WorldWideScience

Sample records for burners

  1. Regenerative burner

    Energy Technology Data Exchange (ETDEWEB)

    Davies, T.E.; Quinn, D.E.; Watson, J.E.

    1986-08-05

    A regenerative burner is described operable in fire and flue modes comprising: a burner shell having first and second internal chambers, the first chamber being disposed on the flame axis of the burner and the second chamber surrounding the radial perimeter of the first chamber; a gas permeable annular regenerative bed separating the first and second chambers such that gas flow between the first and second chambers must travel through the regenerative bed in a generally radial direction with respect to the flame axis; means for supplying combustion air to the second chamber when the burner is in the fire mode and for exhausting the products of combustion from the second chamber when the burner is in the flue mode; and means for supplying fuel in the vicinity of the flame axis for mixing with combustion air to support combustion when the burner is in the fire mode.

  2. Regenerative burner

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, G.M.

    1990-05-08

    This patent describes a method of combusting fuel in a furnace having a pair of regenerative burners, each burner having a combustion chamber. It comprises: supplying fuel and oxygen alternatively to each burner to create alternating firing burners wherein the oxygen is supplied from two sources providing first and second oxidizing gases having different oxygen concentrations and simultaneously alternating the application of negative pressure to the remaining non-firing burner to recover heat from flue gases exhausted by the regenerative bed of the non-firing burner to be used further to preheat at least part of the oxygen being supplied to the firing burner; mixing the fuel with a fraction of the oxygen under substoichiometric combustion condition to create products of incomplete combustion to form a hot, luminous flame core containing partially pyrolized fuel; and mixing the partially pyrolyzed fuel with a remaining fraction of the oxygen to complete combustion of the pyrolized fuel; and controlling the total flow of fuel and oxygen supplied to each burner to provide each burner with a desired flame stoichiometry.

  3. Thermionic cogeneration burner assessment

    International Nuclear Information System (INIS)

    Both electric power and high-temperature flue gas can be cogenerated by combining a furnace burner with thermionic converters, forming a thermionic cogeneration burner. To assess the performance and cost of such a burner, a one-for-one replacement, bolt-on burner, which could be used in most industrial applications, was designed in detail. It was analyzed and parametric performance data was derived from a mathematical model. Details of the design analysis, as well as an economic evaluation of installed cost ($/kW) and internal rate-of-return, are presented

  4. Combustor burner vanelets

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, Benjamin (Greer, SC); Varatharajan, Balachandar (Loveland, OH); Kraemer, Gilbert Otto (Greer, SC); Yilmaz, Ertan (Albany, NY); Zuo, Baifang (Simpsonville, SC)

    2012-02-14

    The present application provides a burner for use with a combustor of a gas turbine engine. The burner may include a center hub, a shroud, a pair of fuel vanes extending from the center hub to the shroud, and a vanelet extending from the center hub and/or the shroud and positioned between the pair of fuel vanes.

  5. Downhole burner for wells

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, H.; Hazard, H.R.; Hummell, J.D.; Schulz, E.J.

    1966-03-22

    This is a downhole gas and air burner for use in wells to stimulate production. The combustible mixture is supplied to the combustion chamber of the downhole burner through a delivery tube. This tube includes a flow-back preventer and a check valve. The flashback preventers consist of a porous material which has restricted flow paths. The check valve controls the flow of combustible mixture to the combustion chamber and prevents undesirable pulsating flow through the combustion chamber and the delivery tube. The check valve also prevents flooding of the combustion chamber by well fluid. The burner is ignited electrically. The porous material can be flat strip or a conically shaped piece of thin porous metal.

  6. Flat flame burner

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Y.; Mitsudomi, H.

    1976-02-24

    Osaka Gas Co., Ltd.'s new flat-flame heat-treatment burner offers lower material costs, reduced combustion noise, and elimination of the need for a high-pressure fuel gas to provide a high-velocity combustion burner. The flat-flame burner contains an air-swirling chamber with a flame opening in one side; the wall defining the flame opening has a small thickness around the opening and a flat outer face. This construction causes the combustion gas to be forced out from the flame opening in a spiral direction by the swirling air current within the air chamber; together with the orifice effect of permitting the flame to emanate from a small opening to an unconfined outer space, this helps assure the formation of a flat flame spreading out over a very wide area for very rapid, uniform, and highly efficient heat treatment of an article to be heated. This approach also permits the thickness of the overall device to be reduced. The supply of combustion air in the form of a swirling stream makes it possible to provide a high-velocity combustion burner without using a high-pressure fuel gas, with the advantage of satisfactory mixture of the fuel gas and combustion air and consequently markedly reduced combustion noise.

  7. Oil burner nozzle

    Science.gov (United States)

    Wright, Donald G.

    1982-01-01

    An oil burner nozzle for use with liquid fuels and solid-containing liquid fuels. The nozzle comprises a fuel-carrying pipe, a barrel concentrically disposed about the pipe, and an outer sleeve retaining member for the barrel. An atomizing vapor passes along an axial passageway in the barrel, through a bore in the barrel and then along the outer surface of the front portion of the barrel. The atomizing vapor is directed by the outer sleeve across the path of the fuel as it emerges from the barrel. The fuel is atomized and may then be ignited.

  8. High conversion burner type reactor

    International Nuclear Information System (INIS)

    Purpose: To simply and easily dismantle and reassemble densified fuel assemblies taken out of a high conversion ratio area thereby improve the neutron and fuel economy. Constitution: The burner portion for the purpose of fuel combustion is divided into a first burner region in adjacent with the high conversion ratio area at the center of the reactor core, and a second burner region formed to the outer circumference thereof and two types of fuels are charged therein. Densified fuel assemblies charged in the high conversion ratio area are separatably formed as fuel assemblies for use in the two types of burners. In this way, dense fuel assembly is separated into two types of fuel assemblies for use in burner of different number and arranging density of fuel elements which can be directly charged to the burner portion and facilitate the dismantling and reassembling of the fuel assemblies. Further, since the two types of fuel assemblies are charged in the burner portion, utilization factor for the neutron fuels can be improved. (Kamimura, M.)

  9. Radial lean direct injection burner

    Science.gov (United States)

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  10. Low NO sub x regenerative burner

    Energy Technology Data Exchange (ETDEWEB)

    Hovis, J.E.; Finke, H.P.

    1991-01-08

    This patent describes improvements in a regenerative burner having a regenerative bed, a burner port and a fuel nozzle. The improvement comprises: a burner baffle having apertures therein for selectively directing combustion air and inducing combustion gas recirculation into a primary combustion zone for suppressing NO{sub x} emissions, the baffle and the fuel nozzle being positioned substantially adjacent the burner port and being substantially coplanar in a plane perpendicular to a burner axis.

  11. Flat flame burner

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Y.; Mitsudomi, H.

    1976-03-09

    Osaka Gas Co., Ltd.'s new flat-flame burner has an air-swirling chamber with a flame opening in one side so constructed that combustion gas is forced out from the flame opening in a spiral direction by the swirling air current within the air chamber. The orifice effect of permitting the flame to emanate from a small opening to an unconfined outer space assures formation of a flat flame spreading out over a very wide area, thereby ensuring very rapid, uniform and highly efficient heat treatment of an article to be heated. With the present invention, moreover, it is possible to materially reduce the thickness of the overall device.

  12. Catalyzed Ceramic Burner Material

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant

  13. Regenerative ceramic burner has highest efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Gettings, M.

    1986-01-01

    Regenerative ceramic burners consisting of a double gas/air burner and utilising waste heat which is stored via regenerators are described. The system is capable of operating at 1400/sup 0/C, it removes about 85-90% of energy from hot waste gases and exhibits energy savings of 40-60% over cold nozzle mix burners and 20-25% over recuperative burners. (UK).

  14. A gas burner device for highspeed heating

    Energy Technology Data Exchange (ETDEWEB)

    Nosach, V.G.; Danchenko, V.N.; Zanemonets, V.F.

    1979-01-01

    The design and the results of the investigations of gas burners with porous cooling by fire Pv of two forms: a gas burner which makes it possible to organize the process of the burning for Pv heating, and a gas burner creating a stream of combustion products.

  15. Regenerative burner generates more savings

    Energy Technology Data Exchange (ETDEWEB)

    Swinden, D.

    The latest developments in high-efficiency gas-fired burners are traced, and the transfer of the new technology from laboratory to industry is outlined. The system described depends on the ceramic regenerator reducing the flue gas temperature so that conventional cold air fans can be used and on a packing of alumina balls to recover 90% of the available heat in waste gases.

  16. Tests of gas-blast burners

    International Nuclear Information System (INIS)

    Testing of the most sold small gas-blast burners on the Danish market was carried out with regard to carbon monoxide emission contra the content of oxygen in the flue gas in relation to the burners' combustion stability at varying fire box pressures. The burners tested were Weishaupt WG 1: DG no. 2506, Riello 40 GS3: DG no. 2722, Bentone BEG 15: DG no. 2153 and Box 1 G: no. 1104. This covers 90% of the Danish market for gas burners. It was concluded that all the burners had a broader area of adjustment possibilities without carbon monoxide emission than previously tested box burners. This with the exception of when surplus oxygen is low, where large of amounts of carbon monoxide are generated at an oxygen content in flue gas of ca. 2% (10.8% CO2). Burners in which the total pressure in the blower was high were the most stable with regard to air supply and varying fire-box pressure. It is pointed out that other conditions of design have also influence in this respect. In the cases of Weishaupt, Bentone and Riello burners there is a significant relation between blast pressure and oxygen content in the flue gas, whereas in the case of the Box burner, the percentage of oxygen in the flue gas rises in relation to increased pressure in the smoke outlet. The results of the tests are presented in great detail. (AB)

  17. Computational fluid dynamics in oil burner design

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A. [Brookhaven National Labs., Upton, NY (United States)

    1997-09-01

    In Computational Fluid Dynamics, the differential equations which describe flow, heat transfer, and mass transfer are approximately solved using a very laborious numerical procedure. Flows of practical interest to burner designs are always turbulent, adding to the complexity of requiring a turbulence model. This paper presents a model for burner design.

  18. Experimental study of porous metal burners for domestic stove applications

    International Nuclear Information System (INIS)

    Highlights: • The flat flame cooktop burner is experimental and analytical investigated. • The heat transfer flux can be evaluated using analytical and numerical methods. • The performance of the flat flame burners is superior to Bunsen flame type burners. • Efficiency and emissions of the flat flame burners can be well controlled. - Abstract: This paper investigates a clean and highly efficient domestic stove burner composed of a flat flame burner for cooking and water heating. The feasibility of the flat flame burner is experimentally verified by demonstrating that the flame is stabilized by a porous metal medium and by comparison with a typical Bunsen flame burner. The flame appearance, temperature distribution, relative thermal efficiency and pollution emissions in terms of Emission Index of CO (EICO) and Emission Index of NOx (EINOx) were measured and analyzed. The results show that the operating range, turndown ratio, and pollution emissions of the flat flame burners are superior to those of traditional Bunsen flame burners. The heat transfer and efficiency for both the jet flame burner and the flat flame burner can be evaluated using analytical and numerical methods. Furthermore, in contrast to traditional Bunsen flame burners, the efficiency and pollution emissions of flat flame burners are not strongly affected by the distance between the cool boundary of pot or pan and the burner exit. For domestic stove applications in particular, where different sized pots and pans are used, the efficiency and pollution emissions can be well controlled with a flat flame burner

  19. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME II. SECOND GENERATION LOW-NOX BURNERS

    Science.gov (United States)

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  20. RF torch discharge combined with conventional burner

    International Nuclear Information System (INIS)

    The design of the combined flame-rf-plasma reactor and experimental examination of this reactor are presented. For the determination of the temperature in different parts of the combined burner plasma the methods of emission spectroscopy were used. The temperatures measured in the conventional burner reach the maximum temperature 1900 K but in the burner with the superimposed rf discharge the neutral gas temperature substantially increased up to 2600 K but also the plasma volume increases substantially. Consequently, the resident time of reactants in the reaction zone increases

  1. Regenerative burner combination and method of burning a fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wills, B.J.

    1992-06-17

    Regenerative burners fire alternatively into respective radiant tubes which are closed at their ends remote from the burners. Products of combustion from each flame tube pass to the closed end of the tube and back to be exhausted from the radiant tube associated with the firing burner through a transfer duct to the other burner, where heat is extracted before the products of combustion are discharged, for heating combustion air for use when the other burner is firing. (Author).

  2. Low NO[sub x] regenerative burner

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-12-01

    A joint development project between British Gas and Hotwork Development has resulted in maintaining the efficiency of a regenerative burner but without the penalty of the higher NO[sub x] emissions normally associated with combustion air preheat. (author)

  3. Regenerative burner use on reheat furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Baggley, G.W. [Bloom Engineering Co. Inc., Pittsburgh, PA (United States)

    1995-06-01

    The environmental advantages of using regenerative burner technology on steel reheat furnaces are explored in this article, in particular improved fuel energy efficiencies and reduced pollution emissions, of nitrogen oxides and carbon monoxide. Experience of the use of regenerative burners in the United States and Japan, where they have achieved significant market penetration is also described, including a case history of a top-fired billet reheat furnace installed in the United States. (UK)

  4. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  5. IMPROVEMENT OF OPERATIONAL CHARACTERISTICS OF ELECTRIC COOKER BURNERS

    Directory of Open Access Journals (Sweden)

    I. M. Kirick

    2015-01-01

    Full Text Available On the basis of a complex theoretical and experimental investigations a principally new design of small inertial burner for electric cookers has been developed that significantly out-perform burners of conventional types. 

  6. Influential parameters of nitrogen oxides emissions for microturbine swirl burner with pilot burner

    Directory of Open Access Journals (Sweden)

    Adžić Miroljub M.

    2010-01-01

    Full Text Available Swirl burners are the most common type of device in wide range of applications, including gas turbine combustors. Due to their characteristics, swirl flows are extensively used in combustion systems because they enable high energy conversion in small volume with good stabilization behavior over the wide operating range. The flow and mixing process generated by the swirl afford excellent flame stability and reduced NOx emissions. Experimental investigation of NOx emission of a purposely designed micro turbine gas burner with pilot burner is presented. Both burners are equipped with swirlers. Mixtures of air and fuel are introduced separately: through the inner swirler - primary mixture for pilot burner, and through the outer swirler - secondary mixture for main burner. The effects of swirl number variations for the both burners were investigated, including parametric variations of the thermal power and air coefficient. It was found that the outer swirler affects the emission of NOx only for the air coefficient less than 1.4. The increase of swirl number resulted in decrease of NOx emission. The inner swirler and thermal power were found to have negligible effect on emission.

  7. Ceramic application for regenerative burner system

    Energy Technology Data Exchange (ETDEWEB)

    Han, D.B.; Park, B.H.; Kim, Y.W.; Bae, W.S. [RIST, Pohang (Korea)

    1999-05-01

    Recently, regenerative burner system was developed and begins to be gradually used for better energy savings. Compared to conventional burner system, the regenerative one has the several merits such as higher fuel efficiency, light weight of apparatus, low harmful toxic gas and homogeneous heating zone, etc. The regenerative material, a very important component of the new regenerative burner system should possess the properties of low specific density, higher surface area and high specific heat capacity. Ceramics is the best regenerative material because of stable mechanical properties even at high temperature and better thermal properties and excellent chemical stability. In this study, alumina ball, alumina tube, 3-D ceramic foam and honeycomb as regenerative materials were tested and evaluated. The computer simulation was conducted and compared to the result of field test. This paper is aimed to introduce a new application of ceramics at high temperature. 7 refs., 5 figs., 3 tabs.

  8. DESIGN REPORT LOW-NOX BURNERS FOR PACKAGE BOILERS

    Science.gov (United States)

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  9. DESIGN REPORT: LOW-NOX BURNERS FOR PACKAGE BOILERS

    Science.gov (United States)

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  10. LASER-ENHANCED IONIZATION SPECTROMETRY WITH A TOTAL CONSUMPTION BURNER

    OpenAIRE

    Green, R; Hall, Janet

    1983-01-01

    This paper describes the use of a total consumption burner as an analytical atom reservoir for laser-enhanced ionization spectrometry. A total consumption burner and premixed burner are compared for limits of detection and matrix interferences. These results demonstrate that high sensitivity laser-enhanced ionization measurements are possible in adverse sample environments where traditional methods of optical spectrometry have proven inadequate.

  11. Bed burners for grate boilers; Baeddbraennare foer rosterpannor

    Energy Technology Data Exchange (ETDEWEB)

    Sendelius, Mikael; Schuster, Robert [AaF-Energikonsult AB, Stockholm (Sweden)

    2003-10-01

    The objective of this work is to increase the knowledge of bed burners and their optimal positions in furnaces. The results from several computational fluid mechanics calculations are presented. An investigation concerning bed burners among plant owners is included as well. A bed burner is defined as a burner used for enhancing the combustion process on the bed i.e. it is used to dry incoming wet fuel. A load burner is used to quickly increase the boiler load and primarily not for creating better combustion conditions on the grate. Fluid mechanics calculations have been performed for five different cases, including the reference case. The following four bed burner arrangements have been examined: flat flame burner, six burners placed in the combustion chamber, two symmetric placed burners and two asymmetric placed burners. The same furnace model has been used through all the simulations. The incident radiation has been calculated in order to determine which one of the bed burners having the best possibility to improve the combustion process on the grate. The results showed that the flat flame burner and the six burners placed in the combustion chamber gave the most incident radiation on the first two grate zones. Bed burners placed further back in the furnace gave less good results. A comparison between the reference case (the case without burners) and the case with two burners showed that there was almost no difference in incident radiation between the two cases. The case with six burners placed in the combustion chamber gave most incident radiation, however this arrangement gave an irregular distribution of the radiation on the bed. Too high or irregular distributed radiation increases the risk for getting regions, on the grate, where the fuel is completely burnt. Primary air will pass through these regions. This phenomenon will lead to high temperatures that cause increased levels of emissions, in particular NO{sub x}. Reorganizing the burner positions and

  12. Regenerative burner in the metals industry

    Energy Technology Data Exchange (ETDEWEB)

    Gettings, M.

    1986-07-01

    The Regenerative Ceramic Burner, RCB is becoming widely accepted in the UK as the successor of the world famous recuperative burner. This paper describes the RCB and its modes of operation and compares it with the recuperative burner. This comparison uses the example of a reheating furnace employed to heat a 10 tonne billet to 1250/sup 0/C. The superior technical performance of the RCB is mirrored in its economic attractiveness. For most medium and large furnace applications the device can pay for itself in less than two years with 40 to 50% fuel savings. Examples of the use of the device are presented from both the steel and aluminium industries. In all cases, operation and worthwhile energy savings have been achieved. In its role on an aluminum melter, the burner has demonstrated its ability to handle contaminated gases with minimum maintenance requirement. The paper concludes with ideas for future developments of the technology which will extend its use into other industry sectors.

  13. Market assessment for the fan atomized oil burner

    Energy Technology Data Exchange (ETDEWEB)

    Westphalen, D. [A.D. Little, Inc., Cambridge, MA (United States)

    1996-07-01

    The market potential for the fan atomized burner (FAB) in water and space heating applications was examined. The major findings of the study are as follows. (1). The FAB`s low-input capability allows development of oil-fired room heaters and wall furnaces, a new market area for oil heat. (2). Among conventional oil-fired products, furnaces will benefit most from the burner`s low input capability due to (1) their quick delivery of heat and (2) their more prevalent use in warmer climates and smaller homes. (3). The greatest potential for increased product sales or oil sales exists in the use of the burner with new products (i.e., room heaters). Sales of boilers and direct-fired water heaters are not likely to increase with the use of the burner. (4). Acceptance of the burner will be dependent on proof of reliability. Proof of better reliability than conventional burners would accelerate acceptance.

  14. Gas/particle flow characteristics of two swirl burners

    International Nuclear Information System (INIS)

    A three-component particle-dynamics anemometer is used to measure, in the near-burner region, the characteristics of gas/particle two-phase flows with a centrally fuel rich swirl coal combustion burner and enhanced ignition-dual register burner, on a gas/particle two-phase test facility. Velocities, RMS velocities, particle mean diameters and particle volume flux profiles were obtained. For the centrally fuel rich burner, particles penetrate the central recirculation zone partially, and are then deflected radially. For the enhanced ignition-dual register burner, particles completely penetrate the central recirculation zone. Compared with the enhanced ignition-dual register burner, in the same cross-section, the particle volume flux peak value for the centrally fuel rich burner is much closer to the chamber axis and much larger near the chamber axis. In six cross-sections from x/d = 0.3 to 2.5, the particle volume flux in the central recirculation zone for the centrally fuel rich burner is much larger than that for the enhanced ignition-dual register burner. For the centrally fuel rich burner, most of bigger particles are resident in the region near the chamber axis and the residence time is prolonged. The influence of gas/particle flow characteristics on combustion has been analyzed.

  15. Refinery burner simulation design architecture summary.

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  16. FLOX burner technology for wood furnaces

    International Nuclear Information System (INIS)

    Current research at IVD focuses on the development of FLOX burners for small furnaces, with the intention of making problematic biomass available for energetic utilisation. At the same time, soiling and emission problems are to be reduced or avoided by using innovative technologies. One of these is the technology of flameless oxidation, which is already applied successfully in the natural gas industry because of its low NOx emissions. The IVD is working on two different plant concepts. (orig.)

  17. Thermal-hydraulics of actinide burner reactors

    International Nuclear Information System (INIS)

    As a part of conceptual study of actinide burner reactors, core thermal-hydraulic analyses were conducted for two types of reactor concepts, namely (1) sodium-cooled actinide alloy fuel reactor, and (2) helium-cooled particle-bed reactor, to examine the feasibility of high power-density cores for efficient transmutation of actinides within the maximum allowable temperature limits of fuel and cladding. In addition, calculations were made on cooling of actinide fuel assembly. (author)

  18. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  19. Porosity effects in flame length of the porous burners

    Directory of Open Access Journals (Sweden)

    Fatemeh Bahadori

    2014-10-01

    Full Text Available Furnaces are the devices for providing heat to the industrial systems like boilers, gas turbines and etc. The main challenge of furnaces is emission of huge air pollutants. However, porous burners produce less contaminant compared to others. The quality of the combustion process in the porous burners depends on the length of flame in the porous medium. In this paper, the computational fluid dynamic (CFD is used to investigate the porosity effects on the flame length of the combustion process in porous burner. The simulation results demonstrate that increasing the porosity increases the flame length and the combustion zone extends forward. So, combustion quality increases and production of carbon monoxide decrease. It is possible to conclude that temperature distribution in low porosity burner is lower and more uniform than high porosity one. Therefore, by increasing the porosity of the burner, the production of nitrogen oxides increases. So, using an intermediate porosity in the burner appears to be reasonable.

  20. Design and development of a low NOx regenerative burner

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    Regenerative burner technology is used worldwide by a range of process industries to utilize waste heat and reduce specific energy consumption. Regenerative burners are associated with annual energy savings of 6.2 PJ and consequently have a further benefit, reducing CO[sub 2] emissions by approximately 316,000 tonnes/year. However, the high air pre-heat temperatures attained by these burners are also responsible for NOx emissions rates which are substantially higher than those for cold air fired burners. To address this problem the current project was set up to develop a low NOx regenerative burner which would comply with the then anticipated NOx emission legislation. The combination of computational fluid dynamic (CFD) modelling and experimental work has shown that there are available methods to reduce NOx emissions. For instance, in this project NOx emissions from a 3 MW burner were reduced to levels similar to those of a 600 kW unit. (author)

  1. Field testing the prototype BNL fan-atomized oil burner

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.; Celebi, Y. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    BNL has developed a new oil burner design referred to as the Fan Atomized burner System. The primary objective of the field study was to evaluate and demonstrate the reliable operation of the Fan Atomized Burner. The secondary objective was to establish and validate the ability of a low firing rate burner (0.3-0.4 gph) to fully satisfy the heating and domestic hot water load demands of an average household in a climate zone with over 5,000 heating-degree-days. The field activity was also used to evaluate the practicality of side-wall venting with the Fan Atomized Burner with a low stack temperature (300F) and illustrate the potential for very high efficiency with an integrated heating system approach based on the Fan Atomized Burner.

  2. Design and construction of thermionic cogeneration burner module

    International Nuclear Information System (INIS)

    The thermionic cogeneration burner module is a high temperature burner equipped with thermionic converters. A demonstration of a thermionic cogeneration system is under way. In this demonstration a hot oil heater (used in various industrial processes) was equipped with a thermionic cogeneration burner module. This module contained converters that were connected in series to produce approximately 180 watts at 2.4 volts. The system is now undergoing preliminary testing. It is expected that additional test results will be available in the fall

  3. A heated chamber burner for atomic absorption spectroscopy.

    Science.gov (United States)

    Venghiattis, A A

    1968-07-01

    A new heated chamber burner is described. The burner is of the premixed type, and burner heads of the types conventionally used in atomic absorption may be readily adapted to it. This new sampling system has been tested for Ag, Al, Ca, Cu, Fe, Mg, Mn, Ni, Pb, Si, Ti, and Zn in aqueous solutions. An improvement of the order of ten times has been obtained in sensitivity, and in detection limits as well, for the elements determined. Interferences controllable are somewhat more severe than in conventional burners but are controllable. PMID:20068792

  4. Energy saving by regenerative burner; Rigene burner ni yoru sho energy

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, S. [Chugai Ro Co. Ltd., Osaka (Japan)

    2000-03-01

    Described are the characteristics of a regenerative burner (RB) and some important respects to consider before its employment. In this burner system, a set of two burners are operated, with one burning and the other sucking gas out of the furnace. The roles are switched over between the two burners every minute or every tens of seconds, and the repetition of heat accumulation and radiation by the heat accumulating bodies in the heat accumulators results in an air temperature which is near the gas temperature in the furnace. An optimum switchover time is determined by the make, or the specific heat and weight, of the heat accumulating bodies. The configuration may be effectively employed in the modification of existing furnaces (1) when treatment capacity improvement is required or (2) when sufficient waste heat recovery is impossible. In the case of (1), an increase in combustion will be mandatory for capacity enhancement. Refurbishment to increase combustion, however, will not be required when RB is installed, and this enables capacity improvement while maintaining or enhancing energy saving performance at a low cost. In the case of (2), at a steel-making plant where recovery of waste heat is difficult because a ladle preheater or tandish preheater has no flue, effective heat recovery will be realized if RB is installed. (NEDO)

  5. Increasing the efficiency of radiant burners by using polymer membranes

    International Nuclear Information System (INIS)

    Gas-fired radiant burners are used to convert fuel chemical energy into radiation energy for various applications. The radiation output of a radiant burner largely depends on the temperature of the combustion flame. In fact, the radiation output and, thus, the radiant efficiency increase to a great extent with flame temperature. Oxygen-enriched combustion can increase the flame temperature without increasing fuel cost. However, it has not been widely applied because of the high cost of oxygen production. In the present work, oxygen-enriched combustion of natural gas in porous radiant burners was studied. The oxygen-enriched air was produced passively, using polymer membranes. The membranes were shown to be an effective means of obtaining an oxygen-enriched environment for gas combustion in the radiant burners. Two different porous radiant burners were used in this study. One is a reticulated ceramic burner and the other is a ceramic fibre burner. The experimental results showed that the radiation output and the radiant efficiency of these burners increased markedly with rising oxygen concentrations in the combustion air. Also investigated were the effects of oxygen enrichment on combustion mode, and flame stability on the porous media

  6. Furnaces with multiple flameless combustion burners

    NARCIS (Netherlands)

    Danon, B.

    2011-01-01

    In this thesis three different combustion systems, equipped with either a single or multiple flameless combustion burner(s), are discussed. All these setups were investigated both experimentally and numerically, i.e., using Computational Fluid Dynamics (CFD) simulations. Flameless combustion is a com

  7. Thermal Characteristics of Heating-furnace with Regenerative Burner

    OpenAIRE

    HUA, Jianshe; Li, Xiaoming; Kawabata, Nobuyoshi

    2005-01-01

    Thermal characteristics between the heating-furnace with regenerative burner and the classical triple-fired continuous furnace by heat balance testing for two billet steel heating-furnace at the same billet steel heating have been analyzed. In addition, the operating principle, the thermal characteristics and the effect of energy saving for heating-furnace with regenerative burner are introduced.

  8. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS. VOLUME I. DISTRIBUTED MIXING BURNER EVALUATION

    Science.gov (United States)

    The report gives results of a study in which NOx emissions and general combustion performance characteristics of four burners were evaluated under experimental furnace conditions. Of primary interest was the performance of a low NOx Distributed Mixing Burner (DMB), which was test...

  9. Fan Atomized Burner design advances & commercial development progress

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, B. [Heat-Wise, Inc., Ridge, NY (United States); Butcher, T.A. [Brookhaven National Lab., Upton, NY (United States)

    1996-07-01

    As a part of the Oil Heat Research and Development program, sponsored by the US Department of Energy, Brookhaven National Laboratory (BNL) has an on-going interest in advanced combustion technologies. This interest is aimed at: improving the initial efficiency of heating equipment, reducing long term fouling and efficiency degradation, reducing air pollutant emissions, and providing practical low-firing rate technologies which may lead to new, high efficiency oil-fired appliances. The Fan-Atomized Burner (FAB) technology is being developed at BNL as part of this general goal. The Fan-Atomized Burner uses a low pressure, air atomizing nozzle in place of the high pressure nozzle used in conventional burners. Because it is air-atomized the burner can operate at low firing rates without the small passages and reliability concerns of low input pressure nozzles. Because it uses a low pressure nozzle the burner can use a fan in place of the small compressor used in other air-atomized burner designs. High initial efficiency of heating equipment is achieved because the burner can operate at very low excess air levels. These low excess air levels also reduce the formation of sulfuric acid in flames. Sulfuric acid is responsible for scaling and fouling of heat exchanger surfaces.

  10. AGA answers complaints on burner tip prices

    International Nuclear Information System (INIS)

    This paper reports that the American Gas Association has rebutted complaints that natural gas prices have dropped at the wellhead but not at the burner tip. AGA Pres. Mike Baly the an association study of the issue found that all classes of customers paid less for gas in 1991 than they did in 1984, when gas prices were at their peak. He the, the study also shows that 100% of the wellhead price decline has been passed through to natural gas consumers in the form of lower retail prices. Baly the the average cost of gas delivered to all customers classes fell by $1.12/Mcf from 1984 to 1991, which exceeds the $1.10/Mcf decline in average wellhead prices during the same period

  11. Firing in fluid beds and burners

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.; Lans, R. van der; Storm Pedersen, L.; Philbert Nielsen, H.; Aslaug Hansen, L.; Lin, W.; Johnsson, J.E.; Dam-Johansen, K.

    1998-02-01

    An investigation of the effect of co-firing straw and pulverized coal was performed. Based on experiments from pilot-scale and full-scale it was concluded that a higher fraction of straw in the fuel feedstock mixture results in lower NO and SO{sub 2} emissions. The lower NO emission was mainly due to the higher volatile content of the straw, which leads to lower stoichiometry in the gas phase and in subsequent suppression of NO{sub x} formation. This conclusion is consistent with experimental and modeling results for pure coal combustion. The effect of coal quality on NO emissions has been investigated with three coals of different characteristics in three furnaces: in the Funen power station, unit 7 (FVO7), the Midtkraft Studstrup power station, unit 4 (MKS4), and the Mitsui Babcock Energy Ltd (MBEL) test-rig. The MBEL test-rig was able to reproduce qualitatively the emissions from the MKS4 plant, and quantitatively the emissions from the FVO7 plant. The better agreement between the MBEL test-rig and FVO7 is presumed to be related to the existence of a large primary zone with a relatively low stoichiometry, diminishing the influence of near burner air and fuel mixing rate on the NO emissions. An engineering model has been developed for the prediction of NO emissions and burnout from pulverized fuel combustion in swirl burners. A simplified model for reduction of N{sub 2}O in CFBC has been developed, and simulation results are in good agreement with experimental data from a 12 MW{sub th} CFB-boiler. (EG) EFP-94. 108 refs.

  12. Microwave plasma burner and temperature measurements in its flames

    International Nuclear Information System (INIS)

    An apparatus for generating flames and more particularly the microwave plasma burner for generating high-temperature large-volume plasma flame was presented. The plasma burner is operated by injecting liquid hydrocarbon fuels into a microwave plasma torch in air discharge and by mixing the resultant gaseous hydrogen and carbon compounds with air or oxygen gas. The microwave plasma torch can instantaneously vaporize and decompose the hydrogen and carbon containing fuels. It was observed that the flame volume of the burner was more than 50 times that of the torch plasma. While the temperature of the torch plasma flame was only 550 K at a measurement point, that of the plasma-burner flame with the addition of 0.025 lpm (liters per minute) kerosene and 20 lpm oxygen drastically increased to about 1850 K. A preliminary experiment was carried out, measuring the temperature profiles of flames along the radial and axial directions

  13. Study of a ceramic burner for shaftless stoves

    Institute of Scientific and Technical Information of China (English)

    Fang-qin Dai; Suo-yi Huang; Shao-hua Li; Ke Liu

    2009-01-01

    A multi-burner-port annular flameless ceramic burner (MAFCB) of the shaftless stove for blast furnaces was designed.The characteristics of pressure drop, homogeneousness of the flows at burner ports, and distribution of the flows in the chambers and joint were studied by cold model experiments.This type of ceramic burner was successfully applied in 6# blast furnace at Liuzhou Iron & Steel Co.Ltd.(LISC) and this practice proved that it could be used in the hot blast stove and other stoves with a higher effi-ciency and a higher steadiness of hot blast temperature at 1200℃.With the combustion of blast furnace gas alone, the thermal effi- ciency was up to 78.95%, saving energy remarkably.

  14. Experimental and Theoretical Studies of a Low Nox Swirl Burner

    OpenAIRE

    Spangelo, Øystein

    2004-01-01

    Nitrogen oxides emitted to the atmosphere can cause health problems for humans and environmental problems such as acid rain and global warming. The main part of the world energy consumption involves combustion; hence nitrogen oxide abatement in combustion is an important research field. Formation and reduction of NOx in combustion and the current regulations on NOx emissions are reviewed.A novel low NOx swirl stabilized gas burner concept, the Swirl Burner, has been studied experimentally, th...

  15. Furnaces with multiple flameless combustion burners

    OpenAIRE

    Danon, B.

    2011-01-01

    In this thesis three different combustion systems, equipped with either a single or multiple flameless combustion burner(s), are discussed. All these setups were investigated both experimentally and numerically, i.e., using Computational Fluid Dynamics (CFD) simulations. Flameless combustion is a combustion technology capable of accomplishing the combination of high energy efficiency (by preheating of the combustion air) and low emissions, especially nitrogen oxides (NOx ). These high combustio...

  16. Sensors and methods for control of modulating burners

    Energy Technology Data Exchange (ETDEWEB)

    Michel, J.-B.; Neumann, V.; Theurillat, P. [Centre Suisse d' Electronique et de Microtechnique, Neuchatel (Switzerland); Abu-Sharekh, Y. [Erlangen-Nuremberg Univ. (Germany). LSTM

    2003-07-01

    In recent years, many interesting developments have taken place for an improved control of domestic burners, with an emphasis on modulating gas and oil burners. These relate to new types of sensors for the control of excess air and to new methods and tools for the implantation of control systems on micro-controllers. These developments are reviewed and the application to the Bioflam domestic boiler is described. (orig.)

  17. Corrosion of Stainless Steels of Cryogenic Hydrocarbon Flare Tips Burners

    OpenAIRE

    H. U. Nwosu; A. U. Iwuoha

    2011-01-01

    Analysis of the corrosion resistance of AISI Type 304 Stainless Steel (SS) used in flare tips (burners) of natural gas (NG) extraction facilities is considered to determine the resistance of this grade of austenitic stainless steel to the aggressive corrosive actions of the environment. It was observed that the grade of SS yielded quite early to corrosion attacks which gave effects to scaling, flaking, pitting, material thinning and flare distortions in the burners contrary to expectations. T...

  18. Advanced burner test reactor preconceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  19. Flashback Analysis in Tangential Swirl Burners

    Directory of Open Access Journals (Sweden)

    Valera-Medina A.

    2011-10-01

    Full Text Available Premixed lean combustion is widely used in Combustion Processes due to the benefits of good flame stability and blowoff limits coupled with low NOx emissions. However, the use of novel fuels and complex flows have increased the concern about flashback, especially for the use of syngas and highly hydrogen enriched blends. Thus, this paper describes a combined practical and numerical approach to study the phenomenon in order to reduce the effect of flashback in a pilot scale 100 kW tangential swirl burner. Natural gas is used to establish the baseline results and effects of different parameters changes. The flashback phenomenon is studied with the use of high speed photography. The use of a central fuel injector demonstrates substantial benefits in terms of flashback resistance, eliminating coherent structures that may appear in the flow channels. The critical boundary velocity gradient is used for characterization, both via the original Lewis and von Elbe formula and via analysis using CFD and investigation of boundary layer conditions in the flame front.

  20. Ball plasma dynamics for FBX BURNER reactor

    International Nuclear Information System (INIS)

    The authors have been conducting fundamental experiments on the moving plasma balls in the major axis direction. This has a fundamental importance for the quasi-steady fusion reactor scheme FBX BURNER. This configuration is the descendants of Spheromak type nuclear fusion scheme but with long toroidal field coils. The main issues have been focused onto the dynamic stability of the moving plasma balls. The second issue is the collision between two successive plasma balls as shown. This shows a basic result from an optical measurement. The comparison with magnetic measurements shows peculiar but interesting features of the system. The dimension of the plasma injector is 2 m in length as a whole. It is in a coaxial configuration. The external electrode is 150 mm in inner diameter and the inner electrode is 50 mm in diameter. This is attached to a 1 m insulation reservoir with same inner diameter. An axial magnetic field up to 0.1 Tesla is applied on the discharge with a current of up to 10 kA in few ms. The authors show their experimental and numerical simulation results on these problems

  1. Linear accelerator for burner-reactor

    International Nuclear Information System (INIS)

    Future development of nuclear power engineering depends on the successful solution of two key problems of safety and utilization of high level radioactive wastes (HLRW) of atomic power plants (APP). Modern methods of HLRW treatment involve solidification, preliminary storing for a period of 30-50 years necessary for the decay of long-living nuclides and final burial in geological formations several hundred meters below the ground surface. The depth burial of the radioactive wastes requires complicated under ground constructions. It's very expensive and doesn't meet modern ecological requirements. Alternative modern and more reasonable methods of APP HLRW treatment are under consideration now. One of the methods involves separation of APP waste radionuclides for use in economy with subsequent transmutation of the long-living isotopes into the short-living ones by high-intensity neutron fluxes generated by proton accelerators. The installation intended for the long-living radionuclides transmutation into the short-living ones is called burner-reactor. It can be based on the continuous regime proton accelerator with 1.5 GeV energy, 0.3 A current and beam mean power of 450 MW. The preferable type of the proton accelerator with the aforementioned parameters is the linear accelerator

  2. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  3. Fusion-Fission Burner for Transuranic Actinides

    Science.gov (United States)

    Choi, Chan

    2013-10-01

    The 14-MeV DT fusion neutron spectrum from mirror confinement fusion can provide a unique capability to transmute the transuranic isotopes from light water reactors (LWR). The transuranic (TRU) actinides, high-level radioactive wastes, from spent LWR fuel pose serious worldwide problem with long-term decay heat and radiotoxicity. However, ``transmuted'' TRU actinides can not only reduce the inventory of the TRU in the spent fuel repository but also generate additional energy. Typical commercial LWR fuel assemblies for BWR (boiling water reactor) and PWR (pressurized water reactor) measure its assembly lengths with 4.470 m and 4.059 m, respectively, while its corresponding fuel rod lengths are 4.064 m and 3.851 m. Mirror-based fusion reactor has inherently simple geometry for transmutation blanket with steady-state reactor operation. Recent development of gas-dynamic mirror configuration has additional attractive feature with reduced size in central plasma chamber, thus providing a unique capability for incorporating the spent fuel assemblies into transmutation blanket designs. The system parameters for the gas-dynamic mirror-based hybrid burner will be discussed.

  4. Performance and analysis by particle image velocimetry (PIV) of cooker-top burners in Thailand

    International Nuclear Information System (INIS)

    Cooker-top burners are used extensively in Thailand because of the rapid combustion and high heating-rates created by an impinging flame, which is characteristic of these types of burners. High thermal efficiency with low level of CO emissions is the most important performance criteria for these burners. The wide variation in reported performances of the burners appears to be due to the ad hoc knowledge gained through trial and error of the local manufacturers rather than sound scientific principles. This is extremely undesirable in view of safety, energy conservation and environmental protection. In the present work, a nationwide cooker-top burner performance survey and an implementation of a PIV technique to analyze the burner performance as well as advising local manufacturers were carried out. Experimental data were reported for the base line value of thermal efficiency of all the burners. The thermal performance parameters and dynamic properties of the flow field at a flame impingement area, i.e. velocity magnitude, turbulent intensity, vorticity and strain rate were also reported as a function of burner type, which was categorized into four types based on the configuration of the burner head: radial flow burners, swirling flow burners, vertical flow burners and porous radiant burners

  5. Bioswirl: A Wood Pellet Burner for Oil Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Ljungdahl, Boo; Lundberg, Henrik [TPS Termiska Processer AB, Nykoeping (Sweden)

    2002-11-01

    A compact and robust firing system for wood pellets has been developed and its operation demonstrated during one season. The firing system was developed with the aim to retrofit heat producing oil-fired burners in the range of 0.5 to 5 MW. In this power range there are severe economical restrictions on the firing systems used; operation with high availability and low emissions of unburned gases and NO{sub x} should be secured with only periodic supervision of the boiler. At the same time there are technical restrictions since, for instance, scale up of existing commercial small grate firing technique leads to an undesired volumetric increase of the pellet burner, compared to the oil-burners to be retrofitted. Here a burner system for crushed wood pellets was developed in order to increase the combustion intensity. The pellets are fed from the storage silo to a mill/crusher where the fuel is crushed to a coarse wood powder with a size distribution of 0.5 to 4 mm, which is about the same size as the original particle size distribution used for the pellet production. Thus a simple crushing mill can be used and any excess energy demand for milling is avoided. The crushed pellets are thereafter directly fed into a cyclone burner. The centrifugal forces assure a sufficient residence time to complete thermal conversion of the large wood particles in the burner, i.e. the particles are large compared to pulverised fuel. The burner is designed with secondary -and tertiary air registers for a staged air supply and connected to a furnace in which the final burn out of combustible gases takes place. This results in an efficient burn out and low NO, emissions even at turn down ratios in the order of 1:8. Ash particles will follow the exhaust gas as fly ash. During the heating season 2001-2002 the Bioswirl burner has been demonstrated in a small-scale district heating system. A 1200 kW oil burner has been replaced with an 800 kW Bioswirl burner. The system has been operated with

  6. Design and construction of an air inductor burner

    International Nuclear Information System (INIS)

    This article presents research results performed with the purpose of obtain design parameters, construction, and air inductor burner operation, which are used in industrial combustion systems, in several processes such as: metal fusion (fusion furnaces), fluids heating (immerse heating tubes), steam production (steam boiler), drying processes, etc. In order to achieve such objectives, a prototype with thermal power modulation from 6 to 52 kW, was built to be either operated with natural gas or with LPG. The burner was built taking in mind the know how (design procedure) developed according to theoretical schemes of different bibliographic references and knowledge of the research group in gas science and technology of the University of Antioquia. However, with such procedure only the burner mixer is dimensioned and five parameters must to be selected by the designer: burner thermal power, primary aeration ratio, counter pressure at combustion chamber, air pressure admission and gas fuel intended to use. For head design we took in mind research done before by the group of science and technology in gas research: Mono port and bar burner heads with their respective stabilization flame systems

  7. Optimisation of efficiency and emissions in pellet burners

    International Nuclear Information System (INIS)

    There is a trade-off between the emissions of nitrogen oxides (NOx) and of unburnt hydrocarbons and carbon monoxide (OGC and CO). Decreasing the excess air results in lower NOx emission but also increased emission of unburnt. The efficiency increases, as the excess air is decreased until the losses due to incomplete combustion become too high. The often-high NOx emission in today's pellet burners can be significantly reduced using well-known techniques such as air staging. The development of different chemical sensors is very intensive and recently sensors for CO and OGC have been introduced on the market. These sensors may, together with a Lambda sensor, provide efficient control for optimal performance with respect to emissions and efficiency. In this paper, results from an experimental parameter study in a modified commercial burner, followed by Chemkin simulations with relevant input data and experiments in a laboratory reactor and in a prototype burner, are summarised. Critical parameters for minimisation of NOx emission from pellet burners are investigated in some detail. Also, results from tests of a new sensor for unburnt are reported. In conclusion, relatively simple design modifications can significantly decrease NOx emission from today's pellet burners

  8. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-09-04

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

  9. Flow processes in a radiant tube burner: Combusting flow

    International Nuclear Information System (INIS)

    Highlights: → 3D combusting flow in an industrial radiant tube burner is modelled using the ANSYS-CFX CFD code. → Results are validated against data from an industrial furnace (NO emissions within 7%). → The flame is long and narrow with slight asymmetry. Mixing near the fuel injector is very effective. → The recuperator section is reasonably effective, but design improvements are proposed. → The design is vulnerable to eccentricities due to manufacturing or assembly tolerances. -- Abstract: This paper describes a study of the combustion process in an industrial radiant tube burner (RTB), used in heat treating furnaces, as part of an attempt to improve burner performance. A detailed three-dimensional Computational Fluid Dynamics model has been used, validated with experimental test furnace temperature and flue gas composition measurements. Simulations using the Eddy Dissipation combustion model with peak temperature limitation and the Discrete Transfer radiation model showed good agreement with temperature measurements in the inner and outer walls of the burner, as well as with flue gas composition measured at the exhaust (including NO). Other combustion and radiation models were also tested but gave inferior results in various aspects. The effects of certain RTB design features are analysed, and an analysis of the heat transfer processes within the burner is presented.

  10. Advanced Burner Reactor Preliminary NEPA Data Study

    International Nuclear Information System (INIS)

    The Global Nuclear Energy Partnership (GNEP) is a new nuclear fuel cycle paradigm with the goals of expanding the use of nuclear power both domestically and internationally, addressing nuclear waste management concerns, and promoting nonproliferation. A key aspect of this program is fast reactor transmutation, in which transuranics recovered from light water reactor spent fuel are to be recycled to create fast reactor transmutation fuels. The benefits of these fuels are to be demonstrated in an Advanced Burner Reactor (ABR), which will provide a representative environment for recycle fuel testing, safety testing, and modern fast reactor design and safeguard features. Because the GNEP programs will require facilities which may have an impact upon the environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), preparation of a Programmatic Environmental Impact Statement (PEIS) for GNEP is being undertaken by Tetra Tech, Inc. The PEIS will include a section on the ABR. In support of the PEIS, the Nuclear Engineering Division of Argonne National Laboratory has been asked to provide a description of the ABR alternative, including graphics, plus estimates of construction and operations data for an ABR plant. The compilation of this information is presented in the remainder of this report. Currently, DOE has started the process of engaging industry on the design of an Advanced Burner Reactor. Therefore, there is no specific, current, vendor-produced ABR design that could be used for this PEIS datacall package. In addition, candidate sites for the ABR vary widely as to available water, geography, etc. Therefore, ANL has based its estimates for construction and operations data largely on generalization of available information from existing plants and from the environmental report assembled for the Clinch River Breeder Reactor Plant (CRBRP) design [CRBRP, 1977]. The CRBRP environmental report was chosen as a resource because it thoroughly

  11. Advanced Burner Reactor Preliminary NEPA Data Study.

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, L. L.; Cahalan, J. E.; Deitrich, L. W.; Fanning, T. H.; Grandy, C.; Kellogg, R.; Kim, T. K.; Yang, W. S.; Nuclear Engineering Division

    2007-10-15

    The Global Nuclear Energy Partnership (GNEP) is a new nuclear fuel cycle paradigm with the goals of expanding the use of nuclear power both domestically and internationally, addressing nuclear waste management concerns, and promoting nonproliferation. A key aspect of this program is fast reactor transmutation, in which transuranics recovered from light water reactor spent fuel are to be recycled to create fast reactor transmutation fuels. The benefits of these fuels are to be demonstrated in an Advanced Burner Reactor (ABR), which will provide a representative environment for recycle fuel testing, safety testing, and modern fast reactor design and safeguard features. Because the GNEP programs will require facilities which may have an impact upon the environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), preparation of a Programmatic Environmental Impact Statement (PEIS) for GNEP is being undertaken by Tetra Tech, Inc. The PEIS will include a section on the ABR. In support of the PEIS, the Nuclear Engineering Division of Argonne National Laboratory has been asked to provide a description of the ABR alternative, including graphics, plus estimates of construction and operations data for an ABR plant. The compilation of this information is presented in the remainder of this report. Currently, DOE has started the process of engaging industry on the design of an Advanced Burner Reactor. Therefore, there is no specific, current, vendor-produced ABR design that could be used for this PEIS datacall package. In addition, candidate sites for the ABR vary widely as to available water, geography, etc. Therefore, ANL has based its estimates for construction and operations data largely on generalization of available information from existing plants and from the environmental report assembled for the Clinch River Breeder Reactor Plant (CRBRP) design [CRBRP, 1977]. The CRBRP environmental report was chosen as a resource because it thoroughly

  12. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS; SEMIANNUAL

    International Nuclear Information System (INIS)

    An initial testing campaign was carried out during the summer of 2000 to evaluate the impact of multiburner firing on NOx emissions. Extensive data had been collected during the Fall of 1999 and Spring of 2000 using a single pulverized-coal (PC) burner, and this data collection was funded by a separate Department of Energy program, the Combustion 2000 Low Emission Boiler System (LEBS) project under the direction of DB Riley. This single-burner data was thus available for comparison with NOx emissions obtained while firing three burners at the same overall load and operating conditions. A range of operating conditions were explored that were compatible with single-burner data, and thus the emission trends as a function of air staging, burner swirl and other parameters will be described below. In addition, a number of burner-to-burner operational variations were explored that provided interesing insight on their potential impact on NOx emissions. Some of these variations include: running one burner very fuel rich while running the others fuel lean; varying the swirl of a single burner while holding others constant; increasing the firing rate of a single burner while decreasing the others. In general, the results to date indicated that multiburner firing yielded higher NOx emissions than single burner firing at the same fuel rate and excess air. At very fuel rich burner stoichiometries (SR and lt; 0.75), the difference between multiple and single burners became indistinguishable. This result is consistent with previous single-burner data that showed that at very rich stoichiometries the NOx emissions became independent of burner settings such as air distributions, velocities and burner swirl

  13. Emission characteristics of a novel low NOx burner fueled by hydrogen-rich mixtures with methane

    OpenAIRE

    Dutka, Marcin Damian; Ditaranto, Mario; Løvås, Terese

    2015-01-01

    The use of hydrogen-rich fuels may be challenging for burner designers due to unique properties of hydrogen compared to conventional fuels such as natural gas. Burner retrofit may be required to use hydrogen-enriched fuels in combustion systems that are designed for natural gas combustion. This study aimed to experimentally investigate NOx emissions from a novel low NOx burner fueled by methane-hydrogen mixtures. The burner was tested in a cylindrical combustion chamber at atmosph...

  14. Process development report: 0.40-m primary burner system

    International Nuclear Information System (INIS)

    Fluidized bed combustion is required in reprocessing the graphite-based fuel elements from high-temperature gas-cooled reactor (HTGR) cores. This burning process requires combustion of beds containing both large particles and very dense particles, and also of fine graphite particles which elutriate from the bed. This report documents the successful long-term operation of the 0.40-m primary burner in burning crushed fuel elements. The 0.40-m system operation is followed from its first short heatup test in September 1976 to a > 40-h burning campaign that processed 20 LHTGR blocks in September 1977. The 0.40-m perforated conical gas distributor, scaled up from the 0.20-m primary burner, has proven reliable in safely burning even the largest, densest adhered graphite/fuel particle clusters originating from the crushing of loaded fuel elements. Such clusters had never been fed to the 0.20-m system. Efficient combustion of graphite fines using the pressurized recycle technique was demonstrated throughout the long-duration operation required to reduce a high carbon fresh feed bed to a low carbon particle bed. Again, such operation had never been completed on the 0.20-m system from which the 0.40-m burner was scaled. The successful completion of the tests was due, in part, to implementation of significant equipment revisions which were suggested by both the initial 0.40-m system tests and by results of ongoing development work on the 0.2-m primary burner. These revisions included additional penetrations in the burner tube side-wall for above-bed fines recycle, replacement and deletion of several metal bellows with bellows of more reliable design, and improvements in designs for burner alignment and feeder mechanisms. 76 figures, 8 tables

  15. Altitude Performance Characteristics of Tail-pipe Burner with Convergingconical Burner Section on J47 Turbojet Engine

    Science.gov (United States)

    Prince, William R; Mcaulay, John E

    1950-01-01

    An investigation of turbojet-engine thrust augmentation by means of tail-pipe burning was conducted in the NACA Lewis altitude wind tunnel. Performance data were obtained with a tail-pipe burner having a converging conical burner section installed on an axial-flow-compressor type turbojet engine over a range of simulated flight conditions and tail-pipe fuel-air ratios with a fixed-area exhaust nozzle. A maximum tail-pipe combustion efficiency of 0.86 was obtained at an altitude of 15,000 feet and a flight Mach number of 0.23. Tail-pipe burner operation was possible up to an altitude of 45,000 feet at a flight Mach number of 0.23.

  16. Oil burner system with an individual regulation of the burners within a wide range of loading and low emissions of NOx

    International Nuclear Information System (INIS)

    An oil burner system is implemented with an individual regulation of the burners within a wide range of loading and low emissions of NOx. The air regime of the burners is organized according to the requirements for a 'deferred combustion', a pre-condition for low level of the NOx emissions. The lances are Y nozzles with practically linear characteristic of the flow depending on the oil pressure. The oil (heavy boiler fuel) is heated up to 138 deg C (viscosity 16.0 mm2/s) for initial ignition and cold furnace and 130 deg C (viscosity 18,5 mm2/s) for a heated furnace and air temperature 150 deg C. The regulation of the fuel - air ratio is individual for each burner. The oil burner system and the various burners are controlled automatically by a DCS Teleperm XP - Siemens of the Unit. (authors)

  17. FIELD EVALUATION OF LOW-EMISSIONS COAL BURNER TECHNOLOGY ON UTILITY BOILERS; VOLUME II. SECOND GENERATION LOW-NOX BOILERS

    Science.gov (United States)

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  18. Study of the Effects of Ambient Conditions Upon the Performance of Fan Powered, Infrared Natural Gas Burners

    Energy Technology Data Exchange (ETDEWEB)

    Clark Atlanta University

    2002-12-02

    The objective of this investigation was to characterize the operation of a fan-powered, infrared burner (IR burner) at various gas compositions and ambient conditions, develop numerical model to simulate the burner performances, and provide design guidelines for appliances containing PIR burners for satisfactory performance.

  19. LOW NOX, HIGH EFFICIENCY MULTISTAGED BURNER: GASEOUS FUEL RESULTS

    Science.gov (United States)

    The paper discusses the evaluation of a multistaged combustion burner design on a 0.6 MW package boiler simulator for in-furnace NOx control and high combustion efficiency. Both deep air staging, resulting in a three-stage configuration, and boiler front wall fuel staging of undo...

  20. Pulverized straw combustion in a low-NOx multifuel burner

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse; Yin, Chungen;

    2010-01-01

    A CFD simulation of pulverized coal and straw combustion using a commercial multifuel burner have been undertaken to examine the difference in combustion characteristics. Focus has also been directed to development of the modeling technique to deal with larger non-spherical straw particles and to...

  1. Demonstration test of burner liner strain measuring system

    Science.gov (United States)

    Stetson, K. A.

    1984-01-01

    A demonstration test was conducted for two systems of static strain measurement that had been shown to have potential for application jet engine combustors. A modified JT12D combustor was operated in a jet burner test stand while subjected simultaneously to both systems of instrumentation, i.e., Kanthal A-1 wire strain gages and laser speckle photography. A section of the burner was removed for installation and calibration of the wire gages, and welded back into the burner. The burner test rig was modified to provide a viewing port for the laser speckle photography such that the instrumented section could be observed during operation. Six out of ten wire gages survived testing and showed excellent repeatability. The extensive precalibration procedures were shown to be effective in compensating for the large apparent strains associated with these gages. Although all portions of the speckle photography system operated satisfactorily, a problem was encountered in the form of optical inhomogeneities in the hot, high-pressure gas flowing by the combustor case which generate large and random apparent strain distributions.

  2. Feasibility Study of Regenerative Burners in Aluminum Holding Furnaces

    Science.gov (United States)

    Hassan, Mohamed I.; Al Kindi, Rashid

    2014-09-01

    Gas-fired aluminum holding reverberatory furnaces are currently considered to be the lowest efficiency fossil fuel system. A considerable volume of gas is consumed to hold the molten metal at temperature that is much lower than the flame temperature. This will lead to more effort and energy consumption to capture the excessive production of the CO2. The concern of this study is to investigate the feasibility of the regenerative-burners' furnaces to increase the furnace efficiency to reduce gas consumption per production and hence result in less CO2 production. Energy assessments for metal holding furnaces are considered at different operation conditions. Onsite measurements, supervisory control and data acquisition data, and thermodynamics analysis are performed to provide feasible information about the gas consumption and CO2 production as well as area of improvements. In this study, onsite measurements are used with thermodynamics modeling to assess a 130 MT rectangular furnace with two regenerative burners and one cold-air holding burner. The assessment showed that the regenerative burner furnaces are not profitable in saving energy, in addition to the negative impact on the furnace life. However, reducing the holding and door opening time would significantly increase the operation efficiency and hence gain the benefit of the regenerative technology.

  3. Regenerative burner system for thermoelectric power sources. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Guazzoni, G.; Angello, J.; Herchakowski, A.

    1979-07-01

    A thermoelectric power source is being developed to provide a multifuel, silent, maintenance free tactical power generator for forward area and unattended-operation applications. An experimental study of a regenerative burner system for the 500-Watt Thermoelectric Power Source has resulted in significant reduction in fuel consumption and infrared signature of the power source.

  4. Burner tilting angle effect on velocity profile in 700 MW Utility Boiler

    Science.gov (United States)

    Munisamy, K. M.; Yusoff, M. Z.; Thangaraju, S. K.; Hassan, H.; Ahmad, A.

    2015-09-01

    700 MW of utility boiler is investigated with manipulation of inlet burner angle. Manipulation of burner titling angle is an operational methodology in controlling rear pass temperature in utility boilers. The rear pass temperature unbalance between right and left side is a problem caused by fouling and slagging of the ash from the coal fired boilers. This paper presents the CFD investigation on the 0° and -30° of the burner angle of the utility boiler. The results focusing on the velocity profile. The design condition of 0° burner firing angle is compared with the off-design burner angle -30° which would be the burner angle to reduce the rear pass temperature un-balance by boiler operators. It can be concluded that the -30° burner angle reduce the turbulence is fire ball mixing inside the furnace. It also shift the fire ball position in the furnace to reduce the rear pass temperature.

  5. EVALUATION AND DEMONSTRATION OF LOW-NOX BURNER SYSTEMS FOR TEOR (THERMALLY ENHANCED OIL RECOVERY) STEAM GENERATORS: FINAL REPORT - FIELD EVALUATION OF COMMERCIAL PROTOTYPE BURNER

    Science.gov (United States)

    The report gives results of the final phase of a program to develop, demonstrate, and evaluate a low-NOx burner for crude-oil-fired steam generators used for thermally enhanced oil recovery (TEOR). The burner designed and demonstrated under this program was developed from design ...

  6. A double-regenerative burner for blast-furnace gas

    Energy Technology Data Exchange (ETDEWEB)

    Edmundson, J.T. (British Steel Corp., Port Talbot (UK)); Jenkins, D.P. (Bristol Polytechnic (GB))

    1990-12-01

    The purpose of this project was to demonstrate the operative reliability of a novel regenerative burner system utilising low-calorific-value fuel gas and capable of high-temperature performance at high efficiency. The system is based on the extension of the application of the self-generative principle to both fuel gas and air supplies. Two burners operate in tandem, of which one fires while the other regenerates both the fuel gas and combustion air preheat beds. Blast-furnace gas with a calorific value of 2.9 MJ m{sup -3} was the fuel source. 1500 hours of operative trials were carried out. For the duration of the trials all the planned investigations were completed satisfactorily, and the results successfully indicate the ability of the system to achieve high-temperature performance at high thermal efficiency. (author).

