WorldWideScience

Sample records for burners

  1. Multifuel burner

    Energy Technology Data Exchange (ETDEWEB)

    Raybould, J.D.

    1982-04-28

    A design is proposed for turbulent burner (B) for simultaneous burning of powder, liquid and/or gaseous fuel (F). The liquid F is sprayed with the help of a rotation sprayer arranged on the axis of the burner device. The gas can be supplied through the opening made in the dish-shaped bottom encompassing the central part of the B. The powder F (aeromixture) enters the combustion zone through the channels with vortex blades arranged on the periphery of the bottom of the B. Through the annular channel arranged around the rotation sprayer, primary air is supplied, and through the channels arranged on the periphery of the B, secondary air. The percentage of solid F during operation of the B can be 75-90%.

  2. Performance evaluation of biogas burners

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, A.; Tiwari, G.N.; Srivastava, V.K.; Yadav, Y.P. (Indian Inst. of Tech., New Delhi (India). Centre of Energy Studies)

    1991-01-01

    The results of testing some biogas burners of various brands are presented. A wide variation is found in their performance under similar conditions of testing. Parametric investigations have also been carried out on a typical biogas burner. These investigations reveal that the burner efficiency is a strong function of biogas flow pressure, pan-size and its position over the burner head. (author).

  3. Improved burner without pump

    Energy Technology Data Exchange (ETDEWEB)

    Graat, H.W.; Remie, H.T.; Verhagen, A.M.

    1980-10-02

    The burner described in main patent 2828319 is operated with fluid pulverised fuel and air in a nearly stochiometric ratio. In order to achieve correct ignition with this composition, it is proposed to insert a heatable body, preferably a wire spiral or ignition spiral in the area of the pulverising and mixing chamber.

  4. Dark Matter Burners

    Energy Technology Data Exchange (ETDEWEB)

    Moskalenko, Igor V.; /Stanford U., HEPL; Wai, Lawrence L.; /SLAC

    2007-02-28

    We show that a star orbiting close enough to an adiabatically grown supermassive black hole (SMBH) can capture weakly interacting massive particles (WIMPs) at an extremely high rate. The stellar luminosity due to annihilation of captured WIMPs in the stellar core may be comparable to or even exceed the luminosity of the star due to thermonuclear burning. The model thus predicts the existence of unusual stars, essentially WIMP burners, in the vicinity of a SMBH. We find that the most efficient WIMP burners are stars with degenerate electron cores, e.g. white dwarfs (WDs); such WDs may have a very high surface temperature. If found, such stars would provide evidence for the existence of particle dark matter and can possibly be used to establish its density profile. On the other hand, the lack of such unusual stars may provide constraints on the WIMP density near the SMBH, as well as the WIMP-nucleus scattering and pair annihilation cross-sections.

  5. Waste burner overfire draft system

    Energy Technology Data Exchange (ETDEWEB)

    Kahlert, G.; Pommer, L.; Davis, J.; Whebell, B.

    1977-11-22

    An overfire draft system for a waste burner is disclosed. Such system comprises air vents arranged circumferentially around the base of the burner for communicating the interior of the burner to the atmosphere and a draft modulated damper plate located in each air vent for automatically regulating the volume of overfire air delivered to the interior of the burner. Each draft modulated damper plate is provided with a lower lip which is deflected by a predetermined angle with respect to the plate to create an aerodynamic lift effect with large opening moment to assist the damper plate in its response under low air velocity conditions, and an oppositely deflected upper lip with proportionately less bent surface to avoid flutter or hunting of the damper as it approaches the maximum open position and to provide added dynamic opening force. The overfire draft system is also provided with ducts connected to the air vents and oriented so as to direct air tangentially around the base of the burner and toward the lower inside wall of the burner so as to minimize the disturbance of the inside air. The waste burner may also be provided with draft modulated or forced air vents arranged circumferentially at mid-elevation around the burner and duct means connected to such vents and directed at a small angle with the radius of the burner so as to cause turbulence in the flame zone and reduce the vertical velocity of gases above the fire, thus reducing emission of particulate materials.

  6. Refractoriless liquid fuel burner

    Energy Technology Data Exchange (ETDEWEB)

    Musil, J.E.

    1986-07-15

    A liquid fuel burner head is described which consists of: A. a generally annular burner head housing spacedly enveloping a generally cylindrical primary air assembly, the head and assembly each having corresponding forward and rearward ends, (a) the primary air assembly having a plurality of internal primary air supply passage means extending in a generally forwardly direction in the assembly and emerging through annularly disposed primary air port means at the forward end of the primary air assembly, (b) means effective to produce a swirl of primary air in one direction about the axis of the primary air assembly as the air emerges from the primary air port means, (c) means associated with the primary air port means for adjusting the location of flame origin forward of and relative to the primary air port means, (d) the primary air assembly including a liquid fuel supply passage and a nozzle, the nozzle being centrally disposed at the forward end of the primary air assembly and encompassed by the primary air port means, the liquid fuel nozzle being effective to discharge a substantially fan-like spray of liquid fuel just forward of and across the primary air port means, (e) the primary air assembly and the nozzle together being axially movable relative to the housing between forwardmost and rearwardmost positions respectively responsive to change in burner firing rate between minimum and maximum; B. secondary air supply passage means disposed in the space between the housing and the primary air assembly; C. means rearwardly of the secondary air directional means and port means effective to meter the amount of secondary air supplied air port means from a lesser quantity when the primary air assembly and nozzle are in their forwardmost position to a greater quantity when the primary air assembly and nozzle are in their rearwardmost position.

  7. Flame monitoring enhances burner management

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, T.; Bailey, R.; Fuller, T.; Daw, S.; Finney, C.; Stallings, J. [Babcock & Wilcox Research Center (USA)

    2003-02-01

    A new burner monitoring and diagnostic system called Flame Doctor offers users a more precise and discriminating understanding of burner conditions. Alpha testing on Unit 4 at AmerenUE's Meramec power plant in St. Louis, MO, USA and Beta testing is underway at plants owned by Dynegy and Allegheny Energy. 6 refs., 3 figs.

  8. A coal dust burner

    Energy Technology Data Exchange (ETDEWEB)

    Vakhrshev, B.M.; Khasnullin, I.G.; Krauze, Ye.G.; Ushakov, Yu.A.; Zinovyev, V.G.

    1982-01-01

    The burner for combustion of coal dust fuel, primarily, in rotating furnaces, contains coaxially disposed pipes, a branch pipe for feeding in the air mixture and a rotating mechanism. The first two pipes are switched in to an air source. The third pipe on the input end has an oblique section and the pipe may be rotated around an axis by a mechanism. The first pipe has ports and it may be moved in an axial direction. By installing the third pipe in the first and second positions, it is possible to direct the dust coming from the branch pipe along the central (the larger part of the dust) or the central pipe, respectively, which makes it possible to regulate the configuration of the torch and its temperature. Hot air is sucked from the furnace through the ports in the perforated first pipe to the mouth of the burner, which makes it possible to intensify combustion. By moving the fifitpipe to the right it is possible to overlap the ports with the projections and to rule out suction of the air. The possibility of regulating combustion in wide ranges makes it possible to reduce the expenditure of fuel by 2 to 3 percent.

  9. Radial lean direct injection burner

    Science.gov (United States)

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  10. Catalyzed Ceramic Burner Material

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant

  11. Burner ignition system

    Science.gov (United States)

    Carignan, Forest J.

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  12. Ecothal burner development; Ecothal braennarutveckling

    Energy Technology Data Exchange (ETDEWEB)

    Lewin, Thomas [KANTHAL AB, Hallstahammar (Sweden)

    2004-08-01

    A SER burner system with catalytic cleaning have been optimised for an outer tube OD 100-115 mm. The aim has been to develop a burner with an emission of nitrogen oxides below 50 ppm and an efficiency higher than 80%. An optimised burner system have been realised but will not be stable enough for commercialisation. In order to fullfill the requirements it have to be regulated with closed loop oxygen sensor system regulating the air/gas supply (Lambda-value). Practically it is possible to reach 200-300 ppm nitrogen oxide with an efficiency around 70-80%. Following work have to focus on how to improve the stability considering geometrical changes when in operation but also towards accomodation of production tolerances and fluctuations in gas supply systems.

  13. Optimization of burners in oxygen-gas fired glass furnace

    NARCIS (Netherlands)

    Kersbergen, M.J. van; Beerkens, R.G.C.; Sarmiento-Darkin, W.; Kobayashi, H.

    2012-01-01

    The energy efficiency performance, production stability and emissions of oxygen-fired glass furnaces are influenced by the type of burner, burner nozzle sizes, burner positions, burner settings, oxygen-gas ratios and the fuel distribution among all the burners. These parameters have been optimized f

  14. 14 CFR 31.47 - Burners.

    Science.gov (United States)

    2010-01-01

    ... emergency operation. (d) The burner system (including the burner unit, controls, fuel lines, fuel cells...) Five hours at the maximum fuel pressure for which approval is sought, with a burn time for each one... intermediate fuel pressure, with a burn time for each one minute cycle of three to ten seconds. An...

  15. Computational fluid dynamics in oil burner design

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A. [Brookhaven National Labs., Upton, NY (United States)

    1997-09-01

    In Computational Fluid Dynamics, the differential equations which describe flow, heat transfer, and mass transfer are approximately solved using a very laborious numerical procedure. Flows of practical interest to burner designs are always turbulent, adding to the complexity of requiring a turbulence model. This paper presents a model for burner design.

  16. Burners

    Science.gov (United States)

    ... Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans Nutrients and Nutritional Info Sugar and Sugar Substitutes Exercise and Fitness Exercise Basics Sports Safety Injury Rehabilitation Emotional Well- ...

  17. DESIGN AND DEVELOPMENT OF MILD COMBUSTION BURNER

    Directory of Open Access Journals (Sweden)

    M.M. Noor

    2013-12-01

    Full Text Available This paper discusses the design and development of the Moderate and Intense Low oxygen Dilution (MILD combustion burner using Computational Fluid Dynamics (CFD simulations. The CFD commercial package was used to simulate preliminary designs for the burner before the final design was sent to the workshop for fabrication. The burner is required to be a non-premixed and open burner. To capture and use the exhaust gas, the burner was enclosed within a large circular shaped wall with an opening at the top. An external EGR pipe was used to transport the exhaust gas which was mixed with the fresh oxidant. To control the EGR and exhaust flow, butterfly valves were installed at the top opening as a damper to close the exhaust gas flow at a certain ratio for EGR and exhaust out to the atmosphere. High temperature fused silica glass windows were installed to view and capture images of the flame and analyze the flame propagation. The burner simulation shows that MILD combustion was achieved for the oxygen mole fraction of 3-13%. The final design of the burner was fabricated and ready for the experimental validation.

  18. Burners and combustion apparatus for carbon nanomaterial production

    Science.gov (United States)

    Alford, J. Michael; Diener, Michael D.; Nabity, James; Karpuk, Michael

    2007-10-09

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  19. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  20. IMPROVEMENT OF OPERATIONAL CHARACTERISTICS OF ELECTRIC COOKER BURNERS

    Directory of Open Access Journals (Sweden)

    I. M. Kirick

    2008-01-01

    Full Text Available On the basis of a complex theoretical and experimental investigations a principally new design of small inertial burner for electric cookers has been developed that significantly out-perform burners of conventional types. 

  1. Fuel-flexible burner apparatus and method for fired heaters

    Energy Technology Data Exchange (ETDEWEB)

    Zink, Darton J.; Isaacs, Rex K.; Jamaluddin, A. S. (Jamal); Benson, Charles E.; Pellizzari, Roberto O.; Little, Cody L.; Marty, Seth A.; Imel, K. Parker; Barnes, Jonathon E.; Parker, Chris S.

    2017-03-14

    A burner apparatus for a fired heating system and a method of burner operation. The burner provides stable operation when burning gas fuels having heating values ranging from low to high and accommodates sudden wide changes in the Wobbe value of the fuel delivered to the burner. The burner apparatus includes a plurality of exterior fuel ejectors and has an exterior notch which extends around the burner wall for receiving and combusting a portion of the gas fuel. At least a portion of the hot combustion product gas produced in the exterior notch is delivered through channels formed in the burner wall to the combustion area at the forward end of the burner. As the Wobbe value of the gas fuel decreases, one or more outer series of addition ejectors can be automatically activated as needed to maintain the amount of heat output desired.

  2. Arrangement of burner with sheath tube

    Energy Technology Data Exchange (ETDEWEB)

    Graat, J.W.; Remie, H.T.; Verhagen, A.M.

    1980-10-02

    This is concerned with an addition to the burner described in patent 28 28 319 in which fluid pulverised fuel and air is burnt in a chamber. The additional patent concerns a sheath tube, which surrounds the chamber and conducts the burnt gases on. The sheath tube has openings for better guidance of the thermal flow.

  3. Characterizing Particle Combustion in a Rijke Burner.

    Science.gov (United States)

    1987-05-29

    Rijke Burner. rp = NU In( I + BT) PgpCpgdp 3.2 Shrinking Core Model -, Levenspiel (1972) outlines the shrinking core model. In this model the particle...M. E., Numerical Methods and Modeling for Chemical Engineers. John Wiley and Sons (1984) Levenspiel , 0., Chemical Reaction Engineering Second

  4. FLARE FLAME INSTABILITY AND BURNER COMBUSTION CONTROL

    OpenAIRE

    БОНДАРЕНКО А.В.; В. Э. Волков; Максимов, М. В.

    2014-01-01

    Research of the flare instability development and the laminar-to-turbulent transition for the flares was executed. It was proved that the effects of viscosity and compressibility have the stabilizing influence on the gas flame. The study of the individual flare stability makes the theoretical basis of the fuel burning technology in combustion chambers and for the burner combustion control.

  5. Market assessment for the fan atomized oil burner

    Energy Technology Data Exchange (ETDEWEB)

    Westphalen, D. [A.D. Little, Inc., Cambridge, MA (United States)

    1996-07-01

    The market potential for the fan atomized burner (FAB) in water and space heating applications was examined. The major findings of the study are as follows. (1). The FAB`s low-input capability allows development of oil-fired room heaters and wall furnaces, a new market area for oil heat. (2). Among conventional oil-fired products, furnaces will benefit most from the burner`s low input capability due to (1) their quick delivery of heat and (2) their more prevalent use in warmer climates and smaller homes. (3). The greatest potential for increased product sales or oil sales exists in the use of the burner with new products (i.e., room heaters). Sales of boilers and direct-fired water heaters are not likely to increase with the use of the burner. (4). Acceptance of the burner will be dependent on proof of reliability. Proof of better reliability than conventional burners would accelerate acceptance.

  6. Refinery burner simulation design architecture summary.

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  7. Arrangement of burners for nearly stochiometric combustion

    Energy Technology Data Exchange (ETDEWEB)

    Graat, J.W.; Remie, H.T.; Verhagen, A.M.

    1980-10-02

    This is concerned with an improvement of the burners described in patent 28 28 319, where a fluid fuel which can be ground into powder and air are taken together. In order to produce correct ignition with nearly stochiometric composition of the mixture, it is proposed that a heatable body, preferably a wire spiral or ignition spiral should be used. Various variants of the shape of the heating body are discussed.

  8. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  9. Field testing the prototype BNL fan-atomized oil burner

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.; Celebi, Y. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    BNL has developed a new oil burner design referred to as the Fan Atomized burner System. The primary objective of the field study was to evaluate and demonstrate the reliable operation of the Fan Atomized Burner. The secondary objective was to establish and validate the ability of a low firing rate burner (0.3-0.4 gph) to fully satisfy the heating and domestic hot water load demands of an average household in a climate zone with over 5,000 heating-degree-days. The field activity was also used to evaluate the practicality of side-wall venting with the Fan Atomized Burner with a low stack temperature (300F) and illustrate the potential for very high efficiency with an integrated heating system approach based on the Fan Atomized Burner.

  10. Furnaces with multiple flameless combustion burners

    NARCIS (Netherlands)

    Danon, B.

    2011-01-01

    In this thesis three different combustion systems, equipped with either a single or multiple flameless combustion burner(s), are discussed. All these setups were investigated both experimentally and numerically, i.e., using Computational Fluid Dynamics (CFD) simulations. Flameless combustion is a com

  11. Efficient industrial burner control of a flexible burner management system; Effiziente industrielle Brennertechnik durch Einsatz flexibler Feuerungsautomaten

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Ulrich; Saenger, Peter [Siemens AG, Rastatt (Germany)

    2012-02-15

    Compactness and flexibility of a burner control system is a very important issue. With a few types a wide range in different industrial applications should be covered. This paper presents different applications of a new burner control system: heating of cooling lines in glass industry, steam generation and air heating for a pistachio roastery and in grain dryers. (orig.)

  12. Fan Atomized Burner design advances & commercial development progress

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, B. [Heat-Wise, Inc., Ridge, NY (United States); Butcher, T.A. [Brookhaven National Lab., Upton, NY (United States)

    1996-07-01

    As a part of the Oil Heat Research and Development program, sponsored by the US Department of Energy, Brookhaven National Laboratory (BNL) has an on-going interest in advanced combustion technologies. This interest is aimed at: improving the initial efficiency of heating equipment, reducing long term fouling and efficiency degradation, reducing air pollutant emissions, and providing practical low-firing rate technologies which may lead to new, high efficiency oil-fired appliances. The Fan-Atomized Burner (FAB) technology is being developed at BNL as part of this general goal. The Fan-Atomized Burner uses a low pressure, air atomizing nozzle in place of the high pressure nozzle used in conventional burners. Because it is air-atomized the burner can operate at low firing rates without the small passages and reliability concerns of low input pressure nozzles. Because it uses a low pressure nozzle the burner can use a fan in place of the small compressor used in other air-atomized burner designs. High initial efficiency of heating equipment is achieved because the burner can operate at very low excess air levels. These low excess air levels also reduce the formation of sulfuric acid in flames. Sulfuric acid is responsible for scaling and fouling of heat exchanger surfaces.

  13. Intensification of heat transfer by changing the burner nozzle

    Science.gov (United States)

    DzurÅák, Róbert; Kizek, Ján; Jablonský, Gustáv

    2016-06-01

    Thermal aggregates are using burner which burns combustible mixture with an oxidizing agent, by adjustment of the burner nozzle we can achieve better conditions of combustion to intensify heat transfer at furnace space. The aim of the present paper was using a computer program Ansys Workbench to create a computer simulation which analyzes the impact of the nozzle on the shape of a flame thereby intensifies heat transfer in rotary drum furnaces and radiation heat transfer from the flue gas into the furnace space. Article contains analysis of the geometry of the burner for achieving temperature field in a rotary drum furnace using oxy-combustion and the practical results of computer simulations

  14. Firing in fluid beds and burners

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.; Lans, R. van der; Storm Pedersen, L.; Philbert Nielsen, H.; Aslaug Hansen, L.; Lin, W.; Johnsson, J.E.; Dam-Johansen, K.

    1998-02-01

    An investigation of the effect of co-firing straw and pulverized coal was performed. Based on experiments from pilot-scale and full-scale it was concluded that a higher fraction of straw in the fuel feedstock mixture results in lower NO and SO{sub 2} emissions. The lower NO emission was mainly due to the higher volatile content of the straw, which leads to lower stoichiometry in the gas phase and in subsequent suppression of NO{sub x} formation. This conclusion is consistent with experimental and modeling results for pure coal combustion. The effect of coal quality on NO emissions has been investigated with three coals of different characteristics in three furnaces: in the Funen power station, unit 7 (FVO7), the Midtkraft Studstrup power station, unit 4 (MKS4), and the Mitsui Babcock Energy Ltd (MBEL) test-rig. The MBEL test-rig was able to reproduce qualitatively the emissions from the MKS4 plant, and quantitatively the emissions from the FVO7 plant. The better agreement between the MBEL test-rig and FVO7 is presumed to be related to the existence of a large primary zone with a relatively low stoichiometry, diminishing the influence of near burner air and fuel mixing rate on the NO emissions. An engineering model has been developed for the prediction of NO emissions and burnout from pulverized fuel combustion in swirl burners. A simplified model for reduction of N{sub 2}O in CFBC has been developed, and simulation results are in good agreement with experimental data from a 12 MW{sub th} CFB-boiler. (EG) EFP-94. 108 refs.

  15. Study of a ceramic burner for shaftless stoves

    Institute of Scientific and Technical Information of China (English)

    Fang-qin Dai; Suo-yi Huang; Shao-hua Li; Ke Liu

    2009-01-01

    A multi-burner-port annular flameless ceramic burner (MAFCB) of the shaftless stove for blast furnaces was designed.The characteristics of pressure drop, homogeneousness of the flows at burner ports, and distribution of the flows in the chambers and joint were studied by cold model experiments.This type of ceramic burner was successfully applied in 6# blast furnace at Liuzhou Iron & Steel Co.Ltd.(LISC) and this practice proved that it could be used in the hot blast stove and other stoves with a higher effi-ciency and a higher steadiness of hot blast temperature at 1200℃.With the combustion of blast furnace gas alone, the thermal effi- ciency was up to 78.95%, saving energy remarkably.

  16. Assessment of PWR plutonium burners for nuclear energy centers

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, A J; Shapiro, N L

    1976-06-01

    The purpose of the study was to explore the performance and safety characteristics of PWR plutonium burners, to identify modifications to current PWR designs to enhance plutonium utilization, to study the problems of deploying plutonium burners at Nuclear Energy Centers, and to assess current industrial capability of the design and licensing of such reactors. A plutonium burner is defined to be a reactor which utilizes plutonium as the sole fissile addition to the natural or depleted uranium which comprises the greater part of the fuel mass. The results of the study and the design analyses performed during the development of C-E's System 80 plant indicate that the use of suitably designed plutonium burners at Nuclear Energy Centers is technically feasible.

  17. Sensors and methods for control of modulating burners

    Energy Technology Data Exchange (ETDEWEB)

    Michel, J.-B.; Neumann, V.; Theurillat, P. [Centre Suisse d' Electronique et de Microtechnique, Neuchatel (Switzerland); Abu-Sharekh, Y. [Erlangen-Nuremberg Univ. (Germany). LSTM

    2003-07-01

    In recent years, many interesting developments have taken place for an improved control of domestic burners, with an emphasis on modulating gas and oil burners. These relate to new types of sensors for the control of excess air and to new methods and tools for the implantation of control systems on micro-controllers. These developments are reviewed and the application to the Bioflam domestic boiler is described. (orig.)

  18. Design and characterization of a linear Hencken-type burner.

    Science.gov (United States)

    Campbell, M F; Bohlin, G A; Schrader, P E; Bambha, R P; Kliewer, C J; Johansson, K O; Michelsen, H A

    2016-11-01

    We have designed and constructed a Hencken-type burner that produces a 38-mm-long linear laminar partially premixed co-flow diffusion flame. This burner was designed to produce a linear flame for studies of soot chemistry, combining the benefit of the conventional Hencken burner's laminar flames with the advantage of the slot burner's geometry for optical measurements requiring a long interaction distance. It is suitable for measurements using optical imaging diagnostics, line-of-sight optical techniques, or off-axis optical-scattering methods requiring either a long or short path length through the flame. This paper presents details of the design and operation of this new burner. We also provide characterization information for flames produced by this burner, including relative flow-field velocities obtained using hot-wire anemometry, temperatures along the centerline extracted using direct one-dimensional coherent Raman imaging, soot volume fractions along the centerline obtained using laser-induced incandescence and laser extinction, and transmission electron microscopy images of soot thermophoretically sampled from the flame.

  19. Design and characterization of a linear Hencken-type burner

    Science.gov (United States)

    Campbell, M. F.; Bohlin, G. A.; Schrader, P. E.; Bambha, R. P.; Kliewer, C. J.; Johansson, K. O.; Michelsen, H. A.

    2016-11-01

    We have designed and constructed a Hencken-type burner that produces a 38-mm-long linear laminar partially premixed co-flow diffusion flame. This burner was designed to produce a linear flame for studies of soot chemistry, combining the benefit of the conventional Hencken burner's laminar flames with the advantage of the slot burner's geometry for optical measurements requiring a long interaction distance. It is suitable for measurements using optical imaging diagnostics, line-of-sight optical techniques, or off-axis optical-scattering methods requiring either a long or short path length through the flame. This paper presents details of the design and operation of this new burner. We also provide characterization information for flames produced by this burner, including relative flow-field velocities obtained using hot-wire anemometry, temperatures along the centerline extracted using direct one-dimensional coherent Raman imaging, soot volume fractions along the centerline obtained using laser-induced incandescence and laser extinction, and transmission electron microscopy images of soot thermophoretically sampled from the flame.

  20. Advanced burner test reactor preconceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  1. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  2. Automatic burner adjustment in a singeing oven

    Energy Technology Data Exchange (ETDEWEB)

    Aabo, P.

    1984-07-01

    The expected energy savings of 10-15% of the actual fuel consumption in the singeing oven was reduced because of the change in the design of the singeing oven itself. The socalled optimized singeing oven hereafter includes: ceramic fibres, combustion air from the ceiling, fireproof oven bottom, automatic adjustment of air and fuel, rapid opening and closing, change over to pilot flame during stops and the slaughter line, and sealing between the oven's two parts and bottom. This optimization of the design of the singeing oven reduces the oil consumption from 0.8 litre to 0.45 litre fuel per pig carcass. The described optimization of the oven is partly carried out during this project. Thus the starting point for further reduction of the energy consumption is changed rather much. Neverthless a calculation of prospective profits proves that it is still profitable to invest in equipment for adjusting the burner in the singeing oven. It has been proved that the degree of singeing can be controlled by the parameters singeing period and oven temperature. A control device for controlling of the oil consumption on the basis of the temperature of the waste gas has succesfully been installed and it has been proved that the pay back period for this control device is approximately 2 years.

  3. Flashback Analysis in Tangential Swirl Burners

    Directory of Open Access Journals (Sweden)

    Valera-Medina A.

    2011-10-01

    Full Text Available Premixed lean combustion is widely used in Combustion Processes due to the benefits of good flame stability and blowoff limits coupled with low NOx emissions. However, the use of novel fuels and complex flows have increased the concern about flashback, especially for the use of syngas and highly hydrogen enriched blends. Thus, this paper describes a combined practical and numerical approach to study the phenomenon in order to reduce the effect of flashback in a pilot scale 100 kW tangential swirl burner. Natural gas is used to establish the baseline results and effects of different parameters changes. The flashback phenomenon is studied with the use of high speed photography. The use of a central fuel injector demonstrates substantial benefits in terms of flashback resistance, eliminating coherent structures that may appear in the flow channels. The critical boundary velocity gradient is used for characterization, both via the original Lewis and von Elbe formula and via analysis using CFD and investigation of boundary layer conditions in the flame front.

