King Injo's coup was Gwanghaegun or Prince Gwanghae's immoral conduct toward Queen Mothe Inmok. After he was installed, King Injo obeyed the Queen Mother and showed her every attention. Meanwhile, he treated Princess Jeongmyeong with respect, maximized the moral justification for the coup, and solidified the royal authority. However, constant rebellions and treasons threatened King Injo. The king suspected that Queen Mother

  14. A Minimum Shuffle Core Design Strategy for ESBWR

    International Nuclear Information System (INIS)

    Karve, A.A.; Fawcett, R.M.

    2008-01-01

    The Economic Simplified Boiling Water Reactor (ESBWR) is GEH's next evolution of advanced BWR technology. There are 1132 fuel bundles in the core and the thermal power is 4500 MWt. Similar to conventional plants there is an outage after a specified period of operation, when the plant shuts down. During the outage a specified fraction of fuel bundles are discharged from the core, it is loaded with the same fraction of fresh fuel, and fuel is shuffled to obtain an optimum core design that meets the goals for a successful operation of the next cycle. The discharge, load, and the associated shuffles are time-consuming and expensive tasks that impact the overall outage schedule and costs. Therefore, there is an incentive to keep maneuvers to a minimum and to perform them more efficiently. The benefits for a large core, such as the ESBWR with 1132 fuel bundles, are escalated. This study focuses on a core reload design strategy to minimize the total number of shuffles during an outage. A traditional equilibrium cycle is used as a reference basis, which sets the reference number of shuffles. In the minimum shuffle core design however, a set of two equilibrium cycles (N and N+1, referred to as a 'bi- equilibrium' cycle) is envisioned where the fresh fuel of cycle N (that becomes the once-burnt fuel of cycle N+1) ideally does not move in the two cycles. The cost of fuel efficiency is determined for obtaining such a core loading by comparing it to the traditional equilibrium cycle. There are several additional degrees of freedom when designing a bi-equilibrium cycle that could be utilized, and the potential benefits of these flexibilities are assessed. In summary, the feasibility of a minimum shuffle fuel cycle and core design for an ESBWR is studied. The cost of fuel efficiency is assessed in comparison to the traditional design. (authors)

  15. Whole-core LEU fuel demonstration in the ORR

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Bretscher, M.M.; Cornella, R.J.; Hobbs, R.W.

    1985-01-01

    A whole-core demonstration of LEU fuel in the ORR is expected to begin during November 1985. Fuel elements will contain U 3 Si 2 at 4.8 Mg U/m 3 and shim rod fuel followers will contain U 3 Si 2 at 3.5 Mg U/m 3 . Fuel fabrication is underway at B and W, CERCA, and NUKEM, with shipments scheduled to commence in October. The primary objectives of the demonstration are to provide data for validation of LEU and mixed-core fuel cycle calculations and to provide a large-scale demonstration of the acceptable performance of production-line U 3 Si 2 fuel elements. It is planned to approach the full LEU core through a series of mixed cores. Measurements to be made include flux distribution, reactivity swing, control rod worths, cycle length, fuel discharge burnup, gamma heating rates, β/sub eff/l, and isothermal temperature coefficient. Measurements will also be made on fresh LEU and fresh HEU critical configurations. Preliminary safety approval has been received and the final safety assessment is being reviewed

  16. The whole-core LEU silicide fuel demonstration in the JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Aso, Tomokazu; Akashi, Kazutomo; Nagao, Yoshiharu [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)] [and others

    1997-08-01

    The JMTR was fully converted to LEU silicide (U{sub 3}Si{sub 2}) fuel with cadmium wires as burnable absorber in January, 1994. The reduced enrichment program for the JMTR was initiated in 1979, and the conversion to MEU (enrichment ; 45%) aluminide fuel was carried out in 1986 as the first step of the program. The final goal of the program was terminated by the present LEU conversion. This paper describes the results of core physics measurement through the conversion phase from MEU fuel core to LEU fuel core. Measured excess reactivities of the LEU fuel cores are mostly in good agreement with predicted values. Reactivity effect and burnup of cadmium wires, therefore, were proved to be well predicted. Control rod worth in the LEU fuel core is mostly less than that in the MEU fuel core. Shutdown margin was verified to be within the safety limit. There is no significant difference in temperature coefficient of reactivity between the MEU and LEU fuel cores. These results verified that the JMTR was successfully and safely converted to LEU fuel. Extension of the operating cycle period was achieved and reduction of spend fuel elements is expected by using the fuel with high uranium density.

  17. A design study of high breeding ratio sodium cooled metal fuel core without blanket fuels

    International Nuclear Information System (INIS)

    Kobayashi, Noboru; Ogawa, Takashi; Ohki, Shigeo; Mizuno, Tomoyasu; Ogata, Takanari

    2009-01-01

    The metal fuel core is superior to the mixed oxide fuel core because of its high breeding ratio and compact core size resulting from hard neutron spectrum and high heavy metal densities. Utilizing these characteristics, a conceptual design for a high breeding ratio was performed without blanket fuels. The design conditions were set so a sodium void worth of less than 8 $, a core height of less than 150 cm, the maximum cladding temperature of 650degC, and the maximum fuel pin bundle pressure drop of 0.4 MPa. The breeding ratio of the resultant core was 1.34 with 6wt% zirconium content fuel. Applying 3wt% zirconium content fuel enhanced the breeding ratio up to 1.40. (author)

  18. The whole-core LEU fuel demonstration in the ORR

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Bretscher, M.M.; Cornella, R.J.; Hobbs, R.W.

    1985-01-01

    A whole-core demonstration of LEU fuel in the ORR is expected to begin during November 1985. Fuel elements will contain U 3 Si 2 at 4.8 Mg U/m 3 and shim rod fuel followers will contain U 3 Si 2 at 3.5 Mg U/m 3 . Fuel fabrication is underway at B and W, CERCA, and NUKEM, with shipments scheduled to commence in October. The primary objectives of the demonstration are to provide data for validation of LEU and mixed-core fuel cycle calculations and to provide a large-scale demonstration of the acceptable performance of production-line U 3 Si 2 fuel elements. It is planned to approach the full LEU core through a series of mixed cores. Measurements to be made include flux distribution, reactivity swing, control rod worth, cycle length, fuel discharge burn-up, gamma heating rate, β eff /l, and isothermal temperature coefficient. Measurements will also be made on fresh LEU and fresh HEU critical configurations. Preliminary safety approval has been received and the final safety assessment is being reviewed. Key issues being addressed in the safety assessment are fuel performance, radiological consequences, margin to burnout and transient behavior. The LEU core is comparable in all safety aspects to the HEU core and the transition core is only marginally worse owing to higher power seeking factors. (author)

  19. King Injo's Disease and Burnt Needle Therapy

    Directory of Open Access Journals (Sweden)

    KIM In-Sook

    2004-12-01

    Full Text Available This paper investigates an interrelationship between burnt needle therapy(번침 and King Injo'sdisease. From 1633 (Year 11 in King Injo's reign to May 5, 1649 (Year 27 King in Injo's reign, right before his death, King Injo(인조 was treated with burnt needles by Yi Hyeongik(이형익, an acupuncturist when the king had health problems. This study arises from two questions: why was King Injo often treated with burnt needles? and what effect did burnt needles have? Burnt needle therapy is a combined form of acupuncture and moxibustion. Yi Hyeongik was famous for eradicating pathogenic factors. He was appointed as a doctor in the Royal Hospital. The medical definition for pathogenic factors is that they are disease-causing factors. Understanding the pathogenic factor for King Injo's disease could make it possible to find the interrelationship between burnt needles and the king's disease. In the Joseon era, the prevalent belief about diseases was that diseases could be caused by homeopathic magic. Some people thought homeopathic magic caused King Injo's disease.  The actual reasons for King Injo's disease were the participation in the excessive rites of Queen Mother Inmok's funeral and the constant oppression from the Ching Dynasty after disgraceful defeat in the war. When King Injo started to be sick, homeopathic magic cases were found in the royal palace. The king's incurable disease was believed to have happened as a result of homeopathic magic. King Injo's suspicion toward Princess Jeongmyeong(정명공주 derived from her mother, Queen Mother Inmok(인목대비. Moral justification for King Injo's coup was Gwanghaegun(광해군 or Prince Gwanghae's immoral conduct toward Queen Mother Inmok. After he was installed, King Injo obeyed the Queen Mother and showed her every attention. Meanwhile, he treated Princess Jeongmyeong with respect, maximized the moral justification for the coup, and solidified the royal authority. However, constant

  20. Comparison of scale/triton and helios burnup calculations for high burnup LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tittelbach, S.; Mispagel, T.; Phlippen, P.W. [WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, Juelich (Germany)

    2009-07-01

    The presented analyses provide information about the suitability of the lattice burnup code HELIOS and the recently developed code SCALE/TRITON for the prediction of isotopic compositions of high burnup LWR fuel. The accurate prediction of the isotopic inventory of high burnt spent fuel is a prerequisite for safety analyses in and outside of the reactor core, safe loading of spent fuel into storage casks, design of next generation spent fuel casks and for any consideration of burnup credit. Depletion analyses are performed with both burnup codes for PWR and BWR fuel samples which were irradiated far beyond 50 GWd/t within the LWR-PROTEUS Phase II project. (orig.)

  1. Overview of neutronic fuel assembly design and in-core fuel management

    International Nuclear Information System (INIS)

    Porsch, D.; Charlier, A.; Meier, G.; Mougniot, J.C.; Tsuda, K.

    2000-01-01

    The civil and military utilization of nuclear power results in stockpiles of spent fuel and separated plutonium. Recycling of the recovered plutonium in Light Water Reactors (LWR) is currently practiced in Belgium, France, Germany, and Switzerland, in Japan it is in preparation. Modern MOX fuel, with its optimized irradiation and reprocessing behavior, was introduced in 1981. Since then, about 1700 MOX fuel assemblies of different mechanical and neutronic design were irradiated in commercial LWRs and reached fuel assembly averaged exposures of up to 51.000 MWd/t HM. MOX fuel assemblies reloaded in PWR have an average fissile plutonium content of up to 4.8 w/o. For BWR, the average fissile plutonium content in actual reloads is 3.0 w/o. Targets for the MOX fuel assembly design are the compatibility to uranium fuel assemblies with respect to their mechanical fuel rod and fuel assembly design, they should have no impact on the flexibility of the reactor operation, and its reload should be economically feasible. In either cycle independent safety analyses or individually for each designed core it has to be demonstrated that recycling cores meet the same safety criteria as uranium cores. The safety criteria are determined for normal operation and for operational as well as design basis transients. Experience with realized MOX core loadings confirms the reliability of the applied modern design codes. Studies for reloads of advanced MOX assemblies in LWRs demonstrate the feasibility of a future development of the thermal plutonium recycling. New concepts for the utilization of plutonium are under consideration and reveal an attractive potential for further developments on the plutonium exploitation sector. (author)

  2. Construction and utilization of linear empirical core models for PWR in-core fuel management

    International Nuclear Information System (INIS)

    Okafor, K.C.

    1988-01-01

    An empirical core-model construction procedure for pressurized water reactor (PWR) in-core fuel management is developed that allows determining the optimal BOC k ∞ profiles in PWRs as a single linear-programming problem and thus facilitates the overall optimization process for in-core fuel management due to algorithmic simplification and reduction in computation time. The optimal profile is defined as one that maximizes cycle burnup. The model construction scheme treats the fuel-assembly power fractions, burnup, and leakage as state variables and BOC zone enrichments as control variables. The core model consists of linear correlations between the state and control variables that describe fuel-assembly behavior in time and space. These correlations are obtained through time-dependent two-dimensional core simulations. The core model incorporates the effects of composition changes in all the enrichment control zones on a given fuel assembly and is valid at all times during the cycle for a given range of control variables. No assumption is made on the geometry of the control zones. A scatter-composition distribution, as well as annular, can be considered for model construction. The application of the methodology to a typical PWR core indicates good agreement between the model and exact simulation results

  3. Simulation an Accelerator driven Subcritical Reactor core with thorium fuel

    International Nuclear Information System (INIS)

    Shirmohammadi, L.; Pazirandeh, A.

    2011-01-01

    The main purpose of this work is simulation An Accelerator driven Subcritical core with Thorium as a new generation nuclear fuel. In this design core , A subcritical core coupled to an accelerator with proton beam (E p =1 GeV) is simulated by MCNPX code .Although the main purpose of ADS systems are transmutation and use MA (Minor Actinides) as a nuclear fuel but another use of these systems are use thorium fuel. This simulated core has two fuel assembly type : (Th-U) and (U-Pu) . Consequence , Neutronic parameters related to ADS core are calculated. It has shown that Thorium fuel is use able in this core and less nuclear waste ,Although Iran has not Thorium reserves but study on Thorium fuel cycle can open a new horizontal in use nuclear energy as a clean energy and without nuclear waste

  4. GFR fuel and core pre-conceptual design studies

    International Nuclear Information System (INIS)

    Chauvin, N.; Ravenet, A.; Lorenzo, D.; Pelletier, M.; Escleine, J.M.; Munoz, I.; Bonnerot, J.M.; Malo, J.Y.; Garnier, J.C.; Bertrand, F.; Bosq, J.C.

    2007-01-01

    The revision of the GFR core design - plate type - has been undertaken since previous core presented at Global'05. The self-breeding searched for has been achieved with an optimized design ('12/06 E'). The higher core pressure drop was a matter of concern. First of all, the core coolability in natural circulation for pressurized conditions has been studied and preliminary plant transient calculations have been performed. The design and safety criteria are met but no more margin remains. The project is also addressing the feasibility and the design of the fuel S/A. The hexagonal shape together with the principle of closed S/A (wrapper tube) is kept. Ceramic plate type fuel element combines a high enough core power density (minimization of the Pu inventory) and plutonium and minor actinides recycling capabilities. Innovative for many aspects, the fuel element is central to the GFR feasibility. It is supported already by a significant R and D effort also applicable to a pin concept that is considered as the other fuel element of interest. This combination of fuel/core feasibility and performance analysis, safety dispositions and performances analysis will compose the 'GFR preliminary feasibility' which is a project milestone at the end of the year 2007. (authors)

  5. Calculations of fuel burn-up and radionuclide inventory in the syrian miniature neutron source reactor using the WIMSD4 code

    International Nuclear Information System (INIS)

    Khattab, K.

    2005-01-01

    Calculations of the fuel burn up and radionuclide inventory in the Miniature Neutron Source Reactor after 10 years (the reactor core expected life) of the reactor operating time are presented in this paper. The WIMSD4 code is used to generate the fuel group constants and the infinite multiplication factor versus the reactor operating time for 10, 20, and 30 kW operating power levels. The amounts of uranium burnt up and plutonium produced in the reactor core, the concentrations and radioactivities of the most important fission product and actinide radionuclides accumulated in the reactor core, and the total radioactivity of the reactor core are calculated using the WIMSD4 code as well

  6. Reactor core with rod-shaped fuel cells

    International Nuclear Information System (INIS)

    Dworak, A.

    1976-01-01

    The proposal refers to the optimization of the power distribution in a reactor core which is provided with several successive rod-shaped fuel cells. A uniform power output - especially in radial direction - is aimed at. This is achieved by variation of the dwelling periods of the fuel cells, which have, for this purpose, a fuel mixture changing from layer to layer. The fuel cells with the shortest dwelling period are arranged near the coolant inlet side of the reactor core. The dwelling periods of the fuel cells are adapted to the given power distribution. As neighboring cells have equal dwelling periods, the exchange can be performed much easier then with the composition currently known. (UWI) [de

  7. In-core fuel management: New challenges

    International Nuclear Information System (INIS)

    Kolmayer, A.; Vallee, A.; Mondot, J.

    1992-01-01

    Experience accumulated by pressurized water reactor (PWR) utilities allows them to improve their strategies in the use of eventual margins to core design limits. They are used for nuclear steam supply system (NSSS) power upgrading, to improve operating margins, or to adapt fuel management to specific objectives. As a result, in-core fuel management strategies have become very diverse: UO 2 or mixed-oxide loading, out-in or in-out fuel loading patterns, extended or annual cycle lengths with margins on design limits such as moderator temperature coefficients, boron concentrations, or peaking factors. Perspectives also appear concerning use of existing plutonium stocks or actinide incineration. Burnable poisons are most often needed to satisfactorily achieve these goals. Among them, gadolinia are now largely used, owing to their excellent performance. More than 24 Framatome first cores and reloads, representing more than 3000 gadolinia-bearing rods, have been irradiated since 1983

  8. Nuclear reactor core and fuel element therefor

    International Nuclear Information System (INIS)

    Fortescue, P.

    1986-01-01

    This patent describes a nuclear reactor core. This core consists of vertical columns of disengageable fuel elements stacked one atop another. These columns are arranged in side-by-side relationship to form a substantially continuous horizontal array. Each of the fuel elements include a block of refractory material having relatively good thermal conductivity and neutron moderating characteristics. The block has a pair of parallel flat top and bottom end faces and sides which are substantially prependicular to the end faces. The sides of each block is aligned vertically within a vertical column, with the sides of vertically adjacent blocks. Each of the blocks contains fuel chambers, including outer rows containing only fuel chambers along the sides of the block have nuclear fuel material disposed in them. The blocks also contain vertical coolant holes which are located inside the fuel chambers in the outer rows and the fuel chambers which are not located in the outer rows with the fuel chambers and which extend axially completely through from end face to end face and form continuous vertical intracolumn coolant passageways in the reactor core. The blocks have vertical grooves extending along the sides of the blocks form interblock channels which align in groups to form continuous vertical intercolumn coolant passsageways in the reactor core. The blocks are in the form of a regular hexagonal prism with each side of the block having vertical gooves defining one half of one of the coolant interblock channels, six corner edges on the blocks have vertical groves defining one-third of an interblock channel, the vertical sides of the blocks defining planar vertical surfaces

  9. Correlations among FBR core characteristics for various fuel compositions

    International Nuclear Information System (INIS)

    Maruyama, Shuhei; Ohki, Shigeo; Okubo, Tsutomu; Kawashima, Katsuyuki; Mizuno, Tomoyasu

    2012-01-01

    In the design of a fast breeder reactor (FBR) core for the light water reactor (LWR) to FBR transition stage, it is indispensable to grasp the effect of a wide range of fuel composition variations on the core characteristics. This study finds good correlations between burnup reactivity and safety parameters, such as the sodium void reactivity and Doppler coefficient, for various fuel compositions and determines the mechanisms behind these correlations with the aid of sensitivity analyses. It is clarified that the Doppler coefficient is actually correlated with the other core characteristics by considering the constraint imposed by the requirement of sustaining criticality on the fuel composition variations. These correlations make it easy to specify the various properties ranges for core reactivity control and core safety, which are important for core design in determining the core specifications and performance. They provide significant information for FBR core design for the transition stage. Moreover, as an application of the above-mentioned correlations, a simplified burnup reactivity index is developed for rapid and rational estimation of the core characteristic variations. With the use of this index and these correlations, the core characteristic variations can be estimated for various fuel compositions without repeating the core calculations. (author)

  10. Core management and fuel handling for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide supplements and elaborates upon the safety requirements for core management and fuel handling that are presented in Section 5 of the Safety Requirements publication on the operation of nuclear power plants. The present publication supersedes the IAEA Safety Guide on Safety Aspects of Core Management and Fuel Handling, issued in 1985 as Safety Series No. 50-SG-010. It is also related to the Safety Guide on the Operating Organization for Nuclear Power Plants, which identifies fuel management as one of the various functions to be performed by the operating organization. The purpose of this Safety Guide is to provide recommendations for core management and fuel handling at nuclear power plants on the basis of current international good practice. The present Safety Guide addresses those aspects of fuel management activities that are necessary in order to allow optimum reactor core operation without compromising the limits imposed by the design safety considerations relating to the nuclear fuel and the plant as a whole. In this publication, 'core management' refers to those activities that are associated with fuel management in the core and reactivity control, and 'fuel handling' refers to the movement, storage and control of fresh and irradiated fuel. Fuel management comprises both core management and fuel handling. This Safety Guide deals with fuel management for all types of land based stationary thermal neutron power plants. It describes the safety objectives of core management, the tasks that have to be accomplished to meet these objectives and the activities undertaken to perform those tasks. It also deals with the receipt of fresh fuel, storage and handling of fuel and other core components, the loading and unloading of fuel and core components, and the insertion and removal of other reactor materials. In addition, it deals with loading a transport container with irradiated fuel and its preparation for transport off the site. Transport

  11. Core management and fuel handling for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    This Safety Guide supplements and elaborates upon the safety requirements for core management and fuel handling that are presented in Section 5 of the Safety Requirements publication on the operation of nuclear power plants. The present publication supersedes the IAEA Safety Guide on Safety Aspects of Core Management and Fuel Handling, issued in 1985 as Safety Series No. 50-SG-010. It is also related to the Safety Guide on the Operating Organization for Nuclear Power Plants, which identifies fuel management as one of the various functions to be performed by the operating organization. The purpose of this Safety Guide is to provide recommendations for core management and fuel handling at nuclear power plants on the basis of current international good practice. The present Safety Guide addresses those aspects of fuel management activities that are necessary in order to allow optimum reactor core operation without compromising the limits imposed by the design safety considerations relating to the nuclear fuel and the plant as a whole. In this publication, 'core management' refers to those activities that are associated with fuel management in the core and reactivity control, and 'fuel handling' refers to the movement, storage and control of fresh and irradiated fuel. Fuel management comprises both core management and fuel handling. This Safety Guide deals with fuel management for all types of land based stationary thermal neutron power plants. It describes the safety objectives of core management, the tasks that have to be accomplished to meet these objectives and the activities undertaken to perform those tasks. It also deals with the receipt of fresh fuel, storage and handling of fuel and other core components, the loading and unloading of fuel and core components, and the insertion and removal of other reactor materials. In addition, it deals with loading a transport container with irradiated fuel and its preparation for transport off the site. Transport

  12. In-core fuel management via perturbation theory

    International Nuclear Information System (INIS)

    Mingle, J.O.

    1975-01-01

    A two-step procedure is developed for the optimization of in-core nuclear fuel management using perturbation theory to predict the effects of various core configurations. The first procedure is a cycle cost minimization using linear programming with a zoned core and discrete burnup groups. The second program utilizes an individual fuel assembly shuffling sequence to minimize the maldistribution of power generation. This latter quantity is represented by a figure of merit or by an assembly power peaking factor. A pressurized water reactor example calculation is utilized. 24 references

  13. Fuel assembly and nuclear reactor core

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Aoyama, Motoo; Yamashita, Jun-ichi.

    1995-01-01

    The present invention concerns a fuel assembly and a nuclear reactor core capable of improving a transmutation rate of transuranium elements while improving a residual rate of fission products. In a reactor core of a BWR type reactor to which fuel rods with transuranium elements (TRU) enriched are loaded, the enrichment degree of transuranium elements occupying in fuel materials is determined not less than 2wt%, as well as a ratio of number of atoms between hydrogen and fuel heavy metals in an average reactor core under usual operation state (H/HM) is determined not more than 3 times. In addition, a ratio of the volumes between coolant regions and fuel material regions is determined not more than 2 times. A T ratio (TRU/Pu) is lowered as the TRU enrichment degree is higher and the H/HM ratio is lower. In order to reduce the T ratio not more than 1, the TRU enrichment degree is determined as not less than 2wt%, and the H/HM ratio is determined to not more than 3 times. Accordingly, since the H/HM ratio is reduced to not more than 1, and TRU is transmuted while recycling it with plutonium, the transmutation ratio of transuranium elements can be improved while improving the residual rate of fission products. (N.H.)

  14. Characteristics of fast reactor core designs and closed fuel cycle

    International Nuclear Information System (INIS)

    Poplavsky, V.M.; Eliseev, V.A.; Matveev, V.I.; Khomyakov, Y.S.; Tsyboulya, A.M.; Tsykunov, A.G.; Chebeskov, A.N.

    2007-01-01

    On the basis of the results of recent studies, preliminary basic requirements related to characteristics of fast reactor core and nuclear fuel cycle were elaborated. Decreasing reactivity margin due to approaching breeding ratio to 1, requirements to support non-proliferation of nuclear weapons, and requirements to decrease amount of radioactive waste are under consideration. Several designs of the BN-800 reactor core have been studied. In the case of MOX fuel it is possible to reach a breeding ratio about 1 due to the use of larger size of fuel elements with higher fuel density. Keeping low axial fertile blanket that would be reprocessed altogether with the core, it is possible to set up closed fuel cycle with the use of own produced plutonium only. Conceptual core designs of advanced commercial reactor BN-1800 with MOX and nitride fuel are also under consideration. It has been shown that it is expedient to use single enrichment fuel core design in this reactor in order to reach sufficient flattening and stability of power rating in the core. The main feature of fast reactor fuel cycle is a possibility to utilize plutonium and minor actinides which are the main contributors to the long-living radiotoxicity in irradiated nuclear fuel. The results of comparative analytical studies on the risk of plutonium proliferation in case of open and closed fuel cycle of nuclear power are also presented in the paper. (authors)

  15. Operational report, Formation of the XXVII reactor core, plan of fuel exchange

    International Nuclear Information System (INIS)

    Martinc, R.

    1977-01-01

    Plan for fuel exchange for formation of the reactor core No. XXVII is presented. This report includes: the quantity of 80% enriched fuel which is input in the core, description of the fuel 'transfer' through the core within this fuelling scheme. It covers the review of reactor safety operating with the core No. XXVII related to reactivity change, thermal load of the fuel channels and fuel burnup. These data result from the analysis based on the same correlated calculation method which was applied for planning the first regular fuel exchange with 80% enriched fuel (core No. XXVI configuration), which has been approved in february 1977. Based on the enclosed data and the fuel exchange according to the proposed procedure it is expected that the reactor operation with core No. XXVII configuration will be safe [sr

  16. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Abdul Aziz, E-mail: azizM@uniten.edu.my; Rahman, Shaik Mohmmed Haikhal Abdul [Universiti Tenaga Nasional. Jalan Ikram-UNITEN, 43000 Kajang, Selangor (Malaysia); Pauzi, Anas Muhamad, E-mail: anas@uniten.edu.my; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 ({sup 233}U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  17. Thermal hydraulic design of a hydride-fueled inverted PWR core

    International Nuclear Information System (INIS)

    Malen, J.A.; Todreas, N.E.; Hejzlar, P.; Ferroni, P.; Bergles, A.

    2009-01-01

    An inverted PWR core design utilizing U(45%, w/o)ZrH 1.6 fuel (here referred to as U-ZrH 1.6 ) is proposed and its thermal hydraulic performance is compared to that of a standard rod bundle core design also fueled with U-ZrH 1.6 . The inverted design features circular cooling channels surrounded by prisms of fuel. Hence the relative position of coolant and fuel is inverted with respect to the standard rod bundle design. Inverted core designs with and without twisted tape inserts, used to enhance critical heat flux, were analyzed. It was found that higher power and longer cycle length can be concurrently achieved by the inverted core with twisted tape relative to the optimal standard core, provided that higher core pressure drop can be accommodated. The optimal power of the inverted design with twisted tape is 6869 MW t , which is 135% of the optimally powered standard design (5080 MW t -determined herein). Uncertainties in this design regarding fuel and clad dimensions needed to accommodate mechanical loads and fuel swelling are presented. If mechanical and neutronic feasibility of these designs can be confirmed, these thermal assessments imply significant economic advantages for inverted core designs.

  18. Modular approach to LWR in-core fuel management

    International Nuclear Information System (INIS)

    Urli, N.; Pevec, D.; Coffou, E.; Petrovic, B.

    1980-01-01

    The most important methods in the LWR in-core fuel management are reviewed. A modular approach and optimization by use of infinite multiplication factor and power form-factor are favoured. A computer program for rotation of fuel assemblies at reloads has been developed which improves further fuel economy and reliability of nuclear power plants. The program has been tested on the PWR core and showed to decrease the power form-factors and flatten the radial power distribution. (author)

  19. In-core fuel management practice in HANARO

    International Nuclear Information System (INIS)

    Kim Hark Rho; Lee Choong Sung; Lee Jo Bok

    1997-01-01

    KAERI (KOREA Atomic Energy Research Institute) completed the system performance tests for the HANARO (Hi-flux Advanced Neutron Application Research Reactor) on December 1994. Its initial criticality was achieved on February 8, 1995. A variety of the reactor physics experiments were performed in parallel with configuring the first cycle core and now HANARO is in the third cycle operation. The in-core fuel management in HANARO is performed on the following strategy: 1) the cycle length of the equilibrium core is at least 4 week FPDs, 2) the maximum linear heat generation rate should be within the design limit, 3) the reactor should have shutdown margin of 1% Δk/k at minimum, 4) the available thermal flux should satisfy the users' requirements. This paper presents the fuel management practice in HANARO. Section II briefly describes the design feature of the HANARO and the method of analysis follows in section III and section IV describes In-core fuel management practice and the conclusion is remarked in the final section. (author)

  20. Model of automatic fuel management for the Atucha II nuclear central with the PUMA IV code

    International Nuclear Information System (INIS)

    Marconi G, J.F.; Tarazaga, A.E.; Romero, L.D.

    2007-01-01

    The Atucha II central is a heavy water power station and natural uranium. For this reason and due to the first floor reactivity excess that have this type of reactors, it is necessary to carry out a continuous fuel management and with the central in power (for the case of Atucha II every 0.7 days approximately). To maintain in operation these centrals and to achieve a good fuels economy, different types of negotiate of fuels that include areas and roads where the fuels displace inside the core are proved; it is necessary to prove the great majority of these managements in long periods in order to corroborate the behavior of the power station and the burnt of extraction of the fuel elements. To carry out this work it is of great help that a program implements the approaches to continue in each replacement, using the roads and areas of each administration type to prove, and this way to obtain as results the one regulations execution in the time and the average burnt of extraction of the fuel elements, being fundamental this last data for the operator company of the power station. To carry out the previous work it is necessary that a physicist with experience in fuel management proves each one of the possible managements, even those that quickly can be discarded if its don't fulfill with the regulatory standards or its possess an average extraction burnt too much low. For this it is of fundamental help that with an automatic model the different administrations are proven and lastly the physicist analyzes the more important cases. The pattern in question not only allows to program different types of roads and areas of fuel management, but rather it also foresees the possibility to disable some of the approaches. (Author)

  1. Evaluation Of Oxide And Silicide Mixed Fuels Of The RSG-GAS Core

    International Nuclear Information System (INIS)

    Tukiran; Sembiring, Tagor Malem; Suparlina, Lily

    2000-01-01

    Fuel exchange of the RSG-GAS reactor core from uranium oxide to uranium silicide in the same loading, density, and enrichment, that is 250 gr, 2.98 gr/cm 3 , and 19.75%, respectively, will be performed in-step wise. In every cycle of exchange with 5/1 mode, it is needed to evaluate the parameter of reactor core operation. The parameters of the reactor operation observed are criticality mass of fuels, reactivity balance, and fuel reactivity that give effect to the reactor operation. The evaluation was done at beginning of cycle of the first and second transition core with compared between experiment and calculation results. The experiments were performed at transition core I and II, BOC, and low power. At transition core I, there are 2 silicide fuels (RI-224 and R1-225) in the core and then, added five silicide fuels (R1-226, R1-252, R1-263, and R1-264) to the core, so that there are seven silicide fuels in the transition core II. The evaluation was done based on the experiment of criticality, control rod calibration, fuel reactivity of the RSG-GAS transition core. For inserting 2 silicide fuels in the transition core I dan 7 fuels in the transition core II, the operation of RSG-GAS core fulfilled the safety margin and the parameter of reactor operation change is not occur drastically in experiment and calculation results. So that, the reactor was operated during 36 days at 15 MW, 540 MWD at the first transition core. The general result showed that the parameter of reactor operation change is small so that the fuel exchange from uranium oxide to uranium silicide in the next step can be done

  2. The Core Conversion of the TRIGA Reactor Vienna

    International Nuclear Information System (INIS)

    Villa, M.; Bergmann, R.; Musilek, A.; Sterba, J.H.; Böck, H.; Messick, C.

    2016-01-01

    The TRIGA Reactor Vienna has operated for many years with a mixed core using Al-clad and stainless-steel (SST) clad low enriched uranium (LEU) fuel and a few SST high enriched uranium (HEU) fuel elements. In view of the US spent fuel return program, the average age of these fuel elements and the Austrian position not to store any spent nuclear fuel on its territory, negotiation started in April 2011 with the US Department of Energy (DOE) and the International Atomic Energy Agency (IAEA). The sensitive subject was to return the old TRIGA fuel and to find a solution for a possible continuation of reactor operation for the next decades. As the TRIGA Vienna is the closest nuclear facility to the IAEA headquarters, high interest existed at the IAEA to have an operating research reactor nearby, as historically close cooperation exists between the IAEA and the Atominstitut. Negotiation started before summer 2011 between the involved Austrian ministries, the IAEA and the US DOE leading to the following solution: Austria will return 91 spent fuel elements to the Idaho National Laboratory (INL) while INL offers 77 very low burnt SST clad LEU elements for further reactor operation of the TRIGA reactor Vienna. The titles of these 77 new fuel elements will be transferred to Euratom in accordance with Article 86 of the Euratom-US Treaty. The fuel exchange with the old core returned to the INL, and the new core transferred to Vienna was carried out in one shipment in late 2012 through the ports of Koper/Slovenia and Trieste/Italy. This paper describes the administrative, logistic and technical preparations of the fuel exchange being unique world-wide and first of its kind between Austria and the USA performed successfully in early November 2012. (author)

  3. Fuel management study on quarter core refueling for Ling Ao NPP

    International Nuclear Information System (INIS)

    Zhang Hong; Li Jinggang

    2012-01-01

    The fuel management study on quarter core refueling is introduced for Ling Ao NPP. Starting from the selection of the objective of fuel management for quarter core refueling, the code and method used and the analysis carried out are explained in details to reach the final loading pattern chosen. The start-up physics test results are listed to demonstrate the realized quarter core fuel management. In the end, the advantage and disadvantage after turning to quarter core refueling has been given for the power plant from the fuel management point of view. (authors)

  4. Assessment of core characteristics during transition from 37-element fuel to CANFLEX-NU fuel in CANDU 6

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Suk, Ho Chun

    2002-01-01

    A transition from 37-element natural uranium fuel to CANFLEX-NU fuel has been modeled in a 1200-day time-dependent fuel management simulation for a CANDU 6 reactor. The simulation was divided into three parts. The pre-transition period extended from 0 to 300 FPD, in which the reactor was fuelled only with standard 37-element fuel bundles. In the transition period, refueling took place only with the CANFLEX-NU fuel bundle. The transition stage lasted from 300 to 920 FPD, at which point all of the 37-element fuel in the core had been replaced by CANFLEX-NU fuel bundle. In the post-transition phase, refueling continued with CANFLEX-NU fuel until 1200 FPD, to arrive at estimate of the equilibrium core characteristics with CANFLEX-NU fuel. Simulation results show that the CANFLEX-NU fuel bundle has a operational compatibility with the CANDU 6 reactor during the transition core, and also show that the transition core from 37-element natural uranium fuel to CANFLEX-NU can be operated without violating any license limit of the CANDU 6 reactor

  5. Fuel assembly

    International Nuclear Information System (INIS)

    Ishibashi, Yoko; Aoyama, Motoo; Oyama, Jun-ichi.

    1995-01-01

    Burnable poison-incorporating fuel rods of a first group are disposed in a region in adjacent with a water rod having a large diameter (neutron moderator rod) disposed to the central portion of a fuel assembly. Burnable poison-incorporating fuel rods of a second group are disposed to a region other than peripheral zone in adjacent with a channel box and corners positioned at an inner zone, in adjacent with the channel box. The average concentration of burnable poisons of the burnable poison-incorporating fuel rods of the first group is made greater than that of the second group. With such a constitution, when the burnable poisons of the first group are burnt out, the burnable poisons of the second group are also burnt out at the same time. Accordingly, an amount of burnable poisons left unburnt at the final stage of the operation cycle is reduced, to improve the reactivity. This can improve the economical property. (I.N.)

  6. Neutronics analysis on mini test fuel in the RSG-GAS core

    International Nuclear Information System (INIS)

    Tukiran S; Tagor M Sembiring

    2016-01-01

    Research on UMo fuel for research reactor has been developed. The fuel of research reactor is uranium molybdenum low enrichment with high density. For supporting the development of fuel fabrication, an neutronic analysis of mini fuel plates in the RSG-GAS core was performed. The aim of analysis is to determine the numbers of fuel cycles in the core to know the maximum fuel burn-up. The mini fuel plates of U_7Mo-Al and U_6Zr-Al with densities of 7.0 gU/cc and 5.2 gU/cc, respectively, will be irradiated in the RSG-GAS core. The size of both fuels, namely 630 x 70.75 x 1.30 mm were inserted to the 3 plates of dummy fuel. Before the fuel will be irradiated in the core, a calculation for safety analysis from neutronics and thermal-hydraulics aspects were required. However, in this paper, it will be discussed safety analysis of the U_7Mo-Al and U_6Zr-Al mini fuels from neutronic point of view. The calculation was done using WIMSD-5B and Batan-3DIFF codes. The result showed that both of the mini fuels could be irradiated in the RSG-GAS core with burn up less than 70 % within 12 cycles of operation without over limiting the safety margin. If it is compared, the power density of U_7Mo-Al mini fuel is bigger than U_6Zr-Al fuel. (author)

  7. Accuracy of fuel motion measurements using in-core detectors

    International Nuclear Information System (INIS)

    Dupree, S.A.

    1975-01-01

    An initial assessment has been made as to how accurately fuel motion can be measured with in-core detectors. A portion of this assessment has involved the calculation of the response of various detectors to fuel motion and the development of a formalism for correlating uncertainties in a neutron flux measurement to uncertainties in the fuel motion. Initially, four idealized configurations were studied in one dimension. These configurations consisted of (1) a single fuel-pin test using ACPR, (2) a seven fuel-pin test using ACPR, (3) a full subassembly (271 pin) test using a Class I ANL-type SAREF, and (4) a full subassembly plus six partial subassemblies (approximately 1000 pin) test using a Class III GE-type SAREF. It was assumed that melt would occur symmetrically at the center of the test fuel and that fuel would therefore disappear from the center of the geometry. For each case of series of calculations was performed in which detector responses were determined at several radial locations for the unperturbed core and for the core with various fractions of the fuel replaced with Na. This fuel loss was assumed to occur essentially instantaneously such that the power level in the remaining portion of the test fuel remained unchanged from that of the initial unperturbed condition

  8. A study of HANARO core conversion using high density U-Mo fuel

    International Nuclear Information System (INIS)

    Lee, K.H.; Lee, C.S.; Lee, B.C.; Park, S.J.; Kim, H.; Kim, C.K.

    2002-01-01

    Currently, HANARO is using 3.15gU/cc U3Si/Al as a driver fuel. HANARO has seven vertical irradiation holes in the core region. Three of them including a central trap are located in the inner region of the core and mainly being used for material irradiation tests. Four of them are located in the reflector tank but cooled by primary coolant. They are used for fuel irradiation tests or radioisotope development tests. For minimum core modification using high density U-Mo fuels, no dimension change is assumed in the current fuel rods and the cladding thickness remains the same in this study. The high density U-Mo fuel will have up to about twice the linear uranium loading of a current HANARO driver fuel. Using this high density fuel 8 fuel sites can be replaced with irradiation sites. Three kinds of conceptual cores are considered using 5 gU/cc U-7Mo/Al and 16 gU/cc U-7Mo. The increase of the linear heat generation rate due to the decrease of total fuel length can be overcome by more uniform radial and axial power distribution using different uranium densities and different fuel meat diameters are introduced into those cores. The new core has 4.54 times larger surface-to-volume ratio than the reference core. The core uranium loading, linear heat generation rate, excess reactivity, and control rod worth as well as the neutron spectra are analysed for each core. (author)

  9. Postfire Burnt-Wood Management Affects Plant Damage by Ungulate Herbivores

    Directory of Open Access Journals (Sweden)

    Jorge Castro

    2013-01-01

    Full Text Available I analyze the effect of post-fire burnt wood management on herbivore attack on a woody plant species (Ulex parviflorus. Two experimental plots of ca. 20 hectares were established at two elevations in a burnt area in a Mediterranean mountain (Sierra Nevada, Spain. Three replicates of three treatments differing in post-fire burnt wood management were established per plot: “no intervention” (NI, all trees remained standing, “partial cut plus lopping” (PCL, felling the trees, cutting the main branches, and leaving all the biomass in situ, and “salvage logging” (SL; removal of logs and elimination of woody debris. Risk of herbivory and damage intensity were monitored for two years. The pattern of attack by ungulate herbivores varied among treatments and years. In any case, there was an overall reduction in the risk of herbivory in the PCL treatment, presumably because the highest habitat complexity in this treatment hampered ungulate movement and foraging. As a result, the burnt logs and branches spread over the ground acted as a physical barrier that protected seedlings from herbivores. This protection may be used for the regeneration of shrubs and trees, and it is of interest for the regeneration of burnt sites either naturally or by reforestation.

  10. Thermal barrier and support for nuclear reactor fuel core

    International Nuclear Information System (INIS)

    Betts, W.S. Jr.; Pickering, J.L.; Black, W.E.

    1987-01-01

    A nuclear reactor is described having a thermal barrier for supporting a fuel column of a nuclear reactor core within a reactor vessel having a fixed rigid metal liner. The fuel column has a refractory post extending downward. The thermal barrier comprises, in combination, a metallic core support having an interior chamber secured to the metal liner; fibrous thermal insulation material covering the metal liner and surrounding the metallic core support; means associated with the metallic core support and resting on the top for locating and supporting the full column post; and a column of ceramic material located within the interior chamber of the metallic core support, the height of the column is less than the height of the metallic core support so that the ceramic column will engage the means for locating and supporting the fuel column post only upon plastic deformation of the metallic core support; the core support comprises a metallic cylinder and the ceramic column comprises coaxially aligned ceramic pads. Each pad has a hole located within the metallic cylinder by means of a ceramic post passing through the holes in the pads

  11. Reactor core with rod-shaped fuel cells

    International Nuclear Information System (INIS)

    Dworak, A.

    1977-01-01

    The aim is an optimization of load distribution in the core so that the load decreases in the direction of coolant flow (with gas cooling from above downwards) but so that it remains constant in horizontal layers to the edge of the core. The former produces optimum cooling, because the coolant has to take up decreasing heat output in the direction of flow. The latter simplifies refueling, because replacement of a whole layer having the same burn-up takes place. The upper two layers with the highest output and the shortest dwell time are replaced every 300 days, for example, the third layer is replaced after double this time and 5 more layers after four times this dwell time. After the simultaneous replacement of all layers, the reactor is in the same state as at commissioning. The fuel cells consist of hexagonal graphite blocks about 1.65 metres in height and 0.75 wide, for example. Each block contains about 100 through cooling channels and about 200 fuel channels closed on both sides. A large number of columns each consisting of 8 blocks is arranged in a tight honeycomb pattern and forms the core. Within each of the 8 horizontal layers of blocks, each fuel cell contains the same fuel mixture with predetermined dwell time. The fuel mixture is suited to the dwell time planned for each layer. The various fuel cells are kept at the same output by burnable neutron poisons in special channels provided for this purpose in the fuel cell and/or by absorber rods, or a planned load distribution is maintained. (HP) [de

  12. Fuel composition effects on HYPER core characteristics

    International Nuclear Information System (INIS)

    Han, Chi Young; Kim, Yong Nam; Kim, Jong Kyung

    2001-01-01

    At KAERI(Korea Atomic Energy Research Institute), a subcritical transmutation reactor is under development, named HYPER(Hybrid Power Extraction Reactor). For the HYPER system, a pyrochemical process is being considered for fuel reprocessing. Separated from the separation process, the fuel contains not only TRU but also the considerable percentages of impurity such as uranium nuclides and lanthanides. The amount of these impurities depends on strongly the refining efficiency of the reprocessing and may change the core characteristics. This paper has analyzed fuel composition effects on th HYPER core characteristics. Assuming various recovery factors of uranium and lanthanides, some dynamic parameters have been evaluated which are the neutron spectrum, the neutron reaction balance, the reactivity coefficients, the effective delayed neutron fraction, and the effective neutron lifetime

  13. Solid oxide fuel cell having a monolithic core

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Young, J.E.

    1984-01-01

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween, and each interconnect wall consists of thin layers of the cathode and anode materials sandwiching a thin layer of interconnect material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick

  14. CORD, PWR Core Design and Fuel Management

    International Nuclear Information System (INIS)

    Trkov, Andrej

    1996-01-01

    1 - Description of program or function: CORD-2 is intended for core design applications of pressurised water reactors. The main objective was to assemble a core design system which could be used for simple calculations (such as frequently required for fuel management) as well as for accurate calculations (for example, core design after refuelling). 2 - Method of solution: The calculations are performed at the cell level with a lattice code in the supercell approximation to generate the single cell cross sections. Fuel assembly cross section homogenization is done in the diffusion approximation. Global core calculations can be done in the full three-dimensional cartesian geometry. Thermohydraulic feedbacks can be accounted for. The Effective Diffusion Homogenization method is used for generating the homogenized cross sections. 3 - Restrictions on the complexity of the problem: The complexity of the problem is selected by the user, depending on the capacity of his computer

  15. Analysis of reactivity accidents of the RSG-GAS core with silicide fuel

    International Nuclear Information System (INIS)

    Tukiran

    2002-01-01

    The fuels of RSG-GAS reactor is changed from uranium oxide to uranium silicide. For time being, the fuel of RSG-GAS core are mixed up between oxide and silicide fuels with 250 gr of loading and 2.96 g U/cm 3 of density, respectively. While, silicide fuel with 300 gr of loading is still under research. The advantages of silicide fuels are can be used in high density, so that, it can be stayed longer in the core at higher burn-up, therefore, the length of cycle is longer. The silicide fuel in RSG-GAS core is used in step-wise by using mixed up core. Firstly, it is used silicide fuel with 250 gr of loading and then, silicide fuel with 300 gr of loading (3.55 g U/cm 3 of density). In every step-wise of fuel loading must be analysed its safety margin. In this occasion, it is analysed the reactivity accident of RSG-GAS core with 300 gr of silicide fuel loading. The calculation was done by using POKDYN code which available at P2TRR. The calculation was done by reactivity insertion at start up and power rangers. From all cases which were have been done, the results of analysis showed that there is no anomaly and safety margin break at RSG-GAS core with 300 gr silicide fuel loading

  16. Analysis of impurity effect on Silicide fuels of the RSG-GAS core

    International Nuclear Information System (INIS)

    Tukiran-Surbakti

    2003-01-01

    Simulation of impurity effect on silicide fuel of the RSG-GAS core has been done. The aim of this research is to know impurity effect of the U-234 and U-236 isotopes in the silicide fuels on the core criticality. The silicide fuels of 250 g U loading and 19.75 of enrichment is used in this simulation. Cross section constant of fuels and non-structure material of core are generated by WIMSD/4 computer code, meanwhile impurity concentration was arranged from 0.01% to 2%. From the result of analysis can be concluded that the isotopes impurity in the fuels could make trouble in the core and the core can not be operated at critical after a half of its cycle length (350 MW D)

  17. Evaluation of the oxide and silicide fuels reactivity in the RSG-GAS core

    International Nuclear Information System (INIS)

    S, Tukiran; M S, Tagor; S, Lily; Pinem, S.

    2000-01-01

    Fuel exchange of The RSG-GAS reactor core from uranium oxide to uranium silicide in the same loading, density, and enrichment, that is, 250 gr, 2.98 gr/cm 3 , and 19.75 % respectively, will be performed in-step wise. In every cycle of exchange with 5/l mode, it is needed to evaluate the parameter of reactor core operation. One of the important operation parameters is fuel reactivity that gives effect to the core reactivity. The experiment was performed at core no. 36, BOC, low power which exist 2 silicide fuels. The evaluation was done based on the RSG-GAS control rod calibration consisting of 40 fuels and 8 control rod.s. From 40 fuels in the core, there are 2 silicide fuels, RI-225/A-9 and RI-224/C-3. For inserting 2 silicide fuels, the reactivity effect to the core must be know. To know this effect , it was performed fuels reactivity experiment, which based on control rod calibration. But in this case the RSG-GAS has no other fresh oxide fuel so that configuration of the RSG-GAS core was rearranged by taking out the both silicide fuels and this configuration is used as reference core. Then silicide fuel RI-224 was inserted to position F-3 replacing the fresh oxide fuel RI-260 so the different reactivity of the fuels is obtained. The experiment result showed that the fuel reactivity change is in amount of 12.85 cent (0.098 % ) The experiment result was compared to the calculation result, using IAFUEL code which amount to 13.49 cent (0.103 %) The result showed that the reactivity change of oxide to silicide fuel is small so that the fuel exchange from uranium oxide to uranium silicide in the first step can be done without any significant change of the operation parameter

  18. Validation of the Nuclear Design Method for MOX Fuel Loaded LWR Cores

    International Nuclear Information System (INIS)

    Saji, E.; Inoue, Y.; Mori, M.; Ushio, T.

    2001-01-01

    The actual batch loading of mixed-oxide (MOX) fuel in light water reactors (LWRs) is now ready to start in Japan. One of the efforts that have been devoted to realizing this batch loading has been validation of the nuclear design methods calculating the MOX-fuel-loaded LWR core characteristics. This paper summarizes the validation work for the applicability of the CASMO-4/SIMULATE-3 in-core fuel management code system to MOX-fuel-loaded LWR cores. This code system is widely used by a number of electric power companies for the core management of their commercial LWRs. The validation work was performed for both boiling water reactor (BWR) and pressurized water reactor (PWR) applications. Each validation consists of two parts: analyses of critical experiments and core tracking calculations of operating plants. For the critical experiments, we have chosen a series of experiments known as the VENUS International Program (VIP), which was performed at the SCK/CEN MOL laboratory in Belgium. VIP consists of both BWR and PWR fuel assembly configurations. As for the core tracking calculations, the operating data of MOX-fuel-loaded BWR and PWR cores in Europe have been utilized

  19. In-core nuclear fuel management optimization of VVER1000 using perturbation theory

    International Nuclear Information System (INIS)

    Hosseini, Mohammad; Vosoughi, Naser

    2011-01-01

    In-core nuclear fuel management is one of the most important concerns in the design of nuclear reactors. The two main goals in core fuel loading pattern design optimization are maximizing the core effective multiplication factor in order to extract the maximum energy, and keeping the local power peaking factor lower than a predetermined value to maintain fuel integrity. Because of the numerous possible patterns of the fuel assemblies in the reactor core, finding the best configuration is so important and complex. Different methods for optimization of fuel loading pattern in the core have been introduced so far. In this study, a software is programmed in C ⧣ language to find an order of the fuel loading pattern of the VVER-1000 reactor core using the perturbation theory. Our optimization method is based on minimizing the radial power peaking factor. The optimization process lunches by considering the initial loading pattern and the specifications of the fuel assemblies which are given as the input of the software. It shall be noticed that the designed algorithm is performed by just shuffling the fuel assemblies. The obtained results by employing the mentioned method on a typical reactor reveal that this method has a high precision in achieving a pattern with an allowable radial power peaking factor. (author)

  20. Sodium-cooled fast reactor core designs for transmutation of MHR spent fuel

    International Nuclear Information System (INIS)

    Hong, S. G.; Kim, Y. H.; Venneri, F.

    2010-01-01

    In this paper, the core design analyses of sodium cooled fast reactors (SFR) are performed for the effective transmutation of the DB (Deep Burn)-MHR (Modular Helium Reactor). In this concept, the spent fuels of DB-MHR are transmuted in SFRs with a closed fuel cycle after TRUs from LWR are first incinerated in a DB-MHR. We introduced two different type SFR core designs for this purpose, and evaluated their core performance parameters including the safety-related parameters. In particular, the cores are designed to have lower transmutation rate relatively to our previous work so as to make the fuel characteristics more feasible. The first type cores which consist of two enrichment regions are typical homogeneous annular cores and they rate 900 MWt power. On the other hand, the second type cores which consist of a central non-fuel region and a single enrichment fuel region rate relatively higher power of 1500 MWt. For these cores, the moderator rods (YH 1.8 ) are used to achieve less positive sodium void worth and the more negative Doppler coefficient because the loading of DB-MHR spent fuel leads to the degradation of these safety parameters. The analysis results show that these cores have low sodium void worth and negative reactivity coefficients except for the one related with the coolant expansion but the coolant expansion reactivity coefficient is within the typical range of the typical SFR cores. (authors)

  1. Examination of fuel reinsertion strategies for out-of core fuel management

    International Nuclear Information System (INIS)

    Comes, S.A.; Turinsky, P.J.

    1986-01-01

    A computer code for determining out-of-core fuel loading strategies in order to minimize levelized fuel cycle cost within constraints has been developed and previously reported by the authors. While past work in this area has dealt with optimizations during equilibrium operating conditions, this work has considered the more realistic conditions of nonequilibrium cycles. The code, called OCEON, seeks to determine a family of economically attractive fuel reload strategies through the optimum selection of feed batch sizes, enrichments, and partially burned fuel reinsertion strategies within operating constraints. This paper presents recent work on expanding the code to allow for different fuel reinsertion options when determining the family of near-optimum fuel reload strategies

  2. In-core fuel management for the course on operational physics of power reactors

    International Nuclear Information System (INIS)

    Levine, S.H.

    1982-01-01

    The heart of a nuclear power station is the reactor core producing power from the fissioning of uranium or plutonium fuel. Expertise in many different technical fields is required to provide fuel for continuous economical operation of a nuclear power plant. In general, these various technical disciplines can be dichotomized into ''Out-of-core'' and ''In-core'' fuel management. In-core fuel management is concerned, as the name implies, with the reactor core itself. It entails calculating the core reactivity, power distribution, and isotopic inventory for the first and subsequent cores of a nuclear power plant to maintain adequate safety margins and operating lifetime for each core. In addition, the selection of reloading schemes is made to minimize energy costs

  3. In-core fuel management and perspectives

    International Nuclear Information System (INIS)

    Waeckel, N.

    2009-01-01

    The management of nuclear fuel inside the core has to take into account the necessity to stop the reactor periodically to renew the fuel partially and to perform maintenance operations. The fuel management strategy determines the cost of the fuel (through the number of assemblies that have been changed and their enrichment rate) and the duration of the campaign till next stop. Fuel management strategies have to conciliate different objectives: -) the safety of the reactor, -) the reliability of the fuel assemblies, -) the optimization of the fuel cost by increasing the discharge burnup. The necessity of spent fuel processing implies a maximal discharge burnup. During the 1990-2000 period, the discharge burnups have been progressively increased through the following fuel management strategies: Garance, Cyclades and Gemmes. During the years 2000-2009, the progressive absorption of the nuclear over-equipment, the opening of the European electricity markets favored power production through the MOX-parity, Alcade and Galice fuel management strategies. The perspective for next decade is to favor production to the prejudice of higher burnups. (A.C.)

  4. Design and fuel management of PWR cores to optimize the once-through fuel cycle

    International Nuclear Information System (INIS)

    Fujita, E.K.; Driscoll, M.J.; Lanning, D.D.

    1978-08-01

    The once-through fuel cycle has been analyzed to see if there are substantial prospects for improved uranium ore utilization in current light water reactors, with a specific focus on pressurized water reactors. The types of changes which have been examined are: (1) re-optimization of fuel pin diameter and lattice pitch, (2) axial power shaping by enrichment gradation in fresh fuel, (3) use of 6-batch cores with semi-annual refueling, (4) use of 6-batch cores with annual refueling, hence greater extended (approximately doubled) burnup, (5) use of radial reflector assemblies, (6) use of internally heterogeneous cores (simple seed/blanket configurations), (7) use of power/temperature coastdown at the end of life to extend burnup, (8) use of metal or diluted oxide fuel, (9) use of thorium, and (10) use of isotopically separated low sigma/sub a/ cladding material. State-of-the-art LWR computational methods, LEOPARD/PDQ-7/FLARE-G, were used to investigate these modifications

  5. Calculation of the linear heat generation rates which violate the thermomechanical limit of plastic deformation of the fuel cladding in function of the burn up of a BWR fuel rod type

    International Nuclear Information System (INIS)

    Lucatero, M.A.; Hernandez L, H.

    2003-01-01

    The linear heat generation rates (LHGR) for a BWR type generic fuel rod, as function of the burnup that violate the thermomechanical limit of circumferential plastic deformation of the can (canning) in nominal operation in stationary state of the fuel rod are calculated. The evaluation of the LHGR in function of the burnt of the fuel, is carried out under the condition that the deformation values of the circumferential plastic deformation of the can exceeds in 0.1 the thermomechanical value operation limit of 1%. The results of the calculations are compared with the generation rates of linear operation heat in function of the burnt for this fuel rod type. The calculations are carried out with the FEMAXI-V and RODBURN codes. The results show that for exhibitions or burnt between 0 and 16,000 M Wd/tU a minimum margin of 160.8 W/cm exists among LHGR (439.6 W/cm) operation peak for the given fuel and maximum LHGR of the fuel (calculated) to reach 1.1% of circumferential plastic deformation of the can, for the peak factor of power of 1.40. For burnt of 20,000 MWd/tU and 60,000 MWd/tU exist a margin of 150.3 and 298.6 W/cm, respectively. (Author)

  6. In-core power sharing and fuel requirement study for a decommissioning Boiling Water Reactor using the linear reactivity model

    International Nuclear Information System (INIS)

    Chen, Chung-Yuan; Tung, Wu-Hsiung; Yaur, Shung-Jung; Kuo, Weng-Sheng

    2014-01-01

    Highlights: • Linear reactivity model (LRM) was modified and applied to Boiling Water Reactor. • The power sharing and fuel requirement study of the last cycle and two cycles before decommissioning was implemented. • The loading pattern design concept for the cycles before decommissioning is carried out. - Abstract: A study of in-core power sharing and fuel requirement for a decommissioning BWR (Boiling Water Reactor) was carried out using the linear reactivity model (LRM). The power sharing of each fuel batch was taken as an independent variable, and the related parameters were set and modified to simulate actual cases. Optimizations of the last cycle and two cycles before decommissioning were both implemented; in the last-one-cycle optimization, a single cycle optimization was carried out with different upper limits of fuel batch power, whereas, in the two-cycle optimization, two cycles were optimized with different cycle lengths, along with two different optimization approaches which are the simultaneous optimization of two cycles (MO) and two successive single-cycle optimizations (SO). The results of the last-one-cycle optimization show that it is better to increase the fresh fuel power and decrease the thrice-burnt fuel power as much as possible. It also shows that relaxing the power limit is good to the fresh fuel requirement which will be reduced under lower power limit. On the other hand, the results of the last-two-cycle (cycle N-1 and N) optimization show that the MO is better than SO, and the power of fresh fuel batch should be decreased in cycle N-1 to save its energy for the next cycle. The results of the single-cycle optimization are found to be the same as that in cycle N of the multi-cycle optimization. Besides that, under the same total energy requirement of two cycles, a long-short distribution of cycle length design can save more fresh fuel

  7. Competitive outcomes between wood-decaying fungi are altered in burnt wood.

    Science.gov (United States)

    Edman, Mattias; Eriksson, Anna-Maria

    2016-06-01

    Fire is an important disturbance agent in boreal forests where it creates a wide variety of charred and other types of heat-modified dead wood substrates, yet how these substrates affect fungal community structure and development within wood is poorly understood. We allowed six species of wood-decaying basidiomycetes to compete in pairs in wood-discs that were experimentally burnt before fungal inoculation. The outcomes of interactions in burnt wood differed from those in unburnt control wood for two species:Antrodia sinuosanever lost on burnt wood and won over its competitor in 67% of the trials compared to 40% losses and 20% wins on unburnt wood. In contrast, Ischnoderma benzoinumwon all interactions on unburnt wood compared to 33% on burnt wood. However, the responses differed depending on the identity of the competing species, suggesting an interaction between competitor and substrate type. The observed shift in competitive balance between fungal species probably results from chemical changes in burnt wood, but the underlying mechanism needs further investigation. Nevertheless, the results indicate that forest fires indirectly structure fungal communities by modifying dead wood, and highlight the importance of fire-affected dead wood substrates in boreal forests. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. RA-3 core with uranium silicide fuel elements

    International Nuclear Information System (INIS)

    Abbate, Maximo J.; Sbaffoni, Maria M.

    2000-01-01

    Following on with studies on uranium silicide fuel elements, this paper reports some comparisons between the use of standard ECN [U 3 O 8 ] fuel elements and type P-06 [from U 3 Si 2 ] fuel elements in the RA-3 core.The first results showed that the calculated overall mean burn up is in agreement with that reported for the facility, which gives more confidence to the successive ones. Comparing the mentioned cores, the silicide one presents several advantages such as: -) a mean burn up increase of 18 %; -) an extraction burn up increase of 20 %; -) 37.4 % increase in full power days, for mean burn up. All this is meritorious for this fuel. Moreover, grouped and homogenized libraries were prepared for CITVAP code that will be used for planning experiments and other bidimensional studies. Preliminary calculations were also performed. (author)

  9. Integral manifolding structure for fuel cell core having parallel gas flow

    Science.gov (United States)

    Herceg, Joseph E.

    1984-01-01

    Disclosed herein are manifolding means for directing the fuel and oxidant gases to parallel flow passageways in a fuel cell core. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte and interconnect wall consists respectively of anode and cathode materials layered on the opposite sides of electrolyte material, or on the opposite sides of interconnect material. A core wall projects beyond the open ends of the defined core passageways and is disposed approximately midway between and parallel to the adjacent overlaying and underlying interconnect walls to define manifold chambers therebetween on opposite sides of the wall. Each electrolyte wall defining the flow passageways is shaped to blend into and be connected to this wall in order to redirect the corresponding fuel and oxidant passageways to the respective manifold chambers either above or below this intermediate wall. Inlet and outlet connections are made to these separate manifold chambers respectively, for carrying the fuel and oxidant gases to the core, and for carrying their reaction products away from the core.