  7. Fuel burner with air-deflecting object and method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Durfee, E.P.

    1980-12-16

    There is provided an improved fuel burner of the type having an air blower and blast tube. The improvement involves placement of an air-deflecting object inside the housing of the air blower or in the blast tube. In one embodiment, the object has a v-shaped cross section, and is attached to a gently tapered cylinder; the object can be held in place by inserting it through a hole of appropriate dimension in the air blower or blast tube, and tapping on the exposed end of the tapered cylinder until the latter is engaged in the hole. There is also provided a method of improving a fuel burner by mounting a air-deflecting object of the type described in the air blower housing or in the blast tube.

  8. Study and mathematical model of ultra-low gas burner

    International Nuclear Information System (INIS)

    The main objective of this project is prediction and reduction of NOx and CO2 emissions under levels recommended from European standards for gas combustion processes. A mathematical model of burner and combustion chamber is developed based on interacting fluid dynamics processes: turbulent flow, gas phase chemical reactions, heat and radiation transfer The NOx prediction model for prompt and thermal NOx is developed. The validation of CFD (Computer fluid-dynamics) simulations corresponds to 5 MWI burner type - TEA, installed on CASPER boiler. This burner is three-stream air distribution burner with swirl effect, designed by ENEL to meet future NOx emission standards. For performing combustion computer modelling, FLUENT CFD code is preferred, because of its capabilities to provide accurately description of large number of rapid interacting processes: turbulent flow, phase chemical reactions and heat transfer and for its possibilities to present wide range of calculation and graphical output reporting data The computational tool used in this study is FLUENT version 5.4.1, installed on fs 8200 UNIX systems The work includes: study the effectiveness of low-NOx concepts and understand the impact of combustion and swirl air distribution and flue gas recirculation on peak flame temperatures, flame structure and fuel/air mixing. A finite rate combustion model: Eddy-Dissipation (Magnussen-Hjertager) Chemical Model for 1, 2 step Chemical reactions of bi-dimensional (2D) grid is developed along with NOx and CO2 predictions. The experimental part of the project consists of participation at combustion tests on experimental facilities located in Livorno. The results of the experiments are used, to obtain better vision for combustion process on small-scaled design and to collect the necessary input data for further Fluent simulations

  9. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-08-20

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO{sub x} burner geometry's.

  10. Infrared Imaging of Uninhibited Cup-Burner Flame

    Czech Academy of Sciences Publication Activity Database

    Nevrlý, Václav; Bitala, P.; Střižík, Michal; Zelinger, Zdeněk; Danihelka, P.; Kollárik, T.; Grigorová, E.; Jánošík, L.; Jelínková, R.; Mikoczy, A.; Filipi, B.; Dudáček, A.

    Vienna: Verlag ProcessEng Engineering GmbH, 2009. s. 317-317. ISBN 978-3-902655-06-6. [European Combustion Meeting /4./. 14.04.2009–17.04.2009, Vienna] R&D Projects: GA MŠk OC 111 Institutional research plan: CEZ:AV0Z20760514; CEZ:AV0Z40400503 Keywords : cup burner * flame * infrared imaging * soot Subject RIV: JB - Sensors, Measurment, Regulation

  11. Process development report: 0. 20-m secondary burner system

    Energy Technology Data Exchange (ETDEWEB)

    Rickman, W.S.

    1977-09-01

    HTGR fuel reprocessing consists of crushing the spent fuel elements to a size suitable for burning in a fluidized bed to remove excess graphite; separating, crushing, and reburning the fuel particles to remove the remainder of the burnable carbon; dissolution and separation of the particles from insoluble materials; and solvent extraction separation of the dissolved uranium and thorium. Burning the crushed fuel particles is accomplished in a secondary burner. This is a batch fluidized-bed reactor with in-vessel, off-gas filtration. Process heat is provided by an induction heater. This report documents operational tests performed on a commercial size 0.20-m secondary burner using crushed Fort St. Vrain type TRISO fuel particles. Analysis of a parametric study of burner process variables led to recommending lower bed superficial velocity (0.8 m/s), lower ignition temperature (600/sup 0/C), lower fluid bed operating temperature (850/sup 0/C), lower filter blowback frequency (1 cycle/minute), and a lower fluid bed superficial velocity during final bed burnout (0.45 m/s).

  12. Optimization of a premixed cylindrical burner for low pollutant emission

    International Nuclear Information System (INIS)

    Highlights: • The mixing uniformity of methane closely relates to low burning emissions. • Optimal exit position and diameter of nozzle are obtained with high methane mixing. • Low emissions of optimal burner are experimentally validated. - Abstract: A premixed cylindrical burner is numerically and experimentally investigated to realize low pollutant emission. The geometrical parameters of nozzle exit position and nozzle diameter are optimized by using a validated Computational Fluid Dynamics model. The natural gas-air mixing in the mix chamber indicates that the uniformity of methane concentration increases with the increase of distance from ejector outlet. It is found that the nozzle exit position at −3.0 mm improves the overall performance of premixed cylindrical burner, when nozzle diameter is not less than 1.6 mm. The emission characteristics of nitrogen oxides and carbon monoxide are also examined by experimental approach. It is found that load factor has a great influence on nitrogen oxides and carbon monoxide emissions, but the effect is gradually disappeared when air coefficient is not less than 1.4. When nozzle exit position is −3.0 mm, nozzle diameter is not less than 1.6 mm and air coefficient is not less than 1.4, the emissions of nitrogen oxides and carbon monoxide are less than 20 ppm and 50 ppm, respectively

  13. Carbide and Nitride Fuels for Advanced Burner Reactor

    International Nuclear Information System (INIS)

    The impacts of the mixed carbide and nitride fuels on the core performances and passive safety features of TRU burner were assessed and comapred with the metallic and oxide fuels. Targeting the potential design goals adopted in the Advanced Burner Reactor core concepts, the alternative TRU burner concepts were developed by loading carbide and nitride fuels. The neutron spectrum is softer than that of the metal core, but harder than that of the oxide core, and the core performance parameters such as fuel residence time, discharge burnup, flux level, etc are generally between the values of the metal and oxide cores. The margin to fuel melt was significantly increased because of the high thermal conductivity and high melting temperature, and hence there is an additional room to improve the thermal efficiency by increasing the operating temperature. The changed fuel composition affected the kinetics parameters and reactivity feedback coefficients, but the variations were minimal. The reduced core height decreases the sodium void worth, and the high thermal conductivity decreases the fuel temperature and Doppler constant. As a result, both carbide and nitride cores have favorable passive safety features without additional design fixes that are required in the oxide core concepts. (author)

  14. Combustion Characteristics of Butane Porous Burner for Thermoelectric Power Generation

    Directory of Open Access Journals (Sweden)

    K. F. Mustafa

    2015-01-01

    Full Text Available The present study explores the utilization of a porous burner for thermoelectric power generation. The porous burner was tested with butane gas using two sets of configurations: single layer porcelain and a stacked-up double layer alumina and porcelain. Six PbSnTe thermoelectric (TE modules with a total area of 54 cm2 were attached to the wall of the burner. Fins were also added to the cold side of the TE modules. Fuel-air equivalence ratio was varied between the blowoff and flashback limit and the corresponding temperature, current-voltage, and emissions were recorded. The stacked-up double layer negatively affected the combustion efficiency at an equivalence ratio of 0.20 to 0.42, but single layer porcelain shows diminishing trend in the equivalence ratio of 0.60 to 0.90. The surface temperature of a stacked-up porous media is considerably higher than the single layer. Carbon monoxide emission is independent for both porous media configurations, but moderate reduction was recorded for single layer porcelain at lean fuel-air equivalence ratio. Nitrogen oxides is insensitive in the lean fuel-air equivalence ratio for both configurations, even though slight reduction was observed in the rich region for single layer porcelain. Power output was found to be highly dependent on the temperature gradient.

  15. The BNL fan-atomized burner system prototype

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Celebi, Y. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    Brookhaven National Laboratory (BNL) has a continuing interest in the development of advanced oil burners which can provide new capabilities not currently available with pressure atomized, retention head burners. Specifically program goals include: the ability to operate at firing rates as low as 0.25 gph; the ability to operate with very low excess air levels for high steady state efficiency and to minimize formation of sulfuric acid and iron sulfate fouling; low emissions of smoke, CO, and NO{sub x} even at very low excess air levels; and the potential for modulation - either staged firing or continuous modulation. In addition any such advanced burner must have production costs which would be sufficiently attractive to allow commercialization. The primary motivation for all work sponsored by the US DOE is, of course, improved efficiency. With existing boiler and furnace models this can be achieved through down-firing and low excess air operation. Also, with low excess air operation fouling and efficiency degradation due to iron-sulfate scale formation are reduced.

  16. Process development report: 0.20-m secondary burner system

    International Nuclear Information System (INIS)

    HTGR fuel reprocessing consists of crushing the spent fuel elements to a size suitable for burning in a fluidized bed to remove excess graphite; separating, crushing, and reburning the fuel particles to remove the remainder of the burnable carbon; dissolution and separation of the particles from insoluble materials; and solvent extraction separation of the dissolved uranium and thorium. Burning the crushed fuel particles is accomplished in a secondary burner. This is a batch fluidized-bed reactor with in-vessel, off-gas filtration. Process heat is provided by an induction heater. This report documents operational tests performed on a commercial size 0.20-m secondary burner using crushed Fort St. Vrain type TRISO fuel particles. Analysis of a parametric study of burner process variables led to recommending lower bed superficial velocity (0.8 m/s), lower ignition temperature (6000C), lower fluid bed operating temperature (8500C), lower filter blowback frequency (1 cycle/minute), and a lower fluid bed superficial velocity during final bed burnout

  17. Computational investigations of low-emission burner facilities for char gas burning in a power boiler

    Science.gov (United States)

    Roslyakov, P. V.; Morozov, I. V.; Zaychenko, M. N.; Sidorkin, V. T.

    2016-04-01

    Various variants for the structure of low-emission burner facilities, which are meant for char gas burning in an operating TP-101 boiler of the Estonia power plant, are considered. The planned increase in volumes of shale reprocessing and, correspondingly, a rise in char gas volumes cause the necessity in their cocombustion. In this connection, there was a need to develop a burner facility with a given capacity, which yields effective char gas burning with the fulfillment of reliability and environmental requirements. For this purpose, the burner structure base was based on the staging burning of fuel with the gas recirculation. As a result of the preliminary analysis of possible structure variants, three types of early well-operated burner facilities were chosen: vortex burner with the supply of recirculation gases into the secondary air, vortex burner with the baffle supply of recirculation gases between flows of the primary and secondary air, and burner facility with the vortex pilot burner. Optimum structural characteristics and operation parameters were determined using numerical experiments. These experiments using ANSYS CFX bundled software of computational hydrodynamics were carried out with simulation of mixing, ignition, and burning of char gas. Numerical experiments determined the structural and operation parameters, which gave effective char gas burning and corresponded to required environmental standard on nitrogen oxide emission, for every type of the burner facility. The burner facility for char gas burning with the pilot diffusion burner in the central part was developed and made subject to computation results. Preliminary verification nature tests on the TP-101 boiler showed that the actual content of nitrogen oxides in burner flames of char gas did not exceed a claimed concentration of 150 ppm (200 mg/m3).

  18. Porous medium burners for the combustion of gases from landfills. The direct simulation approach

    OpenAIRE

    Malico, Isabel

    2013-01-01

    Landfill methane recovery associated to its conversion to carbon dioxide through combustion is a common greenhouse gas mitigation strategy in developed countries. The typically low and fluctuating energy content of landfill gas makes combustion challenging. Among the several possible energy conversion technologies, innovative porous burners are a potential option. These burners offer a set of advantages when compared to free flame burners, but are still under investigation. The development...

  19. Multifuel burners based on the porous burner technology for the application in fuel cell systems; Mehrstofffaehige Brenner auf Basis der Porenbrennertechnik fuer den Einsatz in Brennstoffzellensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Diezinger, S.

    2006-07-01

    The present doctoral thesis describes the development of multifuel burners based on the porous burner technology for the application in hydrocarbon driven fuel cell systems. One objective of such burners is the heating of the fuel cell system to the operating temperature at the cold start. In stationary operation the burner has to postcombust the waste gases from the fuel cell and the gas processing system in order to reduce the pollutant emissions. As the produced heat is required for endothermal processes like the steam reforming the burner has a significant influence on the system's efficiency. The performed investigations are targeting on a gasoline driven PEMFC-System with steam reforming. In such systems the burner has to be capable to combust the system's fuel gasoline at the cold start, a low calorific fuel cell offgas (HU = 6,4 MJ/kg) in stationary operation and a hydrogen rich gas in the case of an emergency shut down. Pre-tests revealed that in state of the art porous burners the flame front of hydrogen/air combustion can only be stabilized at very high excess air ratios. In basic investigations concerning the stabilization of flame fronts in porous media the dominant influence parameters were determined. Based on this findings a new flame trap was developed which increases the operational range with hydrogen rich mixtures significantly. Furthermore the burning velocity at stationary combustion in porous media was investigated. The dependency of the porous burning velocity on the excess air ratio for different hydrocarbons and hydrogen as well as for mixtures of both was determined. The results of these basic investigations were applied for the design of a multifuel burner. In order to achieve an evaporation of the gasoline without the use of additional energy, an internal heat exchanger section for heating the combustion air was integrated into the burner. Additionally different experimental and numerical methods were applied for designing the

  20. Characterization of combustion in a fabric singeing burner operating with varsol

    International Nuclear Information System (INIS)

    The textile industry uses singeing burners to diminish the amount of pilling on surface fabrics. Some of these burners use Stoddard solvent which has high cost per unit of energy, high flammability and emits volatile organic compounds that pose an occupational safety hazard. This study characterized a singing burner operating with varsol performing measurements of temperature downstream the burner, air and fuel flows, and concentration of CO, CO2, O2 and NOx. These measurements defined the most important characteristics of the Stoddard solvent flame that should be maintained to obtain a similar behavior in an eventual change to natural gas.

  1. Low-NOx combustion on regenerative burner systems in an industrial furnace; Kanetsuroyo chikunetsu saisei burner ni okeru tei NOx ka gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, M.; Suzuki, T.; Nakanishi, R.; Kitamura, R. [Kobe Steel, Ltd., Kobe (Japan)

    1996-05-01

    This paper describes the injection combustion experiments using low-NOx regenerative burner and its application to the forging furnace. For this combustion, the fuel was separately injected on an angle to the axis of the air stream. The mixing of fuel and air was restricted at the initial stage of combustion. The mixing combustion proceeded with separating the burner. The flue gas was exhausted with self-recirculation. With increasing the injection angle (difference between the injection angles of fuel and air), the NOx concentration was lowered when the velocity ratio of fuel/air injection was 1.34. The NOx concentration decreased by the increase of fuel injection velocity. For the industrial furnace, it had better set the combustion and idle periods mutually. The NOx concentration increases with increasing the temperature, qualitatively. The temperature in the axis of fuel injection was lower than the other region. For the forging furnace using existed original burners and modified low-NOx burners, the NOx concentration increased with increasing the proportion of original burners. When the modified burners were used, the NOx concentration was below 50 ppm even above 1,000 centigrade inside the furnace. For the modified burners, the fuel can be saved and the period for temperature up can be shortened. 4 refs., 12 figs.

  2. Plasma-assisted combustion technology for NOx reduction in industrial burners.

    Science.gov (United States)

    Lee, Dae Hoon; Kim, Kwan-Tae; Kang, Hee Seok; Song, Young-Hoon; Park, Jae Eon

    2013-10-01

    Stronger regulations on nitrogen oxide (NOx) production have recently promoted the creation of a diverse array of technologies for NOx reduction, particularly within the combustion process, where reduction is least expensive. In this paper, we discuss a new combustion technology that can reduce NOx emissions within industrial burners to single-digit parts per million levels without employing exhaust gas recirculation or other NOx reduction mechanisms. This new technology uses a simple modification of commercial burners, such that they are able to perform plasma-assisted staged combustion without altering the outer configuration of the commercial reference burner. We embedded the first-stage combustor within the head of the commercial reference burner, where it operated as a reformer that could host a partial oxidation process, producing hydrogen-rich reformate or synthesis gas product. The resulting hydrogen-rich flow then ignited and stabilized the combustion flame apart from the burner rim. Ultimately, the enhanced mixing and removal of hot spots with a widened flame area acted as the main mechanisms of NOx reduction. Because this plasma burner acted as a low NOx burner and was able to reduce NOx by more than half compared to the commercial reference burner, this methodology offers important cost-effective possibilities for NOx reduction in industrial applications. PMID:24032692

  3. PROTOTYPE EVALUATION OF COMMERCIAL SECOND GENERATION LOW-NO BURNER PERFORMANCE AND SULFUR CAPTURE

    Science.gov (United States)

    The report gives results of pilot-scale combustion tests of a Riley Stoker second-generation low-NOx burner combined with dry sorbent injection for SO2 control. The burner design is based on the distributed mixing concept. Combustion tests were conducted at 100 million Btu/hr in ...

  4. DISTRIBUTED MIXING BURNER (DMB) ENGINEERING DESIGN FOR APPLICATION TO INDUSTRIAL AND UTILITY BOILERS

    Science.gov (United States)

    The report summarizes the design of two prototype distributed mixing burners (DMBs) for application to industrial and utility boilers. The DMB is a low-NOx pulverized-coal-fired burner in which: (1) mixing of the coal with combustion air is controlled to minimize NOx emissions, a...

  5. Oil fired boiler/solar tank- and natural gas burner/solar tank-units

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Frederiksen, Karsten Vinkler

    1999-01-01

    During the last few years new units consisting of a solar tank and either an oil fired boiler or a natural gas burner have been introduced on the Danish market. Three different marketed units - two based on a natural gas burner and one based on an oil fired boiler - have been tested in a heat...

  6. OH Diffusion in Silica Glass Preform During Jacketing Process by Oxy-Hydrogen Burner

    Institute of Scientific and Technical Information of China (English)

    B.H.Kim; S.R.Han; U.; C.Paek; W.-T.Han; S.; K.Oh

    2003-01-01

    Radial distribution of OH diffusion in silica glass preform during jacketing process using a oxy-hydrogen burner was investigated by FTIR spectroscopy. The OH peaks at the jacketing boundary and the surface of the preform were found to be due to diffusion of OH incorporated from the burner.

  7. CFCC radiant burner assessment. Final report, April 1, 1992--July 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, S.; Sullivan, J.

    1994-11-01

    The objective of this work was to identify methods of improving the performance of gas-fired radiant burners through the use of Continuous Fiber Ceramic Composites (CFCCs). Methods have been identified to improve the price and performance characteristics of the porous surface burner. Results are described.

  8. NOx formation in combustion of gaseous fuel in ejection burner

    Science.gov (United States)

    Rimár, Miroslav; Kulikov, Andrii

    2016-06-01

    The aim of this work is to prepare model for researching of the formation in combustion of gaseous fuels. NOx formation is one of the main ecological problems nowadays as nitrogen oxides is one of main reasons of acid rains. The ANSYS model was designed according to the calculation to provide full combustion and good mixing of the fuel and air. The current model is appropriate to research NOx formation and the influence of the different principles of NOx reduction method. Applying of designed model should spare both time of calculations and research and also money as you do not need to measure the burner characteristics.

  9. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame...

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height Adjustment 6 Figure 6 to Part 1633... and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height...

  10. Laboratory measurements in a turbulent, swirling flow. [measurement of soot inside a flame-tube burner

    Science.gov (United States)

    Hoult, D. P.

    1979-01-01

    Measurements of soot inside a flame-tube burner using a special water-flushed probe are discussed. The soot is measured at a series of points at each burner, and upon occasion gaseous constitutents NO, CO, hydrocarbons, etc., were also measured. Four geometries of flame-tube burners were studied, as well as a variety of different fuels. The role of upstream geometry on the downstream pollutant formation was studied. It was found that the amount of soot formed in particularly sensitive to how aerodynamically clean the configuration of the burner is upstream of the injector swirl vanes. The effect of pressure on soot formation was also studied. It was found that beyond a certain Reynolds number, the peak amount of soot formed in the burner is constant.

  11. Development of the Radiation Stabilized Distributed Flux Burner - Phase III Final Report

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Sullivan; A. Webb

    1999-12-01

    The development and demonstration of the Radiation Stabilized Burner (RSB) was completed as a project funded by the US Department of Energy Office of Industrial Technologies. The technical goals of the project were to demonstrate burner performance that would meet or exceed emissions targets of 9 ppm NOx, 50 ppm CO, and 9 ppm unburned hydrocarbons (UHC), with all values being corrected to 3 percent stack oxygen, and incorporate the burner design into a new industrial boiler configuration that would achieve ultra-low emissions while maintaining or improving thermal efficiency, operating costs, and maintenance costs relative to current generation 30 ppm low NOx burner installations. Both the ultra-low NOx RSB and the RSB boiler-burner package are now commercially available.

  12. Root-cause analysis of burner tip failures in coal-fired power plants

    International Nuclear Information System (INIS)

    Warpage and complete or partial tear of burner material was frequently experienced in coal-fired power plants due to material overheating. Root-cause analysis of a burner tip failure is investigated employing stress modeling in the burner tip material in this study. The analyses performed in this research paper include heat transfer and stress analyses employing computational tools. Thermal analysis was performed using Computational Fluid Dynamics (CFD) software FLUENT for computing temperature distribution within the burner tip due to convection and radiation. Once the temperature distribution in the burner tip is determined, Finite Element Analysis (FEA) is employed using ANSYS to determine the maximum stress and deformations in burner tip material. Both FLUENT and ANSYS are numerical commercial simulation tools employed in this study. Large temperature gradients along the burner tip result in local bending stresses. These stresses resulting in creep stresses might be causing warpage in the burner tip. In this study, a design option was exercised to eliminate the excessive stress gradient in the burner tip material. Seven different FEA models were developed to simulate different operating conditions. Proposed design modification (Model 5) was able to reduce the maximum compressive stress from 76.09 MPa to 33.59 MPa. Significant reduction in the thermal stress due to design modification in Model 5 made author believe that the proposed design solution would eliminate the burner tip failures in this particular power plant. - Highlights: • Maximum stress and displacement values in the baseline model were computed. • Computations were performed using commercial FEA software ANSYS. • Different operating conditions were simulated in models 1-2-3-4. • Proposed geometry to prevent the failure is simulated in Models 5 and 6. • The proposed design solution reduced the maximum compressive stresses by ∼50%

  13. The influence of the furnace design on emissions from small wood pellet burners

    International Nuclear Information System (INIS)

    Two pellet burners have been installed and tested in a small scale boiler for house heating. The boiler is representative for the Swedish households and the burners, upwards and forward burning, are commercially available on the Swedish market. This work focuses on the boiler operation and particularly the potential of improved emissions by changing the furnace design. An insulation of the fireplace lowered the emission of CO by 50% and the emission of OGC by 60% for the upwards burning burner at low load. Modifying the furnace using baffles did not have any influence on the emissions. It is concluded that an increased temperature in the furnace is more important than an increased residence time of the combustible gases to decrease the emissions. At full load both burners emit approximately 300 mg CO per nm3 gas and the emission of OGC are negligible. At half load the emissions of CO increased to 1000 mg/mn3 and OGC to 125 mg/mn3 in the upward burning burner. The forwards burning burner had a small increase in OGC to about 10 mg/mn3 at half load while the emission of CO increased to 800 mg/mn3. The forward burning burner is less influenced on the furnace design compared to the upward burning burner. The comparatively high emissions of OGC for the upward burning burner is explained by the intermittent operation. However, it was possible to reduce the emissions from this burner by ceramic insulation of the furnace Project report from the program: Small scale combustion of biofuels. 3 refs, 12 figs, 2 tab, 1 appendix with 33 figs and 12 tabs

  14. HTGR actinide burner feasibility studies: Calculation scheme related considerations

    International Nuclear Information System (INIS)

    At the CEA, the actinides burner version of the prismatic block-type reactor is currently investigated, including studies about the design proposed by General Atomics. The purpose of this paper is essentially to evaluate the capability of the deterministic methods to calculate a wide range of core configurations. In the first part of the paper, the analysis is carried out on the 'Deep Burner' fuel element geometry. The fuel element calculations are performed with both Transport code APOLLO2 and Monte-Carlo code TRIPOLI4. This preliminary analysis shows the reliability of the deterministic code APOLLO2 to calculate heterogeneous fuel element configurations (fuel element loaded with plutonium and minor actinides). In the second part, the analysis deals with the core geometry in order to estimate the impact of some physical assumptions on the fine fuel isotopic depletion. Due to the strong spectrum transient in the core, it turns out that the transuranic mass balances in a GT-MHR cannot be estimated easily from fuel element calculations but rather need the use of a core modeling approach taking into account the presence of the graphite reflectors. Two different methods based on a fine core Diffusion calculation in CRONOS2 and a simplified Transport calculation in APOLLO2 are investigated in this paper. (authors)

  15. Performance analysis of the 840 MWt PRISM reference burner core

    International Nuclear Information System (INIS)

    The General Electric PRISM (Power Reactor, Innovative Small Module) is a modular, pool-type sodium-cooled fast reactor employing innovative, passive features to provide an extremely high level of public safety. A PRISM power block consists of two 840 MWt reactor modules, each with a vessel diameter of 9.15 m (30 ft), tied to a turbine generator and producing 622 MWe. A full-size plant consists of three power blocks producing 1866 MWe of electrical power. Two core configurations have been analyzed. The reference is a 'burner' core (conversion ratio of 0.8) and the alternative is a breakeven' core (plutonium consumption balanced by plutonium generation). The core nuclear designs are largely governed by passive safety and reactivity control issues. The key features employed to produce the desired passive safety characteristics are: a small core with a tight restraint system, the use of metallic U-Pu-Zr fuel, control rod withdrawal limiters (rod stops) and gas expansion modules (GEMs). A passive reactor vessel auxiliary cooling system (RVACS) assures safety-grade decay heat removal. This paper summarizes the operational and safety performance of the 840 MWt PRISM modular reactor, with emphasis on the reference burner core. (author)

  16. Design and construction of a regenerative radiant tube burner

    International Nuclear Information System (INIS)

    The technological development of the gas industry in Colombia, aiming at efficient and safe use of the natural gas, requires the assimilation and adaptation of new generation, technologies for this purpose in this article results are presented on the design, construction and characterization of a prototype of a burner of regenerative radiant robe with a thermal power of 9,94 kW and a factor of air 1,05. This system takes advantage of the high exit temperature of the combustion smokes, after they go trough a metallic robe where they transfer the heat by radiation, to heat a ceramic channel that has the capacity to absorbing a part of the heat of the smokes and then transferring them to a current of cold air. The benefits of air heating are a saving in fuel, compared with other processes that don't incorporate the recovery of heat from the combustion gases. In this work it was possible to probe a methodology for the design of this type of burners and to reach maximum temperatures of heating of combustion air of 377,9 centigrade degrees, using a material available in the national market, whose regenerative properties should be studied in depth

  17. Performance study of an induced air porous radiant burner for household applications at high altitude

    International Nuclear Information System (INIS)

    Porous radiant burners are presented as an alternative technology for improving the thermal efficiency of conventional burners. A performance study of an induced air porous radiant burner (IAPRB) with submerged combustion using natural gas was performed at high altitude to assess the feasibility of employing a porous burner operated with induced air in household applications. The experiments were performed in two-layer porous media. The preheating and combustion zones consisted of 400 ppi alumina honeycomb and 90% porosity silicon carbide foam, respectively. Three power per unit area levels, 370 kW/m2, 480 kW/m2 and 670 kW/m2, were evaluated. Pollutant emissions (CO and NOx), the radiation efficiency, the temperature profile along the bed, the primary air rate and the pressure drop across the porous materials were measured. A maximum burner thermal efficiency near 50% was obtained for 370 kW/m2, with a radiation efficiency of 27%. The preheating of the premix caused an increased bed pressure drop, which resulted in a reduction in ambient air entrainment and an air deficiency in the reaction zone. The CO emissions exceeded the standard allowable emissions. - Highlights: • A performance study of an induced air porous radiant burner was carried out. • Thermal and radiation efficiencies were measured for a porous radiant burner. • CO and NOx emission levels were measured for a porous radiant burner. • A maximum porous burner thermal efficiency near 50% was obtained for 370 kW/m2

  18. Industrial applications of Tenova FlexyTech flame-less low NO{sub x} burners

    Energy Technology Data Exchange (ETDEWEB)

    Fantuzzi, M.; Ballarino, L. [Tenova LOI Italimpianti, Genova (Italy)

    2008-04-15

    Environmental emissions constraints have led manufacturers to improve their low NO{sub x} recuperative burners. The development by Tenova of the FlexyTech Flame-less burners with low NO{sub x} emissions, even below the present 'Best Available Technology' limit of 40 ppm at 3% O{sub 2} with furnace temperature 1250 C, air preheat 450 C, is described. The results achieved during the R and D programme have been also improved in the industrial installations. Some details and performances of the recent furnaces equipped with such burners are provided. (authors)

  19. Industrial applications of Tenova FlexyTech flame-less low NOx burners

    International Nuclear Information System (INIS)

    Environmental emissions constraints have led manufacturers to improve their low NOx recuperative burners. The development by Tenova of the FlexyTech Flame-less burners with low NOx emissions, even below the present 'Best Available Technology' limit of 40 ppm at 3% O2 with furnace temperature 1250 C, air preheat 450 C, is described. The results achieved during the R and D programme have been also improved in the industrial installations. Some details and performances of the recent furnaces equipped with such burners are provided. (authors)

  20. Exposure calculation code module for reactor core analysis: BURNER

    International Nuclear Information System (INIS)

    The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules

  1. Deep-Burner DB-MHR: physics and computation

    International Nuclear Information System (INIS)

    The paper summarizes the studies on the Deep-Burner Modular Helium Reactor (DBMHR) concept-design of General Atomics, which have been carried-out by FRAMATOME-ANP, General Atomics and Entergy, with the valuable support of CEA, in the framework of a joint collaboration on the Reactor-Based Transmutation Program. Preliminary design studies as well as sensitivity studies and fuel-cycle studies performed both with probabilistic and deterministic methodology are described. Emphasis is put on most attractive physical and computational aspects. A survey on the current investigation on the design uncertainties, the future search for ways to improve the transmutation worth in a double-stratum strategy, and the computational tools improvement are also presented. (authors)

  2. Premixed burner experiments: Geometry, mixing, and flame structure issues

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.K.; Lewis, M.J.; Gupta, M. [Univ of Maryland, College Park, MD (United States)] [and others

    1995-10-01

    This research program is exploring techniques for improved fuel-air mixing, with the aim of achieving combustor operations up to stoichiometric conditions with minimal NO x and maximum efficiency. The experimental studies involve the use of a double-concentric natural gas burner that is operable in either premixed or non-premixed modes, and the system allows systematic variation of equivalence ratio, swirl strength shear length region and flow momentum in each annulus. Flame structures formed with various combinations of swirl strengths, flow throughput and equivalence ratios in premixed mode show the significant impact of swirl flow distribution on flame structure emanating from the mixedness. This impact on flame structure is expected to have a pronounced effect on the heat release rate and the emission of NO{sub x}. Thus, swirler design and configuration remains a key factor in the quest for completely optimized combustion. Parallel numerical studies of the flow and combustion phenomena were carried out, using the RSM and thek-{epsilon} turbulence models. These results have not only indicated the strengths and limitations of CFD in performance and pollutants emission predictions, but have provided guidelines on the size and strength of the recirculation produced and the spatio-temporal structure of the combustion flowfield. The first stage of parametric studies on geometry and operational parameters at Morgan State University have culminated in the completion of a one-dimensional flow code that is integrated with a solid, virtual model of the existing premixed burner. This coupling will provide the unique opportunity to study the impact of geometry on the flowfield and vice-versa, with particular emphasis on concurrent design optimization.

  3. A walkthrough of the Copenhagen atomics waste burner design

    International Nuclear Information System (INIS)

    This talk will give an introduction on Copenhagen Atomics and then elaborate on Copenhagen Atomics major objectives, which is to build thorium molten salt reactors (MSR) on an assembly line preferably with the reactor core fitted in a 40 foot shipping container. The first model will be 50 MWt and it will start on a 78% LiF-22% ThF4 salt, mixed with plutonium and actinides from spent nuclear fuel (SNF). Over decades 233U in the salt will increase and eventually help to burn out long lived actinides. The plan is to locate these waste burners at the site of existing Light Water Reactors (LWR) plants to avoid SNF transport, avoid approval of new sites and take advantage of the security and power grid infrastructures. The talk will allow the audience to understand similarities and differences between the Copenhagen Atomics Waste Burner and other MSRs such as LFTR and IMSR. The main objective of Copenhagen Atomics is to convince the public that it is possible to build a machine (MSR), which can burn many of the long lived actinides out of SNF and reduce the storage time from 100.000+ years to 300 years, while at the same time produce enough energy to pay for the process and decommissioning. The heavy water cooled thorium reactor is feasible to be introduced by using Pu recovered from spent fuel of LWR, keeping continuity with current LWR infrastructure. This thorium reactor can be operated as sustainable energy supplier and also MA transmuter to realize future society with less long-lived nuclear waste. (author)

  4. Combustion Characteristics of Oxy-fuel Burners for CO2 Capturing Boilers

    Science.gov (United States)

    Ahn, Joon; Kim, Hyouck Ju; Choi, Kyu Sung

    Oxy-fuel boilers have been developed to capture CO2 from the exhaust gas. A 50 kW class model burner has been developed and tested in a furnace type boiler. The burner has been scaled up to 0.5 and 3 MW class for fire-tube type boilers. The burners are commonly laid out in a coaxial type to effectively heat the combustion chamber of boilers. Burners are devised to support air and oxy-fuel combustion modes for the retrofitting scenario. FGR (flue gas recirculation) has been tried during the scale-up procedure. Oxy-fuel combustion yields stretched flame to uniformly heat the combustion chamber. It also provides the high CO2 concentration, which is over 90% in dry base. However, pure oxy-fuel combustion increases NO concentration, because of the reduced flow rate. The FGR can suppress the thermal NOx induced by the infiltration of the air.

  5. Low-NOx Burner Technologies for High-Temperature Processes With High Furnace Heating Density

    International Nuclear Information System (INIS)

    The general objective of the presented work is process intensification by means of reduced furnace chamber volumes in combination with the use of low-NOx burner technologies. Fundamental experimental investigations of the reaction zone of different burner types were made. For the development of new burner designs the CFD code FLUENT was used. Throughout the investigations it was possible to increase the furnace heating density from 62 kW/m3 up to 1133 kW/m3. To demonstrate possible technical applications two simulated industrial furnaces designs have been investigated. One main conclusion the work gave is that process intensification without an increase of pollutant emissions is possible by optimizing furnace and burner design and also position and geometry of the furnace load in a combined strategy. (author)

  6. PECULIARITIES OF CHOICE OF BURNER DEVICES FOR HEATING FURNACES OF MACHINE-BUILDING AND METALLURGICAL PRODUCTIONS

    Directory of Open Access Journals (Sweden)

    S. V. Korneev

    2016-02-01

    Full Text Available It is shown that the choice of recuperative burners is more reasonable for different types of heating furnaces of machine-building and metallurgical productions of little efficiency.

  7. Burning low volatile fuel in tangentially fired furnaces with fuel rich/lean burners

    International Nuclear Information System (INIS)

    Pulverized coal combustion in tangentially fired furnaces with fuel rich/lean burners was investigated for three low volatile coals. The burners were operated under the conditions with varied value Nd, which means the ratio of coal concentration of the fuel rich stream to that of the fuel lean stream. The wall temperature distributions in various positions were measured and analyzed. The carbon content in the char and NOx emission were detected under various conditions. The new burners with fuel rich/lean streams were utilized in a thermal power station to burn low volatile coal. The results show that the Nd value has significant influences on the distributions of temperature and char burnout. There exists an optimal Nd value under which the carbon content in the char and the NOx emission is relatively low. The coal ignition and NOx emission in the utilized power station are improved after retrofitting the burners

  8. Development of stoker-burner wood chip combustion systems for the UK market

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The document makes a case for the development of a design of wood chip stoker-burner more suited to the UK than those currently imported from Sweden and Finland. The differences would centre on market conditions, performance and cost-effectiveness and the devices would be manufactured or part-manufactured in the UK. Econergy Limited was contracted by the DTI as part of its Sustainable Energy Programmes to design and construct an operational prototype stoker-burner rated at 120 kWth. A test rig was built to: (i) study modified burner heads and (ii) develop control hardware and a control strategy. Both (i) and (ii) are described. Tests brought about an increase in performance of the burner head and its wet wood performance. It was considered that further improvements are achievable and six areas for future study were suggested.

  9. Heat transfer and combustion characteristics of a burner with a rotary regenerative heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Yasuo; Kaji, Hitoshi; Arai, Norio

    1998-07-01

    The authors have developed a Rotary Regenerative Combustion (RRX) System, which is coupled with a compact high efficiency regenerative air heat exchanger and a combustion burner. This system contributes to saving energy of fuel firing industrial furnaces and decreases NO{sub x} emission. This technology can be considered as a solution of greenhouse problem. This paper, discusses a compact high efficiency regenerative air heat exchanger in comparison with the existing types of regenerative burners and reverse firing with high momentum fuel jet (with motive fluid) in the furnace. This burner is compact in size, with high fuel efficiency, low NOx emission, easy to operate, and reliable, based on the results of field tests and commercial operations. The authors can say that the RRX system is a regenerative burner of the second generation.

  10. FMC Chemicals: Burner Management System Upgrade Improves Performance and Saves Energy at a Chemical Plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-07-01

    FMC Chemicals Corporation increased the efficiency of two large coal-fired boilers at its soda ash mine in Green River, Wyoming, by upgrading the burner management system. The project yields annual energy savings of 250,000 MMBtu.

  11. Design aspects of a Low-NOx burner for a Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Zepter, Klaus

    2003-07-01

    The Stirling engine is a promising prime mover for micro-scale combined heat and power. For Stirling engines with heat supply by combustion, the external heating system is one of the most important parts. It has major influence on the overall performance. The central component of the external heating system is the burner. This thesis describes the theoretical and experimental studies in the development of a gas fired burner for the extemal heating system that have been carried out. The focus was on low emissions and high system efficiency. As a first step, a system analysis of the external heating system is presented based on fundamental considerations about the thermodynamics and practical aspects of the Stirling engine. The results of the analysis show that the expected NOx emissions are strongly determined by the system design. Without making any restrictions to the burner design, a span of the NOx emissions with a ratio of 1:800 was found. Modern design methodology is then introduced in order to analyze a large number of different low-NOx burner concepts that were found in literature. The concepts are evaluated and classified with help of the methodology in order to find possible new low-NOx concepts by favourable combinations of generic principles. Based on this, the concept of the porous inert media (PIM) burner is chosen for further development as a burner for the Stirling engine. The selection is confirmed by an experimental benchmark study in which the PIM burner shows low NOx emissions and the lowest pressure drop compared to three other low NOx burner concepts. The optimization of the design of the PIM burner is described. A favourable combination of materials was found, which enables stable operation with a turn-down ratio of 1:15 and a span of the excess-air ratio from 1.28 to 2.0 when methane is used as the fuel. Temperature and CO measurements inside the combustion region were made which enable conclusion about the stabilization of the combustion

  12. Characterization of a Rijke Burner as a Tool for Studying Distribute Aluminum Combustion

    OpenAIRE

    Newbold, Brian R.

    1996-01-01

    As prelude to the quantitative study of aluminum distributed combustion, the current work has characterized the acoustic growth, frequency, and temperature of a Rijke burner as a function of mass flow rate, gas composition, and geometry. By varying the exhaust temperature profile, the acoustic growth rate can be as much as tripled from the baseline value of approximately 120 s-1• At baseline, the burner operated in the third harmonic mode at a frequency of 1300 Hz, but geometry or temperature...

  13. Design Aspects of a Low-NOx Burner for a Stirling Engine

    OpenAIRE

    Zepter, Klaus

    2003-01-01

    The Stirling engine is a promising prime mover for micro-scale combined heat and power. For Stirling engines with heat supply by combustion, the external heating system is one of the most important parts. It has major infulence on the overall performance. The central component of the external heating system is the burner. This thesis describes the theoretical and experimental studies in the developement of a gas fired burner for the external heating system that have been carried out. The focu...

  14. A numerical investigation of the aerodynamics of a furnace with a movable block burner

    OpenAIRE

    T.J. Fudihara; L. Goldstein Jr.; Mori, M.

    2007-01-01

    In this work the air flow in a furnace was computationally investigated. The furnace, for which experimental test data are available, is composed of a movable block burner connected to a cylindrical combustion chamber by a conical quarl. The apertures between the movable and the fixed blocks of the burner determine the ratio of the tangential to the radial air streams supplied to the furnace. Three different positions of the movable blocks were studied at this time. A three-dimensional invest...

  15. Application of Laser-based Diagnostics to a Prototype Gas Turbine Burner at Selected Pressures

    OpenAIRE

    Whiddon, Ronald

    2014-01-01

    The matured laser-diagnostic techniques of planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) were applied to a prototype gas turbine burner operating on various fuels. The work was performed to provide verification of computational fluid dynamic (CFD) models of the combustion of atypical fuels in a gas turbine combustor. The burner was operated using methane and three synthesized fuels of interest- one with hydrogen as the principle component and two with a low hea...

  16. Experimental investigations and numerical simulations of methane cup-burner flame

    Directory of Open Access Journals (Sweden)

    Kubát P.

    2013-04-01

    Full Text Available Pulsation frequency of the cup-burner flame was determined by means of experimental investigations and numerical simulations. Simplified chemical kinetics was successfully implemented into a laminar fluid flow model applied to the complex burner geometry. Our methodical approach is based on the monitoring of flame emission, fast Fourier transformation and reproduction of measured spectral features by numerical simulations. Qualitative agreement between experimental and predicted oscillatory behaviour was obtained by employing a two-step methane oxidation scheme.

  17. Design evaluation of the 20-cm (8-inch) secondary burner system

    Energy Technology Data Exchange (ETDEWEB)

    Rode, J.S.

    1977-08-01

    This report describes an evaluation of the design of the existing 20-cm (8-inch) engineering-scale secondary burner system in the HTGR reprocessing cold pilot plant at General Atomic Co. The purpose of this evaluation is to assess the suitability of the existing design as a prototype of the HTGR Recycle Demonstration Facility (HRDF) secondary burner system and to recommend alternatives where the existing design is thought to be unsuitable as a prototype. This evaluation has led to recommendations for the parallel development of two integrated design concepts for a prototype secondary burner system. One concept utilizes the existing burner heating and cooling subsystems in order to minimize development risk, but simplifies a number of other features associated with remote maintenance and burner operation. The other concept, which offers maximum cost reduction, utilizes internal gas cooling of the burner, retains the existing heating subsystem for design compatibility, but requires considerable development to reduce the risk to acceptable limits. These concepts, as well as other design alternatives, are described and evaluated.

  18. Burner Rig with an Unattached Duct for Evaluating the Erosion Resistance of Thermal Barrier Coatings

    Science.gov (United States)

    Miller, Robert A.; Kuczmarski, Maria A.; Zhu, Dongming

    2011-01-01

    Extensive computational fluid dynamics (CFD) modeling backed by experimental observation has demonstrated the feasibility of using an unattached duct to increase the velocity and spatial spread of erodent particles exiting from a burner rig. It was shown that gas velocity and temperature are mostly retained if the inner diameter of the unattached duct equaled the exit diameter of the burner rig nozzle. For particles having a mean diameter of 550 millimeters, the modeled velocity attained at a distance 2.0 in. (50.8 millimeters) beyond the exit of a 12 in. (305 millimeters) long duct was approximately twice as large as the velocity the same distance from the nozzle when the duct was not present. For finer particles, the relative enhancement was somewhat less approximately 1.5 times greater. CFD modeling was also used to guide the construction of a device for slowing down the velocity of the particles being injected into the burner rig. This device used a simple 45 degree fitting to slow the particle velocity in the feed line from 20 meters per second, which is in the range needed to convey the particles, to about 3 meters per second just as they are injected into the burner. This lower injection velocity would lessen the severity of the collision of large particles with the wall of the burner liner opposite the injection port, thereby reducing potential damage to the burner liner by high-velocity particles.

  19. Low NOx Burner Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Seltzer

    2005-05-01

    The objective of the low NOx burner design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent computer program. Four burner designs were developed: (1) with no over-fire gas (OFG) and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas swirl, coal burnout was relatively small, due to the low oxygen content of the primary gas stream. Consequently, the burners were modified to include primary gas swirl to bring the coal particles in contact with the secondary gas. An optimal primary gas swirl was chosen to achieve sufficient burnout.

  20. Neutronic Analysis of Advanced SFR Burner Cores using Deep-Burn PWR Spent Fuel TRU Feed

    International Nuclear Information System (INIS)

    In this work, an advanced sodium-cooled fast TRU (Transuranics) burner core using deep-burn TRU feed composition discharged from small LWR cores was neutronically analyzed to show the effects of deeply burned TRU feed composition on the performances of sodium-cooled fast burner core. We consider a nuclear park that is comprised of the commercial PWRs, small PWRs of 100MWe for TRU deep burning using FCM (Fully Ceramic Micro-encapsulated) fuels and advanced sodium-cooled fast burners for their synergistic combination for effective TRU burning. In the small PWR core having long cycle length of 4.0 EFPYs, deep burning of TRU up to 35% is achieved with FCM fuel pins whose TRISO particle fuels contain TRUs in their central kernel. In this paper, we analyzed the performances of the advanced SFR burner cores using TRU feeds discharged from the small long cycle PWR deep-burn cores. Also, we analyzed the effect of cooling time for the TRU feeds on the SFR burner core. The results showed that the TRU feed composition from FCM fuel pins of the small long cycle PWR core can be effectively used into the advanced SFR burner core by significantly reducing the burnup reactivity swing which reduces smaller number of control rod assemblies to satisfy all the conditions for the self controllability than the TRU feed composition discharged from the typical PWR cores

  1. Rotrix `vortex breakdown` burner turbulence-stabilized combustion of heating oil

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, P. [Viessmann Manufacturing Co., Inc., Ontario (Canada)

    1995-04-01

    For the past two years, the Viessmann MatriX radiant burner has been setting the standard for low emission combustion of gas. Now, with the RotriX burner, Viessmann has succeeded in drastically reducing nitrogenoxide emissions in the combustoin of oil. After a successful test period, the RotriX burner is now being introduced to the market. The RotriX oil burner consequently takes into account the mechanisms in the creation of harmful emissions in the combustion of heating oil No. 2, and guarantees stable combustion under any operating conditions. The burner has the following features: heating oil is combusted only after complete vaporization and mixing with combustion air and recirculated flue gases; the flame is not stabilized with a turbulator disk, but a strong turbulating current is created by means of the Vortex Breakdown phenomenon, which develops a very stable flame under any operating conditions; and high internal flue gas recirculation rates lower the flame temperature to the point where thermal NO formation is reduced to the same low level as in the combustion of gas. The new burner has extremely low emissions of NOx < 60 mg/kWh, and CO < 5 mg/kWh at a CO{sub 2} concentraiton of 14%.

  2. An intelligent monitoring system for the detection of slag deposition on a pulverized coal fired burner

    Energy Technology Data Exchange (ETDEWEB)

    Tan, C.K.; Wilcox, S.J.; Ward, J.; Lewitt, M. [University of Glamorgan, Pontypridd (United Kingdom). School for Technology

    2005-08-01

    The objective of this paper is to describe the further development of a monitoring system to detect the presence of so-called burner eyebrows, i.e. relatively large deposits of slag around the burner quarl in pulverized coal fired boilers. Experiments were undertaken with a range of coals and with various artificial eyebrows constructed from cast refractory inserts. The system uses a microphone to detect combustion noise and an infrared sensor which measures flame radiation, and the signals from these cheap, easily installed sensors were analyzed by a hybrid neural network. In tests with two coals, the system was able to distinguish the different eyebrows with a high degree of accuracy if representative data were used to train the network for each particular coal. In further tests with a range of six different coals, the system was able to distinguish between a clean burner and one fitted with a particular sized eyebrow. In this case, it proved to be possible to use only the features from three of the coals in the training process and the data from the remaining fuels for validation. The monitoring system, therefore, appears to be relatively independent of changes to the coal fired by the burner if trained with a representative range of coals. Finally, this paper presents a possible method to detect burner eyebrows via the evaluation of so-called 'eyebrow indices' using a self-organizing map which is trained solely using clean burner sensor patterns.

  3. Experimental and numerical analysis of isothermal turbulent flows in interacting low NOx burners in coal-fired furnaces

    OpenAIRE

    Cvoro, Valentina

    2007-01-01

    Coal firing power stations represent the second largest source of global NOx emissions. The current practice of predicting likely exit NOx levels from multi-burner furnaces on the basis of single burner test rig data has been proven inadequate. Therefore, to further improve current NOx reduction technologies and assist in the assessment of NOx levels in new and retrofit plant cases, an improved understanding of the impact of burner interactions is required. The aim of this research is tw...

  4. Evaluation of NOx emissions from advanced-technology range burners. Final report, March 1, 1990-June 30, 1991

    International Nuclear Information System (INIS)

    With growing concern for indoor air quality, it was important that emission rates from unvented combustion sources be cataloged to evaluate the effect they may have on the indoor air quality. Flue gas emissions were evaluated from new or European type or Japanese sealed or not sealed blue flame type range top burners installed in a conventional free standing gas range. Emissions were also evaluated from burners in advanced technology market ranges equipped with either blue flame or infrared burners

  5. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS; FINAL

    International Nuclear Information System (INIS)

    The focus of this program is to provide insight into the formation and minimization of NO(sub x) in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO(sub x) emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames-particularly under low NO(sub x) conditions. A CO/H(sub 2)/O(sub 2)/N(sub 2) flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state(sup 13)C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  6. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  7. Premixed Combustion of Coconut Oil on Perforated Burner

    Directory of Open Access Journals (Sweden)

    I.K.G. Wirawan

    2013-10-01

    Full Text Available Coconut oil premixed combustion behavior has been studied experimentally on perforated burner with equivalence ratio (φ varied from very lean until very rich. The results showed that burning of glycerol needs large number of air so that the laminar burning velocity (SL is the highest at very lean mixture and the flame is in the form of individual Bunsen flame on each of the perforated plate hole. As φ is increased the  SL decreases and the secondary Bunsen flame with open tip occurs from φ =0.54 at the downstream of perforated flame. The perforated flame disappears at φ = 0.66 while the secondary Bunsen flame still exist with SL increases following that of hexadecane flame trend and then extinct when the equivalence ratio reaches one or more. Surrounding ambient air intervention makes SL decreases, shifts lower flammability limit into richer mixture, and performs triple and cellular flames. The glycerol diffusion flame radiation burned fatty acids that perform cellular islands on perforated hole.  Without glycerol, laminar flame velocity becomes higher and more stable as perforated flame at higher φ. At rich mixture the Bunsen flame becomes unstable and performs petal cellular around the cone flame front. Keywords: cellular flame; glycerol; perforated flame;secondary Bunsen flame with open tip; triple flame

  8. Preliminary safety evaluation of the advanced burner test reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, F. E.; Fanning, T. H.; Cahalan, J. E.; Nuclear Engineering Division

    2006-09-15

    Results of a preliminary safety evaluation of the Advanced Burner Test Reactor (ABTR) pre-conceptual design are reported. The ABTR safety design approach is described. Traditional defense-in-depth design features are supplemented with passive safety performance characteristics that include natural circulation emergency decay heat removal and reactor power reduction by inherent reactivity feedbacks in accidents. ABTR safety performance in design-basis and beyond-design-basis accident sequences is estimated based on analyses. Modeling assumptions and input data for safety analyses are presented. Analysis results for simulation of simultaneous loss of coolant pumping power and normal heat rejection are presented and discussed, both for the case with reactor scram and the case without reactor scram. The analysis results indicate that the ABTR pre-conceptual design is capable of undergoing bounding design-basis and beyond-design-basis accidents without fuel cladding failures. The first line of defense for protection of the public against release of radioactivity in accidents remains intact with significant margin. A comparison and evaluation of general safety design criteria for the ABTR conceptual design phase are presented in an appendix. A second appendix presents SASSYS-1 computer code capabilities and modeling enhancements implemented for ABTR analyses.

  9. Development of a lean premixed burner for hydrogen utilization

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.O. [Sandia National Lab., Livermore, CA (United States)

    1996-10-01

    The long-term mandate of the hydrogen program is to develop the technologies needed to establish a hydrogen economy. Although a hydrogen fueled automobile has been established as a demonstration project, there are at least three other end use sectors that are recognized by the H{sub 2} program and that are addressed by this project. These end uses are: (1) power generation from stationary turbines, (2) generation of process heat or steam, and (3) commercial and residential direct use applications. Eliminating carbon from the fuel will remove carbon containing species from the emissions, however, NO{sub x} resulting from thermal NO production cannot be ignored. Thermal NO production is minimized by reducing the peak combustion temperature and the residence time at the peak temperature. NO can be reduced to extremely low levels (a few ppm) by operating sufficiently lean to reduce the peak combustion temperatures below 1700 to 1800 K. The objectives for this project are to: (1) develop an environmentally benign and safe burner operating on hydrogen in a lean premixed mode, (2) provide a facility in which fundamental investigations can be performed to support other programs.

  10. The effect of orifice plate insertion on low NOx radial swirl burner performances (simulated variable area burner)

    International Nuclear Information System (INIS)

    The effect of inserting an outlet orifice plate of different sizes at the exit plane of the swirler outlet were studied for small radial swirler with fixed curves vanes. Tests were carried out using two different sizes flame tubes of 76 mm and 140 mm inside diameter, respectively and 330 mm in length. The system was fuelled via eight vane passage fuel nozzles of 3.5 mm diameter hole. This type of fuel injection helps in mixing the fuel and air better prior to ignition. Tests were carried out at 20 mm W.G. pressure loss which is representative of gas burners for domestic central heating system operating conditions. Tests were also carried out at 400 K preheated inlet air temperature and using only natural gas as fuel. The aim of the insertion of orifice plate was to create the swirler pressure loss at the swirler outlet phase so that the swirler outlet shear layer turbulence was maximize to assist with fuel/air mixing. For the present work, the smallest orifice plate exhibited a very low NOx emissions even at 0.7 equivalence ratio were NOx is well below 10 ppm corrected at 0% oxygen at dry basis. Other emissions such as carbon monoxide and unburned hydrocarbon were below 10 ppm and 100 ppm, respectively, over a wide range of operating equivalence ratios. The implies that good combustion was achieved using the smallest orifice plate. (Author)

  11. MA-burners efficiency parameters allowing for the duration of transmutation process

    International Nuclear Information System (INIS)

    Transmutation of minor actinides (MA) means their transforming into the fission products. Usually, MA-burner's transmutation efficiency is characterized by the static parameters only, such as the number of neutrons absorbed and the rate of MA feeding. However, the proper characterization of MA-burner's efficiency additionally requires the consideration of parameters allowing for the duration of the MA transmutation process. Two parameters of that kind are proposed: a) transmutation time τ - mean time period from the moment a mass of MA is loaded into the burner's fuel cycle to be transmuted to the moment this mass is completely transmuted; b) number of reprocessing cycles nrep - effective number of reprocessing cycles a mass of loaded MA has to undergo before being completely transmuted. Some of MA-burners' types have been analyzed from the point of view of these parameters. It turned out that all of them have the value of parameters too high from the practical point of view. It appears that some new approaches to MA-burner's design have to be used to significantly reduce the value of these parameters in order to make the large-scale MA transmutation process practically reasonable. Some of such approaches are proposed and their potential efficiency is discussed. (authors)

  12. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS; FINAL

    International Nuclear Information System (INIS)

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO(sub x) emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO(sub x) burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance

  13. Investigation of CANDU reactors as a thorium burner

    International Nuclear Information System (INIS)

    Large quantities of plutonium have been accumulated in the nuclear waste of civilian LWRs and CANDU reactors. Reactor grade plutonium can be used as a booster fissile fuel material in the form of mixed ThO2/PuO2 fuel in a CANDU fuel bundle in order to assure reactor criticality. The paper investigates the prospects of exploiting the rich world thorium reserves in CANDU reactors. Two different fuel compositions have been selected for investigations: (1) 96% thoria (ThO2) + 4% PuO2 and (2) 91% ThO2 + 5% UO2 + 4% PuO2. The latter is used for the purpose of denaturing the new 233U fuel with 238U. The behavior of the reactor criticality k ∞ and the burn-up values of the reactor have been pursued by full power operation for >∼8 years. The reactor starts with k ∞ = ∼1.39 and decreases asymptotically to values of k ∞ > 1.06, which is still tolerable and useable in a CANDU reactor. The reactor criticality k ∞ remains nearly constant between the 4th year and the 7th year of plant operation, and then, a slight increase is observed thereafter, along with a continuous depletion of the thorium fuel. After the 2nd year, the CANDU reactor begins to operate practically as a thorium burner. Very high burn-up can be achieved with the same fuel (>160,000 MW D/MT). The reactor criticality would be sufficient until a great fraction of the thorium fuel is burned up, provided that the fuel rods could be fabricated to withstand such high burn-up levels. Fuel fabrication costs and nuclear waste mass for final disposal per unit energy could be reduced drastically

  14. Fast Burner Reactor Devoted to Minor Actinide Incineration

    International Nuclear Information System (INIS)

    This study proposes a new fast reactor core concept dedicated to plutonium and minor actinide burning by transmutation. This core has a large power level of ∼1500 MW(electric) favoring the economic aspect. To promote plutonium and minor actinide burning as much as possible, total suppression of 238U, which produces 239Pu by conversion, and large quantities of minor actinides in the core are desirable. Therefore, the 238U-free fuel is homogeneously mixed with a considerable quantity of minor actinides.From the safety point of view, both the Doppler effect and the coolant (sodium) void reactivity become less favorable in a 238U-free core. To preserve these two important safety parameters on an acceptable level, a hydrogenated moderator separated from the fuel and nuclides, such as W or 99Tc, is added to the core in the place of 238U. Tungsten and 99Tc have strong capture resonances at appropriate energies, and 99Tc itself is a long-lived fission product to be transmuted with profit.This core allows the achievement of a consumption rate of ∼100 kg/TW(electric).h of transuranic elements, ∼70 kg/TW(electric).h for plutonium (due to 238U suppression), and 30 to 35 kg/TW(electric).h for minor actinides. In addition, ∼14 kg/TW(electric).h of 99Tc is destroyed when this element is present in the core (the initial loading of 99Tc is >4000 kg in the core).The activity of newly designed subassemblies has also been investigated in comparison to standard fast reactor subassemblies (neutron sources, decay heat, and gamma dose rate). Finally, a transmutation scenario involving pressurized water reactors and minor actinide-burning fast reactors has been studied to estimate the necessary proportion of burner reactors and the achievable radiotoxicity reduction with respect to a reference open cycle

  15. The energy analysis of burner reactor power systems

    International Nuclear Information System (INIS)

    Currently most commercial nuclear power stations are based on thermal reactor designs called burner reactors which are net consumers of fissile material. These power stations form one part of a larger system that generates electricity from uranium. However, in addition to producing energy, such systems also consume energy, in the form of various fuels, during construction and operation. This thesis describes the use of energy analysis to determine the total energy required by these systems. A number of factors are shown to influence energy consumption and, in particular, the effect of extracting uranium from different sources is studied in detail. For ores, an important inverse relationship between energy use and ore grade is investigated and quantified. The physical limit at which the energy input to the system is equal to its output is shown to correspond to an average grade of 15 parts per million of 'triuranium octoxide'. Analysis of proposals for extracting uranium from seawater indicates that the only schemes giving a positive energy balance are costly (500 dollars/lb U3O8) and limited to low production rates. The effects of feedback within fuel systems are analysed and the results are used to formulate an economic model in which nuclear electricity prices determine uranium ore costs as well as vice versa. The model demonstrates that, with present techniques, the average economic limit to ore grade is 50 ppm U3O8 with subsequent resources, on current assessment, of only 107 tonnes U3O8. This contradicts most traditional studies which, by assuming fixed, non-dependent fuel costs, suggest an ore grade limit of less than 4 ppm U3O8 and economically recoverable resources in excess of 1010 tonnes U3O8. (author)

  16. PERFORMANCE AND AIR POLLUTANT EMISSIONS OF AN EXPERIMENTAL WATER/RESIDUAL OIL EMULSION BURNER IN A COMMERCIAL BOILER

    Science.gov (United States)

    The paper presents the performance and air pollutant emissions of an experimental water/oil emulsion burner. The burner was fired with two residual oils at selected emulsion water fractions. In addition, various stoichiometric ratios and two load conditions were used to determine...

  17. ENVIRONMENTAL ASSESSMENT OF AN ENHANCED OIL RECOVERY STEAM GENERATOR EQUIPPED WITH A LOW-NOX BURNER. VOLUME 1. TECHNICAL RESULTS

    Science.gov (United States)

    The report discusses results from sampling flue gas from an enhanced oil recovery steam generator (EOR steamer) equipped with an MHI PM low-NOx burner. The tests included burner performance/emission mapping tests, comparative testing of an identical steamer equipped with a conven...