  4. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-09-04

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

  5. Advanced Burner Reactor Preliminary NEPA Data Study.

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, L. L.; Cahalan, J. E.; Deitrich, L. W.; Fanning, T. H.; Grandy, C.; Kellogg, R.; Kim, T. K.; Yang, W. S.; Nuclear Engineering Division

    2007-10-15

    The Global Nuclear Energy Partnership (GNEP) is a new nuclear fuel cycle paradigm with the goals of expanding the use of nuclear power both domestically and internationally, addressing nuclear waste management concerns, and promoting nonproliferation. A key aspect of this program is fast reactor transmutation, in which transuranics recovered from light water reactor spent fuel are to be recycled to create fast reactor transmutation fuels. The benefits of these fuels are to be demonstrated in an Advanced Burner Reactor (ABR), which will provide a representative environment for recycle fuel testing, safety testing, and modern fast reactor design and safeguard features. Because the GNEP programs will require facilities which may have an impact upon the environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), preparation of a Programmatic Environmental Impact Statement (PEIS) for GNEP is being undertaken by Tetra Tech, Inc. The PEIS will include a section on the ABR. In support of the PEIS, the Nuclear Engineering Division of Argonne National Laboratory has been asked to provide a description of the ABR alternative, including graphics, plus estimates of construction and operations data for an ABR plant. The compilation of this information is presented in the remainder of this report. Currently, DOE has started the process of engaging industry on the design of an Advanced Burner Reactor. Therefore, there is no specific, current, vendor-produced ABR design that could be used for this PEIS datacall package. In addition, candidate sites for the ABR vary widely as to available water, geography, etc. Therefore, ANL has based its estimates for construction and operations data largely on generalization of available information from existing plants and from the environmental report assembled for the Clinch River Breeder Reactor Plant (CRBRP) design [CRBRP, 1977]. The CRBRP environmental report was chosen as a resource because it thoroughly

  6. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G.Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

    2001-06-01

    An initial testing campaign was carried out during the summer of 2000 to evaluate the impact of multiburner firing on NOx emissions. Extensive data had been collected during the Fall of 1999 and Spring of 2000 using a single pulverized-coal (PC) burner, and this data collection was funded by a separate Department of Energy program, the Combustion 2000 Low Emission Boiler System (LEBS) project under the direction of DB Riley. This single-burner data was thus available for comparison with NOx emissions obtained while firing three burners at the same overall load and operating conditions. A range of operating conditions were explored that were compatible with single-burner data, and thus the emission trends as a function of air staging, burner swirl and other parameters will be described below. In addition, a number of burner-to-burner operational variations were explored that provided interesing insight on their potential impact on NOx emissions. Some of these variations include: running one burner very fuel rich while running the others fuel lean; varying the swirl of a single burner while holding others constant; increasing the firing rate of a single burner while decreasing the others. In general, the results to date indicated that multiburner firing yielded higher NOx emissions than single burner firing at the same fuel rate and excess air. At very fuel rich burner stoichiometries (SR < 0.75), the difference between multiple and single burners became indistinguishable. This result is consistent with previous single-burner data that showed that at very rich stoichiometries the NOx emissions became independent of burner settings such as air distributions, velocities and burner swirl.

  7. Mathematical Model of Combustion in Blunt Annular Ceramic Burner

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The computer simulation of the combustion process in blast furnace (BF) stove has been studied by using the k-ε-g turbulent diffusion flame model. The combustion process in blunt annular ceramic burner was calculated by using the software. The profiles of gas and air velocity, temperature of the combustion products, concentration of the components, and the shape and length of the flame during combustion have been researched . Compared with the original annular ceramic burner, the new design of the blunt one improves the mixing of the gas and the air significantly, and shortened the length of the flame.

  8. Arrangement of burner without pump with subsequent sheath tube

    Energy Technology Data Exchange (ETDEWEB)

    Graat, J.W.; Remie, H.T.; Verhagen, A.M.

    1980-10-02

    The burner described in main patent 2828319 is operated with fluid pulverised fuel and air. The additional patent concerns a sheath tube, which surrounds the combustion chamber and conducts the hot gases on. Flow guide elements, e.g. a cylindrical guide sleeve, are installed in the sheath tube to improve the guidance of the thermal flow.

  9. The generation of resonant turbulence for a premixed burner

    NARCIS (Netherlands)

    Verbeek, A.A.; Pos, R.C.; Stoffels, G.G.M.; Geurts, B.J.; Meer, van der Th.H.

    2012-01-01

    Is it possible to optimize the turbulent combustion of a low swirl burner by using resonance in turbulence? To that end an active grid is constructed that consists of two perforated disks of which one is rotating, creating a system of pulsating jets, which in the end can be used as a central blockin

  10. [Burner head with high sensitivity in atomic absorption spectroscopy].

    Science.gov (United States)

    Feng, X; Yang, Y

    1998-12-01

    This paper presents a burner head with gas-sample separate entrance and double access, which is used for atomic absorption spectroscopy. According to comparison and detection, the device can improve sensitivity by a factor of 1 to 5. In the meantime it has properties of high stability and resistance to interference.

  11. Gap flow burners in industrial applications; Spaltstrombrenner im industriellen Einsatz

    Energy Technology Data Exchange (ETDEWEB)

    Wuenning, Joachim G. [WS Waermeprozesstechnik GmbH, Renningen (Germany)

    2013-02-15

    Gaseous fuels are usually the most economical and ecological source of energy for heating industrial furnaces. However, it is always possible to further increase efficiency and lower emissions. The introduction of new burner systems requires a close cooperation with furnace makers and operators to ensure success of the new products. (orig.)

  12. A burner for plasma-coal starting of a boiler

    Science.gov (United States)

    Peregudov, V. S.

    2008-04-01

    Advanced schemes of a plasma-coal burner with single-and two-stage chambers for thermochemical preparation of fuel are described. The factors causing it becoming contaminated with slag during oil-free starting of a boiler are considered, and methods for preventing this phenomenon are pointed out.

  13. A burner for plasma-coal starting of a boiler

    Energy Technology Data Exchange (ETDEWEB)

    V.S. Peregudov [Kutateladze Institute of Thermal Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2008-04-15

    Advanced schemes of a plasma-coal burner with single-and two-stage chambers for thermochemical preparation of fuel are described. The factors causing it becoming contaminated with slag during oil-free starting of a boiler are considered, and methods for preventing this phenomenon are pointed out.

  14. Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations

    Science.gov (United States)

    Ne´el, Bastien; Crespo, Gasto´n A.; Perret, Didier; Cherubini, Thomas; Bakker, Eric

    2014-01-01

    A flame emission spectrometer was built in-house for the purpose of introducing this analytical technique to students at the high school level. The aqueous sample is sprayed through a homemade nebulizer into the air inlet of a consumer-grade propane camping burner. The resulting flame is analyzed by a commercial array spectrometer for the visible…

  15. Oxyhydrogen burner for low-temperature flame fusion

    Science.gov (United States)

    Ueltzen, M.; Brüggenkamp, T.; Franke, M.; Altenburg, H.

    1993-04-01

    An oxyhydrogen burner as described in this article enables the growth of crystals by Verneuil's technique at temperatures of about 1000 °C. The powder fed to the crystal passes along a low-temperature pathway through the flame, so that evaporation of volatile components is prevented. Low-temperature flame fusion of superconducting Y-Ba-cuprate is reported.

  16. Study of the Effects of Ambient Conditions Upon the Performance of Fan Powered, Infrared Natural Gas Burners

    Energy Technology Data Exchange (ETDEWEB)

    Clark Atlanta University

    2002-12-02

    The objective of this investigation was to characterize the operation of a fan-powered, infrared burner (IR burner) at various gas compositions and ambient conditions, develop numerical model to simulate the burner performances, and provide design guidelines for appliances containing PIR burners for satisfactory performance.

  17. USE OF GAS BURNERS TYPE "DAVA" OPERATING UNDER VARIABLE LOAD TO PRODUCE HEAT AND HOT WATER

    Directory of Open Access Journals (Sweden)

    Daud V.

    2014-12-01

    Full Text Available The article brings additional information referred to upgraded gas burners type "DAVA", which are characterized by high performance at variable load. Adaptation of burner operation is carried out automatically. There are presented design features that allow increase of the efficiency and the reliability of these burners at variable load, and reducing natural gas consumption. The range of variation of the coefficient of excess air affects the efficiency of the burner. The experimental results of the tests of gas burners of different power had confirmed the economic effect of the upgraded burners at heat production. It is proved that economic effect increases with increasing of burner output and of operation time during the season.

  18. Visualization of flashback in a premixed burner with swirling flow

    Institute of Scientific and Technical Information of China (English)

    Satoshi; TANIMURA; Masaharu; KOMIYAMA; Kenichiro; TAKEISHI; Yuji; IWASAKI; Kiyonobu; NAKAYAMA

    2010-01-01

    In this study,the measurement object is a flame propagating in a premixed burner with swirling flow in order to investigate unsteady flame behavior in a gas turbine premixer.During flashback,the flame propagating upstream was visualized with a high-speed camera.Moreover,we established the technique to measure the instantaneous flow fields of unburned fuel-air mixture in a swirling premixed burner using particle image velocimetry(PIV).As a result,the characteristics of flame behavior propagating upstream were examined.And it was found that a low velocity region existed in the vicinity of the flame tip.The relationship between low velocity region and flame behavior was discussed in detail.

  19. Low Acoustic Impact Burner; Combustore a basso impatto acustico

    Energy Technology Data Exchange (ETDEWEB)

    Bartolini, C.M.; Cesini, G.; Mattei, E.; Salvi, D. [Ancona Univ., Ancona (Italy). Dipt. di Energetica; Sesterzi, M. [Accorroni S.r.l., Osimo, AN (Italy)

    2000-03-01

    The combustion process in some gas burners generates low frequency vibrations which cause sound energy; in order to reducing those acoustic emissions all the releasing sources of the unit have been analysed, choosing to operate directly upon the combustion process. The combustion noise has been reduced of 7.5 dB, with an increase in the number of the burner's releasing sources, keeping constant engaged thermal power. [Italian] Il processo di combustione che avviene in alcuni bruciatori a gas genera pulsazioni a bassa frequenza che liberano energia sonora; allo scopo di ridurre tali emissioni acustiche sono state analizzate tutte le sorgenti emissive del complesso, decidendo di intervenire direttamente sul processo di combustione. Il rumore di combustione e' stato ridotto di 7,5 dB aumentando il numero delle sorgenti emissive del bruciatore, tenendo costante la potenza termica impegnata.

  20. Controversy of the year. Biomedical ethics on the front burner.

    Science.gov (United States)

    2000-12-22

    CONTROVERSY OF THE YEAR: Biomedical Ethics on the Front Burner It was a hot year for debates over research ethics. Controversy erupted in late 1999 after the death of 18-year-old Jesse Gelsinger in a gene-therapy clinical trial at the University of Pennsylvania. Because Penn and one of its clinicians had a financial stake in a gene-therapy company, questions about potential conflicts of interest arose at once.

  1. Effect of cycled combustion ageing on a cordierite burner plate

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Eugenio [Instituto de Ceramica y Vidrio, CSIC, c/ Kelsen 5, Campus de Cantoblanco, 28049 Madrid (Spain); Gancedo, J. Ramon [Instituto de Quimica Fisica ' Rocasolano' , CSIC, c/ Serrano 119, 28006 Madrid (Spain); Gracia, Mercedes, E-mail: rocgracia@iqfr.csic.es [Instituto de Quimica Fisica ' Rocasolano' , CSIC, c/ Serrano 119, 28006 Madrid (Spain)

    2010-11-15

    A combination of {sup 57}Fe-Moessbauer spectroscopy and X-ray Powder Diffraction analysis has been employed to study modifications in chemical and mechanical stability occurring in a cordierite burner aged under combustion conditions which simulate the working of domestic boilers. Moessbauer study shows that Fe is distributed into the structural sites of the cordierite lattice as Fe{sup 2+} and Fe{sup 3+} ions located mostly at octahedral sites. Ferric oxide impurities, mainly hematite, are also present in the starting cordierite material accounting for {approx_equal}40% of the total iron phases. From Moessbauer and X-ray diffraction data it can be deduced that, under the combustion conditions used, new crystalline phases were formed, some of the substitutional Fe{sup 3+} ions existing in the cordierite lattice were reduced to Fe{sup 2+}, and ferric oxides underwent a sintering process which results in hematite with higher particle size. All these findings were detected in the burner zone located in the proximity of the flame and were related to possible chemical reactions which might explain the observed deterioration of the burner material. Research Highlights: {yields}Depth profile analyses used as a probe to understand changes in refractory structure. {yields}All changes take place in the uppermost surface of the burner, close to the flame. {yields}Reduction to Fe{sup 2+} of substitutional Fe{sup 3+} ions and partial cordierite decomposition. {yields}Heating-cooling cycling induces a sintering of the existing iron oxide particles. {yields}Chemical changes can explain the alterations observed in the material microstructure.

  2. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Caner Yurteri

    2001-08-20

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO{sub x} burner geometry's.

  3. The BNL fan-atomized burner system prototype

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Celebi, Y. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    Brookhaven National Laboratory (BNL) has a continuing interest in the development of advanced oil burners which can provide new capabilities not currently available with pressure atomized, retention head burners. Specifically program goals include: the ability to operate at firing rates as low as 0.25 gph; the ability to operate with very low excess air levels for high steady state efficiency and to minimize formation of sulfuric acid and iron sulfate fouling; low emissions of smoke, CO, and NO{sub x} even at very low excess air levels; and the potential for modulation - either staged firing or continuous modulation. In addition any such advanced burner must have production costs which would be sufficiently attractive to allow commercialization. The primary motivation for all work sponsored by the US DOE is, of course, improved efficiency. With existing boiler and furnace models this can be achieved through down-firing and low excess air operation. Also, with low excess air operation fouling and efficiency degradation due to iron-sulfate scale formation are reduced.

  4. Combustion Characteristics of Butane Porous Burner for Thermoelectric Power Generation

    Directory of Open Access Journals (Sweden)

    K. F. Mustafa

    2015-01-01

    Full Text Available The present study explores the utilization of a porous burner for thermoelectric power generation. The porous burner was tested with butane gas using two sets of configurations: single layer porcelain and a stacked-up double layer alumina and porcelain. Six PbSnTe thermoelectric (TE modules with a total area of 54 cm2 were attached to the wall of the burner. Fins were also added to the cold side of the TE modules. Fuel-air equivalence ratio was varied between the blowoff and flashback limit and the corresponding temperature, current-voltage, and emissions were recorded. The stacked-up double layer negatively affected the combustion efficiency at an equivalence ratio of 0.20 to 0.42, but single layer porcelain shows diminishing trend in the equivalence ratio of 0.60 to 0.90. The surface temperature of a stacked-up porous media is considerably higher than the single layer. Carbon monoxide emission is independent for both porous media configurations, but moderate reduction was recorded for single layer porcelain at lean fuel-air equivalence ratio. Nitrogen oxides is insensitive in the lean fuel-air equivalence ratio for both configurations, even though slight reduction was observed in the rich region for single layer porcelain. Power output was found to be highly dependent on the temperature gradient.

  5. Strand Burner Results of AFP-001 Propellant with Inert Coating for Temperature Compensation

    Science.gov (United States)

    2015-10-01

    ARL-MR-0907 ● OCT 2015 US Army Research Laboratory Strand Burner Results of AFP -001 Propellant with Inert Coating for Temperature...Laboratory Strand Burner Results of AFP -001 Propellant with Inert Coating for Temperature Compensation by John J Ritter and Anthony Canami...COVERED (From - To) February 2015 4. TITLE AND SUBTITLE Strand Burner Results of AFP -001 Propellant with Inert Coating for Temperature Compensation

  6. Computational investigations of low-emission burner facilities for char gas burning in a power boiler

    Science.gov (United States)

    Roslyakov, P. V.; Morozov, I. V.; Zaychenko, M. N.; Sidorkin, V. T.

    2016-04-01

    Various variants for the structure of low-emission burner facilities, which are meant for char gas burning in an operating TP-101 boiler of the Estonia power plant, are considered. The planned increase in volumes of shale reprocessing and, correspondingly, a rise in char gas volumes cause the necessity in their cocombustion. In this connection, there was a need to develop a burner facility with a given capacity, which yields effective char gas burning with the fulfillment of reliability and environmental requirements. For this purpose, the burner structure base was based on the staging burning of fuel with the gas recirculation. As a result of the preliminary analysis of possible structure variants, three types of early well-operated burner facilities were chosen: vortex burner with the supply of recirculation gases into the secondary air, vortex burner with the baffle supply of recirculation gases between flows of the primary and secondary air, and burner facility with the vortex pilot burner. Optimum structural characteristics and operation parameters were determined using numerical experiments. These experiments using ANSYS CFX bundled software of computational hydrodynamics were carried out with simulation of mixing, ignition, and burning of char gas. Numerical experiments determined the structural and operation parameters, which gave effective char gas burning and corresponded to required environmental standard on nitrogen oxide emission, for every type of the burner facility. The burner facility for char gas burning with the pilot diffusion burner in the central part was developed and made subject to computation results. Preliminary verification nature tests on the TP-101 boiler showed that the actual content of nitrogen oxides in burner flames of char gas did not exceed a claimed concentration of 150 ppm (200 mg/m3).

  7. Multifuel burners based on the porous burner technology for the application in fuel cell systems; Mehrstofffaehige Brenner auf Basis der Porenbrennertechnik fuer den Einsatz in Brennstoffzellensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Diezinger, S.

    2006-07-01

    The present doctoral thesis describes the development of multifuel burners based on the porous burner technology for the application in hydrocarbon driven fuel cell systems. One objective of such burners is the heating of the fuel cell system to the operating temperature at the cold start. In stationary operation the burner has to postcombust the waste gases from the fuel cell and the gas processing system in order to reduce the pollutant emissions. As the produced heat is required for endothermal processes like the steam reforming the burner has a significant influence on the system's efficiency. The performed investigations are targeting on a gasoline driven PEMFC-System with steam reforming. In such systems the burner has to be capable to combust the system's fuel gasoline at the cold start, a low calorific fuel cell offgas (HU = 6,4 MJ/kg) in stationary operation and a hydrogen rich gas in the case of an emergency shut down. Pre-tests revealed that in state of the art porous burners the flame front of hydrogen/air combustion can only be stabilized at very high excess air ratios. In basic investigations concerning the stabilization of flame fronts in porous media the dominant influence parameters were determined. Based on this findings a new flame trap was developed which increases the operational range with hydrogen rich mixtures significantly. Furthermore the burning velocity at stationary combustion in porous media was investigated. The dependency of the porous burning velocity on the excess air ratio for different hydrocarbons and hydrogen as well as for mixtures of both was determined. The results of these basic investigations were applied for the design of a multifuel burner. In order to achieve an evaporation of the gasoline without the use of additional energy, an internal heat exchanger section for heating the combustion air was integrated into the burner. Additionally different experimental and numerical methods were applied for designing the

  8. Numerical simulation of fluid flow in a reheating furnace with multi-swirling-burners

    Institute of Scientific and Technical Information of China (English)

    Baowei Li; Zengwu Zhao; Yike Li; Wenfei Wu; Daqiang Cang

    2003-01-01

    A general numerical simulating program for three-dimensional (3-D) and time-dependent fluid flow for a reheating furnace with multi-swirling-burners has been developed based upon an arbitrary Lagrangian-Eulerian scheme (ALE) with the finite volume method. The parameters of fluid flow in a reheating furnace with multi-swirling-burners was calculated and the 3-D velocity distributions were obtained. The design of the burners was optimized for forming better swirling flow. The simulation shows that the fluid flow in the reheating furnace with the optimized burners is reasonable.

  9. Mechanisms of suppressing cup-burner flame with water vapor

    Institute of Scientific and Technical Information of China (English)

    CONG BeiHua; LIAO GuangXuan

    2008-01-01

    The mechanisms of suppressing a laminar methane-air co-flow diffusion flame formed on a cup burner with water vapor have been studied experimentally and numerically. The methane burned in a steel cup surrounded by a glass chimney. A mist generator produced fine droplets delivered though the glass chimney with air. These droplets were heated into water vapor when they went though the diffuser. The extinguishing limit was obtained by gradually increasing the amount of water vapor to replace the air in the coflowing oxidizer stream. Results showed that the agent concentration required for extinguishment was constant over a wide range of the oxidizer velocity, i.e., a so-called "plateau region". The measured extinguishing mass fractions of the agents were: (16.7±0.6)% for H2O, (15.9±0.6)% for CO2, and (31.9±0.6)% for N2. The computation used the Fire Dynamics Simulator (FDS) de-veloped by the NIST. The numerical simulations showed that the predicted water vapor extinguishing limits and the flickering frequency were in good agreements with the experimental observations and, more importantly, revealed that the sup-pression of cup-burner flames occurred via a partial extinction mechanism (in which the flame base drifts downstream and then blows off) rather than the global extinction mechanism of typical counter-flow diffusion flames. And the flame-base oscillation just before the blow-off was the key step for the non-premixed flame extinction in the cup burner.

  10. Mechanisms of suppressing cup-burner flame with water vapor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The mechanisms of suppressing a laminar methane-air co-flow diffusion flame formed on a cup burner with water vapor have been studied experimentally and numerically. The methane burned in a steel cup surrounded by a glass chimney. A mist generator produced fine droplets delivered though the glass chimney with air. These droplets were heated into water vapor when they went though the diffuser. The extinguishing limit was obtained by gradually increasing the amount of water vapor to replace the air in the coflowing oxidizer stream. Results showed that the agent concentration required for extinguishment was constant over a wide range of the oxidizer velocity, i.e., a so-called "plateau region". The measured extinguishing mass fractions of the agents were: (16.7 ± 0.6)% for H2O, (15.9 ± 0.6)% for CO2, and (31.9 ± 0.6)% for N2. The computation used the Fire Dynamics Simulator (FDS) de- veloped by the NIST. The numerical simulations showed that the predicted water vapor extinguishing limits and the flickering frequency were in good agreements with the experimental observations and, more importantly, revealed that the sup- pression of cup-burner flames occurred via a partial extinction mechanism (in which the flame base drifts downstream and then blows off) rather than the global extinction mechanism of typical counter-flow diffusion flames. And the flame-base oscillation just before the blow-off was the key step for the non-premixed flame extinction in the cup burner.

  11. Engineering models for low-NO{sub x} burners

    Energy Technology Data Exchange (ETDEWEB)

    Storm Pedersen, Lars

    1997-08-01

    The present Ph.D. thesis describes a theoretical investigation of NO formation in pulverised coal combustion and an experimental investigation of co-combustion of straw and pulverised coal. The theoretical work has resulted in a simplified mathematical model of a swirling pulverised coal flame able to predict the NO emission and the burnout of coal. In order to simplify the flow pattern of a confined swirling flame, the residence time distribution (RTD) in a swirling pulverised coal flame was determined. This was done by using the solution of a detailed fluid dynamic mathematical model for a 2.2 MW{sub th} and a 12 MW{sub th} pulverised coal flame. From the mathematical solution the RTD was simulated by tracing a number of fluid particles or inert particles. The RTD in the near burner zone was investigated by use of the mathematical model for the 2.2 MW{sub th} and 12 MW{sub th} flame. Results showed that the gas phase in the near burner zone may be approximated as a CSTR and that the mean residence time increased with particle size. In pulverised coal flames, the most important volatile nitrogen component forming NO{sub x} is HCN. To be able to model the nitrogen chemistry in coal flames it is necessary to have an adequate model for HCN oxidation. In order to develop a model for HCN/NH{sub 3}/NO conversion, a systematic reduction of a detailed chemical kinetic model was performed. Based on the simplification of the flow pattern for a swirling flame and the reduced chemistry developed, a chemical engineering model of pulverised coal flame was established. The objectives were to predict the NO emission, the CO emission, and the burnout of char. The effects of co-firing straw and pulverised coal was investigated in a 2.5 MW{sub th} pilot-scale burner and a 250 MW{sub e} utility boiler. In the 2.5 MW{sub th} trial the straw was chopped and fed separately to the burner, whereas in the full-scale experiment the straw was pre-processed as pellets and pulverised with the

  12. OH Diffusion in Silica Glass Preform During Jacketing Process by Oxy-Hydrogen Burner

    Institute of Scientific and Technical Information of China (English)

    B. H. Kim; S. R. Han; U. C. Paek; W.-T. Han; S. K. Oh

    2003-01-01

    Radial distribution of OH diffusion in silica glass preform during jacketing process using a oxy-hydrogen burner was investigated by FTIR spectroscopy. The OH peaks at the jacketing boundary and the surface of the preform were found to be due to diffusion of OH incorporated from the burner.

  13. 16 CFR Figure 5 to Part 1633 - Details of Burner Stand-off

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Details of Burner Stand-off 5 Figure 5 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS... of Burner Stand-off ER15MR06.004...

  14. Oil fired boiler/solar tank- and natural gas burner/solar tank-units

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Frederiksen, Karsten Vinkler

    1999-01-01

    During the last few years new units consisting of a solar tank and either an oil fired boiler or a natural gas burner have been introduced on the Danish market. Three different marketed units - two based on a natural gas burner and one based on an oil fired boiler - have been tested in a heat...

  15. Plasma-assisted combustion technology for NOx reduction in industrial burners.

    Science.gov (United States)

    Lee, Dae Hoon; Kim, Kwan-Tae; Kang, Hee Seok; Song, Young-Hoon; Park, Jae Eon

    2013-10-01

    Stronger regulations on nitrogen oxide (NOx) production have recently promoted the creation of a diverse array of technologies for NOx reduction, particularly within the combustion process, where reduction is least expensive. In this paper, we discuss a new combustion technology that can reduce NOx emissions within industrial burners to single-digit parts per million levels without employing exhaust gas recirculation or other NOx reduction mechanisms. This new technology uses a simple modification of commercial burners, such that they are able to perform plasma-assisted staged combustion without altering the outer configuration of the commercial reference burner. We embedded the first-stage combustor within the head of the commercial reference burner, where it operated as a reformer that could host a partial oxidation process, producing hydrogen-rich reformate or synthesis gas product. The resulting hydrogen-rich flow then ignited and stabilized the combustion flame apart from the burner rim. Ultimately, the enhanced mixing and removal of hot spots with a widened flame area acted as the main mechanisms of NOx reduction. Because this plasma burner acted as a low NOx burner and was able to reduce NOx by more than half compared to the commercial reference burner, this methodology offers important cost-effective possibilities for NOx reduction in industrial applications.

  16. Industrial burners with compact burner management system on industrial applications; Industriebrenner mit kompaktem Brenner-Management-System in verschiedenen industriellen Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Saenger, P.; Bloess, H. [CRONE Waermetechnik GmbH (Germany)

    2008-07-15

    Industrial burners are the heart of every thermal process-based production line. The quality of the final product depends largely on the burner's reliability and performance. Small maintenance effort and maximum availability, high energy efficiency and seamless integration into existing automation systems are the key requirements placed on advanced industrial firing systems. Whether thermal after-burning, drying or assisted firing, the scope of industrial applications demands an extensive range of solutions. Depending on individual requirements, the LMV family of burner management systems from Siemens Building Technologies (SBT) offers complete high-end solutions for the control of thermal process-based production lines reaching from metalworking to the production of glass wool, ceramics or automobiles, textiles, paper, plastics and rubber. This paper describes various burner management systems that are used on a number of different applications. (orig.)

  17. Development of the Radiation Stabilized Distributed Flux Burner - Phase III Final Report

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Sullivan; A. Webb

    1999-12-01

    The development and demonstration of the Radiation Stabilized Burner (RSB) was completed as a project funded by the US Department of Energy Office of Industrial Technologies. The technical goals of the project were to demonstrate burner performance that would meet or exceed emissions targets of 9 ppm NOx, 50 ppm CO, and 9 ppm unburned hydrocarbons (UHC), with all values being corrected to 3 percent stack oxygen, and incorporate the burner design into a new industrial boiler configuration that would achieve ultra-low emissions while maintaining or improving thermal efficiency, operating costs, and maintenance costs relative to current generation 30 ppm low NOx burner installations. Both the ultra-low NOx RSB and the RSB boiler-burner package are now commercially available.

  18. Experimental Study of Flow Field at the Outlet of Dual-Channel Burner

    Institute of Scientific and Technical Information of China (English)

    Yao Bin; Wang Hanfeng; Zeng Hancai; Jiao Qingfeng

    2005-01-01

    This paper presents an experimental study result of flow field of a dual-channel burner. In order to solve the ubiquitous problem of bad rigidity of jets in dual-channel burners, wedges with different arrangements and structural parameters were added to different positions at the outlet of the burners. Laser Particle Image Velocimetry (PIV) was used in this study to measure the flow field to investigate influence of the wedges on flow field of the dual-channel burner. Experimental study shows that fixing wedges at both right and left sides of the burner's outlet can increase the intensity of recirculation without changing the size of the recirculation zone and enhance the rigidity of jets via increasing speed of the two primary air jets at the outlet.