  10. Recent enhancements of the INSIGHT integrated in-core fuel management tool

    International Nuclear Information System (INIS)

    Akio, Yamamoto

    2001-01-01

    Recent enhancements of the INSIGHT system are described in this paper. The INSIGHT system is an integrated in-core fuel management tool for pressurized water reactors (PWRs) runs on UNIX workstations. The INSIGHT system provides various capabilities which contribute to reduce fuel cycle cost and workload of in-core fuel management tasks, i.e. core follow calculations, interactive loading pattern design, automated multicycle analysis and interface between detailed core calculation codes. To minimize engineers' workload, most of input data for analysis modules are automatically generated by the INSIGHT system through specification of calculation conditions in the graphic user interface. Recent enhancements of the INSIGHT system are mainly focused to improve efficiency of loading pattern optimization and flexibility of multicycle analyses. To increase optimization efficiency, a parallel calculation capability, various optimization theories, extension of heuristic rules, screening by neural networks and so on were incorporated in the loading pattern optimization module. The multicycle analyses module was rewritten to increase flexibility such as cycle dependent specification of loading pattern search methods and so on. The INSIGHT system is currently used by Japanese utilities not only for regular in-core fuel management tasks but also for strategic fuel management studies to reduce fuel cycle cost

  11. Qinshan NPP in-core fuel management improvement

    International Nuclear Information System (INIS)

    Kong Deping; Liao Zejun; Wu Xifeng; Wei Wenbin; Wang Yongming; Li Hua

    2006-01-01

    In the 10-year operation of Qinshan Nuclear Power Plant, the initial designed reloading strategy has been improved step by step based on the operation experiences and the advanced domestic and international fuel management methods. Higher burnup has been achieved and more economic operation gained through the loading pattern improvement and the fuel enrichment increased. The article introduces the in-core fuel management strategy improvement of Qinshan Nuclear Power Plant in its 10-year operation. (authors)

  12. Analysis of fuel options for the breakeven core configuration of the Advanced Recycling Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Stauff, N.E.; Klim, T.K.; Taiwo, T.A. [Argonne National Laboratory, Argonne, IL (United States); Fiorina, C. [Politecnico di Milano, Milan (Italy); Franceschini, F. [Westinghouse Electric Company LLC., Cranberry Township, Pennsylvania (United States)

    2013-07-01

    A trade-off study is performed to determine the impacts of various fuel forms on the core design and core physics characteristics of the sodium-cooled Toshiba- Westinghouse Advanced Recycling Reactor (ARR). The fuel forms include oxide, nitride, and metallic forms of U and Th. The ARR core configuration is redesigned with driver and blanket regions in order to achieve breakeven fissile breeding performance with the various fuel types. State-of-the-art core physics tools are used for the analyses. In addition, a quasi-static reactivity balance approach is used for a preliminary comparison of the inherent safety performances of the various fuel options. Thorium-fueled cores exhibit lower breeding ratios and require larger blankets compared to the U-fueled cores, which is detrimental to core compactness and increases reprocessing and manufacturing requirements. The Th cores also exhibit higher reactivity swings through each cycle, which penalizes reactivity control and increases the number of control rods required. On the other hand, using Th leads to drastic reductions in void and coolant expansion coefficients of reactivity, with the potential for enhancing inherent core safety. Among the U-fueled ARR cores, metallic and nitride fuels result in higher breeding ratios due to their higher heavy metal densities. On the other hand, oxide fuels provide a softer spectrum, which increases the Doppler effect and reduces the positive sodium void worth. A lower fuel temperature is obtained with the metallic and nitride fuels due to their higher thermal conductivities and compatibility with sodium bonds. This is especially beneficial from an inherent safety point of view since it facilitates the reactor cool-down during loss of power removal transients. The advantages in terms of inherent safety of nitride and metallic fuels are maintained when using Th fuel. However, there is a lower relative increase in heavy metal density and in breeding ratio going from oxide to metallic

  13. The neutron beam intensity increase by in-core fuel management enhancement in multipurpose research reactors

    International Nuclear Information System (INIS)

    Martinc, R.; Vukadin, Z.; Konstantinovic, J.

    1986-01-01

    The exploitation characteristics of an existing multipurpose research reactor can be increased not only by great reconstruction, but also, to the considerable extent, by the in-core fuel management sophistication. The optimisation of the in-core fuel management procedure in such reactors is governed (among others) by the identified reactor utilisation goals, i.e. by weighting factors dedicated to different utilisation goals, which are often (regarding the in-core fuel management procedure) highly controversial. In this work the best solution for in-core fuel management is sought, with the highest weighting factor dedicated to the neutron beam usage, rather than sample irradiation in the reactor core. The term in-core fuel management includes: the core configuration, the locations of the fresh fuel inflow zone and spent fuel excite zone, and the fuel transfers between these two zones (author)

  14. The KALIMER-600 Reactor Core Design Concept with Varying Fuel Cladding Thickness

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Jang, Jin Wook; Kim, Yeong Il

    2006-01-01

    Recently, Korea Atomic Energy Research Institute (KAERI) has developed a 600MWe sodium cooled fast reactor, the KALIMER-600 reactor core concept using single enrichment fuel. This reactor core concept is characterized by the following design targets : 1) Breakeven breeding (or fissile-self-sufficient) without any blanket, 2) Small burnup reactivity swing ( 23 n/cm 2 ). In the previous design, the single enrichment fuel concept was achieved by using the special fuel assembly designs where non-fuel rods (i.e., ZrH 1.8 , B 4 C, and dummy rods) were used. In particular, the moderator rods (ZrH 1.8 ) were used to reduce the sodium void worth and the fuel Doppler coefficient. But it has been known that this hydride moderator possesses relatively poor irradiation behavior at high temperature. In this paper, a new core design concept for use of single enrichment fuel is described. In this concept, the power flattening is achieved by using the core region wise cladding thicknesses but all non-fuel rods are removed to simplify the fuel assembly design

  15. Basic evaluation on nuclear characteristics of BWR high burnup MOX fuel and core

    International Nuclear Information System (INIS)

    Nagano, M.; Sakurai, S.; Yamaguchi, H.

    1997-01-01

    MOX fuel will be used in existing commercial BWR cores as a part of reload fuels with equivalent operability, safety and economy to UO 2 fuel in Japan. The design concept should be compatible with UO 2 fuel design. High burnup UO 2 fuels are being developed and commercialized step by step. The MOX fuel planned to be introduced in around year 2000 will use the same hardware as UO 2 8 x 8 array fuel developed for a second step of UO 2 high burnup fuel. The target discharge exposure of this MOX fuel is about 33 GWd/t. And the loading fraction of MOX fuel is approximately one-third in an equilibrium core. On the other hand, it becomes necessary to minimize a number of MOX fuels and plants utilizing MOX fuel, mainly due to the fuel economy, handling cost and inspection cost in site. For the above reasons, it needed to developed a high burnup MOX fuel containing much Pu and a core with a large amount of MOX fuels. The purpose of this study is to evaluate basic nuclear fuel and core characteristics of BWR high burnup MOX fuel with batch average exposure of about 39.5 GWd/t using 9 x 9 array fuel. The loading fraction of MOX fuel in the core is within a range of about 50% to 100%. Also the influence of Pu isotopic composition fluctuations and Pu-241 decay upon nuclear characteristics are studied. (author). 3 refs, 5 figs, 3 tabs

  16. Stationary liquid fuel fast reactor SLFFR – Part I: Core design

    Energy Technology Data Exchange (ETDEWEB)

    Jing, T.; Yang, G.; Jung, Y.S.; Yang, W.S., E-mail: yang494@purdue.edu

    2016-12-15

    Highlights: • An innovative fast reactor concept SLFFR based on liquid metal fuel is proposed for TRU burning. • A compact core design of 1000 MWt SLFFR is developed to achieve a zero conversion ratio and passive safety. • The core size and the control requirement are significantly reduced compared to the conventional solid fuel reactor with same conversion ratio. - Abstract: For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named the stationary liquid fuel fast reactor (SLFFR) has been proposed based on a stationary molten metallic fuel. A compact core design of a 1000 MWt SLFFR has been developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches have been adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses have been performed to evaluate the steady-state performance characteristics. The analysis results indicate that the SLFFR of a zero TRU conversion ratio is feasible while satisfying the conservatively imposed thermal design constraints. A theoretical maximum TRU consumption rate of 1.01 kg/day is achieved with uranium-free fuel. Compared to the solid fuel reactors with the same TRU conversion ratio, the core size and the reactivity control requirement are reduced significantly. The primary and secondary control systems provide sufficient shutdown margins, and the calculated reactivity feedback coefficients show that the prompt fuel expansion coefficient is sufficiently negative.

  17. In-core fuel management for nuclear reactor

    International Nuclear Information System (INIS)

    Ross, M.F.; Visner, S.

    1986-01-01

    This patent describes in-core fuel management for nuclear reactor in which the first cycle of a pressurized water nuclear power reactor has a multiplicity of elongated, square fuel assemblies supported side-by-side to form a generally cylindrical, stationary core consisting entirely of fresh fuel assemblies. Each assembly of the first type has a substantially similar low average fissile enrichment of at least about 1.8 weight percent U-235, each assembly of the second type having a substantially similar intermediate average fissile enrichment at least about 0.4 weight percent greater than that of the first type, and each assembly of the third type having a substantially similar high average fissile enrichment at least about 0.4 weight percent greater than that of the intermediate type, the arrangement of the low, intermediate, and high enrichment assembly types which consists of: a generally cylindrical inner core region consisting of approximately two-thirds the total assemblies in the core and forming a figurative checkerboard array having a first checkerboard component at least two-thirds of which consists of high enrichment and intermediate enrichment assemblies, at least some of the high enrichment assemblies containing fixed burnable poison shims, and a second checkerboard component consisting of assemblies other than the high enrichment type; and a generally annular outer region consisting of the remaining assemblies and including at least some but less than two-thirds of the high enrichment type assemblies

  18. Mathematical optimization of incore nuclear fuel management decisions: Status and trends

    International Nuclear Information System (INIS)

    Turinsky, P.J.

    1999-01-01

    Nuclear fuel management involves making decisions about the number of fresh assemblies to purchase and their Attributes (e.g. enrichment and burnable poison loading), burnt fuel to reinsert, location of the assemblies in the core (i.e. loading pattern (LP)), and insertion of control rods as a function of cycle exposure (i.e. control rod pattern (CRP)). The out-of-core and incore nuclear fuel management problems denote an artificial separation of decisions to simplify the decisionmaking. The out-of-core problem involves multicycle analysis so that levelized fuel cycle cost can be evaluated; whereas, the incore problem normally involves single cycle analysis. Decision variables for the incore problem normally include all of the above noted decisions with the exception of the number of fresh assemblies, which is restricted by discharge burnup limits and therefore involves multicycle considerations. This paper reports on the progress that is being made in addressing the incore nuclear fuel management problem utilizing formal mathematical optimization methods. Advances in utilizing the Simulating Annealing, Genetic Algorithm and Tabu Search methods, with applications to pressurized and boiling water reactor incore optimization problem, will be reviewed. Recent work on the addition of multiobjective optimization capability to aide the decision maker, and utilization of heuristic rules and incorporation of parallel algorithms to increase computational efficiency, will be discussed. (orig.) [de

  19. A Preliminary Design Study of Ultra-Long-Life SFR Cores having Heterogeneous Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Jung, GeonHee; You, WuSeung; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    The PWR and CANDU reactors have provided electricity for several decades in our country but they have produced lots of spent fuels and so the safe and efficient disposal of these spent fuels is one of the main issues in nuclear industry. This type ultra-long-life cores are quite efficient in terms of the amount of spent fuel generation per electricity production and they can be used as an interim storage for PWR or CANDU spent fuel over several tens of years if they use the PWR or CANDU spent fuel as the initial fuel. Typically, the previous works have considered radially homogeneous fuel assemblies in which only blanket or driver fuel rods are employed and they considered axially or radially heterogeneous core configurations with the radially homogeneous fuel assemblies. These core configurations result in the propagation of the power distribution which can lead to the significant temperature changes for each fuel assembly over the time. In this work, the radially heterogeneous fuel assemblies are employed in new ultra-long-life SFR (Sodium-cooled Fast Reactor) cores to minimize the propagation of power distribution by allowing the power propagation in the fuel assemblies. In this work, new small ultra-long life SFR cores were designed with heterogeneous fuel assemblies having both blanket and driver fuel rods to minimize the propagation of power distribution over the core by allowing power propagation from driver rods to blanket rods in fuel assemblies. In particular, high fidelity depletion calculation coupled with heterogeneous Monte Carlo neutron transport calculation was performed to assess the neutronic feasibility of the ultralong life cores. The results of the analysis showed that the candidate core has the cycle length of 77 EFPYs, a small burnup reactivity swing of 1590 pcm and acceptably small SVRs both at BOC and EOC.

  20. Micro-Reactor Physics of MOX-Fueled Core

    International Nuclear Information System (INIS)

    Takeda, T.

    2001-01-01

    Recently, fuel assemblies of light water reactors have become complicated because of the extension of fuel burnup and the use of high-enriched Gd and mixed-oxide (MOX) fuel, etc. In conventional assembly calculations, the detailed flux distribution, spectrum distribution, and space dependence of self-shielding within a fuel pellet are not directly taken into account. The experimental and theoretical study of investigating these microscopic properties is named micro-reactor physics. The purpose of this work is to show the importance of micro-reactor physics in the analysis of MOX fuel assemblies. Several authors have done related studies; however, their studies are limited to fuel pin cells, and they are never mentioned with regard to burnup effect, which is important for actual core design

  1. Comparison of Core Performance with Various Oxide fuels on Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Ha; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-05-15

    The system is called Prototype GenIV Sodium-cooled Fast Reactor (PGSFR). Ultimate goal of PGSFR is test for capability of TRU transmutation. Purpose of this study is test for evaluation of in-core performance and TRU transmutation performance by applying various oxide fuel loaded TRU. Fuel type of reference core is changed to uranium-based oxide fuel. Oxide fuel has a lot of experience through fuel fabrication and reactor operation. This study performed by compared and analyzed a core performance of various oxide fuels. (U,Pu)O{sub 2} and (U,TRU)O{sub 2} which various oxide fuel types are selected as extreme case for comparison with core performance and transmutation capability of TRU isotopes. Thorium-based fuel is known that it has good performance for burner reactor due to low proliferation characteristic. To check the performance of TRU incineration for comparison with uranium-based fuel on prototype SFR, Thorium-based fuel, (Th,U)O{sub 2}, (Th,Pu)O{sub 2} and (Th,TRU)O{sub 2}, is selected. Calculations of core performance for various oxide fuel are performed using the fast calculation tool, TRANSX / DANTSTS / REBUS-3. In this study, comparison of core performance and transmutation performance is conducted with various fuel types in a sodium-cooled fast reactor. Mixed oxide fuel with TRU can produce the energy with small amount of fissile material. However, the TRU fuel is confirmed to bring a potential decline of the safety parameters. In case of (Th,U)O2 fuel, the flux level in thermal neutron region becomes lower because of higher capture cross-section of Th-232 than U-238. However, Th-232 has difficulty in converting to TRU isotopes. Therefore, the TRU consumption mass is relatively high in mixed oxide fuel with thorium and TRU.

  2. Comparison of Core Performance with Various Oxide fuels on Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Choi, Jin Ha; Kim, Myung Hyun

    2016-01-01

    The system is called Prototype GenIV Sodium-cooled Fast Reactor (PGSFR). Ultimate goal of PGSFR is test for capability of TRU transmutation. Purpose of this study is test for evaluation of in-core performance and TRU transmutation performance by applying various oxide fuel loaded TRU. Fuel type of reference core is changed to uranium-based oxide fuel. Oxide fuel has a lot of experience through fuel fabrication and reactor operation. This study performed by compared and analyzed a core performance of various oxide fuels. (U,Pu)O_2 and (U,TRU)O_2 which various oxide fuel types are selected as extreme case for comparison with core performance and transmutation capability of TRU isotopes. Thorium-based fuel is known that it has good performance for burner reactor due to low proliferation characteristic. To check the performance of TRU incineration for comparison with uranium-based fuel on prototype SFR, Thorium-based fuel, (Th,U)O_2, (Th,Pu)O_2 and (Th,TRU)O_2, is selected. Calculations of core performance for various oxide fuel are performed using the fast calculation tool, TRANSX / DANTSTS / REBUS-3. In this study, comparison of core performance and transmutation performance is conducted with various fuel types in a sodium-cooled fast reactor. Mixed oxide fuel with TRU can produce the energy with small amount of fissile material. However, the TRU fuel is confirmed to bring a potential decline of the safety parameters. In case of (Th,U)O2 fuel, the flux level in thermal neutron region becomes lower because of higher capture cross-section of Th-232 than U-238. However, Th-232 has difficulty in converting to TRU isotopes. Therefore, the TRU consumption mass is relatively high in mixed oxide fuel with thorium and TRU.

  3. A reactor core with accurately positioned fuel-batteries

    International Nuclear Information System (INIS)

    Borrman, B.E.

    1976-01-01

    A reactor core of containing a grid for a plurality of fuel batteries each of which is constituted by several claddings containing fuel-rods, said grid comprising square members mainly and being located at the core upper-end, each square member surrounding a group of four fuel batteries, spring-contacts being mounted between the fuel batteries and the grid, slots being provided between the batteries for the four arms of a centrally mounted cross-slaped control-rod, each slot being provided at the grid-level, with a flexible spacing device, the overall spacing of whork determining the (a+2b)- dimension is equal to, or higher than, the largest thickness of arm D of the above-mentioned control-rod, said spacing device constituting one of the control-rails the fuel batteries fixed to the fuel-element envelope, as well as the control-rails fixed to the grid, characterized in that each battery control-rail forms a closing surface at right angles to the wall of the adjacent battery and directed toward the grid nearest surface in contact with the above-mentioned control-rail. (author)

  4. Ultrasonic decontamination of nuclear fuel. Feasibility study

    International Nuclear Information System (INIS)

    Berg, A.; Libal, A.; Norbaeck, J.; Wegemar, B.

    1995-05-01

    Ultrasonic decontamination of nuclear fuel is an expeditious way to reduce radiation exposures resulting in a minimal volume of waste. The fuel assemblies are set up in the fuel preparation machine one at a time and treated without prior disassemblage. By decontaminating 20% of the BWR fuel assemblies annually, there is a potential to reduce the collective dose by approximately 40-50%. Including also improved reactivity of the fuel, this amounts to an economic benefit of about 4 MSEK per reactor and year. The costs for performing the decontamination can be economically justified if the plants do not plan for short outages each year. The decontamination method could also be used for the purpose of removing tramp Uranium following a fuel failure or minor core accident. An additional benefit is removal of loosely adherent crud. The waste produced will be handled in a closed filtering circuit. The method is suggested to be verified in a test on discharged burnt-up fuel at site. The next step will be to develop the method further in order to be able to remove also tenacious crud. 12 refs, 4 tabs

  5. New Concept of Designing Composite Fuel for Fast Reactors with Closing Fuel Cycle

    International Nuclear Information System (INIS)

    Savchenko, A.; Vatulin, A.; Uferov, O.; Kulakov, G.; Sorokin, V.

    2013-01-01

    For fast reactors a novel type of promising composite U-PuO2 fuel is proposed which is based on dispersion fuel elements. Basic approach to fuel element development - separated operations of fabricating uranium meat fuel element and introducing into it Pu or MA dioxides powder, that results in minimizing dust forming operations in fuel element fabrication. Novel fuel features higher characteristics in comparison to metallic or MOX fuel its fabrication technology is readily accomplished and is environmentally clean. A possibility is demonstrated of fabricating coated steel claddings to protect from interaction with fuel and fission products when use standard rod type MOX or metallic U-Pu-Zr fuel. Novel approach to reprocessing of composite fuel is demonstrated, which allows to separate uranium from burnt plutonium as well as the newly generated fissile plutonium from burnt one without chemical processes, which simplifies the closing of the nuclear fuel cycle. Novel composite fuel combines the advantages of metallic and ceramic types of fuel and has high uranium density that allows also to implicate it in BREST types reactor with conversion ratio more than 1. Peculiarities of closing nuclear cycle with composite fuel are demonstrated that allows more effective re-usage of generated Pu as well as, minimizing r/a wastes by incineration of MA in specially developed IMF design

  6. Core thermohydraulic design with LEU fuels for upgraded research reactor, JRR-3

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Y; Ando, H; Ikawa, H; Ohnishi, N [Department of Research Reactor Operation, Japan Atomic Energy Research Institute (JAERI), 319-11 Tokai-Mura, Ibaraki-Ken (Japan)

    1985-07-01

    This paper presents the outline of core thermohydraulic design and analysis of the research reactor, JRR-3, which is to be upgraded to a 20 MWt pool-type, light water-cooled reactor with 20% LEU plate-type fuels. The major feature of core thermohydraulics of the upgraded JRR-3 is that core flow is a downflow at the condition of normal operation, with which fuel plates are exposed to a severer condition than with an upflow in case of operational transients and accidents. The core thermo-hydraulic design was, therefore, done for the condition of normal operation so that fuel plates may have enough safety margin both against the onset of nucleate boiling not to allow the nucleate boiling anywhere in the core and against the initiation of DNB, and the safety margin for these were evaluated. The core velocity thus designed is at the optimum condition where fuel plates have the maximum margin against the onset of nucleate boiling. The core thermohydraulic characteristics were also clarified for the natural circulation cooling mode. (author)

  7. Transmutation of minor actinide using thorium fueled BWR core

    International Nuclear Information System (INIS)

    Susilo, Jati

    2002-01-01

    One of the methods to conduct transmutation of minor actinide is the use of BWR with thorium fuel. Thorium fuel has a specific behaviour of producing a little secondary minor actinides. Transmutation of minor actinide is done by loading it in the BWR with thorium fuel through two methods, namely close recycle and accumulation recycle. The calculation of minor actinide composition produced, weigh of minor actinide transmuted, and percentage of reminder transmutation was carried SRAC. The calculations were done to equivalent cell modeling from one fuel rod of BWR. The results show that minor actinide transmutation is more effective using thorium fuel than uranium fuel, through both close recycle and accumulation recycle. Minor actinide transmutation weight show that the same value for those recycle for 5th recycle. And most of all minor actinide produced from 5 unit BWR uranium fuel can transmuted in the 6 t h of close recycle. And, the minimal value of excess reactivity of the core is 12,15 % Δk/k, that is possible value for core operation

  8. A nuclear reactor core fuel reload optimization using artificial ant colony connective networks

    International Nuclear Information System (INIS)

    Lima, Alan M.M. de; Schirru, Roberto; Carvalho da Silva, Fernando; Medeiros, Jose Antonio Carlos Canedo

    2008-01-01

    The core of a nuclear Pressurized Water Reactor (PWR) may be reloaded every time the fuel burn-up is such that it is not more possible to maintain the reactor operating at nominal power. The nuclear core fuel reload optimization problem consists in finding a pattern of burned-up and fresh-fuel assemblies that maximize the number of full operational days. This is an NP-Hard problem, meaning that complexity grows exponentially with the number of fuel assemblies in the core. Moreover, the problem is non-linear and its search space is highly discontinuous and multi-modal. Ant Colony System (ACS) is an optimization algorithm based on artificial ants that uses the reinforcement learning technique. The ACS was originally developed to solve the Traveling Salesman Problem (TSP), which is conceptually similar to the nuclear core fuel reload problem. In this work a parallel computational system based on the ACS, called Artificial Ant Colony Networks is introduced to solve the core fuel reload optimization problem

  9. A nuclear reactor core fuel reload optimization using artificial ant colony connective networks

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Alan M.M. de [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: alanmmlima@yahoo.com.br; Schirru, Roberto [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: schirru@lmp.ufrj.br; Carvalho da Silva, Fernando [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: fernando@con.ufrj.br; Medeiros, Jose Antonio Carlos Canedo [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: canedo@lmp.ufrj.br

    2008-09-15

    The core of a nuclear Pressurized Water Reactor (PWR) may be reloaded every time the fuel burn-up is such that it is not more possible to maintain the reactor operating at nominal power. The nuclear core fuel reload optimization problem consists in finding a pattern of burned-up and fresh-fuel assemblies that maximize the number of full operational days. This is an NP-Hard problem, meaning that complexity grows exponentially with the number of fuel assemblies in the core. Moreover, the problem is non-linear and its search space is highly discontinuous and multi-modal. Ant Colony System (ACS) is an optimization algorithm based on artificial ants that uses the reinforcement learning technique. The ACS was originally developed to solve the Traveling Salesman Problem (TSP), which is conceptually similar to the nuclear core fuel reload problem. In this work a parallel computational system based on the ACS, called Artificial Ant Colony Networks is introduced to solve the core fuel reload optimization problem.

  10. A non-algorithmic approach to the In-core-fuel management problem of a PWR core

    International Nuclear Information System (INIS)

    Kimhy, Y.

    1992-03-01

    The primary objective of a commercial nuclear power plant operation is to produce electricity a low cost while satisfying safety constraints imposed on the operating conditions. Design of a fuel reload cycle for the current generation nuclear power plant represents a multistage process with a series of design decisions taken at various time points. Of these stages, reload core design is an important stage, due to its impact on safety and economic plant performance parameters. Overall. performance of the plant during the power production cycle depends on chosen fresh fuel parameters, as well as specific fuel configuration of the reactor core. The motivation to computerize generation and optimization of fuel reload configurations follows from some reasons: first, reload is performed periodically and requires manipulation of a large amount of data. second, in recent years, more complicated fuel loading patterns were developed and implemented following changes in fuel design and/or operational requirements, such as, longer cycles, advanced burnable poison designs, low leakage loading patterns and reduction of irradiation-induced damage of the pressure vessel. An algorithmic approach to the problem was generally adopted. The nature of the reload design process is a 'heuristic' search performed manually by a fuel manager. The knowledge used by the fuel manager is mostly accumulated experience in reactor physics and core calculations. These features of the problem and the inherent disadvantage of the algorithmic method are the main reasons to explore a non-algorithmic approach for solving the reload configuration problem. Several features of the 'solutions space' ( a collection of acceptable final configurations ) are emphasized in this work: 1) the space contain numerous number of entities (> 25) that are distributed un homogeneously, 2) the lack of a monotonic objective function decrease the probability to find an isolated optimum configuration by depth first search or

  11. 77 FR 39675 - Wallowa-Whitman National Forest, Baker County, OR; North Fork Burnt River Mining

    Science.gov (United States)

    2012-07-05

    ...-Whitman National Forest, Baker County, OR; North Fork Burnt River Mining AGENCY: Forest Service, USDA... North Fork Burnt River Mining Record of Decision will replace and supercede the 2004 North Fork Burnt River Mining Record of Decision only where necessary to address the inadequacies identified by the court...

  12. Thermal hydraulic model validation for HOR mixed core fuel management

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Vries, J.W. de; Leege, P.F.A. de

    1997-01-01

    A thermal-hydraulic core management model has been developed for the Hoger Onderwijsreactor (HOR), a 2 MW pool-type university research reactor. The model was adopted for safety analysis purposes in the framework of HEU/LEU core conversion studies. It is applied in the thermal-hydraulic computer code SHORT (Steady-state HOR Thermal-hydraulics) which is presently in use in designing core configurations and for in-core fuel management. An elaborate measurement program was performed for establishing the core hydraulic characteristics for a variety of conditions. The hydraulic data were obtained with a dummy fuel element with special equipment allowing a.o. direct measurement of the true core flow rate. Using these data the thermal-hydraulic model was validated experimentally. The model, experimental tests, and model validation are discussed. (author)

  13. Preliminary study on flexible core design of super FBR with multi-axial fuel shuffling

    International Nuclear Information System (INIS)

    Sukarman; Yamaji, Akifumi; Someya, Takayuki; Noda, Shogo

    2017-01-01

    Preliminary study has been conducted on developing a new flexible core design concept for the Supercritical water-cooled Fast Breeder Reactor (Super FBR) with multi-axial fuel shuffling. The proposed new concept focuses on the characteristic large axial coolant density change in supercritical water cooled reactors (SCWRs) when the coolant inlet temperature is below the pseudocritical point and large coolant enthalpy rise is taken in the core for achieving high thermal efficiency. The aim of the concept is to attain both the high breeding performance and good thermal-hydraulic performance at the same time. That is, short Compound System Doubling Time (CSDT) for high breeding, large coolant enthalpy rise for high thermal efficiency, and large core power. The proposed core concept consists of horizontal layers of mixed oxide (MOX) fuels and depleted uranium (DU) blanket layers at different elevation levels. Furthermore, the upper core and the lower core are separated and independent fuel shuffling schemes in these two core regions are considered. The number of fuel batches and fuel shuffling scheme of the upper core were changed to investigate influence of multi-axial fuel shuffling on the core characteristics. The core characteristics are evaluated with-three-dimensional diffusion calculations, which are fully-coupled with thermal-hydraulics calculations based on single channel analysis model. The results indicate that the proposed multi-axial fuel shuffling scheme does have a large influence on CSDT. Further investigations are necessary to develop the core concept. (author)

  14. Status of core nuclear design technology for future fuel

    International Nuclear Information System (INIS)

    Joo, Hyung Kook; Jung, Hyung Guk; Noh, Jae Man; Kim, Yeong Il; Kim, Taek Kyum; Gil, Choong Sup; Kim, Jung Do; Kim, Young Jin; Sohn, Dong Seong

    1997-01-01

    The effective utilization of nuclear resource is more important factor to be considered in the design of next generation PWR in addition to the epochal consideration on economics and safety. Assuming that MOX fuel can be considered as one of the future fuel corresponding to the above request, the establishment of basic technology for the MOX core design has been performed : : the specification of the technical problem through the preliminary core design and nuclear characteristic analysis of MOX, the development and verification of the neutron library for lattice code, and the acquisition of data to be used for verification of lattice and core analysis codes. The following further studies will be done in future: detailed verification of library E63LIB/A, development of the spectral history effect treatment module, extension of decay chain, development of new homogenization for the MOX fuel assembly. (author). 6 refs., 7 tabs., 2 figs

  15. Power distribution gradients in WWER type cores and fuel failure root causes

    Energy Technology Data Exchange (ETDEWEB)

    Mikuš, Ján M., E-mail: JanMikus.nrc@hotmail.com

    2014-02-15

    Highlights: • Power (fission rate) distribution gradients can represent fuel failure root causes. • Positions with above gradients were investigated in WWER type cores on reactor LR-0. • Above gradients were evaluated near core heterogeneities and construction materials. • Results can be used for code validation and fuel failure occurrence investigation. - Abstract: Neutron flux non-uniformity and gradients of neutron current resulting in corresponding power (fission rate) distribution changes can represent root causes of the fuel failure. Such situation can be expected in vicinity of some core heterogeneities and construction materials. Since needed data cannot be obtained from nuclear power plant (NPP), results of some benchmark type experiments performed on light water, zero-power research reactor LR-0 were used for investigation of the above phenomenon. Attention was focused on determination of the spatial power distribution changes in fuel assemblies (FAs): Containing fuel rods (FRs) with Gd burnable absorber in WWER-440 and WWER-1000 type cores, Neighboring the core blanket and dummy steel assembly simulators on the periphery of the WWER-440 standard and low leakage type cores, resp., Neighboring baffle in WWER-1000 type cores, and Neighboring control rod (CR) in WWER-440 type cores, namely (a) power peak in axial power distribution in periphery FRs of the adjacent FAs near the area between CR fuel part and butt joint to the CR absorbing part and (b) decrease in radial power distribution in FRs near CR absorbing part. An overview of relevant experimental results from reactor LR-0 and some information concerning leaking FAs on NPP Temelín are presented. Obtained data can be used for code validation and subsequently for the fuel failure occurrence investigation.

  16. Use of TRIGA flip fuel for improved in-core irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Whittemore, W L [General Atomic Co., San Diego, CA (United States)

    1974-07-01

    Use of standard TRIGA fuel (20% enriched uranium) in a reactor provides a suitable facility for in-core irradiations. However, large numbers of in-core samples irradiated for long periods (many months) can be handled more economically with a TRIGA loaded with FLIP fuel. As an example, ten or more in-core thermionic devices (each worth 50 to 80 cents with respect to a water-filled position) were irradiated in the Mark III TRIGA at General Atomic Company for 18 months with only a modest change in excess reactivity due to core burnup. A core loading of FLIP fuel has been added to the General Atomic Mark F reactor in order to provide numerous in-core irradiation sites for the production of radioisotopes. Since the worth of a 500-gram sample of a molybdenum compound (used for the production of {sup 99}Mo) is about 25 to 50 cents with respect to a water-filled position, use of a FLIP- TRIGA core will permit the irradiation of more than 5 kilograms of a molybdenum compound. A procedure is under development for the production of {sup 99}Mo with relatively high specific activity. Several techniques to concentrate {sup 99}Mo have been tested experimentally. The results will be reported. (author)

  17. Using a rainforest-flame forest mosaic to test the hypothesis that leaf and litter fuel flammability is under natural selection.

    Science.gov (United States)

    Clarke, Peter J; Prior, Lynda D; French, Ben J; Vincent, Ben; Knox, Kirsten J E; Bowman, David M J S

    2014-12-01

    We used a mosaic of infrequently burnt temperate rainforest and adjacent, frequently burnt eucalypt forests in temperate eastern Australia to test whether: (1) there were differences in flammability of fresh and dried foliage amongst congeners from contrasting habitats, (2) habitat flammability was related to regeneration strategy, (3) litter fuels were more flammable in frequently burnt forests, (4) the severity of a recent fire influenced the flammability of litter (as this would suggest fire feedbacks), and (5) microclimate contributed to differences in fire hazard amongst habitats. Leaf-level comparisons were made among 11 congeneric pairs from rainforest and eucalypt forests. Leaf-level ignitability, combustibility and sustainability were not consistently higher for taxa from frequently burnt eucalypt forests, nor were they higher for species with fire-driven recruitment. The bulk density of litter-bed fuels strongly influenced flammability, but eucalypt forest litter was not less dense than rainforest litter. Ignitability, combustibility and flame sustainability of community surface fuels (litter) were compared using fuel arrays with standardized fuel mass and moisture content. Forests previously burned at high fire severity did not have consistently higher litter flammability than those burned at lower severity or long unburned. Thus, contrary to the Mutch hypothesis, there was no evidence of higher flammability of litter fuels or leaves from frequently burnt eucalypt forests compared with infrequently burnt rainforests. We suggest the manifest pyrogenicity of eucalypt forests is not due to natural selection for more flammable foliage, but better explained by differences in crown openness and associated microclimatic differences.

  18. Fuel assembly for FBR type reactor and reactor core thereof

    International Nuclear Information System (INIS)

    Kobayashi, Kaoru.

    1998-01-01

    The present invention provides a fuel assembly to be loaded to a reactor core of a large sized FBR type reactor, in which a coolant density coefficient can be reduced without causing power peaking in the peripheral region of neutron moderators loaded in the reactor core. Namely, the fuel assembly for the FBR type reactor comprises a plurality of fission product-loaded fuel rods and a plurality of fertile material-loaded fuel rods and one or more rods loading neutron moderators. In this case, the plurality of fertile material-loaded fuel rods are disposed to the peripheral region of the neutron moderator-loaded rods. The plurality of fission product-loaded fuel rods are disposed surrounding the peripheral region of the plurality of fertile material-loaded fuel rods. The neutron moderator comprises zirconium hydride, yttrium hydride and calcium hydride. The fission products are mixed oxide fuels. The fertile material comprises depleted uranium or natural uranium. (I.S.)

  19. In-core sipping method for the identification of failed fuel assemblies

    International Nuclear Information System (INIS)

    Wu Zhongwang; Zhang Yajun

    2000-01-01

    The failed fuel assembly identification system is an important safety system which ensures safe operations of reactor and immediate treatment of failed fuel rod cladding. The system uses an internationally recognized method to identify failed fuel assemblies in a reactor with fuel element cases. The in-core sipping method is customary used to identify failed fuel assemblies during refueling or after fuel rod cladding failure accidents. The test is usually performed after reactor shutdown by taking samples from each fuel element case while the cases are still in their original core positions. The sample activity is then measured to identify failed fuel assemblies. A failed fuel assembly identification system was designed for the NHR-200 based on the properties of the NHR-200 and national requirements. the design provides an internationally recognized level of safety to ensure the safety of NHR-200

  20. Pre-conceptual core design of SCWR with annular fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chuanqi [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Cao, Liangzhi, E-mail: caolz@mail.xjtu.edu.cn [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Wu, Hongchun; Zheng, Youqi [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)

    2014-02-15

    Highlights: • Annular fuel with both internal and external cooling is used in supercritical light water reactor (SCWR). • The geometry of the annular fuel has been optimized to achieve better performance for the SCWR. • Based on the annular fuel assembly, an equilibrium core has been designed. • The results show that the equilibrium core has satisfied all the objectives and design criteria. - Abstract: The new design of supercritical light water reactor was proposed using annular fuel assemblies. Annular fuel consists of several concentric rings. Feed water flows through the center and outside of the fuel to give both internal and external cooling. Thanks to this feature, the fuel center temperature and the cladding temperature can be reduced and high power density can be achieved. The water flowing through the center also provides moderation, so there is no need for extra water rods in the assembly. The power distribution can be easily flattened by use of this design. The geometry of the annular fuel has been optimized to achieve better performance for the SCWR. There are 19 fuel pins in an assembly. Burnable poison is utilized to reduce the initial excess reactivity. The fuel reloading pattern and water flow scheme were optimized to achieve more uniform power distribution and lower cladding temperature. An equilibrium core has been designed and analyzed using three dimensional neutronics and thermal-hydraulics coupling calculations. The void reactivity, Doppler coefficient and cold shut down margin were calculated for safety consideration. The present results show that this concept is a promising design for the SCWR.

  1. Characterization of raw and burnt oil shale from Dotternhausen: Petrographical and mineralogical evolution with temperature

    International Nuclear Information System (INIS)

    Thiéry, Vincent; Bourdot, Alexandra; Bulteel, David

    2015-01-01

    The Toarcian Posidonia shale from Dotternhausen, Germany, is quarried and burnt in a fluidized bed reactor to produce electricity. The combustion residue, namely burnt oil shale (BOS), is used in the adjacent cement work as an additive in blended cements. The starting material is a typical laminated oil shale with an organic matter content ranging from 6 to 18%. Mineral matter consists principally of quartz, feldspar, pyrite and clays. After calcination in the range, the resulting product, burnt oil shale, keeps the macroscopic layered texture however with different mineralogy (anhydrite, lime, iron oxides) and the formation of an amorphous phase. This one, studied under STEM, reveals a typical texture of incipient partial melting due to a long retention time (ca. 30 min) and quenching. An in-situ high temperature X-ray diffraction (HTXRD) allowed studying precisely the mineralogical changes associated with the temperature increase. - Highlights: • We present oil shale/burnt oil shale characterization. • The Posidonia Shale is burnt in a fluidized bed. • Mineralogical evolution with temperature is complex. • The burnt oil shale is used in composite cements

  2. Advances of the low enriched uranium utilization project in CNA-1 during 1998 and 1999

    International Nuclear Information System (INIS)

    Fink, Jose M.; Higa, Manabu; Sidelnik, Jorge I.; Perez, Ramon A.; Casario, Jose A.; Alvarez, Luis A.

    1999-01-01

    In this work, a general description of advances of the Enriched Fuel Introduction Project in CNA-1 and the main tasks performed during 1998 and 1999 are presented. The program is being satisfactorily developed and during that period the number of slightly enriched fuels (LEU) introduced had significantly increased in relation to previous years. At present, there are 181 LEU fuel elements in the core and 125 LEU fuel elements have been extracted. The number of full power burnt fuel elements per day decreased from 1.31 FE/dpp in 1994 (when all fuel was natural) to 0.92 in 1998 and 0.83 in 1999, reaching the predicted value for homogeneous LEU core of 0.7. The cost of burnt fuel in 1998 was 25% lower that if only natural fuel would have been used. (author)

  3. Advances of the low enriched uranium utilization project in CNA-1 during 1998 and 1999; Avances del proyecto de utilizacion de uranio levemente enriquecido en la CNA-I en 1998 y 1999

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Jose M; Higa, Manabu; Sidelnik, Jorge I [Nucleoelectrica Argentina SA (NASA), Buenos Aires (Argentina); Perez, Ramon A [Nucleoelectrica Argentina SA (NASA), Lima (Argentina). Central Nuclear Atucha I; Casario, Jose A; Alvarez, Luis A [Comision Nacional de Energia Atomica, San Martin (Argentina). Centro Atomico Constituyentes

    1999-07-01

    In this work, a general description of advances of the Enriched Fuel Introduction Project in CNA-1 and the main tasks performed during 1998 and 1999 are presented. The program is being satisfactorily developed and during that period the number of slightly enriched fuels (LEU) introduced had significantly increased in relation to previous years. At present, there are 181 LEU fuel elements in the core and 125 LEU fuel elements have been extracted. The number of full power burnt fuel elements per day decreased from 1.31 FE/dpp in 1994 (when all fuel was natural) to 0.92 in 1998 and 0.83 in 1999, reaching the predicted value for homogeneous LEU core of 0.7. The cost of burnt fuel in 1998 was 25% lower that if only natural fuel would have been used. (author)

  4. Hydrogen production with fully integrated fuel cycle gas and vapour core reactors

    International Nuclear Information System (INIS)

    Anghaie, S.; Smith, B.

    2004-01-01

    This paper presents results of a conceptual design study involving gas and vapour core reactors (G/VCR) with a combined scheme to generate hydrogen and power. The hydrogen production schemes include high temperature electrolysis as well as two dominant thermochemical hydrogen production processes. Thermochemical hydrogen production processes considered in this study included the calcium-bromine process and the sulphur-iodine processes. G/VCR systems are externally reflected and moderated nuclear energy systems fuelled by stable uranium compounds in gaseous or vapour phase that are usually operated at temperatures above 1500 K. A gas core reactor with a condensable fuel such as uranium tetrafluoride (UF 4 ) or a mixture of UF 4 and other metallic fluorides (BeF 2 , LiF, KF, etc.) is commonly known as a vapour core reactor (VCR). The single most relevant and unique feature of gas/vapour core reactors is that the functions of fuel and coolant are combined into one. The reactor outlet temperature is not constrained by solid fuel-cladding temperature limits. The maximum fuel/working fluid temperature in G/VCR is only constrained by the reactor vessel material limits, which is far less restrictive than the fuel clad. Therefore, G/VCRs can potentially provide the highest reactor and cycle temperature among all existing or proposed fission reactor designs. Gas and vapour fuel reactors feature very low fuel inventory and fully integrated fuel cycle that provide for exceptional sustainability and safety characteristics. With respect to fuel utilisation, there is no fuel burn-up limit for gas core reactors due to continuous recycling of the fuel. Owing to the flexibility in nuclear design characteristics of cavity reactors, a wide range of conversion ratio from completely burner to breeder is achievable. The continuous recycling of fuel in G/VCR systems allow for complete burning of actinides without removing and reprocessing of the fuel. The only waste products at the back

  5. A nuclear reactor core fuel reload optimization using Artificial-Ant-Colony Connective Networks

    International Nuclear Information System (INIS)

    Lima, Alan M.M. de; Schirru, Roberto

    2005-01-01

    A Pressurized Water Reactor core must be reloaded every time the fuel burnup reaches a level when it is not possible to sustain nominal power operation. The nuclear core fuel reload optimization consists in finding a burned-up and fresh-fuel-assembly pattern that maximizes the number of full operational days. This problem is NP-hard, meaning that complexity grows exponentially with the number of fuel assemblies in the core. Besides that, the problem is non-linear and its search space is highly discontinual and multimodal. In this work a parallel computational system based on Ant Colony System (ACS) called Artificial-Ant-Colony Networks is introduced to solve the nuclear reactor core fuel reload optimization problem. ACS is a system based on artificial agents that uses the reinforcement learning technique and was originally developed to solve the Traveling Salesman Problem, which is conceptually similar to the nuclear fuel reload problem. (author)

  6. In-core fuel disruption experiments simulating LOF accidents for homogeneous and heterogeneous core LMFBRs: FD2/4 series

    International Nuclear Information System (INIS)

    Wright, S.A.; Mast, P.K.; Schumacher, Gustav; Fischer, E.A.

    1982-01-01

    A series of Fuel Disruption (FD) experiments simulating LOF accidents transients for homogeneous- and heterogeneous-core LMFBRs is currently being performed in the Annular Core Research Reactor at SNL. The test fuel is observed with high-speed cinematography to determine the timing and the mode of the fuel disruption. The five experiments performed to date show that the timing and mode of fuel disruption depend on the power level, fuel temperature (after preheat and at disruption), and the fuel temperature gradient. Two basic modes of fuel disruption were observed; solid-state disruption and liquid-state swelling followed by slumping. Solid-state dispersive fuel behavior (several hundred degrees prior to fuel melting) is only observed at high power levels (6P 0 ), low preheat temperatures (2000 K), and high thermal gradients (2800 K/mm). The swelling/slumping behavior was observed in all cases near the time of fuel melting. Computational models have been developed that predict the fuel disruption modes and timing observed in the experiments

  7. CFD Analysis of Hot Spot Fuel Temperature in the Control Fuel Block Assembly of a VHTR core

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Tak, Nam Il; Noh, Jae Man

    2010-01-01

    The Very High Temperature Reactor (VHTR) dedicated for efficient hydrogen production requires core outlet temperatures of more than 950 .deg. C. As the outlet temperature increases, the thermal margin of the core decreases, which highlights the need for a detailed analysis to reduce its uncertainty. Tak et al. performed CFD analysis for a 1/12 fuel assembly model and compared the result with a simple unit-cell model in order to emphasize the need of a detailed CFD analysis for the prediction of hot spot fuel temperatures. Their CFD model, however, was focused on the standard fuel assembly but not on the control fuel assembly in which a considerable amount of bypass flow is expected to occur through the control rod passages. In this study, a CFD model for the control fuel block assembly is developed and applied for the hot spot analyses of PMR200 core. Not only the bypass flow but also the cross flow is considered in the analyses

  8. Reactor core with rod-shaped fuel cells

    International Nuclear Information System (INIS)

    Dworak, A.

    1975-01-01

    Power distribution in a high-temperature gas-cooled reactor is optimized. Especially the axial as well as the radial power distribution is kept constant, the core consisting of several consecutive rod-shaped fuel cells. To this end, the dwell times of the fuel cells are fitted to the given power distribution. Fuel cells with equal dwell times, seen in flow direction, are arranged side by side, and those with the shortest dwell times are placed in areas with the greatest power release. These areas ly on the coolant inlet side. To keep the power distribution constant, fuel cells with neutron poison or absorber rods with absorbing rates decreasing in flow direction can also be inserted. (RW/PB) [de

  9. Calculation analysis of TRIGA MARK II reactor core composed of two types of fuel elements

    International Nuclear Information System (INIS)

    Ravnik, M.

    1988-11-01

    The most important properties of mixed cores are treated for TRIGA MARK II reactor, composed of standard (20% enriched, 8.5w% U content) and FLIP (70% enriched, 8.5w% U content) fuel elements. Large difference in enrichment and presence of burnable poison in FLIP fuel have strong influence on the main core characteristics, such as: fuel temperature coefficient, power defect, Xe and Sm worth, power and flux distributions, etc. They are significantly different for both types of fuel. Optimal loading of mixed cores therefore strongly depends on the loading pattern of both types of fuel elements. Results of systematic calculational analysis of mixed cores are presented. Calculations on the level of fuel element are performed with WIMSD-4 computer code with extended cross-section library. Core calculations are performed with TRIGAP two-group 1-D diffusion code. Results are compared to measurements and physical explanation is provided. Special concern is devoted to realistic mixed cores, for which optimal in-core fuel management is derived. Refs, figs and tabs

  10. Mixed core conversion study with HEU and LEU fuels

    International Nuclear Information System (INIS)

    Matos, J.E.; Freese, K.E.

    1984-01-01

    The results of a mixed core study are presented for gradual replacement of HEU fuel with LEU fuel using the IAEA generic 10 MW reactor as an example. The key parameters show that the transition can be accomplished safely and economically

  11. Optimization programs for reactor core fuel loading exhibiting reduced neutron leakage

    International Nuclear Information System (INIS)

    Darilek, P.

    1991-01-01

    The program MAXIM was developed for the optimization of the fuel loading of WWER-440 reactors. It enables the reactor core reactivity to be maximized by modifying the arrangement of the fuel assemblies. The procedure is divided into three steps. The first step includes the passage from the three-dimensional model of the reactor core to the two-dimensional model. In the second step, the solution to the problem is sought assuming that the multiplying properties, or the reactivity in the zones of the core, vary continuously. In the third step, parameters of actual fuel assemblies are inserted in the ''continuous'' solution obtained. Combined with the program PROPAL for a detailed refinement of the loading, the program MAXIM forms a basis for the development of programs for the optimization of fuel loading with burnable poisons. (Z.M.). 16 refs

  12. Core design options for high conversion BWRs operating in Th–233U fuel cycle

    International Nuclear Information System (INIS)

    Shaposhnik, Y.; Shwageraus, E.; Elias, E.

    2013-01-01

    Highlights: • BWR core operating in a closed self-sustainable Th– 233 U fuel cycle. • Seed blanket optimization that includes assembly size array and axial dimensions. • Fully coupled MC with fuel depletion and thermo-hydraulic feedback modules. • Thermal-hydraulic analysis includes MCPR observation. -- Abstract: Several options of fuel assembly design are investigated for a BWR core operating in a closed self-sustainable Th– 233 U fuel cycle. The designs rely on an axially heterogeneous fuel assembly structure consisting of a single axial fissile zone “sandwiched” between two fertile blanket zones, in order to improve fertile to fissile conversion ratio. The main objective of the study was to identify the most promising assembly design parameters, dimensions of fissile and fertile zones, for achieving net breeding of 233 U. The design challenge, in this respect, is that the fuel breeding potential is at odds with axial power peaking and the core minimum critical power ratio (CPR), hence limiting the maximum achievable core power rating. Calculations were performed with the BGCore system, which consists of the MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly having reflective radial boundaries was modeled applying simplified restrictions on the maximum centerline fuel temperature and the CPR. It was found that axially heterogeneous fuel assembly design with a single fissile zone can potentially achieve net breeding, while matching conventional BWR core power rating under certain restrictions to the core loading pattern design

  13. Study of core characteristics on fuel and coolant type. Results of F/S phase-I

    International Nuclear Information System (INIS)

    Ikegami, Tetsuo; Hayashi, Hideyuki; Sasaki, Makoto; Mizuno, Tomoyasu; Yamadate, Megumi; Takaki, Naoyuki; Kurosawa, Norifumi; Sakashita, Yoshiaki; Naganuma, Masayuki

    2001-03-01

    The phase-I of the Feasibility Study of Commercialized Fast Reactor Cycle Systems (F/S) were started from July, 1999 and terminated at the end of FY2000 in order to executed examination about technology alternatives of various commercialized fast reactor (FR) recycle concepts, in response to the JNC middle long term enterprise plan. In the phase-I of this F/S, a number of conceptual candidates have been selected from the following 5 viewpoints: a) ensuring safety, b) economic competitiveness to future LWRs, c) efficient utilization of resources, d) reduction of environmental burden, e) enhancement of nuclear non-proliferation. As for this study from the above viewpoints, core characteristics of many kinds of reactors have been investigated, analyzed and examined a core / a fuel characteristic in the combinations of fuel and coolant types and power output scales. Based on these results, R and D plans of the phase-II to be performed have been proposed, and a database to select candidate reactor concepts has been prepared. The conclusions have been obtained in the phase-I are as follows: (1) Evaluation of a fuel form in every each coolant was compared. A promising fuel form was extracted as follows: an oxide and a metal fuel for sodium coolant cores, a metal and a nitride fuel for heavy metal coolant cores, an oxide and a nitride fuel for carbon dioxide coolant cores and a nitride fuel for He gas coolant cores. (2) As the general idea that performance of a core nucleus can be compatible with re-criticality evasion in sodium coolant large-sized oxide fuel cores, a axial blanket particle elimination radial heterogeneous core is one influential candidate. (3) In case of Pb-Bi coolant nature circulation medium size core with an oxide fuel, it is difficult to simultaneously achieve higher discharged burn-up and higher breeding ratio according to the viewpoints of the phase-I. (4) Core characteristics of a carbon dioxide coolant core shows to be almost equivalent to that of

  14. Out-of-core nuclear fuel cycle optimization utilizing an engineering workstation

    International Nuclear Information System (INIS)

    Turinsky, P.J.; Comes, S.A.

    1986-01-01

    Within the past several years, rapid advances in computer technology have resulted in substantial increases in their performance. The net effect is that problems that could previously only be executed on mainframe computers can now be executed on micro- and minicomputers. The authors are interested in developing an engineering workstation for nuclear fuel management applications. An engineering workstation is defined as a microcomputer with enhanced graphics and communication capabilities. Current fuel management applications range from using workstations as front-end/back-end processors for mainframe computers to completing fuel management scoping calculations. More recently, interest in using workstations for final in-core design calculations has appeared. The authors have used the VAX 11/750 minicomputer, which is not truly an engineering workstation but has comparable performance, to complete both in-core and out-of-core fuel management scoping studies. In this paper, the authors concentrate on our out-of-core research. While much previous work in this area has dealt with decisions concerned with equilibrium cycles, the current project addresses the more realistic situation of nonequilibrium cycles

  15. Feasibility of fully ceramic microencapsulated (FCM) replacement fuel assembly for OPR-1000 core fully loaded with FCM fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.J.; Lee, K.H.; Kwon, H.; Chun, J.H.; Kim, Y.M. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of); Venneri, F. [Ultra Safe Nuclear Corp., Los Alamos, NM (United States)

    2014-07-01

    The feasibility of replacing conventional UO{sub 2} fuel assemblies (FAs) of light water reactors with accident-tolerant fully ceramic microencapsulated (FCM) FAs has been explored referencing OPR-1000, 1000MW{sub e} PWR. An optimum FCM FA design, 16x16 FCM FA with Silicon Carbide-coated Zircaloy cladding, was selected based on core-level scoping analysis for five FCM FA design candidates screened from FA-level study. For the selected FCM FA design, detailed core following analysis from initial to equilibrium cores, initially fully loaded with the FCM FAs, was carried out to quantify core physics parameters. Using these parameters, the core thermal-hydraulics and coated fuel particle performance of the FCM core was assessed, and the safety margin and accident-tolerance of the FCM core was evaluated for limiting design- and beyond design-basis-accidents. From the study, it has been demonstrated that the FCM fuel is a viable option in replacing the OPR-1000 core with enhanced safety and accident tolerance while maintaining the core neutronics, thermal-hydraulics and mechanical compatibility. (author)

  16. In-core fuel element temperature and flow measurment of HFETR

    International Nuclear Information System (INIS)

    Chen Daolong; Jiang Pei

    1988-02-01

    The HFETR in-core fuel element temperature-flow measurement facility and its measurement system are expounded. The applications of the instrumented fuel element to stationary and transient states measurements during the lift of power, the operation test of all lifetime at first load, and the deepening burn-up test at second load are described. The method of determination of the hot point temperature under the fin is discussed. The error analysis is made. The fuel element out-of-pile water deprivation test is described. The development of this measurement facility and succesful application have made important contribution to high power and deep burn-up safe operation at two load, in-core fuel element irradiation, and varied investigation of HFETR. After operation at two loads, the integrated power of this instrumented fuel element arrives at 90.88 MWd, its maximum point burn-up is about 64.9%, so that the economy of fuel use of HFETR is raised very much

  17. Enrichment measurement in TRIGA type fuels

    International Nuclear Information System (INIS)

    Aguilar H, F.; Mazon R, R.

    2001-05-01

    The Department of Energy of the United States of North America, through the program 'Idaho Operations Nuclear Spent Fuel Program' of the Idaho National Engineering and Environmental Laboratory (INEEL), in Idaho Falls; Idaho USA, hires to Global Technologies Inc. (GTI) to develop a prototype device of detection enrichment uranium (DEU Detection of Enrichment of Uranium) to determine quantitatively the enrichment in remainder U-235 in a TRIGA fuel element at the end of it useful life. The characteristics of the prototype developed by GTI are the following ones: It allows to carry out no-destructive measurements of TRIGA type fuel. Easily transportable due to that reduced of it size. The determination of the enrichment (in grams of U-235) it is obtained with a precision of 5%. The National Institute of Nuclear Research (ININ), in its facilities of the Nuclear Center of Mexico, it has TRIGA type fuel of high and low enrichment (standard and FLIP) fresh and with burnt, it also has the infrastructure (hot cells, armor-plating of transport, etc) and qualified personnel to carry out the necessary maneuvers to prove the operation of the DEU prototype. For this its would be used standard type fuel elements and FLIP, so much fresh as with certain burnt one. In the case of the fresh fuels the measurement doesn't represent any risk, the fuels before and after the measurement its don't contain a quantity of fission products that its represent a radiological risk in its manipulation; but in the case of the fuels with burnt the handling of the same ones represents an important radiological risk reason why for its manipulation it was used the transport armor-plating and the hot cells. (Author)

  18. Preliminary analysis of a large 1600 MWe PWR core loaded with 30% MOX fuel

    International Nuclear Information System (INIS)

    Polidoro, Franco; Corsetti, Edoardo; Vimercati, Giuliano

    2011-01-01

    The paper presents a full-core 3-D analysis of the performances of a large 1600 MWe PWR core, loaded with 30% MOX fuel, in accordance with the European Utility Requirements (EUR). These requirements state that the European next generation power plants have to be designed capable to use MOX (UO 2 - PuO 2 ) fuel assemblies up to 50% of the core, together with UO 2 fuel assemblies. The use of MOX assemblies has a significant impact on key physic parameters and on safety. A lot of studies have been carried out in the past to explore the feasibility of plutonium recycling strategies by loading LWR reactors with MOX fuel. Many of these works were based on lattice codes, in order to perform detailed analyses of the neutronic characteristics of MOX assemblies. With the aim to take into account their interaction with surrounding UO 2 fuel elements, and the global effects on the core at operational conditions, an integrated approach making use of a 3-D core simulation is required. In this light, the present study adopts the state-of-art numerical models CASMO-5 and SIMULATE-3 to analyze the behavior of the core fueled with 30% MOX and to compare it with that of a large PWR reference core, fueled with UO 2 . (author)

  19. Design and safety studies on an EFIT core with CERMET fuel

    International Nuclear Information System (INIS)

    Chen, Xue-Nong; Rineiski, Andrei; Liu, Ping; Maschek, Werner; Matzerath Boccaccini, Claudia; Gabrielli, Fabrizio; Sobolev, Vitaly

    2008-01-01

    Within the EUROTRANS Programme a European Facility for Industrial Transmutation (EFIT) is under development. This paper deals with the design and safety analyses of an EFIT core with Mo-matrix based CERMET fuel. A three zone core design was developed, which satisfies the EFIT general and specific requirements. The fuel/matrix ratio in each zone is determined for a suitable subcritical level at a k eff of about 0.97 and a total form factor around 1.5. The Pu/MA ratio also determines the transmutation rate and the burn-up characteristics, ranging between 46/54 at% to 40/60 at% for optimizing the reactivity swing and the MA transmutation efficiency. Based on the preliminary core design, safety calculations are performed with SIMMER-III for three types of transient: the unprotected loss of flow (ULOF), the unprotected transient of over power (UTOP) and the unprotected blockage accident (UBA). It can be shown that in the CERMET core the fuel and clad design limits are not violated under the conditions of ULOF and UTOP. In the UBA case, pin failures will happen and lead to a local voiding and reactivity insertion, but a fuel sweep-out process leads to a power reduction and restricts the core degradation. (authors)

  20. Advanced Core Design And Fuel Management For Pebble-Bed Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

    2004-10-01

    A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well?defined parameters and expressed as a recirculation matrix. The implementation of a few heat?transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

  1. The advanced neutron source three-element-core fuel grading

    International Nuclear Information System (INIS)

    Gehin, J.C.

    1995-01-01

    The proposed Advanced Neutron Source (ANS) pre-conceptual design consists of a two-element 330 MW f nuclear reactor fueled with highly-enriched uranium and is cooled, moderated, and reflected with heavy water. Recently, the ANS design has been changed to a three-element configuration in order to permit a reduction of the enrichment, if required, while maintaining or improving the thermal-hydraulic margins. The core consists of three annular fuel elements composed of involute-shaped fuel plates. Each fuel plate has a thickness of 1.27 mm and consists of a fuel meat region Of U 3 Si 2 -Al (50% enriched in one case that was proposed) and an aluminum filler region between aluminum cladding. The individual plates are separated by a 1.27 mm coolant channel. The three element core has a fuel loading of 31 kg of 235 U which is sufficient for a 17-day fuel cycle. The goal in obtaining a new fuel grading is to maximize important temperature margins. The limits imposed axe: (1) Limit the temperature drop over the cladding oxide layer to less than 119 degrees C to avoid oxide spallation. (2) Limit the fuel centerline temperature to less than 400 degrees C to avoid fuel damage. (3) Limit the cladding wall temperature to less than the coolant. incipient-boiling temperature to avoid coolant boiling. Other thermal hydraulic conditions, such as critical heat flux, are also considered

  2. Burning Down the House: the Burnt Building V6 at Late Neolithic Tell Sabi Abyad, Syria

    DEFF Research Database (Denmark)

    Akkermans, Peter M.M.G.; Brüning, Merel L.; Hammers, Neeke Mineke

    2012-01-01

    This article presents the remains of a T-shaped burnt building found in trench V6 in Operation II at Late Neolithic Tell Sabi Abyad, Syria. The burnt building closely resembles the so-called Burnt Village excavated earlier at Tell Sabi Abyad in Operation I, level 6, but is slightly older. Many...

  3. Fuel pin failure root causes and power distribution gradients in WWER cores

    International Nuclear Information System (INIS)

    Mikus, J.