  18. EVALUATION AND DEMONSTRATION OF LOW-NOX BURNER SYSTEMS FOR TEOR (THERMALLY ENHANCED OIL RECOVERY) STEAM GENERATORS: DESIGN PHASE REPORT

    Science.gov (United States)

    The report documents the detailed scale-up and design phase of a program to develop a low-NOx burner system that can be retrofitted to an existing thermally enhanced oil recovery (TEOR) steam generator. The emission design goal for the 16 MW commercial grade burner system is to m...

  19. Regenerative burner systems for batch furnaces in the steel industry; Regenerativbrenner fuer Doppel-P-Strahlheizrohre in einer Feuerverzinkungslinie

    Energy Technology Data Exchange (ETDEWEB)

    Georgiew, A. [Salzgitter Flachstahl GmbH, Salzgitter (Germany); Wuenning, J.G.; Bonnet, U. [WS Waermeprozesstechnik GmbH, Renningen (Germany)

    2007-09-15

    This article will describe the application of a new self regenerative burner in a continuous galvanizing line. After a brief introduction of the process line, the self regenerative burner will be described. Very high air preheat temperatures enable considerable energy savings and flameless oxidation suppresses the formation of NO{sub x}. (orig.)

  20. Regenerative burner systems for batch furnaces in the steel industry; Regenerativbrenner fuer Doppel-P-Strahlheizrohre in einer Feuerverzinkungslinie

    Energy Technology Data Exchange (ETDEWEB)

    Georgiew, Alexander [Salzgitter Flachstahl GmbH, Salzgitter (Germany); Wuenning, Joachim G.; Bonnet, Uwe [WS Waermeprozesstechnik GmbH, Renningen (Germany)

    2009-07-01

    This article will describe the application of a new self regenerative burner in a continuous galvanizing line. After a brief introduction of the process line, the self regenerative burner will be described. Very high air preheat temperatures enable considerable energy savings and flameless oxidation suppresses the formation of NO{sub X}. (orig.)

  1. Some parameters and conditions defining the efficiency of burners in the destruction of long-lived nuclear wastes

    Indian Academy of Sciences (India)

    V V Seliverstov

    2007-02-01

    A number of new wordings and statements regarding the targeted problem of destruction of long-lived wastes (transmutation) is considered. Some new criteria concerning the efficiency of a particular burner type are proposed. It is shown that the destruction efficiency of a specific burner is greatly influenced by the prospective time period of the whole destruction process.

  2. Neutron economy and transmutation performance of coupling system of fast reactor and a-burner

    International Nuclear Information System (INIS)

    Neutron economy and transmutation performance are examined for a fast reactor (FR), a PWR, and an A-Burner which transmutes Minor-Actinide (MA) in a well-thermalized neutron field and a slightly hard neutron field optimized for the burn-up of 246Cm. The neutron economies of the FR and the A-Burner are, respectively, favorable and acceptable to transmute MA. The coupling system of both the reactors can reduce 8.1 ton of MA to almost zero within 60 years by using one FR and one A-Burner. This coupling system is expected to achieve the final goal of transmutation, i.e., to make us free from the geological disposal. (authors)

  3. Effect of fuel volatility on performance of tail-pipe burner

    Science.gov (United States)

    Barson, Zelmar; Sargent, Arthur F , Jr

    1951-01-01

    Fuels having Reid vapor pressures of 6.3 and 1.0 pounds per square inch were investigated in a tail-pipe burner on an axial-flow-type turbojet engine at a simulated flight Mach number of 0.6 and altitudes from 20,000 to 45,000 feet. With the burner configuration used in this investigation, having a mixing length of only 8 inches between the fuel manifold and the flame holder, the low-vapor-pressure fuel gave lower combustion efficiency at a given tail-pipe fuel-air ratio. Because the exhaust-nozzle area was fixed, the lower efficiency resulted in lower thrust and higher specific fuel consumption. The maximum altitude at which the burner would operate was practically unaffected by the change in fuel volatility.

  4. Development and certification of the innovative pioneer oil burner for residential heating appliances

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, B. [Heat Wise Inc., Ridge, NY (United States)

    1997-09-01

    The Pioneer burner represents another important milestone for the oil heat industry. It is the first practical burner design that is designated for use in small capacity heating appliances matching the needs of modern energy efficient home designs. Firing in the range of 0.3 GPH to 0.65 GPH (40,000-90,000 Btu/hr) it allows for new oil heating appliance designs to compete with the other major fuel choices in the small design load residential market. This market includes energy efficient single family houses, town-houses, condominiums, modular units, and mobile homes. The firing range also is wide enough to cover a large percentage of more conventional heating equipment and home designs as well. Having recently passed Underwriters Laboratory certification tests the burner in now being field tested in several homes and samples are being made available to interested boiler and furnace manufacturers for product development and application testing.

  5. Advanced fuel cycle scenario study in the European context using different burner reactor concepts

    International Nuclear Information System (INIS)

    Different types of fast spectrum dedicated burners have been proposed for the management of radioactive wastes in the frame of various advanced fuel cycle scenarios. Accelerator-driven systems (ADS) and critical low conversion ratio fast reactors have been studied, e.g. within the European context. A potential alternative system is a fusion-fission hybrid (FFH). In the present study, a sodium-cooled fast reactor driven by a D-T fusion neutron source, the subcritical advanced burner reactor (SABR) system is considered. In order to intercompare the different systems, a systematic study is under way. The performances of the two types of systems (SABR, ADS) will be compared from a minor actinide (MA) or transuranic (i.e. Pu+MA) burning potential point of view. The present paper reports preliminary results of the first phase of study, i.e. the comparison of SABR and ADS when used as minor actinides burners. (authors)

  6. Optimal Switching Control of Burner Setting for a Compact Marine Boiler Design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan M.;

    2010-01-01

    from their respective setpoints and the cost of burner switches and variation of continuous input flows. Direct minimisation was found computational infeasible and two different suboptimal strategies have beenconsidered. The first one is based on the Mixed Logical Dynamical framework. Thesecond......This paper discusses optimal control strategies for switching between different burner modes in a novel compact  marine boiler design. The ideal behaviour is defined in a performance index the minimisation of which defines an ideal trade-off between deviations in boiler pressure and water level...... approach is based on a generalisation of hysteresis control. The strategies are verified on a simulation model of the compact marine boiler for control of low/high burner load switches.  ...

  7. Development of the Radiation Stabilized Distributed Flux Burner. Phase 1, final report

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.D.; Duret, M.J.

    1997-06-01

    The RSB was first developed for Thermally Enhanced Oil Recovery steamers which fire with a single 60 MMBtu/hr burner; the California Energy Commission and Chevron USA were involved in the burner development. The burner has also since found applications in refinery and chemical plant process heaters. All Phase I goals were successfully met: the RSB achieved sub-9 ppM NOx and sub-50 ppM CO emissions using high excess air, external flue gas recirculation (FGR), and fuel staging in the 3 MMBtu/hr laboratory watertube boiler. In a test in a 50,000 lb/hr oil field steamer with fuel staging, it consistently achieved sub-20 ppM NOx and as low as 10 ppM NOx. With high CO{sub 2} casing gas in this steamer, simulating external FGR, sub-20 ppM NOx and as low as 5 ppM NOx were achieved. Burner material cost was reduced by 25% on a per Btu basis by increasing the effective surface firing rate at the burner; further reductions will occur in Phase II. The market for 30 ppM and 9 ppM low NOx burners has been identified as package boilers in the 50,000 to 250,000 lb/hr size range (the 30 ppM is for retrofit, the 9 ppM for the new boiler market). Alzeta and Babcock & Wilcox have teamed to sell both boiler retrofits and new boilers; they have identified boiler designs which use the compact flame shape of the RSB and can increase steam capacity while maintaining the same boiler footprint. Alzeta, Chevron, and B & W have teamed to identify sites to demonstrate the RSB in Phases II and III. In Phase II, the RSB will be demonstrated in a 100,000 lb/hr industrial watertube boiler.

  8. Process development report: 0. 40-m primary burner system. [Spent fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.T.

    1978-04-01

    Fluidized bed combustion is required in reprocessing the graphite-based fuel elements from high-temperature gas-cooled reactor (HTGR) cores. This burning process requires combustion of beds containing both large particles and very dense particles, and also of fine graphite particles which elutriate from the bed. This report documents the successful long-term operation of the 0.40-m primary burner in burning crushed fuel elements. The 0.40-m system operation is followed from its first short heatup test in September 1976 to a > 40-h burning campaign that processed 20 LHTGR blocks in September 1977. The 0.40-m perforated conical gas distributor, scaled up from the 0.20-m primary burner, has proven reliable in safely burning even the largest, densest adhered graphite/fuel particle clusters originating from the crushing of loaded fuel elements. Such clusters had never been fed to the 0.20-m system. Efficient combustion of graphite fines using the pressurized recycle technique was demonstrated throughout the long-duration operation required to reduce a high carbon fresh feed bed to a low carbon particle bed. Again, such operation had never been completed on the 0.20-m system from which the 0.40-m burner was scaled. The successful completion of the tests was due, in part, to implementation of significant equipment revisions which were suggested by both the initial 0.40-m system tests and by results of ongoing development work on the 0.2-m primary burner. These revisions included additional penetrations in the burner tube side-wall for above-bed fines recycle, replacement and deletion of several metal bellows with bellows of more reliable design, and improvements in designs for burner alignment and feeder mechanisms. 76 figures, 8 tables.

  9. Development of a multi-fuel burner for coal gasification process; Entwicklung eines Kombibrenners fuer den Kohlevergasungsprozess

    Energy Technology Data Exchange (ETDEWEB)

    Al-Halbouni, Ahmad; Rahms, Hendrik; Chalh-Andreas, Bachir [Brinkmann Industrielle Feuerungssysteme GmbH, Voerde (Germany); Giese, Anne [Gas- und Waerme-Institut Essen e.V., Essen (Germany); Benim, Ali Cemal [Fachhochschule Duesseldorf (Germany)

    2013-08-15

    In the course of a German ZIM cooperative research project, Brinkmann Industrielle Feuerungssysteme GmbH develops a supersonic oxygen-multi-fuel burner in close cooperation with its research partners Gas- und Waerme-Institut essen e.V. (GWI) and Duesseldorf University of Applied Sciences (FHD). This burner is capable of combusting natural gas as well as light oil efficiently, using pure oxygen as an oxidizer. It is intended to be used primarily for energy-intensive applications, but especially as a start-up burner for coal gasification processes. In these processes, specific operating conditions can be found, such as fluctuating pressures, high temperatures and inert atmospheres. Therefore, the main goal of the development is aimed at utilizing the high energy densities found in supersonic by oxy-fuel combustion. This article covers several burner development phases, from initial design and manufacturing activities to burner testing and optimisation. Results achieved up to now are presented and next steps defined. (orig.)

  10. Polonium release from an ATW burner system with liquid lead-bismuth coolant

    International Nuclear Information System (INIS)

    The authors analyzed polonium release hazards in a conceptual pool-type ATW burner with liquid lead-bismuth eutectic (LBE) coolant. Simplified quantitative models are used based on experiments and real NPP experience. They found little Po contamination outside the burner under normal operating conditions with nominal leakage from the gas system. In sudden gas leak and/or coolant spill accidents, the P contamination level can reach above the regulation limit but short exposure would not lead to severe health consequences. They are evaluating and developing mitigation methods

  11. COST-EFFECTIVE CONTROL OF NOx WITH INTEGRATED ULTRA LOW-NOx BURNERS AND SNCR

    Energy Technology Data Exchange (ETDEWEB)

    Hamid Farzan; Jennifer Sivy; Alan Sayre; John Boyle

    2003-07-01

    Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), McDermott Technology, Inc. (MTI), the Babcock & Wilcox Company (B&W), and Fuel Tech teamed together to investigate an integrated solution for NOx control. The system was comprised of B&W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NO{sub x}OUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. The technology's emission target is achieving 0.15 lb NO{sub x}/10{sup 6} Btu for full-scale boilers. Development of the low-NOx burner technology has been a focus in B&W's combustion program. The DRB-4Z{trademark} burner (see Figure 1.1) is B&W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner is designed to reduce NO{sub x} by diverting air away from the core of the flame, which reduces local stoichiometry during coal devolatilization and, thereby, reduces initial NO{sub x} formation. Figure 1.2 shows the historical NO{sub x} emission levels from different B&W burners. Figure 1.2 shows that based on three large-scale commercial installations of the DRB-4Z{trademark} burners in combination with OFA ports, using Western subbituminous coal, the NO{sub x} emissions ranged from 0.16 to 0.18 lb/10{sup 6} Btu. It appears that with continuing research and development the Ozone Transport Rule (OTR) emission level of 0.15 lb NO{sub x}/10{sup 6} Btu is within the reach of combustion modification techniques for boilers using western U.S. subbituminous coals. Although NO{sub x} emissions from the DRB-4Z{trademark} burner are nearing OTR emission level with subbituminous coals, the utility boiler owners that use bituminous coals can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them.

  12. Development and demonstration of a gas-fired recuperative confined radiant burner (deliverable 42/43). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    The objective of the project was to develop and demonstrate an innovative, efficient, low-pollutant, recuperative gas-fired IR-system (infrared radiation) for industrial processes (hereafter referred to as the CONRAD-system). The CONRAD-system is confined, so flue gases from the combustion can be kept separated from the product. The gas/air mixture to the burner is preheated by means of the flue gas, which increases the radiant efficiency of the CONRAD-system significantly over traditional gas-fired IR burners. During the first phase of the project, the CONRAD-system was designed and developed. The conducted work included a survey on suitable burner materials, modelling of the burner system, basic design of burner construction, control etc., experimental characterisation of several preprototypes and detailed design of the internal heat exchanger in the burner. The result is a cost effective burner system with a documented radiant efficiency up to 66% and low emissions (NO{sub x} and CO) all in accordance with the criteria of success set up at the start of the project. In the second phase of the project, the burner system was established and tested in laboratory and in four selected industrial applications: 1) Drying of coatings on sand cores in the automotive industry. 2) Baking of bread/cake. 3) General purpose painting/powder curing process 4. Curing of powder paint on wood components. The results from the preliminary tests Overe used to optimise the CONRAD-system, before it was applied in the industrial processes and demonstrated. However, the optimised burners manufactured for demonstration suffered from different 'infant failures', which made the installation in an industrial environment very cumbersome, and even impossible in the food industry and the automotive industry. In the latter cases realistic laboratory tests Overe carried out and the established know how reported for use when the burner problems are overcome.(au)

  13. Development and testing of the pore burner technology for oil burners. Final report; Entwicklung und Erprobung der Porenbrennertechnik fuer Oelbrenner. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Durst, F.; Trimis, D.; Wawrzinek, K.; Koehne, H.; Lucka, K.; Rudolphi, I.; Hatzfeld, O.; Volkert, J.; Rutsche, A.; Adler, J.; Standke, G.; Haase, F.; Krueger, K.; Kuechen, C.

    2001-11-01

    The application of the pore burner technology in oil burners was investigated. Together with a new concept for oil-fuelled high efficiency boilers, this technology opens up a vast potential for energy conservation and pollutant reduction. [German] Der Waermebedarf von Wohneinheiten nimmt, flankiert durch Vorgaben des Gesetzgebers, in Zukunft weiter ab. Parallel dazu werden die Grenzwerte fuer die maximal zulaessigen Schadgasemissionen der Heizanlagen verschaerft und die emissionsintensiven und im intermittierenden Betrieb bei Teillast sehr haeufigen Start/Stop-Betriebsphasen konventioneller Oel-Heizsysteme strenger bewertet. Ziel dieses Vorhabens ist es, die fuer die Verbrennung gasfoermiger Brennstoffe bereits erfolgreich demonstrierten Vorteile der Porenbrennertechnik (sehr niedrige Schadstoffemissionen, aeusserst breiter Bereich der Leistungsmodulation bis 1:20, hohe Energiedichte und damit kleine Baugroesse, minimale Geraeuschemission) auch fuer die Verbrennung von Heizoel nutzbar zu machen. In Verbindung mit einem neuen Konzept fuer die Oel-Brennwerttechnik erschliesst diese Technologie ein hohes Einsparpotential hinsichtlich Energieverbrauch und Schadstoffemissionen. (orig.)

  14. DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, David

    2006-12-28

    Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases – blast furnace gas (BFG) and coke-oven gas (COG) – are widely used together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx – thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTI’s highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non

  15. Numerical and experimental study of the application of roof flat-flame burners

    International Nuclear Information System (INIS)

    The objective of the work was to investigate the essential features of radiation and convection heat transfer in the chamber furnace heated with roof flat-flame burners and conventional side-fired torch burner. The effect of change in the furnace chamber height on the heat transfer rate in the furnace enclosure, particularly on the heat flux onto the heated material, was determined numerically and experimentally. The results obtained by means of a computer-based mathematical model and those obtained on the laboratory chamber furnace showed a good agreement. The experimental results showed that a decrease in chamber height from 1760 mm to 1160 mm at low temperatures of the calorimeter surfaces, in all the heating modes, led to an increase in the heat transfer rate of 10-12 per cent, and at high temperatures of the calorimeter surfaces from 10 per cent (torch burner) up to 15-20 per cent (flat-flame burners). The calculations of heat fluxes onto the load surface were conducted in order to determine the real value of the coefficient of convective heat transfer from combustion gases to the load surface.

  16. PROTOTYPE EVALUATION OF COMMERCIAL SECOND GENERATION LOW-NOX BURNER PERFORMANCE AND SULFUR DIOXIDE CAPTURE POTENTIAL

    Science.gov (United States)

    The report gives results of tests on two large-scale staged-mixing (SM) burners developed by L and L Steinmuller of West Germany. One objective was to optimize their performance for low-NOx emissions, high efficiency, and combined NOx/SO2 control with sorbent injection. The exper...

  17. INITIAL TEST RESULTS OF THE LIMESTONE INJECTION MULTISTAGE BURNER (LIMB) DEMONSTRATION PROJECT

    Science.gov (United States)

    The paper discusses SO2 removal efficiency and low-NOx burner performance obtained during short term tests, as well as the impact of LIMB ash on electrostatic precipitator (ESP) performance at Ohio Edison's Edgewater Station. Project goals are to demonstrate 50% or more SO2 remov...

  18. Core Function Changes from a Breakeven Core to a TRU Burner Core

    International Nuclear Information System (INIS)

    A 600MWe sodium cooled fast reactor named as KALIMER-600 has been developed with a single enrichment fuel. This reactor is a pool-type reactor with a 1,523MW thermal power. The core is loaded with a ternary metallic fuel of 15 w/o TRU enriched TRU-U- 10Zr and it is designed to have breakeven breeding characteristics (CR∼1.0). However, a new demand is how to solve a spent fuel disposal problem because nuclear spent fuel storages shall become full by 2016 year. Therefore, a TRU burner concept which can burn out spent fuel actively is needed instead of a breakeven reactor concept. After all spent fuels from LWRs are burned, another issue may be that a TRU burner can not be operated in a breakeven mode any more. In order to overcome this problem, a new concept, a core function change is proposed in this paper. A reactor will operate as a TRU burner at first and then, will play the role of a breakeven core without any core layout change which does not need TRU supply. Since the nuclear conceptual design of a breakeven core - KALIMER-600 is already finished, TRU burner concepts are based on the KALIMER-600 breakeven core and its safety parameters are asked to be compatible with those of the KALIMER- 600 breakeven core

  19. Plutonium destruction with pebble bed type HTGRs using Pu burner balls and breeder balls

    International Nuclear Information System (INIS)

    It was made clear that pebble bed type HTGRs using Pu burner balls (pu balls) and breeder balls (Th balls) possesses a potential to burn weapons-grade Pu to 740 Gwd/TPu. The total amounts of Pu and 239Pu of can reduced to about 20 and 1%, respectively. (author). 10 refs, 4 figs, 2 tabs

  20. The porous medium oil burner applied to a household heating system

    Energy Technology Data Exchange (ETDEWEB)

    Heiderman, T.; Rutsche, A.; Tanke, D. [Invent GmbH, Uttenreuth (Germany); Hatzfeld, O.; Koehne, H.; Lucka, K.; Rudolphi, I. [Technische Hochschule Aachen (Germany). Lehr- und Forschungsgebiet Energie- und Stofftransport; Durst, F.; Trimis, D.; Wawrzinek, K. [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Stroemungsmechanik

    2000-03-01

    The thermal power used in the household is a combination of two contributions. Firstly, the power for the water heating and secondly, for the room heating. While the first contribution is roughly constant at around 20 kW the latter decreases for modern low energy houses continually down to a few kW in the last years. Therefore, a heating system with a high dynamic power range like the porous medium burner technology developed at the University of Erlangen-Nuernberg is required. This burner technology is extended to oil burner using the concept of cold flames in the oil evaporation zone, developed at EST Aachen. The oil burner is working with high thermal efficiency and low noise. The pollutant emission low is due to this new combustion concept and due to the strongly reduced number of start-stop-cycles. (orig.) [German] Waehrend der Raumwaermebedarf moderner Wohneinheiten stetig sinkt, erfordert die Warmwasserbereitung nach wie vor die Bereitstellung ausreichend grosser Waermeleistungen. Aus diesem Grund geht der Trend bei modernen Oelfeuerungsanlagen im Haushaltsbereich hin zu kompakten, emissionsarmen Einheiten mit Brennwertnutzung. Einen Durchbruch verspricht der Oelporenbrenner. Die Porenbrennertechnik wurde am LSTM Erlangen entwickelt. Der Oelporenbrenner vereinigt das am EST der RWTH Aachen entwickelte Verdampfungskonzept unter Nutzung der 'Kalte Flamme' mit der Porenbrennertechnik zu einem neuartigen Heizgeraetekonzept, das die hochmodulierbare, schadstoff- und geraeuscharme Verbrennung von Heizoel mit Brennwertnutzung ermoeglicht. Dadurch wird eine Verbesserung des Feuerungswirkungsgrads bis zu 10% erreicht. (orig.)

  1. WALL-FIRED BOILER DESIGN CRITERIA FOR DRY SORBENT SO2 CONTROL WITH LOW NOX BURNERS

    Science.gov (United States)

    The report assesses the impact of Limestone Injection Multistage Burner (LIMB) technology on wall-fired utility boilers for both new and retrofit designs. Recent attention has focused on dry sorbent sulfur dioxide (SO2) control technology which, in conjunction with low-nitrogen-o...

  2. LOW-NOX BURNERS FOR PULVERIZED-COAL-FIRED BOILERS IN JAPAN

    Science.gov (United States)

    The paper describes nitrogen oxide (NOx) abatement by low-NOx burners (LNBs) and combustion modification (CM) for dry-bottom pulverized-coal-fired boilers in Japan. LNBs have been widely used in Japan as a simple way to reduce NOx emissions by 20-50%. NOx abatement by a LNB and C...

  3. BOILER DESIGN CRITERIA FOR DRY SORBENT SO2 CONTROL WITH LOW-NOX BURNERS

    Science.gov (United States)

    The report describes the development of boiler design criteria for application of dry sorbent control technology with low-NOx burners on tangentially fired pulverized-coal-burning boilers. A comprehensive review of past and current research in the area of sorbent SOx control prov...

  4. Use of a regenerative burner system for aluminium melting furnaces; Einsatz eines Regenerativbrennersystems fuer Aluminiumschmelzoefen

    Energy Technology Data Exchange (ETDEWEB)

    Schwabe, Jan [Aluminium Norf GmbH, Neuss (Germany); Wellner, Ulli [Wellner Technische Managementberatung, Leuk (Switzerland); Kutzner, Dieter [BTS Engineering GmbH, Erkrath (Germany)

    2011-12-15

    The regenerative burner system that went into operation in May 2011 is presented. The special feature of this installation is the design of the burners to output 8 MW per burner. Since two burners are operated in parallel, this yields a total capacity of 16 MW. This corresponds to a gas flow of 1700 Nm{sup 3}/h, which is switched according to the cycle time of 90 seconds. This construction requires having an optimal design of automation and the use of hardware components having a high intrinsic safety. In order to achieve the high availability and the intended increase in production with optimum energy consumption, technical innovations in design and control were introduced. Undeniably, the cost for such a plant design is higher than that for a standard design. For compensation, the payback time was grossly reduced due to the high increase of the production. With less production required, the system can be switched into an energy saving mode. The maintenance staff quickly recognizes through an integrated condition monitoring system problem areas can be obtained without much effort the production readiness. Thus an availability of more than 98% (excluding the scheduled maintenance times) is achieved. The system fully complies with the current trend in the development of integrated mechatronic systems, namely, to dissolve the hitherto conventional discipline-bound ways of thinking to be replaced by an interdisciplinary, cross-border thinking.

  5. Performance analysis of porous radiant burners used in LPG cooking stove

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumar, P.; Anand, Piyush; Sachdeva, Prateek [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati - 781039 (India)

    2011-07-01

    This paper discusses the performance investigations of a porous radiant burner (PRB) used in LPG cooking stove. Performance of the burner was studied at different equivalence ratios and power intensities. Thermal efficiency was found using the water-boiling test described in IS: 4246:2002. The newly designed PRB showed a maximum thermal efficiency of about 71%, which is 6% higher than that of the conventional burners. Influence of ambient temperature on the thermal efficiency of the PRB was also investigated. Using a PRB of 80 mm diameter at the operating conditions of 0.68 equivalence ratio and 1.24 kW power intensity, the thermal efficiency was found to increase from 61% at 18.5 oC to 71% at 31 oC ambient temperature. The CO and NOx emissions of the PRB are in the range of 9 to 16 ppm and 0 to 0.2 ppm, respectively, while the respective values for the conventional burner are in the range of 50 to 225 ppm and 2 to 7 ppm.

  6. Performance analysis of porous radiant burners used in LPG cooking stove

    Directory of Open Access Journals (Sweden)

    P. Muthukumar, Piyush Anand, Prateek Sachdeva

    2011-03-01

    Full Text Available This paper discusses the performance investigations of a porous radiant burner (PRB used in LPG cooking stove. Performance of the burner was studied at different equivalence ratios and power intensities. Thermal efficiency was found using the water-boiling test described in IS: 4246:2002. The newly designed PRB showed a maximum thermal efficiency of about 71%, which is 6% higher than that of the conventional burners. Influence of ambient temperature on the thermal efficiency of the PRB was also investigated. Using a PRB of 80 mm diameter at the operating conditions of 0.68 equivalence ratio and 1.24 kW power intensity, the thermal efficiency was found to increase from 61% at 18.5 oC to 71% at 31 oC ambient temperature. The CO and NOx emissions of the PRB are in the range of 9 to 16 ppm and 0 to 0.2 ppm, respectively, while the respective values for the conventional burner are in the range of 50 to 225 ppm and 2 to 7 ppm.

  7. Formation of nitric oxide in an industrial burner measured by 2-D laser induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A.; Bombach, R.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    We have performed two-dimensional Laser Induced Fluorescence (2-D LIF) measurements of nitric oxide and hydroxyl radical distributions in an industrial burner at atmospheric pressure. The relative 2-D LIF data of NO were set to an absolute scale by calibration with probe sampling combined with gas analysis. (author) 3 figs., 7 refs.

  8. Cordierite Bricks for Ceramic Burner of Hot Blast Stove YB/T 4128-2005

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaohui; Chai Junlan

    2009-01-01

    @@ 1 Scope This standard specifies the classification,brand,technical requirements,shape and dimension,test method,quality appraisal procedure,packing,marking,transportation,storage and quality certificate of cordierite bricks for ceramic burner of blast furnace and hot blast stove.

  9. Confronting the "Bra-Burners": Teaching Radical Feminism with a Case Study

    Science.gov (United States)

    Kreydatus, Beth

    2008-01-01

    In many of the U.S. History courses the author has taught, she has encountered students who refer to the second-wave feminists of the 1960s and 1970s as "bra-burners." Unsurprisingly, these students know very little about the origin of this epithet, and frequently, they know even less about the women's movement generally. Second-wave feminism, and…

  10. Thermophotovoltaic generation of electricity in a gas fired heater: Influence of radiant burner configurations and combustion processes

    International Nuclear Information System (INIS)

    With recent advances in low bandgap thermophotovoltaic (TPV) devices, further research into the radiant burner and its effect on the performance of TPV systems is particularly needed. The present work investigates various gas fired radiant burner/emitters and the influence of the combustion processes on radiant power and radiant efficiency. The performance tests with the burner/emitters have been conducted in a TPV self powered heater (mini cogenerator). It is shown that the radiant burner performance is affected markedly by the combustion parameters. Care must be taken to diminish the risk of flashback for the surface flame type burner. The maximum radiant power density and radiant efficiency of the burner/emitters have been determined. This is of great interest to TPV generation in gas fired heating appliances. Furthermore, the maximum electric power generated by the GaSb TPV converter is measured under a range of operating conditions for the different burner/emitter configurations. An electric power density of 0.332 W/cm2 has been achieved. Finally, the cogenerating aspects of the TPV systems are discussed

  11. Integration of a wood pellet burner and a Stirling engine to produce residential heat and power

    International Nuclear Information System (INIS)

    The integration a Stirling engine with a pellet burner is a promising alternative to produce heat and power for residential use. In this context, this study is focused on the experimental evaluation of the integration of a 20 kWth wood pellet burner and a 1 kWe Stirling engine. The thermal power not absorbed by the engine is used to produce hot water. The evaluation highlights the effects of pellet type, combustion chamber length and cycling operation on the Stirling engine temperatures and thermal power absorbed. The results show that the position of the Stirling engine is highly relevant in order to utilize as much as possible of the radiative heat from the burner. Within this study, only a 5 cm distance change between the Stirling engine and the pellet burner could result in an increase of almost 100 °C in the hot side of the engine. However, at a larger distance, the temperature of the hot side is almost unchanged suggesting dominating convective heat transfer from the hot flue gas. Ash accumulation decreases the temperature of the hot side of the engine after some cycles of operation when a commercial pellet burner is integrated. The temperature ratio, which is the relation between the minimum and maximum temperatures of the engine, decreases when using Ø8 mm wood pellets in comparison to Ø6 mm pellets due to higher measured temperatures on the hot side of the engine. Therefore, the amount of heat supplied to the engine is increased for Ø8 mm wood pellets. The effectiveness of the engine regenerator is increased at higher pressures. The relation between temperature of the hot side end and thermal power absorbed by the Stirling engine is nearly linear between 500 °C and 660 °C. Higher pressure inside the Stirling engine has a positive effect on the thermal power output. Both the chemical and thermal losses increase somewhat when integrating a Stirling engine in comparison to a stand-alone boiler for only heat production. The overall efficiency of

  12. Application of a Central Composite Design for the Study of NOx Emission Performance of a Low NOx Burner

    Directory of Open Access Journals (Sweden)

    Marcin Dutka

    2015-04-01

    Full Text Available In this study, the influence of various factors on nitrogen oxides (NOx emissions of a low NOx burner is investigated using a central composite design (CCD approach to an experimental matrix in order to show the applicability of design of experiments methodology to the combustion field. Four factors have been analyzed in terms of their impact on NOx formation: hydrogen fraction in the fuel (0%–15% mass fraction in hydrogen-enriched methane, amount of excess air (5%–30%, burner head position (20–25 mm from the burner throat and secondary fuel fraction provided to the burner (0%–6%. The measurements were performed at a constant thermal load equal to 25 kW (calculated based on lower heating value. Response surface methodology and CCD were used to develop a second-degree polynomial regression model of the burner NOx emissions. The significance of the tested factors over their respective ranges has been evaluated using the analysis of variance and by the consideration of the coefficients of the model equation. Results show that hydrogen addition to methane leads to increased NOx emissions in comparison to emissions from pure methane combustion. Hydrogen content in a fuel is the strongest factor affecting NOx emissions among all the factors tested. Lower NOx formation because of increased excess air was observed when the burner was fuelled by pure methane, but this effect diminished for hydrogen-rich fuel mixtures. NOx emissions were slightly reduced when the burner head was shifted closer to the burner outer tube, whereas a secondary fuel stream provided to the burner was found to have no impact on NOx emissions over the investigated range of factors.

  13. Characteristics of premixed flames stabilized in an axisymmetric curved-wall jet burner with tip modification

    KAUST Repository

    Kim, Daejoong

    2009-11-10

    The stabilization characteristics of premixed flames in an axisymmetric curved-wall jet burner have been experimentally investigated. This burner utilized the Coanda effect on top of a burner tip. The initially spherical burner tip was modified to a flat tip and a concave tip in order to improve flame stabilization by providing enough space for flow recirculation above the burner tip region. The flow characteristics have been visualized using a schlieren technique. Small-scale turbulence structure has been observed mainly in the interaction jet region (located downstream of the recirculation region) for large jet velocity (Reynolds number >11,500). An appreciable amount of air entrainment was exhibited from the half-angle of the jet spread, approximately 20. The averaged planar laser-induced fluorescence images of the flames for this large velocity demonstrated that the strong signal of OH radicals, representing reaction zones, existed in the recirculation zone, while it was weak in the interaction jet region due to intermittency and local extinction by the generation of small scale turbulence. The OH radical signals strengthened again in the merged jet region (downstream of the interaction jet region). In extreme cases of Reynolds number over 19,000, a unique flame exhibiting OH radicals only in the recirculation zone was observed for the concave tip. The flame stabilization has been mapped by varying jet velocity and equivalence ratio, and the result showed that the stabilization characteristics were improved appreciably from the initial spherical tip design, especially for rich mixtures. The flow fields measured by a laser Doppler velocimetry confirmed the existence of recirculation zone and the expansion of the recirculation zones for the modified tips. The temperature profile measured by a coherent anti-Stokes Raman spectroscopy exhibited an intermittent nature, especially near the recirculation zone.

  14. Regenerative burner systems for batch furnaces in the steel industry; Regenerativ-Brennersysteme fuer Chargenoefen in der Stahlindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Teufert, Joerg [Bloom Engineering (Europa) GmbH, Duesseldorf (Germany); Domagala, Josef [Engineering and Trade Services, Duesseldorf (Germany)

    2009-07-01

    Regenerative burner systems for steel-industry batch furnaces are now state-of-the-art. They permit furnace operation with extremely low energy consumptions (reduction of CO{sub 2} emissions), with simultaneous minimization of NO{sub X} emissions. They are systems tried and proven in practical operation for sidewall and roof installation of low-NO{sub X} high-speed and flat-flame radiant burners. Optimum planning of regenerative burner systems makes it possible, thanks to high energy savings, to achieve short amortization times, particularly in new installations. (orig.)

  15. Burners. Reduction of nitrogen oxides in combustion: 2. generation of GR LONOxFLAM burner; Les bruleurs. La reduction des oxydes d`azote dans la combustion: bruleur GR LONOxFLAM de 2. generation

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, J.C. [EGCI Pillard, 13 - Marseille (France)

    1997-12-31

    This paper presents the research work carried out by the French Pillard company in collaboration with Gaz de France for the design of low NO{sub x} burners. The different type of low NO{sub x} burners are presented according to the type of fuel: gas, liquid fuels and fuel oils. The gas burner uses the fuel staging principle and the recirculation of smokes and leads to NO{sub x} emissions lower than 100 mg/Nm{sup 3}. The liquid fuel and fuel oil burners use the separate flames and the smoke self-recirculation methods (fuel-air mixture staging, reduction of flame temperature and of the residence time in flames). (J.S.)

  16. Burners. The decrease of nitrogen oxides in combustion process: the 2 nd generation GR LONOxFLAM burner; Les bruleurs, la reduction des oxydes d`azote dans la combustion: bruleur GR LONOxFLAM de 2. generation

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, J.C. [EGCI Pillard, 13 - Marseille (France)

    1997-12-31

    The Pillard company has developed, in cooperation with GDF (the French national gas utility), the GR-LONOxFLAM burner concept for reducing NOx emission levels and solid combustion products. The concept consists, for gaseous fuels, in the combination of an internal recirculation and a gas staging process; for liquid fuels, a separated flame process and air staging are combined. These concepts allow for an important reduction in NOx and non-burned residues, even with standard-size burners

  17. Experimental data regarding the characterization of the flame behavior near lean blowout in a non-premixed liquid fuel burner

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2016-03-01

    The data are related to the research article “Image processing for the characterization of flame stability in a non-premixed liquid fuel burner near lean blowout” in Aerospace Science and Technology [1].

  18. The analysis of some low NOx hydrocarbon burners designs based on a numerical modelling of flame processes

    International Nuclear Information System (INIS)

    In order to develop low pollutant burning technologies ICPET-RESEARCH S.A. Bucharest studied new solutions of burners able to limit the NOx emissions from the furnaces of the power plants and industrial unit boilers. In this paper we present the results of analysis of the processes in some low NOx hydrocarbon burners. These results were obtained by applying a numerical modelling approach of the gas-thermodynamical and chemical processes in the flame. The FLUENT computer program was used in this purpose. The new solutions, for the case of a 10 MWth power burner showed a reduction of NOx emission of about 3 times for heavy oil fuel and of 22 % for natural gas fuel, respectively, as compared with the currently operated burners in Romania.(author).19 figs

  19. IR sensor for monitoring of burner flame; IR sensor foer oevervakning av braennarflamma

    Energy Technology Data Exchange (ETDEWEB)

    Svanberg, Marcus; Funkquist, Jonas; Clausen, Soennik; Wetterstroem, Jonas

    2007-12-15

    To obtain a smooth operation of the coal-fired power plants many power plant managers have installed online mass flow measurement of coal to all burners. This signal is used to monitor the coal mass flow to the individual burner and match it with appropriate amount of air and also to monitor the distribution of coal between the burners. The online mass flow measurement system is very expensive (approximately 150 kEUR for ten burners) and is not beneficial for smaller plants. The accuracy of the measurement and the sample frequency are also questionable. The idea in this project has been to evaluate a cheaper system that can present the same information and may also provide better accuracy and faster sample frequency. The infrared sensor is a cheap narrow banded light emission sensor that can be placed in a water cooed probe. The sensor was directed at the burner flame and the emitted light was monitored. Through calibration the mass flow of coal can be presented. Two measurement campaigns were performed. Both campaigns were carried out in Nordjyllandsverket in Denmark even though the second campaign was planned to be in Uppsala. Due to severe problems in the Uppsala plant the campaign was moved to Nordjyllandsverket. The pre-requisites for the test plant were that online measurement of coal flow was installed. In Nordjyllandsverket 4 out of 16 burners have the mass flow measurement installed. Risoe Laboratories has vast experiences in the IR technology and they provided the IR sensing equipment. One IR sensor was placed in the flame guard position just behind the flame directed towards the ignition zone. A second sensor was placed at the boiler wall directed towards the flame. The boiler wall position did not give any results and the location was not used during the second campaign. The flame-guard-positioned-sensor- signal was thoroughly evaluated and the results show that there is a clear correlation between the coal mass flow and the IR sensor signal. Tests were

  20. Carbide and nitride fuels for advanced burner reactor

    International Nuclear Information System (INIS)

    Full text: Under the U.S. fast reactor program, reference and alternative 1000 MWth Advanced Burner Reactor (ABR) core concepts were developed using ternary metallic (U-TRU-Zr) and mixed oxide (UO2+TRUO2) fuels. Recently, mixed carbide and nitride fuels have been considered as fast reactor fuels on the basis of their high density, compatibility with coolant, high melting temperature, and excellent thermal conductivity although they are ceramic fuel like a mixed oxide fuel. Thus, the performance of the ABR core loaded with carbide and nitride fuels was evaluated in this study with an expectation that the carbide and nitride fuels can mitigate disadvantages of both metallic and oxide fuels in the ABR: favorable passive safety features in a severe accident compared to the oxide core, a higher discharge burnup compared to the metallic core, and a potential to increase thermal efficiency. All calculations performed in this study were focused on the neutronics characteristics, although the fabrication and irradiation experiences for carbide and nitride fuels are limited and some problems were observed in the reprocessing and irradiation of these fuels. The mixed monocarbide and mixed mononitride fuels were selected as the alternative fuel forms and the ABR core concepts with these fuels were developed based on the reference 1000 MWth ABR core concepts. For consistency, the potential design goals used in the reference ABR core concepts were also employed in this study: a 1000 MWth power rating, medium TRU conversion ratio of ∼0.75, a compact core, one-year operational cycle length at least with a capacity factor of 90%, sufficient shutdown margin with a limited maximum single control assembly fault, and possible use of either metallic or any ceramic fuels in the same core layout. The core layout and outer assembly dimensions of the reference 1000 MWth ABR core were kept, but the intra assembly design parameters were varied to maximize the discharge burnup within the

  1. CFD Analysis of NOx Emissions of a Natural Gas Lean Premixed Burner for Heavy Duty Gas Turbine

    OpenAIRE

    Andreini, A.; Cerutti, M; B. Facchini; Innocenti, A.

    2015-01-01

    The present work presents a numerical analysis of a low NOx partially premixed burner for heavy duty gas turbine. The first part of the paper is focused on the study of the premixing process inside the burner using standard RANS CFD approach. The resulting profiles at different test points have been used to perform reactive simulations of an experimental test rig, where exhaust NOx emissions were measured. A reliable numerical setup was found comparing predicted and measured NOx emissions at ...

  2. Disposition of weapon-grade plutonium with pebble bed type HTGRs using Pu burner balls and Th breeder balls

    International Nuclear Information System (INIS)

    A concept of reactor system was developed with which weapons-grade plutonium could be made perfectly worthless in use for weapons. It is a pebble bed type HTGR using Pu burner ball fuels and Th breeder ball fuels. The residual amounts of 239Pu in spent Pu balls become less than 1% of the initial loading. Furthermore, a method was found that the power coefficient could be made negative by heavy Pu loading in the Pu burner ball fuels

  3. Numerical simulation and experimental study of three-stage coal ignition burner by high-temperature air

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Z.Z.; Sun, B.M. [North China Electric Power Univ., Beijing (China). Key Laboratory of Condition Monitoring and Control for Power Plant Equipment; Liu, Y. [Beijing Guolineng Technology Co. Ltd., Beijing (China)

    2008-07-01

    Coal is in short supply in China. In addition, the quality of power derived from coal is both poor and unstable. Several million tons of oil are needed annually to ignite pulverized coal (PC) during boiler start-up. Since the calorific capacity of some of China's coal is lower than 13 MJ/kg, flameout often occurs in the PC fired boiler, which severely affect the safety of utility boilers. In order to stabilize combustion, several kinds of oil-saving ignition methods are being used, such as plasma ignition technology, hot-wall ignition combustion and small oil gun burners. This paper focused on a new burner, high-temperature air oil-free ignition burner, in which air is heated to 1000 degrees C by an intermediate frequency electricity heater. When the combustion is not stable, the burner is put into operation to prevent flameout. Experiments and numerical simulations were carried out to research the combustion in the burner. The factors influencing the ignition of PC were analyzed, including PC concentration, the inlet velocity of primary air flow, the velocity of high temperature air and PC fineness. The simulation results were in good agreement with experimental data. It was concluded that the results can be useful for optimizing the design of three-stage coal ignition burners. 8 refs., 2 tabs., 12 figs.

  4. Use of numerical modeling in design for co-firing biomass in wall-fired burners

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen;

    2004-01-01

    numerical modeling. The models currently used to predict solid fuel combustion rely on a spherical particle shape assumption, which may deviate a lot from reality for big biomass particles. A sphere gives a minimum in terms of the surface-area-to-volume ratio, which impacts significantly both motion and...... reaction of a particle. To better understand biomass combustion and thus improve the design for co-firing biomass in wall-fired burners, non-sphericity of biomass particles is considered. To ease comparison, two cases are numerically studied in a 10m long gas/biomass co-fired burner model. (1) The biomass...... particles are assumed as solid or hollow cylinders in shape, depending on the particle group. To model accurately the motion of biomass particles, the forces that could be important are all considered in the particle force balance, which includes a drag for non-spherical particles, an additional lift due to...

  5. ZZ WPPR-FR-MOX/BNCMK, Benchmark on Pu Burner Fast Reactor

    International Nuclear Information System (INIS)

    Description of program or function: In order to intercompare the characteristics of the different reactors considered for Pu recycling, in terms of neutron economy, minor actinide production, uranium content versus Pu burning, the NSC Working Party on Physics of Plutonium Recycling (WPPR) is setting up several benchmark studies. They cover in particular the case of the evolution of the Pu quality and Pu fissile content for Pu recycling in PWRs; the void coefficient in PWRs partly fuelled with MOX versus Pu content; the physics characteristics of non-standard fast reactors with breeding ratios around 0.5. The following benchmarks are considered here: - Fast reactors: Pu Burner MOX fuel, Pu Burner metal fuel; - PWRs: MOX recycling (bad quality Pu), Multiple MOX recycling

  6. Fuel cycle of actinide burner-reactor. Review of investigations by > program

    International Nuclear Information System (INIS)

    The problem of long-lived minor-actinides (Np, Am, Cm) transmutation is one of major part of problem of nuclear power ecological safety. The problem of Pu surpluses burning-out adjoins to this problem. Existing and perspective reactor systems could be used for it, but task of optimum organization of the external closed cycle for actinide burner reactor becomes the important aspect of transmutation problem. Since 1992, SSC RIAR has proposed the demonstration program-concept DOVITA (Dry reprocessing, Oxide fuel, Vibropac, Integral, Transmutation of Actinides), which should demonstrate opportunities of new technologies for realization of the optimized fuel cycle for actinide burner reactor. The brief review of study on DOVITA program for 5 years is given in this paper. (J.P.N.)

  7. Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls

    Energy Technology Data Exchange (ETDEWEB)

    Marc Cremer; Dave Wang; Connie Senior; Andrew Chiodo; Steven Hardy; Paul Wolff

    2005-07-01

    This is the Final Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project was to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. The focus of this project was to quantify the potential impacts of ''fine level'' controls rather than that of ''coarse level'' controls (i.e. combustion tuning). Although it is well accepted that combustion tuning will generally improve efficiency and emissions of an ''out of tune'' boiler, it is not as well understood what benefits can be derived through active multiburner measurement and control systems in boiler that has coarse level controls. The approach used here was to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner air and fuel flow rates. The Electric Power Research Institute (EPRI) provided co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center have been active participants in this project. CFD simulations were completed for five coal fired boilers as planned: (1) 150 MW wall fired, (2) 500 MW opposed wall fired, (3) 600 MW T-Fired, (4) 330 MW cyclone-fired, and (5) 200 MW T-Fired Twin Furnace. In all cases, the unit selections were made in order to represent units that were descriptive of the utility industry as a whole. For each unit, between 25 and 44 furnace simulations were completed in order to evaluate impacts of burner to burner variations in: (1) coal and primary air flow rate, and (2) secondary air flow

  8. COMPUTATIONAL FLUID DYNAMICS BASED INVESTIGATION OF SENSITIVITY OF FURNACE OPERATIONAL CONDITIONS TO BURNER FLOW CONTROLS

    Energy Technology Data Exchange (ETDEWEB)

    Marc Cremer; Zumao Chen; Dave Wang; Paul Wolff

    2004-06-01

    This is the extended second Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts.

  9. Correction of edge-flame propagation speed in a counterflow, annular slot burner

    KAUST Repository

    Tran, Vu Manh

    2015-10-22

    To characterize the propagation modes of flames, flame propagation speed must be accurately calculated. The impact of propagating edge-flames on the flow fields of unburned gases is limited experimentally. Thus, few studies have evaluated true propagation speeds by subtracting the flow velocities of unburned gases from flame displacement speeds. Here, we present a counterflow, annular slot burner that provides an ideal one-dimensional strain rate and lengthwise zero flow velocity that allowed us to study the fundamental behaviors of edge-flames. In addition, our burner has easy optical access for detailed laser diagnostics. Flame displacement speeds were measured using a high-speed camera and related flow fields of unburned gases were visualized by particle image velocimetry. These techniques allowed us to identify significant modifications to the flow fields of unburned gases caused by thermal expansion of the propagating edges, which enabled us to calculate true flame propagation speeds that took into account the flow velocities of unburned gases.

  10. Use of regenerative burner systems in batchwise furnace operation; Einsatz von regenerativen Brennersystemen im satzweisen Ofenbetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Tschapowetz, Erwin; Krammer, Helmut; Geidies, Joerg [Andritz Maerz GmbH, Duesseldorf (Germany)

    2013-06-15

    The use of regenerative burner heating systems in continuously operated plants in the steel and forging industries is tested in practice over the years. Due to the enormous energy savings with correspondingly large power requirements, and the continuous mode, these systems are used very successfully. In batch-wise operation, especially in the forging business, this system was rather uneconomical due to the batch operation and the cost situation. Due to the development of combination burner, regenerator and regulation a system was developed that in the light of rising gas prices and the demand for emission reduction also allows the use in batch-wise operation. The system at Saarschmiede and Boehler Edelstahl will be presented. (orig.)

  11. Interaction of turblence and chemistry in a low-swirl burner

    Science.gov (United States)

    Bell, J. B.; Cheng, R. K.; Day, M. S.; Beckner, V. E.; Lijewski, M. J.

    2008-07-01

    New combustion systems based on ultra-lean premixed combustion have the potential for dramatically reducing pollutant emissions in transportation systems, heat, and stationary power generation. However, lean premixed flames are highly susceptible to fluid-dynamical combustion instabilities, making robust and reliable systems difficult to design. Low-swirl burners are emerging as an important technology for meeting design requirements in terms of both reliability and emissions for next-generation combustion devices. In this paper, we present simlations of a laboratory-scale low-swirl burner using detailed chemistry and transport without incorporating explicit models for turbulence or turbulence/chemistry interaction. We consider two fuels, methane and hydrogen, each at two turbulent intensities. Here we examine some of the basic properties of the flow field and the flame structure. We focus on the differences in flame behavior for the two fuels, particularly on the hydrogen flame, which burns with a cellular structures.

  12. Method for reducing NOx during combustion of coal in a burner

    Science.gov (United States)

    Zhou, Bing; Parasher, Sukesh; Hare, Jeffrey J.; Harding, N. Stanley; Black, Stephanie E.; Johnson, Kenneth R.

    2008-04-15

    An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

  13. Transmutation rates of technetium 99 and iodine 129 in the CANDU actinide burner

    International Nuclear Information System (INIS)

    Transmutation rates for the two long-lived fission products technetium 99 and iodine 129 have been calculated for the CANDU Actinide Burner that operates with weapons grade plutonium in an inert matrix as fuel. These transmutation rates are compared with those obtained for the current natural uranium CANDU and for LWRs and FBRs. The higher thermal flux and the softer neutron spectrum of the CANDU Actinide Burner, which is a result of its lower fissile requirements can provide net transmutation half lives as short as 14 y for technetium 99 and 2 y for iodine 129. It is assumed that the iodine 129 can be irradiated as a solution in heavy water. The shorter half life for iodine 129 is due to the large volume of moderator and reflector available that leads to negligible self shielding of the iodine 129 cross section. (author) 1 fig., 2 tabs., 2 refs

  14. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  15. Effects of bluff-body burner and coal particle size on NOx emissions and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, L.S.; Cheng, J.F.; Zeng, H.C. [Huazhong University of Science and Technology, Wuhan (China). National Coal Combustion Lab.

    1999-12-01

    Investigations on air staging have been carried out using various coals with different degrees of fineness and a variety of burners with a 92.9 kw h{sup -1} tunnel furnace burning pulverized coal. It has been observed that using the bluff-body burner can reduce both the unburned carbon in fly ash and NOx emissions in the case of air staging. The experimental results show that air-staging combustion has a more remarkable effect on NOx reduction for higher-volatile coal than for lower-volatile coal. The results also show that there is a strong influence of coal particle size on NOx emissions and unburned carbon in the fly ash in the case of air staging. 13 refs., 12 figs., 2 tabs.

  16. A quasi-adiabatic laminar flat flame burner for high temperature calibration

    International Nuclear Information System (INIS)

    Flat flame burners were developed for many purposes. In this study, a new flat flame burner for the high temperature calibration of combustion product species and temperature is presented. The burner is operated on methane/air mixtures. Equivalence ratios can be varied from φ = 0.65 to φ = 1.5. A flat, laminar, premixed flame stabilizes above the flame holder that is manufactured from porous material and differently to other designs is not water cooled. Unlike most other realizations, the flame burns detached by 1.5–2.5 mm from the flame holder. This is realized by adjusting the exit speed to a value very close to the burning velocity of the corresponding equivalence ratio. As the control range between flame blow-off and attachment to the flame holder is very narrow, this strategy requires spatially very uniform porous materials and a precise mass flow control. Heat losses to the flame holder necessary for flame stabilization are minimized furthermost by these detached flames. This becomes manifested by a temperature rise of the flame holder by less than 10 K and an almost homogeneous temperature distribution within the flame holder. In consequence, flame temperatures measured by Rayleigh thermometry are observed to be close to adiabatic flame temperatures. Differences between adiabatic and measured temperatures depend on the equivalence ratio and range from 35 K to 50 K. By comparison with 1D-flame simulations with and without radiation models, it is shown that these temperature losses are mainly due to radiation but not to heat conduction to the flame holder. For this reason, flames stabilized on this burner are termed quasi-adiabatic as they exhibit exhaust gas temperatures very similar to freely propagating flames

  17. An Advanced Option for Sodium Cooled TRU Burner Loaded with Uranium-Free Fuels

    International Nuclear Information System (INIS)

    The sodium cooled fast reactors of this kind that are called burners are designed to have low conversion ratio by reducing fuel volume fraction or reducing neutron leakage or increasing neutron absorption. However, the typical SFR burners have a limited ability of TRU burning rate due to the fact that they use metallic or oxide fuels containing fertile nuclides such as 238U and 232Th and these fertile nuclides generate fissile nuclides through neutron capture even if they are designed to have low conversion ratio (e.g., 0.6). To further enhance the TRU burning rate, the removal of the fertile nuclides from the initial fuels is required and it will accelerate the reduction of TRUs that are accumulated in storages of LWR spent fuels. However, it has been well-known 4 that the removals of the fertile nuclides from the fuel degrade the inherent safety of the SFR burner cores through the significant decrease of the fuel Doppler effect, the increase of sodium void reactivity worth, and reduction of delayed neutron fraction. In this work, new option for the sodium cooled fast TRU burner cores loaded with fertile-free metallic fuels was proposed and the new cores were designed by using the suggested option. The cores were designed to enhance the inherent safety characteristics by using axially central absorber region and 6 or 12 ZrH1.8 moderator rods per fuel assembly. For each option, we considered two different types of fertile-free ternary metallic fuel (i.e., TRU-W-10Zr and TRU-Ni-10Zr). Also, we performed the BOR (Balance of Reactivity) analyses to show the self-controllability under ATWS as a measure of inherent safety. The core performance analysis showed that the new cores using axially central absorber region substantially improve the core performance parameters such as burnup reactivity swing and sodium void reactivity worth

  18. Performance Evaluation of Palm Oil-Based Biodiesel Combustion in an Oil Burner

    OpenAIRE

    Abdolsaeid Ganjehkaviri; Mohammad Nazri Mohd Jaafar; Seyed Ehsan Hosseini; Anas Basri Musthafa

    2016-01-01

    This paper presents an experimental investigation of the combustion characteristics of palm methyl ester (PME), also known as palm oil-based biodiesel, in an oil burner system. The performance of conventional diesel fuel (CDF) and various percentages of diesel blended with palm oil-based biodiesel is also studied to evaluate their performance. The performance of the various fuels is evaluated based on the temperature profile of the combustor’s wall and emissions, such as nitrogen oxides (NOx)...

  19. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS; SEMIANNUAL

    International Nuclear Information System (INIS)

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO(sub x) emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO(sub x) burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO(sub x) burner geometry's

  20. Disposition of plutonium with HTGRs using Pu burner balls and Th breeder balls

    International Nuclear Information System (INIS)

    A concept of reactor system was developed with which weapons-grade Plutonium could be made perfectly worthless in use for weapons. It is a pebble bed type HTGR using Pu burner ball fuels and Th breeder ball fuels. The residual amounts of 239Pu in spent Pu balls become less than 1% of the initial loading. The power coefficient was made negative by reducing the parasitic neutron absorption reaction rate of 135Xe. (author)

  1. The porous burner - concept, technique, and fields of application; Der Porenbrenner - Konzept, Technik und Anwendungsgebiete

    Energy Technology Data Exchange (ETDEWEB)

    Durst, F.; Kesting, A.; Moessbauer, S.; Pickenaecker, K.; Pickenaecker, O.; Trimis, D. [Erlangen Univ. (Germany). Lehrstuhl fuer Stroemungsmechanik

    1997-06-01

    In its efforts to optimize combustion processes, the Institute of Fluid Dynamics in Erlangen (LSTM-Erlangen) has succeeded in developing the technology of combustion in a porous medium. This novel technique stands out for its advantages that no other modern burner technology can show so far. These advantages can be summarized by an extremely high, infinitely variable power dynamic range combined with minimum waste gas emissions and a very compact size. The concept of porous burner technology is briefly described in the present article. Starting with general principles, the basic design as well as the structures and the properties of materials that are suitable for the combustion in porous media are described. Additionally, some important fields of application for this novel technology are outlined including a precompetitive latent heat gas boiler. Moreover, first studies showing the possibility of applying the porous burner technology in gas turbine furnaces or as radiation burners, respectively, were performed. (orig.) [Deutsch] Im Zuge der Optimierung von Verbrennungsprozessen gelang am LSTM-Erlangen die Entwicklung der neuartigen Porenbrennertechnologie, die sich durch Vorteile auszeichnet, welche derart zur Zeit keine andere moderne Brennertechnologie aufweist. Diese Vorteile koennen mit einer aeusserst kompakten Bauweise und einer extrem hohen, stufenlosen Leistungsdynamik bei gleichzeitig minimaler Schadstoffemission charakterisiert werden. Das Konzept der Porenbrennertechnik wird in dem vorliegenden Artikel kurz vorgestellt. Ausgehend von allgemeinen Grundlagen werden neben den konstruktiven Grundueberlegungen und den Arten und Eigenschaften poroeser Strukturen, die sich fuer die Verbrennung in poroesen Medien eignen, einige wichtige Anwendungsgebiete dieser neuartigen Technologie dargestellt. Im Bereich der Haushaltstechnik wird ein vorwettbewerblicher Brennwert-Gas-Wassererhitzer vorgestellt, der auf dem Porenbrennerkonzept basiert. Ebenso werden erste

  2. Heat transfer characteristics of evaporator modules for a 2 t/h class multi burner boiler

    International Nuclear Information System (INIS)

    A finned tube type evaporator module has been applied to a water tube type industrial boiler adopting multiple burners. Fins change their geometry along the streamwise direction to maximize the performance, which makes it difficult to apply conventional bulk design procedure. A numerical simulation has been performed to evaluate the 2 or 3 dimensional effects such as inlet conditions. The numerical simulation also includes the conjugate heat transfer problem to predict the fin tip temperature.

  3. The method of waste liquid atomization/incineration by using ultrasonic industrial burners

    International Nuclear Information System (INIS)

    The problem of burning a fuel is closely related to distributing that fuel and mixing it with the combustion air within a pre-designated space, the combustion chamber. For fuel engineers, the rule of thumb is unchanged: mix it and it will burn. That is why the burner designer focuses his attention on incorporating the best possible atomization and mixing, equipment, i.c. in the end, on the construction of the atomizer nozzle and the control of the combustion air. It was these considerations plus the inability of conventional burners to meet the tough demands of today's applications that led DUMAG to undertake an intensive program of research which has now been crowned with success. Below, basic points drawn from the fundamental knowledge of all fuel engineers have been included to bring into sharper focus the operating principles of the DUMAG Ultrasonic Industrial Burner, a world class Austrian product. This paper describes a plant which has been operating without incident since October 1977. Its level of operational effectiveness is at least equivalent to that of a standard oil burner plant. The plant is also in full compliance with current environmental standards following the installation of additional safety equipment such as pre-combustion chambers, sensors to monitor pre-combustion chamber temperatures, cut-off valves for reaction water and solvents to block their flow if no heating oil is being fed in, flue gas density monitor, and finer atomization and better mixing by means of an ultrasonic system - even with fluctuations in the viscosity. By eliminating disposal costs and recovering power from liquid waste materials, the entire plant pays for itself within one year. (Original)

  4. Coal Particle Flow Patterns for O2 Enriched, Low NOx Burners

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer Sinclair Curtis

    2005-08-01

    This project involved a systematic investigation examining the effect of near-flame burner aerodynamics on standoff distance and stability of turbulent diffusion flames and the resultant NO{sub x} emissions from actual pulverized coal diffusion flames. Specifically, the scope of the project was to understand how changes in near-flame aerodynamics and transport air oxygen partial pressure can influence flame attachment and coal ignition, two properties essential to proper operation of low NO{sub x} burners. Results from this investigation utilized a new 2M tall, 0.5m in diameter combustor designed to evaluate near-flame combustion aerodynamics in terms of transport air oxygen partial pressure (Po{sub 2}), coal fines content, primary fuel and secondary air velocities, and furnace wall temperature furnish insight into fundamental processes that occur during combustion of pulverized coal in practical systems. Complementary cold flow studies were conducted in a geometrically similar chamber to analyze the detailed motion of the gas and particles using laser Doppler velocimetry. This final technical report summarizes the key findings from our investigation into coal particle flow patterns in burners. Specifically, we focused on the effects of oxygen enrichment, the effect of fines, and the effect of the nozzle velocity ratio on the resulting flow patterns. In the cold flow studies, detailed measurements using laser Doppler velocimetry (LDV) were made to determine the details of the flow. In the hot flow studies, observations of flame stability and measurements of NO{sub x} were made to determine the effects of the flow patterns on burner operation.