  19. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Are duct burners and waste heat... Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam generating...

  20. Advanced monitoring of industrial burners based on fluctuating flame signals

    Energy Technology Data Exchange (ETDEWEB)

    A. Sanz; J. Ballester; R. Hernandez; L.M. Cerecedo [University of Zaragoza, Zaragoza (Spain). Fluid Mechanics Group/LITEC

    2008-06-15

    The present work explores the potential of pressure and radiation sensors for the advanced monitoring/control of industrial flames. These instruments are rugged, non-intrusive and non-expensive and might be used in routine plant operation to obtain direct information from the flame. However, further research is needed to assess the existence of relationships among their outputs and operating conditions as well as to define suitable methods for signal processing. Those aspects have been addressed by means of a thorough experimental programme in a model industrial burner. Parametric analysis of flame signals recorded for a broad range of operating conditions revealed that they varied widely with the actual combustion state. In order to perform a systematic study, different correlation techniques were tried. Multiple regression methods provided some insight into mutual influences among different variables, although only in case of linear dependences. Artificial neural networks have been used as a more versatile type of algorithms, suitable for complex functional forms between input and output variables. Remarkably good results were obtained when NOx emissions or some burner settings were estimated from selected features of the flame signals, supporting their applicability for the development of advanced diagnostic methods in combustion processes. 40 refs., 13 figs., 3 tabs.

  1. Visualisation of isothermal large coherent structures in a swirl burner

    Energy Technology Data Exchange (ETDEWEB)

    Valera-Medina, A.; Syred, N.; Griffiths, A. [School of Engineering, Cardiff University, Queen' s Building, The Parade, Cardiff, Wales CF24 3AA (United Kingdom)

    2009-09-15

    Lean premixed combustion using swirl flame stabilisation is widespread amongst gas turbine manufacturers. The use of swirl mixing and flame stabilisation is also prevalent in many other non-premixed systems. Problems that emerge include loss of stabilisation as a function of combustor geometry and thermo-acoustic instabilities. Coherent structures and their relationship with combustion processes have been a concern for decades due to their complex nature. This paper thus adopts an experimental approach to characterise large coherent structures in swirl burners under isothermal conditions so as to reveal the effects of swirl in a number of geometries and cold flow patterns that are relevant in combustion. Aided by techniques such as Hot Wire Anemometry, High Speed Photography and Particle Image Velocimetry, the recognition of several structures was achieved in a 100 kW swirl burner model. Several varied, interacting, structures developed in the field as a consequence of the configurations used. New structures never observed before were identified, the results not only showing the existence of very well defined large structures, but also their dependency on geometrical and flow parameters. The PVC is confirmed to be a semi-helical structure, contrary to previous simulations performed on the system. The appearance of secondary recirculation zones and suppression of the vortical core as a consequence of geometrical constrictions are presented as a mechanism of flow control. The asymmetry of the Central Recirculation Zone in cold flows is observed in all the experiments, with its elongation dependent on Re and swirl number used. (author)

  2. A catalytic burner using propane and toluene alternately for the drying of textile coatings

    Energy Technology Data Exchange (ETDEWEB)

    Yongseog Seo; Sungkyu Kang [Korea Inst. of Energy Research, Taejon (Korea); Hyundong Shin [Korea Advanced Inst. of Science and Technology (KAIST), Taejon (Korea)

    1999-07-01

    This study aims to develop a low-temperature catalytic burner using propane and toluene alternately as a fuel and to apply it to the drying of acrylic coatings on textiles. Pt catalysts deposited on ceramic fibres (Al{sub 2}O{sub 3}) were employed. For propane, the diffusive catalytic burner was used. The combustion efficiency of the diffusive catalytic burner deteriorated rapidly when it was installed in downward position. Two concepts of forced diffusion combustion and premixed combustion were introduced to improve the downward placed diffusive catalytic burner. The combustion efficiency was enhanced with these modifications, but the forced diffusion was preferred since premixed combustion raised the temperature of the catalyst above 700degC leading to sintering of the catalysts. For the toluene catalytic burner the premixed combustion mode was adopted. Its optimum operation conditions were obtained by analysing the temperature within the catalyst layer and by adjustment of the toluene mixture. Field tests were performed on the drying acrylic coatings using the catalytic burners. The results showed that the use of catalytic burners had several benefits such as energy savings and less pollutant emissions. (Author)

  3. Correction, Calculation and Experimental Adjustment of Burner, Destined for Burning Methane in Electric Field

    OpenAIRE

    Pavel KLAUS; Tomčík, Petr; Kulhánek, Jiří

    2011-01-01

    In this paper was solved modification of combustion burner for experimental exam of methane combustion in the electric field with high intensity voltage. The burner was originally designed for the combustion stack gas. The burner must have been necessary adjusted, because the mixture of stack gas and air was replaced by mixture of methane and oxygen. The fundamental requirement is to adjust the height of the flame that may reach a maximum of height 100 mm. This height was re-quired because th...

  4. Pulverized straw combustion in a low-NOx multifuel burner

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse; Yin, Chungen;

    2010-01-01

    and to determine the relative importance of different modeling choices for straw combustion. Investigated modeling choices encompass the particle size and shape distribution, the modification of particle motion and heating due to the departure from the spherical ideal, the devolatilization rate of straw......A CFD simulation of pulverized coal and straw combustion using a commercial multifuel burner have been undertaken to examine the difference in combustion characteristics. Focus has also been directed to development of the modeling technique to deal with larger non-spherical straw particles......, the influence of inlet boundary conditions and the effect of particles on the carrier phase turbulence. It is concluded that straw combustion is associated with a significantly longer flame and smaller recirculation zones compared to coal combustion for the present air flow specifications. The particle size...

  5. Numerical modeling of Jinlong CJD burner copper flash smelting furnace

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Fluid flow, heat transfer and combustion in Jinlong CJD concentrate burner flash smelting furnace have been investigated by numerical modeling and flow visualization. The modeling is based on the Eulerian approach for the gas flow equations and the Lagrangian approach for the particles. Interaction between the gas phase and particle phase, such as frictional forces, heat and mass transfer, are included by the addition of sources and sinks. The modeling results including the fluid flow field, temperature field, concentration field of gas phase and the trajectories of particles have been obtained. The predicted results are in good agreement with the data obtained from a series of experiments and tests in the Jinlong Copper Smelter and the temperature error is less than 20 K.

  6. Exposure calculation code module for reactor core analysis: BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Cunningham, G.W.

    1979-02-01

    The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules.

  7. Premixed burner experiments: Geometry, mixing, and flame structure issues

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.K.; Lewis, M.J.; Gupta, M. [Univ of Maryland, College Park, MD (United States)] [and others

    1995-10-01

    This research program is exploring techniques for improved fuel-air mixing, with the aim of achieving combustor operations up to stoichiometric conditions with minimal NO x and maximum efficiency. The experimental studies involve the use of a double-concentric natural gas burner that is operable in either premixed or non-premixed modes, and the system allows systematic variation of equivalence ratio, swirl strength shear length region and flow momentum in each annulus. Flame structures formed with various combinations of swirl strengths, flow throughput and equivalence ratios in premixed mode show the significant impact of swirl flow distribution on flame structure emanating from the mixedness. This impact on flame structure is expected to have a pronounced effect on the heat release rate and the emission of NO{sub x}. Thus, swirler design and configuration remains a key factor in the quest for completely optimized combustion. Parallel numerical studies of the flow and combustion phenomena were carried out, using the RSM and thek-{epsilon} turbulence models. These results have not only indicated the strengths and limitations of CFD in performance and pollutants emission predictions, but have provided guidelines on the size and strength of the recirculation produced and the spatio-temporal structure of the combustion flowfield. The first stage of parametric studies on geometry and operational parameters at Morgan State University have culminated in the completion of a one-dimensional flow code that is integrated with a solid, virtual model of the existing premixed burner. This coupling will provide the unique opportunity to study the impact of geometry on the flowfield and vice-versa, with particular emphasis on concurrent design optimization.

  8. Influence of the mass flow rate of secondary air on the gas/particle flow characteristics in the near-burner region of a double swirl flow burner

    Energy Technology Data Exchange (ETDEWEB)

    Jing, J.P.; Li, Z.Q.; Wang, L.; Chen, Z.C.; Chen, L.Z.; Zhang, F.C. [Harbin Institute of Technology, Harbin (China)

    2011-06-15

    The influence of the mass flow rate of secondary air on the gas/particle flow characteristics of a double swirl flow burner, in the near-burner region, was measured by a three-component particle-dynamics anemometer, in conjunction with a gas/particle two-phase test facility. Velocities, particle volume flux profiles, and normalized particle number concentrations were obtained. The relationship between the gas/particle flows and the combustion characteristics of the burners was discussed. For different mass flow rates of secondary air, annular recirculation zones formed only in the region of r/d=0.3-0.6 at x/d=0.1-0.3. With an increasing mass flow rate of secondary air, the peaks of the root mean square (RMS) axial fluctuating velocities, radial mean velocities, RMS radial fluctuating velocities, and tangential velocities all increased, while the recirculation increased slightly. There was a low particle volume flux in the central zone of the burner. At x/d=0.1-0.7, the profiles of particle volume flux had two peaks in the secondary air flow zone near the wall. With an increasing mass flow rate of secondary air, the peak of particle volume flux in the secondary air flow zone decreased, but the peak of particle volume flux near the wall increased. In section x/d=0.1-0.5, the particle diameter in the central zone of the burner was always less than the particle diameter at other locations.

  9. Cold Gas-particle Flows in a New Swirl Pulverized-coal Burner by PDPA Measurement

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new type of swirl burner has been developed to stabilize pulverized-coal combustion by burning different types of coal at different loads and to reduce NOx formation during combustion. The burner uses a device to concentrate the coal powder in the primary-air tube that divides the primary coal-air into two streams with different pulverized-coal concentrations. This paper reports the measurement of gas-particle flows at the exit of the different swirl burners using a 3-D Phase Doppler Particle Anemometer (PDPA). The effect of different geometrical configurations on the two-phase flow field is studied. The results that give the two-phase flow fields and particle concentrations show the superiority of the new swirl burner.

  10. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Work on process design and LNS Burner design was deferred during this period, pending a reassessment of the project by TransAlta prior to commencement of Budget Period II, and only limited Balance of Plant engineering work was done.

  11. PECULIARITIES OF CHOICE OF BURNER DEVICES FOR HEATING FURNACES OF MACHINE-BUILDING AND METALLURGICAL PRODUCTIONS

    Directory of Open Access Journals (Sweden)

    S. V. Korneev

    2010-01-01

    Full Text Available It is shown that the choice of recuperative burners is more reasonable for different types of heating furnaces of machine-building and metallurgical productions of little efficiency.

  12. Development of stoker-burner wood chip combustion systems for the UK market

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The document makes a case for the development of a design of wood chip stoker-burner more suited to the UK than those currently imported from Sweden and Finland. The differences would centre on market conditions, performance and cost-effectiveness and the devices would be manufactured or part-manufactured in the UK. Econergy Limited was contracted by the DTI as part of its Sustainable Energy Programmes to design and construct an operational prototype stoker-burner rated at 120 kWth. A test rig was built to: (i) study modified burner heads and (ii) develop control hardware and a control strategy. Both (i) and (ii) are described. Tests brought about an increase in performance of the burner head and its wet wood performance. It was considered that further improvements are achievable and six areas for future study were suggested.

  13. Experimental study and numerical simulation of gas-particle flows with radial bias combustion and centrally fuel rich swirl burners

    Institute of Scientific and Technical Information of China (English)

    LI Zheng-qi; ZHOU Jue; CHEN Zhi-chao; SUN Rui; QIN Yu-kun

    2008-01-01

    Numerical simulation is applied to gas-particle flows of the primary and the secondary air ducts and burner region, and of two kinds of swirl burners. The modeling results of Radial Bias Combustion (RBC) burn-er well agreed with the data from the three-dimensional Phase-Doppler anemometry (PDA) experiment by Li, et al. The modeling test conducted in a 1025 t/h boiler was to study the quality of aerodynamics for a Central Fuel Rich (CFR) burner, and the Internal Recirculation Zone (IRZ) was measured. In addition, gas-particle flows with a CFR burner were investigated by numerical simulation, whose results accorded with the test data funda-mentally. By analyzing the distribution of gas velocity and trajectories of particles respectively, it is found that the primary air's rigidity of CFR burner is stronger than that of RBC burner, and the primary air mixes with the secondary air later. Furthermore, high concentration region of pulverized coal exists in the burner's central zone whose atmosphere is reduced, and trajectories of particles in IRZ of CFR burner are longer than that of RBC burner. They are favorable to coal's ignition and the reduction of NOx emission.

  14. Mathematical model of stacked one-sided arrangement of the burners

    Directory of Open Access Journals (Sweden)

    Oraz J.A.

    2017-01-01

    Full Text Available Paper is aimed at computer simulation of the turbulent methane-air combustion in upgraded U-shaped boiler unit. To reduce the temperature in the flame and hence NOx release every burner output was reduced, but the number of the burners was increased. The subject of studying: complex of characteristics with space-time fields in the upgraded steam boiler E-370 with natural circulation. The flare structure, temperature and concentrations were determined computationally.

  15. Non-aerated burner reduces drying costs; Diffusiebrander maakt drogen goedkoper

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, F.P. [Gasunie Research, Groningen (Netherlands)

    1998-10-01

    Gas-fired tumble dryers are more expensive than electric dryers. However, consumers appear to be more satisfied about the drying results of gas-fired tumble dryers. Since premix burner lead to higher natural gas conversion costs, Gasunie Research developed a non-aerated burner, featuring a simple design and a limited number of parts. Moreover, it can be manufactured at low cost, which should improve the competitiveness of the gas-fired tumble dryer

  16. Rotrix `vortex breakdown` burner turbulence-stabilized combustion of heating oil

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, P. [Viessmann Manufacturing Co., Inc., Ontario (Canada)

    1995-04-01

    For the past two years, the Viessmann MatriX radiant burner has been setting the standard for low emission combustion of gas. Now, with the RotriX burner, Viessmann has succeeded in drastically reducing nitrogenoxide emissions in the combustoin of oil. After a successful test period, the RotriX burner is now being introduced to the market. The RotriX oil burner consequently takes into account the mechanisms in the creation of harmful emissions in the combustion of heating oil No. 2, and guarantees stable combustion under any operating conditions. The burner has the following features: heating oil is combusted only after complete vaporization and mixing with combustion air and recirculated flue gases; the flame is not stabilized with a turbulator disk, but a strong turbulating current is created by means of the Vortex Breakdown phenomenon, which develops a very stable flame under any operating conditions; and high internal flue gas recirculation rates lower the flame temperature to the point where thermal NO formation is reduced to the same low level as in the combustion of gas. The new burner has extremely low emissions of NOx < 60 mg/kWh, and CO < 5 mg/kWh at a CO{sub 2} concentraiton of 14%.

  17. Burner Rig with an Unattached Duct for Evaluating the Erosion Resistance of Thermal Barrier Coatings

    Science.gov (United States)

    Miller, Robert A.; Kuczmarski, Maria A.; Zhu, Dongming

    2011-01-01

    Extensive computational fluid dynamics (CFD) modeling backed by experimental observation has demonstrated the feasibility of using an unattached duct to increase the velocity and spatial spread of erodent particles exiting from a burner rig. It was shown that gas velocity and temperature are mostly retained if the inner diameter of the unattached duct equaled the exit diameter of the burner rig nozzle. For particles having a mean diameter of 550 millimeters, the modeled velocity attained at a distance 2.0 in. (50.8 millimeters) beyond the exit of a 12 in. (305 millimeters) long duct was approximately twice as large as the velocity the same distance from the nozzle when the duct was not present. For finer particles, the relative enhancement was somewhat less approximately 1.5 times greater. CFD modeling was also used to guide the construction of a device for slowing down the velocity of the particles being injected into the burner rig. This device used a simple 45 degree fitting to slow the particle velocity in the feed line from 20 meters per second, which is in the range needed to convey the particles, to about 3 meters per second just as they are injected into the burner. This lower injection velocity would lessen the severity of the collision of large particles with the wall of the burner liner opposite the injection port, thereby reducing potential damage to the burner liner by high-velocity particles.

  18. Development of a lean premixed burner for hydrogen utilization

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.O. [Sandia National Lab., Livermore, CA (United States)

    1996-10-01

    The long-term mandate of the hydrogen program is to develop the technologies needed to establish a hydrogen economy. Although a hydrogen fueled automobile has been established as a demonstration project, there are at least three other end use sectors that are recognized by the H{sub 2} program and that are addressed by this project. These end uses are: (1) power generation from stationary turbines, (2) generation of process heat or steam, and (3) commercial and residential direct use applications. Eliminating carbon from the fuel will remove carbon containing species from the emissions, however, NO{sub x} resulting from thermal NO production cannot be ignored. Thermal NO production is minimized by reducing the peak combustion temperature and the residence time at the peak temperature. NO can be reduced to extremely low levels (a few ppm) by operating sufficiently lean to reduce the peak combustion temperatures below 1700 to 1800 K. The objectives for this project are to: (1) develop an environmentally benign and safe burner operating on hydrogen in a lean premixed mode, (2) provide a facility in which fundamental investigations can be performed to support other programs.

  19. Premixed Combustion of Coconut Oil on Perforated Burner

    Directory of Open Access Journals (Sweden)

    I.K.G. Wirawan

    2013-10-01

    Full Text Available Coconut oil premixed combustion behavior has been studied experimentally on perforated burner with equivalence ratio (φ varied from very lean until very rich. The results showed that burning of glycerol needs large number of air so that the laminar burning velocity (SL is the highest at very lean mixture and the flame is in the form of individual Bunsen flame on each of the perforated plate hole. As φ is increased the  SL decreases and the secondary Bunsen flame with open tip occurs from φ =0.54 at the downstream of perforated flame. The perforated flame disappears at φ = 0.66 while the secondary Bunsen flame still exist with SL increases following that of hexadecane flame trend and then extinct when the equivalence ratio reaches one or more. Surrounding ambient air intervention makes SL decreases, shifts lower flammability limit into richer mixture, and performs triple and cellular flames. The glycerol diffusion flame radiation burned fatty acids that perform cellular islands on perforated hole.  Without glycerol, laminar flame velocity becomes higher and more stable as perforated flame at higher φ. At rich mixture the Bunsen flame becomes unstable and performs petal cellular around the cone flame front. Keywords: cellular flame; glycerol; perforated flame;secondary Bunsen flame with open tip; triple flame

  20. Fat burners: nutrition supplements that increase fat metabolism.

    Science.gov (United States)

    Jeukendrup, A E; Randell, R

    2011-10-01

    The term 'fat burner' is used to describe nutrition supplements that are claimed to acutely increase fat metabolism or energy expenditure, impair fat absorption, increase weight loss, increase fat oxidation during exercise, or somehow cause long-term adaptations that promote fat metabolism. Often, these supplements contain a number of ingredients, each with its own proposed mechanism of action and it is often claimed that the combination of these substances will have additive effects. The list of supplements that are claimed to increase or improve fat metabolism is long; the most popular supplements include caffeine, carnitine, green tea, conjugated linoleic acid, forskolin, chromium, kelp and fucoxanthin. In this review the evidence for some of these supplements is briefly summarized. Based on the available literature, caffeine and green tea have data to back up its fat metabolism-enhancing properties. For many other supplements, although some show some promise, evidence is lacking. The list of supplements is industry-driven and is likely to grow at a rate that is not matched by a similar increase in scientific underpinning.

  1. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  2. New recuperator- and regenerator burners reduce waste-gas losses and emissions; Verringerung der Abgasverluste und Emissionen durch neue Rekuperator und Regeneratorbrenner

    Energy Technology Data Exchange (ETDEWEB)

    Wuenning, Joachim G. [WS Waermeprozesstechnik GmbH, Renningen (Germany)

    2009-10-15

    The reduction of waste gas losses is often the most effective and economic way to increase the efficiency of industrial furnaces. This article will present two new burner models, enabling to cut waste gas losses of finned recuperative burners almost in half. The regenerative burner achieves highest efficiency but one has to accept a certain expenditure for cyclic switching and exhaust gas suction. This might not be justified for smaller burner sizes and furnaces. The new gap flow recuperative burner reaches almost the same efficiencies with a recuperative system. Both burner models use flameless oxidation technology for lowest NO{sub x} emissions. (orig.)

  3. Flame investigations of coal and biomass combustion with a 35 MW DS {sup registered} burner and modification for indirect firing

    Energy Technology Data Exchange (ETDEWEB)

    Weirich, Tanja; Leisse, Alfons; Niesbach, Juergen; Kuhr, Christian; Koczorowski, Hans-Joachim [Hitachi Power Europe GmbH, Duisburg (Germany)

    2010-07-01

    Based on experimental flame investigations the capability of a DS {sup registered} burner to operate in a wide load range with different fuels was verified. A DS {sup registered} burner with a thermal capacity of 35 MW was installed in a combustion test facility in order to perform in-flame ash sampling and detailed measurements of temperatures, flue gas species as well as convective and radioactive heat fluxes. Moreover the DS {sup registered} burner was modified to DS {sup registered} T burner for the use of dense phase fuel conveying for indirect firing systems including the oxyfuel process. (orig.)

  4. Design and evaluation of a porous burner for the mitigation of anthropogenic methane emissions.

    Science.gov (United States)

    Wood, Susie; Fletcher, David F; Joseph, Stephen D; Dawson, Adrian; Harris, Andrew T

    2009-12-15

    Methane constitutes 15% of total global anthropogenic greenhouse gas emissions. The mitigation of these emissions could have a significant near-term effect on slowing global warming, and recovering and burning the methane would allow a wasted energy resource to be exploited. The typically low and fluctuating energy content of the emission streams makes combustion difficult; however porous burners-an advanced combustion technology capable of burning low-calorific value fuels below the conventional flammability limit-are one possible mitigation solution. Here we discuss a pilot-scale porous burner designed for this purpose. The burner comprises a cylindrical combustion chamber filled with a porous bed of alumina saddles, combined with an arrangement of heat exchanger tubes for preheating the incoming emission stream. A computational fluid dynamics model was developed to aid in the design process. Results illustrating the burner's stable operating range and behavior are presented: stable ultralean combustion is demonstrated at natural gas concentrations as low as 2.3 vol%, with transient combustion at concentrations down to 1.1 vol%; the system is comparatively stable to perturbations in the operating conditions, and emissions of both carbon monoxide and unburned hydrocarbons are negligible. Based on this pilot-scale demonstration, porous burners show potential as a methane mitigation technology.

  5. Development of lean premixed low-swirl burner for low NO{sub x} practical application

    Energy Technology Data Exchange (ETDEWEB)

    Yegian, D.T.; Cheng, R.K.

    1999-07-07

    Laboratory experiments have been performed to evaluate the performance of a premixed low-swirl burner (LSB) in configurations that simulate commercial heating appliances. Laser diagnostics were used to investigate changes in flame stabilization mechanism, flowfield, and flame stability when the LSB flame was confined within quartz cylinders of various diameters and end constrictions. The LSB adapted well to enclosures without generating flame oscillations and the stabilization mechanism remained unchanged. The feasibility of using the LSB as a low NO{sub x} commercial burner has also been verified in a laboratory test station that simulates the operation of a water heater. It was determined that the LSB can generate NO{sub x} emissions < 10 ppm (at 3% O{sub 2}) without significant effect on the thermal efficiency of the conventional system. The study has demonstrated that the lean premixed LSB has commercial potential for use as a simple economical and versatile burner for many low emission gas appliances.

  6. Development and certification of the innovative pioneer oil burner for residential heating appliances

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, B. [Heat Wise Inc., Ridge, NY (United States)

    1997-09-01

    The Pioneer burner represents another important milestone for the oil heat industry. It is the first practical burner design that is designated for use in small capacity heating appliances matching the needs of modern energy efficient home designs. Firing in the range of 0.3 GPH to 0.65 GPH (40,000-90,000 Btu/hr) it allows for new oil heating appliance designs to compete with the other major fuel choices in the small design load residential market. This market includes energy efficient single family houses, town-houses, condominiums, modular units, and mobile homes. The firing range also is wide enough to cover a large percentage of more conventional heating equipment and home designs as well. Having recently passed Underwriters Laboratory certification tests the burner in now being field tested in several homes and samples are being made available to interested boiler and furnace manufacturers for product development and application testing.

  7. Investigation of lean combustion stability and pressure drop in porous media burners

    Science.gov (United States)

    Sobhani, Sadaf; Haley, Bret; Bartz, David; Dunnmon, Jared; Sullivan, John; Ihme, Matthias

    2016-11-01

    The stability and thermal durability of combustion in porous media burners (PMBs) is examined experimentally and computationally. For this, two burner concepts are considered, which consist of different pore topologies, porous materials, and matrix arrangements. Long-term material durability tests at constant and cycled on-off conditions are performed, along with a characterization of combustion stability, pressure drop and pollutant emissions for a range of equivalence ratios and mass flow rates. Experimental thermocouple temperature measurements and pressure drop data are presented and compared to results obtained from one-dimensional volume-averaged simulations. Experimental and model results show reasonable agreement for temperature profiles and pressure drop evaluated using Ergun's equations. Enhanced flame stability is illustrated for burners with Yttria-stabilized Zirconia Alumina upstream and Silicon Carbide in the downstream combustion zone. Results reinforce concepts in PMB design and optimization, and demonstrate the potential of PMBs to overcome technological barriers associated with conventional free-flame combustion technologies.

  8. PREDICTION OF COMBUSTION CHARACTERISTICS OF A TYPICAL BIOGAS BURNER USING CFD

    Directory of Open Access Journals (Sweden)

    K. MADHUSOODAN PILLAI

    2012-07-01

    Full Text Available Biogas is obtained from anaerobic digestion of biodegradable materials such as agricultural waste, animal waste, and othertype of household solid waste and its main constituents are CH4 and CO2. Effects of the concentration of each species are very important in the biogas combustion. The present study focuses on the effect of inlet velocities of methane and air on the flame temperature in a biogas burner lamp. The model of biogas burner lamp is constructed by using the CFD software GAMBIT and the simulation process was performed by using Fluent Software. The flame temperature obtained is 2172 k when the inlet velocities of methane and air are 0.2m/s and 0.8 m/s respectively. Results of this study will provide valuable data for biogas burner lamp manufacturers.

  9. Some parameters and conditions defining the efficiency of burners in the destruction of long-lived nuclear wastes

    Indian Academy of Sciences (India)

    V V Seliverstov

    2007-02-01

    A number of new wordings and statements regarding the targeted problem of destruction of long-lived wastes (transmutation) is considered. Some new criteria concerning the efficiency of a particular burner type are proposed. It is shown that the destruction efficiency of a specific burner is greatly influenced by the prospective time period of the whole destruction process.

  10. Development of the Radiation Stabilized Distributed Flux Burner. Phase 1, final report

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.D.; Duret, M.J.

    1997-06-01

    The RSB was first developed for Thermally Enhanced Oil Recovery steamers which fire with a single 60 MMBtu/hr burner; the California Energy Commission and Chevron USA were involved in the burner development. The burner has also since found applications in refinery and chemical plant process heaters. All Phase I goals were successfully met: the RSB achieved sub-9 ppM NOx and sub-50 ppM CO emissions using high excess air, external flue gas recirculation (FGR), and fuel staging in the 3 MMBtu/hr laboratory watertube boiler. In a test in a 50,000 lb/hr oil field steamer with fuel staging, it consistently achieved sub-20 ppM NOx and as low as 10 ppM NOx. With high CO{sub 2} casing gas in this steamer, simulating external FGR, sub-20 ppM NOx and as low as 5 ppM NOx were achieved. Burner material cost was reduced by 25% on a per Btu basis by increasing the effective surface firing rate at the burner; further reductions will occur in Phase II. The market for 30 ppM and 9 ppM low NOx burners has been identified as package boilers in the 50,000 to 250,000 lb/hr size range (the 30 ppM is for retrofit, the 9 ppM for the new boiler market). Alzeta and Babcock & Wilcox have teamed to sell both boiler retrofits and new boilers; they have identified boiler designs which use the compact flame shape of the RSB and can increase steam capacity while maintaining the same boiler footprint. Alzeta, Chevron, and B & W have teamed to identify sites to demonstrate the RSB in Phases II and III. In Phase II, the RSB will be demonstrated in a 100,000 lb/hr industrial watertube boiler.