    2008-01-01

    The purpose of this work is to investigate the influence of some core heterogeneities and reactor construction materials on space power distribution in WWER type cores, especially from viewpoint of the values and gradient occurrence that could result in static loads with some consequences, e.g., fuel pin (FP) or fuel assembly (FA) bowing and possible contribution to the FP failure root causes. Presented information were obtained by means of experiments on research reactor LR-0 concerning the: 1) Power distribution estimation on pellet surface of the FPs neighbouring a FP containing gadolinium (Gd 2 O 3 ) burnable absorber integrated into fuel in WWER-440 and -1000 type cores; 2) Power distribution measurement in periphery FAs neighbouring the baffle in WWER-1000 type cores and 3) Power distribution in FAs neighbouring the control rod absorbing part in a WWER-440 type core. (author)

  4. Non-standard constraints within In-Core Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, G.I. [University of Cincinnati, P.O. Box 210072, Cincinnati, OH 45221-0072 (United States); Torres, C. [Comision Federal de Electricidad, Gestion de Combustible, Mexico, D.F. (Mexico); Marrote, G.N.; Ruiz U, V. [Global Nuclear Fuel, Americas, LLC, PO Box 780, M/C A16, Wilmington, NC28402 (United States)]. e-mail: Ivan.Maldonado@uc.edu

    2004-07-01

    Recent advancements in the area of nuclear fuel management optimization have been considerable and widespread. Therefore, it is not surprising that the design of today's nuclear fuel reloads can be a highly automated process that is often accompanied by sophisticated optimization software and graphical user interfaces to assist core designers. Most typically, among other objectives, optimization software seeks to maximize the energy efficiency of a fuel cycle while satisfying a variety of safety, operational, and regulatory constraints. Concurrently, the general industry trend continues to be one of pursuing higher generating capacity (i.e., power up-rates) alongside cycle length extensions. As these increasingly invaluable software tools and ambitious performance goals are pursued in unison, more aggressive core designs ultimately emerge that effectively minimize the margins to limits and, in some cases, may turn out less forgiving or accommodating to changes in underlying key assumptions. The purpose of this article is to highlight a few 'non-standard', though common constraints that can affect a BWR core design but which are often difficult, if not impossible, to implement into an automated setting. In a way, this article indirectly emphasizes the unique and irreplaceable role of the experienced designer in light of 'real life' situations. (Author)

  5. Non-standard constraints within In-Core Fuel Management

    International Nuclear Information System (INIS)

    Maldonado, G.I.; Torres, C.; Marrote, G.N.; Ruiz U, V.

    2004-01-01

    Recent advancements in the area of nuclear fuel management optimization have been considerable and widespread. Therefore, it is not surprising that the design of today's nuclear fuel reloads can be a highly automated process that is often accompanied by sophisticated optimization software and graphical user interfaces to assist core designers. Most typically, among other objectives, optimization software seeks to maximize the energy efficiency of a fuel cycle while satisfying a variety of safety, operational, and regulatory constraints. Concurrently, the general industry trend continues to be one of pursuing higher generating capacity (i.e., power up-rates) alongside cycle length extensions. As these increasingly invaluable software tools and ambitious performance goals are pursued in unison, more aggressive core designs ultimately emerge that effectively minimize the margins to limits and, in some cases, may turn out less forgiving or accommodating to changes in underlying key assumptions. The purpose of this article is to highlight a few 'non-standard', though common constraints that can affect a BWR core design but which are often difficult, if not impossible, to implement into an automated setting. In a way, this article indirectly emphasizes the unique and irreplaceable role of the experienced designer in light of 'real life' situations. (Author)

  6. Application of Computational Intelligence Methods to In-Core Fuel Management

    International Nuclear Information System (INIS)

    Erdogan, A.

    2001-01-01

    In this study, a computer program package has been developed which supports the in-core fuel management activities for pressurized water reactors, generates and recommends an optimum loading pattern to ensure safe and efficient reactor operation. A search for an optimum fuel loading pattern must be conducted in the space of several core parameters such as power distribution, which is an excessively time consuming computational process. Global core calculation codes take a relatively long time to do the task. The time interval necessary for the iterative process was reduced by using an artificial neural network estimator for the calculations. In this way, it was possible to analyze more loading patterns in the same time interval and the probability of finding a desired optimum was increased. As a case study, the core of the Almaraz Nuclear Plant of Spain, a pressurized water reactor, was modeled for the core calculation code system. The 2-group cross sections for the fuel assembly types were calculated and stored for later usage with the diffusion code. 2000 loading patterns were generated by placing fuel assemblies to random positions in the core, and for each pattern the power distribution and effective multiplication factor (k e ff) were calculated with the diffusion code. At the next stage, 500 of the loading patterns were introduced to the neural network as input data for the training process. The remaining 1500 patterns were used to validate the neural network implementation. It was shown that the neural network estimates the power distribution and the K effective within acceptable error limits. To complete the system, a loading pattern generator was developed. This module consists of a set of rules and an algorithm that places the fuel assemblies to core positions. The neural network estimated the power distribution and k e ff for the loading patterns that were generated by this module. The patterns that have a maximum power fraction lower than, and a minimum

  7. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    International Nuclear Information System (INIS)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L.; Saito, M.

    2003-01-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, 237 Np, 238 Pu, 231 Pa, 232 U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations

  8. Application of Integral Ex-Core and Differential In-Core Neutron Measurements for Adjustment of Fuel Burn-Up Distributions in VVER-1000

    Science.gov (United States)

    Borodkin, Pavel G.; Borodkin, Gennady I.; Khrennikov, Nikolay N.

    2010-10-01

    The paper deals with calculational and semi-analytical evaluations of VVER-1000 reactor core neutron source distributions and their influence on measurements and calculations of the integral through-vessel neutron leakage. Time-integrated neutron source distributions used for DORT calculations were prepared by two different approaches based on a) calculated fuel burn-up (standard routine procedure) and b) in-core measurements by means of SPD & TC (new approach). Taking into account that fuel burn-up distributions in operating VVER may be evaluated now by analytical methods (calculations) only it is needed to develop new approaches for testing and correction of calculational evaluations. Results presented in this paper allow to consider a reverse task of alternative estimation of fuel burn-up distributions. The approach proposed is based on adjustment (fitting) of time-integrated neutron source distributions, and hence fuel burn-up patterns in some part of reactor core, on the base of ex-core neutron leakage measurement, neutron-physical calculation and in-core SPD & TC measurement data.

  9. Transport of fresh MOX fuel assemblies for the Monju initial core

    International Nuclear Information System (INIS)

    Kurakami, J.; Ouchi, Y.; Usami, M.

    1997-01-01

    Transport of fresh MOX fuel assemblies for the prototype FBR MONJU initial core started in July 1992 and ended in March 1994. As many as 205 fresh MOX fuel assemblies for an inner core, 91 assemblies for an outer core and 5 assemblies for testing) were transported in nine transport missions. The packaging for fuel assemblies, which has shielding and shock absorbing material inside, meets IAEA regulatory requirements for Type B(U) packaging including hypothetical accident conditions such as the 9 m drop test, fire test, etc. Moreover, this package design feature such advanced technologies as high performance neutron shielding material and an automatic hold-down mechanism for the fuel assemblies. Every effort was made to carry out safe transport in conjunction with the cooperation of every competent organisation. This effort includes establishment of the transport control centre, communication training, and accompanying of the radiation monitoring expert. No transport accident occurred during the transport and all the transport missions were successfully completed on schedule. (Author)

  10. A seismic analysis of Korean standard PWR fuels under transition core conditions

    International Nuclear Information System (INIS)

    Kim, Hyeong Koo; Park, Nam Kyu; Jang, Young Ki; Kim, Jae Ik; Kim, Kyu Tae

    2005-01-01

    The PLUS7 fuel is developed to achieve higher thermal performance, burnup and more safety margin than the conventional fuel used in the Korean Standard Nuclear Plants (KSNPs) and to sustain structural integrity under increased seismic requirement in Korea. In this study, a series of seismic analysis have been performed in order to evaluate the structural integrity of fuel assemblies associated with seismic loads in the KSNPs under transition core conditions replacing the Guardian fuel, which is a resident fuel in the KSNP reactors, with the PLUS7 fuel. For the analysis, transition core seismic models have been developed, based on the possible fuel loading patterns. And the maximum impact forces on the spacer grid and various stresses acting on the fuel components have been evaluated and compared with the through-grid strength of spacer grids and the stress criteria specified in the ASME code for each fuel component, respectively. Then three noticeable parameters regarding as important parameters governing fuel assembly dynamic behavior are evaluated to clarify their effects on the fuel impact and stress response. As a result of the study, it has been confirmed that both the PLUS7 and the Guardian fuel sustain their structural integrity under the transition core condition. And when the damping ratio is constant, increasing the natural frequency of fuel assembly results in a decrease in impact force. The fuel assembly flexural stiffness has an effect increasing the stress of fuel assembly, but not the impact force. And the spacer grid stiffness is directly related with the impact force response. (author)

  11. Fuel cycle and waste management. 2. Design of a BWR Core with Over-moderated MOX Fuel Assemblies

    International Nuclear Information System (INIS)

    Francois, J.L.; Del Campo, C. Martin

    2001-01-01

    The use of uranium-plutonium mixed-oxide (MOX) fuel in light water reactors is a current practice in several countries. Generally one-third of the reactor core is loaded with MOX fuel assemblies, and the other two-thirds is loaded with uranium assemblies. Nevertheless, the plutonium utilization could be more effective if the full core could be loaded with MOX fuel. In this work, the design of a boiling water reactor (BWR) core fully loaded with over-moderated MOX fuel designs was investigated. In previous work, the design of over-moderated BWR MOX fuel assemblies based on a 10 x 10 lattice was presented; these designs improve the neutron spectrum and the plutonium consumption rate, compared with standard MOX assemblies. To increase the moderator-to-fuel ratio (MFR), two approaches were followed. In the first approach, 8 or 12 fuel rods were replaced by water rods in the 10x10 assembly, which increased the MFR from 1.9 to 2.2 and 2.4, respectively. These designs are called MOX-8WR and MOX-12WR, respectively, in this paper. In the second approach, an 11 x 11 lattice with 24 water rods (11 x 11-24WR) was designed, which is a design with a number of active fuel rods (88) very close to the standard MOX assembly (91). The fuel rod diameter is smaller to preserve the assembly dimensions, and in this last case, the MFR is 2.4. The calculations were performed with the CM-PRESTO three-dimensional steady-state simulator. The nuclear data banks were generated with the HELIOS system, and they were processed by TABGEN to produce tables of nuclear cross sections depending on burnup, void, and exposure weighted void (void history), which are used by CM-PRESTO. One base reload pattern was designed for a BWR/5 rated at 1931 MW(thermal), to be used with the different over-moderated assembly designs. The reload pattern has 112 fresh fuel assemblies (FFAs) out of a total of 444 fuel assemblies and was simulated during 20 cycles with the Haling strategy, until an equilibrium cycle of

  12. An integrated expert system for optimum in core fuel management

    International Nuclear Information System (INIS)

    Abd Elmoatty, Mona S.; Nagy, M.S.; Aly, Mohamed N.; Shaat, M.K.

    2011-01-01

    Highlights: → An integrated expert system constructed for optimum in core fuel management. → Brief discussion of the ESOIFM Package modules, inputs and outputs. → Package was applied on the DALAT Nuclear Research Reactor (0.5 MW). → The Package verification showed good agreement. - Abstract: An integrated expert system called Efficient and Safe Optimum In-core Fuel Management (ESOIFM Package) has been constructed to achieve an optimum in core fuel management and automate the process of data analysis. The Package combines the constructed mathematical models with the adopted artificial intelligence techniques. The paper gives a brief discussion of the ESOIFM Package modules, inputs and outputs. The Package was applied on the DALAT Nuclear Research Reactor (0.5 MW). Moreover, the data of DNRR have been used as a case study for testing and evaluation of ESOIFM Package. This paper shows the comparison between the ESOIFM Package burn-up results, the DNRR experimental burn-up data, and other DNRR Codes burn-up results. The results showed good agreement.

  13. Evaluation of spent fuel properties from a conceptual PEACER core

    International Nuclear Information System (INIS)

    Lim, Jae Yong; Kim, Myung Hyun; Kim, Chang Hyo; Hwang, Il Soon

    2003-01-01

    In this paper, a new conceptual core design, PEACER was evaluated in aspect of core performance and spent fuel properties. The core shape is like a pancake to increase axial neutron leakage. Square lattice array was applied which was suitable to decrease the flow speed of Pb-Bi coolant. Although over 30% TRU produced by pyroprocessing was loaded in U-Zr metal fuel, the cycle length of 1 year was achieved and the relative assembly power peaking was less than 1.3. In order to confirm nuclear performance of PEACER core design, several performance indices were adopted and developed. Simple indices such as FIR and FG were used to evaluate fissile breeding. BCM, TG, SNS, and OR calculated by plutonium composition vectors were chosen to distinguish the competency of proliferation resistance. For the estimation of transmutation capability, D-value and extended effective fission half-life time(T EX ) were used. According to these indices, the PEACER core had the better performance compared with other conventional reactor cores although fissile breeding was not acquired

  14. Development of core technology for research reactors using plate type fuels

    International Nuclear Information System (INIS)

    Ha, Jae Joo; Lee, Doo Jeong; Park, Cheol

    2009-12-01

    Around 250 research reactors are under operation over the world. However, about 2/3 have been operated more than 30 years and demands for replacements are expected in the near future. The number of expected units is around 110, and around 55 units from 40 countries will be expected to be bid in the world market. In 2007, Netherlands started international bidding process to construct a new 80MW RR (named PALLAS) with the target of commercial operation in 2016, which will replace the existing HFR(45MW). KAERI consortium has been participated in that bid. Most of RRs use plate type fuels as a fuel assembly, Be and Graphite as a reflector. On the other hand, in Korea, the KAERI is operating the HANARO, which uses a rod type fuel assembly and heavy water as a reflector. Hence, core technologies for RRs using plate type fuels are in short. Therefore, core technologies should be secured for exporting a RR. In chapter 2, the conceptual design of PALLAS which use plate type fuels are described including core, cooling system and connected systems, layout of general components. Experimental verification tests for the plate type fuel and second shutdown system and the code verification for nuclear design are explained in Chapter 3 and 4, respectively

  15. OPAL- the in-core fuel management code system for WWER reactors

    International Nuclear Information System (INIS)

    Krysl, V.; Mikolas, P.; Sustek, J.; Svarny, J.; Vlachovsky, K.

    2002-01-01

    Fuel management optimization is a complex problem namely for WWER reactors, which at present are utilizing burnable poisons (BP) to great extent. In this paper, first the concept and methodologies of a fuel management system for WWER 440 (NPP Dukovany) and NPP WWER 1000 (NPP Temelin) under development in Skoda JS a.s. are described and followed by some practical applications. The objective of this advanced system is to minimize fuel cost by preserving all safety constraints and margins. Future enhancements of the system will allow is it to perform fuel management optimization in the multi-cycle mode. The general objective functions of the system are the maximization of EOC reactivity, the maximization of discharge burnup, the minimization of fresh fuel inventory / or the minimization of feed enrichment, the minimization of the BP inventory. There are also safety related constraints, in which the minimization of power peaking plays a dominant role. The core part of the system requires meeting the major objective: maximizing the EOC Keff for a given fuel cycle length and consists of four coupled calculation steps. The first is the calculation of a Loading Priority Scheme (LPS). which is used to rank the core positions in terms of assembly Kinf values. In the second step the Haling power distribution is calculated and by using fuel shuffle and/or enrichment splitting algorithms and heuristic rules the core pattern is modified to meet core constraints. In this second step a directive/evolutionary algorithm with expert rules based optimization code is used. The optimal BP assignment is alternatively considered to be a separate third step of the procedure. In the fourth step the core is depleted in normal up to 3D pin wise level using the BP distribution developed in step three and meeting all constraints is checked. One of the options of this optimization system is expert friendly interactive mode (Authors)

  16. A Small Modular Reactor Core Design using FCM Fuel and BISO BP particles

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Yeon; Hwang, Dae Hee; Yoo, Ho Seong; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    The objective of this work is to design a PWR small modular reactor which employs the advanced fuel technology of FCM particle fuels including BISO burnable poisons and advanced cladding of SiC in order to improve the fuel economy and safety by increasing fuel burnup and temperature, and by reducing hydrogen generation under accidents. Recently, many countries including USA have launched projects to develop the accident tolerant fuels (ATF) which can cope with the accidents such as LOCA (Loss of Coolant Accident). In general, the ATF fuels are required to meet the PWR operational, safety, and fuel cycle constraints which include enhanced burnup, lower or no generation of hydrogen, lower operating temperatures, and enhanced retention of fission products. Another stream of research and development in nuclear society is to develop advanced small modular reactors in order to improve inherent passive safety and to reduce the risk of large capital investment. In this work, a small PWR modular reactor core was neutronically designed and analyzed. The SMR core employs new 13x13 fuel assemblies which are loaded with thick FCM fuel rods in which TRISO fuel particles AO and also the first cycle has the AOs which are within the typical design limit. Also, this figure shows that the evolutions of AO for the cycles 6 and 7 are nearly the same. we considered the SiC cladding for reduction of hydrogen generation under accidents. From the results of core design and analysis, it is shown that the core has long cycle length of 732 -1191 EFPDs, high discharge burnup of 101-105 MWD/kg, low power peaking factors, low axial offsets, negative MTCs, and large shutdown margins except for BOC of the first cycle. So, it can be concluded that the new SMR core is neutronically feasible.

  17. A Small Modular Reactor Core Design using FCM Fuel and BISO BP particles

    International Nuclear Information System (INIS)

    Choi, Jae Yeon; Hwang, Dae Hee; Yoo, Ho Seong; Hong, Ser Gi

    2016-01-01

    The objective of this work is to design a PWR small modular reactor which employs the advanced fuel technology of FCM particle fuels including BISO burnable poisons and advanced cladding of SiC in order to improve the fuel economy and safety by increasing fuel burnup and temperature, and by reducing hydrogen generation under accidents. Recently, many countries including USA have launched projects to develop the accident tolerant fuels (ATF) which can cope with the accidents such as LOCA (Loss of Coolant Accident). In general, the ATF fuels are required to meet the PWR operational, safety, and fuel cycle constraints which include enhanced burnup, lower or no generation of hydrogen, lower operating temperatures, and enhanced retention of fission products. Another stream of research and development in nuclear society is to develop advanced small modular reactors in order to improve inherent passive safety and to reduce the risk of large capital investment. In this work, a small PWR modular reactor core was neutronically designed and analyzed. The SMR core employs new 13x13 fuel assemblies which are loaded with thick FCM fuel rods in which TRISO fuel particles AO and also the first cycle has the AOs which are within the typical design limit. Also, this figure shows that the evolutions of AO for the cycles 6 and 7 are nearly the same. we considered the SiC cladding for reduction of hydrogen generation under accidents. From the results of core design and analysis, it is shown that the core has long cycle length of 732 -1191 EFPDs, high discharge burnup of 101-105 MWD/kg, low power peaking factors, low axial offsets, negative MTCs, and large shutdown margins except for BOC of the first cycle. So, it can be concluded that the new SMR core is neutronically feasible

  18. Calculation of the ex-core neutron noise induced by fuel vibrations in PWRs

    International Nuclear Information System (INIS)

    Tran Hoai Nam; Cao Van Chung; Hoang Thanh Phi Hung; Hoang Van Khanh

    2015-01-01

    Calculation of the neutron noise induced by fuel assembly vibrations in two pressurized water reactor (PWR) cores has been performed to investigate the effect of cycle burnup on the properties of the ex-core detector noise. Pendular vibrations of individual fuel assemblies were assumed to occur at different locations in the core. The auto power spectra density (APSD) of the ex-core detector noise was evaluated with the assumption of stochastic vibrations along a random two-dimensional trajectory. The results show that no general monotonic variation of APSD was found. The increase of APSD occurs predominantly for peripheral assemblies. Assuming simultaneous vibrations of a number of fuel assemblies uniformly distributed over the core with the more realistic perturbation model, the effect of the peripheral assemblies will dominate and the increase of the amplitude of the ex-core neutron noise with burnup can be confirmed. (author)

  19. Use of Solid Hydride Fuel for Improved long-Life LWR Core Designs. Final summary report

    International Nuclear Information System (INIS)

    Greenspan, E

    2006-01-01

    The primary objective of this project was to assess the feasibility of improving the performance of PWR and BWR cores by using solid hydride fuels instead of the commonly used oxide fuel. The primary measure of performance considered is the bus-bar cost of electricity (COE). Additional performance measures considered are safety, fuel bundle design simplicity in particular for BWR's, and plutonium incineration capability. It was found that hydride fuel can safely operate in PWR's and BWR's without restricting the linear heat generation rate of these reactors relative to that attainable with oxide fuel. A couple of promising applications of hydride fuel in PWR's and BWR's were identified: (1) Eliminating dedicated water moderator volumes in BWR cores thus enabling to significantly increase the cooled fuel rods surface area as well as the coolant flow cross section area in a given volume fuel bundle while significantly reducing the heterogeneity of BWR fuel bundles thus achieving flatter pin-by-pin power distribution. The net result is a possibility to significantly increase the core power density ? on the order of 30% and, possibly, more, while greatly simplifying the fuel bundle design. Implementation of the above modifications is, though, not straightforward; it requires a design of completely different control system that could probably be implemented only in newly designed plants. It also requires increasing the coolant pressure drop across the core. (2) Recycling plutonium in PWR's more effectively than is possible with oxide fuel by virtue of a couple of unique features of hydride fuel reduced inventory of U-238 and increased inventory of hydrogen. As a result, the hydride fueled core achieves nearly double the average discharge burnup and the fraction of the loaded Pu it incinerates in one pass is double that of the MOX fuel. The fissile fraction of the Pu in the discharged hydride fuel is only ∼2/3 that of the MOX fuel and the discharged hydride fuel is

  20. Improvement in operating characteristics resulting from the addition of FLIP fuel to a standard TRIGA core

    International Nuclear Information System (INIS)

    Randall, J.D.; Feltz, D.E.; Godsey, T.A.; Schumacher, R.F.

    1974-01-01

    To overcome problems associated with fuel burnup the Nuclear Science Center of Texas A and M University decided to convert from standard TRIGA fuel to FLIP-TRIGA fuel. FLIP fuel, which incorporates erbium as a burnable poison and is enriched to 70 percent in U-235, has a calculated lifetime of 9/MW-years. Due to limited funds a core was designed with a central region of 35 FLIP elements surrounded by 63 standard elements. Calculations indicated that the core excess and neutron fluxes were satisfactory, but no prediction was made of the improvements in core lifetime. The reactivity loss due to burnup for a standard core was measured to be 1.54 cents/MW-day. The addition of 35 FLIP fuel elements has reduced this value to approximately 0.5 cents/MW-day. The incorporation of FLIP fuel has, therefore, increased the lifetime of the core by a factor of three using fuel that is only 20 percent more expensive. The mixed core has other advantages as well. The power coefficient is less, the effect of xenon is less, and the fluxes in experimental facilities are higher. Thus, the mixed core has significant advantages over standard TRIGA fuel. (U.S.)

  1. Sodium-cooled Fast Reactor Cores using Uranium-Free Metallic Fuels for Maximizing TRU Support Ratio

    International Nuclear Information System (INIS)

    You, WuSeung; Hong, Ser Gi

    2014-01-01

    The depleted uranium plays important roles in the SFR burner cores because it substantially contributes to the inherent safety of the core through the negative Doppler coefficient and large delayed neutron. However, the use of depleted uranium as a diluent nuclide leads to a limited value of TRU support ratio due to the generation of TRUs through the breeding. In this paper, we designed sodium cooled fast reactor (SFR) cores having uranium-free fuels 3,4 for maximization of TRU consumption rate. However, the uranium-free fuelled burner cores can be penalized by unacceptably small values of the Doppler coefficient and small delayed neutron fraction. In this work, metallic fuels of TRU-(W or Ni)-Zr are considered to improve the performances of the uranium-free cores. The objective of this work is to consistently compare the neutronic performances of uranium-free sodium cooled fast reactor cores having TRU-Zr metallic fuels added with Ni or W and also to clarify what are the problematic features to be resolved. In this paper, a consistent comparative study of 400MWe sodium cooled burner cores having uranium-based fuels and uranium-free fuels was done to analyze the relative core neutronic features. Also, we proposed a uranium-free metallic fuel based on Nickel. From the results, it is found that tungsten-based uranium-free metallic fuel gives large negative Doppler coefficient due to high resonance of tungsten isotopes but this core has large sodium void worth and small effective delayed neutron fraction while the nickel-based uranium-free metallic fuelled core has less negative Doppler coefficient but smaller sodium void worth and larger effective delayed neutron fraction than the tungsten-based one. On the other hand, the core having TRU-Zr has very high burnup reactivity swing which may be problematic in compensating it using control rods and the least negative Doppler coefficient

  2. Optimization of core reload design for low-leakage fuel management in pressurized water reactors

    International Nuclear Information System (INIS)

    Kim, Y.J.; Downar, T.J.; Sesonske, A.

    1987-01-01

    A method was developed to optimize pressurized water reactor low-leakage core reload designs that features the decoupling and sequential optimization of the fuel arrangement and control problems. The two-stage optimization process provides the maximum cycle length for a given fresh fuel loading subject to power peaking constraints. In the first stage, a best fuel arrangement is determined at the end of cycle (EOC) in the absence of all control poisons by employing a direct search method. The constant power, Haling depletion is used to provide the cycle length and EOC power peaking for each candidate core fuel arrangement. In the second stage, the core control poison requirements to meet the core peaking constraints throughout the cycle are determined using an approximate nonlinear programming technique

  3. FUEL BURN-UP CALCULATION FOR WORKING CORE OF THE RSG-GAS RESEARCH REACTOR AT BATAN SERPONG

    Directory of Open Access Journals (Sweden)

    Tukiran Surbakti

    2017-12-01

    Full Text Available The neutronic parameters are required in the safety analysis of the RSG-GAS research reactor. The RSG-GAS research reactor, MTR (Material Testing Reactor type is used for research and also in radioisotope production. RSG-GAS has been operating for 30 years without experiencing significant obstacles. It is managed under strict requirements, especially fuel management and fuel burn-up calculations. The reactor is operated under the supervision of the Regulatory Body (BAPETEN and the IAEA (International Atomic Energy Agency. In this paper, the experience of managing RSG-GAS core fuels will be discussed, there are hundred possibilities of fuel placements on the reactor core and the strategy used to operate the reactor will be crucial. However, based on strict calculation and supervision, there is no incorrect placement of the fuels in the core. The calculations were performed on working core by using the WIMSD-5B computer code with ENDFVII.0 data file to generate the macroscopic cross-section of fuel and BATAN-FUEL code were used to obtain the neutronic parameter value such as fuel burn-up fractions. The calculation of the neutronic core parameters of the RSG-GAS research reactor was carried out for U3Si2-Al fuel, 250 grams of mass, with an equilibrium core strategy. The calculations show that on the last three operating cores (T90, T91, T92, all fuels meet the safety criteria and the fuel burn-up does not exceed the maximum discharge burn-up of 59%. Maximum fuel burn-up always exists in the fuel which is close to the position of control rod.

  4. A study for fuel reloading strategy in pebble bed core

    International Nuclear Information System (INIS)

    Kim, Hong Chul

    2012-02-01

    A fuel reloading analysis system for pebble bed reactor was developed by using a Monte Carlo code. The kinematic model was modified to improve the accuracy of the pebble velocity profile and to develop the model so that the diffusion coefficient is not changed by the geometry of the core. In addition, the point kernel method was employed to solve an equation derived in this study. Then, the analysis system for the pebble bed reactor was developed to accommodate the double heterogeneity, pebble velocity, and pebble refueling features using the MCNPX Monte Carlo code. The batch-tracking method was employed to simulate the movement of the pebbles and an automation system was written in the C programming language to implement it. The proposed analysis system can be utilized to verify new core analysis codes, deep-burn studies, various sensitivity studies, and other analysis tools available for the application of new fuel reloading strategies. It is noted that the proposed algorithm for the optimum fuel reloading pattern differs from other optimization methods using sensitivity analysis. In this algorithm, the reloading strategy, including the loading of fresh fuel and the reloading positions of the fresh and reloaded fuels, is determined by the interrelations of the criticality, the nuclear material inventories in the extracted fuel, and the power density. The devised algorithm was applied to the PBMR and NHDD-PBR200. The results show that the proposed algorithm can apply to satisfy the nuclear characteristics such as the criticality or power density since the pebble bed core has the characteristics that the fuels are reloaded every day

  5. Solid oxide fuel cell having monolithic cross flow core and manifolding

    International Nuclear Information System (INIS)

    Poeppel, R.B.; Dusek, J.T.

    1984-01-01

    This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageway and the oxidant passageways are disposed transverse to one another

  6. A mixed core conversion study with HEU and LEU fuels

    International Nuclear Information System (INIS)

    Matos, J.E.; Freese, K.E.

    1985-01-01

    The results of a mixed core study are presented for gradual replacement of HEU fuel with LEU fuel using the IAEA generic 10 MW reactor as an example. The key parameters show that the transition can be accomplished safely and economically. (author)

  7. Fuel Management Strategies for a Possible Future LEU Core of a TRIGA Mark II Vienna

    Energy Technology Data Exchange (ETDEWEB)

    Khan, R.; Villa, M.; Steinhauser, G.; Boeck, H. [Vienna University of Technology-Atominstitut (Austria)

    2011-07-01

    The Vienna University of Technology/Atominstitut (VUT/ATI) operates a TRIGA Mark II research reactor. It is operated with a completely mixed core of three different types of fuel. Due to the US fuel return program, the ATI have to return its High Enriched Uranium (HEU) fuel latest by 2019. As an alternate, the Low Enrich Uranium (LEU) fuel is under consideration. The detailed results of the core conversion study are presented at the RRFM 2011 conference. This paper describes the burn up calculations of the new fuel to predict the future burn up behavior and core life time. It also develops an effective and optimized fuel management strategy for a possible future operation of the TRIGA Mark II with a LEU core. This work is performed by the combination of MCNP5 and diffusion based neutronics code TRIGLAV. (author)

  8. NEUTRONICS ANALYSIS ON MINI TEST FUEL IN THE RSG-GAS CORE

    Directory of Open Access Journals (Sweden)

    Tukiran Surbakti

    2016-03-01

    Full Text Available Abstract NEUTRONICS ANALYSIS ON MINI TEST FUEL IN THE RSG-GAS CORE. Research of UMo fuel for research reactor has been developing  right now. The fuel of  research reactor used is uranium low enrichment with high density. For supporting the development of fuel, an assessment of mini fuel in the RSG-GAS core was performed. The mini fuel are U7Mo-Al and U6Zr-Al with densitis of 7.0gU/cc and 5.2 gU/cc, respectively. The size of both fuel are the same namely 630x70.75x1.30 mm were inserted to the 3 plates of dummy fuel. Before being irradiated in the core, a calculation for safety analysis  from neutronics and thermohydrolics aspects were required. However, in this paper will discuss safety analysis of the U7Mo-Al and U6Zr-Al mini fuels from neutronic point of view.  The calculation was done using WIMSD-5B and Batan-3DIFF code. The result showed that both of the mini fuels could be irradiated in the RSG-GAS core with burn up less than 70 % within 12 cycles of operation without over limiting the safety margin. Power density of U7Mo-Al mini fuel bigger than U6Zr-Al fuel.   Key words: mini fuel, neutronics analysis, reactor core, safety analysis   Abstrak ANALISIS NEUTRONIK ELEMEN BAKAR UJI MINI DI TERAS RSG-GAS. Penelitian tentang bahan bakar UMo untuk reaktor riset terus berkembang saat ini. Bahan bakar reaktor riset yang digunakan adalah uranium pengkayaan rendah namun densitas tinggi.  Untuk mendukung pengembangan bahan bakar dilakukan uji elemen bakar mini di teras reakror RSG-GAS dengan tujuan menentukan jumlah siklus di dalam teras sehingga tercapai fraksi bakar maksimum. Bahan bakar yang diuji adalah U7Mo-Al dengan densitas 7,0 gU/cc dan U6Zr-Al densitas 5,2 gU/cc. Ukuran kedua bahan bakar uji tersebut adalah sama 630x70,75x1,30 mm dimasukkan masing masing kedalam 3 pelat dummy bahan bakar. Sebelum diiradiasi ke dalam teras reaktor maka perlu dilakukan perhitungan keselamatan baik secara neutronik maupun termohidrolik. Dalam makalah ini

  9. Overheating preventive system for reactor core fuels

    International Nuclear Information System (INIS)

    Ito, Daiju

    1981-01-01

    Purpose: To ensure the cooling function of reactor water in a cooling system in case of erroneous indication or misoperation by reliable temperature measurement for fuels and actuating relays through the conversion output obtained therefrom. Constitution: Thermometers are disposed laterally and vertically in a reactor core in contact with core fuels so as to correspond to the change of status in the reactor core. When there is a high temperature signal issued from one of the thermometers or one of conversion circuits, the function of relay contacts does not provide the closed state as a whole. When high temperature signals are issued from two or more thermometers of conversion circuits from independent OR circuits, the function of the relay contacts provides the closure state as a whole. Consequently, in the use of 2-out of 3-circuits, the entire closure state, that is, the misoperation of the relay contacts for the thermometer or the conversion circuits can be avoided. In this way, by the application of the output from the conversion circuits to the logic circuit and, in turn, application of the output therefrom to the relay groups in 2-out of 3-constitution, the reactor safety can be improved. (Horiuchi, T.)

  10. Progress in safety evaluation for the JMTR core conversion to LEU fuel

    International Nuclear Information System (INIS)

    Sakurai, F.; Komori, Y.; Saito, J.; Komukai, B.; Ando, H.; Nakata, H.; Sakakura, A.; Niiho, S.; Saito, M.; Futamura, Y.

    1991-01-01

    The JMTR (50 MWt) has been in steady operation with MEU fuel since July 1986. The effort is still continued to convert the core from MEU to LEU fuel. The LEU silicide fuel element at 4.8 gU/cm 3 with Cd wires as burnable absorbers has been selected in order to achieve upgraded fuel cycle performance of extended cycle length and reduced control rod movement operation. The neutronic calculation methods (diffusion theory model) developed for the LEU core with Cd wires was benchmarked with a detailed Monte Carlo model and verified experimentally using the critical facility, JMTRC. Hydraulic tests of the LEU silicide fuel element with Cd wires were completed with satisfactory results, and measurements of release/born (R/B) ratios of FPs of silicide fuel at high temperature are in progress. (orig.)

  11. Analysis of dismantling possibility and unloading efforts of fuel assemblies from core of WWER

    International Nuclear Information System (INIS)

    Danilov, V.; Dobrov, V.; Semishkin, V.; Vasilchenko, I.

    2006-01-01

    The computation methods of optimal dismantling sequence of fuel assemblies (FA) from core of WWER after different operating periods and accident conditions are considered. The algorithms of fuel dismantling sequence are constructed both on the basis of analysis of mutual spacer grid overlaps of adjacent fuel assemblies and numerical structure analysis of efforts required for FA removal as FA heaving from the core. Computation results for core dismantling sequence after 3-year operating period and LB LOCA are presented in the paper

  12. Optimization analysis of the nuclear fuel cycle transition to the last core

    International Nuclear Information System (INIS)

    Rebollo, L.; Blanco, J.

    2001-01-01

    The Zorita NPP was the first Spanish commercial nuclear reactor connected to the grid. It is a 160 MW one loop PWR, Westinghouse design, owned by UFG, in operation since 1968. The configuration of the reactor core is based on 69 fuel elements type 14 x 14, the standard reload of the present equilibrium cycle being based on 16 fuel elements with 3.6% enrichment in 235 U. In order to properly plan the nuclear fuel management of the transition cycles to its end of life, presently foreseen by 2008, an based on the non-reprocessing option required by the policy of the Spanish Administration, a technical-economical optimization analysis has been performed. As a result, a fuel management strategy has been defined looking for getting simultaneously the minimum integral fuel cost of the transition from the present equilibrium cycle to the last core, as well as the minimum residual worth of the fuel remaining in the core after the final outage. Based on the ''lessons learned'' derived from the study, the time margin for the decision making has been determined, and a planning of the nuclear fuel supply for the transition reloads, specifying both the number of fuel elements and their enrichment in 235 U, as been prepared. Finally, based on the calculated economical worth of the partially burned fuel of the last core, after the end of its operation cycle, a financial cover for yearly compensation from now on of the foreseen final lost has been elaborated. Most of the conceptual conclusions obtained are applicable to the other commercial nuclear reactors in operation owned by UFG, so that they are understood to be of general interest and broad application to commercial PWR. (author)

  13. In-core fuel management code package validation for BWRs

    International Nuclear Information System (INIS)

    1995-12-01

    The main goal of the present CRP (Coordinated Research Programme) was to develop benchmarks which are appropriate to check and improve the fuel management computer code packages and their procedures. Therefore, benchmark specifications were established which included a set of realistic data for running in-core fuel management codes. Secondly, the results of measurements and/or operating data were also provided to verify and compare with these parameters as calculated by the in-core fuel management codes or code packages. For the BWR it was established that the Mexican Laguna Verde 1 BWR would serve as the model for providing data on the benchmark specifications. It was decided to provide results for the first 2 cycles of Unit 1 of the Laguna Verde reactor. The analyses of the above benchmarks are performed in two stages. In the first stage, the lattice parameters are generated as a function of burnup at different voids and with and without control rod. These lattice parameters form the input for 3-dimensional diffusion theory codes for over-all reactor analysis. The lattice calculations were performed using different methods, such as, Monte Carlo, 2-D integral transport theory methods. Supercell Model and transport-diffusion model with proper correction for burnable absorber. Thus the variety of results should provide adequate information for any institute or organization to develop competence to analyze In-core fuel management codes. 15 refs, figs and tabs

  14. A Metal Fuel Core Concept for 1000 MWt Advanced Burner Reactor

    International Nuclear Information System (INIS)

    Yang, W.S.; Kim, T.K.; Grandy, C.

    2007-01-01

    This paper describes the core design and performance characteristics of a metal fuel core concept for a 1000 MWt Advanced Burner Reactor. A ternary metal fuel form of U-TRU-Zr was assumed with weapons grade plutonium feed for the startup core and TRU recovered from LWR spent fuel for the recycled equilibrium core. A compact burner core was developed by trade-off between the burnup reactivity loss and TRU conversion ratio, with a fixed cycle length of one-year. In the startup core, the average TRU enrichment is 15.5%, the TRU conversion ratio is 0.81, and the burnup reactivity loss over a cycle is 3.6% Δk. The heavy metal and TRU inventories are 13.1 and 2.0 metric tons, respectively. The average discharge burnup is 93 MWd/kg, and the TRU consumption rate is 55.5 kg/year. For the recycled equilibrium core, the average TRU enrichment is 22.1 %, the TRU conversion ratio is 0.73, and the burnup reactivity loss is 2.2% Δk. The TRU inventory and consumption rate are 2.9 metric tons and 81.6 kg/year, respectively. The evaluated reactivity coefficients provide sufficient negative feedbacks. The control systems provide shutdown margins that are more than adequate. The integral reactivity parameters for quasi-static reactivity balance analysis indicate favorable passive safety features, although detailed safety analyses are required to verify passive safety behavior. (authors)

  15. Neutronic analysis of a reference LEU core for Pakistan research reactor using oxide fuel

    International Nuclear Information System (INIS)

    Akhtar, K.M.; Qazi, M.K.; Bokhari, I.H.; Khan, L.A.; Pervez, S.

    1988-07-01

    Neutronic analysis of a 10 MW reference core for PARR, having 28 fresh LEU fuel elements arranged in a 6x5 configuration has been carried out using standard computer codes WIMS-D, EXTERMINATOR-II, and CITATION. Total nuclear power peaking of 3.2 has bee found to occur in the fuel plate adjacent to the water filled central flux trap at the depth of 43.8 cm from the top of the active core. Replacement of water in central flux trap with an aluminum block, having a 50 mm diameter water filled irradiation channel changes the flux profiles in fuel, core side flux trap and reflector. The thermal flux in the central flux trap decreases by about 53%. Therefore some of the fuel elements will have to be removed and the new configuration has to be analysed to determine the first operating core. However, after achieving some burn-up and confirmation from thermal hydraulic analysis, the core configuration analysed, will be the final working core. (orig./A.B.)

  16. Analysis of fuel management pattern of research reactor core of the MTR type design

    International Nuclear Information System (INIS)

    Lily Suparlina; Tukiran Surbakti

    2014-01-01

    Research reactor core design needs neutronics parameter calculation use computer codes. Research reactor MTR type is very interested because can be used as research and also a radioisotope production. The research reactor in Indonesia right now is already 25 years old. Therefore, it is needed to design a new research reactor as a compact core. Recent research reactor core is not enough to meet criteria acceptance in the UCD which already determined namely thermal neutron flux in the core is 1.0x10 15 n/cm 2 s. so that it is necessary to be redesign the alternative core design. The new research reactor design is a MTR type with 5x5 configuration core, uses U9Mo-Al fuel, 70 cm of high and uses two certainly fuel management pattern. The aim of this research is to achieve neutron flux in the core to meet the criteria acceptance in the UCD. Calculation is done by using WIMSD-B, Batan-FUEL and Batan-3DIFF codes. The neutronic parameters to be achieved by this calculation are the power level of 50 MW thermal and core cycle of 20 days. The neutronics parameter calculation is done for new U-9Mo-Al fuel with variation of densities.The result of calculation showed that the fresh core with 5x5 configuration, 360 gram, 390 gram and 450 gram of fuel loadings have meet safety margin and acceptance criteria in the UCD at the thermal neutron flux is more then 1.0 x 10 15 n/cm 2 s. But for equilibrium core is only the 450 gram of loading meet the acceptance criteria. (author)

  17. Core design and fuel rod analyses of a super fast reactor with high power density

    International Nuclear Information System (INIS)

    Ju, Haitao; Cao, Liangzhi; Lu, Haoliang; Oka, Yoshiaki; Ikejiri, Satoshi; Ishiwatari, Yuki

    2009-01-01

    A Super Fast Reactor is a pressure-vessel type, fast spectrum SuperCritical Water Reactor (SCWR) that is presently researched in a Japanese project. One of the most important advantages of the Super Fast Reactor is the higher power density compared to the thermal spectrum SCWR, which reduces the capital cost. A preliminary core has an average power density of 158.8W/cc. In this paper, the principle of improving the average power density is studied and the core design is improved. After the sensitivity analyses on the fuel rod configurations, the fuel assembly configurations and the core configurations, an improved core with an average power density of 294.8W/cc is designed by 3-D neutronic/thermal-hydraulic coupled calculations. This power density is competitive with that of typical Liquid Metal Fast Breeder Reactors (LMFBR). In order to ensure the fuel rod integrity of this core design, the fuel rod behaviors on the normal operating condition are analyzed using FEMAXI-6 code. The power histories of each fuel rod are taken from the neutronics calculation results in the core design. The cladding surface temperature histories are taken from the thermal-hydraulic calculation results in the core design. Four types of the limiting fuel rods, with the Maximum Cladding Surface Temperature (MCST), Maximum Power Peak(MPP), Maximum Discharge Burnup(MDB) and Different Coolant Flow Pattern (DCFP), are chosen to cover all the fuel rods in the core. The available design range of the fuel rod design parameters, such as initial gas plenum pressure, gas plenum position, gas plenum length, grain size and gap size, are found out in order to satisfy the following design criteria: (1) Maximum fuel centerline temperature should be less than 1900degC. (2) Maximum cladding stress in circumstance direction should be less than 100MPa. (3) Pressure difference on the cladding should be less than 1/3 of buckling collapse pressure. (4) Cumulative damage faction (CDF) of the cladding should be

  18. Sensitivity of reactivity feedback due to core bowing in a metallic-fueled core

    International Nuclear Information System (INIS)

    Nakagawa, Masatoshi; Kawashima, Masatoshi; Endo, Hiroshi; Nishimura, Tomohiro

    1991-01-01

    A sensitivity study has been carried out on negative reactivity feedback caused by core bowing to assess the potential effectiveness of FBR passive safety features in regard to withstanding an anticipated transient without scram (ATWS). In the present study, an analysis has been carried to obtain the best material and geometrical conditions concerning the core restraint system out for several power to flow rates (P/F), up to 2.0 for a 300 MWe metallic-fueled core. From this study, it was clarified that the pad stiffness at an above core loading pads (ACLP) needs to be large enough to ensure negative reactivity feedback against ATWS. It was also clarified that there is an upper limit for the clearances between ducts at ACLP. A new concept, in regard to increasing the absolute value for negative reactivity feedback due to core bowing at ATWS, is proposed and discussed. (author)

  19. Passive-X-ray fluorescence determination of the plutonium and uranium ratio in burnt-up fuel

    International Nuclear Information System (INIS)

    Zhelev, Z.

    1983-05-01

    This non-destructive method was proposed for comparatively simple and not labour-intensive determination of the Pu and U ratio in WWER-440 (PWR type) reactor spent fuel. For this purpose the mini-tablets (2mm and length 5mm) were irradiated for 65 and 130 days in dry channel of the WWER-440 reactor passed through its active core. The ratio of Pu and U and ratio of the isotopes 134 Cs and 137 Cs were determined by means of KX-rays and gamma-scanning analyses correspondingly. It was shown that there was a simple functional dependance between the ratio of Pu and U and the ratio of Cs isotopes

  20. Gas-cooled Fast Reactor (GFR) fuel and In-Core Fuel Management

    International Nuclear Information System (INIS)

    Weaver, K.D.; Sterbentz, J.; Meyer, M.; Lowden, R.; Hoffman, E.; Wei, T.Y.C.

    2004-01-01

    The Gas-Cooled Fast Reactor (GCFR) has been chosen as one of six candidates for development as a Generation IV nuclear reactor based on: its ability to fully utilize fuel resources; minimize or reduce its own (and other systems) actinide inventory; produce high efficiency electricity; and the possibility to utilize high temperature process heat. Current design approaches include a high temperature (2 850 C) helium cooled reactor using a direct Brayton cycle, and a moderate temperature (550 C - 650 C) helium or supercritical carbon dioxide (S-CO 2 ) cooled reactor using direct or indirect Brayton cycles. These design choices have thermal efficiencies that approach 45% to 50%, and have turbomachinery sizes that are much more compact compared to steam plants. However, there are challenges associated with the GCFR, which are the focus of current research. This includes safety system design for decay heat removal, development of high temperature/high fluence fuels and materials, and development of fuel cycle strategies. The work presented here focuses on the fuel and preliminary in-core fuel management, where advanced ceramic-ceramic (cercer) dispersion fuels are the main focus, and average burnups to 266 M Wd/kg appear achievable for the reference Si C/(U,TRU)C block/plate fuel. Solid solution (pellet) fuel in composite ceramic clad (Si C/Si C) is also being considered, but remains as a backup due to cladding fabrication challenges, and high centerline temperatures in the fuel. (Author)

  1. Non-Proliferative, Thorium-Based, Core and Fuel Cycle for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Todosow, M.; Raitses, G.; Galperin, A.

    2009-01-01

    Two of the major barriers to the expansion of worldwide adoption of nuclear power are related to proliferation potential of the nuclear fuel cycle and issues associated with the final disposal of spent fuel. The Radkowsky Thorium Fuel (RTF) concept proposed by Professor A. Radkowsky offers a partial solution to these problems. The main idea of the concept is the utilization of the seed-blanket unit (SBU) fuel assembly geometry which is a direct replacement for a 'conventional' assembly in either a Russian pressurized water reactor (VVER-1000) or a Western pressurized water reactor (PWR). The seed-blanket fuel assembly consists of a fissile (U) zone, known as seed, and a fertile (Th) zone known as blanket. The separation of fissile and fertile allows separate fuel management schemes for the thorium part of the fuel (a subcritical 'blanket') and the 'driving' part of the core (a supercritical 'seed'). The design objective for the blanket is an efficient generation and in-situ fissioning of the U233 isotope, while the design objective for the seed is to supply neutrons to the blanket in a most economic way, i.e. with minimal investment of natural uranium. The introduction of thorium as a fertile component in the nuclear fuel cycle significantly reduces the quantity of plutonium production and modifies its isotopic composition, reducing the overall proliferation potential of the fuel cycle. Thorium based spent fuel also contains fewer higher actinides, hence reducing the long-term radioactivity of the spent fuel. The analyses show that the RTF core can satisfy the requirements of fuel cycle length, and the safety margins of conventional pressurized water reactors. The coefficients of reactivity are comparable to currently operating VVER's/PWR's. The major feature of the RTF cycle is related to the total amount of spent fuel discharged for each cycle from the reactor core. The fuel management scheme adopted for RTF core designs allows a significant decrease in the

  2. Fuel requirements for experimental devices in MTR reactors. A perturbation model for reactor core analysis

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1991-01-01

    Irradiation in neutron absorbing devices, requiring high fast neutron fluxes in the core or high thermal fluxes in the reflector and flux traps, lead to higher density fuel and larger core dimensions. A perturbation model of the reactor core helps to estimate the fuel requirements. (orig.)

  3. Benchmark for Neutronic Analysis of Sodium-cooled Fast Reactor Cores with Various Fuel Types and Core Sizes

    International Nuclear Information System (INIS)

    Stauff, N.E.; Kim, T.K.; Taiwo, T.A.; Buiron, L.; Rimpault, G.; Brun, E.; Lee, Y.K.; Pataki, I.; Kereszturi, A.; Tota, A.; Parisi, C.; Fridman, E.; Guilliard, N.; Kugo, T.; Sugino, K.; Uematsu, M.M.; Ponomarev, A.; Messaoudi, N.; Lin Tan, R.; Kozlowski, T.; Bernnat, W.; Blanchet, D.; Brun, E.; Buiron, L.; Fridman, E.; Guilliard, N.; Kereszturi, A.; Kim, T.K.; Kozlowski, T.; Kugo, T.; Lee, Y.K.; Lin Tan, R.; Messaoudi, N.; Parisi, C.; Pataki, I.; Ponomarev, A.; Rimpault, G.; Stauff, N.E.; Sugino, K.; Taiwo, T.A.; Tota, A.; Uematsu, M.M.; Monti, S.; Yamaji, A.; Nakahara, Y.; Gulliford, J.

    2016-01-01

    One of the foremost Generation IV International Forum (GIF) objectives is to design nuclear reactor cores that can passively avoid damage of the reactor when control rods fail to scram in response to postulated accident initiators (e.g. inadvertent reactivity insertion or loss of coolant flow). The analysis of such unprotected transients depends primarily on the physical properties of the fuel and the reactivity feedback coefficients of the core. Within the activities of the Working Party on Scientific Issues of Reactor Systems (WPRS), the Sodium Fast Reactor core Feed-back and Transient response (SFR-FT) Task Force was proposed to evaluate core performance characteristics of several Generation IV Sodium-cooled Fast Reactor (SFR) concepts. A set of four numerical benchmark cases was initially developed with different core sizes and fuel types in order to perform neutronic characterisation, evaluation of the feedback coefficients and transient calculations. Two 'large' SFR core designs were proposed by CEA: those generate 3 600 MW(th) and employ oxide and carbide fuel technologies. Two 'medium' SFR core designs proposed by ANL complete the set. These medium SFR cores generate 1 000 MW(th) and employ oxide and metallic fuel technologies. The present report summarises the results obtained by the WPRS for the neutronic characterisation benchmark exercise proposed. The benchmark definition is detailed in Chapter 2. Eleven institutions contributed to this benchmark: Argonne National Laboratory (ANL), Commissariat a l'energie atomique et aux energies alternatives (CEA of Cadarache), Commissariat a l'energie atomique et aux energies alternatives (CEA of Saclay), Centre for Energy Research (CER-EK), Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Nuclear Technology and Energy Systems (IKE), Japan Atomic Energy Agency (JAEA), Karlsruhe Institute of Technology (KIT

  4. Identification and application of the valid wavelength bands for burnt area detection and fire severity classification using Landsat/TM data

    International Nuclear Information System (INIS)

    Maki, M.; Tamura, M.

    2003-01-01

    Firstly, by using Landsat Thematic Mapper (TM) imagery before and after forest fire, the valid wavelength bands for detecting burnt areas were examined and compared to NDVI. Secondly, by using the valid wavelength bands, mapping of burnt area and classification of fire severity were examined. The results show that (a) channel 4 and 7 were more sensitive than other channels for detecting burnt area, (b) BAI (Burnt Area Index) [(ch. 4-ch. 7)/(ch. 4+ch. 7)] was more useful than NDVI for detecting burnt areas, and (c) BAI imagery was more useful for classification of burn severity than NDVI imagery

  5. Regional overpower protection system analysis for a DUPIC fuel CANDU core

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok; Park, Jee Won

    2003-06-01

    The regional overpower protection (ROP) system was assessed a CANDU 6 reactor with the DUPIC fuel, including the validation of the WIMS/RFSP/ROVER-F code system used for the estimation of ROP trip setpoint. The validation calculation has shown that it is valid to use the WIMS/RFSP/ROVER-F code system for ROP system analysis of the CANDU 6 core. For the DUPIC core, the ROP trip setpoint was estimated to be 125.7%, which is almost the same as that of the standard natural uranium core. This study has shown that the DUPIC fuel does not hurt the current ROP trip setpoint designed for the natural uranium CANDU 6 reactor

  6. A complete fuel development facility utilizing a dual core TRIGA reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, A; Law, G C [General Atomic Co., San Diego, CA (United States)

    1974-07-01

    A TRIGA Dual Core Reactor System has been chosen by the Romanian Government as the heart of a new fuel development facility which will be operated by the Romanian Institute for Nuclear Technologies. The Facility, which will be operational in 1976, is an integral part of the Romanian National Program for Power Reactor Development, with particular emphasis being placed on fuel development. The unique combination of a new 14 MW steady state TRIGA reactor, and the well-proven TRIGA Annular Core Pulsing Reactor (ACPR) in one below-ground reactor pool resulted in a substantial construction cost savings and gives the facility remarkable experimental flexibility. The inherent safety of the TRIGA fuel elements in both reactor cores means that a secondary containment building is not necessary, resulting in further construction cost savings. The 14 MW steady state reactor gives acceptably high neutron fluxes for long- term testing of various prototype fuel-cladding-coolant combinations; and the TRIGA ACPR high pulse capability allows transient testing of fuel specimens, which is so important for accurate prediction of the performance of power reactor fuel elements under postulated failure conditions. The 14 MW steady state reactor has one large and three small in-core irradiation loop positions, two large irradiation loop positions adjacent to the core face, and twenty small holes in the beryllium reflector for small capsule irradiation. The power level of 14 MW will yield peak unperturbed thermal neutron fluxes in the central experiment position approaching 3.0 x 10{sup 14} n/cm{sup 2}-sec. The ACPR has one large dry central experimental cavity which can be loaded at pool level through a shielded offset loading tube; a small diameter in-core flux trap; and an in-core pneumatically-operated capsule irradiation position. A peak pulse of 15,000 MW will yield a peak fast neutron flux in the central experimental cavity of about 1.5 x 10{sup 17} n/cm{sup 2}-sec. The pulse width at

  7. In-core fuel management programs for nuclear power reactors

    International Nuclear Information System (INIS)

    1984-10-01

    In response to the interest shown by Member States, the IAEA organized a co-ordinated research programme to develop and make available in the open domain a set of programs to perform in-core fuel management calculations. This report summarizes the work performed in the context of the CRP. As a result of this programme, complete in-core fuel management packages for three types of reactors, namely PWR's, BWR's and PHWR are now available from the NEA Data Bank. For some reactor types, these program packages are available with three levels of sophistication ranging from simple methods for educational purposes to more comprehensive methods that can be used for reactor design and operation. In addition some operating data have been compiled to allow code validation. (author)

  8. Neutronic calculations of PARR-1 cores using LEU silicide fuel

    International Nuclear Information System (INIS)

    Arshad, M.; Bakhtyar, S.; Hayat, T.; Salahuddin, A.

    1991-08-01

    Detailed neutronic calculations have been carried out for different PARR-1 cores utilizing low enriched uranium (LEU) silicide fuel and operating at an upgraded power of 9 MW. The calculations include the search for critical loadings in open and stall ends of the pool, neutronic analysis of the first full equilibrium core and calculations cores. The burnup study of inventory have also been carried out. Further, the reactivity coefficients of the first full power operation core are evaluated for use in the accident analysis. 14 figs. (author)

  9. ROLE OF NEUTRALS IN CORE FUELING AND PEDESTAL STRUCTURE IN H-MODE DIII-D DISCHARGES

    International Nuclear Information System (INIS)

    WOLF, NS; PETRIE, TW; PORTER, GD; ROGNLIEN, TD; GROEBNER, RJ; MAKOWSKI, MA

    2002-01-01

    OAK A271 ROLE OF NEUTRALS IN CORE FUELING AND PEDESTAL STRUCTURE IN H-MODE DIII-D DISCHARGES. The 2-D fluid code UEDGE was used to analyze DIII-D experiments to determine the role of neutrals in core fueling, core impurities, and also the H-mode pedestal structure. The authors compared the effects of divertor closure on the fueling rate and impurity density of high-triangularity, H-mode plasmas. UEDGE simulations indicate that the decrease in both deuterium core fueling (∼ 15%-20%) and core carbon density (∼ 15%-30%) with the closed divertor compared to the open divertor configuration is due to greater divertor screening of neutrals. They also compared UEDGE results with a simple analytic model of the H-mode pedestal structure. The model predicts both the width and gradient of the transport barrier in n e as a function of the pedestal density. The more sophisticated UEDGE simulations of H-mode discharges corroborate the simple analytic model, which is consistent with the hypothesis that fueling processes play a role in H-mode transport barrier formation

  10. GNPS 18-months fuel cycles core thermal hydraulic design

    International Nuclear Information System (INIS)

    Liu Changwen; Zhou Zhou

    2002-01-01

    GNPS begins to implement the 18-month fuel cycles from the initial annual reload at cycle 9, thus the initial core thermal hydraulic design is not valid any more. The new critical heat flux (CHF) correlation, FC, which is developed by Framatome, is used in the design, and the generalized statistical methodology (GSM) instead of the initial deterministic methodology is used to determine the DNBR design limit. As the AFA 2G and AFA 3G are mixed loaded in the transition cycle, it will result that the minimum DNBR in the mixed core is less than that of AFA 3G homogenous core, the envelop mixed core DNBR penalty is given. Consequently the core physical limit for mixed core and equilibrium cycles, and the new over temperature ΔT overpower ΔT are determined

  11. Reactor core T-H characteristics determination in case of parallel operation of different fuel assembly types

    International Nuclear Information System (INIS)

    Hermansky, J.; Petenyi, V.; Zavodsky, M.

    2009-01-01

    The WWER-440 nuclear fuel vendor permanently improve the assortment of produced nuclear fuel assemblies for achieving better fuel cycle economy and reactor operation safety. Therefore it is necessary to have the skilled methodology and computing code for analyzing factors which affecting the accuracy of flow redistributed determination through reactor on flows through separate parts of reactor core in case of parallel operation different assembly types. Whereas the geometric parameters of new manufactured assemblies were changed recently, the calculated flows through the fuel parts of different type of assemblies are depended also on their real position in reactor core. Therefore the computing code CORFLO was developed in VUJE Trnava for carrying out stationary analyses of T-H characteristics of reactor core within 60 deg symmetry. The CORFLO code deals the area of the active core which consists of 312 fuel assemblies and 37 control assemblies. Regarding the rotational 60 deg symmetry of reactor core only 1/6 of reactor core with 59 fuel assemblies is calculated. Computing code is verified and validated at this time. Paper presents the short description of computing code CORFLO with some calculated results. (Authors)

  12. Possibility evaluation of eliminating the saturated control fuel element from Tehran research reactor core

    International Nuclear Information System (INIS)

    Mirvakili, S.M.; Keyvani, M.; Arshi, S. Safaei; Khalafi, H.

    2012-01-01

    Highlights: ► We show safe operation of Tehran research reactor without one of its control rods. ► We propose an optimum new core configuration by fuel management calculations. ► We calculate neutronic and thermal hydraulic parameters of the new core. ► Parameters are consistent with the safety criteria. - Abstract: In this study the possibility of safe operation of Tehran research reactor (TRR) providing the elimination of one control rod is evaluated. One of the control fuel elements (CFEs) of TRR has been reached the maximum permissible burn-up and due to the impossibility of fresh fuel assembly provision under current situation, providing an optimum core configuration which satisfies safe operation conditions by applying fuel management calculations is essential. In order to ensure the safe and stable operation of recently proposed configuration for TRR core, neutronic and thermal hydraulic parameters of the new core are calculated and compared with the safety criteria. The results show good compatibility with reactor safety criteria, and provide desired shutdown margin and safety reactivity factor.

  13. CFD Analysis on a Core Outlet Flow through the Fuel Alignment Plant of SMART

    International Nuclear Information System (INIS)

    Kim, Y. I.; Bae, Y. M.; Kim, K. K.

    2014-01-01

    CFD (Computational Fluid Dynamics) simulations were performed to confirm the core flow distribution for SMART, which acquired standard design approval in 2012. In this paper, CFD simulation is also used to calculate the pressure distribution of a core outlet, a Fuel Alignment Plate (FAP), for SMART. In SMART, the fluid discharged from the Steam Generator comes into a Flow Mixing Header Assembly (FMHA), and is rearranged and split into a very fine size. The FMHA is greatly important for enhancing the flow distribution of a downcomer during a normal operation, transient, and even accidents. Then, the fluid discharged from the FMHA flows into the core upstream through flow skirt holes. The Low Core Support Plate (LCSP) reallocates the flow introducing into the inlet core from the core upstream. The deviation of flow distribution becomes smaller or almost disappears by LCSP holes having relatively large loss coefficient compared to the downstream flow deviation. In an open core, the flow deviation at the core inlet region is diminished by cross flow as it goes upward. Near the core outlet, the flow distribution can be distorted by the influence of a Fuel Alignment Plate (FAP) installed above the fuels. In this paper, the effect of the core outlet flow structure such as the FAP holes of SMART is investigated. Before the calculation, the influences of mesh size and turbulence models are inspected. CFD simulations were performed to investigate the effect of FAP flow holes on the core outlet flow of SMART. As a preliminary study, the dependency of the mesh size and turbulence models was tested; a fine grid was applied, the effect of which is negligible, and the core outlet flow is not sensitive to the turbulence models. In brief, the flow resistance of FAP is less than 15% of that of the fuel assemblies. The flow resistance deviation between two flow path patterns is less than 1% of that of active core. Even two flow path patterns located at the downstream location of the

  14. On the problem of in-core fuel management in power reactors

    International Nuclear Information System (INIS)

    Marinkovic, N.; Matausek, M.V.