  5. Fuzzy logic for burner, solar boiler and catalytic converter; Brander, zonneboiler en katalysator vaag geregeld

    Energy Technology Data Exchange (ETDEWEB)

    Voorter, P.H.C.

    1995-05-01

    The application of fuzzy logic in the process control of a cement furnace at a Dutch cement industry (Enci in Maastricht) proved to be successful: the production increased by 4% and the energy consumption was reduced by 3% per ton product. Fuzzy logic can also be used in smaller energy equipment. Applications in a burner of a central heating boiler, a solar water heater and a catalytic converter in a motorcycle are discussed. 5 figs., 1 tab., 2 refs.

  6. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-06-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants and they are typically used without venting. The objective of this study is to quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass balance model was applied to estimate time-dependent pollutant concentrations throughout homes and the "exposure concentrations" experienced by individual occupants. The model was applied to estimate nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for one week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs, NO{sub 2} and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of CO and NO{sub 2} were obtained from available databases. Ventilation rates, occupancy patterns, and burner use were inferred from household characteristics. Proximity to the burner(s) and the benefits of using venting range hoods were also explored. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying less than 10%. The simulation model estimates that in homes using NGCBs without coincident use of venting range hoods, 62%, 9%, and 53% of occupants are routinely exposed to NO{sub 2}, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3000, and 20 ppb for NO{sub 2}, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health

  7. Predictive analysis of combined burner parameter effects on oxy-fuel flames

    OpenAIRE

    Boushaki, T.; Guessasma, S.; Sautet, J.C.

    2010-01-01

    Abstract The present paper aims at studying the influence of burner parameters with a separated jet configuration, namely nozzles diameters and separation distance between the jets, on the flame characteristics (lift-off positions of flame and flame length). The experimental layout considers the use of OH-chemilumenescence to measure the flame characteristics for different combinations of processing conditions. The predictive analysis is based on a neural computation that considers...

  8. Free of pollution gas - an utopia or attainable goal? Gas radiant burner with a small capacity

    International Nuclear Information System (INIS)

    The firm Viessmann has developed a gas radiant burner for boiler capacities up to 100 kN combusting gas with extremely low pollutant emissions. This is possible since from the reaction zone a considerable part of the combustion heat is delivered through radiation by means of a glowing special steel structure. The theoretical fundamentals are explained by means of considerations regarding the equilibrium and a reaction kinetic numerical model. (orig.)

  9. Testing and Modeling Fuel Regression Rate in a Miniature Hybrid Burner

    OpenAIRE

    Luciano Fanton; Christian Paravan; Luigi T. De Luca

    2012-01-01

    Ballistic characterization of an extended group of innovative HTPB-based solid fuel formulations for hybrid rocket propulsion was performed in a lab-scale burner. An optical time-resolved technique was used to assess the quasisteady regression history of single perforation, cylindrical samples. The effects of metalized additives and radiant heat transfer on the regression rate of such formulations were assessed. Under the investigated operating conditions and based on phenomenological models ...

  10. CFD simulation of a burner for syngas characterization and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Fantozzi, Francesco; Desideri, Umberto [University of Perugia (Italy). Dept. of Industrial Engineering], Emails: fanto@unipg.it, umberto.desideri@unipg.it; D' Amico, Michele [University of Perugia (Italy). Dept. of Energetic Engineering], E-mail: damico@crbnet.it

    2009-07-01

    Biomass and waste are distributed and renewable energy sources that may contribute effectively to sustainability if used on a small and micro scale. This requires the transformation through efficient technologies (gasification, pyrolysis and anaerobic digestion) into a suitable gaseous fuel to use in small internal combustion engines and gas turbines. The characterization of biomass derived syngas during combustion is therefore a key issue to improve the performance of small scale integrated plants because synthesis gas show significant differences with respect to Natural Gas (mixture of gases, low calorific value, hydrogen content, tar and particulate content) that may turn into ignition problems, combustion instabilities, difficulties in emission control and fouling. To this aim a burner for syngas combustion and LHV measurement through mass and energy balance was realized and connected to the rotary-kiln laboratory scale pyrolyzer at the Department of Industrial Engineering of the University of Perugia. A computational fluid dynamics (CFD) simulation of the burner was carried out considering the combustion of propane to investigate temperature and pressure distribution, heat transmission and distribution of the combustion products and by products. The simulation was carried out using the CFD program Star-CD. Before the simulation a geometrical model of the burner was built and the volume of model was subdivided in cells. A sensibility analysis of cells was carried out to estimate the approximation degree of the model. Experimental data about combustion emission were carried out with the propane combustion in the burner, the comparison between numerical results and experimental data was studied to validate the simulation for future works involved with the combustion of treated or raw (syngas with tar) syngas obtained from pyrolysis process. (author)

  11. Design and development of a SPMB (self-aspirating, porous medium burner) with a submerged flame

    International Nuclear Information System (INIS)

    This work reports design and development of a SPMB (self-aspirating porous medium burner) for replacing the self-aspirating, CB (conventional gaseous fuel, free flame burners), which are widely used in heating process of SMEs (small and medium scale enterprises) in Thailand but they have relatively low thermal efficiency of about 30 percent. Design of the SPMB relies on the same important characteristics of the CB, i.e. using the same mixing tube and the same fuel nozzle. The SPMB is formed by a packed bed of alumina spheres. The pressure drop across the packed bed, diameter of particles and a combustion chamber diameter are estimated by Ergun's equation in combination with Pe (Peclet number). The SPMB yields a submerged flame with an intense thermal radiation emitted downstream. An output radiation efficiency as high as 23 percent can be achieved at relatively high turn-down ratio of 2.65 and firing rate ranging from 23 to 61 kW. The SPMB shows a more complete combustion with relatively low CO emission of less than 200 ppm and acceptably high NOx emission of less than 98 ppm as compared with the CB throughout the range of firing rate studied, suggesting the possibility of the SPMB in replacing the CB. -- Highlights: → We successfully design and develop a new SPMB (self-aspirating porous medium burner) operating with a submerged flame. → High output radiation efficiency can be achieved through steady state submerged flame within the SPMB. → The firing rate is a dominant controlling parameter of the SPMB performance. → The SPMB yields a more complete combustion as compared with the CB (conventional gaseous fuel, free flame burners). → The SPMB suggests the possibility in replacing the CB for energy conservation.

  12. An Advanced Option for Sodium Cooled TRU Burner Loaded with Uranium-Free Fuels

    Energy Technology Data Exchange (ETDEWEB)

    You, WuSeung; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    The sodium cooled fast reactors of this kind that are called burners are designed to have low conversion ratio by reducing fuel volume fraction or reducing neutron leakage or increasing neutron absorption. However, the typical SFR burners have a limited ability of TRU burning rate due to the fact that they use metallic or oxide fuels containing fertile nuclides such as {sup 238}U and {sup 232}Th and these fertile nuclides generate fissile nuclides through neutron capture even if they are designed to have low conversion ratio (e.g., 0.6). To further enhance the TRU burning rate, the removal of the fertile nuclides from the initial fuels is required and it will accelerate the reduction of TRUs that are accumulated in storages of LWR spent fuels. However, it has been well-known 4 that the removals of the fertile nuclides from the fuel degrade the inherent safety of the SFR burner cores through the significant decrease of the fuel Doppler effect, the increase of sodium void reactivity worth, and reduction of delayed neutron fraction. In this work, new option for the sodium cooled fast TRU burner cores loaded with fertile-free metallic fuels was proposed and the new cores were designed by using the suggested option. The cores were designed to enhance the inherent safety characteristics by using axially central absorber region and 6 or 12 ZrH1.8 moderator rods per fuel assembly. For each option, we considered two different types of fertile-free ternary metallic fuel (i.e., TRU-W-10Zr and TRU-Ni-10Zr). Also, we performed the BOR (Balance of Reactivity) analyses to show the self-controllability under ATWS as a measure of inherent safety. The core performance analysis showed that the new cores using axially central absorber region substantially improve the core performance parameters such as burnup reactivity swing and sodium void reactivity worth.

  13. Flashback investigations in a premixed swirl burner by high-speed laser imaging

    OpenAIRE

    Heeger, Christof

    2012-01-01

    In this thesis flame flashback in a lean premixed swirl burner with central bluff-body was investigated using high speed multi-parameter laser imaging diagnostics. Starting with the fundamentals, the theoretical background of fluid dynamics was presented. This included turbulence, swirl and flows in boundary layers. Regarding the involved chemistry, the oxidation of methane was detailed and six mechanisms of nitric oxides formation together with reduction strategies were pictured. Lean premix...

  14. The influence of near burner region aerodynamics on the formation and emission of nitrogen oxides in a pulverized coal-fired furnace

    International Nuclear Information System (INIS)

    This paper reports that detailed measurements have been performed for two distinct pulverized-coal-fired burners in a large-scale laboratory furnace. Comparative in-flame data are archived and include gas temperature, O2, CO concentration, and an inventory of stable fuel nitrogen species and solids (HCN, NH3, N2O, NO, nitrogen release, mass flux, and particle burnout). A significant decrease in the NO concentration in the near burner region and a substantial decrease in the furnace exit values are observed when the central tube from a single annular orifice burner jet (normally the location of a gas or oil burner for light-up purposes) is replaced with a single central orifice burner jet of same cross-sectional area. The latter burner exhibits the delayed combustion phenomena normally associated with a tangentially fired system. The particle burnout remains unaffected due to the longer particles' residence time in the all-important oxygen lean internal recirculation zone

  15. Concept of the heavy water MA-burner with the neutral fuel matrix

    International Nuclear Information System (INIS)

    The concept of the heavy water moderated and cooled critical MA-burner with the solid neutral fuel matrix is proposed. The distinguishing feature of the system is the high thermal neutron flux level. This leads to the high neutron reaction rates on the actinides and, consequently, to the low values of MA transmutation time. The concept of MA stage-transmutation strategy is proposed for this system. The transmutation process is divided into several time-stages of different duration and each of them includes a proper number of the burner's identical fuel cycles with the stage-peculiar feed and discharge fuel compositions. Some basic design features of the proposed MA burner are given. Results of one MA stage-transmutation strategy are presented. It is concluded that the proposed concept promises to be an efficient one and may be realized based on the current technologies, regarding both system design and fuel reprocessing ones. Some possible ways of the stage-transmutation strategy efficiency further increasing are proposed, in particular, reasonable distribution of transmutation stages between the fast systems and the thermal ones. (author)

  16. FRACTAL CHARACTERISTICS OF AERODYNAMIC FIELD AT OUTLET OF LOW-NOx COAXIAL SWIRLING BURNER

    Institute of Scientific and Technical Information of China (English)

    WU Jiang; TIAN Feng-guo; ZHANG Ming-chuan; SONG Yu-bao; GAO Mao; YIN Bin

    2004-01-01

    The primary wind of a low-NOx coaxial swirling burner was visualized by using glycol as smog tracer. The information of the visual flow field was input into a computer through image-capturing card with CCD camera as the image-capturing element. The boundary of the visual zone, i.e., the interface of the primary wind and secondary wind was obtained by image processing. The fractal dimension (FD) of the boundary was examined and found to vary from 1.10 to 1.40 with S1, S2 and ζ1. It is concluded that when FD is small, the complex level of the interface is low, and mixture between the primary and secondary wind is weak near the exit of the burner at the initial phase of combustion resulting in stratified flow; when FD is big, mixture becomes strong near the exit of the burner. It is showed that the flow with FD ranging from 1.10 to 1.20 is stratified flow, which is benefical to reduce NOx yield and the flow with FD from 1.25 to 1.40 is mixed flow, producing much NOx. The mechanism of the forming of stratified flow and mixed flow was theoretically analyzed. The corresponding S1, S2 and ζ1 of these flows were given.

  17. A New Low NOx Combustion Concept for Fan-assisted gas Burners

    International Nuclear Information System (INIS)

    The Department of Heat and Mass Transfer at Aachen Technical University has developed a combustion concept which makes low-emission combustion inside a burn-up chamber possible. In addition to the very low NOx emissions (ENOX < 10 mg/kWh) the fan-assisted gas burner is characterised by the comparatively low noise emissions which are obtained from the stabilisation of the flame within the burn-up chamber and the low flow rates in the flame. The main aim of the fan-assisted gas burner development work is to influence the thermal nitrogen oxide formation in order to obtain minimum emissions combined with low combustion noise. High fan pressures and the resulting increase in turbulence energy in marketable fan-assisted burner concepts often cause a high excitation of thermo-acoustic vibrations which are heard as interfering combustion noises and are often emitted via the chimney into the living space. Low noise emission must therefore be taken into consideration when approaches to reduce nitrogen oxide emissions are developed. One approach which achieves this aim and is in use is combustion on porous surfaces. This reduces the flow rates and therefore the kinetic turbulence energy. One problem with these concepts is, however, the thermal loading of the material which is exposed to a high thermal alternating stress which sometimes makes it brittle. An uneven flow rate distribution can also lead to increased emission of harmful substances. (author)

  18. THEORETICAL ANALYSIS AND PRACTICE ON THE SELECTION OF KEY PARAMETERS FOR HORIZONTAL BIAS BURNER

    Institute of Scientific and Technical Information of China (English)

    刘泰生; 许晋源

    2003-01-01

    The air flow ratio and the pulverized-coal mass flux ratio between the rich and lean sides are the key parameters of horizontal bias burner. In order to realize high combustion efficiency, excellent stability of ignition, low NOx emission and safe operation, six principal demands are presented on the selection of key parameters. An analytical model is established on the basis of the demands, the fundamentals of combustion and the operation results. An improved horizontal bias burner is also presented and applied. The experiment and numerical simulation results show the improved horizontal bias burner can realize proper key parameters, lower NOx emission, high combustion efficiency and excellent performance of part load operation without oil support. It also can reduce the circumfluence and low velocity zone existing at the downstream sections of vanes, and avoid the burnout of the lean primary-air nozzle and the jam in the lean primary-air channel. The operation and test results verify the reasonableness and feasibility of the analytical model.

  19. Influence of the combustion chamber design on the equivalence ratio of atmospheric gas burners

    International Nuclear Information System (INIS)

    A lot of residential gas appliances for heating and hot water supply are equipped with atmospheric burners. To ensure flame stability and constant favourable equivalence ratio of fully premixed gas burners for low pollutant emissions the response of air entrainment on combustion chamber design has to be taken into account. Optimization of geometrical parameters is often based on experience and time consuming experimental work. This report deals with results of a theoretical and experimental study performed on three common gas burners with and without combustion chamber and heat exchanger installed. The influence of combustion chamber geometry and cooling on burnt and unburnt gas temperature and consequently density gradients has been examined with thermal loads in the normal operation range. This leads to changes in the pressure field of the injector tubes as well as in the combustion chamber and hence equivalence ratio due to variation of pressure losses and mass flow. A significant decrease of the equivalence ratio has been obtained especially under lower thermal load operation with a sealed combustion chamber which could result in flash back or increased CO- emissions. The optimized geometry yields an almost constant equivalence ratio under design operating condition. The methods described and coherences obtained can help to lower expenditure of time on development. (author)

  20. Design Strategy and Constraints for Medium-Power Lead-Alloy-Cooled Actinide Burners

    International Nuclear Information System (INIS)

    We outline the strategy and constraints adopted for the design of medium-power lead-alloy-cooled actinide-burning reactors that strive for a lower cost than accelerator-driven systems and for robust safety. Reduced cost is pursued through the use of (1) a modular design and maximum power rating to capitalize on an economy of scale within the constraints imposed by modularity, (2) a very compact and simple supercritical-CO2 power cycle, and (3) simplifications of the primary system allowed by the use of lead coolant. Excellent safety is pursued by adopting the integral fast reactor approach of achieving a self-controllable reactor that responds to all key abnormal occurrences, including anticipated transients without scrams, by a safe shutdown without exceeding core integrity limits. The three concepts developed are the fertile-free actinide burner for incineration of all transuranics from light water reactor (LWR) spent fuel, the fertile-free minor actinide (MA) burner for preferential burning of MAs working in tandem with LWRs or gas-cooled thermal reactors, and the actinide burner with thorium fuel aimed also at reducing the electricity generation costs through longer-cycle operation

  1. A Development and Application of a Ladle Regenerative Burner System for a Steel Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Seong Soo [POSCO, Pohang (Korea); Park, Heung Soo [Research Institute of Industrial Science and Technology, Pohang (Korea)

    2001-06-01

    This study developed a self-model on a regenerative ladle heating system, 300 millions kcal/hr of a burning capacity using COG fuel, and conducted a performance test through applying it to a field. The model has a structure, which can tilt through loading a mixed burner with a high-speed spay nozzle on a ladle cover, as well as a fixed duct and can inhale and exhaust the air through the inside of a rotating duct built horizontally. The regenerative system is designed of a rectangular parallelepiped, 0.56 m{sup 3} of an inside volume, and uses 25 mm diameter of a ceramic ball as a regenerating material. This study got conclusions through operating the installed system in field and testing burning as follows: 1) The structure of a burner and a duct system selected through this study is a vertical burning regenerative ladle heating system and suitable to a space application and an operation; 2) The self-designed burner shows the stable burning state, its ignition is excellent in high loading time, and the designed speed of a moving fluid in spray is adequate; 3) In the condition of the lowest absorption, the preheating temperature of burning air reaches to 530 deg C, and the sensible heat of burning exhaust gas can be recovered over 50%; 4) The saving effect of fuel gas due to the installation of this system is measured minimum 25%{approx}30%. 3 figs.

  2. Testing of a low NOx wire-mesh duct burner for micro-cogeneration unit

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, O.B.; Gauthier, J.E.D. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Hughes, P.M.; Brandon, R. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2007-07-01

    Combined heat and power (CHP) or cogeneration involves the generation of electricity in addition to the productive use of waste heat from the combustion process using the same primary fuel. An alternative to combined electrical power and heat generation is a micro-cogeneration unit which uses a micro-turbine as a prime mover. This type of unit is expected to result in a shift from large and centralized plants to smaller, more economical on-site generation plants. This paper presented a new low nitrogen oxide (NOx) wire-mesh duct burner (WMDB) for the development of a more efficient micro-cogeneration unit. In order to increase its thermal output, the low NOx WMDB was designed, built and integrated for evaluation with the Ingersol-Rand 70 kw micro-cogeneration unit. The wire-mesh burner had a conical shape and was manufactured by ACOTECH. The paper also discussed the advantages of micro-CHP units which are more attractive to building owners, retail establishments, commercial and light industrial facilities. Advantages include quality of the power supply; more economical, cleaner power; and the addition of new capacity without new transmission lines. It was concluded that low levels of emission were achieved with the development of a low NOx wire-mesh duct burner for a micro-cogeneration plant. 2 refs., 5 figs.

  3. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS; SEMIANNUAL

    International Nuclear Information System (INIS)

    Coal continues to be one of the principal energy sources for electric power generation in the United States. One of the biggest environmental challenges involved with coal utilization is the reduction of nitrogen oxides (NO(sub x)) formed during coal combustion. The most economical method of NO(sub x) abatement in coal combustion is through burner modification. Air-staging techniques have been widely used in the development of low-NO(sub x) pulverized coal burners, promoting the conversion of NO(sub x) to N(sub 2) by delaying the mixing in the fuel-rich zone near the burner inlet. Previous studies have looked at the mechanisms of NO(sub x) evolution at relatively low temperatures where primary pyrolysis is dominant, but data published for secondary pyrolysis in the pulverized coal furnace are scarce. In this project, the nitrogen evolution behavior during secondary coal pyrolysis will be explored. The end result will be a complete model of nitrogen evolution and NO(sub x) precursor formation due to primary and secondary pyrolysis

  4. Mathematical modeling and experimental tests of the air jets mixing process in a new prototype of lignite burner for lower NOx emissions

    International Nuclear Information System (INIS)

    In order to decrease the NOx emissions generated by a lignite steam generator, a new prototype burner has been designed. The burner should operate with staggered combustion, to achieve lower temperatures in the first zone of the flame. The paper presents in parallel the results of the mathematical model and experimental tests of the mixing process of primary, secondary and tertiary air-flow jets at environmental temperature. Keywords: mathematical modeling, experimental tests, lignite burner, NOx reduction

  5. Analysis of the cause of stopping up of honeycomb regenerative burner%蓄热式烧嘴堵塞因为分析

    Institute of Scientific and Technical Information of China (English)

    孙维强; 刘常鹏; 徐大勇; 贾振

    2011-01-01

    Studying the problems of jam during using the burner, analyzing the material and reason that caused the burner jam we find out the way that avoids the burner jam.%针对蜂窝式蓄热烧嘴在使用过程中出现的堵塞问题,分析了造成烧嘴堵塞的因为,并提出了避免烧嘴堵塞的办法.

  6. COST-EFFECTIVE CONTROL OF NOx WITH INTEGRATED ULTRA LOW-NOx BURNERS AND SNCR

    International Nuclear Information System (INIS)

    Coal-fired electric utilities are facing a serious challenge with regards to curbing their NO(sub x) emissions. At issue are the NO(sub x) contributions to the acid rain, ground level ozone, and particulate matter formation. Substantial NO(sub x) control requirements could be imposed under the proposed Ozone Transport Rule, National Ambient Air Quality Standards, and New Source Performance Standards. McDermott Technology, Inc. (MTI), Babcock and Wilcox (B and W), and Fuel Tech are teaming to provide an integrated solution for NO(sub x) control. The system will be comprised of an ultra low-NO(sub x) pulverized coal (PC) burner technology plus a urea-based, selective non-catalytic reduction (SNCR) system. This system will be capable of meeting a target emission limit of 0.15 lb NO(sub x)/10(sup 6) Btu and target ammonia (NH3) slip level targeted below 5 ppmV for commercial units. Our approach combines the best available combustion and post-combustion NO(sub x) control technologies. More specifically, B and W's DRB-4Z TM ultra low-NO(sub x) PC burner technology will be combined with Fuel Tech's NO(sub x)OUT (SNCR) and NO(sub x)OUT Cascade (SNCR/SCR hybrid) systems and jointly evaluated and optimized in a state-of-the-art test facility at MTI. Although the NO(sub x)OUT Cascade (SNCR/SCR hybrid) system will not be tested directly in this program, its potential application for situations that require greater NO(sub x) reductions will be inferred from other measurements (i.e., SNCR NO(sub x) removal efficiency plus projected NO(sub x) reduction by the catalyst based on controlled ammonia slip). Our analysis shows that the integrated ultra low-NO(sub x) burner and SNCR system has the lowest cost when the burner emissions are 0.25 lb NO(sub x)/10(sup 6) Btu or less. At burner NO(sub x) emission level of 0.20 lb NO(sub x)/10(sup 6) Btu, the levelized cost per ton of NO(sub x) removed is 52% lower than the SCR cost

  7. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX

  8. Destruction of weapons-grade plutonium with pebble bed type HTGRs using burner balls and breeder balls

    International Nuclear Information System (INIS)

    As the method of disposing the plutonium coming from disassembled weapons, the method of burning the fuel in which the plutonium is mixed with a parent material in LWRs or the disposal by glass solidification is proposed. In the former method, it is desirable to do the reprocessing of spent fuel for effectively utilizing fission products. The latter method needs watch against the diversion of the plutonium. The authors devised the method of effectively annihilating plutonium by separating into the burner balls of plutonium and the breeder balls of a parent material, and burning those by mixing in a pebble bed type high temperature gas-cooled reactor, while continuously exchanging them. It was clarified from the aspect of nuclear characteristics that by using this method, 239Pu can be annihilated to the state of enabling the direct abandonment without reprocessing. The flow of burner balls and breeder balls in the reactor is shown, and multi-pass fuel exchange method was adopted to burn Pu in burner balls up. The rate of Pu annihilation was determined by the change of the amount of Pu for the burnup evaluated by lattice burning calculation. The maximum amount of Pu charge in one burner ball is limited by the maximum allowable power output of burner balls. (K.I.)

  9. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-09-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, especially NOX. The project involved operating gas reburning technology combined with low NO, burner technology (GR-LNB) on a coal-fired utility boiler. Low NOX burners are designed to create less NOX than conventional burners. However, the NO, control achieved is in the range of 30-60-40, and typically 50%. At the higher NO, reduction levels, CO emissions tend to be higher than acceptable standards. Gas Reburning (GR) is designed to reduce the level of NO. in the flue gas by staged fuel combustion. When combined, GR and LNBs work in harmony to both minimize NOX emissions and maintain an acceptable level of CO emissions. The demonstration was performed at Public Service Company of Colorado's (PSCO) Cherokee Unit 3, located in Denver, Colorado. This unit is a 172 MW. wall-fired boiler that uses Colorado bituminous, low-sulfur coal and had a pre GR-LNB baseline NOX emission of 0.73 lb/1 Oe Btu. The target for the project was a reduction of 70 percent in NOX emissions. Project sponsors included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation (EER). EER conducted a comprehensive test demonstration program over a wide range of boiler conditions. Over 4,000 hours of operation were achieved. Intensive measurements were taken to quantify the reductions in NOX emissions, the impact on boiler equipment and operability, and all factors influencing costs. The results showed that GR-LNB technology achieved excellent emission reductions. Although the performance of the low NOX burners (supplied by others) was somewhat less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 180A. The performance goal

  10. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a

  11. Central recirculation zone analysis in an unconfined tangential swirl burner with varying degrees of premixing

    Science.gov (United States)

    Valera-Medina, A.; Syred, N.; Kay, P.; Griffiths, A.

    2011-06-01

    Swirl-stabilised combustion is one of the most widely used techniques for flame stabilisation, uses ranging from gas turbine combustors to pulverised coal-fired power stations. In gas turbines, lean premixed systems are of especial importance, giving the ability to produce low NOx systems coupled with wide stability limits. The common element is the swirl burner, which depends on the generation of an aerodynamically formed central recirculation zone (CRZ) and which serves to recycle heat and active chemical species to the root of the flame as well as providing low-velocity regions where the flame speed can match the local flow velocity. Enhanced mixing in and around the CRZ is another beneficial feature. The structure of the CRZ and hence that of the associated flames, stabilisation and mixing processes have shown to be extremely complex, three-dimensional and time dependent. The characteristics of the CRZ depend very strongly on the level of swirl (swirl number), burner configuration, type of flow expansion, Reynolds number (i.e. flowrate) and equivalence ratio. Although numerical methods have had some success when compared to experimental results, the models still have difficulties at medium to high swirl levels, with complex geometries and varied equivalence ratios. This study thus focuses on experimental results obtained to characterise the CRZ formed under varied combustion conditions with different geometries and some variation of swirl number in a generic swirl burner. CRZ behaviour has similarities to the equivalent isothermal state, but is strongly dependent on equivalence ratio, with interesting effects occurring with a high-velocity fuel injector. Partial premixing and combustion cause more substantive changes to the CRZ than pure diffusive combustion.

  12. Low NOx burners--prediction of emissions concentration based on design, measurements and modelling.

    Science.gov (United States)

    Bebar, Ladislav; Kermes, Vit; Stehlik, Petr; Canek, Josef; Oral, Jaroslav

    2002-01-01

    This paper describes possible ways of prediction of nitrogen oxides formation during combustion of hydrocarbon fuels. Mathematical model based on experimental data acquired from the testing facility has been developed. The model enables to predict--at a high probability measure--the extent of nitrogen oxides emissions. The mathematical model of nitrogen oxide formation relies on the application of simplified kinetic equations describing the formation of nitrogen oxides at so-called equivalent temperature. It is a semi-empirical model that comes out of experimental knowledge. An important role played by the burner design itself has been emphasized and therefore an important supplementary parameter of the model is the characteristic of the burner design. It has been established that there was a good agreement between experimental data and those calculated by the application of the model to various conditions marked out by different combustion parameters in the combustion chamber. The results obtained by application of the model respect the influence of parameters validated by industrial practice that control the formation of nitrogen oxides in the course of fuel combustion. Such parameters-first of all-tare the temperature in the combustion chamber and the concentration of the substances taking part in the reaction. By application of the model, it is possible to assess the consequence of, for example the surplus of combustion air, the increase of temperature of combustion air, the supply of inert gas, etc. on the nitrogen oxides emissions of the operating burner under evaluation. Efficient combining of experience and sophisticated approach together with importance of thus access for an improved design are shown. PMID:12099503

  13. Structures and stabilization of low calorific value gas turbulent partially premixed flames in a conical burner

    Energy Technology Data Exchange (ETDEWEB)

    Yan, B.; Liu, C. [Faculty of Environmental Science and Engineering, Tianjin University, 300072 Tianjin (China); Division of Fluid Mechanics, Lund University, 221 00 Lund (Sweden); Li, B.; Sun, Z.W.; Li, Z.S.; Alden, M. [Division of Combustion Physics, Lund University, 221 00 Lund (Sweden); Baudoin, E.; Bai, X.S. [Division of Fluid Mechanics, Lund University, 221 00 Lund (Sweden); Chen, G. [Faculty of Environmental Science and Engineering, Tianjin University, 300072 Tianjin (China); Mansour, M.S. [Cairo University, Natl Inst Laser Enhanced Sci., Cairo (Egypt)

    2010-04-15

    Experiments are carried out on partially premixed turbulent flames stabilized in a conical burner. The investigated gaseous fuels are methane, methane diluted with nitrogen, and mixtures of CH{sub 4}, CO, CO{sub 2}, H{sub 2} and N{sub 2}, simulating typical products from gasification of biomass, and co-firing of gasification gas with methane. The fuel and air are partially premixed in concentric tubes. Flame stabilization behavior is investigated and significantly different stabilization characteristics are observed in flames with and without the cone. Planar laser induced fluorescence (LIF) imaging of a fuel-tracer species, acetone, and OH radicals is carried out to characterize the flame structures. Large eddy simulations of the conical flames are carried out to gain further understanding of the flame/flow interaction in the cone. The data show that the flames with the cone are more stable than those without the cone. Without the cone (i.e. jet burner) the critical jet velocities for blowoff and liftoff of biomass derived gases are higher than that for methane/nitrogen mixture with the same heating values, indicating the enhanced flame stabilization by hydrogen in the mixture. With the cone the stability of flames is not sensitive to the compositions of the fuels, owing to the different flame stabilization mechanism in the conical flames than that in the jet flames. From the PLIF images it is shown that in the conical burner, the flame is stabilized by the cone at nearly the same position for different fuels. From large eddy simulations, the flames are shown to be controlled by the recirculation flows inside cone, which depends on the cone angle, but less sensitive to the fuel compositions and flow speed. The flames tend to be hold in the recirculation zones even at very high flow speed. Flame blowoff occurs when significant local extinction in the main body of the flame appears at high turbulence intensities. (author)

  14. Evaluation of Sodium Void Effect in the Kalimer-600 TRU Burner

    International Nuclear Information System (INIS)

    Outline of this study: • To evaluate the coolant void effect in the KALIMER-600 TRU burner: - Effects of varying sodium content & voiding location; - Self-shielding change & fuel temperature feedback; - Effects of fission products buildup & control rods position; - Differences in applying calculation models & methods. • Analysis tools: - DIF3D (ANL): three-dimensional multi-group diffusion code; - PERT-K (KAERI): DIF3D-based perturbation code; - TRANSX & DANTSYS to prepare the neutron cross-sections. ◆ To reveal details on responsive core reactivity behaviors upon various coolant voiding accident scenarios aimed at improving the passive safety characteristics of the core in the standard design phase (2012-2017)

  15. COAL PARTICLE FLOW PATTERNS FOR O2 ENRICHED, LOW NOx BURNERS; F

    International Nuclear Information System (INIS)

    Over the past year, the hot flow studies have focused on the validation of a novel 2M near-flame combustion furnace. The 2M furnace was specifically designed to investigate burner aerodynamics and flame stability phenomena. Key accomplishments include completion of coal and oxygen mass balance calculations and derivation of emission conversion equations, upgrade of furnace equipment and flame safety systems, shakedown testing and partial completion of a parametric flame stability study. These activities are described in detail below along with a description of the 2M furnace and support systems

  16. Optimization of a premixed low-swirl burner for industrial applications

    OpenAIRE

    Fable, S.E.; Cheng, R. K.

    2000-01-01

    This study was motivated by recent tests results showing that a 5cm i.d. low-swirl burner (LSB) stabilizes ultra-lean premixed turbulent flames up to 600kW. A parametric study has been performed to determine the optimum ultra-lean LSB configuration, i.e. one that will achieve low NOx and flame stability, for thermal input between 15kW to 150kW. Using Laser Doppler Velocimetry (LDV), non-reacting centerline velocity and rms fluctuation profiles were measured, and were found to show self-...

  17. Numerical Study of NOx and Flame Shape of a DLE Burner

    OpenAIRE

    Hamedi, Naser

    2012-01-01

    For natural gas combustion, there is a large amount of experience in the gas turbine industry. However, much of the design work is based on costly combustion tests due to insufficient accuracy of existing prediction tools for data such as emissions and effects due to fuel composition. In the present work, Computational Fluid Dynamics (CFD) approach is used to study partially premixed combustion in the 3rd generation DLE (Dry Low Emission) burner that is used in SGT-700 and SGT-800 gas turbine...

  18. Fundamental experiments for FBX burner linear fusion reactor core with FBX plasma flow

    International Nuclear Information System (INIS)

    FBX is a production and confinement scheme of a spherical torus that carries a strong plasma current with both toroidal and poloidal components. On the other hand HI-I is a fundamental experiment on moving plasma. With two of them, a new type of fusion reactor scheme FBX-III BURNER (III) is established. In this paper, the fundamental results of the first two types of experiments are introduced to find out a total plasma behavior of the long term project. 9 refs., 5 figs

  19. A small scale solar agricultural dryer with biomass burner and heat storage back-up heater

    Energy Technology Data Exchange (ETDEWEB)

    Tarigan, Elieser [Univ. Surabaya (UBAYA) Jl. Raya Kalirungkut, Surabaya (Indonesia); Tekasakul, Perapong [Prince of Songkla Univ., Hat Yai, Songkhla (Thailand)

    2008-07-01

    This paper describes a small scale solar agricultural dryer with a simple biomass burner and heat storage back-up heater. The key design features of the dryer are the combination of direct and indirect type solar dryer, the jacket and gap enclosing the drying chamber as a hot gas passage, and the arrangement of the real bricks in the heat storage system. The overall thermal efficiency of the dryer, tested for drying of some different agricultural products, was found to be in the range of 3% - 13%. The overall thermal efficiency of the biomass back-up heater was found to be about 20%. (orig.)

  20. The Study of Numerical Simulation of Oxygen-‎enriched Burner System

    OpenAIRE

    Yuesheng Fan; Pengfei Si

    2010-01-01

    In order to reduce overall fuel consumption, or partially substitute a “valuable” fuel with a ‎poor one, in electric power plant boilers, oxygen enrichment of combustion air can be very ‎effective. The paper proposes an oxygen-enriched ignition system which based on the ‎existing pulverized coal fired boiler ignition devices. Small coal particle is suitable for this ‎system. The new burner includes inside, outside and middle casings. And it transfer heat in ‎two ways of downstream and upstrea...

  1. Premixing hydrogen burners for surface refinement of glass; Vormischende Wasserstoffbrenner zur Oberflaechenbearbeitung von Glas

    Energy Technology Data Exchange (ETDEWEB)

    Goerisch, Matthias [Linde AG, Linde Gas Deutschland, Nuernberg (Germany)

    2013-02-15

    As a result, inter alia, of unceasing globalisation, European glass producers in practically all sectors - flat glass, container glass, crystal glass and special glasses - are faced with ever tougher competition from Asia. In the 2012 to 2015 period and beyond, the principal focuses in the manufacture of glass products will again be on reducing overall production costs and increasing process efficiency wherever possible, on greater productivity and on enhanced product (surface) quality. To meet these challenges in the field of surface refinement and flame polishing of glass products as efficiently as possible, Linde AG/Linde Gases Division has developed premixing Hydropox {sup registered} burner technology for hydrogen/oxygen fuels. (orig.)

  2. Interim design status and operational report for remote handling fixtures: primary and secondary burners

    International Nuclear Information System (INIS)

    The HTGR reprocessing flowsheet consists of two basic process elements: (1) spent fuel crushing and burning and (2) solvent extraction. Fundamental to these elements is the design and development of specialized process equipment and support facilities. A major consideration of this design and development program is equipment maintenance: specifically, the design and demonstration of selected remote maintenance capabilities and the integration of these into process equipment design. This report documents the current status of the development of remote handling and maintenance fixtures for the primary and secondary burners

  3. Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls

    Energy Technology Data Exchange (ETDEWEB)

    Marc Cremer; Kirsi St. Marie; Dave Wang

    2003-04-30

    This is the first Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts. A project kickoff meeting was held in conjunction with NETL's 2002 Sensors and Control Program Portfolio Review and Roadmapping Workshop, in Pittsburgh, PA during October 15-16, 2002. Dr. Marc Cremer, REI, and Dr. Paul Wolff, EPRI I&C, both attended and met with the project COR, Susan Maley. Following the review of REI's database of wall-fired coal units, the project team selected a front wall fired 150 MW unit with a Riley Low NOx firing system including overfire air for evaluation. In addition, a test matrix outlining approximately 25 simulations involving variations in burner secondary air flows, and coal and primary air flows was constructed. During the reporting period, twenty-two simulations have been completed, summarized, and tabulated for sensitivity analysis. Based on these results, the team is developing a suitable approach for quantifying the sensitivity coefficients associated with the parametric tests. Some of the results of the CFD

  4. Preliminary design and analysis on nuclear fuel cycle for fission-fusion hybrid spent fuel burner

    International Nuclear Information System (INIS)

    A wet-processing-based fuel cycle and a dry-processing were designed for a fission-fusion hybrid spent fuel burner (FDS-SFB). Mass flow of SFB was preliminarily analyzed. The feasibility analysis of initial loaded fuel inventory, recycle fuel fabrication and spent fuel reprocessing were preliminarily evaluated. The results of mass flow of FDS-SFB demonstrated that the initial loaded fuel inventory, recycle fuel fabrication and spent fuel reprocessing of nuclear fuel cycle of FDS-SFB is preliminarily feasible. (authors)

  5. A higher-order projection method for the simulation of unsteady turbulent nonpremixed combustion in an industrial burner

    Energy Technology Data Exchange (ETDEWEB)

    Pember, R.B.; Almgren, A.S.; Bell, J.B.; Colella, P.; Howell, L.; Lai, M.

    1994-12-01

    The modeling of transient effects in burners is becoming increasingly important. The problem of ensuring the safe performance of an industrial burner, for example, is much more difficult during the startup or shutdown phases of operation. The peak formation of pollutants is also much more dependent on transient behavior, in particular, on peak temperatures, than on average operating conditions. In this paper we present a new methodology for the modeling of unsteady, nonpremixed, reacting flow in industrial burners. The algorithm uses a second-order projection method for unsteady, low-Mach number reacting flow and accounts for species diffusion, convective and radiative heat transfer, viscous transport, turbulence, and chemical kinetics. The time step used by the method is restricted solely by an advective CFL condition. The methodology is applicable only in the low-Mach number regime (M < .3), typically met in industrial burners. The projection method for low-Mach number reacting flow is an extension of a higher-order projection method for incompressible flow [9, 5, 3,4] to the low-Mach number equations of reacting flow. Our method is based on an approximate projection formulation. Radiative transport is modeled using the discrete ordinates method. The main goal of this work is to introduce and investigate the simulation of burners using a higher-order projection method for low-Mach number combustion. As such, the methodology is applied here only to axisymmetric flow in gas-fired burners for which the boundaries can be aligned with a rectangular grid. The perfect gas law is also assumed. In addition, we use a one-step reduced kinetics mechanism, a {kappa} {minus} {epsilon} model for turbulent transport, and a simple turbulent combustion model.

  6. Design process and instrumentation of a low NOx wire-mesh duct burner for micro-cogeneration unit

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, O.B.; Gauthier, J.E.D. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Hughes, P.M.; Brandon, R. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2007-07-01

    Air pollution and global climate change have become a serious environmental problem leading to increasingly stringent government regulations worldwide. New designs and methods for improving combustion systems to minimize the production of toxic emissions, like nitrogen oxides (NOx) are therefore needed. In order to control smog, acid rain, ozone depletion, and greenhouse-effect warming, a reduction of nitrogen oxide is necessary. One alternative for combined electrical power and heat generation (CHP) are micro-cogeneration units which use a micro-turbine as a prime mover. However, to increase the efficiencies of these units, micro-cogeneration technology still needs to be developed further. This paper described the design process, building, and testing of a new low NOx wire-mesh duct burner (WMDB) for the development of a more efficient micro-cogeneration unit. The primary goal of the study was to develop a practical and simple WMDB, which produces low emissions by using lean-premixed surface combustion concept and its objectives were separated into four phases which were described in this paper. Phase I involved the design and construction of the burner. Phase II involved a qualitative flow visualization study for the duct burner premixer to assist the new design of the burner by introducing an efficient premixer that could be used in this new application. Phase III of this research program involved non-reacting flow modeling on the burner premixer flow field using a commercial computational fluid dynamic model. In phase IV, the reacting flow experimental investigation was performed. It was concluded that the burner successfully increased the quantity and the quality of the heat released from the micro-CHP unit and carbon monoxide emissions of less than 9 ppm were reached. 3 refs., 3 figs.

  7. Application of a Central Composite Design for the Study of NOx Emission Performance of a Low NOx Burner

    OpenAIRE

    Marcin Dutka; Mario Ditaranto; Terese Løvås

    2015-01-01

    In this study, the influence of various factors on nitrogen oxides (NOx) emissions of a low NOx burner is investigated using a central composite design (CCD) approach to an experimental matrix in order to show the applicability of design of experiments methodology to the combustion field. Four factors have been analyzed in terms of their impact on NOx formation: hydrogen fraction in the fuel (0%–15% mass fraction in hydrogen-enriched methane), amount of excess air (5%–30%), burner head posit...

  8. Application of a Central Composite Design for the Study of NO x Emission Performance of a Low NO x Burner

    OpenAIRE

    Marcin Dutka; Mario Ditaranto; Terese Løvås

    2015-01-01

    In this study, the influence of various factors on nitrogen oxides (NO x ) emissions of a low NO x burner is investigated using a central composite design (CCD) approach to an experimental matrix in order to show the applicability of design of experiments methodology to the combustion field. Four factors have been analyzed in terms of their impact on NO x formation: hydrogen fraction in the fuel (0%–15% mass fraction in hydrogen-enriched methane), amount of excess air (5%–30%), burner hea...

  9. Performance Evaluation of Palm Oil-Based Biodiesel Combustion in an Oil Burner

    Directory of Open Access Journals (Sweden)

    Abdolsaeid Ganjehkaviri

    2016-02-01

    Full Text Available This paper presents an experimental investigation of the combustion characteristics of palm methyl ester (PME, also known as palm oil-based biodiesel, in an oil burner system. The performance of conventional diesel fuel (CDF and various percentages of diesel blended with palm oil-based biodiesel is also studied to evaluate their performance. The performance of the various fuels is evaluated based on the temperature profile of the combustor’s wall and emissions, such as nitrogen oxides (NOx and carbon monoxide (CO. The combustion experiments were conducted using three different oil burner nozzles (1.25, 1.50 and 1.75 USgal/h under lean (equivalence ratio (Φ = 0.8, stoichiometric (Φ = 1 and rich fuel (Φ = 1.2 ratio conditions. The results show that the rate of emission formation decreases as the volume percent of palm biodiesel in a blend increases. PME combustion tests present a lower temperature inside the chamber compared to CDF combustion. High rates of NOx formation occur under lean mixture conditions with the presence of high nitrogen and sufficient temperature, whereas high CO occurs for rich mixtures with low oxygen presence.

  10. Optimization of a premixed low-swirl burner for industrial applications

    International Nuclear Information System (INIS)

    This study was motivated by recent tests results showing that a 5cm i.d. low-swirl burner (LSB) stabilizes ultra-lean premixed turbulent flames up to 600kW. A parametric study has been performed to determine the optimum ultra-lean LSB configuration, i.e. one that will achieve low NOx and flame stability, for thermal input between 15kW to 150kW. Using Laser Doppler Velocimetry (LDV), non-reacting centerline velocity and rms fluctuation profiles were measured, and were found to show self-similar behavior. This self-similarity may explain why the flame remains stationary relative to the burner exit despite a change in bulk flow velocity from 5 to 90m/s. The recess distance of the swirler affects the shape of the mean and rms velocity profiles. Lean blow-off limits were also determined for various recess distances, and an optimum exit length was found that provides stable operation for ultra-lean flames

  11. Advancement of Cellular Ceramics Made of Silicon Carbide for Burner Applications

    International Nuclear Information System (INIS)

    Lower emissions of CO and NOx as well as a higher power density were observed in combustion processes performed in porous media like ceramic foams. Only a few materials are applicable for porous burners. Open-celled ceramic foams made of silicon carbide are of particular interest because of their outstanding properties. Two different SiC materials have been investigated, silicon-infiltrated silicon carbide (SiSiC) and pressureless sintered silicon carbide (SSiC). The oxidation behaviour of both has been characterized by furnace oxidation and burner tests up to 500 h operating time. Up to a temperature of 1200 deg. C SiSiC exhibited a good oxidation resistance in combustion gases by forming a protective layer of silica. High inner porosity up to 30% in the ceramic struts was found in the SSiC material. Caused by inner oxidation processes the pure material SSiC allows only short time applications with a temperature limit of 1550 deg. C in combustion gases. An increase of the lifetime of the SSiC foams was obtained by development of a new SSiC with an inner porosity of less than 12%. The result was a considerable reduction of the inner oxidation processes in the SSiC struts.

  12. OECD/NEA Benchmark Calculations for an Accelerator-Driven Minor Actinide Burner

    International Nuclear Information System (INIS)

    Noticing the current interest in accelerator-driven systems as actinide waste burners, the OECD/NEA has organised an international benchmark exercise for evaluating the performance of computational tools and nuclear data for this type of system. The benchmark model simulates a lead-bismuth cooled sub-critical system driven by a beam of 1 GeV protons. The core design is similar to that of an ALMR, and the fuel composition is typical for a minor actinide burner in a 'double strata' fuel cycle. Lead-bismuth was chosen as target material. Since the intention was to validate data and codes in the energy region below 20 MeV, a predefined spallation neutron source was provided to the benchmark participants. The solutions from seven organisations (ANL, CIEMAT, KAERI, JAERI, PSI/CEA, RIT and SCK-CEN) are based on three different basic data libraries (ENDF/B-VI, JEF-2.2 and JENDL-3.2) and both deterministic and Monte Carlo reactor codes. Significant discrepancies are observed for important neutronic parameters such as initial keff, burn-up reactivity swing and flux distribution. Additional investigations of the basic nuclear data, the data processing methods and the approximations for the reactor simulation will be necessary to understand the origin of all observed discrepancies. (authors)

  13. The oil pore burner for household furnaces; Der Oelporenbrenner fuer die Haushaltsfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Heidermann, T.; Keppler, M.; Rutsche, A.; Hatzfeld, O.; Koehne, H.; Lucka, K.; Rudolphi, R.; Trimis, D.; Durst, F.

    1999-07-01

    While heating of modern buildings requires less and less energy, sufficient heat is still required for water heating. There is a trend towards compact, low-emission and high-efficiency systems. The oil pore burner developed at LSTM Erlangen is a promising technology, which combines the cold flame evaporation concept of EST of RWTH Aachen with the pore burner technology. The result is a modern system for high-modulating, low-emission and low-noise combustion of heating oil with exhaust condensation. A 10% improvement in furnace efficiency is achieved. [German] Waehrend der Raumwaermebedarf moderner Wohneinheiten stetig sinkt, erfordert die Warmwasserbereitung nach wie vor die Bereitstellung ausreichend grosser Waermeleistungen. Aus diesem Grund geht der Trend bei modernen Oelfeuerungsanlagen im Haushaltsbereich in zu kompakten, emissionsarmen Einheiten mit Brennwertnutzung. Einen Druchbruch verspricht der Oelporenbrenner. Der Porenbrennertechnik wurde am LSTM Erlangen entwickelt. Der Oelporenbrenner vereinigt das am EST der RWTH Aachen entwickelte Verdampfungskonzept unter Nutzung der Kalten Flammen mit der Porenbrennertechnik zu einem neuartigen Heizgeraetekonzept, das die hochmodulierbare, schadstoff- und geraeuscharme Verbrennung von Heizoel mit Brennwertnutzung ermoeglicht. Dadurch wird eine Verbesserung des Feuerungwirkungsgrades bis zu 10% erreicht. (orig.)

  14. Feasibility investigation and combustion enhancement of a new burner functioning with pulverized solid olive waste

    Directory of Open Access Journals (Sweden)

    Bounaouara H., Sautet J.C., Ben Ticha H., Mhimid A.

    2014-01-01

    Full Text Available This article describes an experimental study on solid olive residue (olive cake combustion in form of pulverized jet. This is a contribution to the valorization of olive residue as a source of renewable energy available in the majority of mediterranean countries. A sample of olive cake from Tunisian origin is prepared for the experiment; this sample is crushed, dried and sifted in order to obtain the desired particles form. A new burner made up of a coaxial cylindrical tube is especially designed and fabricated. In order to start the combustion of olive cake and maintain the main flame, two types of pilot flame were used: a central premixed flame of methane/oxygen and an annular diffusion flame of methane. This paper shows the conditions for an efficient olive cake burner operation in free air. The effects of particle size and pilot flame position have been discussed. The olive cake combustion is possible only with particles at a size below 200 μm. Moreover, the combustion maintained by the annular pilot flame ensures better burning conditions than the central pilot flame. Finally, the inserted preheating system has improved the olive cake combustion.

  15. Behaviors of tribrachial edge flames and their interactions in a triple-port burner

    KAUST Repository

    Yamamoto, Kazuhiro

    2015-05-01

    In a triple-port burner, various non-premixed flames have been observed previously. Especially for the case with two lifted flames, such configuration could be suitable in studying interaction between two tribrachial flames. In the present study, the flame characteristics have been investigated numerically by adopting a reduced kinetic mechanism in the triple-port burner. Four different types of flame configurations, including two attached flames, inner lifted/outer attached flames, inner attached/outer lifted flames, and twin lifted flames, were successfully simulated depending on the flow conditions. The representative edge propagation speed of a single lifted flame or an upstream lifted flame in the case of twin lifted flames increased as the liftoff height became higher. In the twin lifted flames, the inner lifted flame was affected appreciably when the other flame was located further upstream such that the lifted flame located further downstream encountered the axial velocity acceleration induced by the gas expansion from the lifted flame located upstream, while thermal effects were not observed since the temperature of the incoming flow toward the lifted flame was not affected. A unique flip-flop behavior between the inner and outer flames, observed experimentally previously, was successfully captured in the simulation such that the inner lifted flame became attached to the nozzle as the liftoff height of the outer lifted flame grew higher with an increase in the outer air velocity.

  16. Large Eddy Simulation of Flow Structures in the Sydney Swirl Burner

    DEFF Research Database (Denmark)

    Yang, Yang

    This thesis represents the research on swirling flow using large eddy simulation(LES). Three cases from the Sydney swirl burner database have been chosen as test cases; one medium swirl isothermal case N29S054, one high swirl isothermal case N16S159 and one medium swirl reacting case SM1. The the...... LES method strategy has limitations concerning wall bounded flows, especially for complex geometries typically found in industry. Multi‐phase flows need special treatment.......This thesis represents the research on swirling flow using large eddy simulation(LES). Three cases from the Sydney swirl burner database have been chosen as test cases; one medium swirl isothermal case N29S054, one high swirl isothermal case N16S159 and one medium swirl reacting case SM1. The...... theories of LES and the corresponding closure models have been well developed. This research focuses on statistical analysing flow field and characteristic features. Validation studies show good agreement in the isothermal cases, while for the reacting case, the LES predictions are less satisfactory. There...

  17. Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners

    Energy Technology Data Exchange (ETDEWEB)

    Lobscheid, Agnes; Singer, Brett C.; Klepeis, Neil E.

    2011-06-01

    We developed a physics-based data-supported model to investigate indoor pollutant exposure distributions resulting from use of natural gas cooking appliances across households in California. The model was applied to calculate time-resolved indoor concentrations of CO, NO2 and formaldehyde resulting from cooking burners and entry with outdoor air. Exposure metrics include 1-week average concentrations and frequency of exceeding ambient air quality standards. We present model results for Southern California (SoCal) using two air-exchange scenarios in winter: (1) infiltration-only, and (2) air exchange rate (AER) sampled from lognormal distributions derived from measurements. In roughly 40percent of homes in the SoCal cohort (N=6634) the 1-hour USEPA NO2 standard (190 ?g/m3) was exceeded at least once. The frequency of exceeding this standard was largely independent of AER assumption, and related primarily to building volume, emission rate and amount of burner use. As expected, AER had a more substantial impact on one-week average concentrations.

  18. The Study of Numerical Simulation of Oxygen-‎enriched Burner System

    Directory of Open Access Journals (Sweden)

    Yuesheng Fan

    2010-12-01

    Full Text Available In order to reduce overall fuel consumption, or partially substitute a “valuable” fuel with a ‎poor one, in electric power plant boilers, oxygen enrichment of combustion air can be very ‎effective. The paper proposes an oxygen-enriched ignition system which based on the ‎existing pulverized coal fired boiler ignition devices. Small coal particle is suitable for this ‎system. The new burner includes inside, outside and middle casings. And it transfer heat in ‎two ways of downstream and upstream. The burner has authorized a patent in China. A ‎numerical simulation theory were used to analysis it. The results indicate that: it can ‎increase the maximum burning velocity ‎ ‎ and the average burning ‎velocity ‎, and decrease ignition temperature Ti and burnout temperature Tb of ‎pulverized coal. In addition, the pulverized coal fired boilers are easier to be ignited and the ‎comprehensive combustibility index S is improved. At the same time, it demonstrates that it ‎is an effective way to warm-up the pulverized coal in ignition of the boiler in the power ‎plant.‎

  19. A numerical investigation of the aerodynamics of a furnace with a movable block burner

    Directory of Open Access Journals (Sweden)

    T. J. Fudihara

    2007-06-01

    Full Text Available In this work the air flow in a furnace was computationally investigated. The furnace, for which experimental test data are available, is composed of a movable block burner connected to a cylindrical combustion chamber by a conical quarl. The apertures between the movable and the fixed blocks of the burner determine the ratio of the tangential to the radial air streams supplied to the furnace. Three different positions of the movable blocks were studied at this time. A three-dimensional investigation was performed by means of the finite volume method. The numerical grid was developed by the multiblock technique. The turbulence phenomenon was addressed by the RNG k-epsilon model. Profiles of the axial, tangential and radial velocities in the combustion chamber were outlined. The map of the predicted axial velocity in the combustion chamber was compared with a map of the experimental axial velocity. The internal space of the furnace was found to be partially filled with a reverse flow that extended around the longitudinal axis. A swirl number profile along the furnace length is presented and shows an unexpected increase in the swirl in the combustion chamber.

  20. Optimum feeding rate of solid hazardous waste in a cement kiln burner

    Directory of Open Access Journals (Sweden)

    W.K. Hiromi Ariyaratne, Morten C. Melaaen, Lars-André Tokheim

    2013-01-01

    Full Text Available Solid hazardous waste mixed with wood chips (SHW is a partly CO2 neutral fuel, and hence is a good candidate for substituting fossil fuels like pulverized coal in rotary kiln burners used in cement kiln systems. SHW is used in several cement plants, but the optimum substitution rate has apparently not yet been fully investigated. The present study aims to find the maximum possible replacement of coal by SHW, without negatively affecting the product quality, emissions and overall operation of the process. A full-scale experiment was carried out in the rotary kiln burner of a cement plant by varying the SHW substitution rate from 0 to 3 t/hr. Clinker quality, emissions and other relevant operational data from the experiment were analysed using fuel characteristics of coal and SHW. The results revealed that SHW could safely replace around 20% of the primary coal energy without giving negative effects. The limiting factor is the free lime content of the clinker. Results from the present study were also compared with results from a previous test using meat and bone meal.

  1. ESTABLISHMENT OF DESIGN CRITERIA FOR OPTIMUM BURNERS FOR APPLICATION TO HEAVY FUEL FIRED PACKAGE BOILERS. VOLUME 2. PILOT SCALE TESTS

    Science.gov (United States)

    The report gives results of a research program to develop low-NOx heavy oil burners for application to industrial package boilers. Volume I documents Phase 1 of the program, bench scale studies which defined optimum conditions for two-stage combustion. The information led to a co...

  2. ESTABLISHMENT OF DESIGN CRITERIA FOR OPTIMUM BURNERS FOR APPLICATION TO HEAVY FUEL FIRED PACKAGE BOILERS. VOLUME 1. LABORATORY SCALE TESTS

    Science.gov (United States)

    The report gives results of a research program to develop low-NOx heavy oil burners for application to industrial package boilers. Volume I documents Phase 1 of the program, bench scale studies which defined optimum conditions for two-stage combustion. The information led to a co...

  3. ENVIRONMENTAL ASSESSMENT OF AN ENHANCED OIL RECOVERY STEAM GENERATOR EQUIPPED WITH A LOW-NOX BURNER. VOLUME 2. DATA SUPPLEMENT

    Science.gov (United States)

    The report is a compendium of detailed test sampling and analysis data obtained in field tests of an enhanced oil recovery steam generator (EOR steamer) equipped with a MHI PM low-NOx crude oil burner. Test data included in the report include equipment calibration records, steame...

  4. DESIGN AND FIELD DEMONSTRATION OF A LOW-NOX BURNER FOR TEOR (THERMALLY ENHANCED OIL RECOVERY) STEAMERS

    Science.gov (United States)

    The paper discusses a program that addresses the need for advanced NOx control technology for thermally enhanced oil recovery (TEOR) steam generators. A full-scale (60 million Btu/hr) burner system has been developed and tested, the concept for which was based on fundamental stud...

  5. DEVELOPMENT OF CRITERIA FOR EXTENSION OF APPLICABILITY OF LOW-EMISSION, HIGH-EFFICIENCY COAL BURNERS: FOURTH ANNUAL REPORT

    Science.gov (United States)

    The report summarizes technical progress during the fourth year of effort on EPA contract 68-02-2667. NOx and SOx emission characteristics of two low-NOx distributed-mixing burners were tested with three coals in a large water-tube simulator furnace (50-70 million Btu/hr firing r...

  6. Hybrid model predictive control applied to switching control of burner load for a compact marine boiler design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan;

    2008-01-01

    This paper discusses the application of hybrid model predictive control to control switching between different burner modes in a novel compact marine boiler design. A further purpose of the present work is to point out problems with finite horizon model predictive control applied to systems for w...