  11. Scaling the weak-swirl burner from 15 kW to 1 MW

    Energy Technology Data Exchange (ETDEWEB)

    Yegian, D.T.; Cheng, R.K. [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.; Hack, R.L.; Miyasato, M.M.; Chang, A.; Samuelsen, G.S. [Univ. of California, Irvine, CA (United States). UCI Combustion Lab.

    1998-03-01

    With the passage of SCAQMD 1146.2, low NO{sub x} regulations will be enforced for new water heaters and boilers from 22 to 585 kW starting January 1, 2000; less than two years away. This has given an added impetus to develop a burner capable of producing NO{sub x} < 30 ppm and CO < 400 ppm without substantial manufacturing costs or complexity. Developed at the Berkeley Lab, the Weak-Swirl Burner (WSB) operates in the lean premixed combustion mode over a wide firing and equivalence ratio range. This work investigated scaling issues (e.g. swirl rates and stability limits) of the WSB when fired at higher rates useful to industry. Three test configurations which varied the ratio of furnace area to burner area were utilized to understand the effects of burner chamber coupling on emissions and stability. Preliminary tests from 12 to 18 kW of a WSB in a commercial heat exchanger were undertaken at LBNL, with further testing from 18 to 105 kW completed at UCI Combustion Laboratory in an octagonal enclosure. After scaling the small (5 cm diameter) to a 10 cm WSB, the larger burner was fired from 150 to 600 kW within a 1.2 MW furnace simulator at UCICL. Test results demonstrate that NO{sub x} emissions (15 ppm at 3% O{sub 2} at equivalence ratio {phi} = 0.80) were invariant with firing rate and chamber/burner ratio. However, the data indicates that CO and UHC are dependent on system parameters, such that a minimum firing rate exists below which CO and UHC rise from lower limits of 25 ppm and 0 ppm respectively.

  12. Development and testing of the pore burner technology for oil burners. Final report; Entwicklung und Erprobung der Porenbrennertechnik fuer Oelbrenner. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Durst, F.; Trimis, D.; Wawrzinek, K.; Koehne, H.; Lucka, K.; Rudolphi, I.; Hatzfeld, O.; Volkert, J.; Rutsche, A.; Adler, J.; Standke, G.; Haase, F.; Krueger, K.; Kuechen, C.

    2001-11-01

    The application of the pore burner technology in oil burners was investigated. Together with a new concept for oil-fuelled high efficiency boilers, this technology opens up a vast potential for energy conservation and pollutant reduction. [German] Der Waermebedarf von Wohneinheiten nimmt, flankiert durch Vorgaben des Gesetzgebers, in Zukunft weiter ab. Parallel dazu werden die Grenzwerte fuer die maximal zulaessigen Schadgasemissionen der Heizanlagen verschaerft und die emissionsintensiven und im intermittierenden Betrieb bei Teillast sehr haeufigen Start/Stop-Betriebsphasen konventioneller Oel-Heizsysteme strenger bewertet. Ziel dieses Vorhabens ist es, die fuer die Verbrennung gasfoermiger Brennstoffe bereits erfolgreich demonstrierten Vorteile der Porenbrennertechnik (sehr niedrige Schadstoffemissionen, aeusserst breiter Bereich der Leistungsmodulation bis 1:20, hohe Energiedichte und damit kleine Baugroesse, minimale Geraeuschemission) auch fuer die Verbrennung von Heizoel nutzbar zu machen. In Verbindung mit einem neuen Konzept fuer die Oel-Brennwerttechnik erschliesst diese Technologie ein hohes Einsparpotential hinsichtlich Energieverbrauch und Schadstoffemissionen. (orig.)

  13. DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, David

    2006-12-28

    Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases – blast furnace gas (BFG) and coke-oven gas (COG) – are widely used together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx – thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTI’s highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non

  14. Optimal Switching Control of Burner Setting for a Compact Marine Boiler Design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan M.

    2010-01-01

    This paper discusses optimal control strategies for switching between different burner modes in a novel compact  marine boiler design. The ideal behaviour is defined in a performance index the minimisation of which defines an ideal trade-off between deviations in boiler pressure and water level...

  15. Cordierite Bricks for Ceramic Burner of Hot Blast Stove YB/T 4128-2005

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaohui; Chai Junlan

    2009-01-01

    @@ 1 Scope This standard specifies the classification,brand,technical requirements,shape and dimension,test method,quality appraisal procedure,packing,marking,transportation,storage and quality certificate of cordierite bricks for ceramic burner of blast furnace and hot blast stove.

  16. The porous medium oil burner applied to a household heating system

    Energy Technology Data Exchange (ETDEWEB)

    Heiderman, T.; Rutsche, A.; Tanke, D. [Invent GmbH, Uttenreuth (Germany); Hatzfeld, O.; Koehne, H.; Lucka, K.; Rudolphi, I. [Technische Hochschule Aachen (Germany). Lehr- und Forschungsgebiet Energie- und Stofftransport; Durst, F.; Trimis, D.; Wawrzinek, K. [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Stroemungsmechanik

    2000-03-01

    The thermal power used in the household is a combination of two contributions. Firstly, the power for the water heating and secondly, for the room heating. While the first contribution is roughly constant at around 20 kW the latter decreases for modern low energy houses continually down to a few kW in the last years. Therefore, a heating system with a high dynamic power range like the porous medium burner technology developed at the University of Erlangen-Nuernberg is required. This burner technology is extended to oil burner using the concept of cold flames in the oil evaporation zone, developed at EST Aachen. The oil burner is working with high thermal efficiency and low noise. The pollutant emission low is due to this new combustion concept and due to the strongly reduced number of start-stop-cycles. (orig.) [German] Waehrend der Raumwaermebedarf moderner Wohneinheiten stetig sinkt, erfordert die Warmwasserbereitung nach wie vor die Bereitstellung ausreichend grosser Waermeleistungen. Aus diesem Grund geht der Trend bei modernen Oelfeuerungsanlagen im Haushaltsbereich hin zu kompakten, emissionsarmen Einheiten mit Brennwertnutzung. Einen Durchbruch verspricht der Oelporenbrenner. Die Porenbrennertechnik wurde am LSTM Erlangen entwickelt. Der Oelporenbrenner vereinigt das am EST der RWTH Aachen entwickelte Verdampfungskonzept unter Nutzung der 'Kalte Flamme' mit der Porenbrennertechnik zu einem neuartigen Heizgeraetekonzept, das die hochmodulierbare, schadstoff- und geraeuscharme Verbrennung von Heizoel mit Brennwertnutzung ermoeglicht. Dadurch wird eine Verbesserung des Feuerungswirkungsgrads bis zu 10% erreicht. (orig.)

  17. Formation of nitric oxide in an industrial burner measured by 2-D laser induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A.; Bombach, R.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    We have performed two-dimensional Laser Induced Fluorescence (2-D LIF) measurements of nitric oxide and hydroxyl radical distributions in an industrial burner at atmospheric pressure. The relative 2-D LIF data of NO were set to an absolute scale by calibration with probe sampling combined with gas analysis. (author) 3 figs., 7 refs.

  18. Performance analysis of porous radiant burners used in LPG cooking stove

    Directory of Open Access Journals (Sweden)

    P. Muthukumar, Piyush Anand, Prateek Sachdeva

    2011-03-01

    Full Text Available This paper discusses the performance investigations of a porous radiant burner (PRB used in LPG cooking stove. Performance of the burner was studied at different equivalence ratios and power intensities. Thermal efficiency was found using the water-boiling test described in IS: 4246:2002. The newly designed PRB showed a maximum thermal efficiency of about 71%, which is 6% higher than that of the conventional burners. Influence of ambient temperature on the thermal efficiency of the PRB was also investigated. Using a PRB of 80 mm diameter at the operating conditions of 0.68 equivalence ratio and 1.24 kW power intensity, the thermal efficiency was found to increase from 61% at 18.5 oC to 71% at 31 oC ambient temperature. The CO and NOx emissions of the PRB are in the range of 9 to 16 ppm and 0 to 0.2 ppm, respectively, while the respective values for the conventional burner are in the range of 50 to 225 ppm and 2 to 7 ppm.

  19. Large Eddy Simulation of Flow Structures in the Sydney Swirl Burner

    DEFF Research Database (Denmark)

    Yang, Yang

    This thesis represents the research on swirling flow using large eddy simulation(LES). Three cases from the Sydney swirl burner database have been chosen as test cases; one medium swirl isothermal case N29S054, one high swirl isothermal case N16S159 and one medium swirl reacting case SM1...

  20. Emission characteristics and axial flame temperature distribution of producer gas fired premixed burner

    Energy Technology Data Exchange (ETDEWEB)

    Bhoi, P.R. [Department of Mechanical Engineering, L and T-Sargent and Lundy Limited, L and T Energy Centre, Near Chhani Jakat Naka, Baroda 390 002 (India); Channiwala, S.A. [Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Deemed University, Ichchhanath, Surat 395 007, Gujarat (India)

    2009-03-15

    This paper presents the emission characteristics and axial flame temperature distribution of producer gas fired premixed burner. The producer gas fired premixed burner of 150 kW capacity was tested on open core throat less down draft gasifier system in the present study. A stable and uniform flame was observed with this burner. An instrumented test set up was developed to evaluate the performance of the burner. The conventional bluff body having blockage ratio of 0.65 was used for flame stabilization. With respect to maximum flame temperature, minimum pressure drop and minimum emissions, a swirl angle of 60 seems to be optimal. The experimental results also showed that the NO{sub x} emissions are inversely proportional to swirl angle and CO emissions are independent of swirl angle. The minimum emission levels of CO and NO{sub x} are observed to be 0.167% and 384 ppm respectively at the swirl angle of 45-60 . The experimental results showed that the maximum axial flame temperature distribution was achieved at A/F ratio of 1.0. The adiabatic flame temperature of 1653 C was calculated theoretically at A/F ratio of 1.0. Experimental results are in tune with theoretical results. It was also concluded that the CO and UHC emissions decreases with increasing A/F ratio while NO{sub x} emissions decreases on either side of A/F ratio of 1.0. (author)

  1. CONTROL OF POLLUTANT EMISSIONS IN NATURAL GAS DIFFUSION FLAMES BY USING CASCADE BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ala Qubbaj

    2001-12-30

    The goal of this exploratory research project is to control the pollutant emissions of diffusion flames by modifying the air infusion rate into the flame. The modification was achieved by installing a cascade of venturis around the burning gas jet. The basic idea behind this technique is controlling the stoichiometry of the flame through changing the flow dynamics and rates of mixing in the combustion zone with a set of venturis surrounding the flame. A natural gas jet diffusion flame at burner-exit Reynolds number of 5100 was examined with a set of venturis of specific sizes and spacing arrangement. The thermal and composition fields of the baseline and venturi-cascaded flames were numerically simulated using CFD-ACE+, an advanced computational environment software package. The instantaneous chemistry model was used as the reaction model. The concentration of NO was determined through CFD-POST, a post processing utility program for CFD-ACE+. The numerical results showed that, in the near-burner, midflame and far-burner regions, the venturi-cascaded flame had lower temperature by an average of 13%, 19% and 17%, respectively, and lower CO{sub 2} concentration by 35%, 37% and 32%, respectively, than the baseline flame. An opposite trend was noticed for O{sub 2} concentration; the cascaded flame has higher O{sub 2} concentration by 7%, 26% and 44%, in average values, in the near-burner, mid-flame and far-burner regions, respectively, than in the baseline case. The results also showed that, in the near-burner, mid-flame, and far-burner regions, the venturi-cascaded flame has lower NO concentrations by 89%, 70% and 70%, in average values, respectively, compared to the baseline case. The numerical results substantiate that venturi-cascading is a feasible method for controlling the pollutant emissions of a burning gas jet. In addition, the numerical results were useful to understand the thermo-chemical processes involved. The results showed that the prompt-NO mechanism

  2. The development of low NOx burners under the IEA Coal Combustion Sciences agreement

    Energy Technology Data Exchange (ETDEWEB)

    Whaley, H. [CANMET Energy Technology Centre, Ottawa, Ontario (Canada)

    1997-09-01

    Canada has been involved in the International Energy Agency (IEA) implementing agreement on coal combustion sciences since 1985. The other countries belonging to this agreement are Australia, Germany, Denmark, Finland, Italy, the Netherlands, Sweden, the United Kingdom and the US. There are two operating annexes, the first, Annex 1 being task-shared, in which designated research projects within the participating countries are reported on an annual basis. Annex 2 is cost-shared and the research is conducted at the International Flame Research Foundation (IFRF) in the Netherlands and paid for by the participants, Canada, Germany, the Netherlands and the UK. The objectives of Annex 2 are to develop advanced low NOx coal burners for power boilers and to characterize their performance with a wide range of coals and coal blends. Two burners have been selected as showing great promise in suppressing NOx formation, thereby reducing emissions to below regulatory levels. One is an aerodynamically air-staged burner (AASB) and the other an internally fuel-staged burner (IFSB). Both can utilize a single boiler entry port, which makes them ideal for retrofitting, the former relies on combustion air staging, the latter on fuel staging or reburning. The IFSB, when developed to a commercial stage, is anticipated to meet projected Canadian NOx regulations for the foreseeable future. Supplementary aspects of the program have been coal characterization, ash behavior and deposition, advanced in-flame measurement technique development and validation data bases for flame, combustion and NOx modeling. This presentation will focus on the two low NOx burners developed under the Annex 2 program.

  3. Characteristics of premixed flames stabilized in an axisymmetric curved-wall jet burner with tip modification

    KAUST Repository

    Kim, Daejoong

    2009-11-10

    The stabilization characteristics of premixed flames in an axisymmetric curved-wall jet burner have been experimentally investigated. This burner utilized the Coanda effect on top of a burner tip. The initially spherical burner tip was modified to a flat tip and a concave tip in order to improve flame stabilization by providing enough space for flow recirculation above the burner tip region. The flow characteristics have been visualized using a schlieren technique. Small-scale turbulence structure has been observed mainly in the interaction jet region (located downstream of the recirculation region) for large jet velocity (Reynolds number >11,500). An appreciable amount of air entrainment was exhibited from the half-angle of the jet spread, approximately 20. The averaged planar laser-induced fluorescence images of the flames for this large velocity demonstrated that the strong signal of OH radicals, representing reaction zones, existed in the recirculation zone, while it was weak in the interaction jet region due to intermittency and local extinction by the generation of small scale turbulence. The OH radical signals strengthened again in the merged jet region (downstream of the interaction jet region). In extreme cases of Reynolds number over 19,000, a unique flame exhibiting OH radicals only in the recirculation zone was observed for the concave tip. The flame stabilization has been mapped by varying jet velocity and equivalence ratio, and the result showed that the stabilization characteristics were improved appreciably from the initial spherical tip design, especially for rich mixtures. The flow fields measured by a laser Doppler velocimetry confirmed the existence of recirculation zone and the expansion of the recirculation zones for the modified tips. The temperature profile measured by a coherent anti-Stokes Raman spectroscopy exhibited an intermittent nature, especially near the recirculation zone.

  4. Application of a Central Composite Design for the Study of NOx Emission Performance of a Low NOx Burner

    Directory of Open Access Journals (Sweden)

    Marcin Dutka

    2015-04-01

    Full Text Available In this study, the influence of various factors on nitrogen oxides (NOx emissions of a low NOx burner is investigated using a central composite design (CCD approach to an experimental matrix in order to show the applicability of design of experiments methodology to the combustion field. Four factors have been analyzed in terms of their impact on NOx formation: hydrogen fraction in the fuel (0%–15% mass fraction in hydrogen-enriched methane, amount of excess air (5%–30%, burner head position (20–25 mm from the burner throat and secondary fuel fraction provided to the burner (0%–6%. The measurements were performed at a constant thermal load equal to 25 kW (calculated based on lower heating value. Response surface methodology and CCD were used to develop a second-degree polynomial regression model of the burner NOx emissions. The significance of the tested factors over their respective ranges has been evaluated using the analysis of variance and by the consideration of the coefficients of the model equation. Results show that hydrogen addition to methane leads to increased NOx emissions in comparison to emissions from pure methane combustion. Hydrogen content in a fuel is the strongest factor affecting NOx emissions among all the factors tested. Lower NOx formation because of increased excess air was observed when the burner was fuelled by pure methane, but this effect diminished for hydrogen-rich fuel mixtures. NOx emissions were slightly reduced when the burner head was shifted closer to the burner outer tube, whereas a secondary fuel stream provided to the burner was found to have no impact on NOx emissions over the investigated range of factors.

  5. Burners. Reduction of nitrogen oxides in combustion: 2. generation of GR LONOxFLAM burner; Les bruleurs. La reduction des oxydes d`azote dans la combustion: bruleur GR LONOxFLAM de 2. generation

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, J.C. [EGCI Pillard, 13 - Marseille (France)

    1997-12-31

    This paper presents the research work carried out by the French Pillard company in collaboration with Gaz de France for the design of low NO{sub x} burners. The different type of low NO{sub x} burners are presented according to the type of fuel: gas, liquid fuels and fuel oils. The gas burner uses the fuel staging principle and the recirculation of smokes and leads to NO{sub x} emissions lower than 100 mg/Nm{sup 3}. The liquid fuel and fuel oil burners use the separate flames and the smoke self-recirculation methods (fuel-air mixture staging, reduction of flame temperature and of the residence time in flames). (J.S.)

  6. Burners. The decrease of nitrogen oxides in combustion process: the 2 nd generation GR LONOxFLAM burner; Les bruleurs, la reduction des oxydes d`azote dans la combustion: bruleur GR LONOxFLAM de 2. generation

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, J.C. [EGCI Pillard, 13 - Marseille (France)

    1997-12-31

    The Pillard company has developed, in cooperation with GDF (the French national gas utility), the GR-LONOxFLAM burner concept for reducing NOx emission levels and solid combustion products. The concept consists, for gaseous fuels, in the combination of an internal recirculation and a gas staging process; for liquid fuels, a separated flame process and air staging are combined. These concepts allow for an important reduction in NOx and non-burned residues, even with standard-size burners

  7. IR sensor for monitoring of burner flame; IR sensor foer oevervakning av braennarflamma

    Energy Technology Data Exchange (ETDEWEB)

    Svanberg, Marcus; Funkquist, Jonas; Clausen, Soennik; Wetterstroem, Jonas

    2007-12-15

    To obtain a smooth operation of the coal-fired power plants many power plant managers have installed online mass flow measurement of coal to all burners. This signal is used to monitor the coal mass flow to the individual burner and match it with appropriate amount of air and also to monitor the distribution of coal between the burners. The online mass flow measurement system is very expensive (approximately 150 kEUR for ten burners) and is not beneficial for smaller plants. The accuracy of the measurement and the sample frequency are also questionable. The idea in this project has been to evaluate a cheaper system that can present the same information and may also provide better accuracy and faster sample frequency. The infrared sensor is a cheap narrow banded light emission sensor that can be placed in a water cooed probe. The sensor was directed at the burner flame and the emitted light was monitored. Through calibration the mass flow of coal can be presented. Two measurement campaigns were performed. Both campaigns were carried out in Nordjyllandsverket in Denmark even though the second campaign was planned to be in Uppsala. Due to severe problems in the Uppsala plant the campaign was moved to Nordjyllandsverket. The pre-requisites for the test plant were that online measurement of coal flow was installed. In Nordjyllandsverket 4 out of 16 burners have the mass flow measurement installed. Risoe Laboratories has vast experiences in the IR technology and they provided the IR sensing equipment. One IR sensor was placed in the flame guard position just behind the flame directed towards the ignition zone. A second sensor was placed at the boiler wall directed towards the flame. The boiler wall position did not give any results and the location was not used during the second campaign. The flame-guard-positioned-sensor- signal was thoroughly evaluated and the results show that there is a clear correlation between the coal mass flow and the IR sensor signal. Tests were

  8. Increased Coal Replacement in a Cement Kiln Burner by Feeding a Mixture of Solid Hazardous Waste and Shredded Plastic Waste

    OpenAIRE

    Ariyaratne, W.K.Hiromi; Melaaen, Morten Christian; Tokheim, Lars-André

    2013-01-01

    The present study aims to find the maximum possible replacement of coal by combined feeding of plastic waste and solid hazardous waste mixed with wood chips (SHW) in rotary kiln burners used in cement kiln systems. The coal replacement should be achieved without negative impacts on product quality, emissions or overall operation of the process. A full-scale experiment was carried out in the rotary kiln burner of a cement kiln by varying SHW and plastic waste feeding rates. Experimental ...

  9. Industrial thermal oxidation with an innovative burner management system; Industrielle thermische Nachverbrennung mit innovativem Brenner-Managementsystem

    Energy Technology Data Exchange (ETDEWEB)

    Gnoss, T. [Siemens Building Technologies HVAC Product GmbH, Rastatt (Germany); Pilz, R. [Control and Heating-Systems, Felsberg-Gensungen (Switzerland); Saenger, P. [Siemens Building Technologies HVAC Product GmbH, Frankfurt am Main(Germany)

    2006-06-15

    In view of rising energy costs and the emission limits stipulated by the latest 'TA-Luft' (Technical Directive: Prevention of Air Pollution) and 'BImSchV' (Federal Immission Control Ordinance in force in Germany), industrial thermal oxidation plants must be either completely replaced or a new burner system must be installed to ensure compliance with the latest environmental standards that demand restriction of pollutant emissions. Replacement of the original burner control system by a state-of-the-art burner management system improves not only the combustion process and the flue gas quality but also saves energy and thus costs through the use of a thermal incinerator. One of the key features of a thermal oxidation plant is a new technology used for controlling and monitoring the burner. The following article examines the innovative LMV5.. burner management system which offers a host of functions, such as burner control, electronic fuel / air ratio control, valve proving and load control - components which, previously, had to be separately assembled and electrically interconnected. (orig.)

  10. Adapter for converting an oil burner head for burning of pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    Musil, J.E.

    1988-03-29

    This patent describes a burner head means forming a primary air passage in the burner head including a portion of generally circular configuration in cross-section having openings uniformally circularly disposed about its periphery, and a manifold effective to envelope the primary air passage means. The manifold has inlet means for connection to a source of pulverized coal and air, internal coal and air passages downstream of the inlet effective to divide incoming coal and air into a plurality of discrete streams thereof, and a manifold coal and air outlet opening from each coal and air passage. The manifold outlet openings each are in communication with a duct means having an outlet discharging into one of the openings about the periphery of the primary air passage means.

  11. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  12. Interaction of turblence and chemistry in a low-swirl burner

    Science.gov (United States)

    Bell, J. B.; Cheng, R. K.; Day, M. S.; Beckner, V. E.; Lijewski, M. J.

    2008-07-01

    New combustion systems based on ultra-lean premixed combustion have the potential for dramatically reducing pollutant emissions in transportation systems, heat, and stationary power generation. However, lean premixed flames are highly susceptible to fluid-dynamical combustion instabilities, making robust and reliable systems difficult to design. Low-swirl burners are emerging as an important technology for meeting design requirements in terms of both reliability and emissions for next-generation combustion devices. In this paper, we present simlations of a laboratory-scale low-swirl burner using detailed chemistry and transport without incorporating explicit models for turbulence or turbulence/chemistry interaction. We consider two fuels, methane and hydrogen, each at two turbulent intensities. Here we examine some of the basic properties of the flow field and the flame structure. We focus on the differences in flame behavior for the two fuels, particularly on the hydrogen flame, which burns with a cellular structures.

  13. Effects of bluff-body burner and coal particle size on NOx emissions and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, L.S.; Cheng, J.F.; Zeng, H.C. [Huazhong University of Science and Technology, Wuhan (China). National Coal Combustion Lab.

    1999-12-01

    Investigations on air staging have been carried out using various coals with different degrees of fineness and a variety of burners with a 92.9 kw h{sup -1} tunnel furnace burning pulverized coal. It has been observed that using the bluff-body burner can reduce both the unburned carbon in fly ash and NOx emissions in the case of air staging. The experimental results show that air-staging combustion has a more remarkable effect on NOx reduction for higher-volatile coal than for lower-volatile coal. The results also show that there is a strong influence of coal particle size on NOx emissions and unburned carbon in the fly ash in the case of air staging. 13 refs., 12 figs., 2 tabs.

  14. Experimental Study of Pre-mixed Flames on a Multi-Hole Matrix Burner

    Directory of Open Access Journals (Sweden)

    Vasudevan Raghavan

    2012-05-01

    Full Text Available This paper deals with an experimental investigation of the flame characteristics of premixed Liquefied Petroleum Gas (LPG - air mixtures with different equivalence ratios on a multi-hole matrix burner. Lowest possible fuel-lean mixing conditions are envisaged. Results show that the flame pattern changes into four different types which are oscillatory flames in the middle region, flames with oscillations along the centerline, flames with very little oscillations and stable flames from all the holes. Species concentration measurements are performed with the help of  gas analyzer and the results show that the concentrations of carbon-monoxide and oxygen decreases, whereas that of carbon-dioxide and nitric oxide increases with increase in the volumetric flow rate of LPG and air mixture. In addition to this, temperature measurements are carried out using a K-type thermocouple over the burner surface at different heights. Temperature contours for each plane have been presented.

  15. Correction of edge-flame propagation speed in a counterflow, annular slot burner

    KAUST Repository

    Tran, Vu Manh

    2015-10-22

    To characterize the propagation modes of flames, flame propagation speed must be accurately calculated. The impact of propagating edge-flames on the flow fields of unburned gases is limited experimentally. Thus, few studies have evaluated true propagation speeds by subtracting the flow velocities of unburned gases from flame displacement speeds. Here, we present a counterflow, annular slot burner that provides an ideal one-dimensional strain rate and lengthwise zero flow velocity that allowed us to study the fundamental behaviors of edge-flames. In addition, our burner has easy optical access for detailed laser diagnostics. Flame displacement speeds were measured using a high-speed camera and related flow fields of unburned gases were visualized by particle image velocimetry. These techniques allowed us to identify significant modifications to the flow fields of unburned gases caused by thermal expansion of the propagating edges, which enabled us to calculate true flame propagation speeds that took into account the flow velocities of unburned gases.

  16. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    OpenAIRE

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2013-01-01

    Background: Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants, and they are typically used without venting range hoods. Objective: We quantified pollutant concentrations and occupant exposures resulting from NGCB use in California homes. Methods: A mass-balance model was applied to estimate time-dependent pollutant concentrations throughout homes in Southern California and the exposure concentrations experienced by individual occupants. We estimated...