    1985-01-01

    Within the scope of in-core fuel management including refuelling schedule and reactivity control it is indispensable to define nuclear fuel worth, optimal depletion of the spent fuel assemblies as well as isotopic composition of the spent fuel. This paper shows the computed values of the mentioned parameters in case of different reactor types, PWR, WWER, HWR and BWR of 1000 MWe as well as the intensity of radiation of the spent fuel 3 and 1 years after fission.(author)

  15. Influence of remaining fission products in low-decontaminated fuel on reactor core characteristics

    International Nuclear Information System (INIS)

    Ohki, Shigeo

    2002-07-01

    Design study of core, fuel and related fuel cycle system with low-decontaminated fuel has been performed in the framework of the feasibility study (F/S) on commercialized fast reactor cycle systems. This report summarizes the influence on core characteristics of remaining fission products (FPs) in low-decontaminated fuel related to the reprocessing systems nominated in F/S phase I. For simple treatment of the remaining FPs in core neutronics calculation the representative nuclide method parameterized by the FP equivalent coefficient and the FP volume fraction was developed, which enabled an efficient evaluation procedure. As a result of the investigation on the sodium cooled fast reactor with MOX fuel designed in fiscal year 1999, it was found that the pyrochemical reprocessing with molten salt (the RIAR method) brought the largest influence. Nevertheless, it was still within the allowable range. Assuming an infinite-times recycling, the alternations in core characteristics were evaluated as follows: increment of burnup reactivity by 0.5%Δk/kk', decrement of breeding ratio by 0.04, increment of sodium void reactivity by 0.1x10 -2 Δk/kk' and decrement of Doppler constant (in absolute value) by 0.7x10 -3 Tdk/dT. (author)

  16. Core conversion from rod to plate type fuel elements in research reactors

    International Nuclear Information System (INIS)

    Khattab, M.S.; Mina, A.R.

    1997-01-01

    Core thermalhydraulic analysis have been performed for rod and plate types fuel elements without altering the core bundles square grid spacer (68 mm, side) and coolant mass flow rate. The U O 2 -Mg, 10% enrichment rod type fuel elements are replaced by the MTR plate type, U-Al alloy of 20% enrichment. Coolant mass flux increased from 2000 kg/m 2 S to 5000 kg/m 2 S. Reactor power could be upgraded from 2 to 10 MW without significantly altering the steady state, thermal-hydraulic safety margins. Fuel, clad and coolant transient temperatures are determined inside the core hot channel during flow coast down using paret code. Residual heat removal system of 20% coolant capacity is necessary for upgrading reactor power to encounter the case of pumps off at 10 MW nominal operation. 6 figs., 2 tabs

  17. Experiments of JRR-4 low-enriched-uranium-silicied fuel core

    International Nuclear Information System (INIS)

    Hirane, Nobuhiko; Ishikuro, Yasuhiro; Nagadomi, Hideki; Yokoo, Kenji; Horiguchi, Hironori; Nemoto, Takumi; Yamamoto, Kazuyoshi; Yagi, Masahiro; Arai, Nobuyoshi; Watanabe, Shukichi; Kashima, Yoichi

    2006-03-01

    JRR-4, a light-water-moderated and cooled, swimming pool type research reactor using high-enriched uranium plate-type fuels had been operated from 1965 to 1996. In order to convert to low-enriched-uranium-silicied fuels, modification work had been carried out for 2 years, from 1996 to 1998. After the modification, start-up experiments were carried out to obtain characteristics of the low-enriched-uranium-silicied fuel core. The measured excess reactivity, reactor shutdown margin and the maximum reactivity addition rate satisfied the nuclear limitation of the safety report for licensing. It was confirmed that conversion to low-enriched-uranium-silicied fuels was carried out properly. Besides, the necessary data for reactor operation were obtained, such as nuclear, thermal hydraulic and reactor control characteristics. This report describes the results of start-up experiments and burnup experiments. The first criticality of low-enriched-uranium-silicied core was achieved on 14th July 1998, and the operation for joint-use has been carried out since 6th October 1998. (author)

  18. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L. [Moscow Engineering Physics Institute (State University) (Russian Federation); Saito, M. [Tokyo Institute of Technology (Japan)

    2003-07-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, {sup 237}Np, {sup 238}Pu, {sup 231}Pa, {sup 232}U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations.

  19. Engineering fuel reloading sequence optimization for in-core shuffling system

    International Nuclear Information System (INIS)

    Jeong, Seo G.; Suh, Kune Y.

    2008-01-01

    Optimizing the nuclear fuel reloading process is central to enhancing the economics of nuclear power plant (NPP). There are two kinds of reloading method: in-core shuffling and ex-core shuffling. In-core shuffling has an advantage of reloading time when compared with ex-core shuffling. It is, however, not easy to adopt an in-core shuffling because of additional facilities required and regulations involved at the moment. The in-core shuffling necessitates minimizing the movement of refueling machine because reloading paths can be varied according to differing reloading sequences. In the past, the reloading process depended on the expert's knowledge and experience. Recent advances in computer technology have apparently facilitated the heuristic approach to nuclear fuel reloading sequence optimization. This work presents a first in its kind of in-core shuffling whereas all the Korean NPPs have so far adopted ex-core shuffling method. Several plants recently applied the in-core shuffling strategy, thereby saving approximately 24 to 48 hours of outage time. In case of in-core shuffling one need minimize the movement of refueling machine because reloading path can be varied according to different reloading sequences. Advances in computer technology have enabled optimizing the in-core shuffling by solving a traveling salesman problem. To solve this problem, heuristic algorithm is used, such as ant colony algorithm and genetic algorithm. The Systemic Engineering Reload Analysis (SERA) program is written to optimize shuffling sequence based on heuristic algorithms. SERA is applied to the Optimized Power Reactor 1000 MWe (OPR1000) on the assumption that the NPP adopts the in-core shuffling in the foreseeable future. It is shown that the optimized shuffling sequence resulted in reduced reloading time. (author)

  20. Design of Computerized in Core Fuel Management System of Kartini Reactor

    International Nuclear Information System (INIS)

    Edi-Trijono-Budisantoso; Sardjono, Y; Edi-Purwanto; Widi-Setiawan

    2000-01-01

    The program organization for managing Kartini reactor fuel elements has been designed. This program organization work to process on-line operationdata-base and core configuration data-base to produce data-base for in-corefuer management. The in-core fuel management data-base consist of irradiationhistory card, radionuclides inventory and radiation dose for each fuelelement. The computation in this process based on the ORIGEN2, TRIGAP codesand some in-house developed codes that perform matching between output dataof many codes to output data of other code. This program organization worksunder control of a program manager by following the scheduled time table. Thedesign gives a description of the first step development of the in-core fuelmanagement that will be implemented in the internet web server. (author)

  1. Fuel density effect on parameter of reactivity coefficient of the Innovative Research Reactor core

    International Nuclear Information System (INIS)

    Rokhmadi; Tukiran S

    2013-01-01

    The multipurpose of research reactor utilization make many countries build the new research reactor. Trend of this reactor for this moment is multipurpose reactor type with a compact core to get high neutron flux at the low or medium level of power. The research reactor in Indonesia right now is already 25 year old. Therefor, it is needed to design a new research reactor as a alternative called it innovative research reactor (IRR) and then as an exchanger for old research reactor. The aim of this research is to complete RRI core design data as a requirement for design license. Calculation done is to get the RRI core reactivity coefficients with 5 x 5 core configuration and 20 MW of power, has more than 40 days cycle of length. The RRI core reactivity coefficient calculation is done for new U-"9Mo-Al fuel with variation of densities. The calculation is done by using WIMSD-5B and BATAN-FUEL computer codes. The result of calculation for conceptual design showed that the equilibrium RRI core with 5 x 5 configuration, 450 g, 550 g and 700 g of fuel loadings have negative reactivity coefficients of fuel temperature, moderator temperature, void fraction and density of moderator but the values of the reactivities are very variation. This results has met the safety criteria for RRI core conceptual design. (author)

  2. Linear variable differential transformer and its uses for in-core fuel rod behavior measurements

    International Nuclear Information System (INIS)

    Wolf, J.R.

    1979-01-01

    The linear variable differential transformer (LVDT) is an electromechanical transducer which produces an ac voltage proportional to the displacement of a movable ferromagnetic core. When the core is connected to the cladding of a nuclear fuel rod, it is capable of producing extremely accurate measurements of fuel rod elongation caused by thermal expansion. The LVDT is used in the Thermal Fuels Behavior Program at the U.S. Idaho National Engineering Laboratory (INEL) for measurements of nuclear fuel rod elongation and as an indication of critical heat flux and the occurrence of departure from nucleate boiling. These types of measurements provide important information about the behavior of nuclear fuel rods under normal and abnormal operating conditions. The objective of the paper is to provide a complete account of recent advances made in LVDT design and experimental data from in-core nuclear reactor tests which use the LVDT

  3. Fast reactors with axial arrangement of oxide and metal fuels in the core

    International Nuclear Information System (INIS)

    Troyanov, M.F.; Ilyunin, V.G.; Matveev, V.I.; Murogov, V.M.; Proshkin, A.A.; Rudneva, V.Ya.; Shmelev, A.N.

    1980-01-01

    Problems of using metal fuel in fast reactor (FR) core are discussed Results are given of the calculation of two-dimentional (R-Z) FR version having a composed core with the combined usage of oxide and metal fuels having parameters close to optimal from the point of view of fuel breeding rate, an oxide subzone having increased enrichment and a decreased proper conversion ratio. A reactor is considered where metallic fuel elements are placed from the side of ''cold'' coolant inlet (400-480 deg C), and oxide fuel elements - in the region where the coolant has a higher temperature (500-560 deg C). It is shown that the new fuel breeding rate in such a reactor can be increased by 20-30% as compared with an oxide fuel reactor. Growth of the total conversion ratio is mainly stipulated with the increase of the inner conversion ratio of the core (CRC) which is important not only from the point of view of nuclear fuel breeding rate but also the optimization of the mode of powerful fast reactor operation with provision for the change in reactivity in the process of its continuous operation. The fact, that the core version under investigation has a CRC value slightly exceeding unit, stipulates considerably less reactivity change as compared with the oxide version in the process of the reactor operation and permits at a constant reactor control system power to significantly increase the time between reloadings and, therefore, to increase the NPP load factor which is of great importance both from the point of view of economy and the improvement of operation conditions as well as of reactor operation reliability. It is concluded on the base of the analysis of the results obtained that FRs with the combined usage of oxide and metal fuels having an increased specific load and increased conversion ratio as compared with the oxide fuel FRs provide a higher rate of development of the whole nuclear power balanced with respect to the fuel [ru

  4. Reconstitution of fuel assemblies and core components

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, Wolfgang; Langenberger, Jan [AREVA NP GmbH (Germany)

    2012-11-01

    Due to AREVA's experience and big portfolio of techniques, reconstitution of fuel assemblies and core components at light water reactors is possible within a reasonable timeframe and with interesting cost benefit. Customer feedback indicates the sustainability of such reconstitutions. As a result, a long-term maintenance of value can be assured and early waste disposal can be avoided. (orig.)

  5. Safety assessment to support NUE fuel full core implementation in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fan, H.Z.; Laurie, T.; Siddiqi, A.; Li, Z.P.; Rouben, D.; Zhu, W.; Lau, V.; Cottrell, C.M. [CANDU Energy Inc., Mississauga, Ontario (Canada)

    2013-07-01

    The Natural Uranium Equivalent (NUE) fuel contains a combination of recycled uranium and depleted uranium, in such a manner that the resulting mixture is similar to the natural uranium currently used in CANDU® reactors. Based on successful preliminary results of 24 bundles of NUE fuel demonstration irradiation in Qinshan CANDU 6 Unit 1, the NUE full core implementation program has been developed in cooperation with the Third Qinshan Nuclear Power Company and Candu Energy Inc, which has recently received Chinese government policy and funding support from their National-Level Energy Innovation program. This paper presents the safety assessment results to technically support NUE fuel full core implementation in CANDU reactors. (author)

  6. HTGR Fuels and Core Development Program. Quarterly progress report for the period ending August 31, 1977. [Graphite and fuel irradiation; fission product release

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    The work reported includes studies of reactions between core materials and coolant impurities, basic fission product transport mechanisms, core graphite development and testing, the development and testing of recyclable fuel systems, and physics and fuel management studies. Materials studies include irradiation capsule tests of both fuel and graphite. Experimental procedures and results are discussed and data are presented.

  7. Failure mechanisms for compacted uranium oxide fuel cores

    International Nuclear Information System (INIS)

    Berghaus, D.G.; Peacock, H.B.

    1980-01-01

    Tension, compression, and shear tests were performed on test specimens of aluminum-clad, compacted powder fuel cores to determine failure mechanisms of the core material. The core, which consists of 70% uranium oxide in an aluminum matrix, frequently fails during post-extrusion drawing. Tests were conducted to various strain levels up to failure of the core. Sections were made of tested specimens to microscopically study initiation of failure. Two failure modes wee observed. Tensile failure mode is initiated by prior tensile failure of uranium oxide particles with the separation path strongly influenced by the arrangement of particles. Delamination mode consists of the separation of laminae formed during extrusion of tubes. Separation proceeds from fine cracks formed parallel to the laminae. Tensile failure mode was experienced in tension and shear tests. Delamination mode was produced in compression tests

  8. Comparative studies of CERCER and CERMET fuels for EFIT from the viewpoint of core performance and safety

    International Nuclear Information System (INIS)

    Chen, X.N.; Rineiski, A.; Maschek, W.; Liu, P.; Boccaccini, C.M.; Sobolev, V.; Delage, F.; Rimpault, G.

    2011-01-01

    The European Facility for Industrial Transmutation (EFIT) has been developed within the 6. EU Framework by the EUROTRANS Program, aiming at a generic conceptual design of an accelerator driven transmuter. This paper deals with assessments of EFIT cores with CERCER and CERMET fuels from the viewpoint of core performance and safety. The conclusive remarks can be drawn as follows. Because of its much better thermal conductivity, the CERMET core can be designed by using thicker pins, so that it has the same or even better transmutation performance compared to the CERCER core. Both CERCER and CERMET fuels fulfill safety requirements. Moreover the CERMET fuel has higher fuel safety margins than the CERCER one. Preliminary analyses show that the CERMET total core power can be further increased by 50% at least without exceeding fuel and clad temperature limits. (authors)

  9. Neutronic studies of the long life core concept: Part 1, Design and performance of 1000 MWe uranium oxide fueled low power density LMR cores

    International Nuclear Information System (INIS)

    Orechwa, Y.

    1987-04-01

    The parametric behavior of some key neutronic performance parameters for low power density LMR cores fueled with uranium oxide is investigated. The results are compared to reference homogeneous and heterogeneous cores with normal fuel management and Pu fueling. It can be concluded that with respect to minimizing the initial fissile mass and thereby economizing on the inventory costs and carrying charges, the superior neutron economy of the LMR fuel cycle is best exploited through normal fuel management with Pu recycling. In the once-through mode the LMR fuel cycle has disadvantages due to a higher fissile inventory and is not competitive with the LWR fuel cycle

  10. Neutronic feasibility of PWR core with mixed oxide fuels in the Republic of Korea

    International Nuclear Information System (INIS)

    Kim, Y.J.; Joo, H.K.; Jung, H.G.; Sohn, D.S.

    1997-01-01

    Neutronic feasibility of a PWR core with mixed oxide (MOX) fuels has been investigated as part of the feasibility study for recycling spent fuels in Korea. A typical 3-loop PWR with 900 MWe capacity is selected as reference plant to develop equilibrium core designs with low-leakage fuel management scheme, while incorporating various MOX loading. The fuel management analyses and limited safety analyses show that, safely stated, MOX recycling with 1/3 reload fraction can be accommodated for both annual and 18 month fuel cycle schemes in Korean PWRs, without major design modifications on the reactor systems. (author). 12 refs, 4 figs, 3 tabs

  11. Fuel management and core design code systems for pressurized water reactor neutronic calculations

    International Nuclear Information System (INIS)

    Ahnert, C.; Arayones, J.M.

    1985-01-01

    A package of connected code systems for the neutronic calculations relevant in fuel management and core design has been developed and applied for validation to the startup tests and first operating cycle of a 900MW (electric) PWR. The package includes the MARIA code system for the modeling of the different types of PWR fuel assemblies, the CARMEN code system for detailed few group diffusion calculations for PWR cores at operating and burnup conditions, and the LOLA code system for core simulation using onegroup nodal theory parameters explicitly calculated from the detailed solutions

  12. Fuel with advanced burnable absorbers design for the IRIS reactor core: Combined Erbia and IFBA

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, Fausto [Westinghouse Electric Company LLC, Science and Technology Department, Pittsburgh, PA 15235 (United States)], E-mail: FranceF@westinghouse.com; Petrovic, Bojan [Georgia Institute of Technology, Nuclear and Radiological Engineering, G.W. Woodruff School, Atlanta, GA 30332-0405 (United States)

    2009-08-15

    IRIS is an advanced medium-size (1000 MW) PWR with integral primary system targeting deployment already around 2015-2017. Consistent with its aggressive development and deployment schedule, the 'first IRIS' core design assumes current, licensed fuel technology, i.e., UO{sub 2} fuel with less than 5% {sup 235}U enrichment. The core consists of 89 fuel assemblies employing the 17x17 Westinghouse Robust Fuel Assembly (RFA) design and Standard Fuel dimensions. The adopted design enables to meet all the objectives of the first IRIS core, including over 3-year cycle length with low soluble boron concentration, within the envelope of licensed, readily available fuel technology. Alternative fuel designs are investigated for the subsequent waves of IRIS reactors in pursuit of further improving the fuel utilization and/or extending the cycle length. In particular, an increase in the lattice pitch from the current 0.496 in. for the Standard Fuel to 0.523 in. is among the objectives of this study. The larger fuel pitch and increased moderator-to-fuel volume ratio that it entails fosters better neutron thermalization in an altogether under-moderated lattice thereby offering the potential for considerable increase of fuel utilization and cycle length, up to 5% in the two-batch fuel management scheme considered for IRIS. However, the improved moderation also favors higher values of the Moderator Temperature Coefficient, MTC, which must be properly counteracted to avoid undesired repercussions on the plant safety parameters or controllability during transient operations. This paper investigates counterbalancing the increase in the MTC caused by the enhanced moderation lattice by adopting a suitable choice of fuel burnable absorber (BA). In particular, a fuel design combining erbia, which benefits MTC due to its resonant behavior but leads to residual reactivity penalty, and IFBA, which maximizes cycle length, is pursued. In the proposed approach, IFBA provides the bulk

  13. Analysis Of The Effect Of Fuel Enrichment Error On Neutronic Properties Of The RSG-GAS Core

    International Nuclear Information System (INIS)

    Saragih, Tukiran; Pinem, Surian

    2002-01-01

    The analysis of the fuel enrichment error effect on neutronic properties has been carried out. The fuel enrichment could be improperly done because of wrong fabrication. Therefore it is necessary to analyze the fuel enrichment error effect to determine how many percents the fuel enrichment maximum can be accepted in the core. The analysis was done by simulation method The RSG-GAS core was simulated with 5 standard fuels and 1 control element having wrong enrichment when inserted into the core. Fuel enrichment error was then simulated from 20%, 25% and 30% and the simulation was done using WIMSD/4 and Batan-2DIFF codes. The cross section of core material of the RSG-GAS was generated by WIMSD/4 code in 1-D, X-Y geometry and 10 energy neutron group. Two dimensions, diffusion calculation based on finite element method was done by using Batan-2DIFF code. Five fuel elements and one control element changed the enrichment was finally arranged as a new core of the RSG-Gas reactor. The neutronic properties can be seen from eigenvalues (k eff ) as well as from the kinetic properties based on moderator void reactivity coefficient. The calculated results showed that the error are still acceptable by k eff 1,097 even until 25% fuel enrichment but not more than 25,5%

  14. Optimization of in-core fuel management and control rod strategy in equilibrium fuel cycle

    International Nuclear Information System (INIS)

    Sekimizu, Koichi

    1975-01-01

    An in-core fuel management problem is formulated for the equilibrium fuel cycle in an N-region nuclear reactor model. The formulation shows that the infinite multiplication factor k infinity requisite for newly charged fuel can be separated into two terms - one corresponding to the average k infinity at the end of the cycle and the other representing the direct contribution of the shuffling scheme and control rod programming. This formulation is applied to a three-region cylindrical reactor to obtain simultaneous optimization of shuffling and control rod programming. It is demonstrated that this formulation aids greatly in gaining a better understanding of the effects of changes in the shuffling scheme and control rod programming on equilibrium fuel cycle performance. (auth.)

  15. Optimization of core reload design for low leakage fuel management in pressurized water reactors

    International Nuclear Information System (INIS)

    Kim, Y.J.

    1986-01-01

    A new method was developed to optimize pressurized water reactor core reload design for low leakage fuel management, a strategy recently adopted by most utilities to extend cycle length and mitigate pressurized thermal shock concerns. The method consists of a two-stage optimization process which provides the maximum cycle length for a given fresh fuel loading subject to power peaking constraints. In the first stage, a best fuel arrangement is determined at the end of cycle in the absence of burnable poisons. A direct search method is employed in conjunction with a constant power, Haling depletion. In the second stage, the core control poison requirements are determined using a linear programming technique. The solution provides the fresh fuel burnable poison loading required to meet core power peaking constraints. An accurate method of explicitly modeling burnable absorbers was developed for this purpose. The design method developed here was implemented in a currently recognized fuel licensing code, SIMULATE, that was adapted to the CYBER-205 computer. This methodology was applied to core reload design of cycles 9 and 10 for the Commonwealth Edison Zion, Unit-1 Reactor. The results showed that the optimum loading pattern for cycle 9 yielded almost a 9% increase in the cycle length while reducing core vessel fluence by 30% compared with the reference design used by Commonwealth Edison

  16. Neutronics conceptual design of the innovative research reactor core using uranium molybdenum fuel

    International Nuclear Information System (INIS)

    Tukiran S; Surian Pinem; Tagor MS; Lily S; Jati Susilo

    2012-01-01

    The multipurpose of research reactor utilization make many countries build the new research reactor. Trend of this reactor for this moment is multipurpose reactor type with a compact core to get high neutron flux at the low or medium level of power. The research newest. Reactor in Indonesia right now is already 25 year old. Therefore, it is needed to design a new research reactor, called innovative research reactor (IRR) and then as an alternative to replace the old research reactor. The aim of this research is to get the optimal configuration of equilibrium core with the acceptance criteria are minimum thermal neutron flux is 2.5E14 n/cm 2 s at the power level of 20 MW (minimum), length of cycle of more than 40 days, and the most efficient of using fuel in the core. Neutronics design has been performed for new fuel of U-9Mo-AI with various fuel density and reflector. Design calculation has been performed using WIMSD-5B and BATAN-FUEL computer codes. The calculation result of the conceptual design shows four core configurations namely 5x5, 5x7, 6x5 and 6x6. The optimalization result for equilibrium core of innovative research reactor is the 5x5 configuration with 450 gU fuel loading, berilium reflector, maximum thermal neutron flux at reflector is 3.33E14 n/cm 2 sand length of cycle is 57 days is the most optimal of IRR. (author)

  17. Neutronic analysis of the conversion of HEU to LEU fuel for a 5-MW MTR core

    International Nuclear Information System (INIS)

    Pazirandeh, A.; Bartsch, G.

    1987-01-01

    In recent years, due to cessation of highly enriched uranium (HEU) fuel supply, practical steps have been taken to substitute HEU fuel in almost all research reactors by medium-enriched uranium or low-enriched uranium (LEU) fuels. In this study, a neutronic calculation of a 5-MW research reactor core fueled with HEU (93% 235 U) is presented. In order to assess the performance of the core with the LEU ( 235 U loadings were examined. The core consists of 22 standard fuel elements (SFEs) and 6 control fuel elements (CFEs). Each fuel elements has 18 curved plates of which two end plates are dummies. Initial 235 U content is 195 g 235 U/SFE and 9.7 g 235 U/CFE or /PFE. In all calculations the permitted changes to the fuel elements are (a) 18 active plates per SFE, (b) fuel plates assumed to be flat, and (c) 8 or 9 active plates per CFE

  18. Calculation of the linear heat generation rates which violate the thermomechanical limit of plastic deformation of the fuel cladding in function of the burn up of a BWR fuel rod type; Calculo de las razones de generacion de calor lineal que violen el limite termomecanico de deformacion plastica de la camisa en funcion del quemado de una barra combustible tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lucatero, M.A.; Hernandez L, H. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: mal@nuclear.inin.mx

    2003-07-01

    The linear heat generation rates (LHGR) for a BWR type generic fuel rod, as function of the burnup that violate the thermomechanical limit of circumferential plastic deformation of the can (canning) in nominal operation in stationary state of the fuel rod are calculated. The evaluation of the LHGR in function of the burnt of the fuel, is carried out under the condition that the deformation values of the circumferential plastic deformation of the can exceeds in 0.1 the thermomechanical value operation limit of 1%. The results of the calculations are compared with the generation rates of linear operation heat in function of the burnt for this fuel rod type. The calculations are carried out with the FEMAXI-V and RODBURN codes. The results show that for exhibitions or burnt between 0 and 16,000 M Wd/tU a minimum margin of 160.8 W/cm exists among LHGR (439.6 W/cm) operation peak for the given fuel and maximum LHGR of the fuel (calculated) to reach 1.1% of circumferential plastic deformation of the can, for the peak factor of power of 1.40. For burnt of 20,000 MWd/tU and 60,000 MWd/tU exist a margin of 150.3 and 298.6 W/cm, respectively. (Author)

  19. Safety analysis of JMTR LEU fuel core, (3)

    International Nuclear Information System (INIS)

    Tsuchida, Noboru; Shiraishi, Tadao; Takahashi, Yutaka; Inada, Seiji; Saito, Minoru; Futamura, Yoshiaki; Kitano, Kyoshiro.

    1992-10-01

    Dose analysis in the safety evaluation and the site evaluation were performed for the JMTR core conversion from MEU fuel to LEU fuel. In the safety evaluation, the effective dose equivalents for the public surrounding the site were estimated in fuel handling accident and flow blockage to coolant channel which were selected as the design basis accidents with release of radioactive fission products to the environment. In the site evaluation, the flow blockage to coolant channel was selected as siting basis events, since this accident had the possibility of spreading radioactive release. Maximum exposure doses for the public were estimated assuming large amounts of fission products to release. It was confirmed that risk of radiation exposure of the public is negligible and the siting is appropriate. (author)

  20. The ring of fire: the relative importance of fuel packing versus intrinsic leaf flammability

    NARCIS (Netherlands)

    Grootemaat, S.; Wright, I.J.; Cornelissen, J.H.C.; Viegas, D.X.

    2014-01-01

    Two different experimental set-ups were used to disentangle the relative importance of intrinsic leaf traits versus fuel packing for the flammability in fuel beds. Dried leaves from 25 Australian perennial species were burnt in fuel bed rings under controlled conditions. The flammability parameters

  1. Fuel loading method to exchangeable reactor core of BWR type reactor and its core

    International Nuclear Information System (INIS)

    Koguchi, Kazushige.

    1995-01-01

    In a fuel loading method for an exchangeable reactor core of a BWR type reactor, at least two kinds of fresh fuel assemblies having different reactivities between axial upper and lower portions are preliminarily prepared, and upon taking out fuel assemblies of advanced combustion and loading the fresh fuel assemblies dispersingly, they are disposed so as to attain a predetermined axial power distribution in the reactor. At least two kinds of fresh fuel assemblies have a content of burnable poisons different between the axial upper portion and lower portions. In addition, reactivity characteristics are made different at a region higher than the central boundary and a region lower than the central boundary which is set within a range of about 6/24 to 16/24 from the lower portion of the fuel effective length. There can be attained axial power distribution as desired such as easy optimization of the axial power distribution, high flexibility, and flexible flattening of the power distribution, and it requires no special change in view of the design and has a good economical property. (N.H.)

  2. Potential of thorium-based fuel cycle for PWR core to reduce plutonium and long-term toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Kook; Kim, Taek Kyum; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    The cross section libraries and calculation methods of the participants were inter-compared through the first stage benchmark calculation. The multiplication factor of unit cell benchmark are in good agreement, but there is significant discrepancies of 2.3 to 3.5 %k at BOC and at EOC between the calculated infinite multiplication factors of each participants for the assembly benchmark. Our results with HELIOS show a reasonable agreement with the others except the MTC value at EOC. To verify the potential of the thorium-based fuel to consume the plutonium and to reduce the radioactivity from the spent fuel, the conceptual core with ThO{sub 2}-PuO{sub 2} or MOX fuel were constructed. The composition and quantity of plutonium isotopes and the radioactivity level of spent fuel for conceptual cores were analyzed, and the neutronic characteristics of conceptual cores were also calculated. The nuclear characteristics for ThO{sub 2}-PuO{sub 2} thorium fueled core was similar to MOX fueled core, mainly due to the same seed fuel material, plutonium. For the capability of plutonium consumption, ThO{sub 2}-PuO{sub 2} thorium fuel can consume plutonium 2.1-2.4 times MOX fuel. The fraction of fissile plutonium in the spent ThO{sub 2}-PuO{sub 2} thorium fuel is more favorable in view of plutonium consumption and non-proliferation than MOX fuel. The radioactivity of spent ThO{sub 2}-PuO{sub 2} thorium and MOX fuel batches were calculated. Since plutonium isotopes are dominant for the long-term radioactivity, ThO{sub 2}-PuO{sub 2} thorium has almost the same level of radioactivity as in MOX fuel for a long-term perspective. (author). 22 figs., 11 tabs.

  3. Fuel management service for Tarapur Atomic Power Station core thermal hydraulics

    International Nuclear Information System (INIS)

    Saha, D.; Venkat Raj, V.; Markandeya, S.G.

    1977-01-01

    Core thermal hydraulic analysis forms an integral part of the fuel management service for the Tarapur reactors. A distinguishing feature of boiling water reactors is the dependence of core flow distribution on the power distribution. Because of the changes in the axial and radial power distribution from cycle to cycle as well as during the cycle and also the variations in leakage flow, it is necessary to evaluate the core thermal hydraulic parameters for every cycle. Some of the typical results obtained in the course of analysis for different cycles of both the units at Tarapur are presented. The use of MCPR (Minimum Critical Power Ratio), instead of MCHFR (Minimum Critical Heat Flux Ratio) as a figure of merit for fuel cladding integrity is also discussed. (K.B.)

  4. Mixed PWR core loadings with inert matrix Pu-fuel assemblies

    International Nuclear Information System (INIS)

    Stanculescu, A.; Kasemeyer, U.; Paratte, J.-M.; Chawla, R.

    1999-01-01

    The most efficient way to enhance plutonium consumption in light water reactors is to eliminate the production of plutonium all together. This requirement leads to fuel concepts in which the uranium is replaced by an inert matrix. At PSI, studies have focused on employing ZrO 2 as inert matrix. Adding a burnable poison to such a fuel proves to be necessary. As a result of scoping studies, Er 2 O 3 was identified as the most suitable burnable poison material. The results of whole-core three-dimensional neutronics analyses indicated, for a present-day 1000 MW e pressurised water reactor, the feasibility of an asymptotic equilibrium four-batch cycle fuelled solely with the proposed PuO 2 -Er 2 O 3 -ZrO 2 inert matrix fuel (IMF). The present paper presents the results of more recent investigations related to 'real-life' situations, which call for transition configurations in which mixed IMF and UO 2 assembly loadings must be considered. To determine the influence of the introduction of IMF assemblies on the characteristics of a UO 2 -fuelled core, three-dimensional full-core calculations have been performed for a present-day 1000 MW e PWR containing up to 12 optimised IMF assemblies. (author)

  5. Quantification of cost of margin associated with in-core nuclear fuel management for a PWR

    International Nuclear Information System (INIS)

    Kropaczek, D.J.; Turinsky, P.J.

    1989-01-01

    The problem of in-core nuclear fuel management optimization is discussed. The problem is to determine the location of core material, such as the fuel and burnable poisons, so as to minimize (maximize) a stated objective within engineering constraints. Typical objectives include maximization of cycle energy production or discharged fuel exposure, and minimization of power peaking factor or reactor vessel fluence. Constraints include discharge burnup limits and one or more of the possible objectives if not selected as the objective. The optimization problem can be characterized as a large combinatorial problem with nonlinear objective function and constraints, which are likely to be active. The authors have elected to employ the integer Monte Carlo programming method to address this optimization problem because of the just-noted problem characteristics. To evaluate the core physics characteristics as a function of fuel loading pattern, second-order accurate perturbation theory is employed with successive application to improve estimates of the optimum loading pattern. No constraints on fuel movement other than requiring quarter-core symmetry were imposed. In this paper the authors employed this methodology to address a related problem. The problem being addressed can be stated as What is the cost associated with margin? Specifically, they wish to assign some financial value in terms of increased levelized fuel cycle cost associated with an increase in core margin of some type, such as power peaking factor

  6. Performance Specification Shippinpark Pressurized Water Reactor Fuel Drying and Canister Inerting System for PWR Core 2 Blanket Fuel Assemblies Stored within Shippingport Spent Fuel Canisters

    International Nuclear Information System (INIS)

    JOHNSON, D.M.

    2000-01-01

    This specification establishes the performance requirements and basic design requirements imposed on the fuel drying and canister inerting system for Shippingport Pressurized Water Reactor (PWR) Core 2 blanket fuel assemblies (BFAs) stored within Shippingport spent fuel (SSFCs) canisters (fuel drying and canister inerting system). This fuel drying and canister inerting system is a component of the U.S. Department of Energy, Richland Operations Office (RL) Spent Nuclear Fuels Project at the Hanford Site. The fuel drying and canister inerting system provides for removing water and establishing an inert environment for Shippingport PWR Core 2 BFAs stored within SSFCs. A policy established by the U.S. Department of Energy (DOE) states that new SNF facilities (this is interpreted to include structures, systems and components) shall achieve nuclear safety equivalence to comparable U.S. Nuclear Regulatory Commission (NRC)-licensed facilities. This will be accomplished in part by applying appropriate NRC requirements for comparable NRC-licensed facilities to the fuel drying and canister inerting system, in addition to applicable DOE regulations and orders

  7. Analysis of in-core coolant temperatures of FFTF instrumented fuels tests at full power

    International Nuclear Information System (INIS)

    Hoth, C.W.

    1981-01-01

    Two full size highly instrumented fuel assemblies were inserted into the core of the Fast Flux Test Facility in December of 1979. The major objectives of these instrumented tests are to provide verification of the FFTF core conditions and to characterize temperature patterns within FFTF driver fuel assemblies. A review is presented of the results obtained during the power ascents and during irradiation at a constant reactor power of 400 MWt. The results obtained from these instrumented tests verify the conservative nature of the design methods used to establish core conditions in FFTF. The success of these tests also demonstrates the ability to design, fabricate, install and irradiate complex, instrumented fuel tests in FFTF using commercially procured components

  8. The in-core fuel management code system for VVER reactors

    International Nuclear Information System (INIS)

    Cada, R.; Krysl, V.; Mikolas, P.; Sustek, J.; Svarny, J.

    2004-01-01

    The structure and methodology of a fuel management system for NPP VVER 1000 (NPP Temelin) and VVER 440 (NPP Dukovany) is described. It is under development in SKODA JS a.s. and is followed by practical applications. The general objectives of the system are maximization of end of cycle reactivity, the minimization of fresh fuel inventory for the minimization of fed enrichment and minimization of burnable poisons (BPs) inventory. They are also safety related constraints in witch minimization of power peaking plays a dominant role. General structure of the system consists in preparation of input data for macrocode calculation, algorithms (codes) for optimization of fuel loading, calculation of fuel enrichment and BPs assignment. At present core loading can be calculated (optimized) by Tabu search algorithm (code ATHENA), genetic algorithm (code Gen1) and hybrid algorithm - simplex procedure with application of Tabu search algorithm on binary shuffling (code OPAL B ). Enrichment search is realized by the application of simplex algorithm (OPAL B code) and BPs assignment by module BPASS and simplex algorithm in OPAL B code. Calculations of the real core loadings are presented and a comparison of different optimization methods is provided. (author)

  9. Mapping the recovery of the burnt vegetation by classifying pre- and post-fire spectral indices

    Directory of Open Access Journals (Sweden)

    M. A Peña

    2017-12-01

    Full Text Available This study analyzed the state of recovery of the burnt vegetation in the National Park of Torres del Paine between December, 2011 and March, 2012. The calculation and comparison of the NVDI (normalized difference vegetation index of the burnt area throughout a time series of 24 Landsat images acquired before, during and after the fire (2009- 2015, showed the temporal variation in the biomass levels of the burnt vegetation. The subsequent classification and comparison of the spectral indices: NDVI, NBR (normalized burnt ratio and NDWI (normalized difference water index on a full-data available and phenologically matched pre- and post-fire image pair (acquired in October 2009 and 2014, enabled to analyze and mapping the state of recovery of the burnt vegetation. The results show that the area of the lowest classes of all the spectral indices of the pre-fire date became the most dominant on the post-fire date. The pre- and post- fire NDVI class crossing by a confusion matrix showed that the highest and most prevailing pre-fire NDVI classes, mostly corresponding to hydromorphic forests and Andean scrubs, turned into the lowest class in 2014. The remaining area, comprising Patagonian steppe, reestablished its biomass levels in 2014, mostly exhibiting the same pre-fire NDVI classes. These results may provide guidelines to monitor and manage the regeneration of the vegetation impacted by this fire.

  10. Advanced PWR Core Design with Siemens High-Plutonium-Content MOX Fuel Assemblies

    International Nuclear Information System (INIS)

    Dieter Porsch; Gerhard Schlosser; Hans-Dieter Berger

    2000-01-01

    The Siemens experience with plutonium recycling dates back to the late 1960s. Over the years, extensive research and development programs were performed for the qualification of mixed-oxide (MOX) technology and design methods. Today's typical reload enrichments for uranium and MOX fuel assemblies and modern core designs have become more demanding with respect to accuracy and reliability of design codes. This paper presents the status of plutonium recycling in operating high-burnup pressurized water reactor (PWR) cores. Based on actual examples, it describes the validation status of the design methods and stresses current and future needs for fuel assembly and core design including those related to the disposition of weapons-grade plutonium

  11. Study of the neutronic performances of cores with mixed nitride fuel [(U,Pu)N] for fast neutron reactors

    International Nuclear Information System (INIS)

    Merzouk, Hamid

    1992-01-01

    This paper proposes a core design of fast reactor using mixed nitride fuel [(U,Pu)N], having small loss of reactivity and reaching a maximum thermal burn-up rate from 150 GWd/t, while being managed in single batch (renewal of the fuel in only one time for all the subassemblies of the core). This work was completed with aid of the studies of sensibilities of the fast reactors cores to principal parameters: general design of the core, volumetric percentages of the various mixture of materials composing the core, initial enrichments of the fuel. A detailed optimization study on the selected core was conducted complying with safety criteria taking into consideration of consequences of nitride material presence on fuel assembly design rules. (author) [fr

  12. Report of lower endplug welding, and testing and inspecting result for MONJU 1{sup th} reload core fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kajiyama, Takasi; Numata, Kazuaki; Ohtani, Seiji [Quality Assuranse Section, Technical Administration Division, Plutonium Fuel Center, Tokai Works, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Kobayashi, Hiromi; Watanabe, Hiroaki; Goto, Tatsuro; Takahashi, Hideki; Nagasaku, Katsuhiko [Inspection Development Campany Ltd., Tokai, Ibaraki (Japan)

    2000-02-01

    The procedure and result of lower endplugwelding, Test and Inspection and Shipment of the 1{sup th} reload core fuel assembly (80 Fuel Assemblies) for the fast breeder reactor MONJU are reported, which had been examined and inspected in Tamatsukuri Branch, Material Insurance Office, Quality Assurance Section, Technical Administration Division, Plutonium Fuel Center (before: Inspection Section, Plutonium Fuel Division), from June 1994 to January 1996. The number of cladding tubes welded to the endplug were totally 13,804: 7,418 for Core - Inside of 43 fuel Assemblies and 6,836 for Core-Outside of 37 fuel Assemblies. 13,794 of them, 7,414 Core-Inside and 6,379 Core-Outside, were approved by the test and sent to Plutonium Fuel Center. 10 of them weren't approved mainly because of default welding. Disapproval rating was 0.07%. (author)

  13. Fast reactor core design studies to cope with TRU fuel composition changes in the LWR-to-FBR transition period

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Maruyama, Shuhei; Ohki, Shigeo; Mizuno, Tomoyasu

    2009-01-01

    As part of the Fast Reactor Cycle Technology Development Project (FaCT Project), sodium-cooled fast reactor core design efforts have been made to cope with the TRU fuel composition changes expected during LWR-to-FBR transition period, in which a various kind of TRU fuel compositions are available depending on the characteristics of the LWR spent fuels and a way of recycling them. A 750 MWe mixed-oxide fuel core is firstly defined as a FaCT medium-size reference core and its neutronics characteristics are determined. The core is a high internal conversion type and has an average burnup of 150 GWD/T. The reference TRU fuel composition is assumed to come from the FBR equilibrium state. Compared to the LWR-to-FBR transition period, the TRU fuels in the FBR equilibrium period are multi-recycled through fast reactors and have a different composition. An available TRU fuel composition is determined by fast reactor spent fuel multi-recycling scenarios. Then the FaCT core corresponding to the TRU fuel with different compositions is set according to the TRU fuel composition changes in LWR-to-FBR transition period, and the key core neutronics characteristics are assessed. It is shown that among the core neutronics characteristics, the burnup reactivity and the safety parameters such as sodium void reactivity and Doppler coefficient are significantly influenced by the TRU fuel composition changes. As a result, a general characteristic in the FaCT core design to cope with TRU fuel composition changes is grasped and the design envelopes are identified in terms of the burnup reactivity and the safety parameters. (author)

  14. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    Science.gov (United States)

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  15. Advanced core physics and thermal hydraulics analysis of boiling water reactors using innovative fuel concepts

    International Nuclear Information System (INIS)

    Winter, Dominik

    2014-01-01

    The economical operation of a boiling water reactor (BWR) is mainly achieved by the axially uniform utilization of the nuclear fuel in the assemblies which is challenging because the neutron spectrum in the active reactor core varies with the axial position. More precisely, the neutron spectrum becomes harder the higher the position is resulting in a decrease of the fuel utilization because the microscopic fission cross section is smaller by several orders of magnitude. In this work, the use of two fuel concepts based on a mixed oxide (MOX) fuel and an innovative thorium-plutonium (ThPu) fuel is investigated by a developed simulation model encompassing thermal hydraulics, neutronics, and fuel burnup. The main feature of these fuel concepts is the axially varying enrichment in plutonium which is, in this work, recycled from spent nuclear fuel and shows a high fission fraction of the absorption cross section for fast incident neutron energies. The potential of balancing the overall fuel utilization by an increase of the fission rate in the upper part of the active height with a combination of the harder spectrum and the higher fission fraction of the absorption cross section in the BWR core is studied. The three particular calculational models for thermal hydraulics, neutronics, and fuel burnup provide results at fuel assembly and/or at core level. In the former case, the main focus lies on the thermal hydraulics analysis, fuel burnup, and activity evolution after unloading from the core and, in the latter case, special attention is paid to reactivity safety coefficients (feedback effects) and the optimization of the operational behavior. At both levels (assembly and core), the isotopic buildup and depletion rates as a function of the active height are analyzed. In addition, a comparison between the use of conventional fuel types with homogeneous enrichments and the use of the innovative fuel types is made. In the framework of the simulations, the ThPu and the MOX

  16. The DUPIC alternative for backend fuel cycle

    International Nuclear Information System (INIS)

    Lee, J.S.; Choi, J.W.; Park, H.S.; Boczar, P.; Sullivan, J.; Gadsby, R.D.

    1997-01-01

    From the early nineties, a research programme, called DUPIC (Direct Use of Spent PWR Fuel in CANDU) has been undertaken in an international exercise involving Korea, Canada, the U.S. and later the IAEA. The basic idea of this fuel cycle alternative is that the spent fuel from LWR contains enough fissile remnant to be burnt again in CANDUs thanks to its excellent neutron economy. A systematic R and D plan has now gained a full momentum to verify experimentally the DUPIC fuel cycle concept. 4 refs

  17. Introduction of mixed oxide fuel elements in the belgian cores

    International Nuclear Information System (INIS)

    Charlier, A.F.; Hollasky, N.A.

    1994-01-01

    The important amount of plutonium recovered from the reprocessing of spent fuel on the one hand, the national and international experience of the use of mixed oxide UO 2 -PuO 2 fuel in power reactors on the other hand, have led Belgian utilities to decide the introduction of Mixed-Oxide fuel in Doel unit 3 and Tihange unit 2 cores. The 'MOX' project has shown that it was possible without reducing safety or requiring modifications of the plant equipment. It has been approved by the Belgian 'Nuclear Safety Commission'. (authors). 1 tab., 2 figs

  18. Fission rate measurements in fuel plate type assembly reactor cores

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1988-01-01

    The methods, materials and equipment have been developed to allow extensive and precise measurement of fission rate distributions in water moderated, U-Al fuel plate assembly type reactor cores. Fission rate monitors are accurately positioned in the reactor core, the reactor is operated at a low power for a short time, the fission rate monitors are counted with detectors incorporating automated sample changers and the measurements are converted to fission rate distributions. These measured fission rate distributions have been successfully used as baseline information related to the operation of test and experimental reactors with respect to fission power and distribution, fuel loading and fission experiments for approximately twenty years at the Idaho National Engineering Laboratory (INEL). 7 refs., 8 figs

  19. Genetic algorithm for the optimization of the loading pattern for reactor core fuel management

    International Nuclear Information System (INIS)

    Zhou Sheng; Hu Yongming; zheng Wenxiang

    2000-01-01

    The paper discusses the application of a genetic algorithm to the optimization of the loading pattern for in-core fuel management with the NP characteristics. The algorithm develops a matrix model for the fuel assembly loading pattern. The burnable poisons matrix was assigned randomly considering the distributed nature of the poisons. A method based on the traveling salesman problem was used to solve the problem. A integrated code for in-core fuel management was formed by combining this code with a reactor physics code

  20. A higher order depletion perturbation theory with application to in-core fuel management optimization

    International Nuclear Information System (INIS)

    Kropaczek, D.J.; Turinsky, P.J.

    1990-01-01

    Perturbation techniques utilized in reactor analysis have recently been applied in the solution of the in-core nuclear fuel management optimization problem. The use of such methods is motivated by the need to evaluate many times over, the core physics characteristics of loading pattern solutions obtained through an optimization process, which is typically iterative. Perturbation theory provides an efficient alternative to the prohibitively expensive, repetitive solutions of the system few-group neutron diffusion equations required in solving the fuel placement problem. A primary concern in the use of such methods is the control of perturbation errors arising during the fuel shuffling process. First-order accurate models inevitably resort to undue restriction of fuel movement during the optimization process to control these errors. Higher order perturbation theory models have the potential to overcome such limitations, which may result in the identification of local versus global optima. An accurate, computationally efficient reactor physics model based on higher order perturbation theory and geared toward the needs of large-scale in-core fuel management optimization is presented in this paper

  1. PWR Core II blanket fuel disposition recommendation of storage option study

    International Nuclear Information System (INIS)

    Dana, C.M.

    1995-01-01

    After review of the options available for current storage of T Plant Fuel the recommended option is wet storage without the use of chillers. A test has been completed that verifies the maximum temperature reached is below the industrial standard for storage of spent fuel. This option will be the least costly and still maintain the fuel in a safe environment. The options that were evaluated included dry storage with and without chillers, and wet storage with and without chillers. Due to the low decay heat of the Shippingport Core II Blanket fuel assemblies the fuel pool temperature will not exceed 100 deg. F

  2. Development of a detailed core flow analysis code for prismatic fuel reactors

    International Nuclear Information System (INIS)

    Bennett, R.G.

    1990-01-01

    The detailed analysis of the core flow distribution in prismatic fuel reactors is of interest for modular high-temperature gas-cooled reactor (MHTGR) design and safety analyses. Such analyses involve the steady-state flow of helium through highly cross-connected flow paths in and around the prismatic fuel elements. Several computer codes have been developed for this purpose. However, since they are proprietary codes, they are not generally available for independent MHTGR design confirmation. The previously developed codes do not consider the exchange or diversion of flow between individual bypass gaps with much detail. Such a capability could be important in the analysis of potential fuel block motion, such as occurred in the Fort St. Vrain reactor, or for the analysis of the conditions around a flow blockage or misloaded fuel block. This work develops a computer code with fairly general-purpose capabilities for modeling the flow in regions of prismatic fuel cores. The code, called BYPASS solves a finite difference control volume formulation of the compressible, steady-state fluid flow in highly cross-connected flow paths typical of the MHTGR

  3. Study on in-core fuel management for CNP1500 nuclear power plant

    International Nuclear Information System (INIS)

    Li Dongsheng

    2005-10-01

    CNP1500 is a four-loop PWR nuclear power plant with light water as moderator and coolant. The reactor core is composed of 205 AFA-3GXL fuel assemblies. The active core height at cold is 426.4 cm and equivalent diameter is 347.0 cm. The reactor thermal output is 4250 MW, and average linear power density is 179.5 W/cm. The cycle length of equilibrium cycle core is 470 equivalent full power days. For all cycles, the moderator temperature coefficients at all conditions are negative values, the nuclear enthalpy rise factors F ΔH at hot full power, all control rods out and equilibrium xenon are less than the limit value, the maximum discharge assembly burnup is less 55000 MW·d/tU, and the shutdown margin values at the end of life meet design criteria. The low-leakage core loading reduces radiation damage on pressure vessel and is beneficial to prolong use lifetime of it. The in-core fuel management design scheme and main calculation results for CNP1500 nuclear power plant are presented. (author)

  4. Demonstration tests for HTGR fuel elements and core components with test sections in HENDEL

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Hino, Ryutaro; Inagaki, Yoshiyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1995-03-01

    In the fuel stack test section (T{sub 1}) of the Helium Engineering Demonstration Loop (HENDEL), thermal and hydraulic performances of helium gas flows through a fuel rod channel and a fuel stack have been investigated for the High-Temperature Engineering Test Reactor (HTTR) core thermal design. The test data showed that the turbulent characteristics appearing in the Reynolds number above 2000: no typical behavior in the transition zone, and friction factors and heat transfer coefficients in the fuel channel were found to be higher than those in a smooth annular channel. Heat transfer behavior of gas flow in a fuel element channel with blockage and cross-flow through a gap between upper and lower fuel elements stacked was revealed using the mock-up models. On the other hand, demonstration tests have been performed to verify thermal and hydraulic characteristics and structural integrity related to the core bottom structure using a full-scale test facility named as the in-core structure test section (T{sub 2}). The sealing performance test revealed that the leakage of low-temperature helium gas through gaps between the permanent reflector blocks to the core was very low level compared with the HTTR design value and no change of the leakage flow rate were observed after a long term operation. The heat transfer tests including thermal transient at shutdown of gas circulators verified good insulating performance of core insulation structures in the core bottom structure and the hot gas duct; the temperature of the metal portion of these structure was below the design value. Examination of the thermal mixing characteristics indicated that the mixing of the hot helium gas started at a hot plenum and finished completely at downstream of the outlet hot gas duct. The present results obtained from these demonstration tests have been practically applied to the detailed design works and licensing procedures of the HTTR. (J.P.N.) 92 refs.

  5. Assessment of Core Failure Limits for Light Water Reactor Fuel under Reactivity Initiated Accidents

    International Nuclear Information System (INIS)

    Jernkvist, Lars Olof; Massih, Ali R.

    2004-12-01

    Core failure limits for high-burnup light water reactor UO 2 fuel rods, subjected to postulated reactivity initiated accidents (RIAs), are here assessed by use of best-estimate computational methods. The considered RIAs are the hot zero power rod ejection accident (HZP REA) in pressurized water reactors and the cold zero power control rod drop accident (CZP CRDA) in boiling water reactors. Burnup dependent core failure limits for these events are established by calculating the fuel radial average enthalpy connected with incipient fuel pellet melting for fuel burnups in the range of 30 to 70 MWd/kgU. The postulated HZP REA and CZP CRDA result in lower enthalpies for pellet melting than RIAs that take place at rated power. Consequently, the enthalpy thresholds presented here are lower bounds to RIAs at rated power. The calculations are performed with best-estimate models, which are applied in the FRAPCON-3.2 and SCANAIR-3.2 computer codes. Based on the results of three-dimensional core kinetics analyses, the considered power transients are simulated by a Gaussian pulse shape, with a fixed width of either 25 ms (REA) or 45 ms (CRDA). Notwithstanding the differences in postulated accident scenarios between the REA and the CRDA, the calculated core failure limits for these two events are similar. The calculated enthalpy thresholds for fuel pellet melting decrease gradually with fuel burnup, from approximately 960 J/gUO 2 at 30 MWd/kgU to 810 J/gUO 2 at 70 MWd/kgU. The decline is due to depression of the UO 2 melting temperature with increasing burnup, in combination with burnup related changes to the radial power distribution within the fuel pellets. The presented fuel enthalpy thresholds for incipient UO 2 melting provide best-estimate core failure limits for low- and intermediate-burnup fuel. However, pulse reactor tests on high-burnup fuel rods indicate that the accumulation of gaseous fission products within the pellets may lead to fuel dispersal into the coolant at

  6. Methods and techniques of nuclear in-core fuel management

    International Nuclear Information System (INIS)

    Jong, A.J. de.

    1992-04-01

    Review of methods of nuclear in-core fuel management (the minimal critical mass problem, minimal power peaking) and calculational techniques: reactorphysical calculations (point reactivity models, continuous refueling, empirical methods, depletion perturbation theory, nodal computer programs); optimization techniques (stochastic search, linear programming, heuristic parameter optimization). (orig./HP)

  7. Assessment of the insertion of reprocessed fuel spiked with thorium in a PWR core

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Victor F.; Monteiro, Fabiana B.A.; Pereira, Claubia, E-mail: victorfc@fis.grad.ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    Reprocessed fuel by UREX+ technique and spiked with thorium was inserted in a PWR core and neutronic parameters have been analyzed. Based on the Final Safety Analysis Report (FSAR) of the Angra-2 reactor, the core was modeled and simulated with SCALE6.0 package. The neutronic data evaluation was carried out by the analysis of the effective and infinite multiplication factors, and the fuel evolution during the burnup. The conversion ratio (CR) was also evaluated. The results show that, when inserting reprocessed fuel spiked with thorium, the insertion of burnable poison rods is not necessary, due to the amount of absorber isotopes present in the fuel. Besides, the conversion ratio obtained was greater than the presented by standard UO{sub 2} fuel, indicating the possibility of extending the burnup. (author)

  8. Course of pin fuel test In WWR-M reactor core

    International Nuclear Information System (INIS)

    Zakharov, A.S.; Kirsanov, G.A.; Konoplev, K.A.

    2005-01-01

    Pin type fuel element (FE) of square form with twisted ribs was developed in VNIINM as an alternative for tube type FE of research reactors. Two variants of full-scale fuel assemblies (FA) are under test in the core of PNPI WWR-M reactor. One FA contains FE with UO 2 LEU and other - UMo LEU. Both types of FE have an aluminum matrix. Results of the first stages of the test are presented. (author)

  9. Status of core conversion with LEU silicide fuel in JRR-4

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Teruo; Ohnishi, Nobuaki; Shirai, Eiji [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1997-08-01

    Japan Research Reactor No.4 (JRR-4) is a light water moderated and cooled, 93% enriched uranium ETR-type fuel used and swimming pool type reactor with thermal output of 3.5MW. Since the first criticality was achieved on January 28, 1965, JRR-4 has been used for shielding experiments, radioisotope production, neutron activation analyses, training for reactor engineers and so on for about 30 years. Within the framework of the RERTR Program, the works for conversion to LEU fuel are now under way, and neutronic and thermal-hydraulic calculations emphasizing on safety and performance aspects are being carried out. The design and evaluation for the core conversion are based on the Guides for Safety Design and Evaluation of research and testing reactor facilities in Japan. These results show that the JRR-4 will be able to convert to use LEU fuel without any major design change of core and size of fuel element. LEU silicide fuel (19.75%) will be used and maximum neutron flux in irradiation hole would be slightly decreased from present neutron flux value of 7x10{sup 13}(n/cm{sup 2}/s). The conversion works are scheduled to complete in 1998, including with upgrade of the reactor building and utilization facilities.

  10. Status of core conversion with LEU silicide fuel in JRR-4

    International Nuclear Information System (INIS)

    Nakajima, Teruo; Ohnishi, Nobuaki; Shirai, Eiji

    1997-01-01

    Japan Research Reactor No.4 (JRR-4) is a light water moderated and cooled, 93% enriched uranium ETR-type fuel used and swimming pool type reactor with thermal output of 3.5MW. Since the first criticality was achieved on January 28, 1965, JRR-4 has been used for shielding experiments, radioisotope production, neutron activation analyses, training for reactor engineers and so on for about 30 years. Within the framework of the RERTR Program, the works for conversion to LEU fuel are now under way, and neutronic and thermal-hydraulic calculations emphasizing on safety and performance aspects are being carried out. The design and evaluation for the core conversion are based on the Guides for Safety Design and Evaluation of research and testing reactor facilities in Japan. These results show that the JRR-4 will be able to convert to use LEU fuel without any major design change of core and size of fuel element. LEU silicide fuel (19.75%) will be used and maximum neutron flux in irradiation hole would be slightly decreased from present neutron flux value of 7x10 13 (n/cm 2 /s). The conversion works are scheduled to complete in 1998, including with upgrade of the reactor building and utilization facilities

  11. Influence of fuel vibration on PWR neutron noise associated with core barrel motion

    International Nuclear Information System (INIS)

    Sweeney, F.J.; March-Leuba, J.

    1984-01-01

    Ex-core neutron detector noise has been utilized to monitor core support barrel (CSB) vibrations. In order to observe long-term changes, noise signals at Sequoyah-1 were monitored continuously during the whole first fuel cycle and part of the second cycle. Results suggest that neutron noise measurements performed infrequently may not provide adequate surveillance of the CSB because it may be difficult to separate noise amplitude changes due solely to CSB motion from changes caused by fuel motion and burnup

  12. Study of Fuel Rods Axial Enrichment Distribution Effect on the Neutronic Parameters of the Reactor Core

    International Nuclear Information System (INIS)

    Pazirandeh, A.; Nasiri, S. H.

    2012-01-01

    Optimization of the fuel burn up is an important issue in nuclear reactor fuel management and technology. Radial enrichment distribution in the reactor core is a conventional method and axial enrichment is constant along the fuel rod. In this article, the effects of axial enrichment distribution variation on neutronic parameters of PWR core are studied. The axial length of the core is divided into ten sections, considering axial enrichment variation and leaving the existing radial enrichment distribution intact. This study shows that the radial and axial power peaking factors are decreased as compared with the typical conventional core. In addition, the first core lifetime lasts 30 days longer than normal PWR core. Moreover, at the same time boric acid density is 0.2 g/kg at the beginning of the cycle. The flux shape is also flat at the beginning of the cycle for the proposed configuration of the axially enrichment distribution.

  13. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

    2010-09-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  14. Fuel assembly

    International Nuclear Information System (INIS)

    Yokota, Tokunobu.

    1990-01-01

    A fuel assembly used in a FBR type nuclear reactor comprises a plurality of fuel rods and a moderator guide member (water rod). A moderator exit opening/closing mechanism is formed at the upper portion of the moderator guide member for opening and closing a moderator exit. In the initial fuel charging operation cycle to the reactor, the moderator exit is closed by the moderator exit opening/closing mechanism. Then, voids are accumulated at the inner upper portion of the moderator guide member to harden spectrum and a great amount of plutonium is generated and accumulated in the fuel assembly. Further, in the fuel re-charging operation cycle, the moderator guide member is used having the moderator exit opened. In this case, voids are discharged from the moderator guide member to decrease the ratio, and the plutonium accumulated in the initial charging operation cycle is burnt. In this way, the fuel economy can be improved. (I.N.)

  15. Development of whole core thermal-hydraulic analysis program ACT. 4. Simplified fuel assembly model and parallelization by MPI

    International Nuclear Information System (INIS)

    Ohshima, Hiroyuki

    2001-10-01

    A whole core thermal-hydraulic analysis program ACT is being developed for the purpose of evaluating detailed in-core thermal hydraulic phenomena of fast reactors including the effect of the flow between wrapper-tube walls (inter-wrapper flow) under various reactor operation conditions. As appropriate boundary conditions in addition to a detailed modeling of the core are essential for accurate simulations of in-core thermal hydraulics, ACT consists of not only fuel assembly and inter-wrapper flow analysis modules but also a heat transport system analysis module that gives response of the plant dynamics to the core model. This report describes incorporation of a simplified model to the fuel assembly analysis module and program parallelization by a message passing method toward large-scale simulations. ACT has a fuel assembly analysis module which can simulate a whole fuel pin bundle in each fuel assembly of the core and, however, it may take much CPU time for a large-scale core simulation. Therefore, a simplified fuel assembly model that is thermal-hydraulically equivalent to the detailed one has been incorporated in order to save the simulation time and resources. This simplified model is applied to several parts of fuel assemblies in a core where the detailed simulation results are not required. With regard to the program parallelization, the calculation load and the data flow of ACT were analyzed and the optimum parallelization has been done including the improvement of the numerical simulation algorithm of ACT. Message Passing Interface (MPI) is applied to data communication between processes and synchronization in parallel calculations. Parallelized ACT was verified through a comparison simulation with the original one. In addition to the above works, input manuals of the core analysis module and the heat transport system analysis module have been prepared. (author)

  16. Pressurized water reactor in-core nuclear fuel management by tabu search

    International Nuclear Information System (INIS)

    Hill, Natasha J.; Parks, Geoffrey T.