  7. Emissions of Toxic Components from Firing of Used Oils in a 102 kW Burner Boiler

    Czech Academy of Sciences Publication Activity Database

    Tydlitát, Vratislav; Janota, J.; Pekárek, Vladimír; Punčochář, Miroslav

    Vol. 5. Prague: Process Engineering Publisher, 2002, s. 190. ISBN 80-86059-33-2. [International Congress of Chemical and Process Engineering CHISA 2002 /15./. Prague (CZ), 25.08.2002-29.08.2002] Institutional research plan: CEZ:AV0Z4072921 Keywords : toxic emission * wasre oil * burner Subject RIV: CC - Organic Chemistry

  8. Burner (Stinger)

    Science.gov (United States)

    ... Tips: Football Sports and Exercise Safety Dealing With Sports Injuries Sports Center Magnetic Resonance Imaging (MRI) Contact Us Print Resources Send to a friend Reprint Guidelines ... Corbis, Veer, Science Photo Library, Science Source Images, Shutterstock, and Clipart.com

  9. A blueprint for GNEP advanced burner reactor startup fuel fabrication facility

    International Nuclear Information System (INIS)

    Research highlights: → This article discusses use of WG-plutonium as the startup fuel for Advanced Burner Reactor. → The presence of gallium in WG fuel may compromise the fuel integrity. → There is no facility exists to remove gallium from plutonium except at laboratory scale. → This article discusses the processes and issues associated with the gallium removal. → The article provides realistic scenario to all stack-holders involved in designing and operating ABR. - Abstract: The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U.S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu)-239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the

  10. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. Of Texas, El Paso, TX (United States)

    2013-09-30

    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO2 from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H2 concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO2 and H2O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient gF) values for CH4-O2-CO2 flames. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH4/21%O2/79%N2 and CH4/38%O2/72%CO2 mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of

  11. Deposit formation by 5 % FAME blends in premix burner systems; Ablagerungsbildung durch 5 % FAME Blends in Vormischbrennersystemen

    Energy Technology Data Exchange (ETDEWEB)

    Rheinberg, Oliver van; Dirks, Helma; Lucka, Klaus; Koehne, Heinrich [Oel-Waerme-Institut gGmbH (OWI), Aachen-Herzogenrath (Germany)

    2009-11-15

    Modern burnersystems for Domestic Heating Oil (DHO), with low emissions use an extensive mixing preparation, which is an important criterion for the quality of the combustion. Changes on the fuel may lead to higher emissions and deposit formation and can furthermore affect the storage stability. Analogous to the fuel sector, a further development of DHO concerning the admixture or substitution by alternative fuels is pursued at the moment. The DIN V 51603-6 ''alternative Domestic Heating Oil'' defines the requirements of blends of mineral oil based low sulphur Domestic Heating Oil with biogenic and other alternative compounds such as Fatty Acid Methyl Esters (FAME), Vegetable Oil (VO) or Gas to Liquid (GtL) and Biomass to Liquid (BtL). The utilization of burners which are available in the market right now with minor technical modifications is desired. The project aim was to research the practical usage of DHO with an admixture of 5 % (V/V) FAME and 5 % (V/V) VO in oil heating systems. The project was divided into three parts: first the deposit formation and the emissions of stationary oil firing systems were determined in the lab. This was conducted on three different types of burners (blue burner, yellow burner, and rotation evaporator), that are supposedly relevant for today's stock. Secondly, the effect of the fuel matrix on the deposit forming of idealized droplet evaporation in a crucible furnace was qualified and quantified, to make temperature ranges and layout criterions for burner components available. Thirdly, a practical storage of the blends used was conducted which was attended by suitable fuel analysis. Besides the documentation of the ageing state and the correlation to the experiments, the validation of a measuring method for the determination of the oxidation stability as emphasized. (orig.)

  12. Use of ceramic recuperator burners for process optimization of a hearth bogie furnace; Prozessoptimierung an einem Herdwagenofen durch Einsatz keramischer Rekuperatorbrenner

    Energy Technology Data Exchange (ETDEWEB)

    Maeder, Dirk; Rakette, Roland [NOXMAT GmbH (Germany); Schlager, Stefan [Schlager Industrieofenbau GmbH, Hagen (Germany)

    2009-07-01

    Potentials for optimization are outlined using the example of a new hearth bogie furnace for a heat-treatment installation. The use of modern recuperator burners which, in this case, are employed for direct heating, favors the exhaustive exploitation of these potentials. The burner and furnace technologies are examined in detail, and initial operating experience is reported. Many of the provisions outlined can be applied analogously to other furnace types, including existing installations. Close cooperation between the burner manufacturer, the furnace engineer and the operator plays a vital role in process optimization. (orig.)

  13. Large Eddy Simulation of Swirling Jet in a Bluff-Body Burner

    Institute of Scientific and Technical Information of China (English)

    Yohei FUJIMOTO; Yuzo INOKUCHI; Nobuhiko YAMASAKI

    2005-01-01

    The large eddy simulation (LES) is applied to an unconfined swirling flow of an air surrounding a bluff-body having a central jet of air, and the complicated flowfield that involves the recirculation and vortex breakdown is investigated. The Smagorinsky model is used as the sub-grid scale model. The results of the present numerical simulation are compared with the experimental data of the mean and stochastic root mean square (RMS)variations of two velocity components. Although the inflow conditions are specified in a simple manner, the obtained numerical results are in reasonable agreement with the experiments, except for a part of RMS variation values near downstream of the bluff body. The present numerical calculations can successfully reproduce the two characteristics of the flow, i.e., an upstream recirculation zone established just downstream of the burner plane and the additional recirculation zone established at the more downstream location.

  14. Studi Eksperimen Distribusi Temperatur Nyala Api Kompor Bioetanol Tipe Side Burner dengan Variasi Diameter Firewall

    Directory of Open Access Journals (Sweden)

    R.R. Vienna Sona Saputri Soetadi

    2012-09-01

    Full Text Available Untuk mendapatkan kompor bioetanol efisiensi thermal maksimal diperlukan penelitian komprehensif. Salah satunya adalah penelitian terhadap posisi peletakkan beban pada kompor bioetanol kompak. Pengujian dilakukan pada kompor uji bioetanol dengan kadar 99%, yaitu kompor bioetanol tipe side burner dengan firewall 2.5 inci dan firewall 3 inci. Pengukuran temperatur api dengan 13 thermocouple K dengan pengukuran searah api keatas setiap 5 mm-an. Kemudian, water boiling test dilakukan untuk mendapatkan daya dan beban dan dilanjutkan mengukur waktu pendidihan air. Hasil penelitian ini menunjukkan gambaran total distribusi temperatur nyala api difusi. Hasil menunjukkan untuk kompor 2.5 inci dengan daya 1.6 kW mempunyai temperatur 542 ºC dengan jarak ketinggian 5 mm dari rim kompor sedangkan kompor 3 inci menghasilkan daya 2.38 kW dengan temperatur 516 ºC.

  15. Figure of merit for the feasibility of a CANDU PHWR actinide burner

    International Nuclear Information System (INIS)

    In this work it is presented a global criterion (GCR) to evaluate feasibility of a CANDU PHWR actinide burner (CPAB). A set of dimensionless criteria as components of GCR is given and discussed. This set comprises ten terms and is based on the newest data appeared in worldwide literature. We considered the Open Fuel Cycle Option (OFCO) and the Closed Fuel Cycle Option (CFCO) too. The evaluation of the GCR is considered for these two options. The purpose of this work was to put in evidence the minimum cost approach. In international literature there were proposed many options to burn the actinide species resulted from fuel burnup in nuclear reactors. Until now it is not clear which is the most advantageous version. However, the problem is very important and therefore further developments can be foreseen. (author)

  16. Design comparisons of TRU burner cores with similar sodium void worth

    International Nuclear Information System (INIS)

    This study summarizes the neutronic performance and fuel cycle behavior of five geometrically-different transuranic (TRU) burner cores with similar low sodium void reactivity. The conceptual cores encompass core geometries for annular, two-region homogeneous, dual pin type, pan-shaped and H-shaped cores. They have been designed with the same assembly specifications and managed to have similar end-of-cycle sodium void reactivities and beginning-of-cycle peak power densities through the changes in the core size and configuration. The requirement of low sodium void reactivity is shown to lead each design concept to characteristic neutronics performance and fuel cycle behavior. The H-/pan-shaped cores allow the core compaction as well as higher rate of TRU burning. (author)

  17. Experimental Evaluation of a Low Emissions High Performance Duct Burner for Variable Cycle Engines (VCE)

    Science.gov (United States)

    Lohmann, R. P.; Mador, R. J.

    1979-01-01

    An evaluation was conducted with a three stage Vorbix duct burner to determine the performance and emissions characteristics of the concept and to refine the configuration to provide acceptable durability and operational characteristics for its use in the variable cycle engine (VCE) testbed program. The tests were conducted at representative takeoff, transonic climb, and supersonic cruise inlet conditions for the VSCE-502B study engine. The test stand, the emissions sampling and analysis equipment, and the supporting flow visualization rigs are described. The performance parameters including the fuel-air ratio, the combustion efficiency/exit temperature, thrust efficiency, and gaseous emissions calculations are defined. The test procedures are reviewed and the results are discussed.

  18. Compressible and low Mach number LES of a swirl experimental burner

    Science.gov (United States)

    Barré, David; Kraushaar, Matthias; Staffelbach, Gabriel; Moureau, Vincent; Gicquel, Laurent Y. M.

    2013-01-01

    Large-Eddy Simulations (LES) of a swirl experimental burner are performed using a compressible and a low Mach number solver. The investigations are focused on the modeling strategies in LES aimed at validating the flow predictions and principally the associated pressure losses. Accurate prediction of pressure drop through complex geometries, such as those typically encountered in industrial swirlers, is indeed of paramount importance to design and optimize the engine efficiency. LES is here probed and tested to identify the model parameters affecting pressure losses: grid resolution, wall treatment or solver accuracy, with the aim of highlighting the requirements for accurate pressure drop predictions. Results show that for the high Reynolds number flow considered, the wall law model provides the best predictions and minimizes the error compared to experimental findings with a reasonable overall CPU cost.

  19. Development and Test Performance of a Three-Burner Wood-Fired Stove

    International Nuclear Information System (INIS)

    A three-burner wood stove has been designed, constructed and its performance characteristics tested by computing the percentages of wood consumed and the quantity of heat utilized when three pots containing water were heated simultaneously in the three cooking compartments respectively. The result shows that the percentages of wood consumed and the heat energy used were 72.5% and 33.6% respectively. These indicate an improvement on the previous work, which gave the percentages of wood consumed and heat energy utilized to be respectively 61.8% and 10.4% for three-stone wood stove and 79.8% and 19.8% for a two-hole stove. Also the central heating compartment received more heat energy (465.4 KJ) than the side ones (336.3 KJ and 298.2 KJ) after 36 minutes so that the user could discriminate on their application with respect to the heat requirements of what is being cooked

  20. Experiments on the TECFLAM standard burner. Final colloquium; Experimente am TECFLAM Standard-Brenner. Abschlusskolloquium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This year's annual seminar had two main subjects: First, the final colloquium of the CRAY-TECFLAM project in which an industrial code for simulation of combustion processes in furnaces and gas turbines was developed in cooperation with the relevant industry, and secondly, investigations on a TECFLAM standard burner which served to establish a reliable set of state variables by different methods that were applied simultaneously, as well as the validation of the mathematical models. [German] Das alljaehrliche oeffentliche Seminar stand in diesem Jahr unter zwei zentralen Themen: zum einen das Abschlusskolloquium des CRAY-TECFLAM-Projekts, in dem ein Industriecode zur Simulation der Verbrennungsvorgaenge in Feuerungen und Gasturbinen - unter Beteiligung der relevanten Industrie - entwickelt wurde, zum anderen die Untersuchungen am TECFLAM Standardbrenner, mit denen ein verlaesslicher Satz von Zustandsgroessen mit unterschiedlichen, aber simultan angewandten Messmethoden ermittelt wird und die mathematischen Modelle validiert werden. (orig.)

  1. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack (062056); Kemal O. Pasamehmetoglu (103171); David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  2. Pollutant exposures from unvented gas cooking burners: A Simulation-based Assessment for Southern California

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Indoor Environment Group and Residential Building Systems Group; Klepeis, Neil E. [Stanford Univ., CA (United States). Dept. of Civil and Environmental Engineering; San Diego Univ., CA (United States). Center for Behavioral Epidemiology and Community Health; Lobscheid, Agnes B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Indoor Environment Group; Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Indoor Environment Group and Residential Building Systems Group

    2014-01-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants, and they are typically used without venting range hoods. In this study, LBNL researchers quantified pollutant concentrations and occupant exposures resulting from NGCB use in California homes.The simulation model estimated that—in homes using NGCBs without coincident use of venting range hoods -- 62%, 9%, and 53% of occupants are routinely exposed to NO2, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3,000, and 20 ppb for NO2, CO, and HCHO, respectively. The study recommends that reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health-based standards.

  3. Testing and Modeling Fuel Regression Rate in a Miniature Hybrid Burner

    Directory of Open Access Journals (Sweden)

    Luciano Fanton

    2012-01-01

    Full Text Available Ballistic characterization of an extended group of innovative HTPB-based solid fuel formulations for hybrid rocket propulsion was performed in a lab-scale burner. An optical time-resolved technique was used to assess the quasisteady regression history of single perforation, cylindrical samples. The effects of metalized additives and radiant heat transfer on the regression rate of such formulations were assessed. Under the investigated operating conditions and based on phenomenological models from the literature, analyses of the collected experimental data show an appreciable influence of the radiant heat flux from burnt gases and soot for both unloaded and loaded fuel formulations. Pure HTPB regression rate data are satisfactorily reproduced, while the impressive initial regression rates of metalized formulations require further assessment.

  4. Air humidity incidence on the carbon monoxide emissions a gas atmospheric burner

    International Nuclear Information System (INIS)

    A study to determine the variation of the carbon monoxide emission was carried out when the humidity of the premix air was modified in an atmospheric burner working with petroleum liquid gas and natural gas. When the total humidity from the primary air was modified from 0,01223 to 0,03493 water kg/dry air kg in the case of PLG, it was found that the level of co emissions varied in volume from 0,1819 % to 0,2540 %, representing an increase of 38 %. With natural gas the humidity was modified from 0,01397 to 0,03228 water kg/dry air kg, obtaining emissions of CO in volume from 0,0942 % to 0,1020 %, for a total increase of 8,5 %. The study showed that the effect on the air humidity was more pronounced when the combustion with PLG was made, over passing the maximum levels allowed of carbon monoxide

  5. On the instability of a modified cup-burner flame in the infrared spectral region

    Directory of Open Access Journals (Sweden)

    Petr Bitala

    2016-03-01

    Full Text Available This study describes the modification of a standardised cup-burner apparatus. The replacement of the original glass chimney is performed by shielding a nitrogen co-flow enabled measurement at a wavelength of 3.9 μm. This modification, together with a special arrangement of the measuring system (spectral filtering, data acquisition and post-processing, permitted the observation of various types of hydrodynamic instabilities, including transition states. The advantages of our arrangement are demonstrated with an ethylene non-premixed flame with high sooting tendency. Two known modes of hydrodynamic instability (varicose and sinuous that occur in buoyant flames were studied and described quantitatively. Based on the intensity of the infrared emissions, we identified and qualitatively described the modes of periodic hydrodynamic instability that are accompanied by flame tip opening, which has not been observed for this type of flame.

  6. Numerical study of turbulent normal diffusion flame CH4-air stabilized by coaxial burner

    Directory of Open Access Journals (Sweden)

    Riahi Zouhair

    2013-01-01

    Full Text Available The practical combustion systems such as combustion furnaces, gas turbine, engines, etc. employ non-premixed combustion due to its better flame stability, safety, and wide operating range as compared to premixed combustion. The present numerical study characterizes the turbulent flame of methane-air in a coaxial burner in order to determine the effect of airflow on the distribution of temperature, on gas consumption and on the emission of NOx. The results in this study are obtained by simulation on FLUENT code. The results demonstrate the influence of different parameters on the flame structure, temperature distribution and gas emissions, such as turbulence, fuel jet velocity, air jet velocity, equivalence ratio and mixture fraction. The lift-off height for a fixed fuel jet velocity is observed to increase monotonically with air jet velocity. Temperature and NOx emission decrease of important values with the equivalence ratio, it is maximum about the unity.

  7. Performance (Off-Design) Cycle Analysis for a Turbofan Engine With Interstage Turbine Burner

    Science.gov (United States)

    Liew, K. H.; Urip, E.; Yang, S. L.; Mattingly, J. D.; Marek, C. J.

    2005-01-01

    This report presents the performance of a steady-state, dual-spool, separate-exhaust turbofan engine, with an interstage turbine burner (ITB) serving as a secondary combustor. The ITB, which is located in the transition duct between the high- and the low-pressure turbines, is a relatively new concept for increasing specific thrust and lowering pollutant emissions in modern jet-engine propulsion. A detailed off-design performance analysis of ITB engines is written in Microsoft(Registered Trademark) Excel (Redmond, Washington) macrocode with Visual Basic Application to calculate engine performances over the entire operating envelope. Several design-point engine cases are pre-selected using a parametric cycle-analysis code developed previously in Microsoft(Registered Trademark) Excel, for off-design analysis. The off-design code calculates engine performances (i.e. thrust and thrust-specific-fuel-consumption) at various flight conditions and throttle settings.

  8. Investigation of the Effect of Pilot Burner on Lean Blow Out Performance of A Staged Injector

    Institute of Scientific and Technical Information of China (English)

    YANG Jinhu; ZHANG Kaiyu; LIU Cunxi; RUAN Changlong; LIU Fuqiang; XU Gang

    2014-01-01

    The staged injector has exhibited great potential to achieve low emissions and is becoming the preferable choice of many civil airplanes.Moreover,it is promising to employ this injector design in military engine,which requires most of the combustion air enters the combustor through injector to reduce smoke emission.However,lean staged injector is prone to combustion instability and extinction in low load operation,so techniques for broadening its stable operation ranges are crucial for its application in real engine.In this work,the LBO performance of a staged injector is assessed and analyzed on a single sector test section.The experiment was done in atmospheric environment with optical access.Kerosene-PLIF technique was used to visualize the spray distribution and common camera was used to record the flame patterns.Emphasis is put on the influence of pilot burner on LBO performance.The fuel to air ratios at LBO of six injectors with different pilot swirler vane angle were evaluated and the obtained LBO data was converted into data at idle condition.Results show that the increase of pilot swirler vane angle could promote the air assisted atomization,which in turn improves the LBO performance slightly.Flame patterns typical in the process of LBO are analyzed and attempts are made to find out the main factors which govern the extinction process with the assistance of spray distribution and numerical flow field results.It can be learned that the flame patterns are mainly influenced by structure of the flow field just behind the pilot burner when the fuel mass flow rate is high; with the reduction of fuel,atomization quality become more and more important and is the main contributing factor of LBO.In the end of the paper,conclusions are drawn and suggestions are made for the optimization of the present staged injector.

  9. Ingots reheating and energy savings thanks to self regenerative burners; Rechauffage de lingots et economie d'energie par l'usage de bruleurs autoregeneratifs

    Energy Technology Data Exchange (ETDEWEB)

    Lhomme, P.J.; Laforet, J. [Gaz de France (GDF), 75 - Paris (France); Fiquet, H. [Forcast International, 57 - Thionville (France); Dussert, P. [Ermat (France); Wunning, J. [Wahnbachtalsperrenverband Siegburg (Germany)

    1999-11-01

    Complete text of publication follows: the Forcast Co from Thionville (France) has decided to buy a new bogie hearth furnace in order to reheat large ingots to forging temperature (load of 120 tons at 1250 deg. C) and had to select which combustion system to use, from the classical central heat exchanger to the self regenerative burner. Finally, the self regenerative burners were selected, operated with impulse firing for the sixteen burners of 200 kW distributed in eight zones. The furnace accepts a charge of 8 x 3.3 x 1.95 m{sup 3} of a weight of 120 tons, and gives a temperature homogeneity better than the guaranteed {+-}10 deg. C. Energy saving should be more than 40 % compared to cold air burners. (authors)

  10. Pollutant Emissions and Lean Blowoff Limits of Fuel Flexible Burners Operating on Gaseous Renewable and Fossil Fuels

    Science.gov (United States)

    Colorado, Andres

    This study provides an experimental and numerical examination of pollutant emissions and stability of gaseous fueled reactions stabilized with two premixed-fuel-flexible and ultra-low NOx burner technologies. Both burners feature lean combustion technology to control the formation of nitrogen oxides (NOx). The first fuel--flexible burner is the low-swirl burner (LSB), which features aerodynamic stabilization of the reactions with a divergent flow-field; the second burner is the surface stabilized combustion burner (SSCB), which features the stabilization of the reactions on surface patterns. For combustion applications the most commonly studied species are: NOx, carbon monoxide (CO), and unburned hydrocarbons (UHC). However these are not the only pollutants emitted when burning fossil fuels; other species such as nitrous oxide (N2O), ammonia (NH3) and formaldehyde (CH2O) can be directly emitted from the oxidation reactions. Yet the conditions that favor the emission of these pollutants are not completely understood and require further insight. The results of this dissertation close the gap existing regarding the relations between emission of pollutants species and stability when burning variable gaseous fuels. The results of this study are applicable to current issues such as: 1. Current combustion systems operating at low temperatures to control formation of NOx. 2. Increased use of alternative fuels such as hydrogen, synthetic gas and biogas. 3. Increasing recognition of the need/desire to operate combustion systems in a transient manner to follow load and to offset the intermittency of renewable power. 4. The recent advances in measurement methods allow us to quantify other pollutants, such as N 2O, NH3 and CH2O. Hence in this study, these pollutant species are assessed when burning natural gas (NG) and its binary mixtures with other gaseous fuels such as hydrogen (H2), carbon dioxide (CO2), ethane (C 2H6) and propane (C3H8) at variable operation modes including

  11. A CFD-Based Study of the Feasibility of Adapting an Erosion Burner Rig for Examining the Effect of CMAS Deposition Corrosion on Environmental Barrier Coatings

    Science.gov (United States)

    Miller, Robert A.; Kuczmarski, Maria A.

    2015-01-01

    Thermodynamic and computational fluid dynamics modeling has been conducted to examine the feasibility of adapting the NASA-Glenn erosion burner rigs for use in studies of corrosion of environmental barrier coatings by the deposition of molten CMAS. The effect of burner temperature, Mach number, particle preheat, duct heating, particle size, and particle phase (crystalline vs. glass) were analyzed. Detailed strategies for achieving complete melting of CMAS particles were developed, thereby greatly improving the probability of future successful experimental outcomes.

  12. Control, regulation and visual display of a regenerative burner system for an aluminium melting furnace; Steuerung,Regelung und Visualisierung eines regenerativen Brennersystems an einem Aluminium-Schmelzofen

    Energy Technology Data Exchange (ETDEWEB)

    Schaake, M.; Kuhlmann, A.

    2007-10-15

    Regenerative burner systems are an environmentally friendly and energy- and cost-saving alternative to conventional designs. More and more companies are now converting to this modern technology and thus remain competitive, and not only on cost criteria - other actors include reduce energy consumption and decreased emissions. This article examines the process-engineering conversion procedure, the modular regulation functions and the appurtenant visual display of a regenerative burner system, using the example of an aluminium melting furnace. (orig.)

  13. Demonstration of a steam jet scrubber off-gas system and the burner efficiency of a mixed incinerator facility

    International Nuclear Information System (INIS)

    A full-scale incinerator system, the Consolidated Incineration Facility (CIF), is being designed to process solid and liquid low-level radioactive, mixed, and RCRA hazardous waste. This facility will consist of a rotary kiln, secondary combustion chamber (SCC), and a wet of-gas system. A prototype steam jet scrubber wastewater will be immobilized in a cement matrix after assumptions for the CIF. The scrubber wastewater will be immobilized in a cement matrix after the blowdown has been concentrated to a maximum solids concentration in a cross-flow filtration system. A sintered metal inertial filter system has been successfully tested. Burner efficiency was tested in a high intensity vortex burner, which destroyed the hazardous waste streams tested. These tests are detailed by the authors

  14. Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig

    Science.gov (United States)

    Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Gokoglu, S. A.; Rosner, D. A.

    1985-01-01

    With a view to developing simulation criteria for the laboratory testing of high-temperature materials for gas turbine engines, the deposition rates of sodium sulfate from sodium salt-seeded combustion gases were determined experimentally using a well instrumented high-velocity burner. In the experiments, Na2SO4, NaCl, NaNO3, and simulated sea salt solutions were injected into the combustor of the Mach 0.3 burner rig operating at constant fuel/air ratios. The deposits formed on an inert rotating collector were then weighed and analyzed. The experimental results are compared to Rosner's vapor diffusion theory. Some additional test results, including droplet size distribution of an atomized salt spray, are used in interpreting the deposition rate data.

  15. Experience with natural gas/oxygen burners on a cupola furnace; Erfahrungen mit Erdgas/Sauerstoff-Brennern an einem Kupolofen

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, J. [Ruhrgas AG, Essen (Germany); Lemperle, M. [Kuettner GmbH und Co. KG, Essen (Germany); Wieting, T. [RWTH Aachen (Germany). Inst. fuer Eisenhuettenkunde; Wilczek, M [Frauenhofer Inst. UMSICHT (Germany); Struening, H. [Fritz Winter Eisengiesserei GmbH und Co. KG, Stadtallendorf (Germany); Frielingsdorf, O. [Air Products GmbH, Hattingen (Germany)

    2003-11-01

    The 'KUPOLOPT' joint research project has as its target the economic and ecological optimization of cupola furnaces in foundries. The use of natural gas/oxygen burners during foundry operation is being studied on Fritz Winter Eisengiesserei GmbH and Co. KG's cupola furnace with the objective of enhancing melting rate, reducing emissions and permitting re-utilization of foundry and other particulates. This work is also intended to improve the cupola-furnace process in economic terms, in order to enhance its competitiveness. This article presents the results of the first project phase, which served to investigate the natural gas/oxygen burner as an external supplier of energy. (orig.)

  16. Burner rig thermal fatigue failure of SiC continuous fiber/Si3N4 ceramic composites

    International Nuclear Information System (INIS)

    The burner rig thermal fatigue properties of SiC continuous fiber/Si3N4 ceramic composites were examined under impinged jet fuel flame, a constant applied tensile stress and thermal cycling in the temperature range 500--1,350 C. The SCS-9 SiC fiber/Si3N4 composites failed within the flame impinged zone, whereas the SCS-6 fiber/Si3N4 composites failed outside the flame impinged zone due to the high thermal stresses resulting from high-temperature gradients. Analytical transmission electron microscopy was sued to investigate the microstructure and chemistry of the fiber, matrix and fiber/matrix interface in the failed SCS-9 SiC fiber/Si3N4 composites. The partial degradation of columnar structure of the fiber was interpreted as the dominant mechanism of burner rig thermal fatigue failure of SCS-9 SiC fiber/Si3N4 composites

  17. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Public design report

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  18. Waste heat conducting system for side burner regenerative coke oven batteries with divided heating system. [German Patent

    Energy Technology Data Exchange (ETDEWEB)

    Thiersch, F.; Strobel, M.; Schmitz, T.

    1980-08-21

    In the well known waste heat removal system for side burner regenerative coking over batteries with divided heating system both flues could be used simultaneously and equally. The flues in the longitudinal direction of the battery open into a common chimney foot connection at one end of the battery. They are individually connected via opposite groups of transverse flues to opposite groups of waste heat elbows of waste heat valves on the machine and on the coke side.

  19. Integrated Solar-Assisted Heat Pumps for water heating coupled to gas burners; Control criteria for dynamic operation

    OpenAIRE

    Scarpa, F.; Tagliafico, L.A.; Tagliafico, G

    2010-01-01

    Abstract A direct expansion integrated solar assisted heat pump (ISAHP) is compared to a traditional flat plate solar panel for low temperature (45 ?C) water heating applications. The (simulated) comparison is accomplished assuming both the devices are energy supplemented with an auxiliary standard gas burner, to provide the typical heat duty of a four-member family. Literature dynamical models of the systems involved have been used to calculate the main performance figures in a co...

  20. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    Science.gov (United States)

    Butcher, Thomas A.; Celebi, Yusuf; Fisher, Leonard

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  1. Gaseous emissions from burning diesel, crude and prime bleachable summer yellow cottonseed oil in a burner for drying seedcotton

    International Nuclear Information System (INIS)

    Cottonseed oil has been used as a fuel source either as a blend with diesel in varying proportions or undiluted (100 %) in numerous studies evaluating its potential use in internal combustion engines. However, limited research is available on the use of cottonseed oil as a fuel source in a multi-fueled burner similar to those used by cottonseed oil mills and cotton gins in their drying operations. The purpose of this study was to evaluate emissions from five fuel oil treatments while firing a multi-fueled burner in a setup similar to those used for drying operations of both cottonseed oil mills and cotton gins. For each treatment, gaseous emissions were measured while firing the burner at three fuel flow rates. The five fuel oil treatments evaluated were: (1) No.2 diesel at 28.3 deg C, (2) prime bleachable summer yellow (PBSY) cottonseed oil at 28.3 deg C (PBSY-28), (3) crude cottonseed oil at 28.3 deg C (Crude-28), (4) PBSY at 60 deg C (PBSY-60), and (5) crude at 60 deg C (Crude-60). Results indicate that PBSY treatments had the lowest overall emissions of all treatments. The other treatments varied in emission rates based on treatment and fuel flow rate. Preheating the oil to 60 deg C resulted in higher NOx emissions but displayed varying results in regards to CO. The CO emissions for the crude treatments were relatively unaffected by the 60 deg C preheat temperature whereas the preheated PBSY treatments demonstrated lower CO emissions. Overall, both cottonseed oils performed well in the multi-fueled burner and displayed a promising potential as an alternative fuel source for cottonseed oil mills and cotton gins in their drying operations. (Author)

  2. Experimental investigations on temperature distributions of flame sections in a bench-scale opposed multi-burner gasifier

    International Nuclear Information System (INIS)

    Based on a flame image processing technique, the temperature distributions of flame sections in a bench-scale opposed multi-burner (OMB) gasifier is visualized. With the assumption of the gray radiation, a charge-coupled device camera installed on the top of the gasifier is used to capture the approximately monochromatic radiant images under the visible wavelengths. To reduce the errors, the camera is calibrated by a blackbody cavity. By using the two-color method, the radiant intensity captured by the camera is calculated from the pair of red/green with reference to the calibration data. Based on the assumption of rotational symmetry, the temperature distributions of flame sections are reconstructed by the Filtered back-projection method. The results show that the temperature distributions of flame sections are consistent with the flame structure. The flame temperature distribution at the burner plane ranges from 1700 to 2100 deg. C. The section is farther from the burner plane, the temperature is lower. The relative errors between the calculated temperatures and the measured temperatures by a B-type thermocouple are no greater than ±6.4%. The research results establish the foundation for understanding the flame internal structure and temperature distribution in the OMB gasifier

  3. Heat transfer characteristics of a rotary regenerative combustion system (RRX); Kaitenshiki chikunetsu burner (RRX) no dennetsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Miyama, H.; Kaji, H. [Chiyoda Corp., Tokyo (Japan); Hirose, Y. [Furnace Techno Co., Yokohama (Japan); Arai, N. [Nagoya University, Nagoya (Japan). Research Center for Advanced Energy Conversion

    1996-11-10

    With a view to save fuel, the use of a regenerative burner as a heating source has been spreading in the field of industrial furnaces. By combining a burner with a regenerative air preheater, a second generation regenerative burner-the Rotary Regenerative Combustion System (RRX) has been developed, which makes for lower emissions of air pollutants and compactness, in addition to fuel savings. In this paper, heat transfer characteristics of RRX were deduced theoretically based on the heat transfer theory of a regenerative air preheater and investigated experimentally using two test rigs. A commercially operating fired heater was revamped in the summer of 1994 to install 3 sets of RRXS, and it has been successfully operated for one year. As a result, it was recognized that the heat transfer rate in a RRX can be predicted within {plus_minus} 10% of deviation, by considering not only convective but also radiative heat transfer. Furthermore, it was confirmed both theoretically and experimentally that fuel efficiency exceeding 90% was stably attained in a commercialized fired heater. Around 60 ppm of NOx emission (as dry, 6%O2) was also measured, although the preheated air temperature was calculated as high as 930 K. 8 refs., 6 figs., 4 tabs.

  4. Development of low NO{sub x} regenerative burner system; Tei NO{sub x} rijenereiteibubana no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Nakamachi, I. [Tokyo Gas Co., Ltd., Tokyo (Japan)

    2000-03-10

    An advanced low NO{sub x} combustion technology, FDI (Fuel Direct Injection), has been developed. FDI combustion technology reduces thermal NO{sub x} substantially for combustion of high preheated air over 1,000 degree C. The principal of its ultra-low NO{sub x} combustion is the separate and direct injection at high momentum of combustion air and fuel gas into the furnace. By directly injecting air and fuel, self-induced flue gas re-circulation is substantially enhanced, reducing the formation of thermal NO{sub x} to a substantially low level. Applied to a regenerative burner system that utilize high air preheat for fuel saving, the FDI combustion has demonstrated more than 90 % NO{sub x} reduction. As compared to conventional ones, simple and compact regenerative burners have been developed. These new regenerative burners have been designed solely for the use of FDI low NO{sub x} combustion technology. Field tests of various furnaces such as forging, re-heating and aluminum melting have successfully demonstrated substantial low NO{sub x} level below 100 ppm (at 11 % O{sub 2}) by the FDI technology with fuel saving of 20-60 %. (author)

  5. Characterization of primary and secondary wood combustion products generated under different burner loads

    Directory of Open Access Journals (Sweden)

    E. A. Bruns

    2014-10-01

    Full Text Available Residential wood burning contributes significantly to the total atmospheric aerosol burden; however, large uncertainties remain in the magnitude and characteristics of wood burning products. Primary emissions are influenced by a variety of parameters, including appliance type, burner wood load and wood type. In addition to directly emitted particles, previous laboratory studies have shown that oxidation of gas phase emissions produces compounds with sufficiently low volatility to readily partition to the particles, forming significant quantities of secondary organic aerosol (SOA. However, relatively little is known about wood burning SOA and the effects of burn parameters on SOA formation and composition are yet to be determined. There is clearly a need for further study of primary and secondary wood combustion aerosols to advance our knowledge of atmospheric aerosols and their impacts on health, air quality and climate. For the first time, smog chamber experiments were conducted to investigate the effects of wood loading on both primary and secondary wood combustion products. Products were characterized using a range of particle and gas phase instrumentation, including an aerosol mass spectrometer (AMS. A novel approach for polycyclic aromatic hydrocarbon (PAH quantification from AMS data was developed and results were compared to those from GC-MS analysis of filter samples. Similar total particle mass emission factors were observed under high and average wood loadings, however, high fuel loadings were found to generate significantly higher contributions of PAHs to the total organic aerosol (OA mass compared to average loadings. PAHs contributed 15 ± 4% (mean ± 2 sample standard deviations to the total OA mass in high load experiments, compared to 4 ± 1% in average load experiments. With aging, total OA concentrations increased by a factor of 3 ± 1 for high load experiments compared to 1.6 ± 0.4 for average load experiments. In the AMS, an

  6. Blending of hydrogen in natural gas distribution systems. Volume II. Combustion tests of blends in burners and appliances. Final report, June 1, 1976--August 30, 1977. [8, 11, 14, 20, 22, 25, and 31% hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-10-01

    The emerging ''hydrogen economy'' is a strong contender as one method to supplement or extend the domestic natural gas supply. This volume of the subject study ''Blending Hydrogen in Natural Gas Distribution Systems'' describes combustion studies to determine the maximum amount of hydrogen that can be blended in natural gas and utilized satisfactorily in typical appliances with no adjustment or conversion. Eleven pilot burners and twenty-three main burners typical of those in current use were operated on hydrogen-natural gas mixtures containing approximately 8, 11, 14, 20, 22, 25, and 31 percent, by volume, hydrogen. The eleven pilot burners and thirteen main burners were tested outside the appliance they were a part of. Ten main burners were tested in their respective appliances. Performance of the various burners tested are as follows: (1) Gas blends containing more than 6 to 11% hydrogen are the limiting mixtures for target type pilot burners. (2) Gas blends containing more than 20 to 22% hyrogen are the limiting mixtures for main burners operating in the open. (3) Gas blends containing more than 22 to 25% hydrogen are the limiting mixtures for main burners tested in appliances. (4) Modification of the orifice in target pilots or increasing the supply pressure to a minimum of 7 inches water column will permit the use of gas blends with 20% hydrogen.

  7. Analysis of Reactor Deployment Scenarios with Introduction of SFR Breakeven Reactors and Burners Using DANESS Code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Hahn, Do Hee; Won, Byung Chool; Lee, Dong Uk

    2008-01-15

    Using the DANESS code newly employed for future scenario analysis, reactor deployment scenarios with the introduction of sodium cooled fast reactors(SFRs) having different conversion ratios in the existing PWRs dominant nuclear fleet have been analyzed to find the SFR deployment strategy for replacing PWRs with the view of a spent fuel reduction and an efficient uranium utilization through its reuse in a closed nuclear fuel cycle. Descriptions of the DANESS code and how to use are briefly given from the viewpoint of its first application. The use of SFRs and recycling of TRUs by reusing PWR spent fuel leads to the substantial reduction of the amount of PWR spent fuel and environmental burden by decreasing radiotoxicity of high level waste, and a significant improvement on the natural uranium resources utilization. A continuous deployment of burners effectively decreases the amount of PWR spent fuel accumulation, thus lightening the burden for PWR spent fuel management. An introduction of breakeven reactors effectively reduces the uranium demand through producing excess TRU during the operation, thus contributing to a sustainable nuclear power development. With SFR introduction starting in 2040, PWRs will remain as a main power reactor type till 2100 and SFRs will be in support of waste minimization and fuel utilization.

  8. Calculational benchmark comparisons for a low sodium void worth actinide burner core design

    International Nuclear Information System (INIS)

    Recently, a number of low void worth core designs with non-conventional core geometries have been proposed. Since these designs lack a good experimental and computational data base, benchmark calculations are useful for the identification of possible biases in performance characteristics predictions. In this paper, a simplified benchmark model of a metal fueled, low void worth actinide burner design is detailed: and two independent neutronic performance evaluations are compared. Calculated performance characteristics are evaluated for three spatially uniform compositions (fresh uranium/plutonium, batch-averaged uranium/transuranic, and batch-averaged uranium/transuranic with fission products) and a regional depleted distribution obtained from a benchmark depletion calculation. For each core composition, the flooded and voided multiplication factor, power peaking factor, sodium void worth (and its components), flooded Doppler coefficient and control rod worth predictions are compared. In addition, the burnup swing, average discharge burnup, peak linear power, and fresh fuel enrichment are calculated for the depletion case. In general, remarkably good agreement is observed between the evaluations. The mot significant difference in predicted performance characteristics is a 0.3-05% Δk/(kk') bias in the sodium void worth. Significant differences in the transmutation rate of higher actinides are also observed; however, these differences do not cause discrepancies in the performance predictions

  9. Curved wall-jet burner for synthesizing titania and silica nanoparticles

    KAUST Repository

    Ismail, Mohamed

    2015-01-01

    A novel curved wall-jet (CWJ) burner was designed for flame synthesis, by injecting precursors through a center tube and by supplying fuel/air mixtures as an annular-inward jet for rapid mixing of the precursors in the reaction zone. Titanium dioxide (TiO2) and silicon dioxide (SiO2) nanoparticles were produced in ethylene (C2H4)/air premixed flames using titanium tetraisopropoxide (TTIP) and hexamethyldisiloxane (HMDSO) as the precursors, respectively. Particle image velocimetry measurements confirmed that the precursors can be injected into the flames without appreciably affecting flow structure. The nanoparticles were characterized using X-ray diffraction, Raman spectroscopy, the Brunauer-Emmett-Teller (BET) method, and high-resolution transmission electron microscopy. In the case of TiO2, the phase of nanoparticles could be controlled by adjusting the equivalence ratio, while the particle size was dependent on the precursor loading rate and the flame temperature. The synthesized TiO2 nanoparticles exhibited high crystallinity and the anatase phase was dominant at high equivalence ratios (φ > 1.3). In the case of SiO2, the particle size could be controlled from 11 to 18 nm by adjusting the precursor loading rate. © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  10. Chemical and biological characterization of residential oil burner emission. A literature survey

    International Nuclear Information System (INIS)

    This literature study covers the time period 1980 to 1993 and is concerned with oil burners used for residential heating with a nominal heating power of less than 20 kW, which are normally used in one-family houses. Emission samples from domestic heaters using organic fuels consists of a very complex matrix of pollutants ranging from aggregate states solid to gaseous. Biological effects elicited by exhaust emissions have been detected and determined. It has been shown for diesel vehicles that selection of fuel properties has an impact on combustion reaction paths which results in different exhaust chemical compositions. It was also determined that diesel fuel properties have an impact on the biological activity of diesel exhaust emissions, which is to be expected from their chemical characterization. As a result of this, Sweden has an environmental classification of diesel fuels which has been in force since 1991. Analogously, the Swedish Environmental Protection Agency has asked whether detrimental environmental and health effects from residential heating can be reduced by selection of fuel properties, and if so by how much? In addition, which properties are most important to control in a future environmental classification of heating oils? As a first step in this process, a literature survey was performed. Major topics were: Sampling technology, chemical composition, biological activity, and risk assessment of emissions. 33 refs, 11 tabs

  11. COST-EFFECTIVE CONTROL OF NOX WITH INTEGRATED ULTRA LOW-NOX BURNERS AND SNCR

    International Nuclear Information System (INIS)

    The objective of this project is to develop an environmentally acceptable and cost-effective NO(sub x) control system that can achieve less than 0.15 lb NO(sub x)/10(sup 6) Btu for a wide range of coal-burning commercial boilers. The system will be comprised of an ultra low-NO(sub x) PC burner technology plus a urea-based, selective non-catalytic reduction (SNCR) system. In addition to the above stated NO(sub x) limit of 0.15 lb NO(sub x)/10(sup 6) Btu, ammonia (NH(sub 3)) slip levels will be targeted below 5 ppmV for commercial units. Testing will be performed in the 100 million Btu/hr Clean Environment Development Facility (CEDF) in Alliance, Ohio. Finally, by amendment action, a limited mercury measurement campaign was conducted to determine if the partitioning and speciation of mercury in the flue gas from a Powder River Basin coal is affected by the addition of Chlorides to the combustion zone

  12. Burner Rig Hot Corrosion of Five Ni-Base Alloys Including Mar-M247

    Science.gov (United States)

    Nesbitt, James A.; Helmink, R.; Harris, K.; Erickson, G.

    2000-01-01

    The hot corrosion resistance of four new Ni-base superalloys was compared to that of Mar-M247 by testing in a Mach 0.3 burner rig at 900 C for 300 1-hr cycles. While the Al content was held the same as in the Mar-M247, the Cr and Co levels in the four new alloys were decreased while other strengthening elements (Re, Ta) were increased. Surprisingly, despite their lower Cr and Co contents, the hot corrosion behavior of all four new alloys was superior to that of the Mar-M247 alloy. The Mar-M247 alloy began to lose weight almost immediately whereas the other four alloys appeared to undergo an incubation period of 50-150 1-hr cycles. Examination of the cross-sectional microstructures showed regions of rampant corrosion attack (propagation stage) in all five alloys after 300 1-hr cycles . This rampant corrosion morphology was similar for each of the alloys with Ni and Cr sulfides located in an inner subscale region. The morphology of the attack suggests a classic "Type I", or high temperature, hot corrosion attack.

  13. Experimental study of a burner with high temperature heat recovery system for TPV applications

    International Nuclear Information System (INIS)

    An experimental investigation to develop and test a burner and a heat recovery system for thermophotovoltaic (TPV) applications is presented. Experimental data have been compared with theoretical calculations and considerations in the pre-design and design phases of the project to find the weakest point of the concept and to validate the expected performance. The TPV generator has been designed as a compact module in order to be used as a range extender in an electric car. The heat recovery system is the key element to increase the efficiency of the system. The heat recovery system presented in this paper is a rotary type regenerator that is very compact and has higher effectiveness in comparison with other types of regenerators with the same number of transfer units (NTU). The experimental data have been used to verify the numerical models used in the calculations for design of the regenerator matrix. A new version of the numerical model has been developed to take into account the variation of the thermal properties of the system with the temperature. Dimensions, weight, efficiency, emissions and high working temperatures have been the most important competitive constraints to observe for design of the system

  14. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS; SEMIANNUAL

    International Nuclear Information System (INIS)

    Reduction of NO(sub x) emission is an important environmental issue in pulverized coal combustion. The most cost-effective approach to NO(sub x) reduction is air-staging which can also operate with additional down-stream techniques such as reburning[1]. Air staging promotes the conversion of NO(sub x) precursors (HCN, NH(sub 3), etc.) to N(sub 2) by delaying the oxygen supply to the greatest extent when those nitrogen species are released during devolatilization. Such a delay gives the primary volatiles a chance to undergo secondary reactions, including tar cracking and soot formation. Secondary reactions of volatiles largely determine the fate of the ultimate NO(sub x) production from pyrolysis, therefore a detailed investigation into the transformation of nitrogen species during secondary reactions and effects of soot on nitrogen release is critical for design and implementation of new pollution control strategies. Current nitrogen models (including the CPD model at BYU) only simulate the nitrogen release during primary pyrolysis, which happens at low temperatures. This project helps to build a nitrogen release model that accounts for secondary reactions and the effects of soot at temperatures relevant to industrial burners

  15. Emissions of Monoxide of Carbon and Methane in an atmospheric burner of natural gas

    International Nuclear Information System (INIS)

    In Colombia, the development of gas equipment industry has been characterized by a copy of foreign systems, without going further on the basic principles of operation and design of gas appliances. In order to guarantee an efficient and safe use of this energetic during the present plan of massive use of gas in the country, is necessary to know and dominate all the main phenomena influencing the design and operation of gas appliances, among them is the rate of primary aeration. In this study we analyze the production of CO and CH4 emissions in a premixed atmospheric burner when we modify pressure supply, tip size, injector size, mixer length and diameter of the throat. Results show that mixer geometry has a great influence on CO and CH4 emissions. When aeration rate was less or equal than 0.5 for power greater than 2.3 kw, CO emissions were beyond critic boundary. In the other hand, when we increased gas pressure supply, we observed those CH4 emissions decreased

  16. Blow-off characteristics of turbulent premixed flames in curved-wall Jet Burner

    KAUST Repository

    Mansour, Morkous S.

    2015-08-02

    This study concerns the flame dynamics of a curved-wall jet (CWJ) stabilized turbulent premixed flame as it approaches blow-off conditions. Time resolved OH planar laser-induced fluorescence (PLIF) delineated reaction zone contours and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the turbulent flow field features. Ethylene/air flames were stabilized in CWJ burner to determine the sequence of events leading to blowoff. For stably burning flames far from blowoff, flames are characterized with a recirculation zone (RZ) upstream for flame stabilization followed by an intense turbulent interaction jet (IJ) and merged-jet regions downstream; the flame front counterparts the shear layer vortices. Near blowoff, as the velocity of reactants increases, high local stretch rates exceed the extinction stretch rates instantaneously resulting in localized flame extinction along the IJ region. As Reynolds number (Re) increases, flames become shorter and are entrained by larger amounts of cold reactants. The increased strain rates together with heat loss effects result in further fragmentation of the flame, eventually leading to the complete quenching of the flame. This is explained in terms of local turbulent Karlovitz stretch factor (K) and principal flow strain rates associated with C contours. Hydrogen addition and increasing the RZ size lessen the tendency of flames to be locally extinguished.

  17. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  18. Analysis of biodiesel combustion in a boiler with a pressure operated mechanical pulverisation burner

    Energy Technology Data Exchange (ETDEWEB)

    Jose, J. San; Lopez Sastre, J.A. y [Valladolid Univ. (Spain). Dept. de Ingenieria Energetica y Fluidomecanica; Al-Kassir, Awf; Ganan, J. [Extremadura Univ., Badajoz (Spain). Escuela de Ingenierias Industriales

    2011-02-15

    Biodiesel used as fuel for internal combustion engines must meet the European quality standard for biodiesel, which requires a thorough inspection at the time of collection, storage and use. There is a large amount of biodiesel in Spain today which does not meet the required specifications for use in internal combustion engines and which might otherwise be used for thermal purposes in installations. This article offers a study of the use of biodiesel in a conventional combustion facility. This work presents the experimental results of biodiesel combustion with diesel for heating. The work is divided into two sections. The first deals with the characteristics of biodiesel as a heating fuel; the characteristics of heating fuel; the characteristics of the mixtures of biodiesel and heating fuel, thus enabling an estimation of the theoretical combustion results. The second part deals with the combustion of the mixtures. For this, we establish a series of parameters to be controlled in the combustion depending on the chosen burner. We present the tests, describe the experimental facilities where the tests were conducted and present the experimental results and analysis thereof. (author)

  19. Characterization of ceramic ornaments of a theatre-like incense burner

    International Nuclear Information System (INIS)

    Thirteen Teotihuacan-style ornaments of an incense burner were studied. Ceramic pastes, pigments and mica were analyzed by neutron activation, X-ray diffraction and scanning electron microscopy. Elemental (Sc, Cr, Fe, Co, Rb, Cs, La, Ce, Nd, Sm, Eu, Tb, Yb, Lu, Hf, Th and U) and statistical analyses of ceramic-body data showed that these pieces were made from the same raw material, which is chemically different from the fine orange ceramic of Teotihuacan. Montmorillonite and the classical components of sand were the minerals identified in the ceramic pastes. The white pigment contained calcium, titanium and aluminium, the yellow pigment was ocher, and the red pigment was a mixture of red ocher and cinnabar, the binder of the pigments being clay. Exoskeletons of diatoms and locust ootecs were found in the pigments. Mica was identified as biotite, identical with that coming from Monte Alban Oaxaca. We wish to undertake a historical reconstruction of these ornaments based on archaeometric and literature data. (author)

  20. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

    2000-04-01

    Reduction of NO{sub x} emission is an important environmental issue in pulverized coal combustion. The most cost-effective approach to NO{sub x} reduction is air-staging which can also operate with additional down-stream techniques such as reburning [1]. Air staging promotes the conversion of NO{sub x} precursors (HCN, NH{sub 3}, etc.) to N{sub 2} by delaying the oxygen supply to the greatest extent when those nitrogen species are released during devolatilization. Such a delay gives the primary volatiles a chance to undergo secondary reactions, including tar cracking and soot formation. Secondary reactions of volatiles largely determine the fate of the ultimate NO{sub x} production from pyrolysis, therefore a detailed investigation into the transformation of nitrogen species during secondary reactions and effects of soot on nitrogen release is critical for design and implementation of new pollution control strategies. Current nitrogen models (including the CPD model at BYU) only simulate the nitrogen release during primary pyrolysis, which happens at low temperatures. This project helps to build a nitrogen release model that accounts for secondary reactions and the effects of soot at temperatures relevant to industrial burners.

  1. Pollutant Emission Validation of a Heavy-Duty Gas Turbine Burner by CFD Modeling

    Directory of Open Access Journals (Sweden)

    Roberto Meloni

    2013-10-01

    Full Text Available 3D numerical combustion simulation in a can burner fed with methane was carried out in order to evaluate pollutant emissions and the temperature field. As a case study, the General Electric Frame 6001B system was considered. The numerical investigation has been performed using the CFD code named ACE+ Multiphysics (by Esi-Group. The model was validated against the experimental data provided by Cofely GDF SUEZ and related to a real power plant. To completely investigate the stability of the model, several operating conditions were taken into account, at both nominal and partial load. In particular, the influence on emissions of some important parameters, such as air temperature at compressor intake and steam to fuel mass ratio, have been evaluated. The flamelet model and Zeldovich’s mechanism were employed for combustion modeling and NOx emissions, respectively. With regard to CO estimation, an innovative approach was used to compute the Rizk and Mongia relationship through a user-defined function. Numerical results showed good agreement with experimental data in most of the cases: the best results were obtained in the NOx prediction, while unburned fuel was slightly overestimated.

  2. Calculational benchmark comparisons for a low sodium void worth actinide burner core design

    International Nuclear Information System (INIS)

    Recently, a number of low void worth core designs with non-conventional core geometries have been proposed. Since these designs lack a good experimental and computational database, benchmark calculations are useful for the identification of possible biases in performance characteristics predictions. In this paper, a simplified benchmark model of a metal fueled, low void worth actinide burner design is detailed; and two independent neutronic performance evaluations are compared. Calculated performance characteristics are evaluated for three spatially uniform compositions (fresh uranium/plutonium, batch-averaged uranium/transuranic, and batch-averaged uranium/transuranic with fission products) and a regional depleted distribution obtained from a benchmark depletion calculation. For each core composition, the flooded and voided multiplication factor, power peaking factor, sodium void worth (and its components), flooded Doppler coefficient and control rod worth predictions are compared. In addition, the burnup swing, average discharge burnup, peak linear power, and fresh fuel enrichment are calculated for the depletion case. In general, remarkably good agreement is observed between the evaluations. The most significant difference is predicted performance characteristics is a 0.3--0.5% Δk/(kk) bias in the sodium void worth. Significant differences in the transmutation rate of higher actinides are also observed; however, these differences do not cause discrepancies in the performing predictions

  3. Numerical investigation into premixed hydrogen combustion within two-stage porous media burner of 1 kW solid oxide fuel cell system

    Directory of Open Access Journals (Sweden)

    Tzu-Hsiang Yen, Wen-Tang Hong, Yu-Ching Tsai, Hung-Yu Wang, Cheng-Nan Huang, Chien-Hsiung Lee, Bao-Dong Chen

    2010-07-01

    Full Text Available Numerical simulations are performed to analyze the combustion of the anode off-gas / cathode off-gas mixture within the two-stage porous media burner of a 1 kW solid oxide fuel cell (SOFC system. In performing the simulations, the anode gas is assumed to be hydrogen and the combustion of the gas mixture is modeled using a turbulent flow model. The validity of the numerical model is confirmed by comparing the simulation results for the flame barrier temperature and the porous media temperature with the corresponding experimental results. Simulations are then performed to investigate the effects of the hydrogen content and the burner geometry on the temperature distribution within the burner and the corresponding operational range. It is shown that the maximum flame temperature increases with an increasing hydrogen content. In addition, it is found that the burner has an operational range of 1.2~6.5 kW when assigned its default geometry settings (i.e. a length and diameter of 0.17 m and 0.06 m, respectively, but increases to 2~9 kW and 2.6~11.5 kW when the length and diameter are increased by a factor of 1.5, respectively. Finally, the operational range increases to 3.5~16.5 kW when both the diameter and the length of the burner are increased by a factor of 1.5.

  4. The GDT-based fusion neutron source as driver of a minor actinides burner

    International Nuclear Information System (INIS)

    this option compares to the spallation based ADS? The answers on these questions are the objective of the present paper. By means of the Monte Carlo code MCNP-4C2 and the nuclear data library JENDL-3.3 neu-tron transport calculations were carried out for a minor actinides burner the scheme of which originally has been defined as a numerical benchmark exercise for spallation based ADS by the OECD NEA [5] and afterwards was slightly modified in Ref. [6]. Basic neutron characteristics of the system were calculated for the cases when operated with both the spallation source and the GDT neutron source. The results make clear what are the differences between both cases regarding the neutronics and what they have in common. From the obtained calculation results and from known parameters of both neutron sources the following main conclu-sions can be drawn: - The projected parameters of the GDT-based neutron source make it a candidate for a driver of an actinides burner. - To become competitive with the ADS, the further Research and Development effort for the GDT neutron source project must, above all, be directed towards an increase of its energetic efficiency. References [1] EUROTRANS - Integrated Project of the Sixth Framework Programme Euratom, http://www.fzk.de/eurotrans/ [2] A.A. Ivanov and D.D. Ryutov, Nucl. Sci. Eng., 106, 235 (1990) [3] P.A. Bagryansky, et al., Fusion Eng. Des., 70, 11 (235) [4] E.P. Kruglyakov, Proc. of Int. Conf. On Open Plasma Conf. Sys., Novosibirsk, A. Kabantsev (ed.), IAEA, 349 (1993) [5] Nuclear Energy Agency, NEA/NSC/DOC (2001)13 [6] G. Aliberti, et al., Nucl. Sci. Eng., 146, 13 (2004)

  5. The investigations of temperature distributions in an opposed multi-burner gasifier

    International Nuclear Information System (INIS)

    Research highlights: → The temperatures of gasification chamber and quench chamber are measured by thermocouples. → The temperatures of gasification chamber increase slowly as the inserted distance increases in both diesel and coal -water slurry (CWS) tests. → The syngas temperature decrease rapidly when it passes through the inlet of quench chamber. → Flame temperature distributions are reconstructed by the Filtered back-projection method. → Temperature distributions of diesel impinging flames are 1650-2100 oC and those of CWS flames are 1500-2000 oC at the test conditions. -- Abstract: In a bench-scale opposed multi-burner (OMB) gasifier, the temperatures of gasification chamber and quench chamber are measured by thermocouples, and the temperature distributions of flame sections are reconstructed by the Filtered back-projection method. The results show that the temperature of gasification chamber increases slowly as the inserted distance increases in both diesel and coal-water slurry (CWS) tests. The syngas temperature decreases rapidly when it passes through the inlet of quench chamber. The impinging flames of diesel or CWS gasification all focus on the gasifier center due to restraining by each other, and can avoid scouring the refractory wall and prolong the lives of refractory. At the test conditions, the temperature distributions of diesel flames are 1650-2100 oC and those of CWS flames are 1500-2000 oC. The flame temperature distributions appear to be a typical simple peak. The investigations can provide some information for the industrial gasifier.

  6. Holy Smoke in Medieval Funerary Rites: Chemical Fingerprints of Frankincense in Southern Belgian Incense Burners

    Science.gov (United States)

    Baeten, Jan; Deforce, Koen; Challe, Sophie; De Vos, Dirk; Degryse, Patrick

    2014-01-01

    Frankincense, the oleogum resin from Boswellia sp., has been an early luxury good in both Western and Eastern societies and is particularly used in Christian funerary and liturgical rites. The scant grave goods in late medieval burials comprise laterally perforated pottery vessels which are usually filled with charcoal. They occur in most regions of western Europe and are interpreted as incense burners but have never been investigated with advanced analytical techniques. We herein present chemical and anthracological results on perforated funerary pots from 4 Wallonian sites dating to the 12–14th century AD. Chromatographic and mass spectrometric analysis of lipid extracts of the ancient residues and comparison with extracts from four Boswellia species clearly evidence the presence of degraded frankincense in the former, based on characteristic triterpenoids, viz. boswellic and tirucallic acids, and their myriad dehydrated and oxygenated derivatives. Cembrane-type diterpenoids indicate B. sacra (southern Arabia) and B. serrata (India) as possible botanical origins. Furthermore, traces of juniper and possibly pine tar demonstrate that small amounts of locally available fragrances were mixed with frankincense, most likely to reduce its cost. Additionally, markers of ruminant fats in one sample from a domestic context indicate that this vessel was used for food preparation. Anthracological analysis demonstrates that the charcoal was used as fuel only and that no fragrant wood species were burned. The chars derived from local woody plants and were most likely recovered from domestic fires. Furthermore, vessel recycling is indicated by both contextual and biomarker evidence. The results shed a new light on funerary practices in the Middle Ages and at the same time reveal useful insights into the chemistry of burned frankincense. The discovery of novel biomarkers, namely Δ2-boswellic acids and a series of polyunsaturated and aromatic hydrocarbons, demonstrates the

  7. Preliminary studies of a new accelerator-driven minor actinide burner in industrial scale

    International Nuclear Information System (INIS)

    Highlights: • A new accelerator-driven minor actinide (MA) burner was proposed. • Comprehensive design of spallation target, fuel assembly and subcritical core was performed. • Preliminary safety analyses indicate the inherent safety of the core in the reactivity insertion (500 pcm) and beam overpower (50% increase) transients. - Abstract: Pursuing high transmutation rate of minor actinide (MA), a preliminary conceptual design of a lead-bismuth (LBE) cooled accelerator-driven system (ADS) is proposed in this study. Parametric studies are performed to optimize the neutronics and thermal–hydraulics performances. The proton energy and axial position of the proton beam impact is investigated to obtain high neutron source efficiency and spallation neutron yield. The influences of MA/Pu mixing ratio and the ratio of pin pitch to diameter (P/D) are also optimized to control the burnup reactivity swing and the minimum coolant velocity for adequate cooling. To reduce the power peak, three kinds of power flattening techniques are adopted and compared. The results show that the inert matrix ratio zone loading method seems more versatile. Based on the analyses, an optimized three zone loading pattern is proposed for the 800 MWth subcritical core. The total transmutation rate of MA is 328.8 kg per effective full power year. Preliminary safety analyses based on the balance of power method (BOP) are performed and the results show that in the reactivity insertion and beam overpower transients, the core shows inherent safety, but the scram is necessary by cutting off the beam current to protect the core from possible damages caused by the loss of flow

  8. Preliminary studies of a new accelerator-driven minor actinide burner in industrial scale

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xunzhao; Zhou, Shengcheng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, No. 54, Beijing 100082 (China); Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China)

    2015-10-15

    Highlights: • A new accelerator-driven minor actinide (MA) burner was proposed. • Comprehensive design of spallation target, fuel assembly and subcritical core was performed. • Preliminary safety analyses indicate the inherent safety of the core in the reactivity insertion (500 pcm) and beam overpower (50% increase) transients. - Abstract: Pursuing high transmutation rate of minor actinide (MA), a preliminary conceptual design of a lead-bismuth (LBE) cooled accelerator-driven system (ADS) is proposed in this study. Parametric studies are performed to optimize the neutronics and thermal–hydraulics performances. The proton energy and axial position of the proton beam impact is investigated to obtain high neutron source efficiency and spallation neutron yield. The influences of MA/Pu mixing ratio and the ratio of pin pitch to diameter (P/D) are also optimized to control the burnup reactivity swing and the minimum coolant velocity for adequate cooling. To reduce the power peak, three kinds of power flattening techniques are adopted and compared. The results show that the inert matrix ratio zone loading method seems more versatile. Based on the analyses, an optimized three zone loading pattern is proposed for the 800 MWth subcritical core. The total transmutation rate of MA is 328.8 kg per effective full power year. Preliminary safety analyses based on the balance of power method (BOP) are performed and the results show that in the reactivity insertion and beam overpower transients, the core shows inherent safety, but the scram is necessary by cutting off the beam current to protect the core from possible damages caused by the loss of flow.