  17. An Advanced Option for Sodium Cooled TRU Burner Loaded with Uranium-Free Fuels

    Energy Technology Data Exchange (ETDEWEB)

    You, WuSeung; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    The sodium cooled fast reactors of this kind that are called burners are designed to have low conversion ratio by reducing fuel volume fraction or reducing neutron leakage or increasing neutron absorption. However, the typical SFR burners have a limited ability of TRU burning rate due to the fact that they use metallic or oxide fuels containing fertile nuclides such as {sup 238}U and {sup 232}Th and these fertile nuclides generate fissile nuclides through neutron capture even if they are designed to have low conversion ratio (e.g., 0.6). To further enhance the TRU burning rate, the removal of the fertile nuclides from the initial fuels is required and it will accelerate the reduction of TRUs that are accumulated in storages of LWR spent fuels. However, it has been well-known 4 that the removals of the fertile nuclides from the fuel degrade the inherent safety of the SFR burner cores through the significant decrease of the fuel Doppler effect, the increase of sodium void reactivity worth, and reduction of delayed neutron fraction. In this work, new option for the sodium cooled fast TRU burner cores loaded with fertile-free metallic fuels was proposed and the new cores were designed by using the suggested option. The cores were designed to enhance the inherent safety characteristics by using axially central absorber region and 6 or 12 ZrH1.8 moderator rods per fuel assembly. For each option, we considered two different types of fertile-free ternary metallic fuel (i.e., TRU-W-10Zr and TRU-Ni-10Zr). Also, we performed the BOR (Balance of Reactivity) analyses to show the self-controllability under ATWS as a measure of inherent safety. The core performance analysis showed that the new cores using axially central absorber region substantially improve the core performance parameters such as burnup reactivity swing and sodium void reactivity worth.

  18. Blower burner market development. Boiler management by electronics; Ventilatorbrandermarkt in beweging. Elektronica maakt ketelmanagement mogelijk

    Energy Technology Data Exchange (ETDEWEB)

    Harms, R. [Monarch Nederland, Diemen (Netherlands)

    2004-09-01

    A brief overview is given of the developments in the market for blower burners. New technology concerns digital control techniques. [Dutch] De Nederlandse ventilatorbrandermarkt ondergaat de laatste jaren aanzienlijke wijzigingen. 25 jaar geleden trof men tientallen producenten en importeurs van gas-en oliebrandersnaar op een vakbeurs voor verwarming. Nu zijn er nog maar tien. Technische ontwikkelingen spelen zich op dit moment af op het terrein van de digitale besturingstechniek wat extra mogelijkheden biedt.

  19. The porous burner - concept, technique, and fields of application; Der Porenbrenner - Konzept, Technik und Anwendungsgebiete

    Energy Technology Data Exchange (ETDEWEB)

    Durst, F.; Kesting, A.; Moessbauer, S.; Pickenaecker, K.; Pickenaecker, O.; Trimis, D. [Erlangen Univ. (Germany). Lehrstuhl fuer Stroemungsmechanik

    1997-06-01

    In its efforts to optimize combustion processes, the Institute of Fluid Dynamics in Erlangen (LSTM-Erlangen) has succeeded in developing the technology of combustion in a porous medium. This novel technique stands out for its advantages that no other modern burner technology can show so far. These advantages can be summarized by an extremely high, infinitely variable power dynamic range combined with minimum waste gas emissions and a very compact size. The concept of porous burner technology is briefly described in the present article. Starting with general principles, the basic design as well as the structures and the properties of materials that are suitable for the combustion in porous media are described. Additionally, some important fields of application for this novel technology are outlined including a precompetitive latent heat gas boiler. Moreover, first studies showing the possibility of applying the porous burner technology in gas turbine furnaces or as radiation burners, respectively, were performed. (orig.) [Deutsch] Im Zuge der Optimierung von Verbrennungsprozessen gelang am LSTM-Erlangen die Entwicklung der neuartigen Porenbrennertechnologie, die sich durch Vorteile auszeichnet, welche derart zur Zeit keine andere moderne Brennertechnologie aufweist. Diese Vorteile koennen mit einer aeusserst kompakten Bauweise und einer extrem hohen, stufenlosen Leistungsdynamik bei gleichzeitig minimaler Schadstoffemission charakterisiert werden. Das Konzept der Porenbrennertechnik wird in dem vorliegenden Artikel kurz vorgestellt. Ausgehend von allgemeinen Grundlagen werden neben den konstruktiven Grundueberlegungen und den Arten und Eigenschaften poroeser Strukturen, die sich fuer die Verbrennung in poroesen Medien eignen, einige wichtige Anwendungsgebiete dieser neuartigen Technologie dargestellt. Im Bereich der Haushaltstechnik wird ein vorwettbewerblicher Brennwert-Gas-Wassererhitzer vorgestellt, der auf dem Porenbrennerkonzept basiert. Ebenso werden erste

  20. Optimum feeding rate of solid hazardous waste in a cement kiln burner

    OpenAIRE

    2013-01-01

    Solid hazardous waste mixed with wood chips (SHW) is a partly CO2 neutral fuel, and hence is a good candidate for substituting fossil fuels like pulverized coal in rotary kiln burners used in cement kiln systems. SHW is used in several cement plants, but the optimum substitution rate has apparently not yet been fully investigated. The present study aims to find the maximum possible replacement of coal by SHW, without negatively affecting the product quality, emissions and overall operation of...

  1. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-06-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants and they are typically used without venting. The objective of this study is to quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass balance model was applied to estimate time-dependent pollutant concentrations throughout homes and the "exposure concentrations" experienced by individual occupants. The model was applied to estimate nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for one week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs, NO{sub 2} and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of CO and NO{sub 2} were obtained from available databases. Ventilation rates, occupancy patterns, and burner use were inferred from household characteristics. Proximity to the burner(s) and the benefits of using venting range hoods were also explored. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying less than 10%. The simulation model estimates that in homes using NGCBs without coincident use of venting range hoods, 62%, 9%, and 53% of occupants are routinely exposed to NO{sub 2}, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3000, and 20 ppb for NO{sub 2}, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health

  2. A Development and Application of a Ladle Regenerative Burner System for a Steel Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Seong Soo [POSCO, Pohang (Korea); Park, Heung Soo [Research Institute of Industrial Science and Technology, Pohang (Korea)

    2001-06-01

    This study developed a self-model on a regenerative ladle heating system, 300 millions kcal/hr of a burning capacity using COG fuel, and conducted a performance test through applying it to a field. The model has a structure, which can tilt through loading a mixed burner with a high-speed spay nozzle on a ladle cover, as well as a fixed duct and can inhale and exhaust the air through the inside of a rotating duct built horizontally. The regenerative system is designed of a rectangular parallelepiped, 0.56 m{sup 3} of an inside volume, and uses 25 mm diameter of a ceramic ball as a regenerating material. This study got conclusions through operating the installed system in field and testing burning as follows: 1) The structure of a burner and a duct system selected through this study is a vertical burning regenerative ladle heating system and suitable to a space application and an operation; 2) The self-designed burner shows the stable burning state, its ignition is excellent in high loading time, and the designed speed of a moving fluid in spray is adequate; 3) In the condition of the lowest absorption, the preheating temperature of burning air reaches to 530 deg C, and the sensible heat of burning exhaust gas can be recovered over 50%; 4) The saving effect of fuel gas due to the installation of this system is measured minimum 25%{approx}30%. 3 figs.

  3. FRACTAL CHARACTERISTICS OF AERODYNAMIC FIELD AT OUTLET OF LOW-NOx COAXIAL SWIRLING BURNER

    Institute of Scientific and Technical Information of China (English)

    WU Jiang; TIAN Feng-guo; ZHANG Ming-chuan; SONG Yu-bao; GAO Mao; YIN Bin

    2004-01-01

    The primary wind of a low-NOx coaxial swirling burner was visualized by using glycol as smog tracer. The information of the visual flow field was input into a computer through image-capturing card with CCD camera as the image-capturing element. The boundary of the visual zone, i.e., the interface of the primary wind and secondary wind was obtained by image processing. The fractal dimension (FD) of the boundary was examined and found to vary from 1.10 to 1.40 with S1, S2 and ζ1. It is concluded that when FD is small, the complex level of the interface is low, and mixture between the primary and secondary wind is weak near the exit of the burner at the initial phase of combustion resulting in stratified flow; when FD is big, mixture becomes strong near the exit of the burner. It is showed that the flow with FD ranging from 1.10 to 1.20 is stratified flow, which is benefical to reduce NOx yield and the flow with FD from 1.25 to 1.40 is mixed flow, producing much NOx. The mechanism of the forming of stratified flow and mixed flow was theoretically analyzed. The corresponding S1, S2 and ζ1 of these flows were given.

  4. Measurements of Non-reacting and Reacting Flow Fields of a Liquid Swirl Flame Burner

    Institute of Scientific and Technical Information of China (English)

    CHONG Cheng Tung; HOCHGREB Simone

    2015-01-01

    The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.

  5. Mixing and Recirculation Characteristics of A double COncentric Burner with Bluff—Body

    Institute of Scientific and Technical Information of China (English)

    H.K.Ma; C.H.Chiou; 等

    1993-01-01

    The concentric bluff-body jet burner is widely used in industrial combustion systems.This kind of burner often generates a considerably complex recirculation zone behind the bluff body.As a result,the fuel often remains in the recirculation zone,achieving stability of flame.This study investigates,by means of experiments,the variations of the aerodynamics as the fluid is injected into a combustion chamber through a doble concentric burner with a bluff-body.The observation and measurement of the aerodynamics in our experiment are conducted under a cold flow.The controlled parameters in our experiment are:variations in the blockage ratio of the center bluff body,the cone angle of the bluff body,and the velocity ratio(Us/Up) of the secondary jet and primary jet;the injection of helium bubbles into the primary and secondary jets to observe the recirculation zone behind the bluff body;using Tufts for obseving the characteristics of corner recirculation zone in a combustion chamber,measuring the average velocity of each point within the aerodynamics by the 5-hole pitot tube;measuring the distribution of static pressure of the combustion chamber walls with a static pressure tap.

  6. Combustion characteristics of low concentration coal mine methane in divergent porous media burner

    Institute of Scientific and Technical Information of China (English)

    Lin Baiquan; Dai Huaming⇑; Wang Chaoqun; Li Qingzhao; Wang Ke; Zheng Yuanzhen

    2014-01-01

    Low-concentration methane (LCM) has been one of the biggest difficulties in using coal mine methane. And previous studies found that premixed combustion in porous media is an effective method of low cal-orific gas utilization. This paper studied the combustion of LCM in a divergent porous medium burner (DPMB) by using computational fluid dynamics (CFD), and investigated the effect of gas initial tempera-ture on combustion characteristic, the distribution of temperature and pollutant at different equivalence ratios in detail. Besides, the comparison of divergent and cylindrical burners was also performed in this paper. The results show that:the peak temperature in DPMB increases as the increasing of equivalence ratio, which is also suitable for the outlet NO discharge;the linear correlation is also discovered between peak temperature and equivalence ratios;NO emission at the initial temperature of 525 K is 5.64 times, larger than NO emission at the initial temperature of 300 K. Thus, it is preferable to balance the effect of thermal efficiency and environment simultaneously when determining the optimal initial temperature range. The working parameter limits of divergent burner are wider than that of cylindrical one which contributes to reducing the influence of LCM concentration and volume fluctuation on combustion.

  7. THEORETICAL ANALYSIS AND PRACTICE ON THE SELECTION OF KEY PARAMETERS FOR HORIZONTAL BIAS BURNER

    Institute of Scientific and Technical Information of China (English)

    刘泰生; 许晋源

    2003-01-01

    The air flow ratio and the pulverized-coal mass flux ratio between the rich and lean sides are the key parameters of horizontal bias burner. In order to realize high combustion efficiency, excellent stability of ignition, low NOx emission and safe operation, six principal demands are presented on the selection of key parameters. An analytical model is established on the basis of the demands, the fundamentals of combustion and the operation results. An improved horizontal bias burner is also presented and applied. The experiment and numerical simulation results show the improved horizontal bias burner can realize proper key parameters, lower NOx emission, high combustion efficiency and excellent performance of part load operation without oil support. It also can reduce the circumfluence and low velocity zone existing at the downstream sections of vanes, and avoid the burnout of the lean primary-air nozzle and the jam in the lean primary-air channel. The operation and test results verify the reasonableness and feasibility of the analytical model.

  8. CFD prediction of physical field for multi-air channel pulverized coal burner in rotary kiln

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A 3-D numerical simulation with CFX software on physical field of multi-air channel coal burner in rotary kiln was carried out. The effects of various operational and structural parameters on flame feature and temperature distribution were investigated. A thermal measurement was conducted on a rotary kiln (4.5 m in diameter, 90 m in length) with four-air channel coal burner to determine the boundary conditions and to verify the simulation results.The calculation result shows that the distribution of velocity near burner exit is saddle-like; recirculation zones near nozzle and wall are useful for mixture primary air with coal and high temperature fume. A little central airflow can avoid coal backing up and cool nozzle. Adjusting the ratio of internal airflow to outer airflow is an effective and major means to regulate flame and temperature distribution in sintering region. Large whirlcone angle can intensify disturbution range at flame root to accelerate ignition and mixture. Large coal size can reduce high temperature region and result in coal combusting insufficiently. Too much combustion air will lengthen flame and increase heat loss.

  9. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX

  10. Synthesis of Titanium Dioxide Nanoparticles Using a Double-Slit Curved Wall-Jet Burner

    KAUST Repository

    Ismail, Mohamed

    2016-05-04

    A novel double-slit curved wall-jet (DS-CWJ) burner was proposed and utilized for flame synthesis. This burner was comprised of double curved wall-jet nozzles with coaxial slits; the inner slit was for the delivery of titanium tetraisopropoxide (TTIP) precursor while the outer one was to supply premixed fuel/air mixture of ethylene (C2H4) or propane (C3H8). This configuration enabled rapid mixing between the precursor and reactants along the curved surface and inside the recirculation zone of the burner. Particle growth of titanium dioxide (TiO2) nanoparticles and their phases was investigated with varying equivalence ratio and Reynolds number. Flow field and flame structure were measured using particle image velocimetry (PIV) and OH planar laser-induced fluorescence (PLIF) techniques, respectively. The nanoparticles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and nitrogen adsorption Brunauer–Emmett–Teller (BET) for surface area analysis. The flow field consisted of a wall-jet region leading to a recirculation zone, an interaction jet region, followed by a merged-jet region. The DS-CWJ burner revealed appreciable mixing characteristics between the precursor and combustion gases near the nozzle regions, with a slight increase in the axial velocity due to the precursor injection. The precursor supply had a negligible effect on the flame structure. The burner produced a reasonably uniform size (13–18 nm) nanoparticles with a high BET surface area (>100 m2/g). The phase of TiO2 nanoparticles was mainly dependent on the equivalence ratio and fuel type, which impact flame height, heat release rate, and high temperature residence time of the precursor vapor. For ethylene flames, the anatase content increased with the equivalence ratio, whereas it decreased in the case of propane flames. The synthesized TiO2 nanoparticles exhibited high crystallinity and the anatase phase was dominant at high equivalence

  11. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a

  12. Numerical Simulation of Oxy-coal Combustion for a Swirl Burner with EDC Model

    Institute of Scientific and Technical Information of China (English)

    崔凯; 刘冰; 吴玉新; 杨海瑞; 吕俊复; 张海

    2014-01-01

    The characteristics of oxy-coal combustion for a swirl burner with a specially designed preheating chamber are studied numerically. In order to increase the accuracy in the prediction of flame temperature and igni-tion position, eddy dissipation concept (EDC) model with a skeletal chemical reaction mechanism was adopted to describe the combustion of volatile matter. Simulation was conducted under six oxidant stream conditions with dif-ferent O2/N2/CO2 molar ratios:21/79/0, 30/70/0, 50/50/0, 21/0/79, 30/0/70 and 50/0/50. Results showed that O2 en-richment in the primary oxidant stream is in favor of combustion stabilization, acceleration of ignition and increase of maximum flame temperature, while the full substitution of N2 by CO2 in the oxidant stream delays ignition and decreases the maximum flame temperature. However, the overall flow field and flame shapes in these cases are very similar at the same flow rate of the primary oxidant stream. Combustion characteristics of the air-coal is similar to that of the oxy-coal with 30%O2 and 70%CO2 in the oxidant stream, indicating that the rear condition is suitable for retrofitting an air-coal fired boiler to an oxy-coal one. The swirl burner with a specially designed preheating chamber can increase flame temperature, accelerate ignition and enhance burning intensity of pulverized coal under oxy-coal combustion. Also, qualitative experimental validation indicated the burner can reduce the overall NOx emission under certain O2 enrichment and oxy-coal combustion conditions against the air-coal combustion.

  13. Impact of fuel quality and burner capacity on the performance of wood pellet stove

    Directory of Open Access Journals (Sweden)

    Petrović-Bećirović Sanja B.

    2015-01-01

    Full Text Available Pellet stoves may play an important role in Serbia in the future when fossil fuel fired conventional heating appliances are replaced by more efficient and environmentally friendly devices. Experimental investigation was conducted in order to examine the influence of wood pellet quality, as well as burner capacity (6, 8 and 10 kW, used in the same stove configuration, on the performance of pellet stove with declared nameplate capacity of 8 kW. The results obtained showed that in case of nominal load and combustion of pellets recommended by the stove manufacturer, stove efficiency of 80.03% was achieved. The use of lower quality pellet caused additional 1.13 kW reduction in heat output in case of nominal load and 0.63 kW in case of reduced load. This was attributed to less favourable properties and lower bulk and particle density of lower quality pellet. The use of different burner capacity has shown to have little effect on heat output and efficiency of the stove when pre-set values in the control system of the stove were not altered. It is concluded that replacement of the burner only is not sufficient to increase/decrease the declared capacity of the same stove configuration, meaning that additional measures are necessary. These measures include a new set up of the stove control system, which needs to be properly adjusted for each alteration in stove configuration. Without the adjustment mentioned, declared capacity of the stove cannot be altered, while its CO emission shall be considerably increased.

  14. Evaluation of a high-temperature burner-duct-recuperator system

    Science.gov (United States)

    1990-07-01

    The U.S. Department of Energy's (DOE) Office of Industrial Technologies (OIT) sponsors research and development (R and D) to improve the energy efficiency of American industry and to provide for fuel flexibility. OIT has funded a multiyear R and D project by the Babcock and Wilcox Company (B and W) to design, fabricate, field test, and evaluate a high-temperature burner-duct-recuperator (HTBDR) system. This ceramic-based recuperator system recovers waste heat from the corrosive, high-temperature (2170 F) flue gas stream of a steel soaking pit to preheat combustion air to as high as 1700 F. The preheated air is supplied to a high-temperature burner. The B and W R and D program, which is now complete, involved several activities, including selecting and evaluating ceramic materials, designing the system, and developing and evaluating the prototype. In addition, a full-scale unit was tested at a B and W steel soaking pit. The full-scale system consisted of a modular single-stage ceramic recuperator, a conventional two-pass metallic recuperator, a high-temperature burner, fans, insulated ducting, and associated controls and instrumentation. The metallic recuperator preheated combustion air to about 750 F before it passed to the ceramic module. This technical case study describes the DOE/B and W recuperator project and highlights the field tests of the full-scale recuperator system. The document makes results of field tests and data analysis available to other researchers and private industry. It discusses project status, summarizes field tests, and reviews the potential effects the technology will have on energy use and system economics.

  15. Premixing hydrogen burners for surface refinement of glass; Vormischende Wasserstoffbrenner zur Oberflaechenbearbeitung von Glas

    Energy Technology Data Exchange (ETDEWEB)

    Goerisch, Matthias [Linde AG, Linde Gas Deutschland, Nuernberg (Germany)

    2013-02-15

    As a result, inter alia, of unceasing globalisation, European glass producers in practically all sectors - flat glass, container glass, crystal glass and special glasses - are faced with ever tougher competition from Asia. In the 2012 to 2015 period and beyond, the principal focuses in the manufacture of glass products will again be on reducing overall production costs and increasing process efficiency wherever possible, on greater productivity and on enhanced product (surface) quality. To meet these challenges in the field of surface refinement and flame polishing of glass products as efficiently as possible, Linde AG/Linde Gases Division has developed premixing Hydropox {sup registered} burner technology for hydrogen/oxygen fuels. (orig.)

  16. Making highly flammable liquid wastes of petrochemical works safe by combustion without burners

    Energy Technology Data Exchange (ETDEWEB)

    Shelygin, B.L.; Bakhirev, V.I.; Gudzyuk, V.L.

    1983-11-01

    At the V.I. Lenin Energy Institute in Ivanov a technological program was implementd for combustion of highly flammable bulk wastes (for example, piperylene fractions) of petrochemical enterprises, with a moisture content of under 10% and mechanical admixtures (particles of catalyst dust) of up to 5%, without the use of burners. In devising the program, the results of mathematical theoretical analysis of pre-igniting preparation of substances to make them safe were utilized as well as the experience acquired in burning petroleum sludge in furnaces with bubbling equipment.

  17. Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls

    Energy Technology Data Exchange (ETDEWEB)

    Marc Cremer; Kirsi St. Marie; Dave Wang

    2003-04-30

    This is the first Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts. A project kickoff meeting was held in conjunction with NETL's 2002 Sensors and Control Program Portfolio Review and Roadmapping Workshop, in Pittsburgh, PA during October 15-16, 2002. Dr. Marc Cremer, REI, and Dr. Paul Wolff, EPRI I&C, both attended and met with the project COR, Susan Maley. Following the review of REI's database of wall-fired coal units, the project team selected a front wall fired 150 MW unit with a Riley Low NOx firing system including overfire air for evaluation. In addition, a test matrix outlining approximately 25 simulations involving variations in burner secondary air flows, and coal and primary air flows was constructed. During the reporting period, twenty-two simulations have been completed, summarized, and tabulated for sensitivity analysis. Based on these results, the team is developing a suitable approach for quantifying the sensitivity coefficients associated with the parametric tests. Some of the results of the CFD

  18. Interim design status and operational report for remote handling fixtures: primary and secondary burners

    Energy Technology Data Exchange (ETDEWEB)

    Burgoyne, R.M.

    1976-12-01

    The HTGR reprocessing flowsheet consists of two basic process elements: (1) spent fuel crushing and burning and (2) solvent extraction. Fundamental to these elements is the design and development of specialized process equipment and support facilities. A major consideration of this design and development program is equipment maintenance: specifically, the design and demonstration of selected remote maintenance capabilities and the integration of these into process equipment design. This report documents the current status of the development of remote handling and maintenance fixtures for the primary and secondary burners.

  19. COAL PARTICLE FLOW PATTERNS FOR O2 ENRICHED, LOW NOx BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer L. Sinclair

    2001-09-30

    Over the past year, the hot flow studies have focused on the validation of a novel 2M near-flame combustion furnace. The 2M furnace was specifically designed to investigate burner aerodynamics and flame stability phenomena. Key accomplishments include completion of coal & oxygen mass balance calculations and derivation of emission conversion equations, upgrade of furnace equipment and flame safety systems, shakedown testing and partial completion of a parametric flame stability study. These activities are described in detail below along with a description of the 2M furnace and support systems.

  20. Dynamic rod worth simulation study for a sodium-cooled TRU burner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Ji; Ha, Pham Nhu Viet, E-mail: phamha@kaeri.re.kr; Lee, Min Jae; Kang, Chang Mu

    2015-12-15

    Highlights: • Dynamic rod worth calculation methodology for a sodium-cooled TRU burner was developed. • The spatial weighting functions were relatively insensitive to control rods position. • The simulated pseudo detector response agreed well with the calculated core power. • The simulated dynamic rod worths compared well against the simulated static values. • Impact of individual detector on the simulated dynamic worth was evaluated. - Abstract: This paper presents a preliminary dynamic rod worth simulation study for a TRU burner core mockup of the PGSFR (Korean Prototype Gen-IV Sodium-cooled Fast Reactor) named BFS-76-1A so as to establish a calculation methodology for evaluating the rod worth of the PGSFR. The simulation method was mainly based on a three-dimensional multi-group nodal diffusion transient code for fast reactors in which the rod drop simulation for the BFS-76-1A was performed and all the fuel assemblies were taken into account for the detector response calculation. Then the dynamic rod worths were inferred from the simulated detector responses using an inverse point kinetics model and compared against the simulated static worths. The results show good agreement between the simulated pseudo detector response and the calculated core power as well as between the simulated dynamic and static rod worths, and thus indicate that the dynamic rod worth simulation method developed in this work can be applied to the rod worth estimation and validation for the PGSFR.

  1. Propagating nonpremixed edge-flames in a counterflow, annular slot burner under DC electric fields

    KAUST Repository

    Tran, Vu Manh

    2016-09-11

    Characteristics of propagating nonpremixed edge-flames were investigated in a counterflow, annular slot burner. A high-voltage direct current (DC) was applied to the lower part of the burner and the upper part was grounded, creating electric field lines perpendicular to the direction of edge-flame propagation. Upon application of an electric field, an ionic wind is caused by the migration of positive and negative ions to lower and higher electrical potential sides of a flame, respectively. Under an applied DC, we found a significant decrease in edge-flame displacement speeds unlike several previous studies, which showed an increase in displacement speed. Within a moderate range of field intensity, we found effects on flame propagation speeds to be negligible after correcting the flame displacement speed with respect to the unburned flow velocity ahead of the flame edge. This indicates that the displacement speed of an edge-flame strongly depends on ionic wind and that an electric field has little or no impact on propagation speed. The ionic wind also influenced the location of the stoichiometric contour in front of the propagating edge in a given configuration such that a propagating edge was relocated to the higher potential side due to an imbalance between ionic winds originating from positive and negative ions. In addition, we observed a steadily wrinkled flame following transient propagation of the edge-flame, a topic for future research. © 2016 The Combustion Institute

  2. Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners

    Energy Technology Data Exchange (ETDEWEB)

    Lobscheid, Agnes; Singer, Brett C.; Klepeis, Neil E.

    2011-06-01

    We developed a physics-based data-supported model to investigate indoor pollutant exposure distributions resulting from use of natural gas cooking appliances across households in California. The model was applied to calculate time-resolved indoor concentrations of CO, NO2 and formaldehyde resulting from cooking burners and entry with outdoor air. Exposure metrics include 1-week average concentrations and frequency of exceeding ambient air quality standards. We present model results for Southern California (SoCal) using two air-exchange scenarios in winter: (1) infiltration-only, and (2) air exchange rate (AER) sampled from lognormal distributions derived from measurements. In roughly 40percent of homes in the SoCal cohort (N=6634) the 1-hour USEPA NO2 standard (190 ?g/m3) was exceeded at least once. The frequency of exceeding this standard was largely independent of AER assumption, and related primarily to building volume, emission rate and amount of burner use. As expected, AER had a more substantial impact on one-week average concentrations.

  3. Optimum feeding rate of solid hazardous waste in a cement kiln burner

    Directory of Open Access Journals (Sweden)

    W.K. Hiromi Ariyaratne, Morten C. Melaaen, Lars-André Tokheim

    2013-01-01

    Full Text Available Solid hazardous waste mixed with wood chips (SHW is a partly CO2 neutral fuel, and hence is a good candidate for substituting fossil fuels like pulverized coal in rotary kiln burners used in cement kiln systems. SHW is used in several cement plants, but the optimum substitution rate has apparently not yet been fully investigated. The present study aims to find the maximum possible replacement of coal by SHW, without negatively affecting the product quality, emissions and overall operation of the process. A full-scale experiment was carried out in the rotary kiln burner of a cement plant by varying the SHW substitution rate from 0 to 3 t/hr. Clinker quality, emissions and other relevant operational data from the experiment were analysed using fuel characteristics of coal and SHW. The results revealed that SHW could safely replace around 20% of the primary coal energy without giving negative effects. The limiting factor is the free lime content of the clinker. Results from the present study were also compared with results from a previous test using meat and bone meal.

  4. Behaviors of tribrachial edge flames and their interactions in a triple-port burner

    KAUST Repository

    Yamamoto, Kazuhiro

    2015-05-01

    In a triple-port burner, various non-premixed flames have been observed previously. Especially for the case with two lifted flames, such configuration could be suitable in studying interaction between two tribrachial flames. In the present study, the flame characteristics have been investigated numerically by adopting a reduced kinetic mechanism in the triple-port burner. Four different types of flame configurations, including two attached flames, inner lifted/outer attached flames, inner attached/outer lifted flames, and twin lifted flames, were successfully simulated depending on the flow conditions. The representative edge propagation speed of a single lifted flame or an upstream lifted flame in the case of twin lifted flames increased as the liftoff height became higher. In the twin lifted flames, the inner lifted flame was affected appreciably when the other flame was located further upstream such that the lifted flame located further downstream encountered the axial velocity acceleration induced by the gas expansion from the lifted flame located upstream, while thermal effects were not observed since the temperature of the incoming flow toward the lifted flame was not affected. A unique flip-flop behavior between the inner and outer flames, observed experimentally previously, was successfully captured in the simulation such that the inner lifted flame became attached to the nozzle as the liftoff height of the outer lifted flame grew higher with an increase in the outer air velocity.