    2015-01-01

    Highlights: • We develop a tabu search implementation for PWR reload core design. • We conduct computational experiments to find optimal parameter values. • We test the performance of the algorithm on two representative PWR geometries. • We compare this performance with that given by established optimization methods. • Our tabu search implementation outperforms these methods in all cases. - Abstract: Optimization of the arrangement of fuel assemblies and burnable poisons when reloading pressurized water reactors has, in the past, been performed with many different algorithms in an attempt to make reactors more economic and fuel efficient. The use of the tabu search algorithm in tackling reload core design problems is investigated further here after limited, but promising, previous investigations. The performance of the tabu search implementation developed was compared with established genetic algorithm and simulated annealing optimization routines. Tabu search outperformed these existing programs for a number of different objective functions on two different representative core geometries

  17. Power distribution investigation in the transition phase of the low moderation type MOX fueled LWR from the high conversion core to the breeding core

    International Nuclear Information System (INIS)

    Akie, Hiroshi; Nakano, Yoshihiro; Okubo, Tsutomu

    2011-01-01

    The key concept of Innovative Water Reactor for Flexible Fuel Cycle (FLWR) is a core transition from a high conversion (HC) type to a plutonium breeding (BR) type in a same reactor system only by replacing fuel assemblies. Consequently in this transition phase, there are two types of assemblies in the same core. Due to the differences of the two assembly types, region-wise soft to hard neutron spectra appears and result in a large power peaking. Therefore, power distribution of FLWR in the HC to BR transition phase was studied by performing assembly and core calculations. For the whole core calculation, a new 14-group energy structure is developed to better represent the power distribution obtained with the fine 107-group structure than the 9-group structure in the previous evaluations. Calculations on few assemblies geometries show large local power peakings can be effectively reduced by considering plutonium enrichment distribution in an assembly. In the whole core calculation, there is a power level mismatch between HC and BR assemblies, but overall power distribution flattening is possible by optimizing fuel assemblies loading. Although the fuel loading should be decided also taking into account the void coefficient, transition from HC to BR type FLWR seems feasible without difficulty. (author)

  18. Performance of the MTR core with MOX fuel using the MCNP4C2 code

    International Nuclear Information System (INIS)

    Shaaban, Ismail; Albarhoum, Mohamad

    2016-01-01

    The MCNP4C2 code was used to simulate the MTR-22 MW research reactor and perform the neutronic analysis for a new fuel namely: a MOX (U 3 O 8 &PuO 2 ) fuel dispersed in an Al matrix for One Neutronic Trap (ONT) and Three Neutronic Traps (TNTs) in its core. Its new characteristics were compared to its original characteristics based on the U 3 O 8 -Al fuel. Experimental data for the neutronic parameters including criticality relative to the MTR-22 MW reactor for the original U 3 O 8 -Al fuel at nominal power were used to validate the calculated values and were found acceptable. The achieved results seem to confirm that the use of MOX fuel in the MTR-22 MW will not degrade the safe operational conditions of the reactor. In addition, the use of MOX fuel in the MTR-22 MW core leads to reduce the uranium fuel enrichment with 235 U and the amount of loaded 235 U in the core by about 34.84% and 15.21% for the ONT and TNTs cases, respectively. - Highlights: • Re-cycling of the ETRR-2 reactor by MOX fuel. • Increase the number of the neutronic traps from one neutronic trap to three neutronic trap. • Calculation of the criticality safety and neutronic parameters of the ETRR-2 reactor for the U 3 O 8 -Al original fuel and the MOX fuel.

  19. Analysis of gamma heating at TRIGA mark reactor core Bandung using plate type fuel

    International Nuclear Information System (INIS)

    Setiyanto; Tukiran Surbakti

    2016-01-01

    In accordance with the discontinuation of TRIGA fuel element production by its producer, the operation of all TRIGA type reactor of at all over the word will be disturbed, as well as TRIGA reactor in Bandung. In order to support the continuous operation of Bandung TRIGA reactor, a study on utilization of fuel plate mode, as used at RSG-GAS reactor, to replace the cylindrical model has been done. Various assessments have been done, including core design calculation and its safety aspects. Based on the neutronic calculation, utilization of fuel plate shows that Bandung TRIGA reactor can be operated by 20 fuel elements only. Compared with the original core, the new reactor core configuration is smaller and it results in some empty space that can be used for in-core irradiation facilities. Due to the existing of in-core irradiation facilities, the gamma heating value became a new factor that should be evaluated for safety analysis. For this reason, the gamma heating for TRIGA Bandung reactor using fuel plate was calculated by Gamset computer code. The calculations based on linear attenuation equations, line sources and gamma propagation on space. Calculations were also done for reflector positions (Lazy Susan irradiation facilities) and central irradiation position (CIP), especially for any material samples. The calculation results show that gamma heating for CIP is significantly important (0.87 W/g), but very low value for Lazy Susan position (lest then 0.11 W/g). Based on this results, it can be concluded that the utilization of CIP as irradiation facilities need to consider of gamma heating as data for safety analysis report. (author)

  20. Enrichment measurement in TRIGA type fuels; Medicion de enriquecimiento en combustibles tipo Triga

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F.; Mazon R, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-05-15

    The Department of Energy of the United States of North America, through the program 'Idaho Operations Nuclear Spent Fuel Program' of the Idaho National Engineering and Environmental Laboratory (INEEL), in Idaho Falls; Idaho USA, hires to Global Technologies Inc. (GTI) to develop a prototype device of detection enrichment uranium (DEU Detection of Enrichment of Uranium) to determine quantitatively the enrichment in remainder U-235 in a TRIGA fuel element at the end of it useful life. The characteristics of the prototype developed by GTI are the following ones: It allows to carry out no-destructive measurements of TRIGA type fuel. Easily transportable due to that reduced of it size. The determination of the enrichment (in grams of U-235) it is obtained with a precision of 5%. The National Institute of Nuclear Research (ININ), in its facilities of the Nuclear Center of Mexico, it has TRIGA type fuel of high and low enrichment (standard and FLIP) fresh and with burnt, it also has the infrastructure (hot cells, armor-plating of transport, etc) and qualified personnel to carry out the necessary maneuvers to prove the operation of the DEU prototype. For this its would be used standard type fuel elements and FLIP, so much fresh as with certain burnt one. In the case of the fresh fuels the measurement doesn't represent any risk, the fuels before and after the measurement its don't contain a quantity of fission products that its represent a radiological risk in its manipulation; but in the case of the fuels with burnt the handling of the same ones represents an important radiological risk reason why for its manipulation it was used the transport armor-plating and the hot cells. (Author)

  1. Regulatory inspection practices on fuel elements and core lay-out at NPPs

    International Nuclear Information System (INIS)

    Van Binnebeek, J.J.; Liuhto, Pekka; Badel, D.; Klonk, H.; Seidel, F.; Fichtinger, G.; Manzella, P.; Koizumi, Hiroyoshi; Delgado, Jose Luis; Gutierrez Ruiz, Luis Miguel; Bouvrie, E. des; Gil, J.; Forsberg, Staffan; Wand, H.; Warren, Tom; Gallo, R.

    1998-01-01

    The basic description of the reactor core of a nuclear power plant (NPP) is an important part of the Safety Analysis Report in all countries. Due to increased interest by regulatory authorities in the Member countries, in 1996 WGIP proposed looking at inspection aspects on fuel elements and core lay-out at nuclear power plants. The CNRA subsequently approved proceeding with this report. The report deals primarily with inspection practices and inspection requirements during nuclear power plant (NPP) operation with special emphasis on refuelling procedures. All license related topics, such as fuel and core design (mechanical, neutronic, thermal-hydraulic), as well as inspection philosophy and practices on fuel fabrication are included as appropriate serving as background information and may not be completely described. WGIP members describe their country's inspection programme according to the structure of a questionnaire (appendix 1). The individual contributions are contained in the appendix 2 and are compiled within the main chapters (1 through 3). Report Structure: 1. Licensing and Quality Assurance (QA) requirements for nuclear fuel; 2. Regulatory inspection programme during NPP operation and refuelling outages; 3. Procedures for inspection practices and inspection programme. Appendix: Questionnaire and Country specific contributions. Contributions are presented by Belgium, Finland, France, Germany, Hungary, Italy, Japan, Mexico, The Netherlands, Spain, Sweden, Switzerland, United Kingdom, USA

  2. Land cover mapping with emphasis to burnt area delineation using co-orbital ALI and Landsat TM imagery

    Science.gov (United States)

    Petropoulos, George P.; Kontoes, Charalambos C.; Keramitsoglou, Iphigenia

    2012-08-01

    In this study, the potential of EO-1 Advanced Land Imager (ALI) radiometer for land cover and especially burnt area mapping from a single image analysis is investigated. Co-orbital imagery from the Landsat Thematic Mapper (TM) was also utilised for comparison purposes. Both images were acquired shortly after the suppression of a fire occurred during the summer of 2009 North-East of Athens, the capital of Greece. The Maximum Likelihood (ML), Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs) classifiers were parameterised and subsequently applied to the acquired satellite datasets. Evaluation of the land use/cover mapping accuracy was based on the error matrix statistics. Also, the McNemar test was used to evaluate the statistical significance of the differences between the approaches tested. Derived burnt area estimates were validated against the operationally deployed Services and Applications For Emergency Response (SAFER) Burnt Scar Mapping service. All classifiers applied to either ALI or TM imagery proved flexible enough to map land cover and also to extract the burnt area from other land surface types. The highest total classification accuracy and burnt area detection capability was returned from the application of SVMs to ALI data. This was due to the SVMs ability to identify an optimal separating hyperplane for best classes' separation that was able to better utilise ALI's advanced technological characteristics in comparison to those of TM sensor. This study is to our knowledge the first of its kind, effectively demonstrating the benefits of the combined application of SVMs to ALI data further implying that ALI technology may prove highly valuable in mapping burnt areas and land use/cover if it is incorporated into the development of Landsat 8 mission, planned to be launched in the coming years.

  3. Fuel management strategy for the compact core design of RSG GAS (MPR-30)

    Energy Technology Data Exchange (ETDEWEB)

    Sembiring, T.M.; Liem, P.H.; Tukiran, S. [National Nuclear Energy Agency (Batan), PUSPIPTEK-Serpong Tangerang (Indonesia)

    2000-07-01

    The rearrangement of the core configuration of the RSG GAS reactor to obtain a compact core is in progress. A fuel management strategy is proposed for the equilibrium compact core of this reactor by reducing the number of in-core irradiation positions. The reduced irradiation positions are based on the activities during 12 years operation. The obtained compact core gives significant extension of the operation cycle length so that the reactor availability and utilization can be enhanced. The equilibrium compact silicide core obtained met the imposed design constraints and safety requirements. (author)

  4. Fuel management strategy for the compact core design of RSG GAS (MPR-30)

    International Nuclear Information System (INIS)

    Sembiring, T.M.; Liem, P.H.; Tukiran, S.

    2000-01-01

    The rearrangement of the core configuration of the RSG GAS reactor to obtain a compact core is in progress. A fuel management strategy is proposed for the equilibrium compact core of this reactor by reducing the number of in-core irradiation positions. The reduced irradiation positions are based on the activities during 12 years operation. The obtained compact core gives significant extension of the operation cycle length so that the reactor availability and utilization can be enhanced. The equilibrium compact silicide core obtained met the imposed design constraints and safety requirements. (author)

  5. Development of a simplified methodology for the isotopic determination of fuel spent in Light Water Reactors

    International Nuclear Information System (INIS)

    Hernandez N, H.; Francois L, J.L.

    2005-01-01

    The present work presents a simplified methodology to quantify the isotopic content of the spent fuel of light water reactors; their application is it specific to the Laguna Verde Nucleo electric Central by means of a balance cycle of 18 months. The methodology is divided in two parts: the first one consists on the development of a model of a simplified cell, for the isotopic quantification of the irradiated fuel. With this model the burnt one is simulated 48,000 MWD/TU of the fuel in the core of the reactor, taking like base one fuel assemble type 10x10 and using a two-dimensional simulator for a fuel cell of a light water reactor (CPM-3). The second part of the methodology is based on the creation from an isotopic decay model through an algorithm in C++ (decay) to evaluate the amount, by decay of the radionuclides, after having been irradiated the fuel until the time in which the reprocessing is made. Finally the method used for the quantification of the kilograms of uranium and obtained plutonium of a normalized quantity (1000 kg) of fuel irradiated in a reactor is presented. These results will allow later on to make analysis of the final disposition of the irradiated fuel. (Author)

  6. Analysis of the performance of fuel cells PWR with a single enrichment and radial distribution of enrichments

    International Nuclear Information System (INIS)

    Vargas, S.; Gonzalez, J. A.; Alonso, G.; Del Valle, E.; Xolocostli M, J. V.

    2008-01-01

    One of the main challenges in the design of fuel assemblies is the efficient use of uranium achieving burnt homogeneous of the fuel rods as well as the burnt maximum possible of the same ones to the unload. In the case of the assemblies type PWR has been decided actually for fuel assemblies with a single radial enrichment. The present work has like effect to show the because of this decision, reason why a comparison of the neutronic performance of two fuel cells takes place with the same enrichment average but one of them with radial distribution of enrichment and the other with a single enrichment equal to the average. The results shown in the present study of the behavior of the neutron flow as well as the power distribution through of assembly sustain the because of a single radial enrichment. (Author)

  7. A study on the criticality search of transuranium recycling BWR core by adjusting supplied fuel composition in equilibrium state

    International Nuclear Information System (INIS)

    Seino, Takeshi; Sekimoto, Hiroshi

    1998-01-01

    There have been some difficulties in carrying out an extensive evaluation of the equilibrium state of Light Water Reactor (LWR) recycling operations keeping their fixed criticality condition using conventional design codes because of the complexity of their calculation model for practical fuel and core design and because of a large amount of calculation time. This study presents an efficient approach to secure the criticality in an equilibrium cycle by adjusting a supplied fuel composition. The criticality search is performed by the use of fuel importance obtained from the equation adjoint to a continuously fuel supplied core burnup equation. Using this method, some numerical analyses were carried out in order to evaluate the mixed oxide (MOX) fuel composition of equilibrium Boiling Water Reactor (BWR) cores satisfying the criticality requirement. The results showed the comprehensive and quantitative characteristics on the equilibrium cores confining transuraniums for different MOX fuel loading fractions and irradiating conditions

  8. Safety analysis and optimization of the core fuel reloading for the Moroccan TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Nacir, B.; Boulaich, Y.; Chakir, E.; El Bardouni, T.; El Bakkari, B.; El Younoussi, C.

    2014-01-01

    Highlights: • Additional fresh fuel elements must be added to the reactor core. • TRIGA reactor could safely operate around 2 MW power with 12% fuel elements. • Thermal–hydraulic parameters were calculated and the safety margins are respected. • The 12% fuel elements will have no influence on the safety of the reactor. - Abstract: The Moroccan TRIGA MARK II reactor core is loaded with 8.5% in weight of uranium standard fuel elements. Additional fresh fuel elements must periodically be added to the core in order to remedy the observed low power and to return to the initial reactivity excess at the End Of Cycle. 12%-uranium fuel elements are available to relatively improve the short fuel lifetime associated with standard TRIGA elements. These elements have the same dimensions as standards elements, but with different uranium weight. The objective in this study is to demonstrate that the Moroccan TRIGA reactor could safely operate, around 2 MW power, with new configurations containing these 12% fuel elements. For this purpose, different safety related thermal–hydraulic parameters have been calculated in order to ensure that the safety margins are largely respected. Therefore, the PARET model for this TRIGA reactor that was previously developed and combined with the MCNP transport code in order to calculate the 3-D temperature distribution in the core and all the most important parameters like the axial distribution of DNBR (Departure from Nucleate Boiling Ratio) across the hottest channel. The most important conclusion is that the 12% fuel elements utilization will have no influence on the safety of the reactor while working around 2 MW power especially for configurations based on insertions in C and D-rings

  9. An optimum fuel management method based on CANDU in-core detector readings

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok

    2001-01-01

    In this study, a new optimal fuel management method is developed for a CANDU 600 MWe (CANDU-6) reactor. At first, an efficient power mapping method has been developed, which provides an accurate core status of an operating CANDU reactor. Secondly, an optimum refueling channel selection method has been developed by an optimization theory. For the power mapping method, the measured detector readings are used as boundary conditions of the diffusion theory calculation with the Kalman filtering (DIKAL) method. The performance of the DIKAL method was assessed for various core states and applied to the calculation of power and flux distribution in the CANDU 6 reactor. Sensitivity studies have shown that DIKAL method is insensitive to the detector random and systematic errors. An optimal refueling simulation method (OPTIMA), practically applicable to a CANDU 6 reactor, has also been developed. The objective of the optimization is to reproduce the reference core performance during refueling simulation, while satisfying the operation limits of channel and bundle powers. The optimization process consists of two stages: i) elimination of candidate refueling channels by several constraints and ii) selection of refueling channels by a direct search method that uses sensitivity coefficients of channel power generated for the reference core. The elimination process sorts out an appropriate number of fuel channels suitable for refueling, considering the channel power, bundle power and fuel burnup. The optimum refueling channels are then selected such that the difference of power distribution from the reference is minimized. In order to demonstrate the applicability of the overall fuel management methodology developed in this study, the DIKAL-OPTIMA method was applied to Wolsong-3 reactor refueling simulation, which is a typical CANDU-6 reactor. The results of refueling simulation have shown that the method can be efficiently used for the performance analysis of the operating

  10. An optimum fuel management method based on CANDU in-core detector readings

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Choi, Hang Bok

    2001-01-01

    In this study, a new optimal fuel management method is developed for a CANDU 600 MWe (CANDU-6) reactor. At first, an efficient power mapping method has been developed, which provides an accurate core status of an operating CANDU reactor. Secondly, an optimum refueling channel selection method has been developed by an optimization theory. For the power mapping method, the measured detector readings are used as boundary conditions of the diffusion theory calculation with the Kalman filtering (DIKAL) method. The performance of the DIKAL method was assessed for various core states and applied to the calculation of power and flux distribution in the CANDU 6 reactor. Sensitivity studies have shown that DIKAL method is insensitive to the detector random and systematic errors. An optimal refueling simulation method (OPTIMA), practically applicable to a CANDU 6 reactor, has also been developed. The objective of the optimization is to reproduce the reference core performance during refueling simulation, while satisfying the operation limits of channel and bundle powers. The optimization process consists of two stages: i) elimination of candidate refueling channels by several constraints and ii) selection of refueling channels by a direct search method that uses sensitivity coefficients of channel power generated for the reference core. The elimination process sorts out an appropriate number of fuel channels suitable for refueling, considering the channel power, bundle power and fuel burnup. The optimum refueling channels are then selected such that the difference of power distribution from the reference is minimized. In order to demonstrate the applicability of the overall fuel management methodology developed in this study, the DIKAL-OPTIMA method was applied to Wolsong-3 reactor refueling simulation, which is a typical CANDU-6 reactor. The results of refueling simulation have shown that the method can be efficiently used for the performance analysis of the operating

  11. Safety-related investigations on power distribution in MOX fuel elements in LWR cores

    International Nuclear Information System (INIS)

    Kramer, E.; Langenbuch, S.

    1991-01-01

    For the concept of thermal recycling various fuel assembly designs have been developped during the last years. An overview is given describing the present status of MOX-fuel assembly design for PWR and BWR. The local power distribution within the MOX-fuel assembly and influences between neighbouring MOX- and Uranium fuel assemblies have been analyzed by own calculations. These investigations are limited to specific aspects of the spatial power distribution, which are related to the use of MOX-fuel assemblies within the reactor core of LWR. (orig.) [de

  12. Neutronics substantiation of possibility for conversion of the WWR-K reactor core to operation with low-enriched fuel

    International Nuclear Information System (INIS)

    Arinkin, F.M.; Gizatulin, Sh.H.; Zhantikin, T.M.; Koltochnik, S.N.; Takibaev, A.Zh.; Talanov, S.V.; Chakrov, P.V.; Chekushina, L.V.

    2002-01-01

    The studies are aimed to calculation and experimental justification of possibility for conversion of the WWR-R reactor core to low-enriched nuclear fuel (the 19.75-% enrichment in isotope U-235), resulting in reducing the risk of non-sanctioned proliferation of nuclear materials which can be used as weapons materials. The analysis of available published data, related to problem of reduction of enrichment in the fuel used in research thermal reactors, has been carried out. Basing on the analysis results, reference fuel compositions have been chosen, in particular, uranium dioxide (UO 2 ) in aluminum master form and the UA1 4 alloy. Preliminary calculations have shown that, with the WWR-K reactor core preserved existing critical characteristics (the fuel composition: UA1 4 ), the uranium concentration in the fuel element is to be increased by a factor of 2.0-2.2, being impossible technologically. The calculations have been performed by means of the Monte Carlo computational codes. The program of optimal conversion of the WWR-K reactor core to low-enriched fuel has been developed, including: development of calculation models of the reactor core, composed of various designs of fuel elements and fuel assemblies (FA), on a base of corresponding computational codes (diffusion, statistical, etc.); implementation of experiments in the zero-power reactor (critical assembly) with the WWR-C-type FA, in view of correction of the computational constants used in calculations; implementation of reactor core neutronics calculations, in view of selection of the U-235 optimal content in the low-enriched fuel elements and choice of FA reload strategy at the regime of reactor core after burning; determination of the fuel element specification; determination of the critical and operational loads for the reactor core composed of rod/tubular fuel elements; calculation of the efficiency of the protection control system effectors, optimization of its composition, number and locations in the

  13. Analysis of the critical and first full power operating cores for PARR using leu oxide fuel

    International Nuclear Information System (INIS)

    Khan, L.A.; Qazi, M.K.; Bokhari, I.H.; Fazal, R.

    1989-10-01

    This paper explains the analysis for determining the first full power operating core for PARR using LEU oxide fuel. The core configuration selected for this first full power operation contains about 6.13 kg of U-235 distributed in 19 standard and five control fuel elements. The neutron flux level is doubled when core is shifted from 5MW to 10 MW. Total nuclear power peaking factor of the core is 2.03. The analysis shows that the core can be operated safely at 5 MW with a flow rate of 520 meter cube per hour and at 10 MW with a flow rate of 900 meter cube per hour. (A.B.). 10 figs

  14. A study on the criticality search of transuranium recycling BWR core by adjusting supplied fuel composition in equilibrium state

    International Nuclear Information System (INIS)

    Seino, Takeshi; Sekimoto, Hiroshi

    1997-01-01

    There have been some difficulties in carrying out an extensive evaluation of the equilibrium state of Light Water Reactor (LWR) recycling operations keeping their fixed criticality condition using conventional design codes, because of the complexity of their calculational model for practical fuel and core design and because of a large amount of calculation time. This study presents an efficient approach to secure the criticality in an equilibrium cycle by adjusting a supplied fuel composition. The criticality search is performed by the use of fuel importance obtained from the equilibrium adjoint to a continuously fuel supplied core burnup equation. Using this method, some numerical analyses were carried out in order to evaluate the mixed oxide (MOX) fuel composition of equilibrium Boiling Water Reactor (BWR) cores satisfying the criticality requirement. The results showed the comprehensive and quantitative characteristics on the equilibrium cores confining transuranium for different MOX fuel loading fractions and irradiating conditions. (author)

  15. Optimized Core Design and Fuel Management of a Pebble-Bed Type Nuclear Reactor

    International Nuclear Information System (INIS)

    Boer, Brian

    2007-01-01

    The Very High Temperature Reactor (VHTR) has been selected by the international Generation IV research initiative as one of the six most promising nuclear reactor concepts that are expected to enter service in the second half of the 21st century. The VHTR is characterized by a high plant efficiency and a high fuel discharge burnup level. More specifically, the (pebble-bed type) High Temperature Reactor (HTR) is known for its inherently safe characteristics, coming from a negative temperature reactivity feedback, a low power density and a large thermal inertia of the core. The core of a pebble-bed reactor consists of graphite spheres (pebbles) that form a randomly packed porous bed, which is cooled by high pressure helium. The pebbles contain thousands of fuel particles, which are coated with several pyrocarbon and silicon carbon layers that are designed to contain the fission products that are formed during operation of the reactor. The inherent safety concept has been demonstrated in small pebble-bed reactors in practice, but an increase in the reactor size and power is required for cost-effective power production. An increase of the power density in order to increase the helium coolant outlet temperature is attractive with regard to the efficiency and possible process heat applications. However, this increase leads in general to higher fuel temperatures, which could lead to a consequent increase of the fuel coating failure probability. This thesis deals with the pebble-bed type VHTR that aims at an increased coolant outlet temperature of 1000 degrees C and beyond. For the simulation of the neutronic and thermal-hydraulic behavior of the reactor the DALTON-THERMIX coupled code system has been developed and has been validated against experiments performed in the AVR and HTR-10 reactors. An analysis of the 400 MWth Pebble Bed Modular Reactor (PBMR) design shows that the inherent safety concept that has been demonstrated in practice in the smaller AVR and HTR-10

  16. The Analysis of the Effect of Coolant Channel Width on Fuel Loading of the RSG-GAS Core

    International Nuclear Information System (INIS)

    Surbakti; Tukiran

    2004-01-01

    The RGS-GAS using uranium silicide fuel, plate type and 250 g U of loading is planned to increase the fuel loading to 300 g U even to 400 g U. The silicide fuel has advantages when increase the fuel loading in the same volume. Because of that case, it is necessary to analyze the effect of coolant channel width on fuel loading of the RSG-GAS core. Analyzing the effect the work which done is to generate cell and core calculation using WIMSD/4 and Batan-2DIFF codes. The WIMSD/4 code is used to generate cross section of core material and Batan-2DIFF is used to calculate the effective multiplication factor. The model that used in this calculation there are three kind of fuel loading namely, 250 g U, 300 g U and 400 g U. The coolant channel width is simulated from 1.75 mm to 2.55 mm. From that fuel loadings, it is analyzed which coolant channel width gave the best effective multiplication factor. From result of analysis showed that the best effective multiplication factor is on the coolant channel width of 2.55 mm for third of fuel loadings. (author)

  17. Post-Fire Soil Respiration in Relation to the Burnt Wood Management

    Science.gov (United States)

    Marañón Jiménez, Sara; Castro, J.; Kowalski, A.; Serrano-Ortiz, P.; Ruiz, B.; Sancez-Canete, Ep; Zamora, R.

    2010-05-01

    Wildfires are the main cause of forests and understory destruction in Mediterranean areas. One of the most dramatic consequences is the perturbation of carbon fluxes. A high percentage of the CO2 emitted by the ecosystem after a wildfire is due to soil respiration, which represents the most important uncertainty in the global carbon cycle. In this study we have quantified the soil respiration and its seasonal variability in reforested pine forests in the National and Natural Park of Sierra Nevada which were burned in September of 2005. Measurement campaigns were carried out along two years in two experimental plots at different altitudinal levels (1500 and 2200 m a.s.l.), in which three post-fire silvicultural treatments of burned wood were established: 1) "Non-Intervention" (NI), leaving all of the burnt trees standing. 2) "Cut plus Lopping" (CL), a treatment where most of the trees were cut and felled, with the main branches also lopped off, but leaving all the cut biomass in situ covering partially the ground surface 3) "Salvage Logging" (SL), all trees were cut and the trunks and branches were removed. Soil respiration was highly determined by the effects derived of the altitudinal level, with the highest values at the lowest altitude. The seasonal precipitation regime had also a key role. Soil respiration kept a basal level during the summer drought, during this period the response to the altitudinal level and post-fire treatments were reduced. On the other hand, soil respiration boosted after rain events, when the differences between treatments became more pronounced. In general, especially under these conditions of absence of water limitation, the post-fire burnt wood treatment with the highest CO2 fluxes was that in which all the burnt wood biomass remained covering partially the soil surface ("Cut plus Lopping") while the lowest values were registered in the treatment in which the soil was bared ("Salvage Logging"). Results of this study are especially

  18. Method of fabricating a monolithic core for a solid oxide fuel cell

    International Nuclear Information System (INIS)

    Zwick, S.A.; Ackerman, J.P.

    1985-01-01

    A method is disclosed for forming a core for use in a solid oxide fuel cell that electrochemically combines fuel and oxidant for generating galvanic output. The core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support consisting instead only of the active anode, cathode, electrolyte and interconnect materials. Each electrolyte wall consists of cathode and anode materials sandwiching electrolyte material therebetween, and each interconnect wall consists of the cathode and anode materials sandwiching interconnect material therebetween. The electrolyte and interconnect walls define a plurality of substantially parallel core passageways alternately having respectively the inside faces thereof with only the anode material or with only the cathode material exposed. In the wall structure, the electrolyte and interconnect materials are only 0.002-0.01 cm thick; and the cathode and anode materials are only 0.002-0.05 cm thick. The method consists of building up the electrolyte and interconnect walls by depositing each material on individually and endwise of the wall itself, where each material deposit is sequentially applied for one cycle; and where the depositing cycle is repeated many times until the material buildup is sufficient to formulate the core. The core is heat cured to become dimensionally and structurally stable

  19. Core-control assembly with a fixed fuel support

    International Nuclear Information System (INIS)

    Challberg, R.C.

    1993-01-01

    A core-control assembly is described comprising: a control rod having a plurality of blades; a control-rod guide tube for guiding vertical motion of said control rod; a fuel support for supporting fuel bundles separated by said blades, said fuel support having an aperture conforming to a cross section of said control rod through said blades for preventing rotational movement of said control rod to a decoupling orientation when said control rod is between a maximum power position and a minimum power position, said minimum power position being above said maximum power position, said fuel support being supported by said control-rod guide tube; control-rod drive means for controlling vertical motion of said control rod, said control-rod drive means providing for vertical motion between said maximum power position and said minimum power position, said control-rod drive means providing for vertical movement to a decoupling position, said decoupling position being no lower than said minimum power position, said decoupling position being at a level sufficient to permit said control rod to rotate to a decoupling orientation relative to said fuel support; and coupling means for coupling said control rod to said control rod drive means, said coupling means being releasable by rotational movement of said control rod to said decoupling orientation relative to said control-rod drive means

  20. Monitoring of reforestation on burnt areas in Western Russia using Landsat time series

    Science.gov (United States)

    Vorobev, Oleg; Kurbanov, Eldar

    2017-04-01

    Forest fires are main disturbance factor for the natural ecosystems, especially in boreal forests. Monitoring for the dynamic of forest cover regeneration in the post-fire period of ecosystem recovery is crucial to both estimation of forest stands and forest management. In this study, on the example of burnt areas of 2010 wildfires in Republic Mari El of Russian Federation we estimated post-fire dynamic of different classes of vegetation cover between 2011-2016 years with the use of time series Landsat satellite images. To validate the newly obtained thematic maps we used 80 test sites with independent field data, as well Canopus-B images of high spatial resolution. For the analysis of the satellite images we referred to Normalized Differenced Vegetation Index (NDVI) and Tasseled Cap transformation. The research revealed that at the post-fire period the area of thematic classes "Reforestation of the middle and low density" has maximum cover (44%) on the investigated burnt area. On the burnt areas of 2010 there is ongoing active process of grass overgrowing (up to 20%), also there are thematic classes of deadwood (15%) and open spaces (10%). The results indicate that there is mostly natural regeneration of tree species pattern corresponding to the pre-fire condition. Forest plantations cover only 2% of the overall burnt area. By the 2016 year the NDVI parameters of young vegetation cover were recovered to the pre-fire level as well. The overall unsupervised classification accuracy of more than 70% shows high degree of agreement between the thematic map and the ground truth data. The research results can be applied for the long term succession monitoring and management plan development for the reforestation activities on the lands disturbed by fire.

  1. Safety characteristics of mid-sized MOX fueled liquid metal reactor core of high converter type in the initiating phase of unprotected loss of flow accident. Effect of low specific fuel power density on ULOF behavior brought by employment of large diameter fuel pins

    International Nuclear Information System (INIS)

    Ishida, Masayoshi; Kawada, Kenichi; Niwa, Hajime

    2003-07-01

    Safety characteristics in core disruptive accidents (CDAs) of mid-sized MOX fueled liquid metal reactor core of high converter type have been examined by using the CDA initiating phase analysis code SAS4A. The design concept of high converter type reactor core has been studied as one of options in the category of sodium-cooled reactor in Phase II of Feasibility Study on Commercialized Fast Reactor Cycle System. An unprotected loss-of-flow accident (ULOF) has been selected as a representative CDA initiator for this study. A core concept of high converter type, which employed a large diameter fuel pin of 11.1 mm with 1.2 m core height to get a large fuel volume fraction in the core to achieve high internal conversion ratio was proposed in JFY2001. Each fuel subassembly of the core (abbreviated here as UPL120)was provided with an upper sodium plenum directly above the core to reduce the sodium void reactivity worth. Because of the large fuel pin diameter, average specific fuel power density (31 kW/kg-MOX) of UPL120 is about one half of those of conventional large MOX cores. The reactivity worth of sodium voiding is 6$ in the whole core, and -1$ in the all upper plenums. Initiating phase of ULOF accident in UPL120 under the conditions of nominal design and best estimate analysis resulted in a slightly super-prompt critical power burst. The causes of the super-prompt criticality have been identified twofold: (a) the low specific fuel power density of core reduced the effectiveness of prompt negative reactivity feedback of Doppler and axial fuel expansion effects upon increase in reactor power, and (b) the longer core height compared with conventional 1m cores brought, together with the lower specific power density, a remarkable delay in insertion of negative fuel dispersion reactivity after the onset of fuel disruption in sodium voided subassembly due to the lower linear heat rating in the top portion of the core. During the delay, burst-type fuel failures in sodium un

  2. Comparing erosion rates in burnt forests and agricultural fields for a mountain catchment in NW Iberia

    Science.gov (United States)

    Nunes, João Pedro; Marisa Santos, Juliana; Bernard-Jannin, Léonard; Keizer, Jan Jacob

    2013-04-01

    A large part of northwestern Iberia is nowadays covered by commercial forest plantations of eucalypts and maritime pines, which have partly replaced traditional agricultural land-uses. The humid Mediterranean climate, with mild wet winters and warm dry summers, creates favorable conditions for the occurrence of frequent and recurrent forest fires. Erosion rates in recently burnt areas have been the subject of numerous studies; however, there is still a lack of information on their relevance when compared with agricultural erosion rates, impairing a comprehensive assessment of the role of forests for soil protection. This study focuses on Macieira de Alcoba, head-water catchment in the Caramulo Mountain Range, north-central Portugal, with a mixture of agricultural fields (mostly a rotation between winter pastures and summer cereals) on the lower slopes and forest plantations (mostly eucalypts) on the upper slopes. Agricultural erosion in this catchment has been monitored since 2010; a forest fire in 2011 presented an opportunity to compare post-fire and agricultural erosion rates at nearby sites with comparable soil and climatic conditions. Erosion rates were monitored between 2010 and 2013 by repeated surveys of visible erosion features and, in particular, by mapping and measuring rills and gullies after important rainfall events. During the 2011/2012 hydrological year, erosion rates in the burnt forest were two orders of magnitude above those in agricultural fields, amounting to 17.6 and. 0.1 Mg ha-1, respectively. Rills were widespread in the burnt area, while in the agricultural area they were limited to a small number of fields with higher slope; these particular fields experienced an erosion rate of 2.3 Mg ha-1, still one order of magnitude lower than at the burnt forest site. The timing of the erosion features was also quite distinct for the burnt area and the agricultural fields. During the first nine months after the fire, rill formation was not observed in

  3. Corrosion of MTR type fuel plates containing U3O8-Al cermet cores

    International Nuclear Information System (INIS)

    Durazzo, M.

    1985-01-01

    The fuel plate samples containing U 3 O 8 -Al cermet cores with concentrations from 10 to 90% of U 3 O 8 weight were fabricated. Samples with 58% of U 3 O 8 eight were fabricated using compacts with densities from 75 to 95% of theoretical density. The influences of U 3 O 8 concentration and porosity of compacted core on porosity and uniformity of core thickness are discussed. The U 3 O 8 -Al cores were submitted to corrosion tests and exposed to deionized water at temperatures of 30, 50, 70 and 90 0 C by cladding deffect produced artificially. The results shown that core corrosion is accompanied by hydrogen release. The total volum of released hydrogen and the time interval to observe the initiation of hydrogen releasing (incubation time) are depending on core pososity and absolute temperature. A mechanism for U 3 O 8 -Al core corrosion process is proposed and discussed. The cladding of fuel plate samples was submitted to corrosion tests under similar conditons of the IAE-R1 reactor operating at 2, 5 and 10 MW. (Author) [pt

  4. On-line core monitoring with CORE MASTER / PRESTO

    International Nuclear Information System (INIS)

    Lindahl, S.O.; Borresen, S.; Ovrum, S.

    1986-01-01

    Advanced calculational tools are instrumental in improving reactor plant capacity factors and fuel utilization. The computer code package CORE MASTER is an integrated system designed to achieve this objective. The system covers all main activities in the area of in-core fuel management for boiling water reactors; design, operation support, and on-line core monitoring. CORE MASTER operates on a common data base, which defines the reactor and documents the operating history of the core and of all fuel bundles ever used

  5. A nodal Grean's function method of reactor core fuel management code, NGCFM2D

    International Nuclear Information System (INIS)

    Li Dongsheng; Yao Dong.

    1987-01-01

    This paper presents the mathematical model and program structure of the nodal Green's function method of reactor core fuel management code, NGCFM2D. Computing results of some reactor cores by NGCFM2D are analysed and compared with other codes

  6. Proposed model for fuel-coolant mixing during a core-melt accident

    International Nuclear Information System (INIS)

    Corradini, M.L.

    1983-01-01

    If complete failure of normal and emergency coolant flow occurs in a light water reactor, fission product decay heat would eventually cause melting of the reactor fuel and cladding. The core melt may then slump into the lower plenum and later into the reactor cavity and contact residual liquid water. A model is proposed to describe the fuel-coolant mixing process upon contact. The model is compared to intermediate scale experiments being conducted at Sandia. The modelling of this mixing process will aid in understanding three important processes: (1) fuel debris sizes upon quenching in water, (2) the hydrogen source term during fuel quench, and (3) the rate of steam production. Additional observations of Sandia data indicate that the steam explosion is affected by this mixing process

  7. Deadwood Decay in a Burnt Mediterranean Pine Reforestation

    Directory of Open Access Journals (Sweden)

    Carlos R. Molinas-González

    2017-05-01

    Full Text Available Dead wood remaining after wildfires represents a biological legacy for forest regeneration, and its decay is both cause and consequence of a large set of ecological processes. However, the rate of wood decomposition after fires is still poorly understood, particularly for Mediterranean-type ecosystems. In this study, we analyzed deadwood decomposition following a wildfire in a Mediterranean pine plantation in the Sierra Nevada Natural and National Park (southeast Spain. Three plots were established over an elevational/species gradient spanning from 1477 to 2053 m above sea level, in which burnt logs of three species of pines were experimentally laid out and wood densities were estimated five times over ten years. The logs lost an overall 23% of their density, although this value ranged from an average 11% at the highest-elevation plot (dominated by Pinus sylvestris to 32% at an intermediate elevation (with P. nigra. Contrary to studies in other climates, large-diameter logs decomposed faster than small-diameter logs. Our results provide one of the longest time series for wood decomposition in Mediterranean ecosystems and suggest that this process provides spatial variability in the post-fire ecosystem at the scale of stands due to variable speeds of decay. Common management practices such as salvage logging diminish burnt wood and influence the rich ecological processes related to its decay.

  8. A Modified Nitride-Based Fuel for Long Core Life and Proliferation Resistance

    International Nuclear Information System (INIS)

    Ebbinghaus, B; Choi, J; Meier, T

    2003-01-01

    A modified nitride-based uranium fuel to support the small, secured, transportable, and autonomous reactor (SSTAR) concept is initiated at Lawrence Livermore National laboratory (LLNL). This project centers on the evaluation of modified uranium nitride fuels imbedded with other inert (e.g. ZrN), neutron-absorbing (e.g. HfN) , or breeding (e.g. ThN) nitrides to enhance the fuel properties to achieve long core life with a compact reactor design. A long-life fuel could minimize the need for on-site refueling and spent-fuel storage. As a result, it could significantly improve the proliferation resistance of the reactor/fuel systems. This paper discusses the potential benefits and detriments of modified nitride-based fuels using the criteria of compactness, long-life, proliferation resistance, fuel safety, and waste management. Benefits and detriments are then considered in recommending a select set of compositions for further study

  9. Analysis of Core Physics Experiments on Irradiated BWR MOX Fuel in REBUS Program

    International Nuclear Information System (INIS)

    Yamamoto, Toru; Ando, Yoshihira; Hayashi, Yamato

    2008-01-01

    As part of analyses of experimental data of a critical core containing a irradiated BWR MOX test bundle in the REBUS program, depletion calculations was performed for the BWR MOX fuel assemblies from that the MOX test rods were selected by using a general purpose neutronics code system SRAC. The core analyses were carried out using SRAC and a continuous energy Monte Carlo code MVP. The calculated k eff s were compared with those of the core containing a fresh MOX fuel bundle in the program. The SRAC-diffusion calculation underestimates k eff s of the both cores by 1.0 to 1.3 %dk and the k eff s of MVP are 1.001. The difference in k eff between the irradiated BWR MOX test bundle core and the fresh MOX one is 0.4 %dk in the SRAC-diffusion calculation and 0.0 %dk in the MVP calculation. The calculated fission rate distributions are in good agreement with the measurement in the SRAC-diffusion and MVP calculations. The calculated neutron flux distributions are also in good agreement with the measurement. The calculated burnup reactivity in the both calculations well reproduce the measurements. (authors)

  10. Influence of fuel assembly loading pattern and fuel burnups upon leakage neutron flux spectra from light water reactor core (Joint research)

    International Nuclear Information System (INIS)

    Kojima, Kensuke; Okumura, Keisuke; Kosako, Kazuaki; Torii, Kazutaka

    2016-01-01

    At the decommissioning of light water reactors (LWRs), it is important to evaluate an amount of radioactivity in the ex-core structures such as a reactor containment vessel, radiation shieldings, and so on. It is thought that the leakage neutron spectra in these radioactivation regions, which strongly affect the induced radioactivity, would be changed by different reactor core configurations such as fuel assembly loading pattern and fuel burnups. This study was intended to evaluate these effects. For this purpose, firstly, partial neutron currents on the core surfaces were calculated for some core configurations. Then, the leakage neutron flux spectra in major radioactivation regions were calculated based on the provided currents. Finally, influence of the core configurations upon the neutron flux spectra was evaluated. As a result, it has been found that the influence is small on the spectrum shapes of neutron fluxes. However, it is necessary to pay attention to the facts that intensities of the leakage neutron fluxes are changed by the configurations and that intensities and spectrum shapes of the leakage neutron fluxes are changed depending on the angular direction around the core. (author)

  11. A system for 3D representation of burns and calculation of burnt skin area.

    Science.gov (United States)

    Prieto, María Felicidad; Acha, Begoña; Gómez-Cía, Tomás; Fondón, Irene; Serrano, Carmen

    2011-11-01

    In this paper a computer-based system for burnt surface area estimation (BAI), is presented. First, a 3D model of a patient, adapted to age, weight, gender and constitution is created. On this 3D model, physicians represent both burns as well as burn depth allowing the burnt surface area to be automatically calculated by the system. Each patient models as well as photographs and burn area estimation can be stored. Therefore, these data can be included in the patient's clinical records for further review. Validation of this system was performed. In a first experiment, artificial known sized paper patches were attached to different parts of the body in 37 volunteers. A panel of 5 experts diagnosed the extent of the patches using the Rule of Nines. Besides, our system estimated the area of the "artificial burn". In order to validate the null hypothesis, Student's t-test was applied to collected data. In addition, intraclass correlation coefficient (ICC) was calculated and a value of 0.9918 was obtained, demonstrating that the reliability of the program in calculating the area is of 99%. In a second experiment, the burnt skin areas of 80 patients were calculated using BAI system and the Rule of Nines. A comparison between these two measuring methods was performed via t-Student test and ICC. The hypothesis of null difference between both measures is only true for deep dermal burns and the ICC is significantly different, indicating that the area estimation calculated by applying classical techniques can result in a wrong diagnose of the burnt surface. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  12. Performance evaluation of open core gasifier on multi-fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bhoi, P.R.; Singh, R.N.; Sharma, A.M.; Patel, S.R. [Thermo Chemical Conversion Division, Sardar Patel Renewable Energy Research Institute (SPRERI), Vallabh Vidyanagar 388 120, Gujarat (India)

    2006-06-15

    Sardar Patel renewable energy research institute (SPRERI) has designed and developed open core, throat-less, down draft gasifier and installed it at the institute. The gasifier was designed for loose agricultural residues like groundnut shells. The purpose of the study is to evaluate the gasifier on multi-fuels such as babul wood (Prosopis juliflora), groundnut shell briquettes, groundnut shell, mixture of wood (Prosopis juliflora) and groundnut shell in the ratio of 1:1 and cashew nut shell. The gasifier performance was evaluated in terms of fuel consumption rate, calorific value of producer gas and gasification efficiency. Gasification efficiency of babul wood (Prosopis juliflora), groundnut shell briquettes, groundnut shell, mixture of Prosopis juliflora and groundnut shell in the ratio of 1:1 and cashew nut shell were 72%, 66%, 70%, 64%, 70%, respectively. Study revealed that babul wood (Prosopis juliflora), groundnut shell briquettes, groundnut shell, mixture of wood (Prosopis juliflora) and groundnut shell in the ratio of 1:1 and cashew nut shell were satisfactorily gasified in open core down draft gasifier. The study also showed that there was flow problem with groundnut shell. (author)

  13. Core-shell rhodium sulfide catalyst for hydrogen evolution reaction / hydrogen oxidation reaction in hydrogen-bromine reversible fuel cell

    Science.gov (United States)

    Li, Yuanchao; Nguyen, Trung Van

    2018-04-01

    Synthesis and characterization of high electrochemical active surface area (ECSA) core-shell RhxSy catalysts for hydrogen evolution oxidation (HER)/hydrogen oxidation reaction (HOR) in H2-Br2 fuel cell are discussed. Catalysts with RhxSy as shell and different percentages (5%, 10%, and 20%) of platinum on carbon as core materials are synthesized. Cyclic voltammetry is used to evaluate the Pt-equivalent mass specific ECSA and durability of these catalysts. Transmission electron microscopy (TEM), X-ray Photoelectron spectroscopy (XPS) and Energy-dispersive X-ray spectroscopy (EDX) techniques are utilized to characterize the bulk and surface compositions and to confirm the core-shell structure of the catalysts, respectively. Cycling test and polarization curve measurements in the H2-Br2 fuel cell are used to assess the catalyst stability and performance in a fuel cell. The results show that the catalysts with core-shell structure have higher mass specific ECSA (50 m2 gm-Rh-1) compared to a commercial catalyst (RhxSy/C catalyst from BASF, 6.9 m2 gm-Rh-1). It also shows better HOR/HER performance in the fuel cell. Compared to the platinum catalyst, the core-shell catalysts show more stable performance in the fuel cell cycling test.

  14. Classification of the NPP core and fuel assembly states by the pattern recoguition method

    International Nuclear Information System (INIS)

    Egorov, Yu.A.; Ivanov, E.A.; Kazakov, S.V.; Tolstykh, V.D.

    1981-01-01

    The patern recognition methods used for solving the problems of analysis of radiohazard states of fuel assemblies (FA) and uranium-graphite reactor core as a whole are considered. The problem under consideration is formulated as the problem of studying the deformation of signal space for the system of fuel can tightness control on the background of fuel assembly character space as characteristics, reflecting the FA living conditions in a core power, coolant flow rate, coolant steam content and pipeline length up to the detector of the system of fuel can tightness control are chosen. The analysis of deformation of the fuel can tightness control system signal space is completed by its division into two spaces: the background signal space and the valid signal space. For solving the problem the method of basic components and variational approach have been used. The conclusion is drawn that as the extent of FA failure and valid signals of by-channel system of fuel can tightness control are in one-to-one correspondence it is advantageous to solve the problem of FA state classification in the space of valid signals [ru

  15. Whole-core damage analysis of EBR-II driver fuel elements following SHRT program

    International Nuclear Information System (INIS)

    Chang, L.K.; Koenig, J.F.; Porter, D.L.

    1987-01-01

    In the Shutdown Heat Removal Testing (SHRT) program in EBR-II, fuel element cladding temperatures of some driver subassemblies were predicted to exceed temperatures at which cladding breach may occur. A whole-core thermal analysis of driver subassemblies was performed to determine the cladding temperatures of fuel elemnts, and these temperatures were used for fuel element damage calculation. The accumulated cladding damage of fuel element was found to be very small and fuel element failure resulting from SHRT transients is unlikely. No element breach was noted during the SHRT transients. The reactor was immediately restarted after the most severe SHRT transient had been completed and no driver fuel breach has been noted to date. (orig.)

  16. Tradeoff of sodium void worth and burnup reactivity swing: Impacts on balance safety position in metallic-fueled cores

    International Nuclear Information System (INIS)

    Wigeland, R.A.; Turski, R.B.; Pizzica, P.A.

    1994-01-01

    A study has been conducted to investigate the effect of a lower sodium void worth on the consequences of severe accidents in metallic-fueled sodium-cooled reactors. Four 900 MWth designs were used for the study, where all of the reactor cores were designed based on the metallic fuel of the Integral Fast Reactor (IFR) concept. The four core designs each have different sodium void worth, in the range of -3$ to 5$. The purpose of the investigation was to determine the differences in severe accident response for the four core designs, in order to estimate the improvement in overall safety that could be achieved from a reduction in the sodium void worth for reactor cores which use a metallic fuel form

  17. Oyster Creek fuel thermal margin during core thermal-hydraulic oscillations

    International Nuclear Information System (INIS)

    Dougher, J.D.

    1990-01-01

    The Oyster Creek nuclear facility, a boiling water reactor (BWR)-2 plant type, has never experienced core thermal-hydraulic instability. Power oscillations, however, have been observed in other BWR cores both domestically and internationally. Two modes of oscillations have been observed, core wide and regional half-core. During core wide oscillations, the neutron flux in the core oscillates in the radial fundamental mode. During regional half-core oscillations, higher order harmonics in the radial plane result in out-of-phase oscillations with the neutron flux in one half of the core oscillating 180 deg out-of-phase with the neutron flux in the other half of the core. General Design Criteria 12 requires either prevention or detection and suppression of power oscillations which could result in violations of fuel design limits. Analyses performed by General Electric have demonstrated that for large-magnitude oscillations the potential exists for violation of the safety limit minimum critical power ratio (MCPR). However, for plants with a flow-biased neutron flux scram automatic mitigation of oscillations may be provided at an oscillation magnitude below that at which the safety limit is challenged. Plant-specific analysis for Oyster Creek demonstrates that the existing average power range monitor (APRM) system will sense and suppress power oscillations prior to violation of any safety limits

  18. Simulation of nonlinear dynamics of a PWR core by an improved lumped formulation for fuel heat transfer

    International Nuclear Information System (INIS)

    Su, Jian; Cotta, Renato M.

    2000-01-01

    In this work, thermohydraulic behaviour of PWR, during reactivity insertion and partial loss-of-flow, is simulated by using a simplified mathematical model of reactor core and primary coolant. An improved lumped parameter formulation for transient heat conduction in fuel rod is used for core heat transfer modelling. Transient temperature response of fuel, cladding and coolant is analysed. (author)

  19. 3D Field Modifications of Core Neutral Fueling In the EMC3-EIRENE Code

    Science.gov (United States)

    Waters, Ian; Frerichs, Heinke; Schmitz, Oliver; Ahn, Joon-Wook; Canal, Gustavo; Evans, Todd; Feng, Yuehe; Kaye, Stanley; Maingi, Rajesh; Soukhanovskii, Vsevolod

    2017-10-01

    The application of 3-D magnetic field perturbations to the edge plasmas of tokamaks has long been seen as a viable way to control damaging Edge Localized Modes (ELMs). These 3-D fields have also been correlated with a density drop in the core plasmas of tokamaks; known as `pump-out'. While pump-out is typically explained as the result of enhanced outward transport, degraded fueling of the core may also play a role. By altering the temperature and density of the plasma edge, 3-D fields will impact the distribution function of high energy neutral particles produced through ion-neutral energy exchange processes. Starved of the deeply penetrating neutral source, the core density will decrease. Numerical studies carried out with the EMC3-EIRENE code on National Spherical Tokamak eXperiment-Upgrade (NSTX-U) equilibria show that this change to core fueling by high energy neutrals may be a significant contributor to the overall particle balance in the NSTX-U tokamak: deep core (Ψ funded by the US Department of Energy under Grant DE-SC0012315.

  20. PWR core and spent fuel pool analysis using scale and nestle

    International Nuclear Information System (INIS)

    Murphy, J. E.; Maldonado, G. I.; St Clair, R.; Orr, D.

    2012-01-01

    The SCALE nuclear analysis code system [SCALE, 2011], developed and maintained at Oak Ridge National Laboratory (ORNL) is widely recognized as high quality software for analyzing nuclear systems. The SCALE code system is composed of several validated computer codes and methods with standard control sequences, such as the TRITON/NEWT lattice physics sequence, which supplies dependable and accurate analyses for industry, regulators, and academia. Although TRITON generates energy-collapsed and space-homogenized few group cross sections, SCALE does not include a full-core nodal neutron diffusion simulation module within. However, in the past few years, the open-source NESTLE core simulator [NESTLE, 2003], originally developed at North Carolina State Univ. (NCSU), has been updated and upgraded via collaboration between ORNL and the Univ. of Tennessee (UT), so it now has a growingly seamless coupling to the TRITON/NEWT lattice physics [Galloway, 2010]. This study presents the methodology used to couple lattice physics data between TRITON and NESTLE in order to perform a three-dimensional full-core analysis employing a 'real-life' Duke Energy PWR as the test bed. The focus for this step was to compare the key parameters of core reactivity and radial power distribution versus plant data. Following the core analysis, following a three cycle burn, a spent fuel pool analysis was done using information generated from NESTLE for the discharged bundles and was compared to Duke Energy spent fuel pool models. The KENO control module from SCALE was employed for this latter stage of the project. (authors)

  1. PWR core and spent fuel pool analysis using scale and nestle

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J. E.; Maldonado, G. I. [Dept. of Nuclear Engineering, Univ. of Tennessee, Knoxville, TN 37996-2300 (United States); St Clair, R.; Orr, D. [Duke Energy, 526 S. Church St, Charlotte, NC 28202 (United States)

    2012-07-01

    The SCALE nuclear analysis code system [SCALE, 2011], developed and maintained at Oak Ridge National Laboratory (ORNL) is widely recognized as high quality software for analyzing nuclear systems. The SCALE code system is composed of several validated computer codes and methods with standard control sequences, such as the TRITON/NEWT lattice physics sequence, which supplies dependable and accurate analyses for industry, regulators, and academia. Although TRITON generates energy-collapsed and space-homogenized few group cross sections, SCALE does not include a full-core nodal neutron diffusion simulation module within. However, in the past few years, the open-source NESTLE core simulator [NESTLE, 2003], originally developed at North Carolina State Univ. (NCSU), has been updated and upgraded via collaboration between ORNL and the Univ. of Tennessee (UT), so it now has a growingly seamless coupling to the TRITON/NEWT lattice physics [Galloway, 2010]. This study presents the methodology used to couple lattice physics data between TRITON and NESTLE in order to perform a three-dimensional full-core analysis employing a 'real-life' Duke Energy PWR as the test bed. The focus for this step was to compare the key parameters of core reactivity and radial power distribution versus plant data. Following the core analysis, following a three cycle burn, a spent fuel pool analysis was done using information generated from NESTLE for the discharged bundles and was compared to Duke Energy spent fuel pool models. The KENO control module from SCALE was employed for this latter stage of the project. (authors)

  2. Effect of Fuel Structure Materials on Radiation Source Term in Reactor Core Meltdown

    International Nuclear Information System (INIS)

    Jeong, Hae Sun; Ha, Kwang Soon

    2014-01-01

    The fission product (Radiation Source) releases from the reactor core into the containment is obligatorily evaluated to guarantee the safety of Nuclear Power Plant (NPP) under the hypothetical accident involving a core meltdown. The initial core inventory is used as a starting point of all radiological consequences and effects on the subsequent results of accident assessment. Hence, a proper evaluation for the inventory can be regarded as one of the most important part over the entire procedure of accident analysis. The inventory of fission products is typically evaluated on the basis of the uranium material (e.g., UO2 and USi2) loaded in nuclear fuel assembly, except for the structure materials such as the end fittings, grids, and some kinds of springs. However, the structure materials are continually activated by the neutrons generated from the nuclear fission, and some nuclides of them (e.g., 14 C and 60 Co) can significantly influence on accident assessment. During the severe core accident, the structure components can be also melted with the melting points of temperature relatively lower than uranium material. A series of the calculation were performed by using ORIGEN-S module in SCALE 6.1 package code system. The total activity in each part of structure materials was specifically analyzed from these calculations. The fission product inventory is generally evaluated based on the uranium materials of fuel only, even though the structure components of the assembly are continually activated by the neutrons generated from the nuclear fission. In this study, the activation calculation of the fuel structure materials was performed for the initial source term assessment in the accident of reactor core meltdown. As a result, the lower end fitting and the upper plenum greatly contribute to the total activity except for the cladding material. The nuclides of 56 Mn, '5 1 Cr, 55 Fe, 58 Co, 54 Mn, and 60 Co are analyzed to mainly effect on the activity. This result

  3. An Advanced Sodium-Cooled Fast Reactor Core Concept Using Uranium-Free Metallic Fuels for Maximizing TRU Burning Rate

    Directory of Open Access Journals (Sweden)

    Wuseong You

    2017-12-01

    Full Text Available In this paper, we designed and analyzed advanced sodium-cooled fast reactor cores using uranium-free metallic fuels for maximizing burning rate of transuranics (TRU nuclides from PWR spent fuels. It is well known that the removal of fertile nuclides such as 238U from fuels in liquid metal cooled fast reactor leads to the degradation of important safety parameters such as the Doppler coefficient, coolant void worth, and delayed neutron fraction. To resolve the degradation of the Doppler coefficient, we considered adding resonant nuclides to the uranium-free metallic fuels. The analysis results showed that the cores using uranium-free fuels loaded with tungsten instead of uranium have a significantly lower burnup reactivity swing and more negative Doppler coefficients than the core using uranium-free fuels without resonant nuclides. In addition, we considered the use of axially central B4C absorber region and moderator rods to further improve safety parameters such as sodium void worth, burnup reactivity swing, and the Doppler coefficient. The results of the analysis showed that the final design core can consume ~353 kg per cycle and satisfies self-controllability under unprotected accidents. The fuel cycle analysis showed that the PWR–SFR coupling fuel cycle option drastically reduces the amount of waste going to repository and the SFR burner can consume the amount of TRUs discharged from 3.72 PWRs generating the same electricity.

  4. Thermal-hydraulic analysis of research reactor core with different LEU fuel types using RELAP5

    Energy Technology Data Exchange (ETDEWEB)

    El-Sahlamy, Neama M. [Nuclear and Radiological Regulatory Authority, Cairo (Egypt)

    2017-11-15

    In the current work, comparisons between the core performances when using different LEU fuels are done. The fuels tested are UA1{sub X}-A1, U{sub 3}O{sub 8}-Al, and U{sub 3}Si{sub 2}-Al fuels with 19.7 % enrichment. Calculations are done using RELAP5 code to evaluate the thermal-hydraulic performance of the IAEA benchmark 10 MW reactor. First, a reassessment of the slow reactivity insertion transient with UA1{sub X}-A1 LEU fuel to compare the results with those reported in the IAEA TECDOC [1]. Then, comparisons between the thermal-hydraulic core performances when using the three LEU fuels are done. The assessment is performed at initial power of 1.0 W. The reactor power is calculated using the RELAP5 point kinetic model. The reactivity feedback, from changes in water density and fuel temperature, is considered for all cases. From the results it is noticed that U{sub 3}Si{sub 2}-Al fuel gives the best fuel performance since it has the minimum value of peak fuel temperature and the minimum peak clad surface temperature, as operating parameters. Also, it gives the maximum value of the Critical Heat Flux Ratio and the lowest tendency to flow instability occurrence.

  5. Analysis Influence of Mixing Gd2O3 in the Silicide Fuel Element to Core Excess Reactivity of RSG-GAS

    International Nuclear Information System (INIS)

    Susilo, Jati

    2004-01-01

    Gadolinium (Gd 2 O 3 ) is a burnable poison material mixed in the pin fuel element of the LWR core used to decrease core excess reactivity. In this research, analysis influence of mixing Gd 2 O 3 in the silicide fuel element to excess reactivity of the RSG-GAS core had been done. Equivalent cell of the equilibrium core developed by L.E.Strawbridge from Westing House Co. burn-up calculation has been done using SRAC-PIJ computer code achieve infinite multiplication factor (k x ). Value of Gd 2 O 3 concentration in the fuel element (pcm) showed by mass ratio of Gd 2 O 3 (gram) to that U 3 Si 2 (gram) times 10 5 , that is 0 pcm ∼ 100 pcm. From the calculation results analysis showed that Gd 2 O 3 concentration added should be considered. because a large number of Gd 2 O 3 will result in not achieving criticality at the Beginning Of Cycle. The maximum concentration of Gd 2 O 3 for RSG-GAS equilibrium fueled silicide 2.96 grU/cc is 80 pcm or 52.02 mgram/fuel plate. Maximum reduction of core excess reactivity due to mixing of Gd 2 O 3 in the RSG-GAS silicide fuels was around 1.502 %Δk/k, and hence not achieving the standard nominal excess reactivity for RSG-GAS core using high density of U 3 Si 2 -Al fuel. (author)

  6. The nuclear fuel cycle, From the uranium mine to waste disposal

    International Nuclear Information System (INIS)

    2002-09-01

    Fuel is a material that can be burnt to provide heat. The most familiar fuels are wood, coal, natural gas and oil. By analogy, the uranium used in nuclear power plants is called 'nuclear fuel', because it gives off heat too, although, in this case, the heat is obtained through fission and not combustion. After being used in the reactor, spent nuclear fuel can be reprocessed to extract recyclable energy material, which is why we speak of the nuclear fuel cycle. This cycle includes all the following industrial operations: - uranium mining, - fuel fabrication, - use in the reactor, - reprocessing the fuel unloaded from the reactor, - waste treatment and disposal. 'The nuclear fuel cycle includes an array of industrial operations, from uranium mining to the disposal of radioactive waste'. Per unit or mass (e.g. per kilo), nuclear fuel supplies far more energy than a fossil fuel (coal or oil). When used in a pressurised water reactor, a kilo of uranium generates 10,000 times more energy than a kilo of coal or oil in a conventional power station. Also, the fuel will remain in the reactor for a long time (several years), unlike conventional fuels, which are burnt up quickly. Nuclear fuel also differs from others in that uranium has to undergo many processes between the time it is mined and the time it goes into the reactor. For the sake of simplicity, the following pages will only look at nuclear fuel used in pressurised water reactors (or PWRs), because nuclear power plants consisting of one or more PWRs are the most widely used around the world. (authors)

  7. SOLID BURNT BRICKS’ TENSILE STRENGTH

    Directory of Open Access Journals (Sweden)

    Aneta Maroušková

    2017-11-01

    Full Text Available This paper deals with experimental testing of solid burnt bricks and mortar in pure (axial tension. The obtained working diagrams will be further use for a detailed numerical analysis of whole brick masonry column under concentric compressive load. Failure mechanism of compressed brick masonry column is characterized by the appearance and development of vertical tensile cracks in masonry units (bricks passing in the direction of principal stresses and is accompanied by progressive growth of horizontal deformations. These cracks are caused by contraction and interaction between two materials with different mechanical characteristics (brick and mortar. The aim of this paper is more precisely describe the response of quasi-brittle materials to uniaxial loading in tension (for now only the results from three point bending test are available. For these reasons, bricks and mortar tensile behavior is experimentally tested and the obtained results are discussed.