  9. Premixed Combustion of Kapok (ceiba pentandra seed oil on Perforated Burner

    Directory of Open Access Journals (Sweden)

    I.K.G. Wirawan

    2014-05-01

    Full Text Available Availability of fossil fuels in the world decrease gradually due to excessive fuel exploitation. This situations push researcher to look for alternative fuels as a source of renewable energy, one of them is kapok (ceiba pentandra seed oil. The aim this study was to know the behavior of laminar burning velocity, secondary Bunsen flame with open tip, cellular and triple flame. Premixed combustion of kapok seed oil was studied experimentally on perforated burner with equivalence ratio (φ varied from 0.30 until 1.07. The results showed that combustion of glycerol requires a large amount of air so that laminar burning velocity (SL is the highest at very lean mixture (φ =0.36 in the form of individual Bunsen flame on each of the perforated plate hole.  Perforated and secondary Bunsen flame both reached maximum SL similar with that of ethanol and higher than that of hexadecane. Slight increase of φ decreases drastically SL of perforated and secondary Bunsen flame. When the mixture was enriched, secondary Bunsen and perforated flame disappears, and then the flame becomes Bunsen flame with open tip and triple flame (φ = 0.62 to 1.07. Flame was getting stable until the mixture above the stoichiometry. Being isolated from ambient air, the SL of perforated flame, as well as secondary Bunsen flame, becomes equal with non-isolated flame. This shows the decreasing trend of laminar burning velocity while φ is increasing. When the mixture was enriched island (φ = 0.44 to 0.48 and petal (φ = 0.53 to 0.62 cellular flame take place. Flame becomes more unstable when the mixture was changed toward stoichiometry.

  10. Fusion-driven actinide burner design study. Second quarterly progress report

    International Nuclear Information System (INIS)

    The Second Quarterly Progress Report summarizes the status at the mid-point of the conceptual design effort. The fusion driver continues to pose some of the principal design problems due to the necessity of advancing plasma engineering and technology for long pulse, high duty cycle operation. The development of credible design solutions to these problems is one of the major objectives of the study. The TF and OH coil designs have been modified to provide a more compact arrangement in the nose region of the TF coils and to ensure fully cryostable operation. A unique concept has been developed to effectively shield the TF coils from the poloidal fields. A vacuum vessel concept which separates the functions for sustaining the differential pressure load and for sealing the vacuum system is described. The thickness of the blanket has been decreased to reduce the power density and the actinide inventory. Determination and presentation of actinide depletion characteristics represents a major element thus far in the study and is a principal objective. Evaluation of the changes in the hazard only during irradiation proved to be an inadequate measure of the reduction in long term hazards due to the importance of radioactive daughter products which appear much later in time. Therefore, comparisons have been made of long term decay characteristics before and after irradiation in the actinide burner. It has also been noted that some of the actinides that are produced during irradiation have beneficial applications as radioisotopic power sources. These and other considerations suggest that alternate approaches to assessing the waste management problem be considered to develop a meaningful perspective on long term hazards from the actinides

  11. Fusion-driven actinide burner design study. Second quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Chi, J.W.H.; Gold, R.E.; Holman, R.R.

    1975-11-01

    The Second Quarterly Progress Report summarizes the status at the mid-point of the conceptual design effort. The fusion driver continues to pose some of the principal design problems due to the necessity of advancing plasma engineering and technology for long pulse, high duty cycle operation. The development of credible design solutions to these problems is one of the major objectives of the study. The TF and OH coil designs have been modified to provide a more compact arrangement in the nose region of the TF coils and to ensure fully cryostable operation. A unique concept has been developed to effectively shield the TF coils from the poloidal fields. A vacuum vessel concept which separates the functions for sustaining the differential pressure load and for sealing the vacuum system is described. The thickness of the blanket has been decreased to reduce the power density and the actinide inventory. Determination and presentation of actinide depletion characteristics represents a major element thus far in the study and is a principal objective. Evaluation of the changes in the hazard only during irradiation proved to be an inadequate measure of the reduction in long term hazards due to the importance of radioactive daughter products which appear much later in time. Therefore, comparisons have been made of long term decay characteristics before and after irradiation in the actinide burner. It has also been noted that some of the actinides that are produced during irradiation have beneficial applications as radioisotopic power sources. These and other considerations suggest that alternate approaches to assessing the waste management problem be considered to develop a meaningful perspective on long term hazards from the actinides.

  12. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  13. Imaging of diluted turbulent ethylene flames stabilized on a Jet in Hot Coflow (JHC) burner

    Energy Technology Data Exchange (ETDEWEB)

    Medwell, Paul R.; Kalt, Peter A.M.; Dally, Bassam B. [School of Mechanical Engineering, The University of Adelaide, South Australia 5005 (Australia)

    2008-01-15

    The spatial distributions of the hydroxyl radical (OH), formaldehyde (H{sub 2}CO), and temperature imaged by laser diagnostic techniques are presented using a Jet in Hot Coflow (JHC) burner. The measurements are of turbulent nonpremixed ethylene jet flames, either undiluted or diluted with hydrogen (H{sub 2}), air or nitrogen (N{sub 2}). The fuel jet issues into a hot and highly diluted coflow at two O{sub 2} levels and a fixed temperature of 1100 K. These conditions emulate those of moderate or intense low oxygen dilution (MILD) combustion. Ethylene is an important species in the oxidation of higher-order hydrocarbon fuels and in the formation of soot. Under the influence of the hot and diluted coflow, soot is seen to be suppressed. At downstream locations, surrounding air is entrained which results in increases in reaction rates and a spatial mismatch between the OH and H{sub 2}CO surfaces. In a very low O{sub 2} coflow, a faint outline of the reaction zone is seen to extend to the jet exit plane, whereas at a higher coflow O{sub 2} level, the flames visually appear lifted. In the flames that appear lifted, a continuous OH surface is identified that extends to the jet exit. At the ''lift-off'' height a transition from weak to strong OH is observed, analogous to a lifted flame. H{sub 2}CO is also seen upstream of the transition point, providing further evidence of the occurrence of preignition reactions in the apparent lifted region of these flames. The unique characteristics of these particular cases has led to the term transitional flame. (author)

  14. Holy smoke in medieval funerary rites: chemical fingerprints of frankincense in southern Belgian incense burners.

    Directory of Open Access Journals (Sweden)

    Jan Baeten

    Full Text Available Frankincense, the oleogum resin from Boswellia sp., has been an early luxury good in both Western and Eastern societies and is particularly used in Christian funerary and liturgical rites. The scant grave goods in late medieval burials comprise laterally perforated pottery vessels which are usually filled with charcoal. They occur in most regions of western Europe and are interpreted as incense burners but have never been investigated with advanced analytical techniques. We herein present chemical and anthracological results on perforated funerary pots from 4 Wallonian sites dating to the 12-14th century AD. Chromatographic and mass spectrometric analysis of lipid extracts of the ancient residues and comparison with extracts from four Boswellia species clearly evidence the presence of degraded frankincense in the former, based on characteristic triterpenoids, viz. boswellic and tirucallic acids, and their myriad dehydrated and oxygenated derivatives. Cembrane-type diterpenoids indicate B. sacra (southern Arabia and B. serrata (India as possible botanical origins. Furthermore, traces of juniper and possibly pine tar demonstrate that small amounts of locally available fragrances were mixed with frankincense, most likely to reduce its cost. Additionally, markers of ruminant fats in one sample from a domestic context indicate that this vessel was used for food preparation. Anthracological analysis demonstrates that the charcoal was used as fuel only and that no fragrant wood species were burned. The chars derived from local woody plants and were most likely recovered from domestic fires. Furthermore, vessel recycling is indicated by both contextual and biomarker evidence. The results shed a new light on funerary practices in the Middle Ages and at the same time reveal useful insights into the chemistry of burned frankincense. The discovery of novel biomarkers, namely Δ2-boswellic acids and a series of polyunsaturated and aromatic hydrocarbons

  15. A NEW DOUBLE-SLIT CURVED WALL-JET (CWJ) BURNER FOR STABILIZING TURBULENT PREMIXED AND NON-PREMIXED FLAMES

    KAUST Repository

    Mansour, Morkous S.

    2015-06-30

    A novel double-slit curved wall-jet (CWJ) burner was proposed and employed, which utilizes the Coanda effect by supplying fuel and air as annular-inward jets over a curved surface. We investigated the stabilization characteristics and structure of methane/air, and propane/air turbulent premixed and non-premixed flames with varying global equivalence ratio, , and Reynolds number, Re. Simultaneous time-resolved measurements of particle image velocimetry and planar laser-induced fluorescence of OH radicals were conducted. The burner showed potential for stable operation for methane flames with relatively large fuel loading and overall rich conditions. These have a non-sooting nature. However, propane flames exhibit stable mode for a wider range of equivalence ratio and Re. Mixing characteristics in the cold flow of non-premixed cases were first examined using acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions.PIV measurements revealed that velocity gradients in the shear layers at the boundaries of the annularjets generate the turbulence, enhanced with the collisions in the interaction jet, IJ,region. Turbulent mean and rms velocities were influenced significantly by Re and high rms turbulent velocities are generated within the recirculation zone improving the flame stabilization in this burner.Premixed and non-premixed flames with high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Re. For flames with low equivalence ratio, the processes of local quenching at IJ region and of re-ignition within merged jet region maintained these flames further downstream particularly for non-premixed methane flame, revealing a strong intermittency.

  16. Experimental investigation on NO{sub x} emission and carbon burnout from a radially biased pulverized coal whirl burner

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Shan; Hui, Shi' en; Zhou, Qulan; Xu, Tongmo; Hu, Hongli [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Taisheng [Dongfang Boiler Group Co., Ltd., Zigong, Sichuan 643001 (China)

    2009-09-15

    Experiments have been performed on 1 MW pulverized coal (pc) furnace in order to investigate the characteristics of coal combustion and NO{sub x} emission from a new type of radially biased dual register whirl burner. The burner is characterized by a primary air pipe with a continuously changing cross-section and an impact ring. The mixture of pulverized coal and air inside the primary pipe is split into two streams, which are the outer pc rich annular jet and the inner pc lean annular jet respectively. Three Chinese coals, which are high rank bituminous coal, low rank bituminous coal and meager coal respectively, are used in the experiments. We examine the influences of various parameters such as the relative position of the over-fire air (OFA) nozzle, over-fire air ratio (19.1%), primary air ratio, inner secondary air ratio, outer secondary air ratio, inner secondary air swirling intensity, and outer secondary air swirling intensity on NO{sub x} formation and unburned carbon in fly ash. With the primary air ratio increasing from 13.4% to 23.4%, the value of the NO{sub x} emission of the SH coal decreases by 26.7% at first, and then increases by 21.7%. In contrast, the value of the carbon in fly ash (C{sub FA}) increases by 40.1% at first, and then decreases by 58.3%. According to the experimental results, the influence of each individual parameter on NO{sub x} formation and unburned carbon in fly ash agrees well with the existing literature. In this study, the influences of various combinations of these parameters are also examined, thus providing some reference for the design of the radial biased whirl burner, the configuration of the furnace and the distribution of the air. (author)

  17. Can modern low-NOx burners for heavy oil fulfil the requirements posed by the National State Pollution Control Authority (SFT)

    International Nuclear Information System (INIS)

    It is an open question whether modern low-NOx burners can fulfil the most recent requirements posed by the Norwegian National State Pollution Control Authority (SFT). Old, conventional burners may fail to meet the new requirements, even after major modifications. Even new low-NOx burners may meet them only if the nitrogen content of the fuel oil is sufficiently small. Full compliance with the requirements will be achieved by installation of a cleaning system for NOx, but this entails investment an operation costs. An alternative may be changing to domestic heating oil; this will cause substantially less emission of NOx but increase fuel costs. The article discusses some issues that affect the NOx emission and some possibilities of modifying existing plants

  18. Research, development, and testing of a prototype two-stage low-input rate oil burner for variable output heating system applications

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, R.F.; Butcher, T.A. [Brookhaven National Labs., Upton, NY (United States)

    1997-09-01

    The use of a Two-Stage Fan Atomized Oil Burner (TSFAB) in space and water heating applications will have dramatic advantages in terms of it`s potential for a high Annual Fuel Utilization Efficiency (AFUE) and/or Energy Factor (EF) rating for the equipment. While demonstrations of a single rate burner in an actual application have already yielded sufficient confidence that space and domestic heating loads can be met at a single low firing rate, this represents only a narrow solution to the diverse nature of building space heating and domestic water loads that the industry must address. The mechanical development, proposed control, and testing of the Two-Stage burner is discussed in terms of near term and long term goals.

  19. Simulation of depth reduction furnace regenerative burner nozzle%深度还原炉蓄热式烧嘴喷口的模拟分析

    Institute of Scientific and Technical Information of China (English)

    岳悦; 夏宝森

    2015-01-01

    For heating is difficult to choose ore and raw coal mixture with reduction furnace burner, and using numerical simulation method, through regenerative burner nozzle to simulate different struc-tures analysis, and ultimately arrive at a more reasonable burner nozzle structure.%针对加热难选矿石和还原煤混合物的还原炉燃烧器,采用数值模拟的方法,通过对不同结构的蓄热式燃烧器喷口进行模拟分析,最终得出较为合理的燃烧器喷口结构。

  20. Experimental analysis of a porous burner operating on kerosene–vegetable cooking oil blends for thermophotovoltaic power generation

    International Nuclear Information System (INIS)

    Highlights: • Blends of kerosene–VCO fuels are successfully demonstrated for TPV power system. • Axial temperature distributions inside the combustion chamber are discussed. • Efficiencies are greatly affected by the change in fuel–air equivalence ratio. • CO and NOx emissions are affected by a change in fuel–air equivalence ratio. - Abstract: An experimental work was conducted to evaluate the performance and combustion characteristics of a porous burner for the cogeneration of heat and TPV applications. The main component comprised a novel tubular combustor that is designed to operate on several mixtures of gravity-fed liquid fuels and is integrated into an array of gallium antimonide (GaSb) TPV cells. Four mixtures of kerosene–vegetable cooking oil (VCO) were prepared and evaluated, as follows: 100% kerosene (100 kerosene), 90%/10% kerosene–VCO (90/10 KVCO), 75%/25% kerosene–VCO (75/25 KVCO), and 50%/50% kerosene–VCO (50/50 KVCO). The fuel–air equivalence ratios were varied from the rich blow-off condition to the lean region, and the corresponding electrical output and combustion characteristics were assessed. The maximum electrical efficiency of 1.03% was achieved using 50/50 KVCO, but the maximum radiant efficiency of 31.5% was obtained by using 100 kerosene. Experimental results indicated that increased fuel–air equivalence ratio adversely affected thermal efficiency. However, this shortcoming offsets the achievement of radiant power and efficiency. The thermal efficiency peaked at around stoichiometric mixture for all tested fuel blends. The combustion characteristics of the burner were clarified by analyzing the axial temperature profiles and emissions of carbon monoxide (CO) and nitrogen oxides (NOx). The temperature at the surface of the porous alumina was significantly higher than the developed flame temperature and the temperature at the exit of the burner. The CO emission fluctuated between 220 and 380 ppm in the lean region

  1. Transmission electron microscopy and electron holography of nanophase TiO{sub 2} generated in a flame burner system

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S.; Bonevich, J.E.; Maslar, J.E.; Aquino, M.I.; Zachariah, M.R. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1997-09-01

    Nanophase TiO{sub 2} (n-TiO{sub 2}) particles were generated in a flame burner system under three experimental conditions. Selected individual nanoparticles were identified and characterized using selected area electron diffraction, bright-field and, in some cases, dark-field imaging to determine morphology and microstructural features. Previously unknown TiO{sub 2} particles with unusual central features were identified as rutile. Electron holography was used to characterize the central features which were found to be consistent with voids. More extensive characterization of individual particles may lead to improved understanding of n-TiO{sub 2} nucleation and growth.

  2. Contribution to the development of the simulation model for the rotary cap burner in the marine steam boiler

    Directory of Open Access Journals (Sweden)

    Dvornik Joško

    2015-01-01

    Full Text Available This paper presents the simulation model for determining the intervals of preventive replacement of the system's components. The application of the Weibull distribution has been proved to be efficient in the approximation of many forms of delay, while numerical integration supported by Simpson formula and Fortran software has been applied to simulate optimum values of the preventive replacement of the components of the rotary cap burner SAACKE, type SKV 60 in the marine steam boiler, on the basis of the available data gathered through the system's exploitation and through empirical assumptions.

  3. Co-firing straw with coal in a swirl-stabilized dual-feed burner: modelling and experimental validation

    DEFF Research Database (Denmark)

    Yin, Chungen; Kær, Søren Knudsen; Rosendahl, Lasse;

    2010-01-01

    This paper presents a comprehensive computational fluid dynamics (CFD) modelling study of co-firing wheat straw with coal in a 150 kW swirl-stabilized dual-feed burner flow reactor, in which the pulverized straw particles (mean diameter of 451μm) and coal particles (mean diameter of 110.4μm) are ...... burnout of the two fuels is predicted: about 93% for coal char vs. 73% for straw char. As the conclusion, a reliable modelling methodology for pulverized biomass/coal co-firing and some useful co-firing design considerations are suggested....

  4. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho

    2013-03-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of burner diameter, burner gap, and velocity ratio. A critical nitrogen mole fraction exists beyond which the flame cannot be sustained; the critical nitrogen mole fraction versus global strain rate curves have C-shapes for various burner diameters, burner gaps, and velocity ratios. At sufficiently high strain-rate flames, these curves collapse into one curve; therefore, the flames follow the one-dimensional flame response of a typical diffusion flame. Low strain-rate flames are significantly affected by radial conductive heat loss, and therefore flame length. Three flame extinction modes are identified: flame extinction through shrinkage of the outer-edge flame with or without oscillations at the outer-edge flame prior to the extinction, and flame extinction through a flame hole at the flame center. The extinction modes are significantly affected by the behavior of the outer-edge flame. Detailed explanations are provided based on the measured flame-surface temperature and numerical evaluation of the fractional contribution of each term in the energy equation. Radial conductive heat loss at the flame edge to ambience is the main mechanism of extinction through shrinkage of the outer-edge flame in low strain-rate flames. Reduction of the burner diameter can extend the flame extinction mode by shrinking the outer-edge flame in higher strain-rate flames. © 2012 Elsevier Ltd. All rights reserved.

  5. A User requirement2 (UR2) Evaluation of Proliferation Resistance of a 600MWe TRU Burner using ORIGEN2.1

    International Nuclear Information System (INIS)

    Proliferation Resistance (PR) should be assessed during design, operation of innovative nuclear energy system (INS) and management of spent fuel. For developing a TRU burner design an evaluation of PR is necessary to quantitatively evaluate a degree of PR and possibility of misuse and diversion of nuclear material (NM). In this paper, PR is evaluated based on the assessment methodology of the INPRO user manual against a 600MWe class TRU burner. Furthermore, its result is compared with the result of PR assessment of PWR and CANDU. The attractiveness of nuclear material is also assessed by using the ORIGEN2.1 code

  6. Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of

  7. Importance of atomic oxygen in preheating zone in plasma-assisted combustion of a steady-state premixed burner flame

    Science.gov (United States)

    Zaima, K.; Akashi, H.; Sasaki, K.

    2015-09-01

    It is widely believed that electron impact processes play essential roles in plasma-assisted combustion. However, the concrete roles of high-energy electrons have not been fully understood yet. In this work, we examined the density of atomic oxygen in a premixed burner flame with the superposition of dielectric barrier discharge (DBD). The density of atomic oxygen in the reaction zone was not affected by the superposition of DBD, indicating that the amount of atomic oxygen produced by combustion reactions was much larger than that produced by electron impact processes. On the other hand, in the preheating zone, we observed high-frequency oscillation of the density of atomic oxygen at the timings of the pulsed current of DBD. The oscillation suggests the rapid consumption of additional atomic oxygen by combustion reactions. A numerical simulation using Chemkin indicates the shortened ignition delay time when adding additional atomic oxygen in the period of low-temperature oxidation. The present results reveals the importance of atomic oxygen, which is produced by the effect of high-energy electrons, in the preheating zone in plasma-assisted combustion of the steady-state premixed burner flame.

  8. Transmutation efficiency in the prismatic deep burner HTR concept by a 3D Monte Carlo depletion analysis

    International Nuclear Information System (INIS)

    This paper summarizes studies performed on the Deep-Burner Modular Helium Reactor (DB-MHR) concept-design. Feasibility and sensitivity studies as well as fuel-cycle studies with probabilistic methodology are presented. Current investigations on design strategies in one and two pass scenarios, and the computational tools are also presented. Computations on the prismatic concept-design were performed on a full-core 3D model basis. The probabilistic MCNP-MONTEBURNS-ORIGEN chain, with either JEF2.2 or BVI libraries, was used. One or two independently depleting media per assembly were accounted. Due to the calculation time necessary to perform MCNP5 calculations with sufficient accuracy, the different parameters of the depletion calculations have to be optimized according to the desired accuracy of the results. Three strategies were compared: the two pass with driver and transmuter fuel loading in three rings, the one pass with driver fuel only in three rings geometry and finally the one pass in four rings. The 'two pass' scenario is the best deep burner with about 70% mass reduction of actinides for the PWR discharged fuel. However the small difference obtained for incineration (∼5%) raises the question of the interest of this scenario given the difficulty of the process for TF fuel. Finally the advantage of the 'two pass' scenario is mainly the reduction of actinide activity. (author)

  9. Regenerative burner and low thermal mass insulation modifications to a forging furnace. A demonstration at Forgemasters Engineering Ltd. , Sheffield

    Energy Technology Data Exchange (ETDEWEB)

    1988-08-01

    Energy savings worth Pound 40,600/year are currently being realised by Forgemasters Engineering Ltd following the installation of regenerative burners and the addition of low thermal mass insulation to the furnace inner walls and roof of one of their reverberatory type bogie hearth pre-heat furnaces. Forgemasters Engineering Ltd produce high quality forged steel components for a wide range of industries. As part of this operation large forging ingots are heated prior to further working. Before modification, the furnace was only capable of heating temperatures up to 1,000/sup 0/C. It can now operate at higher temperatures (up to 1,200/sup 0/C), thus improving its production flexibility. In addition, the furnace is reported as recovering more rapidly from set point changes and the introduction of cold charge. The project, supported under the Energy Efficiency Demonstration Scheme, reduced energy consumption by 32%. Of this saving, 20% was due to insulation and 80% to the regenerative burners. (author).

  10. LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies

    International Nuclear Information System (INIS)

    Combustion of pulverized coal in oxy-combustion technology is one of the effective ways to reduce the emission of greenhouse gases into the atmosphere. The process of transition from conventional combustion in air to the oxy-combustion technology, however, requires a thorough investigations of the phenomena occurring during the combustion process, that can be greatly supported by numerical modeling. The paper presents the results of numerical simulations of pulverized coal combustion process in swirl burner using RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) methods for turbulent flow. Numerical simulations have been performed for the oxyfuel test facility located at the Institute of Heat and Mass Transfer at RWTH Aachen University. Detailed analysis of the flow field inside the combustion chamber for cold flow and for the flow with combustion using different numerical methods for turbulent flows have been done. Comparison of the air and oxy-coal combustion process for pulverized coal shows significant differences in temperature, especially close to the burner exit. Additionally the influence of the combustion model on the results has been shown for oxy-combustion test case. - Highlights: • Oxy-coal combustion has been modeled for test facility operating at low oxygen ratio. • Coal combustion process has been modeled with simplified combustion models. • Comparison of oxy and air combustion process of pulverized coal has been done. • RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) results for pulverized coal combustion process have been compared

  11. Emissions and properties of Bio-oil and Natural Gas Co-combustion in a Pilot Stabilised Swirl Burner

    Science.gov (United States)

    Kowalewski, Dylan

    Fast pyrolysis oil, or bio-oil, has been investigated to replace traditional fossil fuels in industrial burners. However, flame stability is a challenge due to its high water content. In order to address its instability, bio-oil was co-fired with natural gas in a lab scale 10kW swirl burner at energy ratios from 0% bio-oil to 80% bio-oil. To evaluate the combustion, flame shape, exhaust and particulate emissions, temperatures, as well as infrared emission were monitored. As the bio-oil energy fraction increased, NO emissions increased due to the nitrogen content of bio-oil. CO and particulate emissions increased likely due to carbonaceous residue exiting the combustion zone. Unburnt Hydrocarbon (UHC) emissions increased rapidly as combustion became poor at 60-80% bio-oil energy. The temperature and infrared output decreased with more bio-oil energy. The natural gas proved to be effective at anchoring the bio-oil flame to the nozzle, decreasing instances of extinction or blowout.

  12. Use of freeze-casting in advanced burner reactor fuel design

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin Madison, 1500 Engineering Drive, Madison, WI 53711 (United States); Burger, J.; Hunger, P. M.; Wegst, U. G. K. [Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755 (United States)

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models

  13. Use of freeze-casting in advanced burner reactor fuel design

    International Nuclear Information System (INIS)

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO2) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models. Preliminary results

  14. Opposed Jet Burner Extinction Limits: Simple Mixed Hydrocarbon Scramjet Fuels vs Air

    Science.gov (United States)

    Pellett, Gerald L.; Vaden, Sarah N.; Wilson, Lloyd G.

    2007-01-01

    Opposed Jet Burner tools have been used extensively by the authors to measure Flame Strength (FS) of laminar non-premixed H2 air and simple hydrocarbon (HC) air counterflow diffusion flames at 1-atm. FS represents a strain-induced extinction limit based on air jet velocity. This paper follows AIAA-2006-5223, and provides new HC air FSs for global testing of chemical kinetics, and for characterizing idealized flameholding potentials during early scramjet-like combustion. Previous FS data included six HCs, pure and N2-diluted; and three HC-diluted H2 fuels, where FS decayed very nonlinearly as HC was added to H2, due to H-atom scavenging. This study presents FSs on mixtures of (candidate surrogate) HCs, some with very high FS ethylene. Included are four binary gaseous systems at 300 K, and a hot ternary system at approx. 600 K. The binaries are methane + ethylene, ethane + ethylene, methane + ethane, and methane + propylene. The first three also form two ternary systems. The hot ternary includes both 10.8 and 21.3 mole % vaporized n-heptane and full ranges of methane + ethylene. Normalized FS data provide accurate means of (1) validating, globally, chemical kinetics for extinction of non-premixed flames, and (2) estimating (scaling by HC) the loss of incipient flameholding in scramjet combustors. The n-heptane is part of a proposed baseline simulant (10 mole % with 30% methane + 60% ethylene) that mimics the ignition of endothermically cracked JP-7 like kerosene fuel, as suggested by Colket and Spadaccini in 2001 in their shock tube Scramjet Fuels Autoignition Study. Presently, we use FS to gauge idealized flameholding, and define HC surrogates. First, FS was characterized for hot nheptane + methane + ethylene; then a hot 36 mole % methane + 64% ethylene surrogate was defined that mimics FS of the baseline simulant system. A similar hot ethane + ethylene surrogate can also be defined, but it has lower vapor pressure at 300 K, and thus exhibits reduced gaseous

  15. From Bunsen Burners to Fuel Cells: Invoking Energy Transducers to Exemplify "Paths" and Unify the Energy-Related Concepts of Thermochemistry and Thermodynamics

    Science.gov (United States)

    Hladky, Paul W.

    2009-01-01

    The conversion of chemical energy entirely into thermal energy by Bunsen burners and into thermal energy and electrical energy by fuel cells of varying efficiencies illustrates different paths by which a chemical reaction can occur. Using the efficiency of producing electrical energy as a path label allows all of the energy-related quantities to…

  16. Measurement of temperature profile of a two-dimensional slot burner (pre-mixed laminar) flame using laser speckle, photography and laser speckle shearing interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Nirala, A.K.; Shakher, C. [Indian Inst. of Tech., New Delhi (India)

    1995-09-01

    Temperature profile of a two-dimensional slot burner flame has been investigated using laser speckle photography and laser speckle shearing interferometry. Temperature profiles obtained by these two techniques are compared with the temperature profiles measured by Talbot interferometry with circular gratings. Good agreement among them is seen. (authors). 37 refs., 9 figs.

  17. ENVIRONMENTAL ASSESSMENT OF AN ENHANCED OIL RECOVERY STEAM GENERATOR EQUIPPED WITH AN EPA (ENVIRONMENTAL PROTECTION AGENCY) HEAVY OIL LOW-NOX BURNER. VOLUME 1. TECHNICAL RESULTS

    Science.gov (United States)

    The report gives results of comprehensive emission measurements and 30-day flue gas monitoring on a 16-MW (55 million Btu/hr) enhanced oil recovery steam generator equipped with the EPA low-NOx burner firing high-nitrogen crude.

  18. ENVIRONMENTAL ASSESSMENT OF AN ENHANCED OIL RECOVERY STEAM GENERATOR EQUIPPED WITH AN EPA (ENVIRONMENTAL PROTECTION AGENCY) HEAVY OIL LOW-NOX BURNER. VOLUME 2. DATA SUPPLEMENT

    Science.gov (United States)

    The report gives results of comprehensive emission measurements and 30-day flue gas monitoring on a 16-MW (55 million Btu/hr) enhanced oil recovery steam generator equipped with the EPA low-NOx burner firing high-nitrogen crude.

  19. Experimental characterization of a radiant porous burner for low temperatures using natural gas; Caracterizacao experimental de um queimador poroso radiante a gas natural para baixas temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Catapan, Rafael C.; Hissanaga, Newton Junior; Pereira, Fernando M.; Oliveira Junior, Amir A.M. de [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica; Serfaty, Ricardo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Freire, Luiz G.M. [PETROBRAS - RedeGasEnergia, RJ (Brazil)

    2004-07-01

    This article describes the experimental characterization of a radiant porous burner for temperatures between 500 deg C and 900 deg C. These low temperature radiant burners can be used in many practical applications as drying of paper and wood, plastic coating, food cooking and ambient heating. Two different configurations of silicon carbide porous ceramic foams were tested: one with a radian reflecting region (RRR) at the outlet and another without this region. Both configurations were able to sustain the reaction with equivalent ratio under 0,35. The configuration with a reflecting region was able to sustain flames with a minimum power of 60 kW/m{sup 2} and the other configuration with 100 W/m{sup 2}.The configuration with the RRR reached minimum superficial temperatures about 100 deg C lower than the other one. These results show that the reflecting region increases the heat recirculation inside the porous burner. The radiant efficiency varied from 20% to 35% for both burners. (author)

  20. Burner effects on melting process of regenerative aluminum melting furnace%烧嘴对蓄热式铝熔炼炉熔炼过程的影响

    Institute of Scientific and Technical Information of China (English)

    王计敏; 许朋; 闫红杰; 周孑民; 李世轩; 贵广臣; 李文科

    2013-01-01

    结合蓄热式铝熔炼炉熔炼过程的特点,运用FLUENT UDF和FLUENT Scheme混合编程,耦合用户自定义熔化模型和燃烧器换向及燃烧量变化模型,实现了蓄热式铝熔炼炉熔炼过程的数值模拟。依据优化原则,获得了熔炼时间随影响因子的变化规律:熔炼时间随着旋流数、燃烧器倾角、空气预热温度或天然气流量的增加而缩短;熔炼时间随着燃烧器间水平夹角或空燃比的延长,先减小而后增加;熔炼时间随着燃烧器高度的增加而延长。%According to the features of melting process of regenerative aluminum melting furnaces, a three-dimensional mathematical model with user-developed melting model, burner reversing and burning capacity model was established. The numerical simulation of melting process of a regenerative aluminum melting furnace was presented using hybrid programming method of FLUENT UDF and FLUENT scheme based on the heat balance test. Burner effects on melting process of aluminum melting furnaces were investigated by taking optimization regulations into account. The change rules of melting time on influence factors are achieved. Melting time decreases with swirl number, vertical angle of burner, air preheated temperature or natural gas flow; melting time firstly decreases with horizontal angle between burners or air-fuel ratio, then increases; melting time increases with the height of burner.

  1. Actinide transmutation using inert matrix fuels versus recycle in a low conversion fast burner reactor

    International Nuclear Information System (INIS)

    infinite fuel residence time. In previous work we have shown that the amount of fluence required to achieve a unit of burnup in yttrium stabilized ZrO2 based IMF with 85 w/o zirconium oxide and 15 w/o minor actinides (MA) and plutonium increases dramatically beyond 750 MWd/kgIHM (75% burnup). In this paper we discuss the repository implications for recycle of actinides in LWR's using this type of IMF and compare this to actinide recycle in a low conversion fast burner reactor. We perform the analysis over a finite horizon of 100 years, in which reprocessing of spent LWR fuel begins in 2020. Reference [1] C. Lombardi and A. Mazzola, Exploiting the plutonium stockpiles in PWRs by using inert matrix fuel, Annals of Nuclear Energy. 23 (1996) 1117-1126. [2] U. Kasemeyer, J.M. Paratte, P. Grimm and R. Chawla, Comparison of pressurized water reactor core characteristics for 100% plutonium-containing loadings, Nuclear Technology. 122 (1998) 52-63. [3] G. Ledergerber, C. Degueldre, P. Heimgartner, M.A. Pouchon and U. Kasemeyer, Inert matrix fuel for the utilisation of plutonium, Progress in Nuclear Energy. 38 (2001) 301-308. [4] U. Kasemeyer, C. Hellwig, J. Lebenhaft and R. Chawla, Comparison of various partial light water reactor core loadings with inert matrix and mixed oxide fuel, Journal of Nuclear Materials. 319 (2003) 142-153. [5] E.A. Schneider, M.R. Deinert and K.B. Cady, Burnup simulations of an inert matrix fuel using a two region, multi-group reactor physics model, in Proceedings of the physics of advanced fuel cycles, PHYSOR 2006, Vancouver, BC, 2006. [6] E.A. Schneider, M.R. Deinert and K.B. Cady, Burnup simulations and spent fuel characteristics of ZRO2 based inert matrix fuels, Journal of Nuclear Materials. 361 (2007) 41-51. (authors)

  2. Productization of a Low NOx Wood Dust Burner System in a Power boiler : Low NOx puupöly polttimen käyttö voimakattilassa ja sen tuotteistaminen

    OpenAIRE

    Kilpeläinen, Petri

    2012-01-01

    Andritz Kraft and Paper Mill Services Department is looking for the possibility to productize the wood dust powder burner system implemented in SCA Östrand Mill Sweden. The goal of this thesis was to find out how wood dust burners at Östrand Mill were implemented and how the project was handled, how the new burner systems works and to gather information of the used equipment, safety related systems and modifications required by the existing system. In this thesis the background of th...

  3. Biomass Suspension Combustion: Effect of Two-Stage Combustion on NOx Emissions in a Laboratory-Scale Swirl Burner

    DEFF Research Database (Denmark)

    Lin, Weigang; Jensen, Peter Arendt; Jensen, Anker Degn

    2009-01-01

    result from the homogeneous reaction, by comparing the NO emissions when firing natural gas with NH3 addition and co-firing natural gas and biomass. The experimental results also show no significant increase of incomplete combustion of gas and char by applying optimized two-stage combustion.......A systematic study was performed in a suspension fired 20 kW laboratory-scale swirl burner test rig for combustion of biomass and co-combustion of natural gas and biomass. The main focus is put on the effect of two-stage combustion on the NO emission, as well as its effect on the incomplete...... combustion. When two-stage combustion was applied, the NO emission level can be significantly reduced. The experimental results show that an optimal first-stage combustion stoichiometry (λ1) exists, at which a minimum NO emission can be achieved. An optimal stoichiometry of around 0.8 in the fuel-rich zone...

  4. Opposed jet burner studies of silane-methane, silane-hydrogen, and hydrogen diffusion flames with air

    Science.gov (United States)

    Pellett, G. L.; Guerra, Rosemary; Wilson, L. G.; Northam, G. B.

    1986-01-01

    An atmospheric pressure tubular opposed jet burner technique was used to characterize certain diffusion-flame transitions and associated burning rates for N2-diluted mixtures of highly-reactive fuels. The paper presents: (1) details of the technique, with emphasis on features permitting the study of flames involving pyrophoric gases and particle-forming combustion reactions; (2) discoveries on the properties of these flames which correspond to physically and chemically distinct stages of silane and hydrogen combustion; and (3) unburnt gas velocity data obtained from flames based on SiH4-CH4-N2, SiH4-H2-N2, and H2-N2 fuel mixtures, and plotted as functions of combustible-fuel mole fraction and fuel/oxygen molar input flow ratios. In addition, these burning velocity results are analyzed and interpreted.

  5. Effect of pressure and stoichiometric air ratio on NOx emissions in gas turbine dump combustor with double cone burner

    International Nuclear Information System (INIS)

    This work presents an experimental investigation of NOx emissions according to inlet air temperature (550-660K), stoichiometric air ratio (λ, 1.4-2.1), and elevated pressure (2-5bar) in a High Press Combustor (HPC) equipped with a double cone burner, which was designed by Pusan Clean Coal Center (PC3). The exhaust gas temperature and NOx emissions were measured at the end of the combustion chamber. The NOx emissions generally decreased as a function of increasing λ. On the other hand, NOx emissions were influenced by λ, inlet air temperature and pressure of the combustion chamber. In particular, when the inlet air temperature increased, the flammability limit was extended to leaner conditions. As a result, a higher adiabatic temperature and lower NOx emissions could be achieved under these operation conditions. The NOx emissions that were governed by thermal NOx were greatly increased under elevated pressures, and slightly increased at sufficiently low fuel concentrations (λ>1.8)

  6. Co-firing straw with coal in a swirl-stabilized dual-feed burner: modelling and experimental validation.

    Science.gov (United States)

    Yin, Chungen; Kaer, Søren K; Rosendahl, Lasse; Hvid, Søren L

    2010-06-01

    This paper presents a comprehensive computational fluid dynamics (CFD) modelling study of co-firing wheat straw with coal in a 150kW swirl-stabilized dual-feed burner flow reactor, in which the pulverized straw particles (mean diameter of 451microm) and coal particles (mean diameter of 110.4microm) are independently fed into the burner through two concentric injection tubes, i.e., the centre and annular tubes, respectively. Multiple simulations are performed, using three meshes, two global reaction mechanisms for homogeneous combustion, two turbulent combustion models, and two models for fuel particle conversion. It is found that for pulverized biomass particles of a few hundred microns in diameter the intra-particle heat and mass transfer is a secondary issue at most in their conversion, and the global four-step mechanism of Jones and Lindstedt may be better used in modelling volatiles combustion. The baseline CFD models show a good agreement with the measured maps of main species in the reactor. The straw particles, less affected by the swirling secondary air jet due to the large fuel/air jet momentum and large particle response time, travels in a nearly straight line and penetrate through the oxygen-lean core zone; whilst the coal particles are significantly affected by secondary air jet and swirled into the oxygen-rich outer radius with increased residence time (in average, 8.1s for coal particles vs. 5.2s for straw particles in the 3m high reactor). Therefore, a remarkable difference in the overall burnout of the two fuels is predicted: about 93% for coal char vs. 73% for straw char. As the conclusion, a reliable modelling methodology for pulverized biomass/coal co-firing and some useful co-firing design considerations are suggested. PMID:20117929

  7. OECD/NEA comparison calculations for an accelerator-driven minor actinide burner: analysis of preliminary results

    International Nuclear Information System (INIS)

    In the framework of the NEA Nuclear Science Committee, an international benchmark exercise for an accelerator-driven system is being undertaken. A model of a lead-bismuth cooled subcritical system driven by a beam of 1 GeV protons was chosen for the exercise. Except for the subassembly geometry, the design of the subcritical core is based on the ALMR reference design of a sodium-cooled actinide burner. To reduce the high pumping power for the lead-bismuth coolant, the reference subassembly was replaced by a subassembly with a smaller number of pins, and the fission power of the system was proportionally reduced. Lead-bismuth was chosen as target material to reflect the generally increased interest in this material for high-power spallation target applications. An interesting role of accelerator-driven systems is to burn actinide waste from reactors with conventional fuel cycles. The benchmark reactor is assumed to operate as a minor actinide burner in a 'double strata' fuel cycle scheme, featuring a fully closed fuel cycle with a top-up of pure minor actinides. Two fuel compositions for a start-up and an equilibrium core are considered, both differing considerably from normal U-Pu mixed oxide fuel compositions. Six organisations (ANL, CIEMAT, JAERI, KAERI, PSI/CEA and RIT) have contributed preliminary results for inclusion in this paper. The results are based on deterministic transport as well as Monte Carlo calculations using data from ENDF/B-VI, JENDL3.2 and JEF2.2. Significant difference in important neutronic parameters are observed. (authors)

  8. Numerical simulations for the coal/oxidant distribution effects between two-stages for multi opposite burners (MOB) gasifier

    International Nuclear Information System (INIS)

    Highlights: • We simulated a double stage 3D entrained flow coal gasifier with multi-opposite burners. • The various reaction mechanisms have evaluated with experimental results. • The effects of coal and oxygen distribution between two stages on the performance of gasifier have investigated. • The local coal to oxygen ratio is affecting the overall efficiency of gasifier. - Abstract: A 3D CFD model for two-stage entrained flow dry feed coal gasifier with multi opposite burners (MOB) has been developed in this paper. At each stage two opposite nozzles are impinging whereas the two other opposite nozzles are slightly tangential. Various numerical simulations were carried out in standard CFD software to investigate the impacts of coal and oxidant distributions between the two stages of the gasifier. Chemical process was described by Finite Rate/Eddy Dissipation model. Heterogeneous and homogeneous reactions were defined using the published kinetic data and realizable k–ε turbulent model was used to solve the turbulence equations. Gas–solid interaction was defined by Euler–Lagrangian frame work. Different reaction mechanism were investigated first for the validation of the model from published experimental results. Then further investigations were made through the validated model for important parameters like species concentrations in syngas, char conversion, maximum inside temperature and syngas exit temperature. The analysis of the results from various simulated cases shows that coal/oxidant distribution between the stages has great influence on the overall performance of gasifier. The maximum char conversion was found 99.79% with coal 60% and oxygen 50% of upper level of injection. The minimum char conversion was observed 95.45% at 30% coal with 40% oxygen at same level. In general with oxygen and coal above or equal to 50% of total at upper injection level has shown an optimized performance

  9. TJB-KP型高效低NOx四风道煤粉燃烧器降氮50%的分析%Analysis 50%NOx off byTJB-KP efficient low NOx four-channel coal burner

    Institute of Scientific and Technical Information of China (English)

    江旭昌

    2014-01-01

    燃烧器脱硝效率在20%~30%的通常认为是低NOx燃烧器,而应用结果表明,TJB-KP型四风道煤粉燃烧器的脱硝效率达50%,从一次风量、拢焰罩技术,中心风技术等六方面分析了该燃烧器降氮效率高的技术因素。%Burner denitration efficiency at 20%~30%are often considered to be a low NOx burner, and the application results show that the denitration efficiency of TJB-KP four-channel coal burner is up to 50%, technical factors of high denitration efficiency of the burn-er were analysed from six aspects of primary air volume, long flame cover technology, cenral air technology,etc.

  10. Application and mechanism of external tiny-oil ignition burner%外燃式微油点火燃烧器机理及应用

    Institute of Scientific and Technical Information of China (English)

    姜宏武; 蔡昌忠; 李文华; 翁善勇

    2011-01-01

    针对火电厂煤粉锅炉冷态节油点火、低负荷稳燃、煤种适应性提高、低NO:运行等要求,开发了新型外燃式微油点火燃烧器,点火燃油量在100kg/h左右,该燃烧器同时作为主燃烧器使用,并具有低负荷稳燃低NOx功能.5台锅炉的工业应用结果表明,外燃式微油点火燃烧器可实现锅炉冷态点火,煤粉燃尽率在82%以上,可实现不投油自然停炉,NOx下降率为25%左右,结合燃尽风后NOx下降率达55%左右.中心风是该燃烧器的主要调节手段,数值计算表明,调节中心风可以改变燃烧器出口回流区长度,从而调节煤粉着火点位置.%According to the requirement of less oil ignition,lower load combustion stabilization,and more coals suitability for power plan boilers,a new external tiny-oil(about 100 kg/h)ignition burner was developed.The new burner is also main burner of a boiler with the ability of low load combustion stabilization and low NO()emission.The results of the applications in 5 boilers showed that the external tiny-oil ignition burner could start boilers in cold condition with upon 82%burnout of pulverized-coal.The burners could shutdown boile() directly without oil.The NO()emission could be cut down about 25%,and about 55%with OFA.The center-air is the primary method to control combustion.The CFD study showed that the velocity of center-air could change the recirculation zone size effectively,so it could]control the ignition point to proper position for the safety of burner.

  11. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States)

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  12. Status of the EC-FP7 Project ARCAS: Comparing the economics of accelerator-driven systems and fast reactors as minor actinide burners

    International Nuclear Information System (INIS)

    The ARCAS Project aims to compare, on a technological and economical basis, accelerator-driven systems and fast reactors as minor actinide burners. It is split into five work packages: the reference scenario definition, the fast reactor system definition, the accelerator-driven system definition, the fuel reprocessing and fabrication facilities definition and the economical comparison. This paper summarises the status of the project and its five work packages. (authors)

  13. Performance of a hydrogen burner to simulate air entering scramjet combustors. [simulation of total temperature, total pressure, and volume fraction of oxygen of air at flight conditions

    Science.gov (United States)

    Russin, W. R.

    1974-01-01

    Tests were conducted to determine the performance of a hydrogen burner used to produce a test gas that simulates air entering a scramjet combustor at various flight conditions. The test gas simulates air in that it duplicates the total temperature, total pressure, and the volume fraction of oxygen of air at flight conditions. The main objective of the tests was to determine the performance of the burner as a function of the effective exhaust port area. The conclusions were: (1) pressure oscillations of the chugging type were reduced in amplitude to plus or minus 2 percent of the mean pressure level by proper sizing of hydrogen, oxygen, and air injector flow areas; (2) combustion efficiency remained essentially constant as the exhaust port area was increased by a factor of 3.4; (3) the mean total temperature determined from integrating the exit radial gas property profiles was within plus or minus 5 percent of the theoretical bulk total temperature; (4) the measured exit total temperature profile had a local peak temperature more than 30 percent greater than the theoretical bulk total temperature; and (5) measured heat transfer to the burner liner was 75 percent of that predicted by theory based on a flat radial temperature profile.

  14. Tensile Behavior of As-Fabricated and Burner-Rig Exposed SiC/SiC Composites with Hi-Nicalon Type-S Fibers

    Science.gov (United States)

    Yun, H. M.; Dicarlo, J. A.; Ogbuji, L. T.; Chen, Y. L.

    2002-01-01

    Tensile stress-strain curves were measured at room temperature and 1315 C for 2D-woven SiC/BN/SiC ceramic matrix composites (CMC) reinforced by two variations of Hi-Nicalon Type-S SiC fibers. These fibers, which contained a thin continuous carbon-rich layer on their as-produced surface, provided the as-fabricated CMC with good composite behavior and an ultimate strength and strain of -350 MPa and -0.5%, respectively. However, after un-stressed burner-rig exposure at 815 C for -100 hrs, CMC tensile specimens with cut edges and exposed interphases showed a significant decrease in ultimate properties with effectively no composite behavior. Microstructural observations show that the degradation was caused by internal fiber-fiber oxide bonding after removal of the carbon-rich fiber surface layer by the high-velocity combustion gases. On the other hand, SiC/BN/SiC CMC with Sylramic-iBN fibers without carbon-rich surfaces showed higher as-fabricated strength and no loss in strength after the same burner rig exposure. Based on the strong role of the carbon layer in these observations, a process method was developed and demonstrated for achieving better strength retention of Hi-Nicalon Type-S CMC during burner rig exposure. Other general approaches for minimizing this current deficiency with as-produced Type-S fibers are discussed.

  15. Real-Time Thermographic-Phosphor-Based Temperature Measurements of Thermal Barrier Coating Surfaces Subjected to a High-Velocity Combustor Burner Environment

    Science.gov (United States)

    Eldridge, Jeffrey I.; Jenkins, Thomas P.; Allison, Stephen W.; Cruzen, Scott; Condevaux, J. J.; Senk, J. R.; Paul, A. D.

    2011-01-01

    Surface temperature measurements were conducted on metallic specimens coated with an yttria-stabilized zirconia (YSZ) thermal barrier coating (TBC) with a YAG:Dy phosphor layer that were subjected to an aggressive high-velocity combustor burner environment. Luminescence-based surface temperature measurements of the same TBC system have previously been demonstrated for specimens subjected to static furnace or laser heating. Surface temperatures were determined from the decay time of the luminescence signal of the YAG:Dy phosphor layer that was excited by a pulsed laser source. However, the furnace and laser heating provides a much more benign environment than that which exists in a turbine engine, where there are additional challenges of a highly radiant background and high velocity gases. As the next step in validating the suitability of luminescence-based temperature measurements for turbine engine environments, new testing was performed where heating was provided by a high-velocity combustor burner rig at Williams International. Real-time surface temperature measurements during burner rig heating were obtained from the decay of the luminescence from the YAG:Dy surface layer. The robustness of several temperature probe designs in the sonic velocity, high radiance flame environment was evaluated. In addition, analysis was performed to show whether the luminescence decay could be satisfactorily extracted from the high radiance background.

  16. Low NO{sub x} radiant tube burner for liquid and gaseous fuels; Low-NO{sub x}-Strahlheizrohr-Brenner fuer fluessige und gasfoermige Brennstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Koehne, H.; Jaeger, F.K.; Munko, A. [RWTH Aachen (Germany). Lehrgebiet fuer Energie- und Stofftransport; Diemar, W. [LOI Thermprocess, Essen (Germany)

    2002-05-01

    In a project supported by the Arbeitsgemeinschaft industrieller Forschungsvereinigungen e.V. (AiF) (research association) an oil burner for radiant tubes has been developed at the Department of Heat and Mass Transfer EST, RWTH Aachen. The capacity range of the burner is 20 to 40 kW, as combustible fuel oil (Heizoel Extra Leicht) is used. The radiant tube burner was investigated at furnace temperatures of 1000 C. Because of the complete vaporisation of the liquid fuel, the fuel-air-mixture burns in a blue flame. Despite of the fact that the combustion air was preheated to a temperature of 850 C, extremely low emissions were achieved. At a firing rate of 39 kW the NO{sub x}-emissions were at approx. 100 ppm (3% O{sub 2}), the CO-emissions were clearly below 25 ppm. By balancing the radiant tube temperature of {+-}15 K a very low value could be achieved, which is necessary for optimal heat transfer to the material to be heated. By the determination of the recirculating mass flows and validation of these values by computer-aided simulation, the understanding for the phenomena taking place could be clearly improved. The total recirculation ratio with a value of r{sub ges}{approx}1.5 explains the minimal NO{sub x}-emissions. (orig.)

  17. Industrial Medium-Btu Fuel Gas Demonstration-Plant Program. Technical support report: combustion system data. Part 2. Burner conversion survey

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    This study was limited to an analysis of the feasibility of burning the IFG in the existing burners and combustion chambers among a group of prospective IFG customers. The results of this study indicate that the great majority of burner and equipment manufacturers recommend that the IFG can be utilized with their equipment. This is especially true with the boilers which make up the largest part of the load among the potential users of the IFG. A small number of burners representing a small part of the total potential load will probably have to be replaced. This study did not address the changes that would be required with respect to the fuel distribution piping within each facility. At a minimum of the existing regulators, flow meters, and control valves designed for the natural gas flow rates would have to be replaced to accommodate the higher fuel flow rates requiring with the IFG. In many facilities, the fuel distribution piping would have to be replaced. No changes, however, are requied for the combustion air fans or flues and stacks.

  18. Design and manufacture of an atmospheric burner of biogas with rural application; Diseno y construccion de un quemador atmosferico de biogas con aplicaciones rurales

    Energy Technology Data Exchange (ETDEWEB)

    Nunez Nunez, Jorge; Suarez Pacheco, Jose; Novelo Navarrete, Jose H; Soto Apolinar, Efrain [Universidad de Quintana Roo, Chetumal, Quintana Roo (Mexico)

    2000-07-01

    In this text it's resumed the methodology that was carried out to make an atmospheric burner of biogas, as the criteria that were taken in account in order to determine the main parameters of it. It introduces a synthesis of the stages of design and manufacture of the device. The utility of this type of burner increase the efficiency of the oxidation of the biogas compared with the use of conventional burners that aren't designed for this purpose. [Spanish] En este trabajo se resume la metodologia que se llevo a cabo para la construccion de un quemador de biogas tipo atmosferico, asi como los criterios que se tomaron para la determinacion de los parametros principales del mismo. Se presenta una sintesis de las etapas de diseno y manufactura del dispositivo. El uso de este tipo de quemadores aumenta la eficiencia de la oxidacion del biogas en comparacion con el uso de quemadores convencionales que no estan disenados para quemar biogas.

  19. Effects of nozzle length on flame and emission behaviors of multi-fuel-jet inverse diffusion flame burner

    International Nuclear Information System (INIS)

    Highlights: → We studied the effect of nozzle length on characteristics of inverse diffusion flame. → Air/fuel mixing is enhanced by shorter nozzle length. → Combustion is faster and more complete for the shorter nozzle. → Noise radiation is stronger for the longer nozzle. - Abstract: An experimental study was performed to investigate the effects of the nozzle length on the air-pollutant-emission and noise-radiation behaviors of a burner utilizing a multi-fuel-jet inverse diffusion flame (MIDF). Comparison of the experimental results obtained from two MIDF burners, one with a long nozzle and the other with a short nozzle, operating under the same air/fuel supply conditions (Reair and φ) shows rather significant differences in the flame appearance, flame centerline temperature, CO/CO2 concentrations and the noise radiation. The nozzle length influences development of the jets and hence interaction between the air/fuel jets including their mixing process. The short nozzle produces a flame with a shorter base height and a smaller potential core due to the enhanced air/fuel mixing. It also leads to faster and more complete combustion at the inner reaction cone of the flame due to the stronger and faster air/fuel mixing. The nozzle length affects the CO and CO2 concentrations, and higher peak values are obtained with the short-nozzle flame. Flame noise of the MIDF is defined as the noise radiation at different flame heights, which is of varying strength but of the same dominant frequency in the range of 250-700 Hz. The noise radiation from the inner reaction cone of the flame is stronger than that from the lower and upper parts of the flame, and the maximum noise radiation occurs when the total amounts of air and fuel in the combustion zone are at the stoichiometric air/fuel ratio. For all the experiments conducted in the present study, the MIDF produced by the long nozzle is always noisier than its counterpart and it is due to the increase of the low

  20. Some aspects of risk reduction strategy by multiple recycling in fast burner reactors of the plutonium and minor actinide inventories

    International Nuclear Information System (INIS)

    The paper shows the impact of recycling LWR-MOX fuel in a fast burner reactor on the plutonium (Pu) and minor actinide (MA) inventories and on the related radio activities. Reprocessing of the targets for multiple recycling will become increasingly difficult as the burn up increases. Multiple recycling of Pu + MA in fast reactors is a feasible option which has to be studied very carefully: the Pu (except the isotopes Pu-238 and Pu-240), Am and Np levels decrease as a function of the recycle number, while the Cm-244 level accumulates and gradually transforms into Cm-245. Long cooling times (10 + 2 years) are necessary with aqueous processing. The paper discusses the problems associated with multiple reprocessing of highly active fuel types and particularly the impact of Pu-238, Am-241 and Cm-244 on the fuel cycle operations. The calculations were performed with the zero-dimensional ORIGEN-2 code. The validity of the results depends on that of the code and its cross section library. The time span to reduce the initial inventory of Pu + MA by a factor of 10, amounts to 255 years when average burn ups are limited to 150 GWd t-1. (orig.)

  1. Experimental and theoretical deposition rates from salt-seeded combustion gases of a Mach 0.3 burner rig

    Science.gov (United States)

    Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Gokoglu, S. A.; Rosner, D. E.

    1984-01-01

    Deposition rates on platinum-rhodium cylindrical collectors rotating in the cross streams of the combustion gases of a salt-seeded Mach 0.3 burner rig were determined. The collectors were internally air cooled so that their surface temperatures could be widely varied while they were exposed to constant combustion gas temperatures. The deposition rates were compared with those predicted by the chemically frozen boundary layer (CFBL) computer program, which is based on multicomponent vapor transport through the boundary layer. Excellent agreement was obtained between theory and experiment for the NaCl-seeded case, but the agreement lessened as the seed was changed to synthetic sea salt, NaNO3, and K2SO4, respectively, and was particularly poor in the case of Na2SO4. However, when inertial impaction was assumed to be the deposition mechanism for the Na2SO4 case, the predicted rates agreed well with the experimental rates. The former were calculated from a mean particle diameter that was derived from the measured intial droplet size distribution of the solution spray. Critical experiments showed that liquid phase deposits were blown off the smooth surface of the platinum-rhodium collectors by the aerodynamic shear forces of the high-velocity combustion gases but that rough or porous surfaces retained their liquid deposits.

  2. Some aspects of risk reduction strategy by multiple recycling in fast burner reactors of the plutonium and minor actinide inventories

    International Nuclear Information System (INIS)

    This paper shows the impact of recycling light water reactor (LWR) mixed oxide (MOX) fuel in a fast burner reactor on the plutonium (Pu) and minor actinide (MA) inventories and on the related radioactivities. Reprocessing of the targets for multiple recycling will become increasingly difficult as the burnup increases. Multiple recycling of Pu + MA in fast reactors is a feasible option which has to be studied very carefully: the Pu (except the isotopes Pu-238 and Pu-240), Am and Np levels decrease as a function of the recycle number, while the Cm-244 level accumulates and gradually transforms into Cm-245. Long cooling times (10 + 2 years) are necessary with aqueous processing. The paper discusses the problems associated with multiple reprocessing of highly active fuel types and particularly the impact of Pu-238, Am-241 and Cm-244 on the fuel cycle operations. The calculations were performed with the zero-dimensional ORIGEN-2 code. The validity of the results depends on that of the code and its cross-section library. The time span to reduce the initial inventory of Pu + MA by a factor of 10 amounts to 255 years when average burnups are limited to 150 GW.d t-1 (tonne). (orig.)

  3. Numerical study of effect of oxygen fraction on local entropy generation in a methane–air burner

    Indian Academy of Sciences (India)

    Huseyin Yapici; Gamze Basturk; Nesrin Kayatas; Bilge Albayrak

    2004-12-01

    This study considers numerical simulation of the combustion of methane with air, including oxygen and nitrogen, in a burner and the numerical solution of local entropy generation rate due to high temperature and velocity gradients in the combustion chamber. The effects of equivalence ratio () and oxygen percentage () on combustion and entropy generation rates are investigated for different (from 0·5 to 1·0) and values (from 10 to 30%). Combustion is simulated for the fuel mass flow rate resulting in the same heat transfer rate $(\\dot{Q})$ to the combustion chamber in each case. Numerical calculation of combustion is performed individually for all cases with the use of the Fluent CFD code. Furthermore, a computer program has been developed to calculate the volumetric entropy generation rate and the other thermodynamic parameters numerically by using the results of the calculations performed with the FLUENT code. The predictions show that the increase of (or the decrease of ) significantly reduces the reaction rate levels. Average temperature in the combustion chamber increases by about 70 and 35% with increase of (from 10 to 30%) and (from 0·5 to 1·0) respectively. With increase of from 10 to 30%, volumetric local entropy generation rate decreases by about 9 and 4% for $\\phi =$ 0·5 and 1·0 respectively, while total entropy generation rate decreases exponentially and the merit numbers increase. The ratio of the rates useful energy transfer to irreversibility therefore improves as the oxygen percentage increases.

  4. Development and demonstration plant operation of an opposed multi-burner coal-water slurry gasification technology

    Institute of Scientific and Technical Information of China (English)

    WANG Fuchen; ZHOU Zhijie; DAI Zhenhua; GONG Xin; YU Guangsuo; LIU Haifeng; WANG Yifei; YU Zunhong

    2007-01-01

    The features of the opposed multi-burner (OMB) gasification technology,the method and process of the research,and the operation results of a pilot plant and demon stration plants have been introduced.The operation results of the demonstration plants show that when Beisu coal was used as feedstock,the OMB CWS gasification process at Yankuang Cathy Coal Co.Ltd had a higher carbon conversion of 3%,a lower specific oxygen consumption of about 8%,and a lower specific carbon consumption of 2%-3% than that of Texaco CWS gasification at the Lunan Fertilizer Plant.When Shenfu coal was used as feedstock,the OMB CWS gasification process at Hua-lu Heng-sheng Chemical Co.Ltd had a higher carbon conversion of more than 3%,a lower specific oxygen consumption of about 2%,and a lower specific coal consumption of about 8% than that of the Texaco CWS gasification process at Shanghai Coking & Chemical Corporation.The OMB CWS gasification technology is proven by industrial experience to have a high product yield,low oxygen and coal consumption and robust and safe operation.