  5. The Study of Numerical Simulation of Oxygen-‎enriched Burner System

    Directory of Open Access Journals (Sweden)

    Yuesheng Fan

    2010-12-01

    Full Text Available In order to reduce overall fuel consumption, or partially substitute a “valuable” fuel with a ‎poor one, in electric power plant boilers, oxygen enrichment of combustion air can be very ‎effective. The paper proposes an oxygen-enriched ignition system which based on the ‎existing pulverized coal fired boiler ignition devices. Small coal particle is suitable for this ‎system. The new burner includes inside, outside and middle casings. And it transfer heat in ‎two ways of downstream and upstream. The burner has authorized a patent in China. A ‎numerical simulation theory were used to analysis it. The results indicate that: it can ‎increase the maximum burning velocity ‎ ‎ and the average burning ‎velocity ‎, and decrease ignition temperature Ti and burnout temperature Tb of ‎pulverized coal. In addition, the pulverized coal fired boilers are easier to be ignited and the ‎comprehensive combustibility index S is improved. At the same time, it demonstrates that it ‎is an effective way to warm-up the pulverized coal in ignition of the boiler in the power ‎plant.‎

  6. The oil pore burner for household furnaces; Der Oelporenbrenner fuer die Haushaltsfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Heidermann, T.; Keppler, M.; Rutsche, A.; Hatzfeld, O.; Koehne, H.; Lucka, K.; Rudolphi, R.; Trimis, D.; Durst, F.

    1999-07-01

    While heating of modern buildings requires less and less energy, sufficient heat is still required for water heating. There is a trend towards compact, low-emission and high-efficiency systems. The oil pore burner developed at LSTM Erlangen is a promising technology, which combines the cold flame evaporation concept of EST of RWTH Aachen with the pore burner technology. The result is a modern system for high-modulating, low-emission and low-noise combustion of heating oil with exhaust condensation. A 10% improvement in furnace efficiency is achieved. [German] Waehrend der Raumwaermebedarf moderner Wohneinheiten stetig sinkt, erfordert die Warmwasserbereitung nach wie vor die Bereitstellung ausreichend grosser Waermeleistungen. Aus diesem Grund geht der Trend bei modernen Oelfeuerungsanlagen im Haushaltsbereich in zu kompakten, emissionsarmen Einheiten mit Brennwertnutzung. Einen Druchbruch verspricht der Oelporenbrenner. Der Porenbrennertechnik wurde am LSTM Erlangen entwickelt. Der Oelporenbrenner vereinigt das am EST der RWTH Aachen entwickelte Verdampfungskonzept unter Nutzung der Kalten Flammen mit der Porenbrennertechnik zu einem neuartigen Heizgeraetekonzept, das die hochmodulierbare, schadstoff- und geraeuscharme Verbrennung von Heizoel mit Brennwertnutzung ermoeglicht. Dadurch wird eine Verbesserung des Feuerungwirkungsgrades bis zu 10% erreicht. (orig.)

  7. Feasibility investigation and combustion enhancement of a new burner functioning with pulverized solid olive waste

    Directory of Open Access Journals (Sweden)

    Bounaouara H., Sautet J.C., Ben Ticha H., Mhimid A.

    2014-01-01

    Full Text Available This article describes an experimental study on solid olive residue (olive cake combustion in form of pulverized jet. This is a contribution to the valorization of olive residue as a source of renewable energy available in the majority of mediterranean countries. A sample of olive cake from Tunisian origin is prepared for the experiment; this sample is crushed, dried and sifted in order to obtain the desired particles form. A new burner made up of a coaxial cylindrical tube is especially designed and fabricated. In order to start the combustion of olive cake and maintain the main flame, two types of pilot flame were used: a central premixed flame of methane/oxygen and an annular diffusion flame of methane. This paper shows the conditions for an efficient olive cake burner operation in free air. The effects of particle size and pilot flame position have been discussed. The olive cake combustion is possible only with particles at a size below 200 μm. Moreover, the combustion maintained by the annular pilot flame ensures better burning conditions than the central pilot flame. Finally, the inserted preheating system has improved the olive cake combustion.

  8. NON-INTRUSIVE GAS-PHASE THERMOMETRY FOR INDUSTRIAL OXY-FUEL BURNERS

    Directory of Open Access Journals (Sweden)

    J. W. Tröger

    2015-03-01

    Full Text Available The use of oxy-fuel combustion processes is of large interest for several industrial fields applications since it offers the advantages of low NOx emissions in combination with high combustion temperatures even without additional preheating. For optimization of such processеs a detailed understanding based on precise experimental data is necessary. So far there is still a lack of precise experimental data achieved with high spatial and temporal resolution from industrial relevant turbulent oxy-fuel combustion processes. Beside species concentration information the gas phase temperature is of utmost importance for an improved understanding of the basic chemical reactions and the pollutant formation. The coherent anti-Stokes Raman spectroscopy (CARS technique is a very well suited laser based tool for a non-intrusive investigation of such turbulent high temperature combustion processes. In this work we analysed an industrial 400 kW oxy-fuel burner with the help of O2 based vibrational CARS system which is integrated in an industrial relevant test furnace. The burner is fed with pure oxygen and natural gas at an equivalence ratio of =0.9. At one downstream position temporal and spatial resolved temperatures were measured along a 600 mm line. Additional air sucked in from the environment seems to influence the gas phase temperature significantly.

  9. Optimum feeding rate of solid hazardous waste in a cement kiln burner

    Energy Technology Data Exchange (ETDEWEB)

    Ariyaratne, W.K. Hiromi; Melaaen, Morten C.; Tokheim, Lars-Andre [Telemark University College, Faculty of Technology, Kjoelnes Ring 56, P.O. Box 203, N-3901, Porsgrunn (Norway)

    2013-07-01

    Solid hazardous waste mixed with wood chips (SHW) is a partly CO2 neutral fuel, and hence is a good candidate for substituting fossil fuels like pulverized coal in rotary kiln burners used in cement kiln systems. SHW is used in several cement plants, but the optimum substitution rate has apparently not yet been fully investigated. The present study aims to find the maximum possible replacement of coal by SHW, without negatively affecting the product quality, emissions and overall operation of the process. A full-scale experiment was carried out in the rotary kiln burner of a cement plant by varying the SHW substitution rate from 0 to 3 t/hr. Clinker quality, emissions and other relevant operational data from the experiment were analysed using fuel characteristics of coal and SHW. The results revealed that SHW could safely replace around 20% of the primary coal energy without giving negative effects. The limiting factor is the free lime content of the clinker. Results from the present study were also compared with results from a previous test using meat and bone meal.

  10. Burner (Stinger)

    Science.gov (United States)

    ... Football Sports and Exercise Safety Dealing With Sports Injuries Sports Center Magnetic Resonance Imaging (MRI) Contact Us Print Resources Send to a friend Permissions Guidelines ... Veer, Science Photo Library, Science Source Images, Shutterstock, and Clipart.com

  11. Making a Low-Cost Soda Can Ethanol Burner for Out-of-Laboratory Flame Test Demonstrations and Experiments

    Science.gov (United States)

    Yu, Henson L. Lee; Domingo, Perfecto N., Jr.; Yanza, Elliard Roswell S.; Guidote, Armando M., Jr.

    2015-01-01

    This article demonstrates how to make a low-cost ethanol burner utilizing soda cans. It burns with a light blue flame suitable for out-of-laboratory flame test demonstrations where interference from a yellow flame needs to be avoided.

  12. 41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.

    Science.gov (United States)

    2010-07-01

    ... § 101-26.602-3 Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents. (a... requirements call will be accomplished by mailing a computer-produced record of the file data for each delivery... estimates on DFSC Form 15:18 to the Defense Fuel Supply Center, Cameron Station, Alexandria, VA 22314....

  13. Hybrid model predictive control applied to switching control of burner load for a compact marine boiler design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan

    2008-01-01

    This paper discusses the application of hybrid model predictive control to control switching between different burner modes in a novel compact marine boiler design. A further purpose of the present work is to point out problems with finite horizon model predictive control applied to systems for w...

  14. Fuel rich and fuel lean catalytic combustion of the stabilized confined turbulent gaseous diffusion flames over noble metal disc burners

    Directory of Open Access Journals (Sweden)

    Amal S. Zakhary

    2014-03-01

    Full Text Available Catalytic combustion of stabilized confined turbulent gaseous diffusion flames using Pt/Al2O3 and Pd/Al2O3 disc burners situated in the combustion domain under both fuel-rich and fuel-lean conditions was experimentally studied. Commercial LPG fuel having an average composition of: 23% propane, 76% butane, and 1% pentane was used. The thermal structure of these catalytic flames developed over Pt/Al2O3 and Pd/Al2O3 burners were examined via measuring the mean temperature distribution in the radial direction at different axial locations along the flames. Under-fuel-rich condition the flames operated over Pt catalytic disc attained high temperature values in order to express the progress of combustion and were found to achieve higher activity as compared to the flames developed over Pd catalytic disc. These two types of catalytic flames demonstrated an increase in the reaction rate with the downstream axial distance and hence, an increase in the flame temperatures was associated with partial oxidation towards CO due to the lack of oxygen. However, under fuel-lean conditions the catalytic flame over Pd catalyst recorded comparatively higher temperatures within the flame core in the near region of the main reaction zone than over Pt disc burner. These two catalytic flames over Pt and Pd disc burners showed complete oxidation to CO2 since the catalytic surface is covered by more rich oxygen under the fuel-lean condition.

  15. High Pressure Burner Rig Testing of Advanced Environmental Barrier Coatings for Si3N4 Turbine Components

    Science.gov (United States)

    Zhu, Dongming; Fox, Dennis S.; Pastel, Robert T.

    2007-01-01

    Advanced thermal and environmental barrier coatings are being developed for Si3N4 components for turbine engine propulsion applications. High pressure burner rig testing was used to evaluate the coating system performance and durability. Test results demonstrated the feasibility and durability of the coating component systems under the simulated engine environments.

  16. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. Of Texas, El Paso, TX (United States)

    2013-09-30

    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO2 from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H2 concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO2 and H2O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient gF) values for CH4-O2-CO2 flames. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH4/21%O2/79%N2 and CH4/38%O2/72%CO2 mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of

  17. Discussion on Combustion Gas Burner and its Application in Industry%浅论燃气燃烧器及其在工业中的应用

    Institute of Scientific and Technical Information of China (English)

    刘彬; 陆羽

    2013-01-01

    简要介绍了目前工业生产中常用的燃气燃烧器的种类,各种燃烧器的基本原理、特点,并根据各种燃烧器的特点分别介绍了其在工业中的适用场合。%The paper briefly introduces types of combustion gas burner used in existing industrial production, basic principle and characteristics of all burners, meanwhile, the paper respectively introduces the applicable occasions in industry according to characteristic of the burners.

  18. Nuclear data uncertainty analysis on a minor actinide burner for transmuting spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hangbok

    1998-08-01

    A comprehensive sensitivity and uncertainty analysis was performed on a 1200 MWt minor actinides burner designed for a low burnup reactivity swing, negative doppler coefficient, and low sodium void worth. Sensitivities of the performance parameters were generated using depletion perturbation methods for the constrained close fuel cycle of the reactor. The uncertainty analysis was performed using the sensitivity and covariance data taken from ENDF-B/V and other published sources. The uncertainty analysis of a liquid metal reactor for burning minor actinide has shown that uncertainties in the nuclear data of several key minor actinide isotopes can introduce large uncertainties in the predicted performance of the core. The relative uncertainties in the burnup swing, doppler coefficient, and void worth were conservatively estimated to be 180 %, 97 %, and 46 %, respectively. An analysis was performed to prioritize the minor actinide reactions for reducing the uncertainties. (author). 41 refs., 17 tabs., 1 fig.

  19. Studi Eksperimen Distribusi Temperatur Nyala Api Kompor Bioetanol Tipe Side Burner dengan Variasi Diameter Firewall

    Directory of Open Access Journals (Sweden)

    R.R. Vienna Sona Saputri Soetadi

    2012-09-01

    Full Text Available Untuk mendapatkan kompor bioetanol efisiensi thermal maksimal diperlukan penelitian komprehensif. Salah satunya adalah penelitian terhadap posisi peletakkan beban pada kompor bioetanol kompak. Pengujian dilakukan pada kompor uji bioetanol dengan kadar 99%, yaitu kompor bioetanol tipe side burner dengan firewall 2.5 inci dan firewall 3 inci. Pengukuran temperatur api dengan 13 thermocouple K dengan pengukuran searah api keatas setiap 5 mm-an. Kemudian, water boiling test dilakukan untuk mendapatkan daya dan beban dan dilanjutkan mengukur waktu pendidihan air. Hasil penelitian ini menunjukkan gambaran total distribusi temperatur nyala api difusi. Hasil menunjukkan untuk kompor 2.5 inci dengan daya 1.6 kW mempunyai temperatur 542 ºC dengan jarak ketinggian 5 mm dari rim kompor sedangkan kompor 3 inci menghasilkan daya 2.38 kW dengan temperatur 516 ºC.

  20. Numerical study of turbulent normal diffusion flame CH4-air stabilized by coaxial burner

    Directory of Open Access Journals (Sweden)

    Riahi Zouhair

    2013-01-01

    Full Text Available The practical combustion systems such as combustion furnaces, gas turbine, engines, etc. employ non-premixed combustion due to its better flame stability, safety, and wide operating range as compared to premixed combustion. The present numerical study characterizes the turbulent flame of methane-air in a coaxial burner in order to determine the effect of airflow on the distribution of temperature, on gas consumption and on the emission of NOx. The results in this study are obtained by simulation on FLUENT code. The results demonstrate the influence of different parameters on the flame structure, temperature distribution and gas emissions, such as turbulence, fuel jet velocity, air jet velocity, equivalence ratio and mixture fraction. The lift-off height for a fixed fuel jet velocity is observed to increase monotonically with air jet velocity. Temperature and NOx emission decrease of important values with the equivalence ratio, it is maximum about the unity.

  1. Testing and Modeling Fuel Regression Rate in a Miniature Hybrid Burner

    Directory of Open Access Journals (Sweden)

    Luciano Fanton

    2012-01-01

    Full Text Available Ballistic characterization of an extended group of innovative HTPB-based solid fuel formulations for hybrid rocket propulsion was performed in a lab-scale burner. An optical time-resolved technique was used to assess the quasisteady regression history of single perforation, cylindrical samples. The effects of metalized additives and radiant heat transfer on the regression rate of such formulations were assessed. Under the investigated operating conditions and based on phenomenological models from the literature, analyses of the collected experimental data show an appreciable influence of the radiant heat flux from burnt gases and soot for both unloaded and loaded fuel formulations. Pure HTPB regression rate data are satisfactorily reproduced, while the impressive initial regression rates of metalized formulations require further assessment.

  2. Use of numerical modeling in design for co-firing biomass in wall-fired burners

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen

    2004-01-01

    Co-firing biomass with coal or gas in the existing units has gained increasing interest in the recent past to increase the production of environmentally friendly, renewable green power. This paper presents design considerations for co-firing biomass with natural gas in wall-fired burners by use...... of numerical modeling. The models currently used to predict solid fuel combustion rely on a spherical particle shape assumption, which may deviate a lot from reality for big biomass particles. A sphere gives a minimum in terms of the surface-area-to-volume ratio, which impacts significantly both motion....... To better model the reaction of biomass particles, the actual particle surface area available and the average oxygen mass flux at particle surface are considered, both of which are shape factor-dependent. (2) The non-spherical biomass particles are simplified as equal-volume spheres, without any...

  3. Experiments on the TECFLAM standard burner. Final colloquium; Experimente am TECFLAM Standard-Brenner. Abschlusskolloquium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This year's annual seminar had two main subjects: First, the final colloquium of the CRAY-TECFLAM project in which an industrial code for simulation of combustion processes in furnaces and gas turbines was developed in cooperation with the relevant industry, and secondly, investigations on a TECFLAM standard burner which served to establish a reliable set of state variables by different methods that were applied simultaneously, as well as the validation of the mathematical models. [German] Das alljaehrliche oeffentliche Seminar stand in diesem Jahr unter zwei zentralen Themen: zum einen das Abschlusskolloquium des CRAY-TECFLAM-Projekts, in dem ein Industriecode zur Simulation der Verbrennungsvorgaenge in Feuerungen und Gasturbinen - unter Beteiligung der relevanten Industrie - entwickelt wurde, zum anderen die Untersuchungen am TECFLAM Standardbrenner, mit denen ein verlaesslicher Satz von Zustandsgroessen mit unterschiedlichen, aber simultan angewandten Messmethoden ermittelt wird und die mathematischen Modelle validiert werden. (orig.)

  4. On the instability of a modified cup-burner flame in the infrared spectral region

    Directory of Open Access Journals (Sweden)

    Petr Bitala

    2016-03-01

    Full Text Available This study describes the modification of a standardised cup-burner apparatus. The replacement of the original glass chimney is performed by shielding a nitrogen co-flow enabled measurement at a wavelength of 3.9 μm. This modification, together with a special arrangement of the measuring system (spectral filtering, data acquisition and post-processing, permitted the observation of various types of hydrodynamic instabilities, including transition states. The advantages of our arrangement are demonstrated with an ethylene non-premixed flame with high sooting tendency. Two known modes of hydrodynamic instability (varicose and sinuous that occur in buoyant flames were studied and described quantitatively. Based on the intensity of the infrared emissions, we identified and qualitatively described the modes of periodic hydrodynamic instability that are accompanied by flame tip opening, which has not been observed for this type of flame.

  5. Performance (Off-Design) Cycle Analysis for a Turbofan Engine With Interstage Turbine Burner

    Science.gov (United States)

    Liew, K. H.; Urip, E.; Yang, S. L.; Mattingly, J. D.; Marek, C. J.

    2005-01-01

    This report presents the performance of a steady-state, dual-spool, separate-exhaust turbofan engine, with an interstage turbine burner (ITB) serving as a secondary combustor. The ITB, which is located in the transition duct between the high- and the low-pressure turbines, is a relatively new concept for increasing specific thrust and lowering pollutant emissions in modern jet-engine propulsion. A detailed off-design performance analysis of ITB engines is written in Microsoft(Registered Trademark) Excel (Redmond, Washington) macrocode with Visual Basic Application to calculate engine performances over the entire operating envelope. Several design-point engine cases are pre-selected using a parametric cycle-analysis code developed previously in Microsoft(Registered Trademark) Excel, for off-design analysis. The off-design code calculates engine performances (i.e. thrust and thrust-specific-fuel-consumption) at various flight conditions and throttle settings.

  6. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack (062056); Kemal O. Pasamehmetoglu (103171); David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  7. Pollutant exposures from unvented gas cooking burners: A Simulation-based Assessment for Southern California

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Indoor Environment Group and Residential Building Systems Group; Klepeis, Neil E. [Stanford Univ., CA (United States). Dept. of Civil and Environmental Engineering; San Diego Univ., CA (United States). Center for Behavioral Epidemiology and Community Health; Lobscheid, Agnes B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Indoor Environment Group; Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Indoor Environment Group and Residential Building Systems Group

    2014-01-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants, and they are typically used without venting range hoods. In this study, LBNL researchers quantified pollutant concentrations and occupant exposures resulting from NGCB use in California homes.The simulation model estimated that—in homes using NGCBs without coincident use of venting range hoods -- 62%, 9%, and 53% of occupants are routinely exposed to NO2, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3,000, and 20 ppb for NO2, CO, and HCHO, respectively. The study recommends that reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health-based standards.

  8. ASSESSMENT OF THE USE FOR FERTILISATION PURPOSES INCINERATION ASH PELLETS USING GASIFICATION BURNER LESTER

    Directory of Open Access Journals (Sweden)

    Marzena Gibczyńska

    2016-12-01

    Full Text Available The use of biomass in system energetics for the purpose of increasing the share of renewable energy sources in the overall energy mix by biomass and coal co-combustion is not an optimal solution in the light of previous experience in Poland. It is appropriate to develop local biomass market for energy purposes as a basis for future distributed energy generation based on biomass. This solution facilitates the use of ash from biomass combustion for plant fertilisation. The present paper concerns the assessment of the use of ash from combustion of pellets in an innovative gasifying pellet burner – LESTER type, for soil fertilisation. The paper presents the analysis of the content of macro- and microelements in ash against the chemical composition of pellets in relation to permissible contents in fertilisers. The content of phosphorus, potassium, calcium and magnesium in bottom and fly ash from combustion of wood pellet and rye straw in LESTER gasifying burner validates the use of this material for soil fertilisation purposes. However, due to low nitrogen content – comparable to that found in soil, the material is not to be considered as fertiliser supplying this macroelement to soil. The analysed bottom ash used for fertilisation meets the conditions set out in the Regulation of the Minister of Environment of 9 September 2002. However, fly ash should be used with considerable caution due to high content of iron, zinc and nickel. The yield of bottom ash is several times higher than that of fly ash, therefore the possibility of its use in the form of mixtures in adequate proportions should be considered.

  9. Investigation of the Effect of Pilot Burner on Lean Blow Out Performance of A Staged Injector

    Institute of Scientific and Technical Information of China (English)

    YANG Jinhu; ZHANG Kaiyu; LIU Cunxi; RUAN Changlong; LIU Fuqiang; XU Gang

    2014-01-01

    The staged injector has exhibited great potential to achieve low emissions and is becoming the preferable choice of many civil airplanes.Moreover,it is promising to employ this injector design in military engine,which requires most of the combustion air enters the combustor through injector to reduce smoke emission.However,lean staged injector is prone to combustion instability and extinction in low load operation,so techniques for broadening its stable operation ranges are crucial for its application in real engine.In this work,the LBO performance of a staged injector is assessed and analyzed on a single sector test section.The experiment was done in atmospheric environment with optical access.Kerosene-PLIF technique was used to visualize the spray distribution and common camera was used to record the flame patterns.Emphasis is put on the influence of pilot burner on LBO performance.The fuel to air ratios at LBO of six injectors with different pilot swirler vane angle were evaluated and the obtained LBO data was converted into data at idle condition.Results show that the increase of pilot swirler vane angle could promote the air assisted atomization,which in turn improves the LBO performance slightly.Flame patterns typical in the process of LBO are analyzed and attempts are made to find out the main factors which govern the extinction process with the assistance of spray distribution and numerical flow field results.It can be learned that the flame patterns are mainly influenced by structure of the flow field just behind the pilot burner when the fuel mass flow rate is high; with the reduction of fuel,atomization quality become more and more important and is the main contributing factor of LBO.In the end of the paper,conclusions are drawn and suggestions are made for the optimization of the present staged injector.

  10. Pollutant Emissions and Lean Blowoff Limits of Fuel Flexible Burners Operating on Gaseous Renewable and Fossil Fuels

    Science.gov (United States)

    Colorado, Andres

    This study provides an experimental and numerical examination of pollutant emissions and stability of gaseous fueled reactions stabilized with two premixed-fuel-flexible and ultra-low NOx burner technologies. Both burners feature lean combustion technology to control the formation of nitrogen oxides (NOx). The first fuel--flexible burner is the low-swirl burner (LSB), which features aerodynamic stabilization of the reactions with a divergent flow-field; the second burner is the surface stabilized combustion burner (SSCB), which features the stabilization of the reactions on surface patterns. For combustion applications the most commonly studied species are: NOx, carbon monoxide (CO), and unburned hydrocarbons (UHC). However these are not the only pollutants emitted when burning fossil fuels; other species such as nitrous oxide (N2O), ammonia (NH3) and formaldehyde (CH2O) can be directly emitted from the oxidation reactions. Yet the conditions that favor the emission of these pollutants are not completely understood and require further insight. The results of this dissertation close the gap existing regarding the relations between emission of pollutants species and stability when burning variable gaseous fuels. The results of this study are applicable to current issues such as: 1. Current combustion systems operating at low temperatures to control formation of NOx. 2. Increased use of alternative fuels such as hydrogen, synthetic gas and biogas. 3. Increasing recognition of the need/desire to operate combustion systems in a transient manner to follow load and to offset the intermittency of renewable power. 4. The recent advances in measurement methods allow us to quantify other pollutants, such as N 2O, NH3 and CH2O. Hence in this study, these pollutant species are assessed when burning natural gas (NG) and its binary mixtures with other gaseous fuels such as hydrogen (H2), carbon dioxide (CO2), ethane (C 2H6) and propane (C3H8) at variable operation modes including

  11. Enhancing the operational dependability of oil and gas burners: radial blowers with compression in two stages; Zur Erhoehung der Betriebssicherheit von Oel- und Gasbrennern: Radialgeblaese mit zweistufiger Verdichtung

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, H. [Produktmanagement Anwendungstechnik, Oertli-Rohleder Waermetechnik GmbH, Moeglingen (Germany)

    1999-02-01

    A blower system for oil and gas burners with blowers (Duopress) is described which achieves high blower compression at low rates of air intake. The high starting resistance of burners is thus easily overcome and operational dependability is much enhanced. Moreover, the system permits modular construction of burner blowers. As a consequence, different sizes of burners can be built and their ease of maintenance is enhanced. (orig.) [Deutsch] Es wird ein Geblaesesystem fuer Oel- oder Gasgeblaesebrenner (Duopress) vorgestellt, welches es ermoeglicht, hohe Geblaesepressungen bei niedrigem Luftvolumenstrom zu erreichen. So lassen sich die hohen Anfahrwiderstaende bei den Brennerstarts muehelos ueberwinden, und man kann eine deutlich gesteigerte Betriebssicherheit erreichen. Das vorgestellte System ermoeglicht zudem eine modulare Bauweise der Brennergeblaese. Dadurch koennen auf einfache Art verschiedene Baugroessen eines Brenners realisiert und die Wartungsfreundlichkeit der Brenner gesteigert werden. (orig.)

  12. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, July--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    Work on process design and LNS Burner design was deferred during this period, pending a reassessment of the project by TransAlta prior to commencement of Budget Period II, and only limited Balance of Plant engineering work was done.

  13. The use of ceramic gas burner in paper drying. Combustion and paper coating tests - Final report; Paperin kuivatus keraamisella kaasupolttimella; Polttokokeet laboratoriossa sekae paperin paeaellystyskoe - Loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Kiiskinen, H.; Edelman, K. [Technical Research Centre of Finland, Jyvaeskylae (Finland). Combustion and Thermal Engineering Lab.