  8. Equilibrium core layout for the 1000 MW direct cycle HTR (HHT) with hexagonal monolith moulded fuel blocks

    Energy Technology Data Exchange (ETDEWEB)

    Dworak, A

    1973-03-15

    The aim of this survey is to calculate an equilibrium Thorium fuel cycle for a 1000 MW HHT-core in off-load refuelling with hexagonal monolith moulded fuel blocks. It was tried to achieve an axial power distribution similar to the advanced pebble-bed reactors (OTTO) by introducing three axial core zones with different heavy metal content and initial enrichment.

  9. Improvement of fuel combustion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tumanovskii, A.G.; Babii, V.I.; Enyakin, Y.P.; Kotler, V.R.; Ryabov, G.V.; Verbovetskii, E.K.; Nadyrov, I.I. [All-Russian Thermal Engineering Institute, Moscow (Russian Federation)

    1996-07-01

    The main problems encountered in the further development of fuel combustion technologies at thermal power stations in Russia are considered. Experience is generalized and results are presented on the efficiency with which nitrogen oxide emissions are reduced by means of technological methods when burning natural gas, fuel oil, and coal. The problems that arise in the introduction of new combustion technologies and in using more promising grades of coal are considered. The results studies are presented that show that low grade Russian coals can be burnt in circulating fluidized bed boilers. 14 refs., 5 figs., 4 tabs.

  10. Thermal-hydraulic analysis for core conversion to the use of low-enriched uranium fuels in the KUR

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Kanda, Keiji; Shibata, Toshikazu

    1985-01-01

    A feasibility study has been performed on the core conversion to the use of low-enriched uranium (LEU) fuels in the KUR. Five fuel element geometries are studied. For each fuel element, the relation between the pressure drop and the flow rate, critical heat flux, and heat fluxes for the onset of flow instability and the onset of nucleate boiling are calculated using the computer code PLTEMP3.MOD1 which has been developed for this analysis. The effect of fuel material (UAl x -Al, U 3 O 8 -Al and U 3 Si 2 -Al) on the peak fuel temperatures is also studied. A particular interest in the mixed core which may be constructed on the way to the use of LEU fuels, the change in the bypass flow rate due to the change in the gap between different fuel elements is investigated. (author)

  11. Core-state models for fuel management of equilibrium and transition cycles in pressurized water reactors

    International Nuclear Information System (INIS)

    Aragones, J.M.; Martinez-Val, J.M.; Corella, M.R.

    1977-01-01

    Fuel management requires that mass, energy, and reactivity balance be satisfied in each reload cycle. Procedures for selection of alternatives, core-state models, and fuel cost calculations have been developed for both equilibrium and transition cycles. Effective cycle lengths and fuel cycle variables--namely, reload batch size, schedule of incore residence for the fuel, feed enrichments, energy sharing cycle by cycle, and discharge burnup and isotopics--are the variables being considered for fuel management planning with a given energy generation plan, fuel design, recycling strategy, and financial assumptions

  12. The Human and Physical Determinants of Wildfires and Burnt Areas in Israel

    Science.gov (United States)

    Levin, Noam; Tessler, Naama; Smith, Andrew; McAlpine, Clive

    2016-09-01

    Wildfires are expected to increase in Mediterranean landscapes as a result of climate change and changes in land-use practices. In order to advance our understanding of human and physical factors shaping spatial patterns of wildfires in the region, we compared two independently generated datasets of wildfires for Israel that cover approximately the same study period. We generated a site-based dataset containing the location of 10,879 wildfires (1991-2011), and compared it to a dataset of burnt areas derived from MODIS imagery (2000-2011). We hypothesized that the physical and human factors explaining the spatial distribution of burnt areas derived from remote sensing (mostly large fires, >100 ha) will differ from those explaining site-based wildfires recorded by national agencies (mostly small fires, human activities, improving the management of forest areas and raising public awareness to fire risk are key considerations in reducing fire danger.

  13. Reactivity management and burn-up management on JRR-3 silicide-fuel-core

    International Nuclear Information System (INIS)

    Kato, Tomoaki; Araki, Masaaki; Izumo, Hironobu; Kinase, Masami; Torii, Yoshiya; Murayama, Yoji

    2007-08-01

    On the conversion from uranium-aluminum-dispersion-type fuel (aluminide fuel) to uranium-silicon-aluminum-dispersion-type fuel (silicide fuel), uranium density was increased from 2.2 to 4.8 g/cm 3 with keeping uranium-235 enrichment of 20%. So, burnable absorbers (cadmium wire) were introduced for decreasing excess reactivity caused by the increasing of uranium density. The burnable absorbers influence reactivity during reactor operation. So, the burning of the burnable absorbers was studied and the influence on reactor operation was made cleared. Furthermore, necessary excess reactivity on beginning of operation cycle and the time limit for restart after unplanned reactor shutdown was calculated. On the conversion, limit of fuel burn-up was increased from 50% to 60%. And the fuel exchange procedure was changed from the six-batch dispersion procedure to the fuel burn-up management procedure. The previous estimation of fuel burn-up was required for the planning of fuel exchange, so that the estimation was carried out by means of past operation data. Finally, a new fuel exchange procedure was proposed for effective use of fuel elements. On the procedure, burn-up of spent fuel was defined for each loading position. The average length of fuel's staying in the core can be increased by two percent on the procedure. (author)

  14. Enhancement of actinide incineration and transmutation rates in Ads EAP-80 reactor core with MOX PuO2 and UO2 fuel

    International Nuclear Information System (INIS)

    Kaltcheva-Kouzminava, S.; Kuzminov, V.; Vecchi, M.

    2001-01-01

    Neutronics calculations of the accelerator driven reactor core EAP-80 with UO 2 and PuO 2 MOX fuel elements and Pb-Bi coolant are presented in this paper. Monte Carlo optimisation computations of several schemes of the EAP-80 core with different types of fuel assemblies containing burnable absorber B4 C or H 2 Zr zirconium hydride moderator were performed with the purpose to enhance the plutonium and actinide incineration rate. In the first scheme the reactor core contains burnable absorber B4 C arranged in the cladding of fuel elements with high enrichment of plutonium (up to 45%). In the second scheme H2 Zr zirconium hydride moderated zones were located in fuel elements with low enrichment (∼20%). In both schemes the incineration rate of plutonium is about two times higher than in the reference EAP-80 core and at the same time the power density distribution remains significantly unchanged compared to the reference core. A hybrid core containing two fuel zones one of which is the inner fuel region with UO 2 and PuO 2 high enrichment plutonium fuel and the second one is the outer region with fuel elements containing zirconium hydride layer was also considered. Evolution of neutronics parameters and actinide transmutation rates during the fuel burn-up is presented. Calculations were performed using the MCNP-4B code and the SCALE 4.3 computational system. (author)

  15. Radiotoxicity study of a boiling water reactor core design based on a thorium-uranium fuel concept

    International Nuclear Information System (INIS)

    Nunez C, A.; Espinosa P, G.

    2007-01-01

    Full text: The innovative design of a Boiling Water Reactor (BWR) equilibrium core using the thorium-uranium (blanket-seed) concept in the same integrated fuel assembly is presented in this paper. The lattice design uses the thorium conversion capability to 233 U in a BWR spectrum. A core design was developed to achieve an equilibrium cycle of one effective full power year in a standard BWR. A comparison of the toxicity of the spent fuel showed that toxicity is lower in the thorium cycle than other commercial fuels as UO 2 and MOX (uranium and plutonium) in case of the one-through cycle for LWR. (Author)

  16. Lattice cell and full core physics of internally cooled annular fuel in heavy water moderated reactors

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, J.; Hamilton, H.; Hyland, B. [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

    2013-07-01

    A program is underway at Atomic Energy of Canada Limited (AECL) to develop a new fuel bundle concept to enable greater burnups for PT-HWR (pressure tube heavy water reactor) cores. One option that AECL is investigating is an internally cooled annular fuel (ICAF) element concept. ICAF contains annular cylindrical pellets with cladding on the inner and outer diameters. Coolant flows along the outside of the element and through the centre. With such a concept, the maximum fuel temperature as a function of linear element rating is significantly reduced compared to conventional, solid-rod type fuel. The preliminary ICAF bundle concept considered in this study contains 24 half-metre long internally cooled annular fuel elements and one non-fuelled centre pin. The introduction of the non-fuelled centre pin reduces the coolant void reactivity (CVR), which is the increase in reactivity that occurs on voiding the coolant in accident scenarios. Lattice cell and full core physics calculations of the preliminary ICAF fuel bundle concept have been performed for medium burnups of approximately 18 GWd/tU using WIMS-AECL and reactor fuel simulation program (RFSP). The results will be used to assist in concept configuration optimization. The effects of radial and axial core power distributions, linear element power ratings, refuelling rates and operational power ramps have been analyzed. The results suggest that burnups of greater than 18 GWd/tU can be achieved in current reactor designs. At approximately 18 GWd/tU, expected maximum linear element ratings in a PT-HWR with online-refuelling are approximately 90 kW/m. These conditions would be prohibitive for solid-rod fuel, but may be possible in ICAF fuel given the reduced maximum fuel temperature as a function of linear element rating. (authors)

  17. Lattice cell and full core physics of internally cooled annular fuel in heavy water moderated reactors

    International Nuclear Information System (INIS)

    Armstrong, J.; Hamilton, H.; Hyland, B.

    2013-01-01

    A program is underway at Atomic Energy of Canada Limited (AECL) to develop a new fuel bundle concept to enable greater burnups for PT-HWR (pressure tube heavy water reactor) cores. One option that AECL is investigating is an internally cooled annular fuel (ICAF) element concept. ICAF contains annular cylindrical pellets with cladding on the inner and outer diameters. Coolant flows along the outside of the element and through the centre. With such a concept, the maximum fuel temperature as a function of linear element rating is significantly reduced compared to conventional, solid-rod type fuel. The preliminary ICAF bundle concept considered in this study contains 24 half-metre long internally cooled annular fuel elements and one non-fuelled centre pin. The introduction of the non-fuelled centre pin reduces the coolant void reactivity (CVR), which is the increase in reactivity that occurs on voiding the coolant in accident scenarios. Lattice cell and full core physics calculations of the preliminary ICAF fuel bundle concept have been performed for medium burnups of approximately 18 GWd/tU using WIMS-AECL and reactor fuel simulation program (RFSP). The results will be used to assist in concept configuration optimization. The effects of radial and axial core power distributions, linear element power ratings, refuelling rates and operational power ramps have been analyzed. The results suggest that burnups of greater than 18 GWd/tU can be achieved in current reactor designs. At approximately 18 GWd/tU, expected maximum linear element ratings in a PT-HWR with online-refuelling are approximately 90 kW/m. These conditions would be prohibitive for solid-rod fuel, but may be possible in ICAF fuel given the reduced maximum fuel temperature as a function of linear element rating. (authors)

  18. Behaviour of contact layer material between cermet fuel element core and can

    International Nuclear Information System (INIS)

    Gavrilin, S.S.; Permyakov, L.N.; Simakov, G.A.; Chernikov, A.S.

    1996-01-01

    The structural state of the contact layer between the shell of the Zr1Nb alloy and cermet fuel element core containing up to 70% of uranium dioxides is experimental studied. The silumin alloy was used as contact material. The results of studies on interaction zones, formed on the Zr1Nb - silumin boundary after fuel elements manufacture and also under temperature conditions, modeling the maximum design and hypothetical accidents accompanied by the contact material melting, are presented [ru

  19. Letters and Viewpoints Potentials of Using Waste Burnt Clay as a ...

    African Journals Online (AJOL)

    Samples of waste burnt clay were collected from various parts of the country to study their pozzolanic properties. The samples were ground into fine powder and taken for chemical tests. Results from the chemical tests on all the samples showed high silica content. In fact the combined percentages of Silica (SiO2), Alumina ...

  20. A Comparison of Spectral Angle Mapper and Artificial Neural Network Classifiers Combined with Landsat TM Imagery Analysis for Obtaining Burnt Area Mapping

    Directory of Open Access Journals (Sweden)

    Marko Scholze

    2010-03-01

    Full Text Available Satellite remote sensing, with its unique synoptic coverage capabilities, can provide accurate and immediately valuable information on fire analysis and post-fire assessment, including estimation of burnt areas. In this study the potential for burnt area mapping of the combined use of Artificial Neural Network (ANN and Spectral Angle Mapper (SAM classifiers with Landsat TM satellite imagery was evaluated in a Mediterranean setting. As a case study one of the most catastrophic forest fires, which occurred near the capital of Greece during the summer of 2007, was used. The accuracy of the two algorithms in delineating the burnt area from the Landsat TM imagery, acquired shortly after the fire suppression, was determined by the classification accuracy results of the produced thematic maps. In addition, the derived burnt area estimates from the two classifiers were compared with independent estimates available for the study region, obtained from the analysis of higher spatial resolution satellite data. In terms of the overall classification accuracy, ANN outperformed (overall accuracy 90.29%, Kappa coefficient 0.878 the SAM classifier (overall accuracy 83.82%, Kappa coefficient 0.795. Total burnt area estimates from the two classifiers were found also to be in close agreement with the other available estimates for the study region, with a mean absolute percentage difference of ~1% for ANN and ~6.5% for SAM. The study demonstrates the potential of the examined here algorithms in detecting burnt areas in a typical Mediterranean setting.

  1. MTR (Materials Testing Reactors) cores fuel management. Application of a low enrichment reactor for the equilibrium and transitory core calculation

    International Nuclear Information System (INIS)

    Relloso, J.M.

    1990-01-01

    This work describes a methodology to define the equilibrium core and a MTR (Materials Testing Reactors) type reactor's fuel management upon multiple boundary conditions, such as: end cycle and permitted maximum reactivities, burn-up extraction and maximun number of movements by rechange. The methodology proposed allows to determine the best options through conceptual relations, prior to a detailed calculation with the core code, reducing the test number with these codes and minimizing in this way CPU cost. The way to better systematized search of transient cores from the first one to the equilibrium one is presented. (Author) [es

  2. Results of recent reactor-material tests on dispersal of oxide fuel from a disrupted core

    International Nuclear Information System (INIS)

    Spencer, B.W.; Wilson, R.J.; Vetter, D.L.; Erickson, E.G.; Dewey, G.

    1985-01-01

    The results of experimental investigations and related analyses are reported addressing the dispersal of molten oxide fuel from a disrupted core via various available pathways for the CRBR system. These investigations included the GAPFLOW tests in which pressure-driven and gravity drainage tests were performed using dispersal pathways mocking up the intersubassembly gaps, the CAMEL C6 and C7 tests in which molten fuel entered sodium-filled control assembly ducts under prototypic thermal-hydraulic conditions, and the Lower Internals Drainage (LID) tests in which molten fuel drained downward through simulated below-core structure (orifice plate stacks) as the bottom of control assembly ducts. The results of SHOTGUN tests addressing basic freezing of molten UO 2 and UO 2 /metal mixtures flowing through circular tubes are also reported. Test results have invariably shown the existance of stable UO 2 crusts on the inside surfaces of the flow paths. Appreciable removal of fuel was indicated prior to freezing-induced immobilization. Application of heat transfer models based upon the presence of stable, insulating fuel crusts tends to overpredict the removal process

  3. A Comparative Study of Engine Performance and Exhaust Emissions Characteristics of Linseed Oil Biodiesel Blends with Diesel Fuel in a Direct Injection Diesel Engine

    Science.gov (United States)

    Salvi, B. L.; Jindal, S.

    2013-01-01

    This paper is aimed at study of the performance and emissions characteristics of direct injection diesel engine fueled with linseed oil biodiesel blends and diesel fuel. The comparison was done with base fuel as diesel and linseed oil biodiesel blends. The experiments were conducted with various blends of linseed biodiesel at different engine loads. It was found that comparable mass fraction burnt, better rate of pressure rise and BMEP, improved indicated thermal efficiency (8-11 %) and lower specific fuel consumption (3.5-6 %) were obtained with LB10 blend at full load. The emissions of CO, un-burnt hydrocarbon and smoke were less as compared to base fuel, but with slight increase in the emission of NOx. Since, linseed biodiesel is renewable in nature, so practically negligible CO2 is added to the environment. The linseed biodiesel can be one of the renewable alternative fuels for transportation vehicles and blend LB10 is preferable for better efficiency.

  4. Design of 50 MWe HTR-PBMR reactor core and nuclear power plant fuel using SRAC2006 programme

    International Nuclear Information System (INIS)

    Bima Caraka Putra; Yosaphat Sumardi; Yohannes Sardjono

    2014-01-01

    This research aims to assess the design of core and fuel of nuclear power plant type High Temperature Reactor-Pebble Bed Modular Reactor 50 MWe from the Beginning of Life (BOL) to Ending of life (EOL) with eight years operating life. The parameters that need to be analyzed in this research are the temperature distribution inside the core, quantity enrichment of U 235 , fuel composition, criticality, and temperature reactivity coefficient of the core. The research was conducted with a data set of core design parameters such as nuclides density, core and fuel dimensions, and the axial temperature distribution inside the core. Using SRAC2006 program package, the effective multiplication factor (k eff ) values obtained from the input data that has been prepared. The results show the value of the criticality of core is proportional to the addition of U 235 enrichment. The optimum enrichment obtained at 10.125% without the use of burnable poison with an excess reactivity of 3.1 2% at BOL. The addition Gd 2O3 obtained an optimum value of 12 ppm burnable poison with an excess reactivity 0.38 %. The use of Er 2O3 with an optimum value 290 ppm has an excess reactivity 1.24 % at BOL. The core temperature reactivity coefficient with and without the use of burnable poison has a negative values that indicates the nature of its inherent safety. (author)

  5. Fuel element and full core thermal–hydraulic analysis of the AHTR for the evaluation of the LOFC transient

    International Nuclear Information System (INIS)

    Avigni, P.; Petrovic, B.

    2014-01-01

    Highlights: • We developed MATLAB and RELAP5 models of the single channel of the AHTR. • Single channel analysis indicates design envelope for effective heat removal. • The reactivity feedback evaluated by SCALE supports safe operation of the reactor. • We developed RELAP5 models of the fuel assembly and full core. • The fully passive DRACS protects the reactor during a LOFC accident. - Abstract: The Advanced High Temperature Reactor (AHTR) is a fluoride-cooled and graphite-moderated reactor concept designed by Oak Ridge National Laboratory (Holcomb et al., 2011). The modeling and optimization of the heat removal system and the core structure is required, in order to obtain an adequate heavy metal loading and to provide effective cooling capability. The single channel MATLAB model provides a simple tool to evaluate the steady state conditions for the coolant and the fuel plate and the effects of the power distribution; sensitivity studies on the main design parameters of the fuel element are performed. A RELAP5-3D single channel model is developed for the validation and comparison with the MATLAB model; this model is the starting point for the development of a full core model, enabling the study of transients. A one-third fuel assembly model is then analyzed, consisting of six fuel plates and modeling the heat conduction of graphite through RELAP5-3D conduction enclosures. Since the assembly model is not suitable for the implementation in a full core model with the same level of detail, several simplifications have been evaluated, involving the modeling of the plate through a single heat structure and the modeling of different plates through a single plate. A SCALE model of the fuel assembly was developed for the evaluation of the reactivity feedback and the power distribution in the core. The results from the neutronic evaluations and the assembly model were implemented in a full core model, involving the core, the main reactor structures, the cooling

  6. High-temperature electrochemical characterization of Ru core Pt shell fuel cell catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Bokach, D.; Fuente, J.L.G. de la; Tsypkin, M.; Ochal, P.; Tunold, R.; Sunde, S.; Seland, F. [Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Sem Saelands veg 12, N-7491 Trondheim (Norway); Endsjoe, I.C. [Washington Mills AS, NO-7300 Orkanger (Norway)

    2011-12-15

    The electrooxidation of methanol was studied at elevated temperature and pressure by cyclic voltammetry and constant potential experiments at real fuel cell electrocatalysts. Ruthenium core and platinum shell nanoparticles were synthesized by a sequential polyol route, and characterized electrochemically by CO stripping at room temperature to quickly confirm the structure of the synthesized core-shell structure as compared to pure commercial Pt/C and Pt-Ru/C alloy catalysts. A significant promotional effect of Pt decorated Ru cores in the methanol oxidation was found at elevated temperatures and rather high-electrode potentials. A negative potential shift of the methanol oxidation peak is observed for the Ru rate at Pt/C core-shell catalyst at moderate temperatures, while a significant shift to positive potentials of the methanol oxidation peak occurs for Pt/C catalysts. The onset potential for methanol oxidation is lowered some 200 mV from room temperature and up to 120 C for all electrocatalysts, indicating that it is the thermal activity of water adsorption that dictates the onset potential. Direct methanol fuel cell experiments showed only small performance differences between Ru rate at Pt/C and Pt/C anode electrocatalysts, suggesting the necessity of render possible the formation of surface oxygen species at lower electrode potentials. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Thomas L. Maddock; Margaret A. Marshall; Leland M. Montierth

    2011-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has been evaluated as an acceptable benchmark experiment. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has not been evaluated as it is very similar to the evaluated core configuration. The benchmark eigenvalue is 1.0012 ± 0.0029. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  8. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maddock, Thomas L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marshall, Margaret A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Ning [Idaho National Lab. (INL), Idaho Falls, ID (United States); Phillips, Ann Marie [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schreck, Kenneth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); Woolstenhulme, Eric W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bolin, John M. [General Atomics, San Diego, CA (United States); Veca, Anthony [General Atomics, San Diego, CA (United States); McKnight, Richard D. [Argonne National Lab. (ANL), Argonne, IL (United States); Lell, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has been evaluated as an acceptable benchmark experiment. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has not been evaluated as it is very similar to the evaluated core configuration. The benchmark eigenvalue is 1.0012 ± 0.0029. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  9. A NEM diffusion code for fuel management and time average core calculation

    International Nuclear Information System (INIS)

    Mishra, Surendra; Ray, Sherly; Kumar, A.N.

    2005-01-01

    A computer code based on Nodal expansion method has been developed for solving two groups three dimensional diffusion equation. This code can be used for fuel management and time average core calculation. Explicit Xenon and fuel temperature estimation are also incorporated in this code. TAPP-4 phase-B physics experimental results were analyzed using this code and a code based on FD method. This paper gives the comparison of the observed data and the results obtained with this code and FD code. (author)

  10. Fuel element burnup determination in HEU-LEU mixed TRIGA research reactor core

    International Nuclear Information System (INIS)

    Zagar, Tomaz; Ravnik, Matjaz

    2000-01-01

    This paper presents the results of a burnup calculations and burnup measurements for TRIGA FLIP HEU fuel elements and standard TRIGA LEU fuel elements used simultaneously in small TRIGA Mark II research reactor in Ljubljana, Slovenija. The fuel element burnup for approximately 15 years of operation was calculated with two different in house computer codes TRIGAP and TRIGLAV (both codes are available at OECD NEA Data Bank). The calculation is performed in one-dimensional radial geometry in TRIGAP and in two-dimensional (r,φ) geometry in TRIGLAV. Inter-comparison of results shows important influence of in-core water gaps, irradiation channels and mixed rings on burnup calculation accuracy. Burnup of 5 HEU and 27 LEU fuel elements was also measured with reactivity method. Measured and calculated burnup values are inter-compared for these elements (author)

  11. Comparative sodium void effects for different advanced liquid metal reactor fuel and core designs

    International Nuclear Information System (INIS)

    Dobbin, K.D.; Kessler, S.F.; Nelson, J.V.; Gedeon, S.R.; Omberg, R.P.

    1991-01-01

    An analysis of metal-, oxide-, and nitride-fueled advanced liquid metal reactor cores was performed to investigate the calculated differences in sodium void reactivity, and to determine the relationship between sodium void reactivity and burnup reactivity swing using the three fuel types. The results of this analysis indicate that nitride fuel has the least positive sodium void reactivity for any given burnup reactivity swing. Thus, it appears that a good design compromise between transient overpower and loss of flow response is obtained using nitride fuel. Additional studies were made to understand these and other nitride advantages. (author)

  12. Swarm intelligence of artificial bees applied to In-Core Fuel Management Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Santos de Oliveira, Iona Maghali, E-mail: ioliveira@con.ufrj.br [Nuclear Engineering Program, Federal University of Rio de Janeiro, P.O. Box 68509, Zip Code 21945-970, Rio de Janeiro, RJ (Brazil); Schirru, Roberto, E-mail: schirru@lmp.ufrj.br [Nuclear Engineering Program, Federal University of Rio de Janeiro, P.O. Box 68509, Zip Code 21945-970, Rio de Janeiro, RJ (Brazil)

    2011-05-15

    Research highlights: > We present Artificial Bee Colony with Random Keys (ABCRK) for In-Core Fuel Management Optimization. > Its performance is examined through the optimization of a Brazilian '2-loop' PWR. > Feasibility of using ABCRK is shown against some well known population-based algorithms. > Additional advantage includes the utilization of fewer control parameters. - Abstract: Artificial Bee Colony (ABC) algorithm is a relatively new member of swarm intelligence. ABC tries to simulate the intelligent behavior of real honey bees in food foraging and can be used for solving continuous optimization and multi-dimensional numeric problems. This paper introduces the Artificial Bee Colony with Random Keys (ABCRK), a modified ABC algorithm for solving combinatorial problems such as the In-Core Fuel Management Optimization (ICFMO). The ICFMO is a hard combinatorial optimization problem in Nuclear Engineering which during many years has been solved by expert knowledge. It aims at getting the best arrangement of fuel in the nuclear reactor core that leads to a maximization of the operating time. As a consequence, the operation cost decreases and money is saved. In this study, ABCRK is used for optimizing the ICFMO problem of a Brazilian '2-loop' Pressurized Water Reactor (PWR) Nuclear Power Plant (NPP) and the results obtained with the proposed algorithm are compared with those obtained by Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). The results show that the performance of the ABCRK algorithm is better than or similar to that of other population-based algorithms, with the advantage of employing fewer control parameters.

  13. Swarm intelligence of artificial bees applied to In-Core Fuel Management Optimization

    International Nuclear Information System (INIS)

    Santos de Oliveira, Iona Maghali; Schirru, Roberto

    2011-01-01

    Research highlights: → We present Artificial Bee Colony with Random Keys (ABCRK) for In-Core Fuel Management Optimization. → Its performance is examined through the optimization of a Brazilian '2-loop' PWR. → Feasibility of using ABCRK is shown against some well known population-based algorithms. → Additional advantage includes the utilization of fewer control parameters. - Abstract: Artificial Bee Colony (ABC) algorithm is a relatively new member of swarm intelligence. ABC tries to simulate the intelligent behavior of real honey bees in food foraging and can be used for solving continuous optimization and multi-dimensional numeric problems. This paper introduces the Artificial Bee Colony with Random Keys (ABCRK), a modified ABC algorithm for solving combinatorial problems such as the In-Core Fuel Management Optimization (ICFMO). The ICFMO is a hard combinatorial optimization problem in Nuclear Engineering which during many years has been solved by expert knowledge. It aims at getting the best arrangement of fuel in the nuclear reactor core that leads to a maximization of the operating time. As a consequence, the operation cost decreases and money is saved. In this study, ABCRK is used for optimizing the ICFMO problem of a Brazilian '2-loop' Pressurized Water Reactor (PWR) Nuclear Power Plant (NPP) and the results obtained with the proposed algorithm are compared with those obtained by Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). The results show that the performance of the ABCRK algorithm is better than or similar to that of other population-based algorithms, with the advantage of employing fewer control parameters.

  14. Optimization of fuel core loading pattern design in a VVER nuclear power reactors using Particle Swarm Optimization (PSO)

    International Nuclear Information System (INIS)

    Babazadeh, Davood; Boroushaki, Mehrdad; Lucas, Caro

    2009-01-01

    The two main goals in core fuel loading pattern design optimization are maximizing the core effective multiplication factor (K eff ) in order to extract the maximum energy, and keeping the local power peaking factor (P q ) lower than a predetermined value to maintain fuel integrity. In this research, a new strategy based on Particle Swarm Optimization (PSO) algorithm has been developed to optimize the fuel core loading pattern in a typical VVER. The PSO algorithm presents a simple social model by inspiration from bird collective behavior in finding food. A modified version of PSO algorithm for discrete variables has been developed and implemented successfully for the multi-objective optimization of fuel loading pattern design with constraints of keeping P q lower than a predetermined value and maximizing K eff . This strategy has been accomplished using WIMSD and CITATION calculation codes. Simulation results show that this algorithm can help in the acquisition of a new pattern without contravention of the constraints.

  15. Analysis Of Core Management For The Transition Cores Of RSG-GAS Reactor To Full-Silicide Core

    International Nuclear Information System (INIS)

    Malem Sembiring, Tagor; Suparlina, Lily; Tukiran

    2001-01-01

    The core conversion of RSG-GAS reactor from oxide to silicide core with meat density of 2.96 g U/cc is still doing. At the end of 2000, the reactor has been operated for 3 transition cores which is the mixed core of oxide-silicide. Based on previous work, the calculated core parameter for the cores were obtained and it is needed 10 transition cores to achieve a full-silicide core. The objective of this work is to acquire the effect of the increment of the number of silicide fuel on the core parameters such as excess reactivity and shutdown margin. The measurement of the core parameters was carried out using the method of compensation of couple control rods. The experiment shows that the excess reactivity trends lower with the increment of the number of silicide fuel in the core. However, the shutdown margin is not change with the increment of the number of silicide fuel. Therefore, the transition cores can be operated safety to a full-silicide core

  16. An application of neural networks and artificial intelligence for in-core fuel management

    International Nuclear Information System (INIS)

    Miller, L.F.; Algutifan, F.; Uhrig, R.E.

    1992-01-01

    This paper reports the feasibility of using expert systems in combination with neural networks and neutronics calculations to improve the efficiency for obtaining optimal candidate reload core designs. The general objectives of this research are as follows: (1) generate a suitable data base and ancillary software for training neural networks that duplicate neutronics calculations. (2) develop a graphical interface with neutronics software and neural networks for manual shuffling of reload cores. (3) construct an expert system for shuffling reload cores with specified rules. (4) develp neural networks that capture the nonlinear behavior of fuel depletion. (5) integrate the neural networks and neutronics software with an expert system to specify reload cores that obtain appropriate figure of merit

  17. Improved moulding material for addition to nuclear fuel particles to produce nuclear fuel elements

    International Nuclear Information System (INIS)

    Miertschin, G.N.; Leary, D.F.

    1976-01-01

    A suggestion is made to improve the moulding materials used to produce carbon-contained nuclear fuel particles by a coke-reducing added substance. The nuclear fuel particles are meant for the formation of fuel elements for gas-cooled high-temperature nuclear reactors. The moulding materials are above all for the formation of coated particles which are burnt in situ in nuclear fuel element chambers out of 'green' nuclear fuel bodies. The added substance improves the shape stability of the particles forming and prevents a stiding or bridge formation between the particles or with the surrounding walls. The following are named as added substances: 1) Polystyrene and styrene-butadiene-Co polymers (mol. wt. between 5oo and 1,000,000), 2) aromatic compounds (mol. wt. 75 to 300), 3) saturated hydrocarbon polymers (mol. wt. 5,000 to 1,000,000). Additional release agents further improve the properties in the same direction (e.g. alcohols, fatty acids, amines). (orig.) [de

  18. Evaluation of core compositions for use in breed and burn reactors and limited-separations fuel cycles

    International Nuclear Information System (INIS)

    Petroski, Robert; Forget, Benoit; Forsberg, Charles

    2013-01-01

    Highlights: ► Calculated minimum burnup and irradiation damage for B and B reactor compositions. ► Computed doubling time of fuel cycles using B and B reactors and no chemical separations. ► Determined sensitivity of doubling time to using melt refining vs. direct reuse. ► Examined tradeoff between power density and neutronics for different coolants. - Abstract: Previously developed methods for analyzing breed-and-burn (B and B) reactors are applied to a wide range of core compositions. The compositions studied include different fuel types, steel and silicon carbide structure, and sodium, lead/lead bismuth eutectic (LBE), and gas coolants. These compositions are evaluated for use in “minimum burnup” B and B reactors in which it is assumed that blocks comprising the core can be shuffled in all three dimensions to flatten out non-uniformities in burnup. The two figures of merit evaluated are the minimum irradiation damage requirement and reactor fleet doubling time. To minimize irradiation damage, gas coolants perform best, followed by lead/LBE then sodium. High uranium-content metal fuel outperforms compound fuels, and different types of steel are similar and perform slightly better than silicon carbide. Once-through irradiation damage requirements can be surprisingly modest in minimum burnup B and B reactors, with a wide range of compositions viable at irradiation damage levels 50% higher than existing materials data. Doubling times were calculated for a reactor fleet consisting of B and B reactors operating in a limited-separations fuel cycle; i.e., a fuel cycle with no chemical separation of actinides. The effects of different cooling times and removal of fission products using a melt refining process are evaluated. To minimize doubling time, sodium cooled compositions perform best because they are able to achieve core power densities several times larger than compositions using other coolants. A hypothetical sodium-cooled core composition with high

  19. Optimization of binary breeder reactor IV - Conception of mixed fuel at central part of the core

    International Nuclear Information System (INIS)

    Dias, A.F.; Ishiguro, Y.

    1986-04-01

    Neutronic characteristics of some LMFBRs are analized for a fueling mode that is different from those reported previously. In an inner part of the core both 233 U/ 232 Th and Pu/U assemblies are placed while the outer zone is fueled with Pu/U assemblies. Both oxide metal fuels and 232 Th and 238 U blankets are considered. (Author) [pt

  20. Heuristic rules embedded genetic algorithm for in-core fuel management optimization

    Science.gov (United States)

    Alim, Fatih

    The objective of this study was to develop a unique methodology and a practical tool for designing loading pattern (LP) and burnable poison (BP) pattern for a given Pressurized Water Reactor (PWR) core. Because of the large number of possible combinations for the fuel assembly (FA) loading in the core, the design of the core configuration is a complex optimization problem. It requires finding an optimal FA arrangement and BP placement in order to achieve maximum cycle length while satisfying the safety constraints. Genetic Algorithms (GA) have been already used to solve this problem for LP optimization for both PWR and Boiling Water Reactor (BWR). The GA, which is a stochastic method works with a group of solutions and uses random variables to make decisions. Based on the theories of evaluation, the GA involves natural selection and reproduction of the individuals in the population for the next generation. The GA works by creating an initial population, evaluating it, and then improving the population by using the evaluation operators. To solve this optimization problem, a LP optimization package, GARCO (Genetic Algorithm Reactor Code Optimization) code is developed in the framework of this thesis. This code is applicable for all types of PWR cores having different geometries and structures with an unlimited number of FA types in the inventory. To reach this goal, an innovative GA is developed by modifying the classical representation of the genotype. To obtain the best result in a shorter time, not only the representation is changed but also the algorithm is changed to use in-core fuel management heuristics rules. The improved GA code was tested to demonstrate and verify the advantages of the new enhancements. The developed methodology is explained in this thesis and preliminary results are shown for the VVER-1000 reactor hexagonal geometry core and the TMI-1 PWR. The improved GA code was tested to verify the advantages of new enhancements. The core physics code

  1. Systematic technology evaluation program for SiC/SiC composite-based accident-tolerant LWR fuel cladding and core structures: Revision 2015

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    Fuels and core structures in current light water reactors (LWR’s) are vulnerable to catastrophic failure in severe accidents as unfortunately evidenced by the March 2011 Fukushima Dai-ichi Nuclear Power Plant Accident. This vulnerability is attributed primarily to the rapid oxidation kinetics of zirconium alloys in a water vapor environment at very high temperatures. Zr alloys are the primary material in LWR cores except for the fuel itself. Therefore, alternative materials with reduced oxidation kinetics as compared to zirconium alloys are sought to enable enhanced accident-tolerant fuels and cores.

  2. Behaviour of the reactivity for BWR fuel cells; Comportamiento de la reactividad para celdas de combustible BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J. A.; Alonso, G.; Delfin, A.; Vargas, S. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E., E-mail: galonso@inin.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, U. P. Adolfo Lopez Mateos, Col. Lindavista, 07738 Mexico D. F. (Mexico)

    2011-11-15

    In this work the behaviour of the reactivity of a fuel assembly type BWR was studied, the objective is to obtain some expressions that consider the average enrichment of U-235 and the gadolinium concentration like a function of the fuel cells burnt. Also, the applicability of the lineal reactivity model was analyzed for fuel cells type BWR. The analysis was carried out with the CASMO-4 code. (Author)

  3. A nuclear heuristic for application to metaheuristics in-core fuel management optimization

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Anderson Alvarenga de Moura, E-mail: ameneses@lmp.ufrj.b [COPPE/Federal University of Rio de Janeiro, RJ (Brazil). Nuclear Engineering Program; Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno-Lugano, TI (Switzerland); Gambardella, Luca Maria, E-mail: luca@idsia.c [Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno-Lugano, TI (Switzerland); Schirru, Roberto, E-mail: schirru@lmp.ufrj.b [COPPE/Federal University of Rio de Janeiro, RJ (Brazil). Nuclear Engineering Program

    2009-07-01

    The In-Core Fuel Management Optimization (ICFMO) is a well-known problem of nuclear engineering whose features are complexity, high number of feasible solutions, and a complex evaluation process with high computational cost, thus it is prohibitive to have a great number of evaluations during an optimization process. Heuristics are criteria or principles for deciding which among several alternative courses of action are more effective with respect to some goal. In this paper, we propose a new approach for the use of relational heuristics for the search in the ICFMO. The Heuristic is based on the reactivity of the fuel assemblies and their position into the reactor core. It was applied to random search, resulting in less computational effort concerning the number of evaluations of loading patterns during the search. The experiments demonstrate that it is possible to achieve results comparable to results in the literature, for future application to metaheuristics in the ICFMO. (author)

  4. A nuclear heuristic for application to metaheuristics in-core fuel management optimization

    International Nuclear Information System (INIS)

    Meneses, Anderson Alvarenga de Moura; Gambardella, Luca Maria; Schirru, Roberto

    2009-01-01

    The In-Core Fuel Management Optimization (ICFMO) is a well-known problem of nuclear engineering whose features are complexity, high number of feasible solutions, and a complex evaluation process with high computational cost, thus it is prohibitive to have a great number of evaluations during an optimization process. Heuristics are criteria or principles for deciding which among several alternative courses of action are more effective with respect to some goal. In this paper, we propose a new approach for the use of relational heuristics for the search in the ICFMO. The Heuristic is based on the reactivity of the fuel assemblies and their position into the reactor core. It was applied to random search, resulting in less computational effort concerning the number of evaluations of loading patterns during the search. The experiments demonstrate that it is possible to achieve results comparable to results in the literature, for future application to metaheuristics in the ICFMO. (author)

  5. Review of the SIMMER-II analyses of liquid-metal-cooled fast breeder reactor core-disruptive accident fuel escape

    International Nuclear Information System (INIS)

    DeVault, G.P.; Bell, C.R.

    1985-01-01

    Early fuel removal from the active core of a liquid-metal-cooled fast breeder reactor undergoing a core-disruptive accident may reduce the potential for large energetics resulting from recriticalities. This paper presents a review of analyses with the SIMMER-II computer program of the effectiveness of possible fuel escape paths. Where possible, how SIMMER-II compares with or is validated against experiments that simulated the escape paths also is discussed

  6. Development of advanced BWR fuel bundle with spectral shift rod (3) -transient analysis of ABWR core with SSR

    International Nuclear Information System (INIS)

    Ikegawa, T.; Chaki, M.; Ohga, Y.; Abe, M.

    2010-01-01

    The spectral shift rod (SSR) is a new type of water rod, utilized instead of the conventional water rod, in which a water level develops during core operation. The water level can be changed according to the fuel channel flow rate. In this study, ABWR plant performance with SSR fuel bundles under transient conditions has been evaluated using the TRACG code. The TRACG code, which can treat three-dimensional hydrodynamic calculations in a reactor pressure vessel, is well suited for evaluating the reactor transient performance with the SSR fuel bundles because it can calculate the water levels in the SSR at each channel grouping and therefore evaluate the core reactivity according to the water level changes in the SSR. 'Generator load rejection with total turbine bypass failure' and 'Recirculation flow control failure with increasing flow' were selected as cases which may increase the reactivity with the increasing water level in the SSR. It was found that the absolute value of the void reactivity coefficient in the SSR core was larger than that in the conventional water rod core because the core averaged void fraction in the SSR core, which has the vapor region above the water level in the SSR, was larger than that in the conventional water rod core. Therefore, AMCPR for the SSR core was a little larger than that for the conventional water rod core; however, the difference was smaller than 0.02 because the inlet of the SSR ascending path was designed to be small enough to prevent the rapid water level increase in the SSR. (authors)

  7. Corrosion of cermet cores of fuel plates for nuclear research reactor

    International Nuclear Information System (INIS)

    Durazzo, M.; Ramanathan, L.V.

    1984-01-01

    Materials Testing Reactor (MTR) type fuel plates containing U 3 O 8 -Al cores and clad with Al are used in various research reactor. Preliminary investigations, where in the cladding of samples was drilled to simulate conditions of rupture due to pitting attack, revealed that considerable quantities of H 2 was evolved upon exposure of the core to water. The corrosion of cermets cores of different densities was characterized as a function of H 2 evolution that revealed 3 stages. A first stage consisting of an incubation period followed by initiation of H 2 evolution, a second stage with a constant rate of H 2 evolution and a third stage with a low rate of H 2 evolution. All 3 stages were found to vary as a function of cermet density and water temperature. (Author) [pt

  8. Quantum behaved Particle Swarm Optimization with Differential Mutation operator applied to WWER-1000 in-core fuel management optimization

    International Nuclear Information System (INIS)

    Jamalipour, Mostafa; Sayareh, Reza; Gharib, Morteza; Khoshahval, Farrokh; Karimi, Mahmood Reza

    2013-01-01

    Highlights: ► A new method called QPSO-DM is applied to BNPP in-core fuel management optimization. ► It is found that QPSO-DM performs better than PSO and QPSO. ► This method provides a permissible arrangement for optimum loading pattern. - Abstract: This paper presents a new method using Quantum Particle Swarm Optimization with Differential Mutation operator (QPSO-DM) for optimizing WWER-1000 core fuel management. Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have shown good performance on in-core fuel management optimization (ICFMO). The objective of this paper is to show that QPSO-DM performs very well and is comparable to PSO and Quantum Particle Swarm Optimization (QPSO). Most of the strategies for ICFMO are based on maximizing multiplication factor (k eff ) to increase cycle length and minimizing power peaking factor (P q ) in order to improve fuel integrity. PSO, QPSO and QPSO-DM have been implemented to fulfill these requirements for the first operating cycle of WWER-1000 Bushehr Nuclear Power Plant (BNPP). The results show that QPSO-DM performs better than the others. A program has been written in MATLAB to map PSO, QPSO and QPSO-DM for loading pattern optimization. WIMS and CITATION have been used to simulate reactor core for neutronic calculations

  9. Caramel fuel for research reactors: experience acquired in the fabrication, monitoring and irradiation of Osiris core

    International Nuclear Information System (INIS)

    Contenson, Ghislain de; Foulquier, Henri; Trotabas, Maria; Vignesoult, Nicole; Cerles, J.-M.; Delafosse, Jacques.

    1981-06-01

    A plate type nuclear fuel (Caramel fuel) has been developed in France in the framework of the various activities pursued in the design, fabrication and development of nuclear fuels by the CEA. This fuel can be adapted to various different categories of water cooled reactor (power reactors, marine propulsion reactors, urbain heating reactors, research reactors). The successful work conducted in this field led the realization of a complete core and reloads for the high performance research reactor, Osiris, at Saclay. The existing highly enriched U-Al alloy fuel was replaced by a non-proliferating low enrichment (7%) caramel fuel. This new core has been operating successfully since january 1980. A brief description of Caramel and its main advantages is given. The way in which it is fabricated is described together with the quality controls to which it is subjected. The qualification program and the main results deduced from it are also presented. The program used to monitor its in-pile behavior is described. The essential purpose of this program is to ensure the high performance of the fuel under irradiation. The successful operation of Osiris, which terminated 11 irradiation cycles on the 21st of April 1981 confirmed the correctness of the decisions made and the excellent performance that could be achieved with these fuel elements under the severe conditions encountered in a high performance research reactor [fr

  10. A Neutronic Feasibility Study of an OPR-1000 Core Design with Boron-bearing Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Hoon; Park, Sang Yoon; Lee, Chung Chan; Yang, Yong Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In Westinghouse plants, boron is mainly used as a form of the integral fuel burnable absorber (IFBA) with a thin coating of zirconium diboride (ZrB{sub 2}) or wet annular burnable absorber (WABA) with a hollow Al{sub 2}O{sub 3}+B{sub 4}C pellet. In OPR-1000, on the other hand, gadolinia is currently employed as a form of an admixture which consists of Gd{sub 2}O{sub 3} of 6∼8 w/o and UO{sub 2} of natural uranium. Recently, boron-bearing UO{sub 2} fuel (BBF) with the high density of greater than 94%TD has been developed by using a low temperature sintering technique. In this paper, the feasibility of replacing conventional gadolinia-bearing UO{sub 2} fuel (GBF) in OPR-1000 with newly developed boron-bearing fuel is evaluated. Neutronic feasibility study to utilize the BBF in OPR-1000 core has been performed. The results show that the OPR-1000 core design with the BBF is feasible and promising in neutronic aspects. Therefore, the use of the BBF in OPR-1000 can reduce the dependency on the rare material such as gadolinium. However, the burnout of the {sup 10}B isotope results in helium gas, so fuel performance related study with respect to helium generation is needed.

  11. A new uncertainty reduction method for PWR cores with erbia bearing fuel

    International Nuclear Information System (INIS)

    Takeda, Toshikazu; Sano, Tadafumi; Kitada, Takanori; Kuroishi, Takeshi; Yamasaki, Masatoshi; Unesaki, Hironobu

    2008-01-01

    The concept of a PWR with erbia bearing high burnup fuel has been proposed. The erbia is added to all fuel with over 5% 235 U enrichment to retain the neutronics characteristics to that within 5% 235 U enrichment. There is a problem of the prediction accuracy of the neutronics characteristics with erbia bearing fuel because of the short of experimental data of erbia bearing fuel. The purpose of the present work is to reduce the uncertainty. A new method has been proposed by combining the bias factor method and the cross section adjustment method. For the PWR core, the uncertainty reduction, which shows the rate of reduction of uncertainty, of the k eff is 0.865 by the present method and 0.801 by the conventional bias factor method. Thus the prediction uncertainties are reduced by the present method compared to the bias factor method. (authors)

  12. Calculations of 3D full-scale VVER fuel assembly and core models using MCU and BIPR-7A codes

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, Sergey S.; Bikeev, Artem S.; Bolshagin, Sergey N.; Kalugin, Mikhail A.; Kosourov, Evgeniy K.; Pavlovichev, Aleksandr M.; Pryanichnikov, Aleksandr V.; Sukhino-Khomenko, Evgenia A.; Shcherenko, Anna I.; Shcherenko, Anastasia I.; Shkarovskiy, Denis A. [Nuclear Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2015-09-15

    Two types of calculations were made to compare BIPR-7A and MCU results for 3D full-scale models. First EPS (emergency protection system) efficiency and in-core power distributions were analyzed for an equilibrium fuel load of VVER-1000 assuming its operation within an 18-month cycle. Computations were performed without feedbacks and with fuel burnup distributed over the core. After 3D infinite lattices of full-scale VVER-1000 fuel assemblies (A's) with uranium fuel 4.4% enrichment and uranium-erbium fuel 4.4% enrichment and Er{sub 2}O{sub 3} 1 % wt were considered. Computations were performed with feedbacks and fuel burnup at the constant power level. For different time moments effective multiplication factor and power distribution were obtained. EPS efficiency and reactivity effects at chosen time moments were analyzed.

  13. Criticality safety assessment on the RSG-GAS spent fuel storage for anticipating the next core conversion program

    International Nuclear Information System (INIS)

    Sembiring, Tagor Malem; Kuntoro, Iman; Zuhair; Liem, Peng Hong

    2003-01-01

    Criticality assessment on the spent fuel storage racks of the RSG-GAS multipurpose reactor has been conducted to support the undergoing core conversion program, in which higher uranium fuel densities of silicide (up to 4.8 gU.cm -3 ) and molybdenum (up to 8.3 gU.cm -3 ) fuel elements are adopted to enhance the reactor performance, core cycle length and reactor utilization. In the assessment, the k eff of the rack as a function of fuel density is calculated for fresh fuel elements which is a very conservative approach recommended by IAEA. Besides fuel densities, effects of water densities due to pool water temperature variation, and the fuel elements' orientation on the k eff are analyzed as well. The criticality calculations are all carried out by using MNCP4B2 Monte Carlo code with ENDF/B-VI library. For the library sensitivity, JENDL-3.3 library is also used and compared. The calculation results show the most reactive condition is for the case when the spent fuel racks are filled with fresh U-6Mo fuel element with meat density of 8.30 gU.cm -3 . For all fuel types, density and operating condition, the calculated k eff with 3 times standard deviations are confirmed less than the allowable value of 0.95. It can be concluded that the existing spent fuel storage racks can be safely used for storing the planned high density uranium fuels. (author)

  14. Utilization of thorium and U-ZrH1.6 fuels in various heterogeneous cores for TRIGA PUSPATI Reactor (RTP)

    Science.gov (United States)

    Damahuri, Abdul Hannan Bin; Mohamed, Hassan; Aziz Mohamed, Abdul; Idris, Faridah

    2018-01-01

    The use of thorium as nuclear fuel has been an appealing prospect for many years and will be great significance to nuclear power generation. There is an increasing need for more research on thorium as Malaysian government is currently active in the national Thorium Flagship Project, which was launched in 2014. The thorium project, which is still in phase 1, focuses on the research and development of the thorium extraction from mineral processing ore. Thus, the aim of the study is to investigate other alternative TRIGA PUSPATI Reactor (RTP) core designs that can fully utilize thorium. Currently, the RTP reactor has an average neutron flux of 2.797 x 1012 cm-2/s-1 and an effective multiplication factor, k eff, of 1.001. The RTP core has a circular array core configuration with six circular rings. Each ring consists of 6, 12, 18, 24, 30 or 36 U-ZrH1.6 fuel rods. There are three main type of uranium weight, namely 8.5, 12 and 20 wt.%. For this research, uranium zirconium hydride (U-ZrH1.6) fuel rods in the RTP core were replaced by thorium (ThO2) fuel rods. Seven core configurations with different thorium fuel rods placements were modelled in a 2D structure and simulated using Monte Carlo n-particle (MCNPX) code. Results show that the highest initial criticality obtained is around 1.35101. Additionally there is a significant discrepancy between results from previous study and the work because of the large estimated leakage probability of approximately 21.7% and 2D model simplification.

  15. Core design studies on various forms of coolants and fuel materials. 2. Studies on liquid heavy metal and gas cooled cores, small cores and evaluation of 4-type cores

    International Nuclear Information System (INIS)

    Hayashi, Hideyuki; Sakashita, Yoshiyuki; Naganuma, Masayuki; Takaki, Naoyuki; Mizuno, Tomoyasu; Ikegami, Tetsuo

    2001-01-01

    Alternative concepts to sodium cooled fast reactors, such as heavy metal liquid cooled reactors and gas cooled fast reactors were studied in Phase-1 of the feasibility studies, aiming at simplification of the system, high thermal efficiency and enhancing safety. Fuel and core specifications and nuclear characteristics were surveyed to meet the targets for commercialization of fast reactor cycle. Nuclear characteristics of small fast reactor cores were also surveyed from the perspective of the possibility of multi-purpose use and dispersed power stations. The key points of the design study for each concept in Phase-2 were summarized from the aspect of the screening of the candidates for FR commercialization. (author)

  16. A multi-cycle optimization approach for low leakage in-core fuel management

    International Nuclear Information System (INIS)

    Cheng Pingdong; Shen Wei

    1999-01-01

    A new approach was developed to optimize pressurized waster reactor (PWR) low-leakage multi-cycle reload core design. The multi-cycle optimization process is carried out by the following three steps: The first step is a linear programming in search for an optimum power sharing distribution and optimum cycle length distribution for the successive several cycles to yield maximum multi-cycle total cycle length. In the second step, the fuel arrangement and burnable poison (BP) assignment are decoupled by using Haling power distribution and the optimum fuel arrangement is determined at the EOL in the absence of all BPs by employing a linear programming method or direct search method with objective function to force the calculated cycle length to be as close as possible to the optimum single cycle length obtained in the first step and with optimum power sharing distribution as additional constraints during optimization. In the third step, the BP assignment is optimized by the Flexible Tolerance Method (FTM) or linear programming method using the number of BP rods as control variable. The technology employed in the second and third steps was the usual decoupling method used in low-leakage core design. The first step was developed specially for multi-cycle optimization design and discussed in detail. Based on the proposed method a computer code MCYCO was encoded and tested for Qinshan Nuclear Power Plant (QNPP) low leakage reload core design. The multi-cycle optimization method developed, together with the program MCYCO, provides an applicable tool for solving the PWR low leakage reload core design problem

  17. Optimization of the binary breeder reactor. VIII annular core fueled with 233U - 238U and Pu-238U

    International Nuclear Information System (INIS)

    Nascimento, J.A. do; Ishiguro, Y.

    1988-04-01

    First cycle burnup characteristics of a 1200 MWe binary breeder reactor with annular core fueled with metallic 233 U- 238 U-Zr, Pu- 238 U-Zr and Th in the blankets have been analysed. The Doppler effect is small as expected in a metal fueled fast reactor. The sodium void reactivity is, in general, smaller than in metal fueled homogeneous fast reactors of 1 m core height. The estimates of the required and available control rod worths show a large shutdown margin throughout the operational cycle. There are flexibilities in the blanket fueling and well balanced breeding in the two cycles, uranium and thorium, with doubling times of about 20 years are possible. (author) [pt

  18. Fuel and Core Design Verification for Extended Power Up-rate in Ringhals Unit 3

    International Nuclear Information System (INIS)

    Gabrielsson, Petter; Stepniewski, Marek; Almberger, Jan

    2006-01-01

    Vattenfall's Westinghouse 3-loop PWR Ringhals 3 at the western coast of Sweden is scheduled for an extended power up-rate from 2783 to 3160 MWt in 2007, in the frame of the so called GREAT-project. The project will realize an up-rating initially planned and analysed back in 1995, but with a number of significant improvements outlined in this paper. For the licensing of the up-rated power level, a complete revision of the safety analyses, radiological analyses and systems verifications in FSAR is being performed by Westinghouse Electrics Belgium. The work is performed in close cooperation with Vattenfall in the areas of core calculations and input data. For more than a decade, Vattenfall has performed all core design and reload safety evaluations (RSE) for Ringhals, independent of fuel vendors and safety analysts. In GREAT all core parameters in the safety analysis checklist (SAC) used for the safety analyses are determined based upon a set of nine reference loading patterns designed by Vattenfall covering a wide range of fuel and core designs and extreme cycle-to-cycle variations. To facilitate the calculation of SAC parameters Westinghouse has provided a Reload Safety Evaluation Procedure report (RSEP) with detailed specifications for the calculation of all core parameters used in the analyses. The procedure has been automatized by Vattenfall in a set of scripts executing 3D core simulator calculations and extracting the key results. The same tools will be used in Vattenfall's future RSE for Ringhals 3. This approach is taken to obtain consistency between core designs and core calculations for the safety analyses and the cycle specific calculations, to minimize the risk for future violations of the safety analyses. (authors)

  19. Analysis Of Temperature Effects On Reactivity Of The Rsg-Gas Core Using Silicide Fuels

    International Nuclear Information System (INIS)

    Surbakti, Tukiran; Pinem, Surian

    2001-01-01

    RSG-GAS has been operating using new silicide fuels so that it is necessary to estimate and to measure the effect of temperature on reactivity of the core. The parameters to be determined due to temperature effect are reactivity coefficient of moderator temperature, temperature coefficient of fuel element and power reactivity coefficient. By doing a couple compensation method, determination of reactivity coefficient as well as the reactivity coefficient of moderator temperature can be obtained. Furthermore, coefficient of the reactivity was successfully estimated using the combination of WIMS-D4 and Batan-2DIFF. The cell calculation was done by using WIMS-D4 code to get macroscopic cross section and Batan-2DIFF code is used for core calculation. The calculation and experimental results of reactivity coefficient do not show any deviation from RSG-GAS safety margin. The results are -2,84 sen/ o C, -1,29 sen/MW and -0,64 sen/ o C for reactivity coefficients of temperature, power, fuel element and moderator temperature, respectively. All of 3 parameters are absolutely met with safety criteria

  20. In core fuel management optimization by varying the equilibrium cycle average flux shape for batch refuelled reactors

    International Nuclear Information System (INIS)

    Jong, A.J. de.

    1992-12-01

    We suggest a method to overcome this problem of optimization by varying reloading patterns by characterizing each particular reloading pattern by a set of intermediate parameters that are numbers. Plots of the objective function versus the intermediate parameters can be made. When the intermediate parameters represent the reloading patterns in a unique way, the optimum of the objective function can be found by interpolation within such plots and we can find the optimal reloading pattern in terms of intermediate parameters. These have to be transformed backwards to find an optimal reloading pattern. The intermediate parameters are closely related to the time averaged neutron flux shape in the core during an equilibrium cycle. This flux shape is characterized by a set of ratios of the space averaged fluxes in the fuel zones and the space averaged flux in the zone with the fresh fuel elements. An advantage of this choice of intermediate parameters is that it permits analytical calculation of equilibrium cycle fuel densities in the fuel zones for any applied reloading patten characterized by a set of equilibrium cycle average flux ratios and thus, provides analytical calculations of fuel management objective functions. The method is checked for the burnup of one fissile nuclide in a reactor core with the geometry of the PWR at Borssele. For simplicity, neither the conversion of fuel, nor the buildup of fission products were taken into account in this study. Since these phenomena can also be described by the equilibrium cycle average flux ratios, it is likely that this method can be extended to a more realistic method for global in core fuel management optimization. (orig./GL)

  1. Intelligent stochastic optimization routine for in-core fuel cycle design

    International Nuclear Information System (INIS)

    Parks, G.T.

    1988-01-01

    Any reactor fuel management strategy must specify the fuel design, batch sizes, loading configurations, and operational procedures for each cycle. To permit detailed design studies, the complex core characteristics must necessarily be computer modeled. Thus, the identification of an optimal fuel cycle design represents an optimization problem with a nonlinear objective function (OF), nonlinear safety constraints, many control variables, and no direct derivative information. Most available library routines cannot tackle such problems; this paper introduces an intelligent stochastic optimization routine that can. There has been considerable interest recently in the application of stochastic methods to difficult optimization problems, based on the statistical mechanics algorithms originally attributed to Metropolis. Previous work showed that, in optimizing the performance of a British advanced gas-cooled reactor fuel stringer, a rudimentary version of the Metropolis algorithm performed as efficiently as the only suitable routine in the Numerical Algorithms Group library. Since then the performance of the Metropolis algorithm has been considerably enhanced by the introduction of self-tuning capabilities by which the routine adjusts its control parameters and search pattern as it progresses. Both features can be viewed as examples of artificial intelligence, in which the routine uses the accumulation of data, or experience, to guide its future actions

  2. Fuel and control rod failure behavior during degraded core accidents

    International Nuclear Information System (INIS)

    Chung, K.S.

    1984-01-01

    As a part of the pretest and posttest analyses of Light Water Reactor Source Term Experiments (STEP) which are conducted in the Transient Reactor Test (TREAT) facility, this paper investigates the thermodynamic and material behaviors of nuclear fuel pins and control rods during severe core degradation accidents. A series of four STEP tests are being performed to simulate the characteristics of the power reactor accidents and investigate the behavior of fission product release during these accidents. To determine the release rate of the fission products from the fuel pins and the control rod materials, information concerning the timing of the clad failure and the thermodynamic conditions of the fuel pins and control rods are needed to be evaluated. Because the phase change involves a large latent heat and volume expansion, and the phase change is a direct cause of the clad failure, the understanding of the phase change phenomena, particularly information regarding how much of the fuel pin and control rod materials are melted are very important. A simple energy balance model is developed to calculate the temperature profile and melt front in various heat transfer media considering the effects of natural convection phenomena on the melting and freezing front behavior

  3. Estimation of the core-wide fuel rod damage during a LWR LOCA

    International Nuclear Information System (INIS)

    Mattila, L.; Sairanen, R.; Stengaard, J.-O.