  5. Calculation of ex-core detector weighting functions for a sodium-cooled tru burner mockup using MCNP5

    International Nuclear Information System (INIS)

    Power regulation systems of fast reactors are based on the signals of excore detectors. The excore detector weighting functions, which establish correspondence between the core power distribution and detector signal, are very useful for detector response analyses, e.g., in rod drop experiments. This paper presents the calculation of the weighting functions for a TRU burner mockup of the Korean Prototype Generation-IV Sodium-cooled Fast Reactor (named BFS-76-1A) using the MCNP5 multi-group adjoint capability. For generation of the weighting functions, all fuel assemblies were considered and each of them was divided into ten horizontal layers. Then the weighting functions for individual fuel assembly horizontal layers, the assembly weighting functions, and the shape annealing functions at RCP (Reactor Critical Point) and at conditions under which a control rod group was fully inserted into the core while other control rods at RCP were determined and evaluated. The results indicate that the weighting functions can be considered relatively insensitive to the control rods position during the rod drop experiments and therefore those weighting values at RCP can be applied to the dynamic rod worth simulation for the BFS-76-1A. (author)

  6. Integrated solar-assisted heat pumps for water heating coupled to gas burners; control criteria for dynamic operation

    International Nuclear Information System (INIS)

    A direct expansion integrated solar-assisted heat pump (ISAHP) is compared to a traditional flat plate solar panel for low temperature (45 deg. C) water heating applications. The (simulated) comparison is accomplished assuming both the devices are energy supplemented with an auxiliary standard gas burner, to provide the typical heat duty of a four-member family. Literature dynamical models of the systems involved have been used to calculate the main performance figures in a context of actual climatic conditions and typical stochastic user demand. The paper highlights new heat pump control concepts, needed when maximum energy savings are the main goal of the apparatus for given user demand. Simulations confirm the high collector efficiency of the ISAHP when its panel/evaporator works at temperature close to the ambient one. The device, with respect to a flat plate solar water heater, shows a doubled performance, so that it can do the same task just using an unglazed panel with roughly half of the surface.

  7. Numerical modelling of the CHEMREC black liquor gasification process. Conceptual design study of the burner in a pilot gasification reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marklund, Magnus

    2001-02-01

    The work presented in this report is done in order to develop a simplified CFD model for Chemrec's pressurised black liquor gasification process. This process is presently under development and will have a number of advantages compared to conventional processes for black liquor recovery. The main goal with this work has been to get qualitative information on influence of burner design for the gas flow in the gasification reactor. Gasification of black liquor is a very complex process. The liquor is composed of a number of different substances and the composition may vary considerably between liquors originating from different mills and even for black liquor from a single process. When a black liquor droplet is gasified it loses its organic material to produce combustible gases by three stages of conversion: Drying, pyrolysis and char gasification. In the end of the conversion only an inorganic smelt remains (ideally). The aim is to get this smelt to form a protective layer, against corrosion and heat, on the reactor walls. Due to the complexity of gasification of black liquor some simplifications had to be made in order to develop a CFD model for the preliminary design of the gasification reactor. Instead of modelling droplets in detail, generating gas by gasification, sources were placed in a prescribed volume where gasification (mainly drying and pyrolysis) of the black liquor droplets was assumed to occur. Source terms for the energy and momentum equations, consistent with the mass source distribution, were derived from the corresponding control volume equations by assuming a symmetric outflow of gas from the droplets and a uniform degree of conversion of reactive components in the droplets. A particle transport model was also used in order to study trajectories from droplets entering the reactor. The resulting model has been implemented in a commercial finite volume code (AEA-CFX) through customised Fortran subroutines. The advantages with this simple

  8. Fuel cell as burner for converting hydrogen (D2) formed in primary and moderator system of PHWRs

    International Nuclear Information System (INIS)

    Hydrogen (Deuterium) is released in the PHT system storage tank cover gas during full PHT system chemical decontamination of PHWRs. At present, D2 released in the cover gas is purged out thereby losing the precious D2O along with tritium. Similarly, sometimes in the moderator cover gas, the D2 is in excess of the stoichiometric equivalent to oxygen, does not get converted to D2O in the recombiner unit and hence, the concentration of D2 builds up in the cover gas requiring purging and loss of heavy water and Helium. These losses can be avoided by the use of fuel cell to convert the D2 formed into D2O. In a fuel cell, the hydrogen and oxygen are passed through cathodic and anodic compartments and hence direct mixing is avoided and the energy is released in the form of electrochemical energy. The experiments were carried out simulating the PHT storage tank and moderator cover gas conditions in a recirculating mode. As oxygen is expected in both the systems, a heated palladium loaded catalyst was used to completely remove the oxygen from the hydrogen containing gases as it is done in the recombiner unit present in the moderator cover gas the equipment to measure oxygen and hydrogen are also installed in the circuit. 8% H2 in Argon was mixed with He in evacuated 50L cylinder to maintain 3% and 2% hydrogen in two separate sets of experiments and then removed in fuel cell in a recirculation mode. The hydrogen removed in the fuel cell varied from 75 to 100% of total hydrogen in cylinder. The left over hydrogen in the cylinder is ∼0.1%. These experiments are repeated and the above observations were confirmed. For removal of excess H2 released during decontamination, 4, 6 and 8% hydrogen removal in fuel cell were attempted. Based on these studies, the use of fuel cell as hydrogen burner was established. (author)

  9. Short Communication: Emission of Oxygenated Polycyclic Aromatic Hydrocarbons from Biomass Pellet Burning in a Modern Burner for Cooking in China

    Science.gov (United States)

    Shen, Guofeng; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Chen, Yuanchen; Chen, Han; Wei, Wen; Tao, Shu

    2015-01-01

    Biomass pellets are undergoing fast deployment widely in the world, including China. To this stage, there were limited studies on the emissions of various organic pollutants from the burning of those pellets. In addition to parent polycyclic aromatic hydrocarbons, oxygenated PAHs (oPAHs) have been received increased concerns. In this study, emission factors of oPAHs (EFoPAHs) were measured for two types of pellets made from corn straw and pine wood, respectively. Two combustion modes with (mode II) and without (mode I) secondary side air supply in a modern pellet burner were investigated. For the purpose of comparison, EFoPAHs for raw fuels combusted in a traditional cooking stove were also measured. EFoPAHs were 348±305 and 396±387 µg/kg in the combustion mode II for pine wood and corn straw pellets, respectively. In mode I, measured EFoPAHs were 77.7±49.4 and 189±118 µg/kg, respectively. EFs in mode II were higher (2–5 times) than those in mode I mainly due to the decreased combustion temperature under more excess air. Compared to EFoPAHs for raw corn straw and pine wood burned in a traditional cooking stove, total EFoPAHs for the pellets in mode I were significantly lower (p < 0.05), likely due to increased combustion efficiencies and change in fuel properties. However, the difference between raw biomass fuels and the pellets burned in mode II was not statistically significant. Taking both the increased thermal efficiencies and decreased EFs into consideration, substantial reduction in oPAH emission can be expected if the biomass pellets can be extensively used by rural residents. PMID:25678836

  10. Emission of oxygenated polycyclic aromatic hydrocarbons from biomass pellet burning in a modern burner for cooking in China

    Science.gov (United States)

    Shen, Guofeng; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Chen, Yuanchen; Chen, Han; Wei, Wen; Tao, Shu

    2012-12-01

    Biomass pellets are undergoing fast deployment widely in the world, including China. To this stage, there were limited studies on the emissions of various organic pollutants from the burning of those pellets. In addition to parent polycyclic aromatic hydrocarbons, oxygenated PAHs (oPAHs) have been received increased concerns. In this study, emission factors of oPAHs (EFoPAHs) were measured for two types of pellets made from corn straw and pine wood, respectively. Two combustion modes with (mode II) and without (mode I) secondary side air supply in a modern pellet burner were investigated. For the purpose of comparison, EFoPAHs for raw fuels combusted in a traditional cooking stove were also measured. EFoPAHs were 348 ± 305 and 396 ± 387 μg kg-1 in the combustion mode II for pine wood and corn straw pellets, respectively. In mode I, measured EFoPAHs were 77.7 ± 49.4 and 189 ± 118 μg kg-1, respectively. EFs in mode II were higher (2-5 times) than those in mode I mainly due to the decreased combustion temperature under more excess air. Compared to EFoPAHs for raw corn straw and pine wood burned in a traditional cooking stove, total EFoPAHs for the pellets in mode I were significantly lower (p < 0.05), likely due to increased combustion efficiencies and change in fuel properties. However, the difference between raw biomass fuels and the pellets burned in mode II was not statistically significant. Taking both the increased thermal efficiencies and decreased EFs into consideration, substantial reduction in oPAH emission can be expected if the biomass pellets can be extensively used by rural residents.

  11. Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions.

    Science.gov (United States)

    Oh, Hyukjin; Annamalai, Kalyan; Sweeten, John M

    2008-04-01

    Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass [FB]) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash "fouling" were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss through ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash-fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out. PMID:18422038

  12. The flow field structure of highly stabilized partially premixed flames in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.

    2015-08-29

    The stability limits, the stabilization mechanism, and the flow field structure of highly stabilized partially premixed methane flames in a concentric flow conical nozzle burner with air co-flow have been investigated and presented in this work. The stability map of partial premixed flames illustrates that the flames are stable between two extinction limits. A low extinction limit when partial premixed flames approach non-premixed flame conditions, and a high extinction limit, with the partial premixed flames approach fully premixed flame conditions. These two limits showed that the most stable flame conditions are achieved at a certain degree of partial premixed. The stability is improved by adding air co-flow. As the air co-flow velocity increases the most stable flames are those that approach fully premixed. The turbulent flow field of three flames at 0, 5, 10 m/s co-flow velocity are investigated using Stereo Particle Image Velocimetry (SPIV) in order to explore the improvement of the flame stability due to the use of air co-flow. The three flames are all at a jet equivalence ratio (Φj) of 2, fixed level of partial premixing and jet Reynolds number (Rej) of 10,000. The use of co-flow results in the formation of two vortices at the cone exit. These vortices act like stabilization anchors for the flames to the nozzle tip. With these vortices in the flow field, the reaction zone shifts toward the reduced turbulence intensity at the nozzle rim of the cone. Interesting information about the structure of the flow field with and without co-flow are identified and reported in this work.

  13. 低氮燃烧器的应用及燃烧调整研究%Research of Low-NOx Hydrogen Burner Utilization and Combustion Ajustment

    Institute of Scientific and Technical Information of China (English)

    李佩直; 孙斌

    2015-01-01

    In order to meet environmental protection requirements for NOx emissions. To modify the existing burner. Reduced NOx emission concentration. For optimal operation by burning process. Control of NOx emis-sions in a reasonable level. And after control of the emissions of products by burning. Meet the national require-ments of discharge standards. Low nitrogen burner alteration after a certain effects on the economy of the unit. Through the combustion optimizing operation adjustment. Reasonable control of pulverized coal fineness and control the oxygen content. To solve the problems existing in the unit running. Makes the low nitrogen burner u-nit modified by adjusting the main indicator to control and level of the design value.%为了满足环保对NOx的排放要求,对现有的燃烧器进行改造,降低了NOx的排放浓度,对通过燃烧过程中进行优化运行,控制NOx的排放在合理的水平,并通过燃烧后对生成物排放的控制,达到国家要求的排放标准。低氮燃烧器改造后对机组的经济性造成一定的影响,通过燃烧优化运行调整、合理控制炉膛氧量以及控制煤粉细度,解决机组运行中存在的问题。使得低氮燃烧器改造后的机组主要指标通过调整能够控制到和设计值相当的水平。

  14. Achieving New Source Performance Standards (NSPS) Emission Standards Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Penrod

    2006-12-31

    The objective of this project was to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub X} emission levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project plan consisted of the integration of low-NO{sub X} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the use of sophisticated neural networks or other artificial intelligence technologies and complex software to optimize several operating parameters, including NO{sub X} emissions, boiler efficiency, and CO emissions. The program was set up in three phases. In Phase I, the boiler was equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler was equipped with burner modifications designed to reduce NO{sub X} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler was to be equipped with an overfire air system to permit deep reductions in NO{sub X} emissions. Integration of the overfire air system with the improvements made in Phases I and II would permit optimization of boiler performance, output, and emissions. This report summarizes the overall results from Phases I and II of the project. A significant amount of data was collected from the combustion sensors, coal flow monitoring equipment, and other existing boiler instrumentation to monitor performance of the burner modifications and the coal flow balancing equipment.

  15. Research of Low-NOx Hydrogen Burner Utilization and Combustion Ajustment%低氮燃烧器的应用及燃烧调整研究

    Institute of Scientific and Technical Information of China (English)

    李佩直; 孙斌

    2015-01-01

    为了满足环保对NOx的排放要求,对现有的燃烧器进行改造,降低了NOx的排放浓度,对通过燃烧过程中进行优化运行,控制NOx的排放在合理的水平,并通过燃烧后对生成物排放的控制,达到国家要求的排放标准。低氮燃烧器改造后对机组的经济性造成一定的影响,通过燃烧优化运行调整、合理控制炉膛氧量以及控制煤粉细度,解决机组运行中存在的问题。使得低氮燃烧器改造后的机组主要指标通过调整能够控制到和设计值相当的水平。%In order to meet environmental protection requirements for NOx emissions. To modify the existing burner. Reduced NOx emission concentration. For optimal operation by burning process. Control of NOx emis-sions in a reasonable level. And after control of the emissions of products by burning. Meet the national require-ments of discharge standards. Low nitrogen burner alteration after a certain effects on the economy of the unit. Through the combustion optimizing operation adjustment. Reasonable control of pulverized coal fineness and control the oxygen content. To solve the problems existing in the unit running. Makes the low nitrogen burner u-nit modified by adjusting the main indicator to control and level of the design value.

  16. 低 NOx 燃气燃烧器结构设计及性能试验%Structure design and performance experiment for a low NOx gas burner

    Institute of Scientific and Technical Information of China (English)

    姬海民; 李红智; 姚明宇; 聂剑平

    2015-01-01

    燃气燃烧器所产生的氮氧化物以热力型和快速型为主,在分析了燃气低氮燃烧机理的基础上,融合了亚音速超混合、旋流对冲非线性动力学以及分级浓淡燃烧等技术,成功设计开发出一种低氮燃气燃烧器,并在某天然气锅炉上实施了改造。通过改造前、后的性能对比试验,分析了锅炉负荷、中心燃气和中心风以及燃气喷枪旋转偏角等关键参数对燃气燃烧器 NOx 排放特性的影响。结果表明,在全工况范围内,该低氮燃气燃烧器 NOx 排放均低于100 mg/m3,满足最新的环保要求。%Nitrogen oxides emitted from gas burners are mainly thermal NOx and prompt NOx .On the basis of analyzing the combustion mechanisms in low NOx gas burner,a low NOx gas burner was designed in combination of subsonic super mixing,opposed swirl nonlinear dynamics and biased staged combustion technology.Moreover,relative retrofitting was performed on a natural gas fired boiler.By carrying out per﹣formance tests before and after the reformation,the influences of certain key parameters such as boiler load,central gas,central air flow rates and rotation angle of gas guns on NOx emission were investigated. The results reveal that,within the whole operating ranges,NOx emission from the gas burner developed a﹣bove can be controlled below 100 mg/m3 ,which fulfills the latest environmental protection requirements.

  17. Development and use of a new burner rig facility to mimic service loading conditions of Ni-based single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Mauget Florent

    2014-01-01

    Full Text Available Performing representative experiments of in-service operating conditions of Ni-based superalloys used as high pressure turbine blades in aeroengines is a challenging issue due to the complex environmental, mechanical and thermal solicitations encountered by those components. A new burner rig test facility called MAATRE (French acronym for Mechanics and Aerothermics of Cooled Turbine Blades has been developed at ENSMA – Pprime Institute to mimic as close as possible those operating conditions. This new test bench has been used to perform complex non-isothermal creep tests representative of thermomechanical solicitations seen by some sections of HP turbine blades during engine certification procedure.

  18. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Noam Lior; Stuart W. Churchill

    2003-10-01

    The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at

  19. Experimental study of a separated jets burner: application to the natural gas-pure oxygen combustion; Etude experimentale du comportement de bruleurs a jets separes: application a la combustion gaz naturel-oxygene pur

    Energy Technology Data Exchange (ETDEWEB)

    Salentey, L.

    2002-04-15

    The evolution of pollution standards and the optimisation of furnaces performances require a development of new burner generation and also the improvement of combustion techniques. Actually, the use of oxy-combustion in separated jets burners offers interesting prospects for NO{sub x} emission reduction and on the modularity of flames properties (lift off, flame front topology, flame length). The complex geometry of those burners leads to several problems like the three-dimensional character of the flow, which may sometimes disturb the flame stability as flames are lifted above the burner. This experimental study deals with a simplified version of that kind of burner constituted with a central natural gas jet surrounded by two oxygen jets. Primary, the study of non-reactive jet was planned in order to understand dynamic and mixture phenomena involved between jets and to provide a database useful for the computer code validation. The reactive flow developed in a furnace, which simulates the real conditions, had been characterised. The studies of the dynamic field using Laser Doppler Velocimetry (LDV) and of the turbulent mixture by conditional Laser tomography were supplemented in combustion by the visualisation of the spontaneous emission of radical OH, in the initial and final zone of the oxy-flames, like by the measurement of pollutants like NO{sub x} and soot. The measurements carried out while varying speeds of injection as well as the gap between the jets made possible the highlight of the influence of these parameters upon the stabilisation of the oxy-flames as well as the modification of the topology and the characteristics of the flows. The comparison of the measurements made in non-reactive and reactive flow shows the influence of oxy-combustion on the dynamic and scalar development of the flow for this type of burners. (author)

  20. Experimental investigation and optimisation of burner systems for glass melting ends with regenerative air preheating. Final report; Experimentelle Untersuchung und Optimierung von Brennersystemen fuer Glasschmelzwannen mit regenerativer Luftvorwaermung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Scherello, A.; Flamme, M.; Kremer, H.

    2000-02-15

    The project comprised experiments on burner systems for glass melting ends with regenerative air preheating for the purpose of optimisation. The experimental set-up was to reflect realistic conditions. In the first stage of the investigations, modern burner systems were installed in a GWI test facility and investigated. [German] Ziel des oben genannten Forschungsvorhabens war die Durchfuehrung experimenteller Untersuchungen von Brennersystemen fuer Glasschmelzwannen mit regenerativer Luftvorwaermung sowie deren Optimierung. Dazu war es notwendig, einen experimentellen Aufbau zu realisieren, mit dessen Hilfe die Stroemungs-, Mischungs- und Umsetzungsphaenomene von Glasschmelzoefen realistisch nachgestellt und aussagekraeftige Untersuchungen durchgefuehrt werden koennen. In einem ersten Untersuchungsschritt wurden moderne Brennerlanzen an der GWI-Versuchsanlage installiert und untersucht. (orig.)

  1. Technical Progress in Home-made Low NOx Burners for Cracking Furnace%裂解炉用低NOx燃烧器国内技术进展

    Institute of Scientific and Technical Information of China (English)

    张建; 李金科

    2012-01-01

    综述了裂解炉用低NOx燃烧器的发展方向和技术开发的国内进展情况,介绍了低NOx燃烧器的CFD模拟结合理论研究和冷热态试验的研发手段,这些技术将满足裂解炉对火焰形状、热通量分布、NOx排放和操作稳定性的要求,提升具有自主知识产权低NOx燃烧器的市场竞争力.%Both development direction and technical progress in home-made low NO., burners for cracking furnace were summarized. The technical progress in it can meet cracking furnace ' s requirements for flame shape, heat flux, NO, emission and operational stability and can promote low-NO, burner's competitiveness in the market because of its proprietary intellectual property rights.

  2. Research and Development of Low NOx Emission Burner with High Calorific Value Gas Fuel%高热值气体燃料低NOx燃烧器开发

    Institute of Scientific and Technical Information of China (English)

    程奇伯; 张道明; 冯霄红; 王宏宇

    2015-01-01

    涉及一款高热值气体燃料低NOx燃烧器的研发。仿真预测了火焰长度、火焰刚性、NOx排放指标,并设计了试验样机,测试了各项参数。测试结果表明,该燃烧器火焰稳定性好,刚性强,能力调节比大,烧嘴轴向温度均匀性高,NOx排放指标改善了。%Research and development of a kind of low NOx emission burner with high calorific value gas fuel were carried out. Use of numerical simulation forecasted the flame length, flame rigidity and NOx emission index, moreover designed experimental prototype and measured various sorts of parameters. The measurement results show that the flame stability is fine, the flame rigidity is strong, the adjustment range is extensive, the burner axial temperature uniformity is even, the NOx emission index is improving.

  3. Altitude Performance and Operational Characteristics of 29-inch-diameter Tail-pipe Burner with Several Fuel Systems and Flame Holders on J35 Turbojet Engine

    Science.gov (United States)

    Conrad, E William; Prince, William R

    1949-01-01

    An investigation of turbojet-engine thrust augmentation by means of tail-pipe burning has been conducted in the NACA Lewis altitude wind tunnel. Several fuel systems and flame holders were investigated in a 29-inch-diameter tail-pipe burner to determine the effect of fuel distribution and flame-holder design on tail-pipe-burner performance and operational characteristics over a range of simulated flight conditions. At an altitude of 5000 feet, the type of flame holder used had only a slight effect on the combustion efficiency. As the altitude was increased, the decrease in peak combustion efficiency became more rapid as the blocking area of the flame holder was reduced. At all altitudes investigated, an improvement in the uniformity of the radial distribution of fuel and air slightly increased the peak combustion efficiencies and shifted the peak combustion efficiency to higher tail-pipe fuel-air ratios. The use of an internal cooling liner extending the full length of the tail-pipe combustion chamber provided adequate shell cooling at all flight conditions investigated.

  4. FY 1999 report on feasibility study of introduction of regenerative burner type furnaces into Shougang Corporation and Anshan Iron and Steel Group Company in China

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This fiscal 1999 survey is to link to COP3 (Third Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change)joint implementations in the future. The regenerative burner type furnace is a new technology which is the fruit of one of Japan's national projects developed and put to practical use in the period fiscal 1993-1999. It reduces energy consumption and NOx emissions. The technology is separately applied to steel rollers at Shougang and Qinhungdao and to a new steel roller at Anshan. Their annual yields will be 550-thousand, 450-thousand, and 800-thousand tons, respectively. The amounts of annually conserved energy will be 159,500, 54,000, and 40,000 times 10{sup 6}kcal, respectively. Annual CO2 reduction rates are indicated to be 51, 26, 15%, and NOx reduction rates to be 82, 75, 74%. The amounts of initial investment are expected to be 800-million yen (furnace refurbishment), 250-million yen (burner improvement), and 150-million yen (additional construction of a new furnace). Investment recovery periods are calculated to be 3.3, 2.0, and 2.8 years. ROIs (returns on investment) are calculated to be 34, 54, and 40%. The project is economically feasible, with high profitability available at the present stage and in the future (with some problems to solve at Anshan). (NEDO)

  5. 影响蓄热燃烧器温度均匀性的因素%Factors of Influencing Spatial Uniformity Ratio of Regenerative Burner

    Institute of Scientific and Technical Information of China (English)

    曹小玲; 张航; 刘杰; 李帆; 唐世斌

    2012-01-01

    分别以气体流速、燃烧器负荷和过量空气系数作为单一变量进行试验,研究它们对火焰特性即最高火焰温度、焰长和喷射距离的影响,同时计算出温度均匀度.最后以温度均匀度、喷射距离等为标准,判断出气体流速、燃烧器负荷和空气系数的最佳范围.%The gas velocity, burner capacity, and excess oxygen ratio as a single variable respectively, and their effects on flame characteristics, which include maximum flame temperature, flame length and liftoff distance are examined. The spatial uniformity ratio is calculated. Finally, using spatial uniformity ratio and lift-off distance as standards, the optimal scope of the gas velocity, burner capacity and excess oxygen ratio are determined.

  6. PARTICULATE CHARACTERIZATION AND ULTRA LOW-NOx BURNER FOR THE CONTROL OF NO{sub x} AND PM{sub 2.5} FOR COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Ralph Bailey; Hamid Sarv; Jim Warchol; Debi Yurchison

    2001-09-30

    In response to the serious challenge facing coal-fired electric utilities with regards to curbing their NO{sub x} and fine particulate emissions, Babcock and Wilcox and McDermott Technology, Inc. conducted a project entitled, ''Particulate Characterization and Ultra Low-NO{sub x} Burner for the Control of NO{sub x} and PM{sub 2.5} for Coal Fired Boilers.'' The project included pilot-scale demonstration and characterization of technologies for removal of NO{sub x} and primary PM{sub 2.5} emissions. Burner development and PM{sub 2.5} characterization efforts were based on utilizing innovative concepts in combination with sound scientific and fundamental engineering principles and a state-of-the-art test facility. Approximately 1540 metric tonnes (1700 tons) of high-volatile Ohio bituminous coal were fired. Particulate sampling for PM{sub 2.5} emissions characterization was conducted in conjunction with burner testing. Based on modeling recommendations, a prototype ultra low-NO{sub x} burner was fabricated and tested at 100 million Btu/hr in the Babcock and Wilcox Clean Environment Development Facility. Firing the unstaged burner with a high-volatile bituminous Pittsburgh 8 coal at 100 million Btu/hr and 17% excess air achieved a NO{sub x} goal of 0.20 lb NO{sub 2}/million Btu with a fly ash loss on ignition (LOI) of 3.19% and burner pressure drop of 4.7 in H{sub 2}O for staged combustion. With the burner stoichiometry set at 0.88 and the overall combustion stoichiometry at 1.17, average NO{sub x} and LOI values were 0.14 lb NO{sub 2}/million Btu and 4.64% respectively. The burner was also tested with a high-volatile Mahoning 7 coal. Based on the results of this work, commercial demonstration is being pursued. Size classified fly ash samples representative of commercial low-NO{sub x} and ultra low-NO{sub x} combustion of Pittsburgh 8 coal were collected at the inlet and outlet of an ESP. The mass of size classified fly ash at the ESP outlet was

  7. PARTICULATE CHARACTERIZATION AND ULTRA LOW-NOx BURNER FOR THE CONTROL OF NO(sub x) AND PM(sub 2.5) FOR COAL FIRED BOILERS; FINAL

    International Nuclear Information System (INIS)

    In response to the serious challenge facing coal-fired electric utilities with regards to curbing their NO(sub x) and fine particulate emissions, Babcock and Wilcox and McDermott Technology, Inc. conducted a project entitled, ''Particulate Characterization and Ultra Low-NO(sub x) Burner for the Control of NO(sub x) and PM(sub 2.5) for Coal Fired Boilers.'' The project included pilot-scale demonstration and characterization of technologies for removal of NO(sub x) and primary PM(sub 2.5) emissions. Burner development and PM(sub 2.5) characterization efforts were based on utilizing innovative concepts in combination with sound scientific and fundamental engineering principles and a state-of-the-art test facility. Approximately 1540 metric tonnes (1700 tons) of high-volatile Ohio bituminous coal were fired. Particulate sampling for PM(sub 2.5) emissions characterization was conducted in conjunction with burner testing. Based on modeling recommendations, a prototype ultra low-NO(sub x) burner was fabricated and tested at 100 million Btu/hr in the Babcock and Wilcox Clean Environment Development Facility. Firing the unstaged burner with a high-volatile bituminous Pittsburgh 8 coal at 100 million Btu/hr and 17% excess air achieved a NO(sub x) goal of 0.20 lb NO(sub 2)/million Btu with a fly ash loss on ignition (LOI) of 3.19% and burner pressure drop of 4.7 in H(sub 2)O for staged combustion. With the burner stoichiometry set at 0.88 and the overall combustion stoichiometry at 1.17, average NO(sub x) and LOI values were 0.14 lb NO(sub 2)/million Btu and 4.64% respectively. The burner was also tested with a high-volatile Mahoning 7 coal. Based on the results of this work, commercial demonstration is being pursued. Size classified fly ash samples representative of commercial low-NO(sub x) and ultra low-NO(sub x) combustion of Pittsburgh 8 coal were collected at the inlet and outlet of an ESP. The mass of size classified fly ash at the ESP outlet was sufficient to evaluate

  8. Molten salt related extensions of the SIMMER-III code and its application for a burner reactor

    International Nuclear Information System (INIS)

    Molten salt reactors (MSRs) can be used as effective burners of plutonium (Pu) and minor actinides (MAs) from light water reactor (LWR) spent fuel. In this paper a study was made to examine the thermal hydraulic behaviour of the conceptual design of the molten salt advanced reactor transmuter (MOSART) [Ignatiev, V., Feynberg, O., Myasnikov, A., Zakirov, R., 2003a. Neutronic properties and possible fuel cycle of a molten salt transmuter. Proceedings of the 2003 ANS/ENS International Winter Meeting (GLOBAL 2003), Hyatt Regency, New Orleans, LA, USA 16-20 November 2003]. The molten salt fuel is a ternary NaF-LiF-BeF2 system fuelled with ca. 1 mol% typical compositions of transuranium-trifluorides (PuF3, etc.) from light water reactor spent fuel. The MOSART reactor core does not contain graphite structure elements to guide the flow, so the neutron spectrum is rather hard in order to improve the burning performance. Without those structure elements in the core, the molten salt in core flows freely and the flow pattern could be potentially complicated and may affect significantly the fuel temperature distribution in the core. Therefore, some optimizations of the salt flow pattern may be needed. Here, the main attention has been paid to the fluid dynamic simulations of the MOSART core with the code SIMMER-III [Kondo, Sa., Morita, K., Tobita, Y., Shirakawa, K., 1992. SIMMER-III: an advanced computer program for LMFBR severe accident analysis. Proceedings of the ANP' 92, Tokyo, Japan; Kondo, Sa., Tobita, Y., Morita, K., Brear, D.J., Kamiyama, K., Yamano, H., Fujita, S., Maschek, W., Fischer, E.A., Kiefhaber, E., Buckel, G., Hesselschwerdt, E., Flad, M., Costa, P., Pigny, S., 1999. Current status and validation of the SIMMER-III LMFR safety analysis code. Proceedings of the ICONE-7, Tokyo, Japan], which was originally developed for the safety assessment of sodium-cooled fast reactors and recently extended by the authors for the thermo-hydraulic and neutronic models so as to

  9. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  10. Parametric (On-Design) Cycle Analysis for a Separate-Exhaust Turbofan Engine With Interstage Turbine Burner

    Science.gov (United States)

    Liew, K. H.; Urip, E.; Yang, S. L.; Siow, Y. K.; Marek, C. J.

    2005-01-01

    Today s modern aircraft is based on air-breathing jet propulsion systems, which use moving fluids as substances to transform energy carried by the fluids into power. Throughout aero-vehicle evolution, improvements have been made to the engine efficiency and pollutants reduction. The major advantages associated with the addition of ITB are an increase in thermal efficiency and reduction in NOx emission. Lower temperature peak in the main combustor results in lower thermal NOx emission and lower amount of cooling air required. This study focuses on a parametric (on-design) cycle analysis of a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). The ITB considered in this paper is a relatively new concept in modern jet engine propulsion. The ITB serves as a secondary combustor and is located between the high- and the low-pressure turbine, i.e., the transition duct. The objective of this study is to use design parameters, such as flight Mach number, compressor pressure ratio, fan pressure ratio, fan bypass ratio, and high-pressure turbine inlet temperature to obtain engine performance parameters, such as specific thrust and thrust specific fuel consumption. Results of this study can provide guidance in identifying the performance characteristics of various engine components, which can then be used to develop, analyze, integrate, and optimize the system performance of turbofan engines with an ITB. Visual Basic program, Microsoft Excel macrocode, and Microsoft Excel neuron code are used to facilitate Microsoft Excel software to plot engine performance versus engine design parameters. This program computes and plots the data sequentially without forcing users to open other types of plotting programs. A user s manual on how to use the program is also included in this report. Furthermore, this stand-alone program is written in conjunction with an off-design program which is an extension of this study. The computed result of a selected design

  11. Flashback analysis in tangential swirl burners; Analisis de reflujo de flama en combustores tangenciales de flujo giratorio

    Energy Technology Data Exchange (ETDEWEB)

    Valera-Medina, A. [CIATEQ A.C., Centro de Tecnologia Avanzada, Queretaro (Mexico)]. E-mail: agustin.valera@ciateq.mx; Syred, N. Abdulsada, M. [United Kingdom Cardiff University (United Kingdom)]. E-mails: syredn@cf.ac.uk; abdulsadam@cf.ac.uk

    2011-10-15

    Premixed lean combustion is widely used in Combustion Processes due to the benefits of good flame stability and blow off limits coupled with low NO{sub x} emissions. However, the use of novel fuels and complex flows have increased the concern about flashback, especially for the use of syngas and highly hydrogen enriched blends. Thus, this paper describes a combined practical and numerical approach to study the phenomenon in order to reduce the effect of flashback in a pilot scale 100 kW tangential swirl burner. Natural gas is used to establish the baseline results and effects of different parameters changes. The flashback phenomenon is studied with the use of high speed photography. The use of a central fuel injector demonstrates substantial benefits in terms of flashback resistance, eliminating coherent structures that may appear in the flow channels. The critical boundary velocity gradient is used for characterization, both via the original Lewis and von Elbe formula and via analysis using CFD and investigation of boundary layer conditions in the flame front. [Spanish] La combustion ligera premezclada se utiliza ampliamente en los procesos de combustion debido a los beneficios que brinda en terminos de buena estabilidad de flama y limites de extincion, aunado a la baja emision de NO{sub x}. Sin embargo, el uso de nuevos combustibles y de flujos complejos han incrementado la preocupacion por el reflujo de flama, especialmente para el uso de gas sintetico (syngas) y mezclas altamente hidrogenadas. Por ello, en este articulo se describe un metodo practico y numerico para el estudio del fenomeno a modo de reducir los efectos del reflujo de flama en un combustor piloto de tipo tangencial de flujo giratorio de 100 kW. Se usa gas natural para establecer la linea base de resultados y los efectos del cambio de diferentes parametros. El fenomeno de reflujo de flama se estudia por medio de fotografia de rapida adquisicion. El uso de un inyector central de combustible

  12. NO{sub x} production and radiative heat transfer from a self-regenerative flame-less oxidation burner; Production de NO{sub x} et transfert thermique radiatif d'un bruleur autoregeneratif a oxydation sans flamme

    Energy Technology Data Exchange (ETDEWEB)

    Pesenti, B.; Evrard, P.; Lybaert, P. [Faculte Polytechnique de Mons, Ingenierie Thermique et Combustion/Thermal Engineering and Combustion Mons (Belgium)

    2004-03-15

    This paper presents the comparison of the performance characteristics of a self-regenerative burner working in the diluted combustion mode (computed by a commercial CFD code) and experimental values obtained on a pilot-scale furnace. The influence of the combustion model parameters and boundary conditions on radiative heat transfer and NO{sub x} emissions prediction is discussed. (authors)

  13. The analysis of breakage mechanism of double regenerative burner with the numerical simulation of thermal stress field%蓄热式烧嘴热应力场数值模拟与破损机理分析

    Institute of Scientific and Technical Information of China (English)

    姜繁智; 孔建益; 欧阳德刚; 聂海金; 朱善合; 王兴东

    2013-01-01

    With the numerical simulation of the thermal stress field of double regenerative burner,the breakage mechanism of double regenerative burner has been analyzed.The results show that the fatigue damage is the cause of the double regenerative burner crack,and the crack position is located in the biggest stress amplitude place.The result of numerical simulation was shown to well correspond to the practical situation,that shows the calculation model and the calculation results can correctly reflect the burner failure of the actual situation,and the results are effective and credible.%通过对蓄热式烧嘴的温度场和热应力场的数值模拟,对蓄热式烧嘴破损机理进行分析.结果表明,疲劳破坏是烧嘴裂纹产生的原因,且裂纹位置位于最大应力幅处.数值模拟结果与实际情况相吻合,说明计算模型和计算结果能够正确反映烧嘴破坏的实际情况,其结果有效可信.

  14. Gasifier burner ignition system

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    The BI-GAS pilot plant is designed such that its lower region (Stage I) is the combustion zone where oxygen and steam contact and react with recycled char. As with other combustion systems, provisions must be made to initiate combustion at start-up, to reinitiate combustion in case of a process upset where combustion is lost, and to continuously monitor the presence of combustion. An ignition system had to be developed, capable of reliable and repeated operation at pressures up to 1500 psi in a methane-rich or otherwise reducing atmosphere. The initial development work was done by Babcock and Wilcox and included development of both the ignitor system and the flame confirmation system. B and W's initial proposal specifically dealt with investigating a hypergolic (chemical auto-combustion) igniter. Hypergolic ignition is the spontaneous combustion of a compound upon contact with an oxygen containing media. This oxygen source includes air, oxygen, carbon dioxide, and water. The liquid compound studied was triethylaluminum (Al(C/sub 2/H/sub 5/)/sub 3/) otherwise identified as TEA and supplied by Ethyl Corporation, Baton Rouge, Louisiana. The hypergolic ignition system has been operated successfully and proved reliable at high pressure (750 psig) through repeated testing over a three-year period. The system designed by Stearns-Roger based on the study by Babcock and Wilcox was basically correct. Two relatively minor design defects and operational revisions to improve performance were accomplished by on-site personnel with little expenditure of time or money. The remaining problems currently experienced with the TEA ignition system are considered minor. Further work should continue to determine the lowest possible TEA concentration that can be used and still provide consistent ignition, and the system should be tested soon at the full design operating pressure of 1500 psig.

  15. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-15

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  16. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    International Nuclear Information System (INIS)

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO(sub x) pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  17. Development of a burner system / combustion chamber system for a light heating oil operated micro gas turbine; Entwicklung eines Brenner-/ Brennkammersystems fuer eine mit Heizoel EL betriebene Mikrogasturbine

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, I.; Scherer, V. [Ruhr-Universitaet Bochum (Germany). Lehrstuhl fuer Energieanlagen- und Energieprozesstechnik

    2009-07-01

    The authors of the contribution under consideration report on a design and experimental investigation of a micro gas turbine consisting combustion chamber for light fuel oil. The times of self-ignition and the flame velocities under the operating conditions of micro gas turbines are the starting point. The geometry of the premix-burners was designed by means of numeric flow simulations. Subsequently, an allocation of air in the combustion chamber system, necessary for lean premixed combustion, was adjusted by geometrical optimization (computations of the pressure loss). Measurements of pollutants of the combustion chamber test stand resulted in a stable and low-pollution combustion (NO{sub x} < 30 ppm, CO < 20 ppm) over a large area of load.

  18. Fundamental studies on porous flame reactors for minimizing pollutant emissions of premix burners. Continued report; Grundlagenuntersuchungen an poroesen Flammenreaktoren zur Minimierung von Schadgasemissionen bei der vorgemischten Verbrennung. Fortsetzungsbericht

    Energy Technology Data Exchange (ETDEWEB)

    Durst, F.; Moessbauer, S.

    2001-01-31

    The report summarizes investigations of effective heat transport processes inside highly porous solid structures. These heat transport processes are of decisive importance for the pore burner technology developed at Erlangen-Nuremberg University. A test stand was set up for recording the two-dimensional temperature field of cross-flowed solid structures. [German] Der vorliegende Bericht fasst Arbeiten zusammen, die sich mit der Bestimmung effektiver Waermetransportvorgaenge im Inneren von hochporoesen Festkoerperstrukturen befassen. Diese Waermetransportvorgaenge sind entscheidend fuer die Vorteile der am Lehrstuhl fuer Stroemungsmechanik der Friedrich-Alexander-Universitaet Erlangen-Nuernberg entwickelten Porenbrennertechnologie. Um diese Vorteile besser zu nutzen und um diese neuartige Technologie weiter verbessern zu koennen, ist es erforderlich, dass die ablaufenden Waermetransportvorgaenge im Inneren von hochporoesen Strukturen im Detail verstanden werden. Zu diesem Zweck wurde ein Versuchsstand erstellt, mit dem das zweidimensionale Temperaturfeld von durchstroemten Festkoerperstrukturen erfasst werden kann. (orig.)

  19. Titanium subhydride potassium perchlorate (TiH1.65/KClO4) burn rates from hybrid closed bomb-strand burner experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Marcia A.; Oliver, Michael S.

    2012-08-01

    A hybrid closed bomb-strand burner is used to measure the burning behavior of the titanium subhydride potassium perchlorate pyrotechnic with an equivalent hydrogen concentration of 1.65. This experimental facility allows for simultaneous measurement of the closed bomb pressure rise and pyrotechnic burn rate as detected by electrical break wires over a range of pressures. Strands were formed by pressing the pyrotechnic powders to bulk densities between 60% and 90% theoretical maximum density. The burn rate dependance on initial density and vessel pressure are measured. At all initial strand densities, the burn is observed to transition from conductive to convective burning within the strand. The measured vessel pressure history is further analyzed following the closed bomb analysis methods developed for solid propellants.

  20. High Velocity Burner Rig Oxidation and Thermal Fatigue Behavior of Si3N4- and SiC Base Ceramics to 1370 Deg C

    Science.gov (United States)

    Sanders, W. A.; Johnston, J. R.

    1978-01-01

    One SiC material and three Si3N4 materials including hot-pressed Si3N4 as a baseline were exposed in a Mach-1-gas-velocity burner rig simulating a turbine engine environment. Criteria for the materials selection were: potential for gas-turbine usage, near-net-shape fabricability and commercial/domestic availability. Cyclic exposures of test vanes up to 250 cycles (50 hr at temperature) were at leading-edge temperatures to 1370 C. Materials and batches were compared as to weight change, surface change, fluorescent penetrant inspection, and thermal fatigue behavior. Hot-pressed Si3N4 survived the test to 1370 C with slight weight losses. Two types of reaction-sintered Si3N4 displayed high weight gains and considerable weight-change variability, with one material exhibiting superior thermal fatigue behavior. A siliconized SiC showed slight weight gains, but considerable batch variability in thermal fatigue.

  1. Burner Improvement of Full-hydrogen Bell-type Annealing Furnace%全氢罩式退火炉加热罩烧嘴的改进

    Institute of Scientific and Technical Information of China (English)

    薛垂义

    2013-01-01

    针对全氢罩式退火炉加热罩烧嘴存在煤气和空气混合不均匀、煤气燃烧不充分、煤气消耗高等问题,对烧嘴结构进行了改进,即在煤气管路内部靠近出口端的部位增设上、下空气导人支管,将原单一集中的煤气出口通道改进为5路分散布置的煤气出口通道,使一次点火成功率由82%提高到91%,吨钢煤气消耗由104m3减少到81m3.%In view of the serial of problems of burner of the heating hood of the full-hydrogen bell-type annealing furnace,such as gas and air mixture not uniform,gas combustion not sufficient and gas consumption high,the structure of burner was improved,i.e.the trachea road close to the outlet end was added up and below pipe to lead-in air,the gas outlet channel original concentration was improved as the gas outlet channel 5 scattered layout.So,ignition rate increased from 82% to 91%,gas consumption decreased from 104m3/t to 81m3/t.

  2. Fiscal 1999 survey report. Basic survey for promotion of joint implementations, etc. (Feasibility study of regenerative burner type heating furnaces for China's Shougang Corporation and Anshan Steel); 1999 nendo Chugoku shuto kotetsu Anshan kotetsu chikunetsu burner kanetsuro FS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Most of the steel heating furnaces now in operation in China are of the old type, consuming more than 40% more fuel than furnaces in general use for instance in Japan. In this survey, China's steel heating furnaces will be replaced by regenerative burners, developed in Japan recently and approaching practical application, for epoch-making enhancement of energy conservation and NOx reduction. Three plants are selected for study, which are the Shougang Corporation Plate Mill, the Qinhungdao Plate Mill, and the Anshan Steel Mill. Technical feasibility and economic profitability are studied for each of the projects for picking out projects that will link to CDM (clean development mechanism) in the future. In all the three mills, excellent energy conservation and economic profitability will result from technologically feasible introduction of regenerative burner heating furnaces. It is expected that their introduction will take place early enough. Full-scale diffusion of new furnaces will be dependent, however, on the progress of fuel gas cleaning study and China's assessment of the effects of energy conservation and environmental improvement. (NEDO)

  3. Development of new burner systems for glass melting furnaces with regenerative air preheating in order to reduce NO{sub x} emissions and energy consumption; Entwicklung neuer Brennersysteme fuer Glasschmelzwannen mit regenerativer Luftvorwaermung zur NO{sub x}-Minderung und Energieeinsparung

    Energy Technology Data Exchange (ETDEWEB)

    Scherello, A.; Giese, A.; Koesters, M. [Gaswaerme-Institut e.V., Essen (Germany)

    2005-07-01

    In several GWI R + D projects, burner systems for glass melting furnaces were investigated with a view to enhancing power supply to the glass melt and reduction of NOx emissions. Based on measurements in a semi-industrial experimental combustion chamber and on numeric simulations, modifications of common burner systems were made, and the effects of the burner system variations on energy release and pollutant formation in the flames were also analyzed exlperimentally and numerically. In a further step, CFD calculations were made of the effects of such burner system variations on the combustion process in glass melting furnaces during production. This contribution presents the findings of experimental investigations and numeric simulations of the combustion processes both in an experimental furnace and in a glass melting furnace during production. The methods applied are presented as well. (orig.)

  4. Experimental study on the characteristics of NOx emissions from 600 MW supercritical bituminous coal fired boiler with swirl burner%600MW超临界旋流燃烧烟煤锅炉NOx排放特性试验

    Institute of Scientific and Technical Information of China (English)

    岳峻峰; 秦鹏; 邹磊; 梁绍华; 张恩先; 黄磊

    2012-01-01

    针对某厂1台600MW超临界低NOx轴向旋流燃烧烟煤锅炉特点,通过变工况(氧量、不同层燃烧器风量分配方式、二次风比率、二次风旋流强度、三次风旋流强度、同层燃烧器风量分配方式和负荷等)试验,分析了锅炉NOx排放特性.试验结果表明:对于燃用烟煤的采用低NOx旋流燃烧器的锅炉,运行氧量燃尽风份额、锅炉负荷及同层燃烧器风量分配方式是NOx排放的主要影响因素.为控制NOx排放,保持锅炉原有热效率,燃烧调整的原则为:(1)在保证锅炉运行安全的前提下应尽量采用低氧燃烧;(2)采用大比例的燃尽风份额;(3)运行负荷不应过低;(4)同层燃烧器风量分配采用双峰方式.%NOx. emissions from a 600 MW supercritical boiler with swirl burner were investigated by performing a serial of tests such as changing O2 concentration, air-distribution of different level burners, secondary air ratio, secondary and tertiary air swirl strength, air-distribution of the burners in same level and boiler load. The test results show that for the bituminous coal fired boiler with swirl burner, the O2 concentration, over fire air (OFA) ratio, boiler load and air-distribution mode of the burners in same level are the main factors affecting NOx emissions. In order to reduce NOx emissions and keep higher boiler efficiency, the following principles about combustion adjustment should be obeyed: (1) the O2 concentration should be kept in the premise of ensuring safe operalion of boiler as lower as possible;{2) large proportion of OFA should be adopted; (3) boiler load should not be loo low; (4) two-peak air distribution mode should be taken among the same level burners.

  5. Burner redesign for the reduction of the unburned particulate emission in thermal power stations of Comision Federal de Electricidad; Rediseno de quemadores para la reduccion de la emision de particulas inquemadas en centrales termicas de la Comisionon Federal de Electricidad

    Energy Technology Data Exchange (ETDEWEB)

    Huerta Espino, Mario; Espipnoza Garza, Jesus; Mani Gonzalez, Alejandro; Giles Alarcon, Armando; Pena Garcia, Adriana; Albarran Sanchez, Irma L.; Mendez Aranda, Angel [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2001-07-01

    In the presence of the increasing demand for reaching higher efficiencies and a smaller production of polluting emissions in combustion systems, studies focused to the optimization of the present designs of burners are required. The Comision Federal de Electricidad (CFE) and the Instituto de Investigaciones Electricas (IIE) have established a project that contemplates the redesign of burners in ten of its units of thermoelectric generation. In this work the redesign of the flame stabilizer or diffuser for the reduction of the unburned particulate emission is explained. The results of the modeling of a burner of rotational flow of steam generators of the CFE are shown, as well as the graphs of the contours of the recirculation zone generated by each diffuser without combustion and a figure of the velocity profile that is generated in front of the diffuser. In agreement with the results obtained in the aerodynamic evaluation of frontal burners of rotational flow, it is possible to established that the characteristics of the recirculation zone, generated by this type of burners, are related to geometric parameters of the diffuser that identify with the number of turns and the pressure drop, where it is necessary to look for designs that improve the conditions of the mixing process and combustion in the burner. [Spanish] Ante la creciente demanda por alcanzar mayores eficiencias y una menor produccion de emisiones contaminantes en sistemas de combustion, se requieren estudios enfocados a la optimizacion de los disenos actuales de quemadores. La Comision Federal de Electricidad (CFE) y el Instituto de Investigaciones Electricas (IIE) han establecido un proyecto que contempla el rediseno de quemadores en diez de sus unidades de generacion termoelectrica. En este trabajo se explica el rediseno del estabilizador de flama o difusor para la reduccion de la emision de particulas inquemadas. Se muestran los resultados de la modelacion de un quemador de flujo rotacional de

  6. PASSIVE CONTROL OF PARTICLE DISPERSION IN A PARTICLE-LADEN CIRCULAR JET USING ELLIPTIC CO-ANNULAR FLOW: A MEANS FOR IMPROVING UTILIZATION AND EMISSION REDUCTIONS IN PULVERIZED COAL BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan R. Choudhuri

    2003-06-01

    A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.

  7. 燃烧器周边水冷壁管撕裂泄漏分析及处理%Analysis of the Tear Leakage of the Water Wall Tube Around the Burner and Relevant Solutions

    Institute of Scientific and Technical Information of China (English)

    任彬

    2015-01-01

    针对锅炉四角燃烧器箱壳结构和布置,以及运行过程产生的集中应力等造成燃烧器箱壳与水冷壁焊接接缝撕裂泄漏的原因,进行剖析,提出防范措施和处理方法。%Such factors as the structure and layout of the shell of the quadrangle burner of the boiler and the concentrated stress during its operation will cause the tear leakage between the shell of the burner and the welding joint of the water wall.This article analyzes the factors and puts forward relevant preventive measures and solutions.

  8. 激光笔在燃烧器角度测量中的应用%A Study on the Application of the Laser Pointer in the Angular Surveying of the Burner

    Institute of Scientific and Technical Information of China (English)

    刘云华

    2014-01-01

    重庆发电厂两台DG670 t/h锅炉喷燃器采用四角布置、切圆燃烧,在大修中对燃烧器定位的准确性,直接影响燃烧稳定性、燃烧效率等。经过多次探索,用激光笔制作激光式燃烧器角度测量仪,进行水平偏角、垂直倾角的确定,可提高测量准确性,做到燃烧器精确定位。通过在相关机组中应用,燃烧效率有所提高,飞灰可燃物含量下降明显,燃烧稳定性大幅提高,有效解决了燃烧器角度测量难题。%The four-corner layout and tangential firing are applied in the fuel nozzles of the two DG670t/h boilers in Chongqing Power Plant.The accuracy of the positioning of the burner in the general overhaul has a direct impact on combustion stability and efficiency,and so on.After repeated explorations,a laser angular surveying instrument for the burner has been invented by means of the laser pointer,which can be applied in determinations of horizontal an-gles of avertence and dip angles,to enhance the accuracy of the surveying and ensure the accurate positioning of the burner.Its application in the related unit has brought about such advantages as higher combustion efficiency,reduc-tion in the content of combustible materials in the fly ash and better combustion stability as well as effectively sol-ving the problem of the angular surveying of the burner.

  9. Numerical simulation research of the self-regenerative burner furnace heating characteristics%自蓄热燃烧器炉内热特性数值模拟研究

    Institute of Scientific and Technical Information of China (English)

    宋佳媛; 谢安国; 韩治成; 于建国; 单琪

    2014-01-01

    The three different structure of the self -regenerative burner's influence on the temperature distribution in the furnace were studied with the method of numerical simulation .The model was sim-plified with the actual combustion furnace conditions .Using the standard k-ε equation, P1 radiation model, and energy equation , by observing the different kinds of structure under the temperature distri-bution of self -regenerative burner and its regularity , analyzed the influence of regenerative burner structure on the temperature distribution in the furnace , find out the reasonable temperature distribu-tion.Thesis results provided reference for the regenerative burner design .%利用数值模拟的方法研究了三种不同结构下自蓄热燃烧器对炉内温度的影响。结合炉内实际燃烧状况,对模型进行了简化。应用标准k-ε方程、 P1辐射模型和能量方程,通过观察不同结构下自蓄热燃烧器的温度分布及其趋势,分析出自蓄热燃烧器的结构对炉内温度分布的影响,找出较为合理的温度分布规律。研究结果可为自蓄热燃烧器的设计提供参考。

  10. Firing of dried sludge from the pulp and paper industry in a pellet burner; Foerbraenning av torkat slam fraan skogsindustrin i pelletbraennare

    Energy Technology Data Exchange (ETDEWEB)

    Herstad Svaerd, S. [SEP Scandinavian Energy Project AB, Goeteborg (Sweden); Eskilsson, David [Swedish National Testing and Research Inst., Boraas (Sweden)

    2001-08-01

    Different types of sludge containing organic material are produced within the pulp and paper industry (fibre sludge, sludge from production of recycled fibres, de-inking sludge, chemical sludge, bio sludge etc). The newly introduced tax on waste deposition, 250 SEK/tonne wet material, has together with the coming law against disposal of different organic material raised the interest for minimising the sludge deposition. The moisture content of the sludge depends on the type of sludge and type of dewatering equipment used. The moisture content is however normally so high that a main part of the theoretical energy content is used for evaporating the water in the sludge. The sludge is successfully destroyed and the amount of sludge being disposed is reduced but there is very little net energy contribution from the sludge firing. An increased dry substance content would considerable reduce handling problems and problems connected with combustion of wet sludge. The energy yield would also increase and instead of destroying a wet waste material useful energy would be generated. One alternative for reducing the problems with wet sludge would therefore be to dry it to a suitable moisture content and then fire the dried sludge in a grate boiler, a fluidized bed boiler, a pulverised fuel boiler or in a pellet burner. In this project the alternative to dry the sludge and produce pellets with a moisture content of about 10 % is covered. The costs for upgrading wet sludge to dry pellets have been estimated in the report. Laboratory studies have also been carried with two different sludge samples to have a first indication of the results from firing sludge pellets in a pellet burner. The results from the project together with experiences from an earlier Vaermeforsk project shows that every sludge in principal is unique meaning that the composition depends on the production situation at the different specific plants. The ash content as well as the ash composition and the moisture

  11. Analysis on Wind Valume Optimization Adjusting After Low NOx Burner Reformation of 600 MW Unit Boiler%600 MW锅炉低NOx 燃烧器改造后风量优化调整试验分析

    Institute of Scientific and Technical Information of China (English)

    张勇胜; 吕旭阳; 李春曦; 闫慧博

    2014-01-01

    以经过低 NOx 燃烧器改造的600 MW 煤粉锅炉为例,结合实际运行工况,从改变辅助风风量、紧凑燃尽风风量、高位燃尽风风量、总风量以及燃烧器摆角等方面对优化调整试验进行分析,得出氧量、风箱差压、风门开度、燃烧器摆角等在各负荷下的最佳控制量,为电厂运行提供参考。%The object of the paper is some 600 MW coal boil-er with retrofited low NOx burner,combined with the actual operating conditions,analyzes the test from the aspects of changing the secondary air,compact burning wind air vol-ume, high burning wind volume, total air volume and swinging angle of burner,gets the best antrol volume of the oxygen content,bellows differential pressure,throttle open-ing and swinging angle of burner and the amount of optimal control under various load,for the reference of the power plant operation.

  12. 改型2030辐射管低NOX烧嘴性能的实验研究%Research on the Performance of the Low NOX Burner of Remodel Radiant Tubes of the 2030 CAPL Furnace

    Institute of Scientific and Technical Information of China (English)

    许诗双; 许永贵; 顾锦荣; 张永杰; 高立

    2001-01-01

    The burner of the 2030CAPL furnace radiant tubes was remodeled from one burning zone to two burning zones and some experiments was taken to examining the characteristic of it. The results show that the measure of NOX in the let gas of the new burner is 35ppm and 22ppm lower than that of the import burner. All the characteristics of the burner are good for its application.%将2030CAPL炉辐射管烧嘴由一段燃烧改造为两段燃烧,并对烧嘴的各项性能进行了试验,结果表明,新型低NOX烧嘴的NOX的排放量为35×10-6,比引进的烧嘴低22×10-6,而烧嘴的其它性能均获得满意的结果。

  13. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix D. Assessment of NO/sub x/ control technology for coal fired utility boilers. [Low-excess-air, staged combustion, flu gas recirculation and burner design

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    An NOx control technology assessment study was conducted to examine the effectiveness of low-excess-air firing, staged combustion, flue gas recirculation, and current burner/boiler designs as applied to coal-fired utility boilers. Significant variations in NOx emissions exist with boiler type, firing method, and coal type, but a relative comparison of emissions control performance, cost, and operational considerations is presented for each method. The study emphasized the numerous operational factors that are of major importance to the user in selecting and implementing a combustion modification technique. Staged combustion and low-excess-air operation were identified as the most cost-effective methods for existing units. Close control of local air/fuel ratios and rigorous combustion equipment maintenance are essential to the success of both methods. Flue gas recirculation is relatively ineffective and has the added concern of tube erosion. More research is needed to resolve potential corrosion concerns with low-NOx operating modes. Low-NOx burners in conjunction with a compartmentalized windbox are capable of meeting a 0.6-lb/million Btu emission level on new units. Advanced burner designs are being developed to meet research emission goals of approximately 0.25 lb/MBtu.

  14. Low NOx combustion of rotary regenerative burner (RRX) (The third report in respect to development of RRX); kaitenshiki chikunetsu bana (RRX) no tei NO{sub x} nensho (RRX bana no kaihatsu 3)

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Yasuo; Kobayashi, Norio; Kaji, Hitoshi; Arai, Norio; Furuhata, Akihiko [Nagoya University Aichi (Japan)

    1999-02-05

    Researches for development of an energy-saving rotary regenerative burner (RRX burner) integrating a combustor with a rotary regenerative heat exchanger and capable of continuous burning are executed. The first report (chemical engineering paper collection, 1996) discloses the heat transmission characteristics of the regenerator, and the second report (chemical engineering paper collection, 1997) discloses the combustion characteristics of the regenerator. Here, in this third report in respect to the RRX burner, low NOx combustion characteristics are discussed. According to experiments, it has been found that NOx changes when the passageway (referred to as spread angle in this report) of a rotary air nozzle for injecting combustion air is varied to 88, 35 and 15 degrees. When the air injection angle is narrowed to 15 degrees, NOx discharge amount can be 9ppm or less. In order to interpret this experimental result, the reaction is deemed mixing rate on the basis of a concentration distribution expression of free injection fluid of Beer and Chigier and an accompanying expression, and a simple estimating calculation of flame length and NOx was carried out. The calculation result shows that the exhaust gas suction area becomes greater when the air injection angle is reduced, and it is sufficiently explained as a phenomenon caused by the increase of the exhaust circulating quantity. Thus, the reason of low NOx can be well understood. (translated by NEDO)

  15. Isothermal Jet Flow Field Analysis in Regenerative Burner%蓄热式燃烧器内等温射流流场分析

    Institute of Scientific and Technical Information of China (English)

    闫书明

    2011-01-01

    为了解高温空气燃烧机理,建立计算机仿真模型,通过试验对仿真模型的有效性进行验证后进行蓄热式燃烧器内等温射流流场分析.结果表明,空气入口高速射流是产生回流卷吸和实现高温空气燃烧的主要因素,可采用一次燃料消耗空气中大部分氧气实现低氧燃烧来降低NOx产量,二次燃料入口距离与空气入口存在最优距离且其入射角度不宜过大,仿真计算结果与实验结果一致,验证了模型可靠性.研究成果对蓄热式燃烧器设计具有指导意义,也为热态射流流场分析奠定了基础.%In order to know high temperature air combustion mechanism, a computer simulation model is setup and is proved correct by test to do isothermal jet flow field analysis in a regenerative burner.The results indicated that the high velocity of air insert jet fluid flow is the main reason for return flow and high temperature air combustion, it is a method to reduce NOx in lower oxygen environment by consumption oxygen in air using the first fuel,there was a optimal distance between the air and the second fuel entrances and the second fuel entrance angle should not be larger.The result of simulation is matched to physical test date, which validated the simulation model.The study forms the basis of further study of hot jet fluid flow and be instructive to regenerative burner design.