    1992-12-31

    The use of infrared dryers in drying of paper has rapidly increased. Gas fired IR dryers cause lower investment and smaller operational cost than the electric ones. On the other hand, the massive construction of the gas fired IR dryers causes weaker controllability than possible for the electric IR dryers. Ceramic gas burner is intended for combustion of pre-mixed gas-air mixture. The combustion takes place in a thin layer on the surface of the burner. The heat from combustion is transferred to the ceramic material mainly through convection but also through radiation. The heated ceramic surface emits radiation to it`s surroundings, according to the radiation properties of the ceramic material. The measurements carried out reveal that the emissivity and the surface temperature of the ceramic burner are very close to the present gas fired IR dryers. The radiative heat efficiency of the present devices is about 36-40 %. The highest recorded radiative heat efficiency of the ceramic burner was 36 %. The controllability of the ceramic burner is better than the present ones: the burner responds to changes in the fuel flow within 1-2 seconds and the control range is broad, about 150-450 kW/m{sup 2}. The mechanic strength properties of the ceramic burner are rather poor due to porous and lightweight construction. It is possible to increase the strength e.g. through the use of thicker ceramic fibre but this will decrease the controllability of the burner. The ceramic materials - very likely - will be used in infrared dryers as soon as the mechanical strength problems will be resolved

  14. 大型硫磺回收装置燃烧器选型研究%STUDY ON THE MODEL SELECTION OF BURNERS IN LARGE SCALE SRU

    Institute of Scientific and Technical Information of China (English)

    徐璟

    2013-01-01

    从工程实例出发,对大型硫磺回收装置两种不同型式的燃烧器预混式和扩散式燃烧器的结构及性能进行了研究与对比,为此类燃烧器的选型提供一些参考.硫磺回收装置专用燃烧器在装置运行中起到核心作用,燃烧器选型时需要全面、系统地考虑工艺要求、操作安全性和设备运行维护的长期性,从而获得最佳的综合使用效果.%This paper studies and compares the structure and performance of two different types of burners including pre-mixing burners and diffusion burners used in large scale SRU with engineering examples, which provides certain reference for the model selection of such burners. Special designed burners for SRU are essential for the smooth operation of the unit, so it is necessary to consider the technical requirement, operation safety and long-term operation maintanence of the equiment throughtly and systematically when selecting burners for optimal comprehensive effect.

  15. Experience with natural gas/oxygen burners on a cupola furnace; Erfahrungen mit Erdgas/Sauerstoff-Brennern an einem Kupolofen

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, J. [Ruhrgas AG, Essen (Germany); Lemperle, M. [Kuettner GmbH und Co. KG, Essen (Germany); Wieting, T. [RWTH Aachen (Germany). Inst. fuer Eisenhuettenkunde; Wilczek, M [Frauenhofer Inst. UMSICHT (Germany); Struening, H. [Fritz Winter Eisengiesserei GmbH und Co. KG, Stadtallendorf (Germany); Frielingsdorf, O. [Air Products GmbH, Hattingen (Germany)

    2003-11-01

    The 'KUPOLOPT' joint research project has as its target the economic and ecological optimization of cupola furnaces in foundries. The use of natural gas/oxygen burners during foundry operation is being studied on Fritz Winter Eisengiesserei GmbH and Co. KG's cupola furnace with the objective of enhancing melting rate, reducing emissions and permitting re-utilization of foundry and other particulates. This work is also intended to improve the cupola-furnace process in economic terms, in order to enhance its competitiveness. This article presents the results of the first project phase, which served to investigate the natural gas/oxygen burner as an external supplier of energy. (orig.)

  16. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Public design report

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  17. Female Struggle in Patriarchal Society-Comparative Interpretation of Gimmal and Crumbs of Agalloch Eaglewood-the First Incense Burner

    Institute of Scientific and Technical Information of China (English)

    李姝颖

    2014-01-01

    Zhang Ailin created so many various kinds of female charaters in her novels;females who own distinct characters and identities just have similar fates and struggles. This paper tries to probe into the similar fates and struggles of two heroines with dif-ferent identities in the same social background by analysing the novel Gimmal and Crumbs of Agalloch Eaglewood-the First In-cense Burner from perspective of feminism.

  18. Average Droplet Diameter Measurement and Results for Fuel Aerosol Injected by Certain Types of the Turbojet Burners

    Institute of Scientific and Technical Information of China (English)

    TadeuszOpara

    1997-01-01

    Measurement of the diameter of the fuel aerosol droplet is very important in the design of new type burners and in diagnostic process,Diffraction method is one of the most useful measuring procedures in this case.An investigation setup is presented enabling the determination of the substituting drop diameter in fuel aerosol stream created by aeroengine injectors the results obtained for K 108-767,K 108-012,37.03.9595,16.83.0310 types are presented.

  19. Characterization of primary and secondary wood combustion products generated under different burner loads

    Science.gov (United States)

    Bruns, E. A.; Krapf, M.; Orasche, J.; Huang, Y.; Zimmermann, R.; Drinovec, L.; Močnik, G.; El-Haddad, I.; Slowik, J. G.; Dommen, J.; Baltensperger, U.; Prévôt, A. S. H.

    2015-03-01

    Residential wood burning contributes to the total atmospheric aerosol burden; however, large uncertainties remain in the magnitude and characteristics of wood burning products. Primary emissions are influenced by a variety of parameters, including appliance type, burner wood load and wood type. In addition to directly emitted particles, previous laboratory studies have shown that oxidation of gas-phase emissions produces compounds with sufficiently low volatility to readily partition to the particles, forming considerable quantities of secondary organic aerosol (SOA). However, relatively little is known about wood burning SOA, and the effects of burn parameters on SOA formation and composition are yet to be determined. There is clearly a need for further study of primary and secondary wood combustion aerosols to advance our knowledge of atmospheric aerosols and their impacts on health, air quality and climate. For the first time, smog chamber experiments were conducted to investigate the effects of wood loading on both primary and secondary wood combustion products. Products were characterized using a range of particle- and gas-phase instrumentation, including an aerosol mass spectrometer (AMS). A novel approach for polycyclic aromatic hydrocarbon (PAH) quantification from AMS data was developed and results were compared to those from GC-MS analysis of filter samples. Similar total particle mass emission factors were observed under high and average wood loadings; however, high fuel loadings were found to generate significantly higher contributions of PAHs to the total organic aerosol (OA) mass compared to average loadings. PAHs contributed 15 ± 4% (mean ±2 sample standard deviations) to the total OA mass in high-load experiments, compared to 4 ± 1% in average-load experiments. With aging, total OA concentrations increased by a factor of 3 ± 1 for high load experiments compared to 1.6 ± 0.4 for average-load experiments. In the AMS, an increase in PAH and

  20. Characterization of primary and secondary wood combustion products generated under different burner loads

    Directory of Open Access Journals (Sweden)

    E. A. Bruns

    2014-10-01

    Full Text Available Residential wood burning contributes significantly to the total atmospheric aerosol burden; however, large uncertainties remain in the magnitude and characteristics of wood burning products. Primary emissions are influenced by a variety of parameters, including appliance type, burner wood load and wood type. In addition to directly emitted particles, previous laboratory studies have shown that oxidation of gas phase emissions produces compounds with sufficiently low volatility to readily partition to the particles, forming significant quantities of secondary organic aerosol (SOA. However, relatively little is known about wood burning SOA and the effects of burn parameters on SOA formation and composition are yet to be determined. There is clearly a need for further study of primary and secondary wood combustion aerosols to advance our knowledge of atmospheric aerosols and their impacts on health, air quality and climate. For the first time, smog chamber experiments were conducted to investigate the effects of wood loading on both primary and secondary wood combustion products. Products were characterized using a range of particle and gas phase instrumentation, including an aerosol mass spectrometer (AMS. A novel approach for polycyclic aromatic hydrocarbon (PAH quantification from AMS data was developed and results were compared to those from GC-MS analysis of filter samples. Similar total particle mass emission factors were observed under high and average wood loadings, however, high fuel loadings were found to generate significantly higher contributions of PAHs to the total organic aerosol (OA mass compared to average loadings. PAHs contributed 15 ± 4% (mean ± 2 sample standard deviations to the total OA mass in high load experiments, compared to 4 ± 1% in average load experiments. With aging, total OA concentrations increased by a factor of 3 ± 1 for high load experiments compared to 1.6 ± 0.4 for average load experiments. In the AMS, an

  1. Effect of oxyfuel burner ratio changes on energy efficiency in electric arc furnace at Co-Steel Lasco

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, M.J. [University of Toronto (Canada). Dept. of Mechanical and Industrial Engineering; Kournetas, N.G.; Sommerville, I.D.; McLean, A. [University of Toronto (Canada). Dept. of Metallurgy and Materials Science; Evenson, E. [Stantec Global Technologies Ltd., Mississauga (Canada); Guerard, J. [Co-Steel Lasco, Whitby (Canada)

    2001-07-01

    Trials were conducted on Co-Steel Lasco's electric arc furnace (EAF) to evaluate the effect of oxyfuel burner ratio changes on furnace energy efficiency and productivity. Carefully controlled trials with the collection of numerous process and sample data over 331 heats provided statistically significant results. The oxygen available for post-combustion in the furnace was increased by 19%. As the burners were operating at their maximum oxygen constraint, this was achieved by decreasing the natural gas consumption by 43%. Results of this study indicate that decreases in terms of specific electrical energy consumption (4.0%), power on time (5.0%), and tap to tap time (4.5%) were realised. Slag chemistry, electrode consumption, and yield were not affected. Measurement data support the finding that more heat was transferred into the steel with the post-combustion burners: a flat bath was achieved earlier; high bath temperatures were reached more quickly; power on time was reduced, leading to reduced electrical energy consumption. Analysis suggests that furnace thermal energy losses were reduced by less air inleakage, less incomplete methane combustion, and earlier achievement of foamy slag conditions. (author)

  2. Numerical study of a jet-in-hot-coflow burner with hydrogen-addition using the Flamelet Generated Manifolds technique

    Science.gov (United States)

    Abtahizadeh, Seyed Ebrahim; van Oijen, Jeroen; de Goey, Philip

    2012-11-01

    Recently Mild combustion is subjected to intensive research because of its unique ability to provide high efficiency and low pollutant combustion simultaneously in industrial heating processes. In most practical Mild combustion applications, a fuel jet is ignited due to recirculation of hot burned gases. The impact of burned gases on autoignition and flame stabilization has been studied in a laboratory jet-in-hot-coflow (JHC) burner. Results of this study help us to understand recent experimental observations of the Delft group (DJHC burner) in which Dutch Natural Gas (DNG) is mixed with various amounts of H2. The main focus is on the modeling of autoignition in the DJHC burner by using the Flamelet Generated Manifolds (FGM) technique. In this technique, kinetic information is tabulated with a few controlling variables which results in a significant decrease in simulation time. The FGM tabulation has been performed using igniting laminar counterflow diffusion flames. Since H2 is present in the fuel composition, it is essential to include preferential diffusion effects in the table due to the high diffusivity of H2. Based on results, the FGM table is capable to reproduce the autoignition of hydrogen containing fuel predicted by detailed chemistry in 1D counterflow flames. The Authors gratefully acknowledge financial support of the Dutch Technology Foundation STW.

  3. The Impact of Variable Inlet Mixture Stratification on Flame Topology and Emissions Performance of a Premixer/Swirl Burner Configuration

    Directory of Open Access Journals (Sweden)

    P. Koutmos

    2012-01-01

    Full Text Available The work presents the assessment of a low emissions premixer/swirl burner configuration utilizing lean stratified fuel preparation. An axisymmetric, single- or double-cavity premixer, formed along one, two, or three concentric disks promotes propane-air premixing and supplies the combustion zone at the afterbody disk recirculation with a radial equivalence ratio gradient. The burner assemblies are operated with a swirl co-flow to study the interaction of the recirculating stratified flame with the surrounding swirl. A number of lean and ultra-lean flames operated either with a plane disk stabilizer or with one or two premixing cavity arrangements were evaluated over a range of inlet mixture conditions. The influence of the variation of the imposed swirl was studied for constant fuel injections. Measurements of turbulent velocities, temperatures, OH* chemiluminescence and gas analysis provided information on the performance of each burner set up. Comparisons with Large Eddy Simulations, performed with an 11-step global chemistry, illustrated the flame front interaction with the vortex formation region under the influence of the variable inlet mixture stratifications. The combined effort contributed to the identification of optimum configurations in terms of fuel consumption and pollutants emissions and to the delineation of important controlling parameters and limiting fuel-air mixing conditions.

  4. Laminar burn rates of gun propellants measured in the high-pressure strand burner

    Energy Technology Data Exchange (ETDEWEB)

    Reaugh, J. E., LLNL

    1997-10-01

    The pressure dependence of the laminar burn rate of gun propellants plays a role in the design and behavior of high-performance guns. We have begun a program to investigate the effects of processing variables on the laminar burn rates, using our high-pressure strand burner to measure these rates at pressures exceeding 700 MPa. We have burned JA2 and M43 propellant samples, provided by Dr. Arpad Juhasz, ARL, from propellant lots previously used in round-robin tests. Our results at room temperature are in accord with other measurements. In addition, we present results measured for propellant that has been preheated to 50 C before burning. We used our thermochemical equilibrium code, CHEETAH, to help interpret the simultaneous pressure and temperature measurements taken during the testing, and show examples of its use. It has been modified to provide performance measures and equations of state for the products that are familiar to the gun-propellant community users of BLAKE.

  5. Laser Metal Deposition as Repair Technology for a Gas Turbine Burner Made of Inconel 718

    Science.gov (United States)

    Petrat, Torsten; Graf, Benjamin; Gumenyuk, Andrey; Rethmeier, Michael

    Maintenance, repair and overhaul of components are of increasing interest for parts of high complexity and expensive manufacturing costs. In this paper a production process for laser metal deposition is presented, and used to repair a gas turbine burner of Inconel 718. Different parameters for defined track geometries were determined to attain a near net shape deposition with consistent build-up rate for changing wall thicknesses over the manufacturing process. Spot diameter, powder feed rate, welding velocity and laser power were changed as main parameters for a different track size. An optimal overlap rate for a constant layer height was used to calculate the best track size for a fitting layer width similar to the part dimension. Deviations in width and height over the whole build-up process were detected and customized build-up strategies for the 3D sequences were designed. The results show the possibility of a near net shape repair by using different track geometries with laser metal deposition.

  6. Analysis of Reactor Deployment Scenarios with Introduction of SFR Breakeven Reactors and Burners Using DANESS Code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Hahn, Do Hee; Won, Byung Chool; Lee, Dong Uk

    2008-01-15

    Using the DANESS code newly employed for future scenario analysis, reactor deployment scenarios with the introduction of sodium cooled fast reactors(SFRs) having different conversion ratios in the existing PWRs dominant nuclear fleet have been analyzed to find the SFR deployment strategy for replacing PWRs with the view of a spent fuel reduction and an efficient uranium utilization through its reuse in a closed nuclear fuel cycle. Descriptions of the DANESS code and how to use are briefly given from the viewpoint of its first application. The use of SFRs and recycling of TRUs by reusing PWR spent fuel leads to the substantial reduction of the amount of PWR spent fuel and environmental burden by decreasing radiotoxicity of high level waste, and a significant improvement on the natural uranium resources utilization. A continuous deployment of burners effectively decreases the amount of PWR spent fuel accumulation, thus lightening the burden for PWR spent fuel management. An introduction of breakeven reactors effectively reduces the uranium demand through producing excess TRU during the operation, thus contributing to a sustainable nuclear power development. With SFR introduction starting in 2040, PWRs will remain as a main power reactor type till 2100 and SFRs will be in support of waste minimization and fuel utilization.

  7. Blow-off characteristics of turbulent premixed flames in curved-wall Jet Burner

    KAUST Repository

    Mansour, Morkous S.

    2015-08-02

    This study concerns the flame dynamics of a curved-wall jet (CWJ) stabilized turbulent premixed flame as it approaches blow-off conditions. Time resolved OH planar laser-induced fluorescence (PLIF) delineated reaction zone contours and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the turbulent flow field features. Ethylene/air flames were stabilized in CWJ burner to determine the sequence of events leading to blowoff. For stably burning flames far from blowoff, flames are characterized with a recirculation zone (RZ) upstream for flame stabilization followed by an intense turbulent interaction jet (IJ) and merged-jet regions downstream; the flame front counterparts the shear layer vortices. Near blowoff, as the velocity of reactants increases, high local stretch rates exceed the extinction stretch rates instantaneously resulting in localized flame extinction along the IJ region. As Reynolds number (Re) increases, flames become shorter and are entrained by larger amounts of cold reactants. The increased strain rates together with heat loss effects result in further fragmentation of the flame, eventually leading to the complete quenching of the flame. This is explained in terms of local turbulent Karlovitz stretch factor (K) and principal flow strain rates associated with C contours. Hydrogen addition and increasing the RZ size lessen the tendency of flames to be locally extinguished.

  8. Curved wall-jet burner for synthesizing titania and silica nanoparticles

    KAUST Repository

    Ismail, Mohamed

    2015-01-01

    A novel curved wall-jet (CWJ) burner was designed for flame synthesis, by injecting precursors through a center tube and by supplying fuel/air mixtures as an annular-inward jet for rapid mixing of the precursors in the reaction zone. Titanium dioxide (TiO2) and silicon dioxide (SiO2) nanoparticles were produced in ethylene (C2H4)/air premixed flames using titanium tetraisopropoxide (TTIP) and hexamethyldisiloxane (HMDSO) as the precursors, respectively. Particle image velocimetry measurements confirmed that the precursors can be injected into the flames without appreciably affecting flow structure. The nanoparticles were characterized using X-ray diffraction, Raman spectroscopy, the Brunauer-Emmett-Teller (BET) method, and high-resolution transmission electron microscopy. In the case of TiO2, the phase of nanoparticles could be controlled by adjusting the equivalence ratio, while the particle size was dependent on the precursor loading rate and the flame temperature. The synthesized TiO2 nanoparticles exhibited high crystallinity and the anatase phase was dominant at high equivalence ratios (φ > 1.3). In the case of SiO2, the particle size could be controlled from 11 to 18 nm by adjusting the precursor loading rate. © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  9. Fully-Enclosed Ceramic Micro-burners Using Fugitive Phase and Powder-based Processing

    Science.gov (United States)

    Do, Truong; Shin, Changseop; Kwon, Patrick; Yeom, Junghoon

    2016-08-01

    Ceramic-based microchemical systems (μCSs) are more suitable for operation under harsh environments such as high temperature and corrosive reactants compared to the more conventional μCS materials such as silicon and polymers. With the recent renewed interests in chemical manufacturing and process intensification, simple, inexpensive, and reliable ceramic manufacturing technologies are needed. The main objective of this paper is to introduce a new powder-based fabrication framework, which is a one-pot, cost-effective, and versatile process for ceramic μCS components. The proposed approach employs the compaction of metal-oxide sub-micron powders with a graphite fugitive phase that is burned out to create internal cavities and microchannels before full sintering. Pure alumina powder has been used without any binder phase, enabling more precise dimensional control and less structure shrinkage upon sintering. The key process steps such as powder compaction, graphite burnout during partial sintering, machining in a conventional machine tool, and final densification have been studied to characterize the process. This near-full density ceramic structure with the combustion chamber and various internal channels was fabricated to be used as a micro-burner for gas sensing applications.

  10. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  11. Burner Rig Hot Corrosion of Five Ni-Base Alloys Including Mar-M247

    Science.gov (United States)

    Nesbitt, James A.; Helmink, R.; Harris, K.; Erickson, G.

    2000-01-01

    The hot corrosion resistance of four new Ni-base superalloys was compared to that of Mar-M247 by testing in a Mach 0.3 burner rig at 900 C for 300 1-hr cycles. While the Al content was held the same as in the Mar-M247, the Cr and Co levels in the four new alloys were decreased while other strengthening elements (Re, Ta) were increased. Surprisingly, despite their lower Cr and Co contents, the hot corrosion behavior of all four new alloys was superior to that of the Mar-M247 alloy. The Mar-M247 alloy began to lose weight almost immediately whereas the other four alloys appeared to undergo an incubation period of 50-150 1-hr cycles. Examination of the cross-sectional microstructures showed regions of rampant corrosion attack (propagation stage) in all five alloys after 300 1-hr cycles . This rampant corrosion morphology was similar for each of the alloys with Ni and Cr sulfides located in an inner subscale region. The morphology of the attack suggests a classic "Type I", or high temperature, hot corrosion attack.

  12. Blending of hydrogen in natural gas distribution systems. Volume II. Combustion tests of blends in burners and appliances. Final report, June 1, 1976--August 30, 1977. [8, 11, 14, 20, 22, 25, and 31% hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-10-01

    The emerging ''hydrogen economy'' is a strong contender as one method to supplement or extend the domestic natural gas supply. This volume of the subject study ''Blending Hydrogen in Natural Gas Distribution Systems'' describes combustion studies to determine the maximum amount of hydrogen that can be blended in natural gas and utilized satisfactorily in typical appliances with no adjustment or conversion. Eleven pilot burners and twenty-three main burners typical of those in current use were operated on hydrogen-natural gas mixtures containing approximately 8, 11, 14, 20, 22, 25, and 31 percent, by volume, hydrogen. The eleven pilot burners and thirteen main burners were tested outside the appliance they were a part of. Ten main burners were tested in their respective appliances. Performance of the various burners tested are as follows: (1) Gas blends containing more than 6 to 11% hydrogen are the limiting mixtures for target type pilot burners. (2) Gas blends containing more than 20 to 22% hyrogen are the limiting mixtures for main burners operating in the open. (3) Gas blends containing more than 22 to 25% hydrogen are the limiting mixtures for main burners tested in appliances. (4) Modification of the orifice in target pilots or increasing the supply pressure to a minimum of 7 inches water column will permit the use of gas blends with 20% hydrogen.

  13. Fundamental research of development and optimization of ceramic recuperative burners. Final report; Grundlagenuntersuchung zur Entwicklung und Optimierung keramischer Rekuperatorbrenner. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Brune, M.; Boss, M.; Flamme, M.; Lynen, A.; Wuenning, J.A.; Wuenning, J.G.; Dittmann, H.J.; Seltmann, M.

    1998-10-01

    A significant reduction of CO{sub 2} emissions from high temperature processes can be accomplished by means of heat recovery from the flue gases. For several years now, recuperative burners consisting of reaction-bonded silicon carbide have been available on the market for temperatures above 110 C and for service with corrosive flue gases, where chromium-nickel steels cannot be used. With support from the BMBF and the gas industry, the ceramic recuperative burners have been developed for highr outputs and efficiencies. The relative air preheating, the pressure drop on the air- and flue gas side, the flue gas emission and the production costs have been considered for the development and optimization of full ceramic recuperative burners. Parallel to the development of the new recuperative burners, calculations with the CFD-programm FLUENT have been carried out for the description of the heat transfer processes in the recuperator and the combustion processes. With the help of these calculations the development expenditure could be reduced. Due to the development of the production technical possibilities for RbSiC-components, it has been proven possible to produce recuperators with surface structures using the slip casting technique which on the one hand can be manufactured at a rational price level and, on the other, achieve a relative air preheating of up to {epsilon}=0.8. By the new burner concepts the NO{sub x} emission could be lowered under the limit of the German TA Luft even at highest air preheating temperatures. For the direct heating the ceramic recuperative burners comes into action, where high application temperatures, e.g. in furnace forges or ceramic kilns, or aggressive flue gases are present. For the indirect heating in heat treatment installations the ceramic recuperative burners are used in connection with full ceramic radiant tubes. (orig.) [Deutsch] Bei Hochtemperaturprozessen ist eine erhebliche Verringerung des CO{sub 2}-Ausstosses durch

  14. Numerical investigation into premixed hydrogen combustion within two-stage porous media burner of 1 kW solid oxide fuel cell system

    Directory of Open Access Journals (Sweden)

    Tzu-Hsiang Yen, Wen-Tang Hong, Yu-Ching Tsai, Hung-Yu Wang, Cheng-Nan Huang, Chien-Hsiung Lee, Bao-Dong Chen

    2010-07-01

    Full Text Available Numerical simulations are performed to analyze the combustion of the anode off-gas / cathode off-gas mixture within the two-stage porous media burner of a 1 kW solid oxide fuel cell (SOFC system. In performing the simulations, the anode gas is assumed to be hydrogen and the combustion of the gas mixture is modeled using a turbulent flow model. The validity of the numerical model is confirmed by comparing the simulation results for the flame barrier temperature and the porous media temperature with the corresponding experimental results. Simulations are then performed to investigate the effects of the hydrogen content and the burner geometry on the temperature distribution within the burner and the corresponding operational range. It is shown that the maximum flame temperature increases with an increasing hydrogen content. In addition, it is found that the burner has an operational range of 1.2~6.5 kW when assigned its default geometry settings (i.e. a length and diameter of 0.17 m and 0.06 m, respectively, but increases to 2~9 kW and 2.6~11.5 kW when the length and diameter are increased by a factor of 1.5, respectively. Finally, the operational range increases to 3.5~16.5 kW when both the diameter and the length of the burner are increased by a factor of 1.5.

  15. Premixed Combustion of Kapok (ceiba pentandra seed oil on Perforated Burner

    Directory of Open Access Journals (Sweden)

    I.K.G. Wirawan

    2014-05-01

    Full Text Available Availability of fossil fuels in the world decrease gradually due to excessive fuel exploitation. This situations push researcher to look for alternative fuels as a source of renewable energy, one of them is kapok (ceiba pentandra seed oil. The aim this study was to know the behavior of laminar burning velocity, secondary Bunsen flame with open tip, cellular and triple flame. Premixed combustion of kapok seed oil was studied experimentally on perforated burner with equivalence ratio (φ varied from 0.30 until 1.07. The results showed that combustion of glycerol requires a large amount of air so that laminar burning velocity (SL is the highest at very lean mixture (φ =0.36 in the form of individual Bunsen flame on each of the perforated plate hole.  Perforated and secondary Bunsen flame both reached maximum SL similar with that of ethanol and higher than that of hexadecane. Slight increase of φ decreases drastically SL of perforated and secondary Bunsen flame. When the mixture was enriched, secondary Bunsen and perforated flame disappears, and then the flame becomes Bunsen flame with open tip and triple flame (φ = 0.62 to 1.07. Flame was getting stable until the mixture above the stoichiometry. Being isolated from ambient air, the SL of perforated flame, as well as secondary Bunsen flame, becomes equal with non-isolated flame. This shows the decreasing trend of laminar burning velocity while φ is increasing. When the mixture was enriched island (φ = 0.44 to 0.48 and petal (φ = 0.53 to 0.62 cellular flame take place. Flame becomes more unstable when the mixture was changed toward stoichiometry.

  16. Flat-flame burner studies of pulverized-coal combustion. Experimental results on char reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Peck, R.E.; Shi, L.

    1996-12-01

    Structure of laminar, premixed pulverized-coal flames in a 1-D reactor has been studied with emphasis on char reactivity. A 1.1-meter-long tube furnace accommodated high-temperature environments and long residence times for the laminar flames produced by a flat-flame, coal-dust burner. Experiments were conducted at different operating conditions (fuel type/size, fuel-air ratio). Measurements included solid sample composition, major gas species and hydrocarbon species concentrations, and gas- and particle-phase line-of-sight temperatures at different axial locations in flames. Degree of char burnout increased with coal volatiles content and decreased with coal particle size. Combustion in furnace was in oxidizer-deficient environment and higher burnout was achieved as the fuel-air ratio neared stoichiometric. For 0-45 {mu}m particles most of the fixed carbon mass loss occurred within 5 cm of the furnace inlet, and char reaction was slow downstream due to low oxidizer concentrations. Fixed carbon consumption of the 45-90 {mu}m particles generally was slower than for the small particles. About 40%-80% of the fixed carbon was oxidized in the furnace. Primary volatiles mass loss occurred within the first 4.5 cm, and more than 90% of the volatiles were consumed in the flames. The flames stabilized in the furnace produced less CH{sub 4} and H{sub 2} in the burnt gas than similar unconfined flames. NO concentrations were found to decrease along the furnace and to increase with decreasing fuel/air ratio. Temperature measurement results showed that gas-phase temperatures were higher than solid-phase temperatures. Temperatures generally decreased with decreasing volatiles content and increased as the equivalence ratio approached one. The results can be used to interpret thermochemical processes occurring in pulverized-coal combustion. (au) 15 refs.