    1975-01-01

    The number of fuel rods puncturing during a LWR LOCA must be estimated as a part of the plant radioactivity release analysis. Due to the great number of fuel rods in the core and the great number of contributing parameters, many of them associated with wide uncertainty and/or truly random variability limits, probabilistic methods are well applicable. A succession of computer models developed for this purpose is described together with applications to WWER-440 PWR. Deterministic models are shown to be seriously inadequate and even misleading under certain circumstances. A simple analytical probabilistic model appears to be suitable for many applications. Monte Carlo techniques allow the development of such sophisticated models that errors in the input data presently available probably become dominant in the residual uncertainty of the corewide fuel rod puncture analysis. (author)

  4. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor With Results from FY-2011 Activities

    Energy Technology Data Exchange (ETDEWEB)

    Michael A. Pope

    2011-10-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  5. A small long-cycle PWR core design concept using fully ceramic micro-encapsulated (FCM) and UO2–ThO2 fuels for burning of TRU

    International Nuclear Information System (INIS)

    Bae, Gonghoon; Hong, Ser Gi

    2015-01-01

    In this paper, a new small pressurized water reactor (PWR) core design concept using fully ceramic micro-encapsulated (FCM) particle fuels and UO 2 –ThO 2 fuels was studied for effective burning of transuranics from a view point of core neutronics. The core of this concept rate is 100 MWe. The core designs use the current PWR-proven technologies except for a mixed use of the FCM and UO 2 –ThO 2 fuel pins of low-enriched uranium. The significant burning of TRU is achieved with tri-isotropic particle fuels of FCM fuel pins, and the ThO 2 –UO 2 fuel pins are employed to achieve long-cycle length of ∼4 EFPYs (effective full-power year). Also, the effects of several candidate materials for reflector are analyzed in terms of core neutronics because the small core size leads to high sensitivity of reflector material on the cycle length. The final cores having 10 w/o SS303 and 90 w/o graphite reflector are shown to have high TRU burning rates of 33%–35% in FCM pins and significant net burning rates of 24%–25% in the total core with negative reactivity coefficients, low power peaking factors, and sufficient shutdown margins of control rods. (author)

  6. Proceedings of the international meeting on research and test reactor core conversions from HEU to LEU fuels

    International Nuclear Information System (INIS)

    1983-09-01

    Separate abstracts have been prepared for each paper presented in the following areas of interest: (1) fuel development; (2) post-irradiation examinations; (3) reprocessing; (4) thermite reaction; (5) fuel fabrication; (6) element tests; (7) core tests; (8) criticals; (9) shipping; and (10) reactors and methods

  7. Device for reprocessing nuclear fuels

    International Nuclear Information System (INIS)

    Hatano, Mamoru.

    1981-01-01

    Purpose: To readily discharge a nuclear fuel by burning the nuclear fuel as it is without a pulverizing step and removing the graphite and other coated fuel particles. Constitution: An oxygen supply pipe is connected to the lower portion of a discharge chamber having an inlet for the fuel, and an exhaust pipe is connected to the upper portion of the chamber. The fuel mounted on a metallic gripping member made of metallic material is inserted from the inlet, the gripping member is connected through a conductor to a voltage supply unit, oxygen is then supplied through the oxygen supply tube to the discharge chamber, the voltage supply unit is subsequently operated, and discharge takes place among the fuels. Thus, high heat is generated by the discharge, the graphite carbon of the fuel is burnt, silicon carbide is destroyed and decomposed, the isolated nuclear fuel particles are discharged from the exhaust port, and the combustion gas and small embers are exhausted from the exhaust tube. Accordingly, radioactive dusts are not so much generated as when using a mechanical pulverizing means, and prescribed objective can be achieved. (Yoshino, Y.)

  8. RA-3 reactor core with uranium silicide fuel elements P-07 type

    International Nuclear Information System (INIS)

    Abbate, Maximo J.; Sbaffoni, Maria M.

    2003-01-01

    Following the studies on the utilization of fuel elements (FE) containing uranium silicide, core of the RA-3 was analyzed with several calculation models. At first, the present situation, i.e. the core charged with normal FE (U 3 O 8 ), has been analyzed to validate the simulation methodology comparing with experimental results and to establish reference data to 5 and 10 MW able to be compared with future new situations. Also, CITVAP's nuclear data libraries to be used in irradiation experiment planning were completed. The results were satisfactory and were applied to the study of the core containing P-07 FE [U 3 Si 2 ], in face of a future core change. Comparing with the performance of the U 3 O 8 FE, the silicides ones show the following advantages: - average burnup: 45 % greater; -extraction burnup increase 12 %; and, -the residence time [in full power days] could be a 117 % greater. (author)

  9. Study of corium radial spreading between fuel rods in a PWR core

    International Nuclear Information System (INIS)

    Roche, S.; Gatt, J.M.

    1996-01-01

    In the framework of severe accident studies for PWR like Three Mile Island Unit 2 (TMI-2), the reactor core essentially constituted of fuel rods begins to heat and then to melt. During the early degradation phase, a melt (essentially UO2 and ZrO2) that constitutes the corium flows first along the rods, and after a blockage formation, may radially propagate towards the core periphery. A simplified model has been elaborated to study the corium freezing phenomena during its crossflow between the fuel rods. The corium spreads on an horizontal support made, of either a corium crust, or a grid assembly. The model solves numerically the interface energy balance equation at the solid-liquid corium interface and the monodimensional heat balance equation in transient process with convective terms and heat source (residual power). ''Zukauskas'' correlations are used to calculate heat transfer coefficients. The model can be integrated in severe accident codes like ICARE II (IPSN) describing the in-vessel degradation scenarios. (author). 5 refs, 10 figs

  10. Evolution calculations of fuel for a GFR using MCNPX-C90 and Tripoli-4-D; Calculos de evolucion de combustible para un GFR usando MCNPX-C90 y TRIPOLI-4-D

    Energy Technology Data Exchange (ETDEWEB)

    Reyes R, R.; Martin del Campo M, C.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico); Brun, E.; Dumonteil, E.; Malvagi, F., E-mail: emeric.brun@cea.fr [Commissariat a l' Energie Atomique et aux Energies Alternative, Service d' Etude des Reacteurs et de Mathematiques Appliquees, Saclay, DEN/DM2S/SERMA/LTSD, Bat 470, 91191 Gif-sur-Yvette Cedex (France)

    2011-11-15

    Burnt calculations were realized for a fuel model based on the technology of the Gas-cooled Fast Reactor, GFR. The fuel design is based on bars. The code MCNPX-CINDER90 and the CSADA method for the burnt calculations were used. Models of homogeneous and heterogeneous fuel assembly were studied; for the burnt calculations of the fuel homogeneous model was considered the tracking of three series (Tiers) of evolution of the fission products. The Tier 1 tracks a reduced group of fission products, the Tier 2 tracks to the arrangement of fission products that are contained in the library of cross sections XSDIR of MCNPX; and the Tier 3 tracks 1325 fission products. The results were compared with those obtained with Tripoli-4-D in function of the calculation methods: 1) Explicit Euler, as method of first order; and 2) CSADA, as method of second order. According to the results was observed that the infinite multiplication factor varies in function of the fission products quantity that are tracked. The calculation time used by MCNPX-C90 with the series Tier 3 is more than double than the used by Tripoli-4-D, therefore this last code has advantage over MCNPX-C90 in the case of neutrons analysis of fast reactors. (Author)

  11. Fuel assembly outlet temperature profile influence on core by-pass flow and power distribution determination in WWER -440 reactors

    International Nuclear Information System (INIS)

    Petenyi, V.; Klucarova, K.; Remis, J.

    2003-01-01

    The in core instrumentation of the WWER-440 reactors consists of the thermocouple system and the system of self powered detectors (SPD). The thermocouple systems are positioned about 50 cm above the fuel bundle upper flow-mixing grid. The usual assumption is that, the coolant is well mixed in the Tc location, i.e. the temperature is constant through the flow cross-section area. The present evaluations by using the FLUENT 5.5.14 code reveal that, this assumption is not fulfilled. There exists a temperature profile that depends on fuel assembly geometry and on inner power profile of the fuel assembly. The paper presents the estimation of this effect and its influence on the core power distribution and the core by-pass flow determination. Comparison with measurements in Mochovce NPP will also be a part of this presentation (Authors)

  12. Thermomechanical evaluation of BWR fuel elements for procedures of preconditioned with FEMAXI-V

    International Nuclear Information System (INIS)

    Hernandez L, H.; Lucatero, M.A.; Ortiz V, J.

    2006-01-01

    The limitations in the burnt of the nuclear fuel usually are fixed by the one limit in the efforts to that undergo them the components of a nuclear fuel assembly. The limits defined its provide the direction to the fuel designer to reduce to the minimum the fuel failure during the operation, and they also prevent against some thermomechanical phenomena that could happen during the evolution of transitory events. Particularly, a limit value of LHGR is fixed to consider those physical phenomena that could lead to the interaction of the pellet-shirt (Pellet Cladding Interaction, PCI). This limit value it is related directly with an PCI limit that can be fixed based on experimental tests of power ramps. This way, to avoid to violate the PCI limit, the conditioning procedures of the fuel are still required for fuel elements with and without barrier. Those simulation procedures of the power ramp are carried out for the reactor operator during the starting maneuvers or of power increase like preventive measure of possible consequences in the thermomechanical behavior of the fuel. In this work, the thermomechanical behavior of two different types of fuel rods of the boiling water reactor is analyzed during the pursuit of the procedures of fuel preconditioning. Five diverse preconditioning calculations were carried out, each one with three diverse linear ramps of power increments. The starting point of the ramps was taken of the data of the cycle 8 of the unit 1 of the Laguna Verde Nucleo electric Central. The superior limit superior of the ramps it was the threshold of the lineal power in which a fuel failure could be presented by PCI, in function of the fuel burnt. The analysis was carried out with the FEMAXI-V code. (Author)

  13. A nuclear reactor core fuel reload optimization using Artificial-Ant-Colony Connective Networks; Recarga de reatores nucleares utilizando redes conectivas de colonias de formigas artificiais

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Alan M.M. de; Schirru, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: alan@lmp.ufrj.br; schirru@lmp.ufrj.br

    2005-07-01

    A Pressurized Water Reactor core must be reloaded every time the fuel burnup reaches a level when it is not possible to sustain nominal power operation. The nuclear core fuel reload optimization consists in finding a burned-up and fresh-fuel-assembly pattern that maximizes the number of full operational days. This problem is NP-hard, meaning that complexity grows exponentially with the number of fuel assemblies in the core. Besides that, the problem is non-linear and its search space is highly discontinual and multimodal. In this work a parallel computational system based on Ant Colony System (ACS) called Artificial-Ant-Colony Networks is introduced to solve the nuclear reactor core fuel reload optimization problem. ACS is a system based on artificial agents that uses the reinforcement learning technique and was originally developed to solve the Traveling Salesman Problem, which is conceptually similar to the nuclear fuel reload problem. (author)

  14. Amplification of wildfire area burnt by hydrological drought in the humid tropics

    Science.gov (United States)

    Taufik, Muh; Torfs, Paul J. J. F.; Uijlenhoet, Remko; Jones, Philip D.; Murdiyarso, Daniel; van Lanen, Henny A. J.

    2017-06-01

    Borneo's diverse ecosystems, which are typical humid tropical conditions, are deteriorating rapidly, as the area is experiencing recurrent large-scale wildfires, affecting atmospheric composition and influencing regional climate processes. Studies suggest that climate-driven drought regulates wildfires, but these overlook subsurface processes leading to hydrological drought, an important driver. Here, we show that models which include hydrological processes better predict area burnt than those solely based on climate data. We report that the Borneo landscape has experienced a substantial hydrological drying trend since the early twentieth century, leading to progressive tree mortality, more severe than in other tropical regions. This has caused massive wildfires in lowland Borneo during the past two decades, which we show are clustered in years with large areas of hydrological drought coinciding with strong El Niño events. Statistical modelling evidence shows amplifying wildfires and greater area burnt in response to El Niño/Southern Oscillation (ENSO) strength, when hydrology is considered. These results highlight the importance of considering hydrological drought for wildfire prediction, and we recommend that hydrology should be considered in future studies of the impact of projected ENSO strength, including effects on tropical ecosystems, and biodiversity conservation.

  15. Fabrication, fabrication control and in-core follow up of 4 LEU leader fuel elements based on U3Si2 in RECH-1

    International Nuclear Information System (INIS)

    Chavez, J.C.; Barrera, M.; Olivares, L.; Lisboa, J.

    1999-01-01

    The RECH-1 MTR reactor has been converted from HEU to MEU (45% enrichment) and the decision to a LEU (20% enrichment) conversion was taken some years ago. This LEU conversion decision involved a local fuel development and fabrication based on U 3 Si 2 -Al dispersion fuel, and a fabrication qualification stage that resulted in four fuel elements fully complying with established fabrication standards for this type of fuel. This report-presents relevant points of these four leaders fuel elements fabrication, in particular a fuel plate core homogeneity control development. A summary of the intended in core follow-up studies for the leaders fuel elements is also presented here. (author)

  16. Two-dimensional core calculation research for fuel management optimization based on CPACT code

    International Nuclear Information System (INIS)

    Chen Xiaosong; Peng Lianghui; Gang Zhi

    2013-01-01

    Fuel management optimization process requires rapid assessment for the core layout program, and the commonly used methods include two-dimensional diffusion nodal method, perturbation method, neural network method and etc. A two-dimensional loading patterns evaluation code was developed based on the three-dimensional LWR diffusion calculation program CPACT. Axial buckling introduced to simulate the axial leakage was searched in sub-burnup sections to correct the two-dimensional core diffusion calculation results. Meanwhile, in order to get better accuracy, the weight equivalent volume method of the control rod assembly cross-section was improved. (authors)

  17. Fission product release from HTGR fuel under core heatup accident conditions - HTR2008-58160

    International Nuclear Information System (INIS)

    Verfondern, K.; Nabielek, H.

    2008-01-01

    Various countries engaged in the development and fabrication of modern fuel for the High Temperature Gas-Cooled Reactor (HTGR) have initiated activities of modeling the fuel and fission product release behavior with the aim of predicting the fuel performance under operating and accidental conditions of future HTGRs. Within the IAEA directed Coordinated Research Project CRP6 on 'Advances in HTGR Fuel Technology Development' active since 2002, the 13 participating Member States have agreed upon benchmark studies on fuel performance during normal operation and under accident conditions. While the former has been completed in the meantime, the focus is now on the extension of the national code developments to become applicable to core heatup accident conditions. These activities are supported by the fact that core heatup simulation experiments have been resumed recently providing new, highly valuable data. Work on accident performance will be - similar to the normal operation benchmark - consisting of three essential parts comprising both code verification that establishes the correspondence of code work with the underlying physical, chemical and mathematical laws, and code validation that establishes reasonable agreement with the existing experimental data base, but including also predictive calculations for future heating tests and/or reactor concepts. The paper will describe the cases to be studied and the calculational results obtained with the German computer model FRESCO. Among the benchmark cases in consideration are tests which were most recently conducted in the new heating facility KUEFA. Therefore this study will also re-open the discussion and analysis of both the validity of diffusion models and the transport data of the principal fission product species in the HTGR fuel materials as essential input data for the codes. (authors)

  18. Optimization of low sulfur jerusalem artichoke juice for fossil fuels biodesulfurization process

    OpenAIRE

    Silva, Tiago P.; Paixão, Susana M.; Roseiro, J. Carlos; Alves, Luís Manuel

    2013-01-01

    Most of the world’s energy is generated from the burning of fossil fuels such as oil and its derivatives. When burnt, these fuels release into the atmosphere volatile organic compounds, sulfur as sulfur dioxide (SO2) and the fine particulate matter of metal sulfates. These are pollutants which can be responsible for bronchial irritation, asthma attacks, cardio-pulmonary diseases and lung cancer mortality, and they also contribute for the occurrence of acid rains and the increase of the hole i...

  19. Reloading optimization of pressurized water reactor core with burnable absorber fuel

    International Nuclear Information System (INIS)

    Shi Xiuan; Liu Zhihong; Hu Yongming

    2008-01-01

    The reloading optimization problem of PWR with burnable absorber fuel is very difficult, and common optimization algorithms are inefficient and have bad global performance for it. Characteristic statistic algorithm (CSA) is very fit for the problem. In the past, the reloading optimization using CSA has shortcomings of separating the fuel assemblies' loading pattern (LP) optimization from burnable absorber's placement (BP) optimization. In this study, LP and BP were optimized simultaneously using CSA coupled with CYCLE2D, which is a core analysis code. The corresponding reloading coupling optimization software, CSALPBP, was developed. The 10th cycle reloading design of Daya Bay Nuclear Power Plant was optimized using CSALPBP. The results show that CSALPBP has high efficiency and excellent global performance. (authors)

  20. Fuel management inside the reactor. Report of generation of the nuclear bank for the fuel of the initial load of the Laguna Verde U-1 reactor with the FMS codes

    International Nuclear Information System (INIS)

    Alonso V, G.; Torres A, C.

    1991-06-01

    In this work in a general way the form in that it was generated the database of the initial fuel load of the Laguna Verde Unit 1 reactor is described. The initial load is formed with fuel of the GE6 type. The obtained results during the formation of the database in as much as to the behavior of the different cell parameters regarding the one burnt of the fuel and the variation of vacuums in the coolant channel its are compared very favorably with those reported by the General Electric fuel supplier and reported in the design documents of the same one. (Author)

  1. Performance evaluation of CPF shredder type mechanical crusher with simulated core fuel pin

    International Nuclear Information System (INIS)

    Nakahara, Masaumi; Sano, Yuichi; Aose, Shin-ichi

    2006-12-01

    In the advanced aqueous reprocessing system, powder fuel dissolution has been investigated, which is quite effective on the dissolution for highly concentrated solution. As one of the effective means that powder the irradiated MOX fuel, we have been developing shredder type mechanical crusher. This apparatus can automatically crush the sheared fuel pieces by twin-shaft disk blades, powder the crushed fragments by disk blades and screen blade, and recover the powdered fuel. The shredder type mechanical crusher was developed for using in a hot cell in Chemical Processing Facility, and the first crush experiment with this crusher was carried out at July 2004 using the simulated core fuel pin. This experiment showed that the crushed fragments could not be grinded efficiency because screen blade vibrated up and down during the operation. Additionally, the strength of screen blade block was insufficient to crush the sheared fuel pieces stably. Therefore, about 70% of fuel was recovered in maximum. Based on the results of the first experiment, screen blade was fixed up mainly and the second experiment was carried out with improved apparatus at September 2005. In this experiment, about 96% of fuel could be recovered in maximum because screen blade was stable during the operation. (J.P.N.)

  2. Burnt sugarcane harvesting - cardiovascular effects on a group of healthy workers, Brazil.

    Directory of Open Access Journals (Sweden)

    Cristiane Maria Galvão Barbosa

    Full Text Available Brazil is the world's largest producer of sugarcane. Harvest is predominantly manual, exposing workers to health risks: intense physical exertion, heat, pollutants from sugarcane burning.Panel study to evaluate the effects of burnt sugarcane harvesting on blood markers and on cardiovascular system.Twenty-eight healthy male workers, living in the countryside of Brazil were submitted to blood markers, blood pressure, heart rate variability, cardiopulmonary exercise testing, sympathetic nerve activity evaluation and forearm blood flow measures (venous occlusion plethysmography during burnt sugarcane harvesting and four months later while they performed other activities in sugar cane culture.Mean participant age was 31 ± 6.3 years, and had worked for 9.8 ± 8.4 years on sugarcane work. Work during the harvest period was associated with higher serum levels of Creatine Kinase - 136.5 U/L (IQR: 108.5-216.0 vs. 104.5 U/L (IQR: 77.5-170.5, (p = 0.001; plasma Malondialdehyde-7.5 ± 1.4 µM/dl vs. 6.9 ± 1.0 µM/dl, (p = 0.058; Glutathione Peroxidase - 55.1 ± 11.8 Ug/Hb vs. 39.5 ± 9.5 Ug/Hb, (p<0.001; Glutathione Transferase- 3.4±1.3 Ug/Hb vs. 3.0 ± 1.3 Ug/Hb, (p = 0.001; and 24-hour systolic blood pressure - 120.1 ± 10.3 mmHg vs. 117.0 ± 10.0 mmHg, (p = 0.034. In cardiopulmonary exercise testing, rest-to-peak diastolic blood pressure increased by 11.12 mmHg and 5.13 mmHg in the harvest and non-harvest period, respectively. A 10 miliseconds reduction in rMSSD and a 10 burst/min increase in sympathetic nerve activity were associated to 2.2 and 1.8 mmHg rises in systolic arterial pressure, respectively.Work in burnt sugarcane harvesting was associated with changes in blood markers and higher blood pressure, which may be related to autonomic imbalance.

  3. Hydrogen and fuel cells: threat or opportunity to power company core business?

    International Nuclear Information System (INIS)

    Grant, A.

    2004-01-01

    'Full text:' It is noted that many utilities at this conference will discuss the problems with fuel cells (and the hydrogen economy) that revolve around interconnection of fuel cells as distributed generation resources. Interconnection details, both commercial and technical, are a major market barrier and a key problem for electric utilities as these technologies come to market. However, I would like to offer an opportunity to examine a broader subject area. Specifically, I would submit that one key issue is the need to look at the hydrogen and fuel cell market as a new opportunity for electric utilities. At BC Hydro we see that both the hydrogen market and the fuel cells market are potential threats and potential opportunities for our core business. We therefore believe it is prudent to learn more about these markets and 'learn by doing' by participating in demonstration projects with other partners where we can leverage our investments and spread the risk. In my talk I would like to explore the various elements of the BC Hydro fuel cell activities within this context of an evolving business model for a power utility. (author)

  4. Static analysis of material testing reactor cores:critical core calculations

    International Nuclear Information System (INIS)

    Nawaz, A. A.; Khan, R. F. H.; Ahmad, N.

    1999-01-01

    A methodology has been described to study the effect of number of fuel plates per fuel element on critical cores of Material Testing Reactors (MTR). When the number of fuel plates are varied in a fuel element by keeping the fuel loading per fuel element constant, the fuel density in the fuel plates varies. Due to this variation, the water channel width needs to be recalculated. For a given number of fuel plates, water channel width was determined by optimizing k i nfinity using a transport theory lattice code WIMS-D/4. The dimensions of fuel element and control fuel element were determined using this optimized water channel width. For the calculated dimensions, the critical cores were determined for the given number of fuel plates per fuel element by using three dimensional diffusion theory code CITATION. The optimization of water channel width gives rise to a channel width of 2.1 mm when the number of fuel plates is 23 with 290 g ''2''3''5U fuel loading which is the same as in the case of Pakistan Reactor-1 (PARR-1). Although the decrease in number of fuel element results in an increase in optimal water channel width but the thickness of standard fuel element (SFE) and control fuel element (CFE) decreases and it gives rise to compact critical and equilibrium cores. The criticality studies of PARR-1 are in good agreement with the predictions

  5. Out-of-core nuclear fuel cycle economic optimization for nonequilibrium cycles

    International Nuclear Information System (INIS)

    Comes, S.A.

    1987-01-01

    A methodology and associated computer code was developed to determine near-optimum out-of-core fuel management strategies. The code, named OCEON (Out-of-Core Economic OptimizationN), identified feed-region sizes and enrichments, and partially burned fuel-reload strategies for each cycle of a multi-cycle planning horizon, subject to cycle-energy requirements and constraints on feed enrichments, discharge burnups, and the moderator temperature coefficient. A zero-dimensional reactor physics model, enhanced by a linear reactivity model to provide batch power shares, performs the initial feed enrichment, burnup and constraint evaluations, while a two-dimensional, nodal code is used to refine the calculations for the final solutions. The economic calculations are performed rapidly using an annuity-factor-based model. Use of Monte Carlo integer programming to select the optimum solutions allows for the determination of a family of near-optimum solutions, from which engineering judgment may be used to select an appropriate strategy. Results from various nonequilibrium cycle energy requirement cases typically show a large number of low-cost solutions near the optimum. This confirms that the Monte Carlo integer programming approach of generating a family of solutions will be most useful for selecting optimum strategies when other considerations, such as incore loading pattern concerns, must be addressed

  6. Review of Transient Fuel Test Results at Sandia National Laboratories and the Potential for Future Fast Reactor Fuel Transient Testing in the Annular Core Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A.; Pickard, Paul S.; Parma, Edward J.; Vernon, Milton E.; Kelly, John; Tikare, Veena [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States)

    2009-06-15

    Reactor driven transient tests of fast reactor fuels may be required to support the development and certification of new fuels for Fast Reactors. The results of the transient fuel tests will likely be needed to support licensing and to provide validation data to support the safety case for a variety of proposed fast fuel types and reactors. In general reactor driven transient tests are used to identify basic phenomenology during reactor transients and to determine the fuel performance limits and margins to failure during design basis accidents such as loss of flow, loss of heat sink, and reactivity insertion accidents. This paper provides a summary description of the previous Sandia Fuel Disruption and Transient Axial Relocation tests that were performed in the Annular Core Research Reactor (ACRR) for the U.S. Nuclear Regulatory Commission almost 25 years ago. These tests consisted of a number of capsule tests and flowing gas tests that used fission heating to disrupt fresh and irradiated MOX fuel. The behavior of the fuel disruption, the generation of aerosols and the melting and relocation of fuel and cladding was recorded on high speed cinematography. This paper will present videos of the fuel disruption that was observed in these tests which reveal stark differences in fuel behavior between fresh and irradiated fuel. Even though these tests were performed over 25 years ago, their results are still relevant to today's reactor designs. These types of transient tests are again being considered by the Advanced Fuel Cycle Initiative to support the Global Nuclear Energy Partnership because of the need to perform tests on metal fuels and transuranic fuels. Because the Annular Core Research Reactor is the only transient test facility available within the US, a brief summary of Sandia's continued capability to perform these tests in the ACRR will also be provided. (authors)

  7. Development of Structural Core Components for Breeder Reactors

    International Nuclear Information System (INIS)

    Saibaba, N.

    2013-01-01

    Core structural materials: • The desire is to have only fuel in the core, structural material form 25% of the total core: – To support and to retain the fuel in position; – Provide necessary ducts to make coolant flow through & transfer/remove heat. • For 500 MWe FBR with Oxide fuel (Peak Linear Power 450 W/cm), total fuel pins required in the core are of the order 39277 pins (both inner & outer core Fuel SA); • Considering 217 pins/Fuel SA there are 181 Fuel SA wrapper tubes • These structural materials see hostile core with max temperature and neutron flux

  8. Irradiation experiments on materials for core internals, pressure vessel and fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Materials degradation due to the aging phenomena is one of the key issues for the life assessment and extension of the light water reactors (LWRs). This presentation introduces JAERI`s activities in the field of LWR material researches which utilize the research and testing reactors for irradiation experiments. The activities are including the material studies for the core internals, pressure vessel and fuel cladding. These materials are exposed to the neutron/gamma radiation and high temperature water environments so that it is worth reviewing their degradation phenomena as the continuum. Three topics are presented; For the core internal materials, the irradiation assisted stress corrosion cracking (IASCC) of austenitic stainless steels is the present major concern. At JAERI the effects of alloying elements on IASCC have been investigated through the post-irradiation stress corrosion cracking tests in high-temperature water. The radiation embrittlement of pressure vessel steels is still a significant issue for LWR safety, and at JAERI some factors affecting the embrittlement behavior such as a dose rate have been investigated. Waterside corrosion of Zircaloy fuel cladding is one of the limiting factors in fuel rod performance and an in-situ measurement of the corrosion rate in high-temperature water was performed in JMTR. To improve the reliability of experiments and to extent the applicability of experimental techniques, a mutual utilization of the technical achievements in those irradiation experiments is desired. (author)

  9. Evaluation of core physics analysis methods for conversion of the INL advanced test reactor to low-enrichment fuel

    International Nuclear Information System (INIS)

    DeHart, M. D.; Chang, G. S.

    2012-01-01

    Computational neutronics studies to support the possible conversion of the ATR to LEU are underway. Simultaneously, INL is engaged in a physics methods upgrade project to put into place modern computational neutronics tools for future support of ATR fuel cycle and experiment analysis. A number of experimental measurements have been performed in the ATRC in support of the methods upgrade project, and are being used to validate the new core physics methods. The current computational neutronics work is focused on performance of scoping calculations for the ATR core loaded with a candidate LEU fuel design. This will serve as independent confirmation of analyses that have been performed previously, and will evaluate some of the new computational methods for analysis of a candidate LEU fuel for ATR. (authors)

  10. KUGEL: a thermal, hydraulic, fuel performance, and gaseous fission product release code for pebble bed reactor core analysis

    International Nuclear Information System (INIS)

    Shamasundar, B.I.; Fehrenbach, M.E.

    1981-05-01

    The KUGEL computer code is designed to perform thermal/hydraulic analysis and coated-fuel particle performance calculations for axisymmetric pebble bed reactor (PBR) cores. This computer code was developed as part of a Department of Energy (DOE)-funded study designed to verify the published core performance data on PBRs. The KUGEL code is designed to interface directly with the 2DB code, a two-dimensional neutron diffusion code, to obtain distributions of thermal power, fission rate, fuel burnup, and fast neutron fluence, which are needed for thermal/hydraulic and fuel performance calculations. The code is variably dimensioned so that problem size can be easily varied. An interpolation routine allows variable mesh size to be used between the 2DB output and the two-dimensional thermal/hydraulic calculations

  11. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Moriwaki, Masanao; Aoyama, Motoo; Masumi, Ryoji; Ishibashi, Yoko.

    1995-01-01

    A fuel assembly comprises a plurality of fuel rods filled with nuclear fuels, a plurality of burnable poison-incorporated fuel rods and a spectral shift-type water rod. As the burnable poison for the burnable poison-incorporated fuel rod, a plurality of burnable poison elements each having a different neutron absorption cross section are used. A burnable poison element such as boron having a relatively small neutron absorbing cross section is disposed more in the upper half region than the lower half region of the burnable poison-incorporated fuel rods. In addition, a burnable poison element such as gadolinium having a relatively large neutron absorbing cross section is disposed more in the lower half-region than the upper half region thereof. This can flatten the power distribution in the vertical direction of the fuel assembly and the power distribution in the horizontal direction at the final stage of the operation cycle. (I.N.)

  12. Parâmetros físico-químicos e cromatográficos em aguardentes de cana queimada e não queimada Physicochemical and chromatographic parameters in sugar cane brandies from burnt and non-burnt cane

    Directory of Open Access Journals (Sweden)

    José Masson

    2007-12-01

    Full Text Available Este trabalho teve por objetivo avaliar as concentrações de furfural, álcoois superiores, ésteres, aldeídos, cobre, acidez volátil, metanol e grau alcoólico de aguardentes obtidas de cana, com e sem queima prévia. Foram utilizadas amostras de aguardente artesanal de cana queimada e não queimada, fermentadas com a mesma levedura e destiladas no mesmo destilador; amostras de produtor de aguardente industrial de cana queimada e amostras obtidas de outro produtor artesanal de cana não queimada. As análises físico-químicas e cromatográficas (CG foram realizadas no Laboratório de Análise Físico-Química de Aguardente - LAFQA/DQI na Universidade Federal de Lavras. As concentrações de furfural apresentaram diferença significativa (PThis work was intended to evaluate the concentrations of furfural, higher alcohols, esters, aldehydes, copper, volatile acidity methanol and alcoholic degree of sugar cane brandies obtained from sugar cane both with and without previous burning. Samples of artisanal brandies from burnt and non-burnt cane, fermented with the same yeast and distilled in the same still, samples of burnt cane from an industrial brandy producer and samples of non-burnt cane obtained from another artisanal producer were utilized. The physicochemical and chromatographic (CG analyses were accomplished in the Sugar Cane Brandy Physicochemical Analysis Laboratory at the Federal University of Lavras. The concentrations of furfural showed significant differences (P<0.01 among the groups of artisanal brandies obtained from sugar cane with and without previous burning, coming from the same manufacturing process with means of 1.48 mg.100mL-1 ethanol and 0.63mg.100mL-1 ethanol, respectively, although they have been bellow the maximum limit (5.0 mg.100mL-1 ethanol allowed. The other components of the brandies studied were not affected significantly by the previous burning of sugar cane.

  13. Study on Combustion Oscillation of Premixed Flame with Pilot Fuel at Elevated Pressures

    Science.gov (United States)

    Ohtsuka, Masaya; Yoshida, Shohei; Hirata, Yoshitaka; Kobayashi, Nariyoshi

    Acoustically-coupled combustion oscillation is studied for premixed flame with pilot fuel to be used in gas turbine combustors. Premixed gas is passed through swirl vanes and burnt with the centrally injected pilot fuel. The dependencies of pressure, fuel to air ratio, premixed fuel rate, inlet velocity and air temperature on the combustion oscillation are investigated. Two kinds of oscillation modes of ˜100Hz and ˜350Hz are activated according to inlet velocities. Fluctuating pressures are amplified when the premixed fuel rate is over ˜80% at elevated pressures. The fluctuating pressure peak moves to a higher premixed fuel ratio region with increased pressure or fuel to air ratio for the Helmholz type mode. Combustion oscillation occurs when the pilot fuel velocity is changed proportionally with the flame length.

  14. Standardization of the methodology used for fuel pressure drop evaluation to improve hydraulic calculation of heterogeneous cores

    International Nuclear Information System (INIS)

    Le Borgne, E.; Mattei, A.

    1994-01-01

    Continuous searching for safer and more efficient fuel, and diversification of fuel supply have as a consequence a possible change in the characteristics of the fuel assemblies used in nuclear reactors. By partially refueling cores with new assemblies, nuclear power plant operators are confronted with the problem of heterogeneous cores. The complexity of the problem increases as products diversify in isotopic concentration, types of alloy, size and shape of structure components. This document will focus strictly on the differences in hydraulic resistance related to the modifications in grid structures having no effect on DNB correlations. Although this is an extremely simplified approach to the problem, establishing data to evaluate the hydraulic compatibility between two different assemblies can be difficult, and if not controlled closely, can lead to false conclusions that may affect the operation and safety of the reactor. (authors). 2 figs

  15. Effect of buoyancy on fuel containment in an open-cycle gas-core nuclear rocket engine.

    Science.gov (United States)

    Putre, H. A.

    1971-01-01

    Analysis aimed at determining the scaling laws for the buoyancy effect on fuel containment in an open-cycle gas-core nuclear rocket engine, so conducted that experimental conditions can be related to engine conditions. The fuel volume fraction in a short coaxial flow cavity is calculated with a programmed numerical solution of the steady Navier-Stokes equations for isothermal, variable density fluid mixing. A dimensionless parameter B, called the Buoyancy number, was found to correlate the fuel volume fraction for large accelerations and various density ratios. This parameter has the value B = 0 for zero acceleration, and B = 350 for typical engine conditions.

  16. Reactor core fuel management

    International Nuclear Information System (INIS)

    Silvennoinen, P.

    1976-01-01

    The subject is covered in chapters, entitled: concepts of reactor physics; neutron diffusion; core heat transfer; reactivity; reactor operation; variables of core management; computer code modules; alternative reactor concepts; methods of optimization; general system aspects. (U.K.)

  17. HTR-proteus pebble bed experimental program core 4: random packing with a 1:1 moderator-to-fuel pebble ratio

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sterbentz, James W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snoj, Luka [Jozef Stefan Inst. (IJS), Ljubljana (Slovenia); Lengar, Igor [Jozef Stefan Inst. (IJS), Ljubljana (Slovenia); Koberl, Oliver [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2014-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering

  18. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORE 4: RANDOM PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Leland M. Montierth

    2013-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering

  19. Efficiency of different techniques of physical flattening by fuel while selection of optimum arrangement of large fast reactor core

    International Nuclear Information System (INIS)

    Grachev, E.A.; Dejnega, N.L.; Mitin, A.M.

    1974-01-01

    Results are given of calculations for selecting the parameters of the large fast breeder reactor core (1500 Mw) operating on oxide fuel with a sodium coolant. A complex optimum criterion was selected for energy intensity, energy distribution, breeding ratio and critical load factor, run duration, burning, reactivity variations, influence of CV3, fuel overloads, and calculated fue fuel expenses. The effectivities of various methods for physical grading of fuel (enrichment and composition) were examined in accordance with the optimum criterion. Parameters of reactor cores optimum arrangements are presented. Continuous reactor operation during 0.8-1.0 yr. at energy intensity more than 400 kW was shown to be essential for attaining the optimum chosen. Accounting for the CV3 system and partial fuel overloads, the methods of balancing energy release either by enriching fuel or by changing its composition proved to be almost equally effective. All calculations were performed with the aid of a 18-4-RZ-15B program on the basis of a BNAB-26 constant system [ru

  20. Development of a simplified methodology for the isotopic determination of fuel spent in Light Water Reactors; Desarrollo de una metodologia simplificada para la determinacion isotopica del combustible gastado en reactores de agua ligera

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez N, H.; Francois L, J.L. [FI-UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: hermilo@lairn.fi-b.unam.mx

    2005-07-01

    The present work presents a simplified methodology to quantify the isotopic content of the spent fuel of light water reactors; their application is it specific to the Laguna Verde Nucleo electric Central by means of a balance cycle of 18 months. The methodology is divided in two parts: the first one consists on the development of a model of a simplified cell, for the isotopic quantification of the irradiated fuel. With this model the burnt one is simulated 48,000 MWD/TU of the fuel in the core of the reactor, taking like base one fuel assemble type 10x10 and using a two-dimensional simulator for a fuel cell of a light water reactor (CPM-3). The second part of the methodology is based on the creation from an isotopic decay model through an algorithm in C++ (decay) to evaluate the amount, by decay of the radionuclides, after having been irradiated the fuel until the time in which the reprocessing is made. Finally the method used for the quantification of the kilograms of uranium and obtained plutonium of a normalized quantity (1000 kg) of fuel irradiated in a reactor is presented. These results will allow later on to make analysis of the final disposition of the irradiated fuel. (Author)

  1. Fuel cycle performance indices in a high-converting LWR core design with once-through thorium fuel cycle

    International Nuclear Information System (INIS)

    Kim, Myung-Hyun; Kim, Kwan-Hee; Kim, Young-il

    2004-01-01

    A design concept of pressure-tube type light water cooled reactor (HCPLWR) core was proposed as a thermal high-conversion reactor using a thorium based once-through cycle strategy. In a previous work, fuel cycle economics and nuclear safety were confirmed. In this work, HCPLWR was evaluated in the aspects of proliferation resistance and transmutation capability. Evaluation was done as a direct comparison of indices with PWR, CANDU and Radkowsky Thorium Fuel (RTF). Conversion ratio was measured by fissile inventory ratio and fissile gain. Proliferation resistance of plutonium composition from spent seed and blanket fuels was measured by bare critical mass, spontaneous neutron source rate, and thermal heat generation rate. For the evaluation of long-lived minor actinide transmutation was measured by a new parameter, effective fission half-life. Two-dimensional calculation for the assembly-wise unit module showed each parameter values. Even though conversion capability of HCPLWR was higher than one of RTF, it was concluded that current HCPLWR design was not favorable than RTF. Design optimization is required for the future work. (author)

  2. Feasibility study of the design of homogeneously mixed thorium-uranium oxide and all-uranium fueled reactor cores for civil nuclear marine propulsion - 15082

    International Nuclear Information System (INIS)

    Alam, S.B.; Lindley, B.A.; Parks, G.T.

    2015-01-01

    In this reactor physics study, we attempt to design a civil marine reactor core that can operate over a 10 effective-full-power-years life at 333 MWth using ThUO 2 and all-UO 2 fuel. We use WIMS to develop subassembly designs and PANTHER to examine whole-core arrangements, optimizing: subassembly and core geometry; fuel enrichment; burnable and moveable poison design; and whole-core loading patterns. We compare designs with a 14% fissile loading for ThUO 2 and all-UO 2 fuel in 13*13 assemblies with ZrB 2 integral fuel burnable absorber pins for reactivity control. Taking advantage of self-shielding effects, the ThUO 2 option shows greater promise in the final burnable poison design while maintaining low, stable reactivity with minimal burnup penalty. For the final poisoning design with ZrB 2 , ThUO 2 contributes 2.5% more initial reactivity suppression, although the all-UO 2 design exhibits lower reactivity swing. All the candidate materials show greater rod worth for the ThUO 2 design. For both fuels, B 4 C has the highest reactivity worth, providing 10% higher control rod worth for ThUO 2 fuel than all-UO 2 . Finally, optimized assemblies were loaded into a 3D reactor model in PANTHER. The PANTHER results show that after 10 years, the core is on the border of criticality, confirming the fissile loading is well-designed. (authors)

  3. Spent nuclear fuel application of CORE reg-sign systems engineering software

    International Nuclear Information System (INIS)

    Grimm, R.J.

    1996-01-01

    The DOE has adopted a systems engineering approach for the successful completion of the Spent Nuclear Fuel (SNF) Program mission. The DOE has utilized systems engineering principles to develop the SNF program guidance documents and has held several systems engineering workshops to develop the functional hierarchies of both the programmatic and technical side of the SNF program. The sheer size and complexity of the SNF program has led to problems that the Westinghouse Savannah River Company (WSRC) is working to manage through the use of systems engineering software. WSRC began using CORE reg-sign, an off the shelf PC based software package, to assist DOE in management of the SNF program. This paper details the successful use of the CORE reg-sign systems engineering software to date and the proposed future activities

  4. Reactivity And Neutron Flux At Silicide Fuel Element In The Core Of RSG-GAS

    International Nuclear Information System (INIS)

    Hamzah, Amir

    2000-01-01

    In order to 4.8 and 5.2 gr U/cm exp 3 loading of U 3 Si 2 --Al fuel plates characterization, he core reactivity change and neutron flux depression had been done. Control rod calibration method was used to reactivity change measurement and neutron flux distribution was measured using foil activation method. Measurement of insertion of A-type of testing fuel element with U-loading above cannot be done due to technical reason, so the measurement using full type silicide fuel element of 2.96 gr U/cm exp 3 loading. The reactivity change measurement result of insertion in A-9 and C-3 is + 2.67 cent. The flux depression at silicide fuel in A-9 is 1.69 times bigger than oxide and in C-3 is 0.68 times lower than oxide

  5. Comprehensive thermal-hydraulic and thermal-mechanical analysis of core and fuel rods for the safety validation of real refueling at the Kozloduy WWER-440

    Energy Technology Data Exchange (ETDEWEB)

    Stefanova, S; Panajotov, D; Ilieva, B; Vitkova, M; Simeonova, V; Passage, G; Manolova, M [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika

    1996-12-31

    Safety analysis aimed at determination of thermal-hydraulic and thermal-mechanical margins of core and fuel rods has been carried out using computer codes COBSOFM and PIN-micro. Thermal-hydraulic calculations for the part of the core with maximum heat flux during steady-state regime show that the coolant, cladding and fuel temperatures are within the design limits. A severe accident with reactor blackout has been simulated. It is found that at 95% probability level there is no boiling crisis anywhere in the core. The thermal-mechanical parameters of working assembly fuel rod with maximum load have been calculated. The assembly linear power reached a maximum of 25 kW/m during the second fuel cycle, the fuel temperature remaining well below 1000{sup o} C. As the fuel assembly with typical power history has enough safety margins, it was proposed to use it for one more cycle. 4 refs., 12 figs.

  6. 'Like Playing with Fire Under a Hut' - You Will Get Burnt If You Do ...

    African Journals Online (AJOL)

    'Like Playing with Fire Under a Hut' - You Will Get Burnt If You Do Not Adjust: Reflections of Social Work Students on Adjusting to University Life. ... High dropout rates in first year and the enculturation into the academic literacies essential in promoting a successful academic adjustment are some of the challenges faced by ...

  7. Recycling of organic wastes in burnt soils: combined application of poultry manure and plant cultivation.

    Science.gov (United States)

    Villar, M C; Petrikova, V; Díaz-Raviña, M; Carballas, T

    2004-01-01

    A pot experiment was conducted to investigate the efficacy of a post-fire land management practice, including plant cultivation (Lolium perenne) combined with poultry manure addition, for restoring the protective vegetation cover in soils degraded by high intensity wildfires. The greenhouse experiment was performed with three burnt pine forest soils with added poultry manure at two doses of application and comparing the data with those obtained using NPK fertilizer. A significant effect of the amendment, soil properties and the interaction between amendment and soil properties on vegetation cover (phytomass production, nutrient content) was detected, but often the amendment treatment explained most of the variance. Changes induced by the organic amendment were more marked than those induced by inorganic fertilization. The increase of phytomass and nutrient uptake with poultry manure addition indicated the beneficial effects of this soil management practice. These findings can serve to develop field experiments and burnt soils reclamation technology.

  8. Back up core designs for the experimental multi-purpose VHTR

    International Nuclear Information System (INIS)

    Aochi, Tetsuo; Yasuno, Takehiko; Miyamoto, Yoshiaki; Shindo, Ryuichi; Ikushima, Takeshi

    1979-02-01

    For the Experimental Multi-Purpose Very High Temperature Reactor (thermal power 50 MW and reactor outlet helium temperature 1000 0 C), design studies have been made of two backup cores loaded with new-type fuel elements. The purpose is to improve core operational characteristics, especially in thermohydraulics, of the reference design core consisting of pin-in-block type fuel elements having externally cooled hollow fuel rods. In this report are described the design principles and the analyses made of nuclear, thermal and hydraulic, fuel, and safety performances to determine the backup fuel and core design parameters. The first backup core (SP fuel core) is composed of fuel elements with internally cooled fuel rods (semi-pin), 36 rods in each standard element and 18 rods in each control element. The second backup core (MH fuel core) is composed of multihole fuel elements. 102 fuel and 54 coolant holes in each standard element and 30 fuel and 18 coolant holes in each control element. Either of the cores has 73 fuel columns 4 m high; the arrangement of active core and reactor internal structures is the same as that in the reference design. The backup cores meet nearly all design requirements of the VHTR, permitting the rated power operation with coolant Reynolds number of over 10,000 in the SP core and over 6,000 in the MH core. (author)

  9. Study on high performance MOX fuel and core design in full MOX ABWR(1) by GNF-J

    International Nuclear Information System (INIS)

    Izutsu, Sadayuki; Goto, Daisuke; Saeki, Jun; Kokubun, Takehiro; Yokoya, Jun

    2003-01-01

    The concepts of high-performance MOX fuel using 10x10 lattices suitable for full-MOX ABWR are shown in this paper, in which average discharge exposure is extended up to 45 GWd/t with heavy-metal inventory increased over current MOX, reducing the number of refueling bundles, resulting in fuel cycle cost reduction and core performance satisfaction. Also, the increase of Pu inventory is taken into account from the viewpoint to extend the flexibility of MOX fuel utilization. (author)

  10. Final disposition of MTR fuel

    International Nuclear Information System (INIS)

    Jonnson, Erik B.

    1996-01-01

    The final disposition of power reactor fuel has been investigated for a long time and some promising solutions to the problem have been shown. The research reactor fuels are normally not compatible with the zirkonium clad power reactor fuel and can thus not rely on the same disposal methods. The MTR fuels are typically Al-clad UAl x or U 3 Si 2 , HEU resp. LEU with essentially higher remaining enrichment than the corresponding power reactor fuel after full utilization of the uranium. The problems arising when evaluating the conditions at the final repository are the high corrosion rate of aluminum and uranium metal and the risk for secondary criticality due to the high content on fissionable material in the fully burnt MTR fuel. The newly adopted US policy to take back Foreign Research Reactor Spent Fuel of US origin for a period of ten years have given the research reactor society a reasonable time to evaluate different possibilities to solve the back end of the fuel cycle. The problem is, however, complicated and requires a solid engagement from the research reactor community. The task would be a suitable continuation of the RERTR program as it involves both the development of new fuel types and collecting data for the safe long-term disposal of the spent MTR fuel. (author)

  11. Characterization of Burnt Clays by X-ray Diffraction Analysis, Chemical Analysis and Environmental Scanning Electron Microscopy

    Czech Academy of Sciences Publication Activity Database

    Navrátilová, Eva; Neděla, Vilém

    2016-01-01

    Roč. 22, S3 (2016), s. 1862-1863 ISSN 1431-9276 Institutional support: RVO:68081731 Keywords : burnt clays * pozzolanic activity * amorphous phase * environmental scanning electron microscope Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.891, year: 2016

  12. Evaluation of the need for stochastic optimization of out-of-core nuclear fuel management decisions

    International Nuclear Information System (INIS)

    Thomas, R.L. Jr.

    1989-01-01

    Work has been completed on utilizing mathematical optimization techniques to optimize out-of-core nuclear fuel management decisions. The objective of such optimization is to minimize the levelized fuel cycle cost over some planning horizon. Typical decision variables include feed enrichments and number of assemblies, burnable poison requirements, and burned fuel to reinsert for every cycle in the planning horizon. Engineering constraints imposed consist of such items as discharge burnup limits, maximum enrichment limit, and target cycle energy productions. Earlier the authors reported on the development of the OCEON code, which employs the integer Monte Carlo Programming method as the mathematical optimization method. The discharge burnpups, and feed enrichment and burnable poison requirements are evaluated, initially employing a linear reactivity core physics model and refined using a coarse mesh nodal model. The economic evaluation is completed using a modification of the CINCAS methodology. Interest now is to assess the need for stochastic optimization, which will account for cost components and cycle energy production uncertainties. The implication of the present studies is that stochastic optimization in regard to cost component uncertainties need not be completed since deterministic optimization will identify nearly the same family of near-optimum cycling schemes

  13. Spent nuclear fuel application of CORE reg-sign systems engineering software

    International Nuclear Information System (INIS)

    Grimm, R.J.

    1996-01-01

    The Department of Energy (DOE) has adopted a systems engineering approach for the successful completion of the Spent Nuclear Fuel (SNF) Program mission. The DOE has utilized systems engineering principles to develop the SNF Program guidance documents and has held several systems engineering workshops to develop the functional hierarchies of both the programmatic and technical side of the SNF Program. The sheer size and complexity of the SNF Program, however, has led to problems that the Westinghouse Savannah River Company (WSRC) is working to manage through the use of systems engineering software. WSRC began using CORE reg-sign, an off-the-shelf PC based software package, to assist the DOE in management of the SNF program. This paper details the successful use of the CORE reg-sign systems engineering software to date and the proposed future activities

  14. An automated optimization of core fuel loading pattern for pressurized water reactors

    International Nuclear Information System (INIS)

    Chen Renji

    1988-11-01

    An optimum method was adopted to search for an optimum fuel loading pattern in pressurized water reactors. A radial power peak factor was chosen as the objective function of the optimum loading. The direct search method with shuffling rules is used to find optimum solution. The search for an optimum loading pattern with the smallest radial power peak by exchanging fuel assemblies was made. The search process is divided into two steps. In the first step fresh fuels or high reactivity fuels are arranged which are placed in core interior to have a reasonable fuel loading pattern. To further reduce the radial power peak factor, the second step will be necessary to rearrange the exposed lower reactivity fuel around the assemblies which has the radial power peak. In optimum process 1.5 group coarse mesh diffusion theory or two group nodal Green function diffusion theory is utilized to calculate the two dimensional power distribution after each shuffle. Also, above two methods are combinatively utilized to calculate the state quantity. It is not only true to save CPU time, but also can obtian exact results. Besides above function, the code MSOFEL is used to search critical boron concentration and to predict burn-up. The code has been written with FORTRAN-4. The optimum loading pattern was chosen for OCONEE and QINSHAN nuclear power plants as reference examples. The validity and feasibility of MSOFEL was demonstrated

  15. Reactor core in FBR type reactor

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Kawashima, Katsuyuki; Kurihara, Kunitoshi.

    1989-01-01

    In a reactor core in FBR type reactors, a portion of homogenous fuels constituting the homogenous reactor core is replaced with multi-region fuels in which the enrichment degree of fissile materials is lower nearer to the axial center. This enables to condition the composition such that a reactor core having neutron flux distribution either of a homogenous reactor core or a heterogenous reactor core has substantially identical reactivity. Accordingly, in the transfer from the homogenous reactor core to the axially heterogenous reactor core, the average reactivity in the reactor core is substantially equal in each of the cycles. Further, by replacing a portion of the homogenous fuels with a multi-region fuels, thereby increasing the heat generation near the axial center, it is possiable to reduce the linear power output in the regions above and below thereof and, in addition, to improve the thermal margin in the reactor core. (T.M.)

  16. Nuclear fuel replacement device

    International Nuclear Information System (INIS)

    Ritz, W.C.; Robey, R.M.; Wett, J.F.

    1984-01-01

    A fuel handling arrangement for a liquid metal cooled nuclear reactor having a single rotating plug eccentric to the fuel core and a fuel handling machine radially movable along a slot in the plug with a transfer station disposed outside the fuel core but covered by the eccentric plug and within range of movement of said fuel handling machine to permit transfer of fuel assemblies between the core and the transfer station. (author)

  17. An automated procedure for themoluminescence dating of pottery and burnt stones

    International Nuclear Information System (INIS)

    Mejdahl, V.

    1982-01-01

    An automated procedure for dating of quartz and feldspar inclusions in pottery has been developed and tested in a comprehensive programme comprising material from a number of well-dated Danish sites. The results indicate that TL dating of pottery can now be carried out on a routine basis with an accuracy of about 5%. Experiments on dating of large grains of alkali feldspars extracted from burnt stones are described. The results are encouraging and show that the method may enable a reduction of some of the uncertainties associated with the conventional inclusion technique. (author)

  18. National Scale Operational Mapping of Burnt Areas as a Tool for the Better Understanding of Contemporary Wildfire Patterns and Regimes

    Directory of Open Access Journals (Sweden)

    Panteleimon Xofis

    2013-08-01

    Full Text Available This paper presents the results of an operational nationwide burnt area mapping service realized over Greece for the years 2007–2011, through the implementation of the so-called BSM_NOA dedicated method developed at the National Observatory of Athens for post-fire recovery management. The method exploits multispectral satellite imagery, such as Landsat-TM, SPOT, FORMOSAT-2, WorldView and IKONOS. The analysis of fire size distribution reveals that a high number of fire events evolve to large and extremely large wildfires under favorable wildfire conditions, confirming the reported trend of an increasing fire-severity in recent years. Furthermore, under such conditions wildfires affect to a higher degree areas at high altitudes, threatening the existence of ecologically significant ecosystems. Finally, recent socioeconomic changes and land abandonment has resulted in the encroachment of former agricultural areas of limited productivity by shrubs and trees, resulting both in increased fuel availability and continuity, and subsequently increased burnability.

  19. MOX fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Shimada, Hidemitsu; Koyama, Jun-ichi; Aoyama, Motoo

    1998-01-01

    The MOX fuel assembly of the present invention is of a c-lattice type loaded to a BWR type reactor. 74 MOX fuel rods filled with mixed oxides of uranium and plutonium and two water rods disposed to a space equal to that for 7 MOX fuel rods are arranged in 9 x 9 matrix. MOX fuel rods having the lowest enrichment degree are disposed to four corners of the 9 x 9 matrix. The enrichment degree means a ratio of the weight of fission products based on the total weight of fuels. Two MOX fuel rods having the same enrichment degree are arranged in each direction so as to be continuous from the MOX fuel rods at four corners in the direction of the same row and different column and same column and the different row. In addition, among the outermost circumferential portion of the 9 x 9 matrix, MOX fuel rods having a lower enrichment degree next to the MOX fuel rods having the lowest enrichment degree are arranged, each by three to a portion where MOX fuel rods having the lowest enrichment degree are not disposed. (I.N.)

  20. Safety evaluation of accident-tolerant FCM fueled core with SiC-coated zircalloy cladding for design-basis-accidents and beyond DBAs

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Ji-Han, E-mail: chunjh@kaeri.re.kr; Lim, Sung-Won; Chung, Bub-Dong; Lee, Won-Jae

    2015-08-15

    Highlights: • Thermal conductivity model of the FCM fuel was developed and adopted in the MARS. • Scoping analysis for candidate FCM FAs was performed to select feasible FA. • Preliminary safety criteria for FCM fuel and SiC/Zr cladding were set up. • Enhanced safety margin and accident tolerance for FCM-SiC/Zr core were demonstrated. - Abstract: The FCM fueled cores proposed as an accident tolerant concept is assessed against the design-basis-accident (DBA) and the beyond-DBA (BDBA) scenarios using MARS code. A thermal conductivity model of FCM fuel is incorporated in the MARS code to take into account the effects of irradiation and temperature that was recently measured by ORNL. Preliminary analyses regarding the initial stored energy and accident tolerant performance were carried out for the scoping of various cladding material candidates. A 16 × 16 FA with SiC-coated Zircalloy cladding was selected as the feasible conceptual design through a preliminary scoping analysis. For a selected design, safety analyses for DBA and BDBA scenarios were performed to demonstrate the accident tolerance of the FCM fueled core. A loss of flow accident (LOFA) scenario was selected for a departure-from-nucleate-boiling (DNB) evaluation, and large-break loss of coolant accident (LBLOCA) scenario for peak cladding temperature (PCT) margin evaluation. A control element assembly (CEA) ejection accident scenario was selected for peak fuel enthalpy and temperature. Moreover, a station blackout (SBO) and LBLOCA without a safety injection (SI) scenario were selected as a BDBA. It was demonstrated that the DBA safety margin of the FCM core is satisfied and the time for operator actions for BDBA s is evaluated.

  1. Evaluation of fuel wood quality of four fuel tree species used for fish smoking in the Sene District of the Brong Ahafo Region of Ghana

    International Nuclear Information System (INIS)

    Neequaye-Tetteh, G.A.; Quashie-Sam, S.J.; Dassah, A. L.

    2004-01-01

    Full text. The fuel wood quality of four trees, Terminalia avicennoides, Anogeissus Ieiocarpus, Combretum ghasalense and Pterocarpus arinaceus, which are easily available and widely used as fuel wood for fish smoking in the Sene District of the Brong Ahafo Region of Ghana was assessed. The specific gravity, calorific values, and burning times were determined. The mean specific gravity values for T. avicennoides, A. leiocarpus, C. ghasalense, and P. erinaceus were 0.97, 0.96, and 0.97, respectively. These values were not significantly different (P<0.05). The calorific values were 19,368.0 kj/kg for T avicennoides, 18,905.2 kj/kg for A. leiocarpus, 18,665.8 kj/kg for C. ghasalense, and 19,694.1 kj/kg for P. erinaceus. The values were not significantly different (P<0.05) between T. avicennoides and A. leiocarpus and C. ghasalense. However, there were significant differences (P<0.05) in the calorific values between T. avicennoides and C. ghasalense, A. leiocarpus and P. erinaceus, and C. ghasalense and P. erinaceus. The time in minutes required in burning equal lengths (60 cm) of the four species of fuel wood were 360 for T. avicennoides, 260 for A. leiocarpus, 195 for C. ghasalense, and 175 for P. erinaceus. These values were significantly different (P<0.0 1), with P. erinaceus burning almost twice as fast as T. avicennoides. Ranking the four fuel wood species from least to highest burning times, T. avicennoides burnt slowest, followed by A. leiocarpus, C. ghasalense, and P. erinaceuse. The specific gravity and calorific values recorded indicate that wood from the four species is suitable for use as fuel. Terminalia avicennoides, which burnt slowest, was most preferred for fish smoking, followed by A. leiocarpus and C. ghasalense. The fast-burning P. erinaceus was least preferred for fish smoking. (au)

  2. Investigation of soils affected by burnt hospital wastes in Nigeria using PIXE.

    Science.gov (United States)

    Ephraim P, Inyang; Ita, Akpan; Eusebius I, Obiajunwa

    2013-12-01

    Improper management of hospital waste has been reported to be responsible for several acute outbreaks like the severe acute respiratory syndrome (SARS). In spite of these challenges, hospital wastes are sometimes not properly handled in Nigeria. To date, there has not been an adequate study on the effect and fate of burnt hospital waste on agricultural soil. The effect of burnt hospital wastes on the agricultural soil was conducted on soils sampled around farm settlement near Obafemi Awolowo University Teaching Hospital Complex, Ile-Ife, South West Nigeria. PIXE technique was employed with a 1.7 MV 5SDH Tandem Pelletron accelerator available at Centre for Energy Research and Development O.A.U Ile-Ife, Nigeria. Eleven elements- Si, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Zr and Pb were detected and their concentrations and enrichment factors determined. The presence of Pb and Cl at the elevated concentrations range of (77.8 ± 3.5 - 279.6 ± 97.6 and 102.2 ± 37.4 -167.2±17.43) ppm respectively in this study, is of serious health concern because of the agricultural practices in the neighborhoods of the study sites. There is a need for proper handling of hospital and other related hazardous wastes because of the possibility of such posing serious environmental pollution problems.

  3. LMFBR design and its evolution. (2) Core design of LMFBR

    International Nuclear Information System (INIS)

    Uto, Nariaki; Mizuno, Tomoyasu

    2003-01-01

    Sodium-cooled core design studies are performed. MOX fuel core with axial blanket partial elimination subassembly due to safety consideration is studied. This type of core with high internal conversion ratio possesses capability of achieving 26 months of operation cycle length and 100 GWd/t of burnup averaged over core and blanket, which are superior characteristics in view of reducing cost of power generation. Metal fuel core is also studied, and its higher breeding capability reveals a potential of better core performance such as longer operation cycle length for the same level of electricity generation, though core outlet temperature is limited to lower level due to steel cladding-metal fuel compatibility concerns. Another metal fuel core concept using single Pu enrichment and two radial regions with individual fuel pin diameters achieves 550degC of core outlet temperature identical to that of MOX fuel core, keeping operation cycle length comparable with that of MOX fuel core. This series of study results show that sodium-cooled MOX and metal fuel cores have a high flexibility in satisfying various needs including fuel cycle cost and breeding capability, depending on the stage of introducing commercialized fast reactor cycle system. (author)

  4. ZPR-6 assembly 7 high {sup 240}Pu core experiments : a fast reactor core with mixed (Pu,U)-oxide fuel and a centeral high{sup 240}Pu zone.