  16. Deposit formation by 20 % (V/V) FAME fuels in premix burner systems; Ablagerungsbildung durch 20% (V/V) FAME-Brennstoffe in Vormischbrennersystemen

    Energy Technology Data Exchange (ETDEWEB)

    Jaschinski, Christian; Rheinberg, Oliver van [OWI Oel-Waerme-Institut GmbH, Aachen (Germany); RWTH Aachen (Germany). An-Institut

    2012-09-15

    In the domestic heating market the development and use of fuels with an increasing share of biogenic or alternative fuels is propagated. Due to the fact, that modern fuel oil burner feature a complex carburation techniques and combustion, changes on the fuel properties and composition can lead to increased emissions or deposit formation therein. Furthermore, the different fuel properties may result in decreased storage stability, which has to be evaluated before introducing them into the market. The scope of the project was to investigate the performance of low-sulfur domestic heating oil (DHO) with up to 20 % v/v FAME on the storage stability and on the use in oil-fired heating systems. The project was split into two major parts. The first part covered a two-year storage of the fuels including sampling and analysis of the fuels every half year. The analysis was conducted according to DIN 51603-1 for the pure DHO and according to DIN SPEC 51603-6 for the blends. It has been shown, that low sulphur domestic heating oil with up to 20 % (V/V) of FAME after two years of storage fits the parameter of the corresponding standards. Furthermore, a new testing method, called 'DGMK-714' derived from the PetroOxy-test (EN 16091) has been defined. With this method for the determination of oxidation stability the fuels can be characterized being comparable to the standardized testing methods of modified Rancimat or PetroOxy. The higher sample volume of the method allows further analysis of the fuel sample after testing for characterization of the fuels. The second part of the project investigated the deposit formation tendencies of the fuels in an idealized testing apparatus and in three different kinds of oil burners. Using the idealized testing apparatus proved an increased tendency of deposit formation during evaporation for an increasing FAME content. However, this tendency could not be observed in the three commercial oil-fired heating systems. A precise fuel

  17. Economic Analysis of Symbiotic Light Water Reactor/Fast Burner Reactor Fuel Cycles Proposed as Part of the U.S. Advanced Fuel Cycle Initiative (AFCI)

    International Nuclear Information System (INIS)

    A spreadsheet-based 'static equilibrium' economic analysis was performed for three nuclear fuel cycle scenarios, each designed for 100 GWe-years of electrical generation annually: 1) a 'once-through' fuel cycle based on 100% LWRs fueled by standard UO2 fuel assemblies with all used fuel destined for geologic repository emplacement, 2) a 'singletier recycle' scenario involving multiple fast burner reactors (37% of generation) accepting actinides (Pu,Np,Am,Cm) from the reprocessing of used fuel from the uranium-fueled LWR fleet (63% of generation), and 3) a 'two-tier' 'thermal+fast' recycle scenario where co-extracted U,Pu from the reprocessing of used fuel from the uranium-fueled part of the LWR fleet (66% of generation) is recycled once as full-core LWR MOX fuel (8% of generation), with the LWR MOX used fuel being reprocessed and all actinide products from both UO2 and MOX used fuel reprocessing being introduced into the closed fast burner reactor (26% of generation) fuel cycle. The latter two 'closed' fuel cycles, which involve symbiotic use of both thermal and fast reactors, have the advantages of lower natural uranium requirements per kilowatt-hour generated and less geologic repository space per kilowatt-hour as compared to the 'once-through' cycle. The overall fuel cycle cost in terms of $ per megawatt-hr of generation, however, for the closed cycles is 15% (single tier) to 29% (two-tier) higher than for the once-through cycle, based on 'expected values' from an uncertainty analysis using triangular distributions for the unit costs for each required step of the fuel cycle. (The fuel cycle cost does not include the levelized reactor life cycle costs.) Since fuel cycle costs are a relatively small percentage (10 to 20%) of the overall bus-bar cost (LUEC or 'levelized unit electricity cost') of nuclear power generation, this fuel cycle cost increase should not have a highly deleterious effect on the competitiveness of nuclear power. If the reactor life cycle

  18. Effect of inlet and outlet configurations on blow-off and flashback with premixed combustion for methane and a high hydrogen content fuel in a generic swirl burner

    International Nuclear Information System (INIS)

    Highlights: • Correlation of blowoff and flashback using the tangential inlet velocity. • The correlation appears to arise from the exhaust shear flow. • Reynolds Number effects can be important with methane and flashback. • For flashback the correlation was effective for 0.8 ⩽ swirl number ⩽ 2.2. • For blowoff the correlation was effective for 0.8 ⩽ swirl number ⩽ 4. - Abstract: The paper analyses new data for three fuels, natural gas, methane and Coke Oven Gas (COG) in two swirl burners. Flashback and blowoff can be correlated with the inlet tangential velocity, not the inlet mass flow, over a range of swirl numbers from 0.8 to more than 4. Geometry and fuel type are important. The correlation gives best fit for a particular outlet geometry and with higher hydrogen content fuels. The correlation still holds with methane and natural gas, especially with confinement. Analysis of the correlation infers that both blowoff and flashback occurrences are governed by the shear layer surrounding the Central Recirculation Zone (CRZ). The CRZ acts to control the width and strength of the shear flow region. Blowoff was found to occur when the CRZ was extensive and well develop and could be modeled by a well stirred reactor system. Two modes of flashback were found, both of which could be characterized by the same correlation of inlet tangential velocity. The first flashback case occurred at lower swirl numbers when the flame attached to the burner rim and flashed back through the outer boundary layer. At higher swirl numbers the CRZ and associated flame located next to its boundary extended back over the fuel nozzle inside the swirl chamber. Flashback occurred when the flame suddenly moved radially outwards towards the inlets. A clear trend was established for COG; as the swirl number was increased from 0.8 to 1.5 blowoff slightly worsened, whilst flashback improved. Thus higher swirl numbers are tentatively favored for flashback protection for higher

  19. Temperature measurement of axisymmetric partially premixed methane/air flame in a co-annular burner using Mach-Zehnder interferometry

    Science.gov (United States)

    Irandoost, M. S.; Ashjaee, M.; Askari, M. H.; Ahmadi, S.

    2015-11-01

    In this paper partially premixed laminar methane/air co-flow flame is studied experimentally. Methane-air flame is established on an axisymmetric co-annular burner. The fuel-air jet flows from the central tube while the secondary air flows from the region between the inner and the outer tube. The aim is to investigate the flame characteristics for methane/air axisymmetric partially premixed flame using Mach-Zehnder interferometry. Different equivalence ratios (φ=1.4-2.2) and Reynolds numbers (Re=100-1200) are considered in the study. Flame generic visible appearance and the corresponding fringe map structures are also investigated. It is seen that the fringe maps are poorly influenced by equivalence ratio variations at constant Reynolds number but are significantly affected by Reynolds number variations in constant equivalence ratio. Temperatures obtained from optical techniques are compared with those obtained from thermocouples and good agreement is observed. It is concluded that the effect of Reynolds number increment on maximum flame temperature is negligible while equivalence ratio reduction increases maximum flame temperature substantially.

  20. The Research of Opposed Firing Boilers Low NOx Burner Retrofit Technology%对冲燃烧锅炉低氮燃烧改造技术研究

    Institute of Scientific and Technical Information of China (English)

    蓝春娟; 刘石生

    2015-01-01

    针对当前600 MW火电机组对冲燃烧锅炉存在的NOx 浓度排放过高的问题,对其进行低氮燃烧改造。为了确保锅炉低氮改造的效果,采用Fluent 软件进行数值模拟计算,并提出了相关的锅炉改造之后的燃烧调整策略,最后对其性能进行测试。结果表明,锅炉燃烧器改造之后,有效降低了排放的NOx 浓度。%As for the 600 MW thermal power unit,its opposed firing boiler’s NOx has higher emission concentrations. In order to have a renovation of low NOx combustion,use Fluent software to numerical simulation,and propose policy-relat-ed combustion boiler adj ustments after the last test its performance.The results show that:after boiler burner replaced,the NOx concentration in emissions is effectively reduced.

  1. 600MW机组低氮燃烧器改造效果分析%Performance Analysis of Low NOx Burner Retrofit for a 600 MW Unit Boiler

    Institute of Scientific and Technical Information of China (English)

    焦林生; 薛晓垒; 金理鹏

    2013-01-01

    锦界发电公司3号机组锅炉燃烧器改造前NOx排放浓度约402mg/m3~609mg/m3,采用新型燃烧器器和全炉膛分级燃烧技术对3号锅炉燃烧系统进行了低氮改造。试验结果表明,低氮燃烧器改造后,锅炉在最佳运行状态下,NOx排放浓度可控制在128mg/m3~135mg/m3之间,与改造前相比,NOx排放浓度平均降幅约70%,低氮改造效果非常明显。%The NOx emission concentration of the No.3 boiler in Jinjie Power Plant was about 402~609mg/m3, which can not meet the national policy requirements. Thus, by the new type burner and the whole furnace staged combustion technology, retrofit on the low NOx combustion system was conducted. The experimental results showed that, after the retrofit , under boiler optimum operating condition, the NOx emission concentration was between 128~135mg/m3. Compared with the unit before retrofit , the NOx emission concentration dropped by 70%averagely, indicating the retrofit effect was obvious.

  2. Investigation of the turbulence characteristics in the swirling flow of a gun-type gas burner with two different hot-wire probes

    International Nuclear Information System (INIS)

    Mean velocities and turbulence characteristics in the swirling flow of a gun-type gas burner (GTGB) were measured with a triaxial hot-wire probe (T-probe) and compared with previous data measured with an X-type hot-wire probe (Xprobe). Vectors and axial mean velocity data obtained by the measurement of the two types of probes in the horizontal plane and in the cross section differ in magnitude, but have very similar shape in overall distribution. Axial mean velocity components show especially wide differences around the slits and outer part of the swirl vanes within the range of X/R=2. Also, various turbulence intensities appear in a similar trend to axial mean velocity components within the range of X/R=2. The radial component of turbulence intensity around the slits and the outer part of swirl vanes above the range of X/R=2 has an opposite phenomenon. On the whole, the T-probe's measurements appear smaller than the X-probe's. This shows that the X-probe is better than the T-probe, especially on the swirling flow because it is much easier to use

  3. Study of heat transfer between an over-bed oil burner flame and a fluidized bed during start-up: Determination of the flame to bed convection coefficient

    International Nuclear Information System (INIS)

    A study of the heat transfer processes between an over-bed burner flame and a fluidized bed during start-up as been conducted. Owing to the difficulty of estimating the flame to bed convection coefficient in an industrial boiler, convection coefficients were determined using a laboratory bench scale unit. Such convection heat transfer coefficients are obtained for 3 kg, 4 kg and 5.5 kg initial bed inventories by combining measured temperatures and flow rates with a mathematical model representing the complex energy exchange in the system. Results show that the height of the fluidized bed and its distance to the flame are an important factor in the overall heat transfer process, both by convection and radiation. For 5.5 kg, 4 kg and 3 kg initial bed inventories, the convection coefficients obtained, at the end of start-up, are 180 ± 30 W/m2 K, 150 ± 20 W/m2 K and 95 ± 10 W/m2 K respectively. The determined convection coefficients can be utilized in the future as guides in the design of start-up systems for BFB boilers. The energy analysis performed also identified the major sources of heat losses in the bubbling fluidized bed.

  4. Sodium sulfate-induced corrosion of pure nickel and superalloy Udimet 700 in a high velocity burner rig at 900 C

    Science.gov (United States)

    Misra, A. K.

    1987-01-01

    Sodium sulfate-induced corrosion of pure nickel and a commercial nickel-base superalloy, Udimet 700 (U-700), were studied at 900 C in a Mach 0.3 burner rig with different Na levels in the combustor. The corrosion rate of Ni was independent of the Na level in the combustor and considerably lower than that measured in laboratory salt spray tests. The lower rates are associated with the deposition of only a small amount of Na2SO4 on the surface of the NiO scale. Corrosion of U-700 was observed to occur in two stages. During the first stage, the corrosion proceeds by reaction of Cr2O3 scale with the Na2SO4 and evaporation of the Na2CrO4 reaction product from the surface of the corroding sample. Cr depletion in the alloy occurs and small sulfide particles are formed in the Cr depletion zone. Extensive sulfidation occurs during the second state of corrosion, and a thick scale forms. The relationship between the corrosion rate of U-700 and the Na level in the combustor gives a good correlation in the range of 0.3 to 1.5 ppm by weight Na. Very low levels of Na in the combustor cause accelerated oxidation of U-700 without producing the typical hot corrosion morphology.

  5. Investigation and modelling of fuel utilisation in the zone near the burner of technical combustion systems. Final report; Untersuchung und Modellierung der Brennstoffumsetzung im Brennernahbereich technischer Verbrennungssysteme. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, H.; Wirtz, S.

    1999-06-01

    Optimisation and development of technical combustion systems in order to generate energy efficiently and reduce pollution is an ever-increasing challenge. Mathematical and numerical simulations play a very important role in this context. This project was dedicated to the implementation and improvement of mathematical models and subsequent verification of the modelling concepts. Verification used data measured by the university department for combined cyle turbines. The focal point of interest was the reaction zone near the burner. Further points of interest: development and improvement of models for two-phase effects, fuel consumption and turbulence interaction as well as further development of the methods of numerical simulation. Simulating the combustion chamber of the combined cycle turbines was prioritised.(orig.) [German] Die Optimierung und Weiterentwicklung technischer Verbrennungssysteme mit dem Ziel einer moeglichst effizienten und schadstoffarmen Energiebereitstellung stellt eine staendig wachsende Herausforderung dar. Bei der technologischen Umsetzung dieses Ziels kommt der mathematisch-numerischen Simulation eine immer groessere Bedeutung zu. In diesem Projekt sollte die Implementierung und Verbesserung von mathematischen Modellierungsansaetzen sowie die anschliessende Verifikation der Modellierungskonzepte anhand der Messdaten des Lehrstuhls fuer Dampf- und Gasturbinen (LDuG) durchgefuehrt werden. Der Schwerpunkt lag in der brennernahen Reaktionszone. Konkrete Arbeitsschwerpunkte waren die Weiterentwicklung und Verbesserung der Modellansaetze fuer Zweiphaseneffekte, Brennstoffumsatz und Turbulenzinteraktion sowie die Weiterentwicklung der Methodik der numerischen Simulation. Dabei stand die Simulation der Brennkammer des LDuG im Vordergrund. (orig.)

  6. Investigations of coal ignition in a short-range flame burner using optical measuring systems; Untersuchungen zur Kohlezuendung am Flachflammenbrenner unter Verwendung optischer Messtechnik

    Energy Technology Data Exchange (ETDEWEB)

    Hackert, G.; Kremer, H.; Wirtz, S. [Bochum Univ. (Germany). Lehrstuhl fuer Energieanlagentechnik

    1999-09-01

    The short-range flame burner and the KOALA reactor of DMT are experimental facilities for realistic simulation of coal conversion processes at high temperatures and pressures in atmospheric conditions. The TOSCA system enable measurements of temperatures, sizes, shapes and velocities of the fuel particles, which serve as a basis for a three-dimensional simulation model of coal combustion. In the future, further parameter studies will deepen the present knowledge of coal dust combustion under pressure and enable optimisation of the numerical models for simulation of industrial-scale systems for coal dust combustion under pressure. [Deutsch] Mit dem Flachflammenbrenner und dem KOALA-Reaktor der DMT stehen Versuchsapparaturen zur Verfuegung, mit deren Hilfe die Kohleumwandlungsprozesse bei hohen Temperaturen unter Druck und unter atmosphaerischen Bedingungen realistisch wiedergegeben werden. Das TOSCA-System erlaubt dabei die Bestimmung von Temperaturen, Groessen, Formen und Geschwindigkeiten der Brennstoffpartikel. Diese Daten liefern die Grundlage fuer die Erstellung eines dreidimensionalen Simulationsmodells zur Modellierung der Kohleverbrennung. In Zukunft werden weitere Parameterstudien das Verstaendnis der Kohlenstaubdruckverbrennung vertiefen und ein Optimierung der numerischen Modelle ermoeglichen, so dass die Simulation grosstechnischer Kohlenstaubdruckverbrennungsanlagen realisiert werden kann. (orig.)

  7. High Efficient and Low NOx Centrally Fuel Rich Swirl Burner with Multi-stage Combustion Technology%多次分级中心给粉旋流煤粉高效低氮氧化物燃烧技术

    Institute of Scientific and Technical Information of China (English)

    遆曙光; 陈智超; 蒋炳坤; 曾令艳; 宗秋冬; 李松; 李争起; 朱群益

    2015-01-01

    为了实现煤粉高效燃烧和低 NOx排放,将中心给粉旋流燃烧器与燃烬风技术相结合,形成多次分级中心给粉旋流燃烧技术。阐述多次分级中心给粉旋流煤粉燃烧技术原理和特点,并指出该技术不仅可以大幅降低 NOx排放,同时还具有燃烧效率高、防止结渣和高温腐蚀的优点,并通过实验室试验和工业试验验证该技术的原理。在实验室和实际锅炉上,采用飘带示踪法对不同燃烬风率和外二次风叶片角度下的空气动力场进行测量。试验表明,该燃烧器可以在燃烬风率为25%时可以形成稳定的中心回流区,回流区随着外二次风叶片角度减小而增大。采用三维激光多普勒动态粒子分析仪对采用多次分级技术条件下中心给粉旋流燃烧器出口气固流动特性进行测量。试验表明,颗粒相对数密度峰值出现位置靠近燃烧器中心位置。在一台600 MW机组锅炉上进行热态试验。试验表明,煤粉在距离喷口约为0.1 m位置着火,具有较强的稳燃能力。同时,介绍该技术的应用情况。%The combination of centrally fuel rich swirl burners with over fire air technology formed a centrally fuel rich swirl burner with multi-stage combustion technology for getting higher efficiency and controlling NOx emission. The theory and characteristics of this technology is introduced and analyzed. This technology owns the following characters:Low NOx emission, high combustion efficiency, slagging resistance and high temperature corrosion resistance. Laboratory and Industrial experiments and tested the theory. Single-phase cold flow air experiments on a centrally fuel-rich swirl burner are carried out to investigate the influence of the over fire air ratios and the outer secondary air angle on the flow characteristics in the laboratory and real boiler. The results show that a stable central recirculation zone is formed when an over fire air ratio of

  8. Economic Analyiss of "Symbiotic" Light Water Reactor/Fast Burner Reactor Fuel Cycles Proposed as Part of the U.S. Advanced Fuel Cycle Initiative (AFCI)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kent Alan [ORNL; Shropshire, David E. [Idaho National Laboratory (INL)

    2009-01-01

    A spreadsheet-based 'static equilibrium' economic analysis was performed for three nuclear fuel cycle scenarios, each designed for 100 GWe-years of electrical generation annually: (1) a 'once-through' fuel cycle based on 100% LWRs fueled by standard UO2 fuel assemblies with all used fuel destined for geologic repository emplacement, (2) a 'single-tier recycle' scenario involving multiple fast burner reactors (37% of generation) accepting actinides (Pu,Np,Am,Cm) from the reprocessing of used fuel from the uranium-fueled LWR fleet (63% of generation), and (3) a 'two-tier' 'thermal+fast' recycle scenario where co-extracted U,Pu from the reprocessing of used fuel from the uranium-fueled part of the LWR fleet (66% of generation) is recycled once as full-core LWR MOX fuel (8% of generation), with the LWR MOX used fuel being reprocessed and all actinide products from both UO2 and MOX used fuel reprocessing being introduced into the closed fast burner reactor (26% of generation) fuel cycle. The latter two 'closed' fuel cycles, which involve symbiotic use of both thermal and fast reactors, have the advantages of lower natural uranium requirements per kilowatt-hour generated and less geologic repository space per kilowatt-hour as compared to the 'once-through' cycle. The overall fuel cycle cost in terms of $ per megawatt-hr of generation, however, for the closed cycles is 15% (single tier) to 29% (two-tier) higher than for the once-through cycle, based on 'expected values' from an uncertainty analysis using triangular distributions for the unit costs for each required step of the fuel cycle. (The fuel cycle cost does not include the levelized reactor life cycle costs.) Since fuel cycle costs are a relatively small percentage (10 to 20%) of the overall busbar cost (LUEC or 'levelized unit electricity cost') of nuclear power generation, this fuel cycle cost increase should not have a

  9. Stabilization and structure of N-heptane flame on CWJ-spray burner with kHZ SPIV and OH-PLIF

    KAUST Repository

    Mansour, Morkous S.

    2015-08-31

    A curved wall-jet (CWJ) burner was employed to stabilize turbulent spray flames that utilized a Coanda effect by supplying air as annular-inward jet over a curved surface, surrounding an axisymmetric solid cone fuel spray. The stabilization characteristics and structure of n-heptane/air turbulent flames were investigated with varying fuel and air flow rates and the position of pressure atomizer (L). High-speed planar laser-induced fluorescence (PLIF) of OH radicals delineated reaction zone contours and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the flow field features, involving turbulent mixing within spray, ambient air entrainment and flame-turbulence interaction. High turbulent rms velocities were generated within the recirculation zone, which improved the flame stabilization. OH fluorescence signals revealed a double flame structure near the stabilization edge of lifted flame that consisted of inner partially premixed flame and outer diffusion flame front. The inner reaction zone is highly wrinkled and folded due to significant turbulent mixing between the annular-air jet and the fuel vapor generated from droplets along the contact interface of this air jet with the fuel spray. Larger droplets, having higher momentum are able to penetrate the inner reaction zone and then vaporized in the low-speed hot region bounded by these reaction zones; this supports the outer diffusion flame. Frequent local extinctions in the inner reaction zone were observed at low air flow rate. As flow rate increases, the inner zone is more resistant to local extinction despite of its high wrinkling and corrugation degree. However, the outer reaction zone exhibits stable and mildly wrinkled features irrespective of air flow rate. The liftoff height increases with the air mass flow rate but decreases with L.

  10. DEM-CFD simulation of the particle dispersion in a gas-solid two-phase flow for a fuel-rich/lean burner

    Energy Technology Data Exchange (ETDEWEB)

    Hao Zhou; Guiyuan Mo; Jiapei Zhao; Kefa Cen [Zhejiang University, Hangzhou (China). Institute for Thermal Power Engineering

    2011-04-15

    The objective of this study was to numerically investigate the particle dispersion mechanisms in the gas-solid two-phase jet for a fuel-rich/lean burner by means of coupling the discrete element method (DEM) with the computational fluid dynamics (CFD). The DEM was employed to deal with the particle-particle and the particle-wall interaction in the computation of solid flow; while gas flow was computed by CFD based on the commercial software package Fluent. The particles with various Stokes numbers equal to 0.1, 0.5, 1, 2 and 3 (corresponding to particle diameter 10.8, 24.17, 34.18, 48.38 and 59.21 {mu}m, respectively) in the gas-solid fuel-rich/lean jet were investigated in this study. The particle-particle collision was simulated and its effect on the fuel-rich/lean separating performance was evaluated. The results show that the particle-particle collision occurred more frequently with the increasing of Stokes numbers from 0.1 to 3. The particle dispersion became more uniform between the fuel-rich side and the fuel-lean side for particles with small Stokes number; while for particles at St > 1, a better fuel-rich/lean separating performance was achieved. The efficiency of the DEM-CFD coupling method was validated by the corresponding experiments, and a good agreement between the simulation and experiments was achieved as a result of the particle-particle collision. 31 refs., 8 figs., 4 tabs.

  11. Experimental study of the E( m, λ)/ E( m, 1064) ratio as a function of wavelength, fuel type, height above the burner and temperature

    Science.gov (United States)

    Bejaoui, S.; Lemaire, R.; Desgroux, P.; Therssen, E.

    2014-08-01

    The optical properties of soot have been studied for many years with a particular attention focused on refractive index. In the present study, the two-excitation wavelength laser-induced incandescence technique has been applied to determine the ratio of the soot absorption function as a function of the wavelength. The advantage of this technique is to provide the determination of the E( m) ratio using a non-intrusive laser-based method without being disturbed by scattering. Measurements have been carried out in a methane premixed flat flame and in a diesel turbulent spray one. Four pairs of wavelength have been used to evaluate the spectral behavior of E( m) ratios from ultraviolet (UV) to near infrared (NIR). The two-excitation wavelength LII method implies heating soot the same way using two different laser excitations. Particular operating conditions must be selected to insure the equality of the LII signals, such an equality being necessary to derive the E( m) ratio. A laser excitation at 1064 nm has been chosen as a reference, and the obtained results have been compared with those issued from the use of UV and visible wavelengths of 266, 355, 532 and 660 nm. Results show a significant decrease of the E( m) ratio from UV to visible while it tends to become constant from 532 nm to NIR. The use of different experimental conditions allows to analyze the dependence of the E( m) ratios with the height above the burner, the fuel type and the soot temperature. No significant influence of these parameters has been pointed out on the relative E( m) values determined in the flame conditions investigated here.

  12. 新型低氮旋流燃烧器在马莲台发电厂中的应用%Application of new type low NOx cyclone burner in Maliantai Power Plant

    Institute of Scientific and Technical Information of China (English)

    朱金义

    2013-01-01

    In order to obtain the aim of reducing NOx emission in power plant and improving the en-vironment, aiming at the problem of using DDR cyclone burner engender highered NOx, Maliantai Power Plant uses the new type low NOx cyclone burner combine with SCR (selective catalytic reduc-tion) flue gas denitrification technology application into the denitrification improvement project, ob-tains better effects. The result shows that after the improvement of the burner, each operation index of the boiler is normally, the efficiency of the boiler increases, Nox emission density decreases obviously from original 679.85 mg/Nm3 to 290 mg/Nm3 , gains great social and economic benefits.%为了达到降低发电厂NOx排放物、改善生态环境的目的,针对采用DDR旋流燃烧器产生NOx较高的问题,马莲台发电厂在脱硝改造工程中大胆采用新型低氮燃烧器与SCR烟气脱硝相结合的技术,取得了良好效果。结果表明:燃烧器改造后锅炉运行各项指标正常,锅炉效率略有提高,NOx排放浓度明显减少,由原来的679.85 mg/Nm3降为290 mg/Nm3,取得了巨大的社会效益和经济效益。

  13. 蓄热稳燃器对四角切圆锅炉内流动及传热的影响%Influences of Regenerative Stability Burner on Flow and Heat Transfer in Tangential Firing Boiler

    Institute of Scientific and Technical Information of China (English)

    贾冯睿; 王雷; 韩长明; 姚尧; 刘金彪; 董辉

    2013-01-01

    建立了三维、稳态四角切圆锅炉内气流流动、传热的耦合数学模型,求得了炉内气流分布的速度场以及温度场,探讨了蓄热稳燃器的布置对炉内流动及传热的影响.研究结果表明,蓄热稳燃器的布置使火焰形成了一个环形切圆,增强了气流的扰动,进而强化了气流与水冷壁的对流换热过程;在稳定燃烧的情况下,蓄热稳燃器可作为稳定的热源,增强了辐射换热效果.研究结果可为改进锅炉设计和实际生产提供一定的理论指导.%A coupling mathematical model for three-dimensional and steady state flow and heat transfer process in a tangential firing boiler was established,and the influence of the arrangement of the regenerative stability burner on the flow and temperature fields in the boiler was discussed.The results show that the regenerative stability burner forms the fire to a circular tangential,which enhances the flow disturbance,and then strengthens the convective heat transfer process between the flow and the water wall.Under the stable combustion condition,the regenerative stability burner could be used as the stable heat source,and enhances the radiation heat transfer effect.The research results could be used to improve boiler design and provide certain theoretical guidance for the actual production.

  14. 大速差射流型双通道自稳式煤粉燃烧器的高效低NOx燃烧特性分析%Analyses on High Efficiency Low NOx Property of High Velocity Two-pass Spontaneous Stabilized Jet PC Burner

    Institute of Scientific and Technical Information of China (English)

    黄伟; 熊蔚立

    2001-01-01

    The emission property of two-pass spontaneous stabilized jet PC burner is studied, and effect of using it to reducing NOx emission are analyzed quantitatively. The advantages of using two-pass PC burner cooperated with other kinds of burner are testified by testing and operating, such as the stable combustion, high efficency and low NOx emission.%研究了双通道自稳式煤粉燃烧器高效低NOx排放特性,定量得出双通道自稳式燃烧器具有降低NOx排放的效果。试验和运行表明:双通道煤粉燃烧器与其它燃烧器配套使用,具有燃烧稳定性好、锅炉效率高、NOx排放低等特点。

  15. A laboratory investigation on the influence of adsorbed gases and particles from the exhaust of a kerosene burner on the evaporation rate of ice crystals and the ice nucleating ability of the exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, K.; Mitra, S.K.; Pruppacher, H.R. [Johannes Gutenberg Univ., Mainz (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    Laboratory experiments are described during which the influence of the exhausts of a kerosene burner on microphysical processes were studied. In one experimental investigation the evaporation rates of polluted ice crystals were compared with the evaporation rates of pure ice crystals. During another experimental investigation the ice nucleating ability of the exhaust particles was studied. The results show that the evaporation rate of polluted ice crystals was significantly reduced and also that ice nucleation takes place between -20 and -38 deg C. (author) 7 refs.

  16. Effect of burners with different feeding modes on emission characteristics of biomass molding fuel particles%不同进料方式燃烧器对生物质燃料颗粒物排放特性的影响

    Institute of Scientific and Technical Information of China (English)

    张学敏; 张永亮; 姚宗路; 赵立欣; 孟海波; 田宜水

    2014-01-01

    为摸清不同进料方式的燃烧器对生物质成型燃料燃烧后颗粒物排放的影响,该文对上进料式(A 型)、水平进料式(B型)和下进料式(C型)等3种类型的燃烧器进行燃烧颗粒排放试验,采用低压电子冲击仪对玉米秸秆、棉秆、木质3种成型燃料燃烧后颗粒物排放开展数量浓度和质量浓度研究,并计算出每种燃料在3种燃烧器中每秒排放的颗粒物数量和质量分布。试验结果表明:3种燃烧器中的颗粒物质量分布都成双峰分布,主要集中在5~7级和12级,占总颗粒物质量的90%;木质和棉杆燃料在A型燃烧器中的颗粒物质量排放最少,玉米秸秆燃料在B型中颗粒物质量最少。3种燃烧器中的颗粒物数量分布都成单峰分布玉米秸秆和木质在B型燃烧器上的颗粒物数量主要集中在1~5级,在A型和C型燃烧器上颗粒物数量主要集中在3~6级;棉杆在C型燃烧器上集中在1~5级,在A型和B型燃烧器上颗粒物数量主要集中在3~6级。3种燃烧器对颗粒物质量的分布影响不大。根据试验结果,建议不同的燃料匹配不同的燃烧器。从颗粒物排放总量角度,玉米秸秆应该匹配B型燃烧器,棉杆和木质燃料应该匹配A型燃烧器。从PM2.5所占比例得出,玉米秸秆燃料应匹配C型燃烧器,棉杆匹配 B 型燃烧器,木质匹配 A 型燃烧器。并建议生物质成型燃料燃烧器结构应具有以下特点:进料连续平稳;带有主动清渣装置并且清渣波动小;鼓风配风,保证过量空气系数高。研究结果为中国生物质固体成型燃料的颗粒物排放法规的制定提供参考。%Different structure and the different feeding mode burners affect the emission and the combustion efficiency of various biomass solid fuels. However, how the burner structure and feeding mode impact on the particle emissions is not clearly understood. To investigate this

  17. Economic Analysis of United Denitration with Low-NOx Burners and SCR on Zhangjiakou Power Plant%低氮燃烧器与脱硝改造整体经济性分析

    Institute of Scientific and Technical Information of China (English)

    贾炳禄; 张达勋; 武利军

    2015-01-01

    With the adopting of low NOx burners and SCR combined denitration method on the three boiler of Zhangjiakou Power Plant, the burner reduces the quantity of the NOx with 60~70%, the SCR twice denitration make the NOx emissions below to 100mg/Nm3. The approaching of combined denitrification greatly reduces the SCR instal ation and operating costs, has a certain reference value to other similar units denitration project.%张家口发电厂对3号锅炉采用低氮燃烧器与SCR联合脱硝方式改造后,燃烧器降低了NOx的总生成量的60~70%,SCR二次脱硝使锅炉氮氧化物排放量达到100mg/Nm3以下。联合脱硝方式大大降低了SCR的安装及运行费用,对其它同类机组脱硝工程具有一定的参考价值。

  18. Research on Effect of Regenerative Burner of Different Combination Mode on Billet Burning%不同组合方式的蓄热式烧嘴对钢坯烧损的影响探究

    Institute of Scientific and Technical Information of China (English)

    朱森林; 朱锦铭

    2012-01-01

    The effect of double regenerative burner on product quality resulting from the iron billet oxidation scaling loss and economic benefits is presented. The basic conditions of iron emerging oxide in heating process of the billet are analyzed. Through the comparison with the heating furnace burner layout, the heating furnace construction process in the second period is optimized and improved, so that the oxidation loss is reduced and the quality of products is improved.%提出了双蓄热式烧嘴对钢坯烧损产生的氧化铁皮对产品品质和经济效益的影响.分析了钢坯在加热过程中产生氧化铁皮的基本条件.通过对比一期加热炉烧嘴布置方式,在二期加热炉建设过程中进行了优化改进,达到了减少氧化烧损、提高产品品质的目的.

  19. Influence of staged-air on airflow, combustion characteristics and NO(x) emissions of a down-fired pulverized-coal 300 MW(e) utility boiler with direct flow split burners.

    Science.gov (United States)

    Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang

    2010-02-01

    Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers. PMID:20050661

  20. Comparative study of fast critical burner reactors and subcritical accelerator driven systems and the impact on transuranics inventory in a regional fuel cycle

    International Nuclear Information System (INIS)

    Research highlights: → Double-strata fuel cycle has a potential to minimize transuranics mass in Europe. → European Minor Actinides legacy can be reduced down to 0 before the end of century. → 40% higher capacity needed to burn MA for fast critical reactor then for EFIT fleet. → Na cooled fast reactor cores with high content of MA and low CR have been assessed. → Fast critical and ADS-EFIT reactors show comparable MA transmutation performance. - Abstract: In the frame of Partitioning and Transmutation (P and T) strategies, many solutions have been proposed in order to burn transuranics (TRU) discharged from conventional thermal reactors in fast reactor systems. This is due to the favourable feature of neutron fission to capture cross section ratio in a fast neutron spectrum for most TRU. However the majority of studies performed use the Accelerator Driven Systems (ADS), due to their potential flexibility to utilize various fuel types, loaded with significant amounts of TRU having very different Minor Actinides (MA) over Pu ratios. Recently the potential of low conversion ratio critical fast reactors has been rediscovered, with very attractive burning capabilities. In the present paper the burning performances of two systems are directly compared: a sodium cooled critical fast reactor with a low conversion ratio, and the European lead cooled subcritical ADS-EFIT reactor loaded with fertile-free fuel. Comparison is done for characteristics of both the intrinsic core and the regional fuel cycle within a European double-strata scenario. Results of the simulations, obtained by use of French COSI6 code, show comparable performance and confirm that in a double strata fuel cycle the same goals could be achieved by deploying dedicated fast critical or ADS-EFIT type reactors. However the critical fast burner reactor fleet requires ∼30-40% higher installed power then the ADS-EFIT one. Therefore full comparative assessment and ranking can be done only by a

  1. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  2. Track 5: safety in engineering, construction, operations, and maintenance. Reactor physics design, validation, and operating experience. 5. A Negative Reactivity Feedback Device for Actinide Burner Cores

    International Nuclear Information System (INIS)

    per atmosphere increase in pressure. 4. This lifts the floats higher into the core above their equilibrium position at hot full power. 5. The increased neutron absorption produces a negative reactivity feedback. 6. The surrounding primary coolant keeps all boundaries at nearly constant temperature. The ex-core helium has very low energy absorption, plus good heat transfer, which helps maintain constant temperature and pressure. The neutron absorber floats are thin metal tubes that contain a rhenium slug, as a high-capture cross-section ballast, and an upper section of 10B4C pellets. The tops and bottoms of the floats are rounded to guard against sticking inside the riser tubes. The top of the float is vented through a porous disk into the cool helium plenum to allow the helium produced in 10B capture to escape. The absorber float is cooled by conduction through the LBE bath, and guide-tube wall, into the ambient LBE primary coolant. Whole-core Monte Carlo calculations for RFDs substituted for the central void tube in 20% of the streaming fuel assemblies proposed for actinide burner cores in Ref. 1 indicate a steady- state reactivity power feedback coefficient exceeding -1 c/% power, which is better than that of sodium-cooled integral fast reactor (IFR)-type cores (at approximately 20.5 c/%) and about half of that of oxide-fueled fast breeder reactors (FBRs). However, the RFD feedback is considerably slower following a step power increase: Preliminary estimates suggest a factor of 5 slower than the oxide fuel Doppler reactivity insertion rate. Nevertheless, this may be adequate since the reactors in question can be designed to have no obvious large, rapid reactivity insertion accidents to cope with. Much remains to be done to refine and optimize this concept. Among necessary evaluations are seismic response, the consequences of gas plenum failure, and reactivity insertion by the automatic RFD withdrawal following a power reduction, safety scram in particular. Various

  3. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward

    International Nuclear Information System (INIS)

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high

  4. 基于NSGA-Ⅱ算法的蓄热式铝熔炼炉燃烧器布置方式的仿真优化%Multi-objective Optimization of Burner Arrangement in a Regenerative Aluminum Melting Furnace Based on Non-dominated Sorting Genetic Algorithm-Ⅱ

    Institute of Scientific and Technical Information of China (English)

    王计敏; 闫红杰; 周孑民; 李世轩; 贵广臣; 刘小芳; 李文科

    2012-01-01

    考虑蓄热式铝熔炼炉运行过程的特点,通过耦合用户自定义熔化模型和燃烧器换向及燃烧量变化模型,建立了蓄热式铝熔炼炉熔炼过程的数学模型.运用计算流体力学软件FLUENT模拟了熔炼过程中炉膛和熔池耦合物理场,并对模拟结果进行了验证.依据燃烧器布置方式对蓄热式铝熔炼炉熔炼性能的影响分析,以模拟结果为基础,建立了燃烧器布置方式与优化指标之间的非线性相关关系,再结合非支配排序遗传算法NSGA-Ⅱ实现燃烧器布置方式的多目标优化.优化结果表明,当燃烧器倾角23.56°、燃烧器高度1741.81 mm和燃烧器间水平夹角62.05°时,能获得较佳的铝料温度相对标准差(2.65%)、无量纲熔炼时间(0.82)和炉膛温度相对标准差(14.03%).%Based on the features of melting process of regenerative aluminum melting furnaces, a mathematical model with useT-developed burner reversing and burning capacity model and melting model, was established. Based on validating results by heat balance test for an aluminum melting furnace, CFD software FLUENT was used to simulate the coupling field between aluminum bath and combustion space. Considering influence analysis of burner arrangement on the performance of regenerative aluminum melting furnace, the relationship between burner arrangement and evaluation criteria was built using non-linear regression. Non-dominated sorting genetic algorithm-II was used to deal with multi-objective optimization for burner arrangement. The results show that the minimum RSD (relative standard deviation) of aluminum temperature (2.65%), dimensionless melting time (0.82) and RSD of furnace temperature (14.03%) could be obtained under the optimum conditions of vertical angle of burner 23.56°, height of burner 1471.81 mm, and horizontal angle between burners 62.05°.

  5. DLE burner water rig simulations

    OpenAIRE

    Mohammadi, Peyman

    2008-01-01

    In today’s industrial world, there are high demands on the environmental aspects. Siemens Industrial Turbomachinery AB (SIT AB) is a company that is keen about the environment, and therefore spends a lot of effort in developing combustion processes in order to reduce NOx (nitrogen oxides) emissions on their engine products. They are also researching in optional fuels, which are more environment-friendly. In order to provide lower emissions the SIT designed a water rig to study the flow dynami...

  6. Effect of center wind on combustion characteristics of HT-NR3 swirl burner%中心风对H T-N R3旋流燃烧器燃烧特性的影响

    Institute of Scientific and Technical Information of China (English)

    解冰; 张广才

    2015-01-01

    针对装有HT-NR3旋流燃烧器的锅炉在运行过程中存在炉膛出口CO质量浓度过高、水冷壁高温腐蚀和燃烧器喷口烧损等问题,试验研究了不同导流扩口和不同煤质下中心风率变化对燃烧器的影响.结果表明:当燃用高挥发分煤时,采用35°导流扩口,中心风率控制在4.3%左右,可以在抑制NOx 排放的同时有效降低CO的生成;当燃用低挥发分煤时,采用40°导流扩口,控制中心风率低于3.0%,可以在促进燃料反应的同时兼顾抑制NOx 和CO的排放.%Several problems occurs during operation of boilers equipped with HT-NR3 swirl burners,such as the mass concentration of CO at furnace outlet of is too high,the high temperature corrosion occurs on wa-ter wall and the burners nozzles are burnout.Thus,the effects of central air ratio on burner with different diversion flaring angles were investigated,under conditions burning different kinds of coals.The results show that,when the high-volatile coal was burned,with diversion flaring angle of 35°,the center air rate was controlled at about 4.3%,the CO formation was effectively reduced on the premise of inhibiting NOx generation.When the low-volatile coal was burned,with diversion flaring angle of 40°,the central air ratio can be kept below 3.0%,the combustion reaction can be improved while inhibiting the NOx and CO emis-sions.

  7. Effects of the Structure of Preheating Chamber on Combustion and NOx Emission of a Multi-stage Self-preheating Burner%预热室结构对多段式自预热燃烧器内燃烧及NOx排放特性的影响

    Institute of Scientific and Technical Information of China (English)

    陈冬林; 成珊; 贠英; 邓涛

    2012-01-01

    An introduction is being presented to the structure of a multi-stage self-preheating burner and its four typical preheating chambers. Through CFD simulation, the flow field, flue gas recirculation rate, temperature field, fuel gas burn-out rate and volumetric fraction of NOx in the combustion chamber have been calculated and analyzed in comparison with that of traditional burners. Results show that compared with traditional burners, the proposed burner has a different flow field and a higher adaptability to fuels of low heating values; the structure of its preheating chamber influences both the flue gas recirculation rate and the preheating effectiveness, and therefore accordingly influences the burn-out rate and NOx emission. Furthermore, the load of the burner affects less on the burn-out rate, but more on NOx emission.%提出了一种多段式自预热燃烧器及其4种典型的预热室结构,通过计算流体力学(CFD)方法研究了燃烧室内流场、烟气卷吸率、温度场、燃气燃尽率以及NOx体积分数,并与传统燃烧器的情况进行了对比.结果表明:与传统燃烧器相比,多段式自预热燃烧器改变了燃烧室内流场,对低热值燃料适应性强,其预热室结构同时影响烟气卷吸率和预热效果,并最终影响燃尽率与NOx体积分数;此外,燃烧器负荷对燃尽率影响甚微,但对NOx体积分数影响较大.

  8. Verbundprojekt PyrInno: Miniature burners for liquid fuels in the range of 1 - 8 kW; Verbundprojekt PyrInno: Kleinstbrenner auf Basis fluessiger Brennstoffe im Leistungsbereich 1 kW bis 8 kW

    Energy Technology Data Exchange (ETDEWEB)

    Paesler, L.; Schloss, J. vom; Lucka, K.; Koehne, H. [OWI Oel-Waerme Inst. gGmbH, Aachen-Herzogenrath (Germany); Mach, A.; Issendorff, F. von; Delgado, A. [Inst. fuer Stroemungsmechanik (LSTM), Univ. Erlangen (Germany); Eberspach, G.; Schmidt, O. [J. Eberspaecher GmbH und Co. KG, Esslingen (Germany); Sproten, H.P. [Fachverband Sanitaer-Klima-Heizung Nordrhein Westfahlen, Duesseldorf (Germany); Hamacher, R. [Heizungsbau Hamacher, Herzogenrath (Germany); Issendorff, E. [Issendorff Mikroelektronik GmbH, Rethen (Germany); Grodt, J. [Inst. fuer wirtschaftliche Oelheizung e.V., Hamburg (Germany); Muehlenberg, R. [Muehlenberg Haus und Technik Planungsbuero, Herzogenrath (Germany); Volkert, J.; Keim, E. [Promeos GmbH, Erlangen (Germany); Scholer, W. [Rotex Heating Systems GmbH, Gueglingen (Germany); Morawe, A.; Lahmann, F. [SOLVIS GmbH und Co. KG, Braunschweig (Germany); Volkert, H. [Volkert Heizungstechnik GmbH, Pommelsbrunn (Germany)

    2007-07-01

    Modern household heating systems must exhibit a low minimal power, a wide power modulation range and a high power density. The combination of innovative concepts and technologies like the evaporation in porous media, the preparation of a homogeneous fuel/air mixture supported by cool flames and the combustion in inert porous media will help to meet the changed requirements. The intention of the project 'PyrInno' is to develop an extremely compact oil heating system which reveals low emissions, a power modulation range from 1 kW to 8kW and meets the German air pollution guidelines for environmental protection. In this contribution the first operating model of this compact premix burner for light fuel oil is presented and the first experimental results are shown. (orig.)

  9. Optimal Design of Heating Process for Heating Furnace of Regenerative Burners%蓄热式烧嘴加热炉加热过程的优化设计

    Institute of Scientific and Technical Information of China (English)

    朱锦铭

    2011-01-01

    介绍了蓄热式烧嘴在加热炉的应用过程中出现在钢坯长度方向上的温差问题,针对该温差问题在后续工作中对于加热炉加热过程做出了合理的调整和优化,达到了解决问题的目的,取得了良好的经济效益.%This paper introduces the temperature difference problem on the length of the billet in the reheating furnace of regenerative burner and for this, it carries out reasonable adjustment and design optimization in the heating process, so that the purpose of solving the problem is achieved and good economic benefit is obtained.

  10. Turbulent Non-Premixed Flames Stabilized on Double-Slit Curved Wall-Jet Burner with Simultaneous OH-Planar Laser-Induced Fluorescence and Particle Image Velocimetry Measurements

    KAUST Repository

    Mansour, Morkous S.

    2015-04-29

    A double-slit curved wall-jet (CWJ) burner utilizing a Coanda effect by supplying fuel and air as annular-inward jets over a curved surface was employed to investigate the stabilization characteristics and structure of propane/air turbulent non-premixed flames with varying global equivalence ratio and Reynolds number. Simultaneous time-resolved measurements of particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) of OH radicals were conducted. The burner showed a potential of stable and non-sooting operation for relatively large fuel loading and overall rich conditions. Mixing characteristics in cold flow were first examined using an acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions. PIV measurements revealed that the flow field consisted of a wall-jet region leading to a recirculation zone through flow separation, an interaction jet region resulting from the collision of annular-inward jets, followed by a merged-jet region. The flames were stabilized in the recirculation zone and, in extreme cases, only a small flame seed remained in the recirculation zone. Together with the collision of the slit jets in the interaction jet region, the velocity gradients in the shear layers at the boundaries of the annular jets generate the turbulence. Turbulent mean and rms velocities were influenced by the presence of the flame, particularly in the recirculation zone. Flames with a high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Reynolds numbers. For flames with a low equivalence ratio, local quenching and re-ignition processes maintained flames in the merged jet region, revealing a strong intermittency, which was substantiated by the increased principal strain rates for these flames. © 2015 Taylor & Francis Group, LLC.

  11. NUMERICAL STUDY OF FLOW FIELD AND NOx FORMATION CHARACTERISTICS OF BURNER FOR COAL-BED METHANE%煤层气燃烧器流动及NOx生成特性数值研究

    Institute of Scientific and Technical Information of China (English)

    张力; 张俊广; 唐强; 孙志伟

    2011-01-01

    A swirled burner is designed for burning low heat value of coal-bed methane. The influence of heat load and excess air coefficient on combustion performance is studied by numerical simulation, and combustion pollutant is calculated. Results show that counter pressure gradient is existed in the burning zone* and its existing can strengthen the flue gas disturbance, generate a high temperature zone and increase the combustion efficiency. The designed burner has a wide range of load adjusting. High combustion temperature and combustion efficiency can be kept even in the low load. The combustion temperature is the highest in the numerical simulation when the excessive air coefficient is 1. 05, but the generation amount of NOX is only 25.1 mg/m3 at this condition.%针对煤层气热值低的特点,设计了一台煤层气旋流燃烧器,采用数值模拟方法研究了不同热负荷及过量空气系数对燃烧性能的影响,并计算了燃烧污染物的生成.结果表明,在燃烧区域存在逆压梯度,加强了烟气的扰动,有利于形成稳定的高温区,提高燃烧效率,燃烧器负荷调节范围大,低负荷时仍能保持较高的燃烧温度和燃烧效率.过量空气系数为1.05时燃烧温度最高,此时NOx生成最多,仅为25.1 mg/m3.

  12. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  13. Integrated environmental protection in the textile industry: Development of a mobile and pollutant-free low temperature heating system by utilization of advanced textile heating mats and emission-free pore burner engineering. Final report; Integrierter Umweltschutz in der Textilindustrie: Entwicklung eines mobilen umweltfreundlichen Niedertemperatur-Heizsystems durch Einsatz neuartiger textiler Heizmatten und Anwendung der emissionsarmen Porenbrenner-Heiztechnik. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hufnagl, E.; Fuchs, H.

    2003-09-26

    Flexible heating mats can be produced in large surfaces with variable structure and a high degree of prefabrication. The pore burner heating technology has extremely low pollutant emissions and high power modulation. These two components are coupled to obtain a highly advantageous heating system, based on the principle of flexible plastic tubes incorporated in textile mats and serving as hot water conduits. The water is heated in a heat exchanger by a pore burner without an open flame. The resulting heating panels are mobile as the pore burner/heat transmission system is designed as a compact unit. (orig.) [German] Flexible Heizmatten lassen sich als grosse Flaechen mit variabler Struktur und hohem Vorfertigungsgrad herstellen. Die Porenbrenner-Heiztechnik zeichnet sich durch eine extrem niedrige Schadstoffemission bei hoher Leistungsmodulation aus. Durch Kopplung beider Komponenten entsteht ein Heizsystem, das die genannten vorteilhaften Eigenschaften zusammenfuehrt. Das Wirkprinzip des neuen Heizsystems beruht darauf, dass in mattenartige Textilstrukturen flexible Kunststoffschlaeuche eingearbeitet werden, die als Stroemungskanaele fuer Warmwasser dienen. Das mittels Porenbrenner ohne offene Flamme verbrannte Brennstoff-Luftgemisch erwaermt ueber einen Waermetauscher das Wasser. Durch Anschluss der Schlaeuche an den mit Hilfe einer Pumpe realisierten Warmwasserkreislauf unter Verwendung entsprechender Anschlusselemente wird eine Wasserzirkulation in den Schlaeuchen erreicht. Die so geschaffenen Heizflaechen sind ortsveraenderlich einsetzbar, da das Porenbrenner-Waermeuebertragersystem als mobile kompakte Einheit gestaltet ist. (orig.)

  14. Measurements of the concentration of major chemical species in the flame of a test burner with a air swirling system; Mesures de concentration d`especes chimiques majoritaires dans la flamme d`un bruleur modele avec mise en rotation de l`air

    Energy Technology Data Exchange (ETDEWEB)

    Albert, St. [Gaz de France (GDF), 93 - La Plaine-Saint-Denis (France); Most, J.M.; Poireault, B. [Centre National de la Recherche Scientifique (CNRS), 86 - Poitiers (France)

    1996-12-31

    The study of combustion in industrial burners remains difficult because of the complexity of the equipments used: materials geometry, tri-dimensional flows etc.. The phenomena that control the combustion in a gas burner with a swirl air system has been studied thanks to a collaboration between the Direction of Research of Gaz de France (GdF) and the Laboratory for Combustion and Detonation Research (LCD) of the French National Centre of Scientific Research (CNRS). The burner used is developed by the LCD and the measurements of stable chemical species were performed by the CERSTA centre of GdF. These series of tests, performed in confined environment, have permitted to identify some of the parameters that influence combustion chemistry. Mapping of chemical species allows to distinguish 5 zones of flame development and also the zones of nitrogen oxides formation. Methane is rapidly centrifuged a few millimeters above the injection pipe and centrifuged with rotating combustion air. Carbon monoxide occurs immediately in the central recirculation zone which is weakly reactive (no oxygen and no methane). Oxygen content increases downflow from this area and carbon dioxide reaches its concentration maxima. CO formation decreases when the swirl number increases and CO{sub 2} formation occurs earlier. On the contrary, the emissions of CO and CH{sub 4} do not depend on the swirl value and the NO{sub x} values are only slightly dependent on this value. (J.S.)

  15. Energetic evaluation of low potential biomass gasifier coupled with a burner of the produced gas for generation of heat; Avaliacao energetica de um gaseificador de biomassa de baixa potencia, associado a um combustor do gas produzido, para geracao de calor

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Samuel [Universidade de Brasilia (FAV/UNB), DF (Brazil). Fac. de Agronomia e Medicina Veterinaria], email: samuelmartin@unb.nr; Silva, Jadir Nogueira [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola; Machado, Cassio Silva; Zanatta, Fabio Luis; Galvarro, Svetlana F.S. [Universidade Federal de Vicosa (UFV), MG (Brazil)

    2011-07-01

    In the search of alternatives for sustainable socio-economic development, this study had the objective of evaluating the energetic performance of a concurrent flow biomass gasifier associated with a burner for the gas produced which was of low potential for air heating using a renewable energy source (substituting non-renewable). In this system 4 tests were performed using eucalyptus chips (tests 1 and 2) and logs (tests 3 and 4) as fuel, for the two fan motor frequencies of 60 and 50 hertz. Temperature in the combustion chamber was monitored, along with fuel consumption and other variables. In the tests, the average exhaust air temperature was maintained between 92.7 and 100.4 deg C, and the reduction in the motor frequency from 60 to 50 Hz caused an increase in the duration of the tests. The system presented the best energetic performance when utilizing a frequency of 60 Hz for both fuel types. However, the results of energy efficiency varied very little when comparing tests performed at the same fan frequency. Thus, the gasification process was little affected by variation in the physical characteristics of the tested fuels, and it was recommended that the equipment operate with a frequency of 60 Hz. (author)

  16. Discussion on DRB-XLC Burner Low Nitrogen Adjustment in B & W Boiler%巴威锅炉 DRB-XCL 型燃烧器低氮调整探讨

    Institute of Scientific and Technical Information of China (English)

    汪国庆

    2014-01-01

    NOx是大气污染的主要污染源之一,人为活动排放的NOx ,大部分来自化石燃料的燃烧过程,为此国家出台了针对火电厂大中型机组新阶段100mg/Nm3以下的NOx 排放指标强制性要求,火电厂各种低氮燃烧技术逐渐被重视起来,控制NOx 排放的措施受到日益关注。本文针对我厂锅炉DRB-XCL型燃烧器低氮调整方式进行探讨,总结NO x 排放的影响因素和实际控制方案。%NOx is one of the main sources of atmospheric pollution , mostly from the burning of fossil fuels , the state promulgated the requirements on the new stage of thermal power plant NO x mandatory emissions targets .People pay more and more attention to NO x emission control measures in power plant .This paper discusses the adjustment method for DRB-XCL type burner of low nitrogen , the adjustment factor of influ-ence factors on NO x emission and the actual control scheme .

  17. The effect of Cr, Co, Al, Mo and Ta on a series of cast Ni-base superalloys on the stability of an aluminide coating during cyclic oxidation in Mach 0.3 burner rig

    Science.gov (United States)

    Zaplatynsky, I.; Barrett, C. A.

    1986-01-01

    The influence of varying the content of Co, Cr, Mo, Ta, and Al in a series of cast Ni-based gamma/gamma'superalloys on the behavior of aluminide coatings was studied in burner rig cyclic oxidation tests at 1100 C. The alloys had nominally fixed levels of Ti, W, Cb, Zr, C, and B. The alloy compositions were based on a full 2(sup 5)-fractional statistical design supplemented by 10 star point alloys and a center point alloy. This full central composite design of 43 alloys plus two additional alloys with extreme Al levels allowed a complete second degree estimating equation to be derived from the 5-compositional variables. The weight change/time data for the coated samples fitted well to the paralinear oxidation model and enabled a modified oxidation attack parameter, K'(sub a) to be derived to rank the alloys and log K' (sub a ) to be used as the dependent variable in the estimating equation to determine the oxidation resistance of the coating as a function of the underlying alloy content. The most protective aluminide coatings are associated with the highest possible base ally contents of CR and Al and at a 4 percent Ta level. The Mo and Co effects interact but at fixed levels of 0, 5, or 10% Co. A 4% Mo level is optimum.

  18. 空气单蓄热烧嘴燃烧过程的数值模拟与设计参数优化%Numerical Simulation and Parameters Optimization of Combustion Process of Air Single-Regenerative Burner

    Institute of Scientific and Technical Information of China (English)

    肖丹; 刘鸿勋; 杨涛

    2012-01-01

    建立了空气单蓄热烧嘴的物理模型和数学模型,采用CFD软件对蓄热式烧嘴的燃烧过程进行了三维数值模拟.研究表明:蓄热式烧嘴的火焰行程方向、火焰形态与空气和煤气入射的配合角度密切相关;高温空气的入射角度对火焰行程的方向影响较煤气更大,并对烟道排烟量也有一定影响.通过实验研究对比验证了模拟的可靠性.%A mathematical model was developed for the air single-regenerative burner, and the 3D numerical simulation was implemented with CFD software. The result shows that the flame direction, shape are related with air-inlet and fuel-inlet direction; the air-inlet direction has much more effect on them than gas-inlet, and the gas discharged by chimney is influenced by it as well. It was confirmed to be consistent with the experiment.

  19. Description d'un nouveau brûleur compact. Fonctionnement en régime de gaz prémélangés Description of a New Compact Premixed Gas Burner

    Directory of Open Access Journals (Sweden)

    Minetti R.

    2006-11-01

    Full Text Available On décrit un nouveau brûleur compact à gaz, de haut rendement et d'une puissance variable de 1 à 5 kW. La source de chaleur est une flamme plate d'un prémélange stoechiométrique de gaz naturel et d'air stabilisé sur une grille d'une surface de 100 cm2. Plusieurs grilles en acier inoxydable sont comparées. Elles diffèrent par leur épaisseur, le nombre et la dimension des trous. Un échangeur de chaleur en laiton à circulation d'eau peut être approché jusqu'à 7 mm de la surface du brûleur. La température des gaz frais, le débit et la position de l'échangeur ont été modifiés et les conditions optimales de fonctionnement sont décrites. Les températures à travers les gaz frais, la flamme, les gaz brûlés et les fumées, ont été mesurées. Un modèle simple des échanges de chaleurs est présenté. Il permet une meilleure compréhension des processus de transfert et facilite le choix des conditions opératoires. Dans les meilleures conditions, 93 % du contenu thermique du mélange gazeux est transféré à l'échangeur. Some general characteristics of a compact and efficient gas burner are described (1-5 kW. The heat source is a premixed flat flame stabilized on a 100 cm2 grid fed by a stoechiometric mixture of air and natural gas. Various types of stainless steel grids have been investigated. They differ according to their thickness and to the number and size of the holes. A circulating water heat exchanger made of brass can be approached to the flame as close as 7 mm above the burner surface. The temperature of the inlet gas mixture, the flow rate, and the position of the heat exchanger have been varied. The best working conditions are given as well as the temperature through the fresh gaseous mixture, the temperature profiles of the flame and the temperature of the fumes. From heat transfer calculations a simple model is presented. It gives better insight into the heat transfer processes and facilitates a judicious

  20. 300 MW机组锅炉低NOx 燃烧器改造试验研究%Experimental Investigation on Low NOX Burner Transformation of 300 MW Boiler

    Institute of Scientific and Technical Information of China (English)

    关风一; 徐有宁; 张骞

    2014-01-01

    A new kind of low NOx HBC burner was used for the modification of 300 MW lean coal boiler. 4 layer burning wind vents were installed above the primary combustion zone,and three-dimensional separation technology that is fuel horizontal separation coupling with over-fire air vertical separation was adopted to reduce NOx emissions. The transformation result showed that the nitrogen oxide emission has decreased significantly,and concentration de-cline is about 40% ~50%. NOx decrease is much more obvious when operating at the pour tower air distribution mode and the thermal efficiency of boiler also increases slightly.%采用新一代水平煤粉浓淡燃烧器对300 MW机组贫煤锅炉低进行改造,在主燃区上方安装4层燃尽风喷口,采用燃料水平分级和燃尽风空气垂直分级耦合而成的立体分级技术降低NOx 的排放量。结果表明,氮氧化物的排放量有了明显的减少,浓度降幅在40%~50%;当采取倒塔配风方式运行时,降低氮氧化物效果最为明显,且锅炉的热效率也略有提高。