    Energy Technology Data Exchange (ETDEWEB)

    Lell, R. M.; Morman, J. A.; Schaefer, R.W.; McKnight, R.D.; Nuclear Engineering Division

    2009-02-23

    ZPR-6 Assembly 7 (ZPR-6/7) encompasses a series of experiments performed at the ZPR-6 facility at Argonne National Laboratory in 1970 and 1971 as part of the Demonstration Reactor Benchmark Program (Reference 1). Assembly 7 simulated a large sodium-cooled LMFBR with mixed oxide fuel, depleted uranium radial and axial blankets, and a core H/D near unity. ZPR-6/7 was designed to test fast reactor physics data and methods, so configurations in the Assembly 7 program were as simple as possible in terms of geometry and composition. ZPR-6/7 had a very uniform core assembled from small plates of depleted uranium, sodium, iron oxide, U{sub 3}O{sub 8} and Pu-U-Mo alloy loaded into stainless steel drawers. The steel drawers were placed in square stainless steel tubes in the two halves of a split table machine. ZPR-6/7 had a simple, symmetric core unit cell whose neutronic characteristics were dominated by plutonium and {sup 238}U. The core was surrounded by thick radial and axial regions of depleted uranium to simulate radial and axial blankets and to isolate the core from the surrounding room. The ZPR-6/7 program encompassed 139 separate core loadings which include the initial approach to critical and all subsequent core loading changes required to perform specific experiments and measurements. In this context a loading refers to a particular configuration of fueled drawers, radial blanket drawers and experimental equipment (if present) in the matrix of steel tubes. Two principal core configurations were established. The uniform core (Loadings 1-84) had a relatively uniform core composition. The high {sup 240}Pu core (Loadings 85-139) was a variant on the uniform core. The plutonium in the Pu-U-Mo fuel plates in the uniform core contains 11% {sup 240}Pu. In the high {sup 240}Pu core, all Pu-U-Mo plates in the inner core region (central 61 matrix locations per half of the split table machine) were replaced by Pu-U-Mo plates containing 27% {sup 240}Pu in the plutonium

  5. The deformation analysis of the KALIMER breakeven core driver fuel pin based on the axial power profile during irradiation

    International Nuclear Information System (INIS)

    Lee, Dong Uk; Lee, Byoung Oon; Kim, Young Kyun; Hong, Ser Gi; Chang, Jin Wook; Lee, Ki Bok; Kim, Young Il

    2003-03-01

    In this study, material properties such as coolant specific heat, film heat transfer coefficient, cladding thermal conductivity, surface diffusion coefficient of the multi-bubble are improved in MACSIS-Mod1. The axial power and flux profile module was also incorporated with irradiation history. The performance and feasibility of the driver fuel pin have been analyzed for nominal parameters based on the conceptual design for the KALIMER breakeven core by MACSIS-MOD1 code. The fuel slug centerline temperature takes the maximum at 700mm from the bottom of the slug in spite of the nearly symmetric axial power distribution. The cladding mid-wall and coolant temperatures take the maximum at the top of the pin. Temperature of the fuel slug surface over the entire irradiation life is much lower than the fuel-clad eutectic reaction temperature. The fission gas release of the driver fuel pin at the End Of Life(EOL) is predicted to be 68.61% and plenum pressure is too low to cause cladding yielding. The probability that the fuel pin would fail is estimated to be much less than that allowed in the design criteria. The maximum radial deformation of the fuel pin is 1.928%, satisfying the preliminary design criterion (3%) for fuel pin deformation. Therefore the conceptual design parameters of the driver fuel pin for the KALIMER breakeven core are expected to satisfy the preliminary criteria on temperature, fluence limit, deformation limit etc

  6. The deformation analysis of the KALIMER breakeven core driver fuel pin based on the axial power profile during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Uk; Lee, Byoung Oon; Kim, Young Kyun; Hong, Ser Gi; Chang, Jin Wook; Lee, Ki Bok; Kim, Young Il

    2003-03-01

    In this study, material properties such as coolant specific heat, film heat transfer coefficient, cladding thermal conductivity, surface diffusion coefficient of the multi-bubble are improved in MACSIS-Mod1. The axial power and flux profile module was also incorporated with irradiation history. The performance and feasibility of the driver fuel pin have been analyzed for nominal parameters based on the conceptual design for the KALIMER breakeven core by MACSIS-MOD1 code. The fuel slug centerline temperature takes the maximum at 700mm from the bottom of the slug in spite of the nearly symmetric axial power distribution. The cladding mid-wall and coolant temperatures take the maximum at the top of the pin. Temperature of the fuel slug surface over the entire irradiation life is much lower than the fuel-clad eutectic reaction temperature. The fission gas release of the driver fuel pin at the End Of Life(EOL) is predicted to be 68.61% and plenum pressure is too low to cause cladding yielding. The probability that the fuel pin would fail is estimated to be much less than that allowed in the design criteria. The maximum radial deformation of the fuel pin is 1.928%, satisfying the preliminary design criterion (3%) for fuel pin deformation. Therefore the conceptual design parameters of the driver fuel pin for the KALIMER breakeven core are expected to satisfy the preliminary criteria on temperature, fluence limit, deformation limit etc.

  7. The effect of core design changes on the doubling time and the fuel cycle cost of a 1,000 MWe LMFBR

    International Nuclear Information System (INIS)

    Otake, I.; Inoue, T.; Tomabechi, K.; Osada, H.; Aoki, K.

    1978-01-01

    Core design studies were performed to improve the doubling time and to minimize the fuel cycle cost of a 1,000 MWe Fast Demonstration Reactor. A core was designed mainly based on the technology being used for the design of a prototype fast reactor MONJU, because much valuable experience will be forthcoming from this reactor. Design parameters with a wide variable range were used to clarify the relations between breeding characteristics, fuel economics and various designs. (author)

  8. Core instrumentation and pre-operational procedures for core conversion HEU to LEU

    International Nuclear Information System (INIS)

    1984-02-01

    This report is intended for the reactor operator, to be used as a manual or checklist for general guidance on pre-startup activities that need to be addressed in preparation for conversion to Low Enriched Fuel (LEU). All nuclear, thermodynamic and safety calculations should have been performed prior to this stage of the core conversion process. During these calculations and certainly before ordering the new LEU fuel elements the reactor operator needs to very carefully consider additional important factors concerning the new fuel: fuel reliability, reliability of fuel fabricator, reprocessing contract or fuel element storage and disposal, economics of the new fuel cycle. At this stage, too, a preoperational experimental programme has to be developed and presented to the regulatory authorities for approval. This experimental programme could lead to additional requirements on: in-core instrumentation, out-of-core instrumentation or additional experimental devices. Detailed instructions on specific tests and measurements are not provided in this report since much information on the subject is available in the open literature

  9. ANALYSIS OF GAMMA HEATING AT TRIGA MARK REACTOR CORE BANDUNG USING PLATE TYPE FUEL

    Directory of Open Access Journals (Sweden)

    Setiyanto Setiyanto

    2016-10-01

    Full Text Available ABSTRACT In accordance with the discontinuation of TRIGA fuel element production by its producer, the operation of all TRIGA type reactor of at all over the word will be disturbed, as well as TRIGA reactor in Bandung. In order to support the continuous operation of Bandung TRIGA reactor, a study on utilization of fuel plate mode, as used at RSG-GAS reactor, to replace the cylindrical model has been done. Various assessments have been done, including core design calculation and its safety aspects. Based on the neutronic calculation, utilization of fuel plate shows that Bandung TRIGA reactor can be operated by 20 fuel elements only. Compared with the original core, the new reactor core configuration is smaller and it results in some empty space that can be used for in-core irradiation facilities. Due to the existing of in-core irradiation facilities, the gamma heating value became a new factor that should be evaluated for safety analysis. For this reason, the gamma heating for TRIGA Bandung reactor using fuel plate was calculated by Gamset computer code. The calculations based on linear attenuation equations, line sources and gamma propagation on space. Calculations were also done for reflector positions (Lazy Susan irradiation facilities and central irradiation position (CIP, especially for any material samples. The calculation results show that gamma heating for CIP is significantly important (0,87 W/g, but very low value for Lazy Susan position (lest then 0,11 W/g. Based on this results, it can be concluded that the utilization of CIP as irradiation facilities need to consider of gamma heating as data for safety analysis report. Keywords: gamma heating, nuclear reactor, research reactor, reactor safety.   ABSTRAK Dengan dihentikannya produksi elemen bakar reaktor jenis Triga oleh produsen, maka semua reaktor TRIGA di dunia terganggu operasinya, termasuk juga reaktor TRIGA 2000 di Bandung. Untuk mendukung pengoperasian reaktor TRIGA Bandung

  10. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Thomas L. Maddock; Margaret A. Marshall; Leland M. Montierth

    2013-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has been evaluated as an acceptable benchmark experiment. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has also been evaluated as an acceptable benchmark experiment. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  11. Application of CASMO-4/MICROBURN-B2 methodology to mixed cores with Westinghouse Optima2 fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Ming Yuan; Wheeler, John K.; Hoz, Carlos de la [Nuclear Fuels, Warrenville (United States)

    2008-10-15

    The first application of CASMO-4/MICROBURN-B2 methodology to Westinghouse SVEA-96 Optima2 reload cycle is described in this paper. The first Westinghouse Optima2 reload cycle in the U.S. is Exelon's Quad Cities Unit 2 Cycle 19 (Q2C19). The core contains fresh Optima2 fuel and once burned and twice burned GE14 fuel. Although the licensing analyses for the reload cycle are performed by Westinghouse with Westinghouse methodology, the core is monitored with AREVA's POWERPLEX-III core monitoring system that is based on the CASMO-4/MICROBURN-B2 (C4/B2) methodology. This necessitates the development of a core model based on the C4/B2 methodology for both reload design and operational support purposes. In addition, as expected, there are many differences between the two vendors' methodologies; they differ not only in modeling some of the physical details of the Optima2 bundles but also in the modeling capability of the computer codes. In order to have high confidence that the online core monitoring results during the cycle startup and operation will comply with the Technical Specifications requirements (e.g., thermal limits, shutdown margins), the reload core design generated by Westinghouse design methodology was confirmed by the C4/B2 model. The C4/B2 model also assures that timely operational support during the cycle can be provided. Since this is the first application of C4/B2 methodology to an Optima2 reload in the US, many issues in the lattice design, bundle design, and reload core design phases were encountered. Many modeling issues have to be considered in order to develop a successful C4/B2 core model for the Optima2/GE14 mixed core. Some of the modeling details and concerns and their resolutions are described. The Q2C19 design was successfully completed and the 2 year cycle successfully started up in April 2006 and shut down in March 2008. Some of the operating results are also presented.

  12. Application of CASMO-4/MICROBURN-B2 methodology to mixed cores with Westinghouse Optima2 fuel

    International Nuclear Information System (INIS)

    Hsiao, Ming Yuan; Wheeler, John K.; Hoz, Carlos de la

    2008-01-01

    The first application of CASMO-4/MICROBURN-B2 methodology to Westinghouse SVEA-96 Optima2 reload cycle is described in this paper. The first Westinghouse Optima2 reload cycle in the U.S. is Exelon's Quad Cities Unit 2 Cycle 19 (Q2C19). The core contains fresh Optima2 fuel and once burned and twice burned GE14 fuel. Although the licensing analyses for the reload cycle are performed by Westinghouse with Westinghouse methodology, the core is monitored with AREVA's POWERPLEX-III core monitoring system that is based on the CASMO-4/MICROBURN-B2 (C4/B2) methodology. This necessitates the development of a core model based on the C4/B2 methodology for both reload design and operational support purposes. In addition, as expected, there are many differences between the two vendors' methodologies; they differ not only in modeling some of the physical details of the Optima2 bundles but also in the modeling capability of the computer codes. In order to have high confidence that the online core monitoring results during the cycle startup and operation will comply with the Technical Specifications requirements (e.g., thermal limits, shutdown margins), the reload core design generated by Westinghouse design methodology was confirmed by the C4/B2 model. The C4/B2 model also assures that timely operational support during the cycle can be provided. Since this is the first application of C4/B2 methodology to an Optima2 reload in the US, many issues in the lattice design, bundle design, and reload core design phases were encountered. Many modeling issues have to be considered in order to develop a successful C4/B2 core model for the Optima2/GE14 mixed core. Some of the modeling details and concerns and their resolutions are described. The Q2C19 design was successfully completed and the 2 year cycle successfully started up in April 2006 and shut down in March 2008. Some of the operating results are also presented

  13. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Ishibashi, Yoko; Aoyama, Motoo; Oyama, Jun-ichi; Masumi, Ryoji; Soneda, Hideo.

    1994-01-01

    A fuel assembly comprises a plurality of fuel rods filled with nuclear fuels, a plurality of burnable poison rods incorporated with burnable poisons, and water rods which can vary the height in the tube depending on the coolant flow rate flown into the assembly. The amount of entire burnable poisons of the burnable poison-containing rods in adjacent with the water rods is smaller than the amount of entire burnable poisons in the burnable poison containing rods not in adjacent with the water rods. Then the average concentration of burnable poisons in the axial upper half region is made smaller than the average concentration of the burnable poisons at the axial lower half region. Further, a burnable poison concentration at the upper half region of at least one of burnable poison-containing rods in adjacent with the water rods is made lower than the burnable poison concentration in the lower half region. Since this can fasten the combustion of the burnable poisons, a fuel assembly having good fuel economy can be attained. (I.N.)

  14. Reactor core

    International Nuclear Information System (INIS)

    Matsuura, Tetsuaki; Nomura, Teiji; Tokunaga, Kensuke; Okuda, Shin-ichi

    1990-01-01

    Fuel assemblies in the portions where the gradient of fast neutron fluxes between two opposing faces of a channel box is great are kept loaded at the outermost peripheral position of the reactor core also in the second operation cycle in the order to prevent interference between a control rod and the channel box due to bending deformation of the channel box. Further, the fuel assemblies in the second row from the outer most periphery in the first operation cycle are also kept loaded at the second row in the second operation cycle. Since the gradient of the fast neutrons in the reactor core is especially great at the outer circumference of the reactor core, the channel box at the outer circumference is bent such that the surface facing to the center of the reactor core is convexed and the channel box in the second row is also bent to the identical direction, the insertion of the control rod is not interfered. Further, if the positions for the fuels at the outermost periphery and the fuels in the second row are not altered in the second operation cycle, the gaps are not reduced to prevent the interference between the control rod and the channel box. (N.H.)

  15. Conceptual core designs for a 1200 MWe sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Joo, H. K.; Lee, K. B.; Yoo, J. W.; Kim, Y. I.

    2008-01-01

    The conceptual core design for a 1200 MWe sodium cooled fast reactor is being developed under the framework of the Gen-IV SFR development program. To this end, three core concepts have been tested during the development of a core concept: a core with an enrichment split fuel, a core with a single-enrichment fuel with a region-wise varying clad thickness, and a core with a single-enrichment fuel with non-fuel rods. In order to optimize a conceptual core configuration which satisfies the design targets, a sensitivity study of the core design parameters has been performed. Two core concepts, the core with an enrichment-split fuel and the core with a single-enrichment fuel with a region-wise varying clad thickness, have been proposed as the candidates of the conceptual core for a 1200 MWe sodium cooled fast reactor. The detailed core neutronic, fuel behavior, thermal, and safety analyses will be performed for the proposed candidate core concepts to finalize the core design concept. (authors)

  16. Characterization of the Extended-Spectrum beta-Lactamase Producers among Non-Fermenting Gram-Negative Bacteria Isolated from Burnt Patients

    Directory of Open Access Journals (Sweden)

    Mojdeh Hakemi Vala

    2013-09-01

    Full Text Available Please cite this article as: Hakemi Vala M, Hallajzadeh M, Fallah F, Hashemi A, Goudarzi H. Characterization of the extended-spectrum beta-lactamase producers among non-fermenting gram-negative bacteria isolated from burnt patients. Arch Hyg Sci 2013;2(1:1-6. Background & Aims of the Study: Extended-spectrum beta-Lactamases (ESBLs represent a major group of beta-lactamases which are responsible for resistance to oxyimino-cephalosporins and aztreonam and currently being identified in large numbers throughout the world. The objective of this study was to characterize ESBL producers among non-fermenter gram-negative bacteria isolated from burnt patients. Materials & Methods: During April to July 2012, 75 non-fermenter gram-negative bacilli were isolated from 240 bacterial cultures collected from wounds of burnt patients admitted to the Burn Unit at Shahid Motahari Hospital (Tehran, Iran. Bacterial isolation and identification was done using standard methods. Antimicrobial susceptibility testing was performed by disk diffusion method for all strains against selected antibiotics and minimum inhibitory concentration was determined by microdilution test. The ability to produce ESBL was detected through double disk synergy test among candidate strains. Results: Of 75 non-fermenter isolates, 47 Pseudomonas aeruginosa and 28 Acinetobacter baumannii were identified. The resistance of P. aeruginosa isolates to tested antibiotics in antibiogram test were 100% to cefpodoxime, 82.98% to ceftriaxone, 78.73% to imipenem, 75% to meropenem, 72.72% to gentamicin, 69.23% to ciprofloxacin and aztreonam, 67.57% to cefepime, 65.95% to ceftazidime, and 61.53% to piperacillin. The results for Acinetobacter baumannii were 100% to ceftazidime, cefepime, ciprofloxacin, imipenem, meropenem, cefpodoxime, and cefotaxim, 96.85% to gentamicin, 89.65% to ceftriaxone, 65.51% to aztreonam, and 40% to piperacillin. Double disk synergy test showed that 21 (28% of non

  17. Fast reactors fuel cycle core physics results from the CAPRA-CADRA programme

    Energy Technology Data Exchange (ETDEWEB)

    Vasile, A.; Rimpault, G.; Tommasi, J.; Saint Jean, C. de; Delpech, M. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Hesketh, K. [BNFL, Inc., Denver, CO (United States); Beaumont, H.M.; Sunderland, R.E. [NNC Ltd. (United Kingdom); Newton, T.; Smith, P. [AEA Technology (United Kingdom); Raedt, Ch. de [SCK.CEN, Mol (Belgium); Vambenepe, G. [Electricite de France (EDF), 75 - Paris (France); Lefevre, J.C. [FRAMATOME, 92 - Paris-La-Defence (France); Maschek, W.; Haas, D

    2001-07-01

    This paper presents an overview of fast reactor core physics results obtained in the context of the CAPRA-CADRA European collaborative programme, whose aim is to investigate a broad range of possible options for plutonium and radioactive waste management. Different types of fast reactors have been studied to evaluate their potential capabilities with respect to the long term management of plutonium, minor actinides (MAs) and long- lived fission products (LLFPs). Among the several options aiming at reducing waste and consequently radio toxicity are: homogeneous recycling of Minor Actinides, heterogeneous recycling of Minor Actinides either without or with moderation, dedicated critical cores (fuelled mainly with Minor Actinides) and Accelerator Driven System (ADS) variants. In order to achieve a detailed understanding of the potential of the various options, advanced core physics methods have been implemented and tested and applied, for example, to improving control rod modeling and to studying safety aspects. There has also been code development and experimental work carried out to improve the understanding of fuel performance behaviors. (author)

  18. Fast reactors fuel cycle core physics results from the CAPRA-CADRA programme

    International Nuclear Information System (INIS)

    Vasile, A.; Rimpault, G.; Tommasi, J.; Saint Jean, C. de; Delpech, M.; Hesketh, K.; Beaumont, H.M.; Sunderland, R.E.; Newton, T.; Smith, P.; Raedt, Ch. de; Vambenepe, G.; Lefevre, J.C.; Maschek, W.; Haas, D

    2001-01-01

    This paper presents an overview of fast reactor core physics results obtained in the context of the CAPRA-CADRA European collaborative programme, whose aim is to investigate a broad range of possible options for plutonium and radioactive waste management. Different types of fast reactors have been studied to evaluate their potential capabilities with respect to the long term management of plutonium, minor actinides (MAs) and long- lived fission products (LLFPs). Among the several options aiming at reducing waste and consequently radio toxicity are: homogeneous recycling of Minor Actinides, heterogeneous recycling of Minor Actinides either without or with moderation, dedicated critical cores (fuelled mainly with Minor Actinides) and Accelerator Driven System (ADS) variants. In order to achieve a detailed understanding of the potential of the various options, advanced core physics methods have been implemented and tested and applied, for example, to improving control rod modeling and to studying safety aspects. There has also been code development and experimental work carried out to improve the understanding of fuel performance behaviors. (author)

  19. Fuel management for off-load annual refuelling of the D-HHT 600 MW(e) reference core

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U

    1973-03-16

    The reference design for the Dragon-HHT reactor has been optimised for on-load continuous refuelling. The possiblity to operate the reactor on a discontinuous annual reloading schedule might prove of interest and/or necessity. In this paper the influence of an annual 4-batch fuel management scheme on the core physics and fuel cycle economics is investigated. The results of the present investigation give a good indication of the relative merits of the two fuel management schemes. Although a broader parameter survey and a more detailed scrutinising of special cases would be desirable, we feel that the main conclusions are correct and that the principle differences have been elicited.

  20. Fuel utilization potential in light water reactors with once-through fuel irradiation (AWBA Development Program)

    International Nuclear Information System (INIS)

    Rampolla, D.S.; Conley, G.H.; Candelore, N.R.; Cowell, G.K.; Estes, G.P.; Flanery, B.K.; Duncombe, E.; Dunyak, J.; Satterwhite, D.G.

    1979-07-01

    Current commercial light water reactor cores operate without recylce of fuel, on a once-through fuel cycle. To help conserve the limited nuclear fuel resources, there is interest in increasing the energy yield and, hence, fuel utilization from once-through fuel irradiation. This report evaluates the potential increase in fuel utilization of light water reactor cores operating on a once-through cycle assuming 0.2% enrichment plant tails assay. This evaluation is based on a large number of survey calculations using techniques which were verified by more detailed calculations of several core concepts. It is concluded that the maximum fuel utilization which could be achieved by practical once-through pressurized light water reactor cores with either uranium or thorium is about 17 MWYth/ST U 3 O 8 (Megawatt Years Thermal per Short Ton of U 3 O 8 ). This is about 50% higher than that of current commercial light water reactor cores. Achievement of this increased fuel utilization would require average fuel burnup beyond 50,000 MWD/MT and incorporation of the following design features to reduce parasitic losses of neutrons: reflector blankets to utilize neutrons that would otherwise leak out of the core; fuel management practices in which a smaller fraction of the core is replaced at each refueling; and neutron economic reactivity control, such as movable fuel control rather than soluble boron control. For a hypothetical situation in which all neutron leakage and parasitic losses are eliminated and fuel depletion is not limited by design considerations, a maximum fuel utilization of about 20 MWYth/ST U 3 O 8 is calculated for either uranium or thorium. It is concluded that fuel utilization for comparable reactor designs is better with uranium fuel than with thorium fuel for average fuel depletions of 30,000 to 35,000 MWD/MT which are characteristic of present light water reactor cores

  1. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Coobs, J.H.

    1976-08-01

    The status of fuel and fuel cycle technology for high-temperature gas-cooled reactors (HTGRs) is reviewed. The all-ceramic core of the HTGRs permits high temperatures compared with other reactors. Core outlet temperatures of 740 0 C are now available for the steam cycle. For advanced HTGRs such as are required for direct-cycle power generation and for high-temperature process heat, coolant temperatures as high as 1000 0 C may be expected. The paper discusses the variations of HTGR fuel designs that meet the performance requirements and the requirements of the isotopes to be used in the fuel cycle. Also discussed are the fuel cycle possibilities, which include the low-enrichment cycle, the Th- 233 U cycle, and plutonium utilization in either cycle. The status of fuel and fuel cycle development is summarized

  2. Maximization of burning and/or transmutation (B/T) capacity in coupled spectrum reactor (CSR) by fuel and core adjustment

    International Nuclear Information System (INIS)

    Aziz, F.; Kitamoto, Asashi.

    1996-01-01

    A conceptual design of burning and/or transmutation (B/T) reactor, based on a modified conventional 1150 MWe-PWR system, consisted of two core regions for thermal and fast neutrons, respectively, was proposed herein for the treatments of minor actinides (MA). In the outer region 237 Np, 241 Am, and 243 Am burned by thermal neutrons, while in the inner region 244 Cm was burned mainly by fast neutrons. The geometry of B/T fuel in the outer region was left the same with that of PWR, while in the inner region the B/T fuel was arranged in a tight-lattice geometry that allowed a higher fuel to coolant volume ratio. The maximization of B/T capacity in CSR were done by, first, increasing the radius of the inner region. Second, reducing the coolant to fuel volume ratio, and third, choosing a suitable B/T fuel type. The result of the calculations showed that the equilibrium of main isotopes in CSR can be achieved after about 5 recycle stages. This study also showed that the CSR can burn and transmute up to 808 kg of MA in a single reactor core effectively and safely. (author)

  3. Breaking up of pure and simulated 'burnt' mixed oxide fuel by chemical interaction with oxidized sodium

    International Nuclear Information System (INIS)

    Besnard, R.; Chaudat, J.P.

    1983-01-01

    A large experimental program have permitted to investigate the behaviour of mixed oxide fuel coming in contact with hot oxidized sodium. The kinetic of the reaction, the size and the chemical nature of the particules after interaction have been studied. The main part of experiments have been performed using mixed oxide fuel non irradiated at first and with simulated fission products afterwards. Complementary informations have been obtained with UO 2 fuel pellets. After description of the experimental devices, the results are discussed and the importance of the main parameters, like temperature and fission products effect, are pointed out. (orig.)

  4. Neutronic characteristics of FLWR in the transition phase changing from high conversion core to breeder core

    International Nuclear Information System (INIS)

    Akie, Hiroshi; Nakano, Yoshihiro; Okubo, Tsutomu

    2009-01-01

    Innovative Water Reactor for Flexible Fuel Cycle (FLWR) is a low moderation type boiling water reactor which can realize plutonium multiple recycling and breeding. For the introduction stage of FLWR, a high conversion (HC) type FLWR is proposed to keep technical continuity from current light water reactors. The HC core of FLWR has a less tight fuel lattice with lower coolant void fraction than the breeder (BR) type core. The HC type FLWR core is to be shifted to the BR core by only replacing the fuel assemblies of the same outer shape and size in the same reactor system. In the HC to BR transition phase of FLWR, there exist both types of fuel assemblies in the same core configuration. In the HC assembly, neutron spectrum is softer than in the BR assembly, and the axial fuel and blanket arrangement is different from the BR assembly. Due to these differences, there might appear a power peaking in the adjacent region between HC and BR assemblies. The power distribution in the HC + BR assemblies mixed core configuration is studied by performing assembly calculations and core calculations on a few assemblies local geometry and the whole core geometry. As a result, although a power peaking can be locally very large in the HC and BR assemblies adjacent regions, such local power peakings are shown to be effectively reduced by considering a rod-wise fuel enrichment distribution. In the whole core calculation, it seems possible to optimize the fuel assembly loading and shuffling pattern to avoid large power level mismatch between the assemblies. It is expected that FLWR can be shifted from HC type to BR type without major neutronic difficulties. (author)

  5. Increasing TRIGA fuel lifetime with 12 wt.% U TRIGA fuel

    Energy Technology Data Exchange (ETDEWEB)

    Naughton, W F; Cenko, M J; Levine, S H; Witzig, W F [Pennsylvania State University (United States)

    1974-07-01

    In-core fuel management studies have been performed for the Penn State Breazeale Reactor (PSBR) wherein 12 wt % U fuel elements are used to replace the standard 8.5 wt % U TRIGA fuel. The core configuration used to develop a calculational model was a 90-element hexagonal array, which is representative of the PSBR core, and consists of five hexagonal rings surrounding a central thimble containing water. The technique employed for refueling the core fully loaded with 8.5 wt % U fuel involves replacing 8.5 wt % U fuel with 12 wt % U fuel using an in-out reloading scheme. A batch reload consists of 6 new 12 wt % U fuel elements. Placing the 12 wt % U fuel in the B ring produces fuel temperatures ({approx}450 {sup o}C) that are well below the 800{sup o}C maximum limitation when the PSBR is operating at its maximum allowed power of 1 Megawatt. The advantages of using new 12 wt % U fuel to replace the burned up 8.5 wt % U fuel in the B ring over refueling strictly with 8.5 wt % U-Zr TRIGA fuel are clearly delineated in Table 1 where cost calculations used the General Atomic pre-1972 prices for TRIGA fuel, i.e., $1500 and $1650 for an 8.5 and 12 wt % U fuel element, respectively. Experimental results obtained to date utilizing the 12 wt % U fuel elements agree with the computed results. (author)

  6. In-core fuel management: Reloading techniques. Proceedings of a technical committee meeting and workshop held in Vienna, 19-21 October 1992

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The purpose of the Technical Committee Meeting and Workshop on In-core Fuel Management - Reloading Techniques, convened by the IAEA in Vienna from 19 to 21 October 1992, was to provide an international forum to review and discuss in-core fuel management reloading techniques for light water reactors. A presentation of the history and status of reloading techniques was given by S.H. Levine, Pennsylvania State University, and papers on various computer code descriptions, methodologies and experiences of utilities and vendors for nuclear fuel reloading were presented and discussed. Optimization techniques for reloadings, expert system codes and the number of energy groups used in reloading calculations were discussed in more detail during a workshop session. Refs, figs and tabs.

  7. Report of the generation of the nuclear bank Presto-Hot for the SVEA-96 fuel with the FMS codes

    International Nuclear Information System (INIS)

    Alonso V, G.

    1991-12-01

    In this work it is described in a general way the form in that was generated the database of the SVEA-96 fuel for Laguna Verde. The formation of the bank it was carried out with the ECLIPSE 86-2D, RECORD 89-1A and POLGEN 88-lB codes of the FMS package installed in the VAX system of the offices of the National Commission of Nuclear Safety and Safeguards in Mexico, D.F. The formed bank is denominated 'LlPG9102'. All this was carried out following the '6F3/I/CN029/90/P1' procedure. By means of the MERGE code of the FMS package installed in the VAX system of the offices of the Federal Commission of Electricity in Mexico, D.F., it was annex this information to the contained bank 'LlPG3314' being generated the one bank 'LlPG9701'. This contains the information of the 5 fuel types of the initial load of the unit 1 and of the first reload of Laguna Verde as well as the information corresponding to the SVEA-96 fuel. The results obtained during the formation of the data bank of the fuel as for the behavior of those different cell parameters regarding the burnt of the fuel and the variation of vacuums in the coolant channel is compared with those reported in the documents of fuel design provided by ABB-ATOM. These comparisons, although they are not exhaustive they show the general tendency of the results the which is quite favorable. The generated database contains the enough information in terms of constant in two dependent groups of burnt and instantaneous vacuums, for the different arrangements of present fuel bars in the one assemble as well as those coefficients that take into account the presence of the control bar, the variation in the fuel temperature and the one effect of the 'historical' vacuums. All this included in that is knows as SUPER option of the bank for PRESTO with the options PRCOEF and POLRAM. Also, in the Annex G of this report its were provided for separate the M-Factor, the coefficients of Xenon and the parameters of burnt of the control bar for Presto

  8. Evaluation of downmotion time interval molten materials to core catcher during core disruptive accidents postulated in LMFR

    International Nuclear Information System (INIS)

    Voronov, S.A.; Kiryushin, A.I.; Kuzavkov, N.G.; Vlasichev, G.N.

    1994-01-01

    Hypothetical core disruptive accidents are postulated to clear potential of a reactor plant to withstand extreme conditions and to generate measures for management and mitigation of accidents consequence. In Russian advanced reactors there is a core catcher below the diagrid to prevent vessel bottom melting and to localize fuel debris. In this paper the calculation technique and estimation of relocation time of molten fuel and materials are presented in the case of core disruptive accidents postulated for LMFR reactor. To evaluate minimum interval of fuel relocation time the calculations for different initial data are provided. Large mass of materials between the core and the catcher in LMFR reactor hinders molten materials relocation toward the vessel bottom. That condition increases the time interval of reaching core catcher by molten fuel. Computations performed allowed to evaluate the minimum molten materials relocation time from the core to the core catcher. This time interval is in a range of 3.5-5.5 hours. (author)

  9. Design studies of back up cores for the experimental multi-purpose VHTR, (1)

    International Nuclear Information System (INIS)

    Yasuno, Takehiko; Miyamoto, Yoshiaki; Mitake, Susumu

    1982-09-01

    For the Experimental Multi-Purpose Very High Temperature Reactor, design studies have been made of two backup cores loaded with new type fuel elements. The purpose is to improve core operational characteristics of the standard design core (Mark-III core) consisting of pin-in-block type fuel element having externally cooled hollow fuel rods. The first backup core (semi-pin fuel core) is composed of fuel elements with internally cooled fuel pins, and the second core (multihole fuel core) is composed of multihole fuel elements, which can be adopted for the experimental VHTR as the substitution of the standard Mark-III fuel element. Either of the cores has 73 fuel columns and 4 m height. The arrangement of active core and reactor internal structure is same as that in the standard design core. These backup cores meet almost all design requirements of the VHTR and increase the margins for some important design items in comparison with the standard core (Mark-III core). This report describes the overall characteristics of nuclear, thermal-hydraulic, fuel and safety, and structural consideration for these cores. (author)

  10. Thermochemistry of nuclear fuels in advanced reactors

    International Nuclear Information System (INIS)

    Agarwal, Renu

    2015-01-01

    The presence of a large number of elements, accompanied with steep temperature gradient results in dynamic chemistry during nuclear fuel burn-up. Understanding this chemistry is very important for efficient and safe usage of nuclear fuels. The radioactive nature of these fuels puts lot of constraint on regulatory bodies to ensure their accident free operation in the reactors. One of the common aims of advanced fuels is to achieve high burn-up. As burn-up of the fuel increases, chemistry of fission-products becomes increasingly more important. To understand different phenomenon taking place in-pile, many out of-pile experiments are carried out. Extensive studies of thermodynamic properties, phase analysis, thermophysical property evaluation, fuel-fission product clad compatibility are carried out with relevant compounds and simulated fuels (SIMFUEL). All these data are compiled and jointly evaluated using different computational methods to predict fuel behaviour during burn-up. Only when this combined experimental and theoretical information confirms safe operation of the pin, a test pin is prepared and burnt in a test reactor. Every fuel has a different chemistry and different constraints associated with it. In this talk, various thermo-chemical aspects of some of the advanced fuels, mixed carbide, mixed nitride, 'Pu' rich MOX, 'Th' based AHWR fuels and metallic fuels will be discussed. (author)

  11. DUPIC fuel compatibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Rho, G. H.; Park, J. W. [and others

    2000-03-01

    The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition.

  12. DUPIC fuel compatibility assessment

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Rho, G. H.; Park, J. W. and others

    2000-03-01

    The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition

  13. Nuclear reactor core stabilizing arrangement

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1976-01-01

    A nuclear reactor core stabilizing arrangement is described wherein a plurality of actuators, disposed in a pattern laterally surrounding a group of elongated fuel assemblies, press against respective contiguous fuel assemblies on the periphery of the group to reduce the clearance between adjacent fuel assemblies thereby forming a more compacted, vibration resistant core structure. 7 claims, 4 drawing figures

  14. Differences between Whole Otolith and Broken-Burnt Otolith Ages of Red Mullet (Mullus barbatus ponticus Essipov, 1927) Sampled from the Black Sea (Samsun, Turkey)

    OpenAIRE

    POLAT, Nazmi; BOSTANCI, Derya; YILMAZ, Savaş

    2005-01-01

    Different bony structures as scales, vertebrae, otoliths, opercles and subopercles of 156 red mullet (Mullus barbatus ponticus Essipov, 1927) sampled from the Black Sea were removed for age determination. Otoliths were read once by two experienced readers. However, due to the difficulty of interpretation of annuli on the otolith edge, the broken-burnt method was applied to the 61 otoliths. Broken-burnt otoliths were also read once by the same two experienced readers. When whole otolith and br...

  15. Reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Sasagawa, Masaru; Masuda, Hiroyuki; Mogi, Toshihiko; Kanazawa, Nobuhiro.

    1994-01-01

    In a reactor core, a fuel inventory at an outer peripheral region is made smaller than that at a central region. Fuel assemblies comprising a small number of large-diameter fuel rods are used at the central region and fuel assemblies comprising a great number of smalldiameter fuel rods are used at the outer peripheral region. Since a burning degradation rate of the fuels at the outer peripheral region can be increased, the burning degradation rate at the infinite multiplication factor of fuels at the outer region can substantially be made identical with that of the fuels in the inner region. As a result, the power distribution in the direction of the reactor core can be flattened throughout the entire period of the burning cycle. Further, it is also possible to make the degradation rate of fuels at the outer region substantially identical with that of fuels at the inner side. A power peak formed at the outer circumferential portion of the reactor core of advanced burning can be lowered to improve the fuel integrity, and also improve the reactor safety and operation efficiency. (N.H.)

  16. Experience with W3Re/W25Re thermocouples in fuel pins of NS Otto Hahn's two cores

    International Nuclear Information System (INIS)

    Kolb, M.

    1976-01-01

    The paper first deals with the installation of 18 and 9 high-temperature sheathed thermocouples in fuel rods of the cores FDR-1 and FDR-2, respectively. The measured fuel rod centerline temperatures could be related to the local linear rod power at any given time by means of the densities of fission products with different half-lives obtained from fuel rod γ-scans. The fuel temperatures show then already an increase with the burn-up of the FDR-1 which becomes steeper when taking into account the decrease of the EMF measured at irradiated thermocouples taken from the fuel rods. Finally, the determination of effective thermocouple time constants and of fuel rod heat transfer time constants is demonstrated by utilizing the reactor noise to measure the transfer function between neutron flux and fuel temperature signal. (orig.) [de

  17. Export of solids and nutrients from burnt areas: effects of fire severity and forest type

    Science.gov (United States)

    Abrantes, Nelson; Morais, Inês; Silva, Vera; Malvar, Mauxa C.; Prats, Sérgio; Coelho, Celeste; Keizer, Jan J.

    2015-04-01

    In the last few decades, the number of wildfires has markedly increased in Mediterranean Europe, including Portugal. Besides a range of direct impacts, wildfires can significantly alter the geomorphological and hydrological processes during a period commonly referred to as the "window-of-disturbance". It is now increasingly recognized that these indirect wildfire effects depend strongly on fire severity, i.e. the heating-induced changes in vegetation and litter cover as well as in topsoil properties such as infiltration capacity, aggregate stability and soil water repellency. Nonetheless, the exact role of fire severity in post-fire hydrological and erosion processes is still poorly quantified in many parts of the world, including Portugal. Another important gap in fire-related research stills to be the impacts of wildfire on soil fertility losses, in particular through erosion by runoff. Both research gaps were addressed in this study, following a wildfire that took place in July 2013 in Talhadas (Sever do Vouga, Aveiro) and burnt circa 815 ha. In the burnt area and the surrounding unburnt areas, six study sites were selected and, immediately after the fire, instrumented with slope-scale runoff plots. Two of the sites were long-unburnt, two were burnt at low severity and the other two were burnt at high severity; for all of them one being covered by a Eucalyptus globulus plantation and the other by a Pinus pinaster plantation. Following the instrumentation of the sites, runoff was measured at 1- to 2-weekly intervals and, whenever possible, runoff samples were collected for subsequent analysis in the laboratory with respect to total suspended sediments content and total nitrogen and total phosphorus concentrations. The results obtained in this study showed that the severity of the fire played a more important role in the loss of nutrients and solids than the type of vegetation. While the occurrence of fire markedly increased soil (fertility) losses, this effect

  18. Nuclear reactor core

    International Nuclear Information System (INIS)

    Koyama, Jun-ichi; Aoyama, Motoo; Ishibashi, Yoko; Mochida, Takaaki; Haikawa, Katsumasa; Yamanaka, Akihiro.

    1995-01-01

    A reactor core is radially divided into an inner region, an outer region and an outermost region. As a fuel, three kinds of fuels, namely, a high enrichment degree fuel at 3.4%, a middle enrichment degree fuel at 2.3% and a low enrichment degree at 1.1% of a fuel average enrichment degree of fission product are used. Each of the fuels is bisected to upper and lower portions at an axial center thereof. The difference of average enrichment degrees between upper and lower portions is 0.1% for the high enrichment degree fuel, 0.3% for the middle enrichment degree fuel and 0.2% for the low enrichment degree fuel. In addition, the composition of fuels in each of radial regions comprises 100% of the low enrichment degree fuels in the outermost region, 91% of the higher enrichment degree fuels and 9% of the middle enrichment degree fuels in the outer region, and 34% of the high enrichment degree fuels and 30% of the middle enrichment degree fuels in the inner region. With such a constitution, fuel economy can be improved while maintaining the thermal margin in an initially loaded reactor core of a BWR type reactor. (I.N.)

  19. Comparative Study on Various Geometrical Core Design of 300 MWth Gas Cooled Fast Reactor with UN-PuN Fuel Longlife without Refuelling

    Science.gov (United States)

    Dewi Syarifah, Ratna; Su'ud, Zaki; Basar, Khairul; Irwanto, Dwi

    2017-07-01

    Nuclear power has progressive improvement in the operating performance of exiting reactors and ensuring economic competitiveness of nuclear electricity around the world. The GFR use gas coolant and fast neutron spectrum. This research use helium coolant which has low neutron moderation, chemical inert and single phase. Comparative study on various geometrical core design for modular GFR with UN-PuN fuel long life without refuelling has been done. The calculation use SRAC2006 code both PIJ calculation and CITATION calculation. The data libraries use JENDL 4.0. The variation of fuel fraction is 40% until 65%. In this research, we varied the geometry of core reactor to find the optimum geometry design. The variation of the geometry design is balance cylinder; it means that the diameter active core (D) same with height active core (H). Second, pancake cylinder (D>H) and third, tall cylinder (Dpower is 300 MWth. First calculation, we calculate survey parameter for UN-PuN fuel with fissile contain from Plutonium waste LWR for each geometry. The minimum power density is around 72 Watt/cc, and maximum power density 114 Watt/cc. After we calculate with various geometry core, when we use the balance geometry, the k-eff value flattest and more stable than the others.

  20. Burn-up determinations and dimensional measurements of TRIGA-HEU fuel elements from the 14 MW steady-state core

    International Nuclear Information System (INIS)

    Toma, C.; Alexa, Al.; Craciunescu, T.; Pirvan, M.; Dobrin, R.

    2008-01-01

    In this paper there are presented the results of nondestructive examination in Post Irradiation Examination Laboratory for twenty five fuel rods selected from 14 MW steady state core. Gamma scanning and dimensional measurements were carried out in order to determine burn-up and diametric deflection of the fuel rods. Also, some comparisons with SSR Safety Report estimations for the maximum burn-up pin were made. (authors)

  1. Future trends in nuclear fuels

    International Nuclear Information System (INIS)

    Guitierrez, J.E.

    2006-01-01

    This series of transparencies presents: the fuel management cycle and key areas (security of supplies, strategies and core management, reliability, spent fuel management), the world nuclear generating capacity, concentrate capacity, enrichment capacity, and manufacturing capacity forecasts, the fuel cycle strategies and core management (longer cycles, higher burnups, power up-rates, higher enrichments), the Spanish nuclear generation cost, the fuel reliability (no defects, robust designs, operational margins, integrated fuel and core design), spent fuel storage (design and safety criteria, fuel performance and integrity). (J.S.)

  2. Assessment of the residual time to rupture of fuel pins after reactor core disturbances using the Lebensanteil rule

    International Nuclear Information System (INIS)

    Schaefer, L.; Wassilew, C.

    1992-01-01

    An important aspect of disturbances in the reactor core is the way in which they affect the service life of fuel rod cladding tubes. This factor also determines whether and how long the reactor core can be continued in operation, i.e., matters of safety and economy are involved. Potential disturbances of the reactor core affect the fuel rod cladding tubes as increases in temperature and, sometimes, as mechanical stresess for limited periods of time. As thermomechanical stresses acting on a cladding tube also give rise to creep events which may limit the service life of fuel elements, it is important to know how much creep life or time to rupture is consumed in the course of a core disturbance, and what the residual life is. For this purpose, the times to rupture before and during the accident must be added up and the balance calculated. As a rule of computation, the Lebensanteil rule is used in its form expressing the time to rupture of creeping solids. The simulation of accidents with unirradiated cladding tubes revealed a drastic decrease of the residual time to rupture in those cases in which the cladding material had recrystallized. On the other hand, because of its structural stability, irradiated material turned out to be almost insensitive even under extremely severe accident conditions. The materials data so far available are sufficient for useful estimates. Presuming one of the damage accumulating processes of the creeping cladding material is predominant, there are no further validity limiting ranges concerning kind of accident, loading condition, cladding material and so on. (orig.)

  3. Safety analysis of the topaz behavior during irradiation, its effect on the core performance and the in-core fuel management strategy

    International Nuclear Information System (INIS)

    Khalil, M.Y.; Belal, M.G.

    2006-01-01

    The topaz is a natural gem stones which collect color centers when irradiated with fast neutrons and transformed into a colorful stones called topaz. The objective of this paper is to detail the safety analysis performed to assure the safety measures of the topaz mass production and farther shows an indirect estimated measurement of the safety related parameters. Analysis has been performed for all the irradiation positions nominated for topaz production and this paper present experimental verification performed for the position of the highest influence where all other positions have lower influences and showed the same safety features and agreement between calculations and measurements. On the other hand it was necessary to show that no hot spots and no cooling problems would rise as a result of irradiation. The heat energy dissipation in the topaz boxes is important from the reactor core coolability side as well as from the view point of the quality of the product. Moreover the paper describes the administrative procedure to limit the reactivity insertion rate of any box to less than 10 pcm/sec. The effect of the topaz boxes presence on the accumulated fuel burn up has been calculated, and recommendations concerning the in-core fuel management strategy has been reviewed. (authors)

  4. Fuel production for LWRs - MOX fuel aspects

    International Nuclear Information System (INIS)

    Deramaix, P.

    2005-01-01

    Plutonium recycling in Light Water Reactors is today an industrial reality. It is recycled in the form of (U, Pu)O 2 fuel pellets (MOX), fabricated to a large extent according to UO 2 technology and pellet design. The similarity of physical, chemical, and neutron properties of both fuels also allows MOX fuel to be burnt in nuclear plants originally designed to burn UO 2 . The industrial processes presently in use or planned are all based on a mechanical blending of UO 2 and PuO 2 powders. To obtain finely dispersed plutonium and to prevent high local concentration of plutonium, the feed materials are micronised. In the BNFL process, the whole (UO 2 , PuO 2 ) blend is micronised by attrition milling. According to the MIMAS process, developed by BELGONUCLEAIRE, a primary blend made of UO 2 containing about 30% PuO 2 is micronised in a ball mill, afterwards this primary blend is mechanically diluted in UO 2 to obtain the specified Pu content. After mixing, the (U, Pu)O 2 powder is pressed and the pellets are sintered. The sintering cover gas contains moisture and 5 v/o H 2 . Moisture increases the sintering process and the U-Pu interdiffusion. After sintering and grinding, the pellets are submitted to severe controls to verify conformity with customer specifications (fissile content, Pu distribution, surface condition, chemical purity, density, microstructure). (author)

  5. Initial charge reactor core

    International Nuclear Information System (INIS)

    Kiyono, Takeshi

    1984-01-01

    Purpose: To effectivity burn fuels and improve the economical performance in an inital charge reactor core of BWR type reactors or the likes. Constitution: In a reactor core constituted with a plurality of fuel assemblies which are to be partially replaced upon fuel replacement, the density of the fissionable materials and the moderator - fuel ratio of a fuel assembly is set corresponding to the period till that fuel assembly is replaced, in which the density of the nuclear fissionable materials is lowered and the moderator - fuel ratio is increased for the fuel assembly with a shorter period from the fueling to the fuel exchange and, while on the other hand, the density of the fissionable materials is increased and the moderator - fuel ratio is decreased for the fuel assembly with a longer period from the fueling to the replacement. Accordingly, since the moderator - fuel ratio is increased for the fuel assembly to be replaced in a shorter period, the neutrons moderating effect is increased to increase the reactivity. (Horiuchi, T.)

  6. Numerical analysis of the reactivity for the dry lattices above the water level of the critical fuel cores

    International Nuclear Information System (INIS)

    Nauchi, Yasushi; Kameyama, Takanori

    2003-01-01

    Criticality analysis has been performed for dozens of tank type cores in which fuel lattices are loaded vertically and partially immersed in light water. The reactivity effect of dry part of lattices stuck above the critical water level has been calculated using the continuous energy Monte Carlo method. The reactivity effect exceeds 0.8% both for MOX and UOX fuel lattices of large buckling (B z 2 > 0.0025 cm -2 ). It is evaluated that at least 20 cm length of fuel rods above the critical water level has significant reactivity effect. (author)

  7. Effects of moderation level on core reactivity and. neutron fluxes in natural uranium fueled and heavy water moderated reactors

    International Nuclear Information System (INIS)

    Khan, M.J.; Aslam; Ahmad, N.; Ahmed, R.; Ahmad, S.I.

    2005-01-01

    The neutron moderation level in a nuclear reactor has a strong influence on core multiplication, reactivity control, fuel burnup, neutron fluxes etc. In the study presented in this article, the effects of neutron moderation level on core reactivity and neutron fluxes in a typical heavy water moderated nuclear research reactor is explored and the results are discussed. (author)

  8. Neutronic analysis of the PBMR-400 full core using thorium fuel mixed with plutonium or minor actinides

    International Nuclear Information System (INIS)

    Acır, Adem; Coşkun, Hasan

    2012-01-01

    Highlights: ► Neutronic calculations for PBMR 400 were conducted with the computer codes MCNP and MONTEBURNS 2.0. ► The criticality and burnup were investigated for reactor grade plutonium and minor actinides. ► We found that the use of these new fuels in PBMRs would reduce the nuclear waste repository significantly. -- Abstract: Time evolution of criticality and burnup grades of the PBMR were investigated for reactor grade plutonium and minor actinides in the spent fuel of light water reactors (LWRs) mixed with thoria. The calculations were performed by employing the computer codes MCNP and MONTEBURNS 2.0 and using the ENDF/B-V nuclear data library. Firstly, the plutonium–thorium and minor actinides–thorium ratio was determined by using the initial k eff value of the original uranium fuel design. After the selection of the plutonium/minor actinides–thorium mixture ratio, the time-dependent neutronic behavior of the reactor grade plutonium and minor actinides and original fuels in a PBMR-400 reactor was calculated by using the MCNP code. Finally, k eff , burnup and operation time values of the fuels were compared. The core effective multiplication factor (k eff ) for the original fuel which has 9.6 wt.% enriched uranium was computed as 1.2395. Corresponding to this k eff value the reactor grade plutonium/thorium and minor actinide/thorium oxide mixtures were found to be 30%/70% and 50%/50%, respectively. The core lives for the original, the reactor grade plutonium/thorium and the minor actinide/thorium fuels were calculated as ∼3.2, ∼6.5 and ∼5.5 years, whereas, the corresponding burnups came out to be 99,000, ∼190,000 and ∼166,000 MWD/T, respectively, for an end of life k eff set equal to 1.02.

  9. Computer programs for the in-core fuel management of power reactors

    International Nuclear Information System (INIS)

    1981-08-01

    This document gives a survey of the presently tested and used computer programs applicable to the in-core fuel management of light and heavy water moderated nuclear power reactors. Each computer program is described (provided that enough information was supplied) such that the nature of the physical problem solved and the basic mathematical or calculational approach are evident. In addition, further information regarding computer requirements, up-to-date applications and experiences and specific details concerning implementation, staff requirements, etc., are provided. Program procurement conditions, possible program implementation assistance and commercial conditions (where applicable) are given. (author)

  10. Optimization method development of the core characteristics of a fast reactor in order to explore possible high performance solutions (a solution being a consistent set of fuel, core, system and safety)

    International Nuclear Information System (INIS)

    Ingremeau, J.-J.X.

    2011-01-01

    In the study of any new nuclear reactor, the design of the core is an important step. However designing and optimising a reactor core is quite complex as it involves neutronics, thermal-hydraulics and fuel thermomechanics and usually design of such a system is achieved through an iterative process, involving several different disciplines. In order to solve quickly such a multi-disciplinary system, while observing the appropriate constraints, a new approach has been developed to optimise both the core performance (in-cycle Pu inventory, fuel burn-up, etc...) and the core safety characteristics (safety estimators) of a Fast Neutron Reactor. This new approach, called FARM (Fast Reactor Methodology) uses analytical models and interpolations (Meta-models) from CEA reference codes for neutronics, thermal-hydraulics and fuel behaviour, which are coupled to automatically design a core based on several optimization variables. This global core model is then linked to a genetic algorithm and used to explore and optimise new core designs with improved performance. Consideration has also been given to which parameters can be best used to define the core performance and how safety can be taken into account.This new approach has been used to optimize the design of three concepts of Gas cooled Fast Reactor (GFR). For the first one, using a SiC/SiCf-cladded carbide-fuelled helium-bonded pin, the results demonstrate that the CEA reference core obtained with the traditional iterative method was an optimal core, but among many other possibilities (that is to say on the Pareto front). The optimization also found several other cores which exhibit some improved features at the expense of other safety or performance estimators. An evolution of this concept using a 'buffer', a new technology being developed at CEA, has hence been introduced in FARM. The FARM optimisation produced several core designs using this technology, and estimated their performance. The results obtained show that

  11. Reactor core and initially loaded reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Koyama, Jun-ichi; Aoyama, Motoo.

    1989-01-01

    In BWR type reactors, improvement for the reactor shutdown margin is an important characteristic condition togehter with power distribution flattening . However, in the reactor core at high burnup degree, the reactor shutdown margin is different depending on the radial position of the reactor core. That is , the reactor shutdown margin is smaller in the outer peripheral region than in the central region of the reactor core. In view of the above, the reactor core is divided radially into a central region and as outer region. The amount of fissionable material of first fuel assemblies newly loaded in the outer region is made less than the amount of the fissionable material of second fuel assemblies newly loaded in the central region, to thereby improve the reactor shutdown margin in the outer region. Further, the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower portion of the first fuel assemblies is made smaller than the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower region of the second fuel assemblies, to thereby obtain a sufficient thermal margin in the central region. (K.M.)

  12. Nondestructive examination of 51 fuel and reflector elements from Fort St. Vrain Core Segment 1

    International Nuclear Information System (INIS)

    Miller, C.M.; Saurwein, J.J.

    1980-12-01

    Fifty-one fuel and reflector elements irradiated in core segment 1 of the Fort St. Vrain High-Temperature Gas-Cooled Reactor (HTGR) were inspected dimensionally and visually in the Hot Service Facility at Fort St. Vrain in July 1979. Time- and volume-averaged graphite temperatures for the examined fuel elements ranged from approx. 400 0 to 750 0 C. Fast neutron fluences varied from approx. 0.3 x 10 25 n/m 2 to 1.0 x 10 25 n/m 2 (E > 29 fJ)/sub HTGR/. Nearly all of the examined elements shrank in both axial and radial dimensions. The measured data were compared with strain and bow predictions obtained from SURVEY/STRESS, a computer code that employs viscoelastic beam theory to calculate stresses and deformations in HTGR fuel elements

  13. Development of a detailed core flow analysis code for prismatic fuel reactors

    International Nuclear Information System (INIS)

    Bennett, R.G.

    1990-01-01

    The development of a computer code for the analysis of the detailed flow of helium in prismatic fuel reactors is reported. The code, called BYPASS, solves, a finite difference control volume formulation of the compressible, steady state fluid flow in highly cross-connected flow paths typical of the Modular High-Temperature Gas Cooled Reactor (MHTGR). The discretization of the flow in a core region typically considers the main coolant flow paths, the bypass gap flow paths, and the crossflow connections between them. 16 refs., 5 figs

  14. Application of CASMO-4/MICROBURN-B2 methodology to mixed cores with Westinghouse Optima2 fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Ming Yuan; Wheeler, John K.; Hoz, Carlos de la [Nuclear Fuels, Warrenville (United States)

    2008-10-15

    The first application of CASMO-4/MICROBURN-B2 methodology to Westinghouse SVEA-96 Optima2 reload cycle is described in this paper. The first Westinghouse Optima2 reload cycle in the U.S. is Exelon's Quad Cities Unit 2 Cycle 19 (Q2C19). The core contains fresh Optima2 fuel and once burned and twice burned GE14 fuel. Although the licensing analyses for the reload cycle are performed by Westinghouse with Westinghouse methodology, the core is monitored with AREVA's POWERPLEX-III core monitoring system that is based on the CASMO-4/MICROBURN-B2 (C4/B2) methodology. This necessitates the development of a core model based on the C4/B2 methodology for both reload design and operational support purposes. In addition, as expected, there are many differences between the two vendors' methodologies; they differ not only in modeling some of the physical details of the Optima2 bundles but also in the modeling capability of the computer codes. In order to have high confidence that the online core monitoring results during the cycle startup and operation will comply with the Technical Specifications requirements (e.g., thermal limits, shutdown margins), the reload core design generated by Westinghouse design methodology was confirmed by the C4/B2 model. The C4/B2 model also assures that timely operational support during the cycle can be provided. Since this is the first application of C4/B2 methodology to an Optima2 reload in the US, many issues in the lattice design, bundle design, and reload core design phases were encountered. Many modeling issues have to be considered in order to develop a successful C4/B2 core model for the Optima2/GE14 mixed core. Some of the modeling details and concerns and their resolutions are described. The Q2C19 design was successfully completed and the 2 year cycle successfully started up in April 2006 and shut down in March 2008. Some of the operating results are also presented.

  15. Thermal margin model for transition core of KSNP

    International Nuclear Information System (INIS)

    Nahm, Kee Yil; Lim, Jong Seon; Park, Sung Kew; Chun, Chong Kuk; Hwang, Sun Tack

    2004-01-01

    The PLUS7 fuel was developed with mixing vane grids for KSNP. For the transition core partly loaded with the PLUS7 fuels, the procedure to set up the optimum thermal margin model of the transition core was suggested by introducing AOPM concept into the screening method which determines the limiting assembly. According to the procedure, the optimum thermal margin model of the first transition core was set up by using a part of nuclear data for the first transition and the homogeneous core with PLUS7 fuels. The generic thermal margin model of PLUS7 fuel was generated with the AOPM of 138%. The overpower penalties on the first transition core were calculated to be 1.0 and 0.98 on the limiting assembly and the generic thermal margin model, respectively. It is not usual case to impose the overpower penalty on reload cores. It is considered that the lack of channel flow due to the difference of pressure drop between PLUS7 and STD fuels results in the decrease of DNBR. The AOPM of the first transition core is evaluated to be about 135% by using the optimum generic thermal margin model which involves the generic thermal margin model and the total overpower penalty. The STD fuel is not included among limiting assembly candidates in the second transition core, because they have much lower pin power than PLUS7 fuels. The reduced number of STD fuels near the limiting assembly candidates the flow from the limiting assembly to increase the thermal margin for the second transition core. It is expected that cycle specific overpower penalties increase the thermal margin for the transition core. Using the procedure to set up the optimum thermal margin model makes sure that the enhanced thermal margin of PLUS7 fuel can be sufficiently applied to not only the homogeneous core but also the transition core

  16. Optimalisation Of Oxide Burn-Up Enhanced For RSG-Gas Core

    International Nuclear Information System (INIS)

    Tukiran; Sembiring, Tagor Malem

    2000-01-01

    Strategy of fuel management of the RSG-Gas core has been changed from 6/1 to 5/1 pattern so the evaluation of fuel management is necessary to be done. The aim of evaluation is to look for the optimal fuel management so that the fuel can be stayed longer in the core and finally can save cost of operation. Using Batan-EQUIL-2D code did the evaluation of fuel management with 5/1 pattern. The result of evaluation is used to choose which one is more advantage without break the safety margin which is available in the Safety Analysis Report (SAR) firstly, the fuel management was calculated with core excess reactivity of 9,2% criteria. Secondly, fuel burn-up maximum of 56% criteria and the last, fuel burn-up maximum of 64% criteria. From the result of fuel management calculation of the RSG-Gas equilibrium core can be concluded that the optimal RSG-Gas equilibrium core with 5/1 pattern is if the fuel burn-up maximum 64% and the energy in a cycle of operation is 715 MWD. The fuel can be added one more step in the core without break any safety margin. It means that the RSG-Gas equilibrium core can save fuel and cost reduction

  17. Design of full MOX core in ABWR

    International Nuclear Information System (INIS)

    Kinoshita, Y.; Hirose, T.; Sasagawa, M.; Sakuma, T

    1999-01-01

    A Full MOX-ABWR, loaded with mixed-oxide (MOX) fuels of up to 100% of the core, is planned. Increased MOX fuel utilization will result in greater savings of uranium. Studies on the fuel rod thermal-mechanical design, the core design and the safety evaluation have been made, and the results are summarized in this paper. To sum it all up, the safety of the Full MOX-ABWR has been confirmed through design evaluations adequately considering the MOX fuel and core characteristics. (author)

  18. Optimized core loading sequence for Ukraine WWER-1000 reactors

    International Nuclear Information System (INIS)

    Dye, M.; Shah, H.

    2015-01-01

    Fuel Assemblies (WFAs) experienced mechanical damage of the grids during loading at both South Ukraine 2 (SU2) and South Ukraine 3 (SU3). The grids were damaged due to high lateral loads exceeding their strength limit. The high lateral loads were caused by a combination of distortion and stiffness of the mixed core fuel assemblies and significant fuel assembly-to-fuel assembly interaction combined with the core loading sequence being used. To prevent damage of the WFA grids during core loading, Westinghouse has developed a loading sequence technique and loading aides (smooth sided dummies and top nozzle loading guides) designed to minimize fuel assembly-to-fuel assembly interaction while maximizing the potential for successful loading (i.e., no fuel assembly damage and minimized loading time). The loading sequence technique accounts for cycle-specific core loading patterns and is based on previous Westinghouse WWER core loading experience and fundamental principles. The loading aids are developed to “open-up” the target core location or to provide guidance into a target core location. The Westinghouse optimized core loading sequence and smooth sided dummies were utilized during the successful loading of SU3 Cycle 25 mixed core in March 2015, with no instances of fuel assembly damage and yet still provided considerable time savings relative to the 2012 and 2013 SU3 reload campaigns. (authors)

  19. Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs

    International Nuclear Information System (INIS)

    Ragusa, Jean; Vierow, Karen

    2011-01-01

    The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzed advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.

  20. Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Ragusa, Jean; Vierow, Karen

    2011-09-01

    The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzed advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.