  17. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  18. Preliminary studies of a new accelerator-driven minor actinide burner in industrial scale

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xunzhao; Zhou, Shengcheng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, No. 54, Beijing 100082 (China); Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China)

    2015-10-15

    Highlights: • A new accelerator-driven minor actinide (MA) burner was proposed. • Comprehensive design of spallation target, fuel assembly and subcritical core was performed. • Preliminary safety analyses indicate the inherent safety of the core in the reactivity insertion (500 pcm) and beam overpower (50% increase) transients. - Abstract: Pursuing high transmutation rate of minor actinide (MA), a preliminary conceptual design of a lead-bismuth (LBE) cooled accelerator-driven system (ADS) is proposed in this study. Parametric studies are performed to optimize the neutronics and thermal–hydraulics performances. The proton energy and axial position of the proton beam impact is investigated to obtain high neutron source efficiency and spallation neutron yield. The influences of MA/Pu mixing ratio and the ratio of pin pitch to diameter (P/D) are also optimized to control the burnup reactivity swing and the minimum coolant velocity for adequate cooling. To reduce the power peak, three kinds of power flattening techniques are adopted and compared. The results show that the inert matrix ratio zone loading method seems more versatile. Based on the analyses, an optimized three zone loading pattern is proposed for the 800 MWth subcritical core. The total transmutation rate of MA is 328.8 kg per effective full power year. Preliminary safety analyses based on the balance of power method (BOP) are performed and the results show that in the reactivity insertion and beam overpower transients, the core shows inherent safety, but the scram is necessary by cutting off the beam current to protect the core from possible damages caused by the loss of flow.

  19. Holy Smoke in Medieval Funerary Rites: Chemical Fingerprints of Frankincense in Southern Belgian Incense Burners

    Science.gov (United States)

    Baeten, Jan; Deforce, Koen; Challe, Sophie; De Vos, Dirk; Degryse, Patrick

    2014-01-01

    Frankincense, the oleogum resin from Boswellia sp., has been an early luxury good in both Western and Eastern societies and is particularly used in Christian funerary and liturgical rites. The scant grave goods in late medieval burials comprise laterally perforated pottery vessels which are usually filled with charcoal. They occur in most regions of western Europe and are interpreted as incense burners but have never been investigated with advanced analytical techniques. We herein present chemical and anthracological results on perforated funerary pots from 4 Wallonian sites dating to the 12–14th century AD. Chromatographic and mass spectrometric analysis of lipid extracts of the ancient residues and comparison with extracts from four Boswellia species clearly evidence the presence of degraded frankincense in the former, based on characteristic triterpenoids, viz. boswellic and tirucallic acids, and their myriad dehydrated and oxygenated derivatives. Cembrane-type diterpenoids indicate B. sacra (southern Arabia) and B. serrata (India) as possible botanical origins. Furthermore, traces of juniper and possibly pine tar demonstrate that small amounts of locally available fragrances were mixed with frankincense, most likely to reduce its cost. Additionally, markers of ruminant fats in one sample from a domestic context indicate that this vessel was used for food preparation. Anthracological analysis demonstrates that the charcoal was used as fuel only and that no fragrant wood species were burned. The chars derived from local woody plants and were most likely recovered from domestic fires. Furthermore, vessel recycling is indicated by both contextual and biomarker evidence. The results shed a new light on funerary practices in the Middle Ages and at the same time reveal useful insights into the chemistry of burned frankincense. The discovery of novel biomarkers, namely Δ2-boswellic acids and a series of polyunsaturated and aromatic hydrocarbons, demonstrates the

  20. Holy smoke in medieval funerary rites: chemical fingerprints of frankincense in southern Belgian incense burners.

    Directory of Open Access Journals (Sweden)

    Jan Baeten

    Full Text Available Frankincense, the oleogum resin from Boswellia sp., has been an early luxury good in both Western and Eastern societies and is particularly used in Christian funerary and liturgical rites. The scant grave goods in late medieval burials comprise laterally perforated pottery vessels which are usually filled with charcoal. They occur in most regions of western Europe and are interpreted as incense burners but have never been investigated with advanced analytical techniques. We herein present chemical and anthracological results on perforated funerary pots from 4 Wallonian sites dating to the 12-14th century AD. Chromatographic and mass spectrometric analysis of lipid extracts of the ancient residues and comparison with extracts from four Boswellia species clearly evidence the presence of degraded frankincense in the former, based on characteristic triterpenoids, viz. boswellic and tirucallic acids, and their myriad dehydrated and oxygenated derivatives. Cembrane-type diterpenoids indicate B. sacra (southern Arabia and B. serrata (India as possible botanical origins. Furthermore, traces of juniper and possibly pine tar demonstrate that small amounts of locally available fragrances were mixed with frankincense, most likely to reduce its cost. Additionally, markers of ruminant fats in one sample from a domestic context indicate that this vessel was used for food preparation. Anthracological analysis demonstrates that the charcoal was used as fuel only and that no fragrant wood species were burned. The chars derived from local woody plants and were most likely recovered from domestic fires. Furthermore, vessel recycling is indicated by both contextual and biomarker evidence. The results shed a new light on funerary practices in the Middle Ages and at the same time reveal useful insights into the chemistry of burned frankincense. The discovery of novel biomarkers, namely Δ2-boswellic acids and a series of polyunsaturated and aromatic hydrocarbons

  1. Holy smoke in medieval funerary rites: chemical fingerprints of frankincense in southern Belgian incense burners.

    Science.gov (United States)

    Baeten, Jan; Deforce, Koen; Challe, Sophie; De Vos, Dirk; Degryse, Patrick

    2014-01-01

    Frankincense, the oleogum resin from Boswellia sp., has been an early luxury good in both Western and Eastern societies and is particularly used in Christian funerary and liturgical rites. The scant grave goods in late medieval burials comprise laterally perforated pottery vessels which are usually filled with charcoal. They occur in most regions of western Europe and are interpreted as incense burners but have never been investigated with advanced analytical techniques. We herein present chemical and anthracological results on perforated funerary pots from 4 Wallonian sites dating to the 12-14th century AD. Chromatographic and mass spectrometric analysis of lipid extracts of the ancient residues and comparison with extracts from four Boswellia species clearly evidence the presence of degraded frankincense in the former, based on characteristic triterpenoids, viz. boswellic and tirucallic acids, and their myriad dehydrated and oxygenated derivatives. Cembrane-type diterpenoids indicate B. sacra (southern Arabia) and B. serrata (India) as possible botanical origins. Furthermore, traces of juniper and possibly pine tar demonstrate that small amounts of locally available fragrances were mixed with frankincense, most likely to reduce its cost. Additionally, markers of ruminant fats in one sample from a domestic context indicate that this vessel was used for food preparation. Anthracological analysis demonstrates that the charcoal was used as fuel only and that no fragrant wood species were burned. The chars derived from local woody plants and were most likely recovered from domestic fires. Furthermore, vessel recycling is indicated by both contextual and biomarker evidence. The results shed a new light on funerary practices in the Middle Ages and at the same time reveal useful insights into the chemistry of burned frankincense. The discovery of novel biomarkers, namely Δ2-boswellic acids and a series of polyunsaturated and aromatic hydrocarbons, demonstrates the high

  2. Fundamental study for the development and optimization of ceramic recuperator burners; Grundlagenuntersuchung zur Entwicklung und Optimierung keramischer Rekuperatorbrenner

    Energy Technology Data Exchange (ETDEWEB)

    Brune; Boss, M.; Flamme, M. [Gaswaerme-Institut e.V., Essen (Germany); Lynen, A. [Schunk Ingenieurkeramik GmbH, Willich (Germany); Wuenning, J.A.; Wuenning, J.G. [WS Waermeprozesstechnik GmbH, Renningen (Germany); Dittmann, H.J.; Seltmann, M. [Kromschroeder Prozesswaerme GmbH, Wuppertal (Germany)

    1998-06-01

    A significant reduction of CO{sub 2} emissions from high-temperature processes can be accomplished by means of recovery of heat from the flue gases. For several years now, recuperator burners consisting of reaction-bonded silicon carbide have been available on the market for temperatures above 1100 C and for service with corrosive flue gases, where chromium-nickel steels cannot be used. Ceramic recuperative burners for higher outputs and efficiencies have been developed with support from the BMBF and the gas industry. It has proven possible to produce ceramic recuperators which on the one hand can be manufactured at a rational price level and, on the other, achieve a relative air pre-heat of up to {epsilon}=0.8. In addition to optimization of these heat exchange elements, new burner systems by means of which NO{sub x} emissions can be reduced have also been developed. (orig.) [Deutsch] Bei Hochtemperaturprozessen ist eine erhebliche Verringerung des CO{sub 2}-Ausstosses durch Waermerueckgewinnung aus den Abgasen moeglich. Fuer Temperaturen oberhalb 1100 C und bei korrosiven Abgasen, bei denen Chrom-Nickel-Staehle nicht eingesetzt werden koennen, sind seit einigen Jahren Rekuperatorbrenner aus reaktionsgebundenem Siliciumcarbid auf dem Markt. Mit Foerderung vom BMBF und von der Gaswirtschaft wurden die keramischen Rekuperatorbrenner fuer hoehere Leistungen und Wirkungsgrade weiterentwickelt. Dabei ist es gelungen, keramische Rekuperatoren zu fertigen, die zum einen kostenguenstig hergestellt werden koennen und zum anderen bei einer Prozesstemperatur von 1300 C eine relative Luftvorwaermung von bis zu {epsilon}=0,8 erreichen. Neben der Optimierung der Waermetauscher wurden neue Brennersysteme entwickelt, mit denen die NO{sub x}-Emission reduziert wurde. (orig.)

  3. Development and application of autoignition burner%自动点火燃烧器的研制与应用

    Institute of Scientific and Technical Information of China (English)

    李卫权; 白田增; 吴德; 富玉海; 仪忠建; 任严

    2015-01-01

    钻井、井下作业及油井测试过程中将产生含有较多甲烷、乙烷以及少量易挥发的液态烃及微量的二氧化碳、氮、硫化氢等杂质的伴生气,给安全生产带来重大隐患。为了解决该问题,研发了自动点火燃烧器,该装置用太阳能电池板提供能源,当伴生气压力超过0.1 MPa时,控制系统自动打火点燃液化气,引燃燃烧区内伴生气。现场应用表明,该燃烧器结构设计合理,拆装、运输方便,使用过程中不产生明火,比以往同类手动产品更加安全可靠。%Drilling, downhole operation and oil well testing will generate associated gas which has high content of methane, ethane, small content of volatile liquid hydrocarbon as well as trace amount of carbon dioxide, nitrogen, hydrogen sulifde and other impurities, bringing about major hidden danger to production safety. An autoignition burner is developed, which adopts solar panel to provide energy. When associated gas pressure exceeds 0.1 MPa, control system will enable automatic ignition to ignite liqueifed gas combustion rod, thus to ignite the associated gas in combustion area. It is shown from ifeld application that the burner features reasonable structure design, convenient assembly or disassembly and transportation, and is not easy to generate open ifre, thus the burner is safer and more reliable than previous similar manual products.

  4. Experimental investigation on NO{sub x} emission and carbon burnout from a radially biased pulverized coal whirl burner

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Shan; Hui, Shi' en; Zhou, Qulan; Xu, Tongmo; Hu, Hongli [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Taisheng [Dongfang Boiler Group Co., Ltd., Zigong, Sichuan 643001 (China)

    2009-09-15

    Experiments have been performed on 1 MW pulverized coal (pc) furnace in order to investigate the characteristics of coal combustion and NO{sub x} emission from a new type of radially biased dual register whirl burner. The burner is characterized by a primary air pipe with a continuously changing cross-section and an impact ring. The mixture of pulverized coal and air inside the primary pipe is split into two streams, which are the outer pc rich annular jet and the inner pc lean annular jet respectively. Three Chinese coals, which are high rank bituminous coal, low rank bituminous coal and meager coal respectively, are used in the experiments. We examine the influences of various parameters such as the relative position of the over-fire air (OFA) nozzle, over-fire air ratio (19.1%), primary air ratio, inner secondary air ratio, outer secondary air ratio, inner secondary air swirling intensity, and outer secondary air swirling intensity on NO{sub x} formation and unburned carbon in fly ash. With the primary air ratio increasing from 13.4% to 23.4%, the value of the NO{sub x} emission of the SH coal decreases by 26.7% at first, and then increases by 21.7%. In contrast, the value of the carbon in fly ash (C{sub FA}) increases by 40.1% at first, and then decreases by 58.3%. According to the experimental results, the influence of each individual parameter on NO{sub x} formation and unburned carbon in fly ash agrees well with the existing literature. In this study, the influences of various combinations of these parameters are also examined, thus providing some reference for the design of the radial biased whirl burner, the configuration of the furnace and the distribution of the air. (author)

  5. A NEW DOUBLE-SLIT CURVED WALL-JET (CWJ) BURNER FOR STABILIZING TURBULENT PREMIXED AND NON-PREMIXED FLAMES

    KAUST Repository

    Mansour, Morkous S.

    2015-06-30

    A novel double-slit curved wall-jet (CWJ) burner was proposed and employed, which utilizes the Coanda effect by supplying fuel and air as annular-inward jets over a curved surface. We investigated the stabilization characteristics and structure of methane/air, and propane/air turbulent premixed and non-premixed flames with varying global equivalence ratio, , and Reynolds number, Re. Simultaneous time-resolved measurements of particle image velocimetry and planar laser-induced fluorescence of OH radicals were conducted. The burner showed potential for stable operation for methane flames with relatively large fuel loading and overall rich conditions. These have a non-sooting nature. However, propane flames exhibit stable mode for a wider range of equivalence ratio and Re. Mixing characteristics in the cold flow of non-premixed cases were first examined using acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions.PIV measurements revealed that velocity gradients in the shear layers at the boundaries of the annularjets generate the turbulence, enhanced with the collisions in the interaction jet, IJ,region. Turbulent mean and rms velocities were influenced significantly by Re and high rms turbulent velocities are generated within the recirculation zone improving the flame stabilization in this burner.Premixed and non-premixed flames with high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Re. For flames with low equivalence ratio, the processes of local quenching at IJ region and of re-ignition within merged jet region maintained these flames further downstream particularly for non-premixed methane flame, revealing a strong intermittency.

  6. Contribution to the development of the simulation model for the rotary cap burner in the marine steam boiler

    Directory of Open Access Journals (Sweden)

    Dvornik Joško

    2015-01-01

    Full Text Available This paper presents the simulation model for determining the intervals of preventive replacement of the system's components. The application of the Weibull distribution has been proved to be efficient in the approximation of many forms of delay, while numerical integration supported by Simpson formula and Fortran software has been applied to simulate optimum values of the preventive replacement of the components of the rotary cap burner SAACKE, type SKV 60 in the marine steam boiler, on the basis of the available data gathered through the system's exploitation and through empirical assumptions.

  7. Biomass Suspension Combustion: Effect of Two-Stage Combustion on NOx Emissions in a Laboratory-Scale Swirl Burner

    DEFF Research Database (Denmark)

    Lin, Weigang; Jensen, Peter Arendt; Jensen, Anker Degn

    2009-01-01

    result from the homogeneous reaction, by comparing the NO emissions when firing natural gas with NH3 addition and co-firing natural gas and biomass. The experimental results also show no significant increase of incomplete combustion of gas and char by applying optimized two-stage combustion.......A systematic study was performed in a suspension fired 20 kW laboratory-scale swirl burner test rig for combustion of biomass and co-combustion of natural gas and biomass. The main focus is put on the effect of two-stage combustion on the NO emission, as well as its effect on the incomplete...

  8. Research, development, and testing of a prototype two-stage low-input rate oil burner for variable output heating system applications

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, R.F.; Butcher, T.A. [Brookhaven National Labs., Upton, NY (United States)

    1997-09-01

    The use of a Two-Stage Fan Atomized Oil Burner (TSFAB) in space and water heating applications will have dramatic advantages in terms of it`s potential for a high Annual Fuel Utilization Efficiency (AFUE) and/or Energy Factor (EF) rating for the equipment. While demonstrations of a single rate burner in an actual application have already yielded sufficient confidence that space and domestic heating loads can be met at a single low firing rate, this represents only a narrow solution to the diverse nature of building space heating and domestic water loads that the industry must address. The mechanical development, proposed control, and testing of the Two-Stage burner is discussed in terms of near term and long term goals.

  9. Independent flameout alarm monitoring system of combustion furnace multi-burners%燃炉多燃烧器独立熄火报警监控系统

    Institute of Scientific and Technical Information of China (English)

    方平; 王一民; 于晓红; 曹旭杰; 何军民

    2014-01-01

    Various combustion furnaces in petrochemical industry use a large number of burners, the normal combustion of burners is related to the safe operation of the combustion furnace. This paper analy-ses how by endoscope-type high temperature probe capture video images of combustion furnace burners, and process images, judge flameout for each burner independently use of computer,when flameout appea-ring in the burner then giving the corresponding alarm. Proved with the accuracy of image analysis soft-ware for judge the flameout of the burner. In the petroleum chemical industry, it will produce far-reac-hing effect for all kinds of fuel, gas-fired boiler risk pre-alarm and safety operation monitoring.%石化各种燃炉内使用的大量燃烧器是否正常燃烧关系到整个燃炉的安全运行。该文分析了如何通过内窥式耐高温探头摄取燃炉内燃烧器视频图像,并使用计算机进行图像处理、分析,对每个燃烧器进行独立的熄火判断,在燃烧器熄火时给出相应的报警。论证了图像分析软件对燃烧器火焰判断的准确性,对石油化工行业各种燃油、燃气锅炉危险预报警等安全运行监控方面将产生深远的影响。

  10. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho

    2013-03-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of burner diameter, burner gap, and velocity ratio. A critical nitrogen mole fraction exists beyond which the flame cannot be sustained; the critical nitrogen mole fraction versus global strain rate curves have C-shapes for various burner diameters, burner gaps, and velocity ratios. At sufficiently high strain-rate flames, these curves collapse into one curve; therefore, the flames follow the one-dimensional flame response of a typical diffusion flame. Low strain-rate flames are significantly affected by radial conductive heat loss, and therefore flame length. Three flame extinction modes are identified: flame extinction through shrinkage of the outer-edge flame with or without oscillations at the outer-edge flame prior to the extinction, and flame extinction through a flame hole at the flame center. The extinction modes are significantly affected by the behavior of the outer-edge flame. Detailed explanations are provided based on the measured flame-surface temperature and numerical evaluation of the fractional contribution of each term in the energy equation. Radial conductive heat loss at the flame edge to ambience is the main mechanism of extinction through shrinkage of the outer-edge flame in low strain-rate flames. Reduction of the burner diameter can extend the flame extinction mode by shrinking the outer-edge flame in higher strain-rate flames. © 2012 Elsevier Ltd. All rights reserved.

  11. Experimental Study of the Burners for Liquefied Petroleum Gas%液化石油气烧嘴的试验研究

    Institute of Scientific and Technical Information of China (English)

    王璋保; 陶保国

    2000-01-01

    介绍了LYS2液化石油气烧嘴的结构特点和热工特点。它具有空-煤气混合好、调节比大、助燃空气压力低、可用于冷风或热风、适应性强等特点。%In this paper,the design and thermal characteristics of LYS2 type burner for liquefied petroleum gas are introduced. This kind of burner has good air/gas mixture ,large regulating ratio and low combustion air pressure ,and is applicable to cold or hot air.

  12. Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of

  13. Opposed Jet Burner Extinction Limits: Simple Mixed Hydrocarbon Scramjet Fuels vs Air

    Science.gov (United States)

    Pellett, Gerald L.; Vaden, Sarah N.; Wilson, Lloyd G.

    2007-01-01

    Opposed Jet Burner tools have been used extensively by the authors to measure Flame Strength (FS) of laminar non-premixed H2 air and simple hydrocarbon (HC) air counterflow diffusion flames at 1-atm. FS represents a strain-induced extinction limit based on air jet velocity. This paper follows AIAA-2006-5223, and provides new HC air FSs for global testing of chemical kinetics, and for characterizing idealized flameholding potentials during early scramjet-like combustion. Previous FS data included six HCs, pure and N2-diluted; and three HC-diluted H2 fuels, where FS decayed very nonlinearly as HC was added to H2, due to H-atom scavenging. This study presents FSs on mixtures of (candidate surrogate) HCs, some with very high FS ethylene. Included are four binary gaseous systems at 300 K, and a hot ternary system at approx. 600 K. The binaries are methane + ethylene, ethane + ethylene, methane + ethane, and methane + propylene. The first three also form two ternary systems. The hot ternary includes both 10.8 and 21.3 mole % vaporized n-heptane and full ranges of methane + ethylene. Normalized FS data provide accurate means of (1) validating, globally, chemical kinetics for extinction of non-premixed flames, and (2) estimating (scaling by HC) the loss of incipient flameholding in scramjet combustors. The n-heptane is part of a proposed baseline simulant (10 mole % with 30% methane + 60% ethylene) that mimics the ignition of endothermically cracked JP-7 like kerosene fuel, as suggested by Colket and Spadaccini in 2001 in their shock tube Scramjet Fuels Autoignition Study. Presently, we use FS to gauge idealized flameholding, and define HC surrogates. First, FS was characterized for hot nheptane + methane + ethylene; then a hot 36 mole % methane + 64% ethylene surrogate was defined that mimics FS of the baseline simulant system. A similar hot ethane + ethylene surrogate can also be defined, but it has lower vapor pressure at 300 K, and thus exhibits reduced gaseous

  14. Use of freeze-casting in advanced burner reactor fuel design

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin Madison, 1500 Engineering Drive, Madison, WI 53711 (United States); Burger, J.; Hunger, P. M.; Wegst, U. G. K. [Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755 (United States)

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models

  15. Method of Comparative Analysis of Highly Dispersed Condensed Fuel Combustion Efficiency in Arbitrary Geometry Solid Propellant Ramjet Burners

    Directory of Open Access Journals (Sweden)

    A. V. Voroneckii

    2016-01-01

    Full Text Available The paper deals with various theoretical approaches to the mathematical modeling of the operating process in solid propellant ramjets (SPRJ that use highly metalized solid propellant. It introduces a new method (combustion operating law method that allows us to carry out comparative analysis of combustion efficiency in SPRJ arbitrary geometry ram-burners (RB when there is no accurate information on the combustion law of condensed fuel particles. To illustrate an application of the proposed method, mathematical modeling of the operating process was conducted for three SPRJ ram-burners with three different air intakes (AI, for which distribution fields of main parameters of gas and fuel particles have been obtained. Most complete combustion of fuel particles and the lowest level of particles buildup are registered for RB180 (180 degree angle between AIs. The results of a comparative analysis show that the relative (compared to RB180 efficiency of the particle burning process equals 0.64 and 0.6, respectively, for RB90 (90 degree angle between AIs and RB60 (60 degree angle between AIs. The proposed method may be applied to solve the most difficult problems of mathematical modeling when the optimization development of the solid propellant and ramjet structure are fulfilled simultaneously, i.e. when designers do not have the complete information about the combustion law of the condensed fuel particles.

  16. Emissions and properties of Bio-oil and Natural Gas Co-combustion in a Pilot Stabilised Swirl Burner

    Science.gov (United States)

    Kowalewski, Dylan

    Fast pyrolysis oil, or bio-oil, has been investigated to replace traditional fossil fuels in industrial burners. However, flame stability is a challenge due to its high water content. In order to address its instability, bio-oil was co-fired with natural gas in a lab scale 10kW swirl burner at energy ratios from 0% bio-oil to 80% bio-oil. To evaluate the combustion, flame shape, exhaust and particulate emissions, temperatures, as well as infrared emission were monitored. As the bio-oil energy fraction increased, NO emissions increased due to the nitrogen content of bio-oil. CO and particulate emissions increased likely due to carbonaceous residue exiting the combustion zone. Unburnt Hydrocarbon (UHC) emissions increased rapidly as combustion became poor at 60-80% bio-oil energy. The temperature and infrared output decreased with more bio-oil energy. The natural gas proved to be effective at anchoring the bio-oil flame to the nozzle, decreasing instances of extinction or blowout.

  17. From Bunsen Burners to Fuel Cells: Invoking Energy Transducers to Exemplify "Paths" and Unify the Energy-Related Concepts of Thermochemistry and Thermodynamics

    Science.gov (United States)

    Hladky, Paul W.

    2009-01-01

    The conversion of chemical energy entirely into thermal energy by Bunsen burners and into thermal energy and electrical energy by fuel cells of varying efficiencies illustrates different paths by which a chemical reaction can occur. Using the efficiency of producing electrical energy as a path label allows all of the energy-related quantities to…

  18. Study on the Effect of the Side Secondary Air Velocity on the Aerodynamic Field in a Tangentially Fired Furnace with HBC—SSA Burner

    Institute of Scientific and Technical Information of China (English)

    ZhuTong; SunShaozeng; 等

    1999-01-01

    The present paper has compared a group of furnace aerodynamic fields at different velocities of side secondary air(SSA) in a test model of 420t/h utility boiler,applying Horizontal Bias Conbustion Pulverized Coal Burner with Side Secondary AIr(HBC-SSA Burner).Experimental results show that,when the ram pressure ratio of side secondary air(SSA) to primary air(PA) ρ2sv232/ρ1v12)is between 1.0-2.4,the furnace aerodynamic field only varies slightly.The relative rotational diameters(φ/L)in the burner domain are moderate and the furnace is in good fullness.Whenρ2s v232/ρ1v12 is beyond4,φ/L is so large that the stream sweeps water-cooled wall and rotateds strongly in the furnace.Therefore,slagging and high temperature corrosion of tube metal will be formed on the water-cooled wall in actual operation.This investigation provides the basis for the application of this new type burner.In addition,numerical simulations are conducted,and some defects in the numerical simulation are also pointed out and analyzed in this paper.

  19. Experimental characterization of a radiant porous burner for low temperatures using natural gas; Caracterizacao experimental de um queimador poroso radiante a gas natural para baixas temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Catapan, Rafael C.; Hissanaga, Newton Junior; Pereira, Fernando M.; Oliveira Junior, Amir A.M. de [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica; Serfaty, Ricardo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Freire, Luiz G.M. [PETROBRAS - RedeGasEnergia, RJ (Brazil)

    2004-07-01

    This article describes the experimental characterization of a radiant porous burner for temperatures between 500 deg C and 900 deg C. These low temperature radiant burners can be used in many practical applications as drying of paper and wood, plastic coating, food cooking and ambient heating. Two different configurations of silicon carbide porous ceramic foams were tested: one with a radian reflecting region (RRR) at the outlet and another without this region. Both configurations were able to sustain the reaction with equivalent ratio under 0,35. The configuration with a reflecting region was able to sustain flames with a minimum power of 60 kW/m{sup 2} and the other configuration with 100 W/m{sup 2}.The configuration with the RRR reached minimum superficial temperatures about 100 deg C lower than the other one. These results show that the reflecting region increases the heat recirculation inside the porous burner. The radiant efficiency varied from 20% to 35% for both burners. (author)

  20. Partial conversion of hydrocarbons to syngas and hydrogen in volumetric radiation burners as a prospective way to enhance the performance characteristics of power engines

    Science.gov (United States)

    Arutyunov, V. S.; Shmelev, V. M.; Shapovalova, O. V.; Rakhmetov, A. N.; Strekova, L. N.

    2013-03-01

    New type of syngas generator based on the partial conversion of natural gas (methane) or heavier hydrocarbons in volumetric permeable matrix burners in the conditions of locked infrared (IR) radiation is suggested as a high-productive, adaptable, and rather simple way of syngas and hydrogen production for various low-scale applications including enhancing the performance characteristics of power engines.

  1. 枪式辐射管燃气燃烧器的设计%Gun Type Gas Burners for Radiating Tube

    Institute of Scientific and Technical Information of China (English)

    冯华仲

    2000-01-01

    This article introduces a gun type of gas burners for radiating tube and a method of designing combustion unit for radiating rube.%介绍一种枪式辐射管燃气燃烧器及其燃烧头的设计。

  2. Comparison of In-Vessel Shielding Design Concepts between Sodium-cooled Fast Burner Reactor and the Sodium-cooled Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sunghwan; Kim, Sang Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, quantities of in-vessel shields were derived and compared each other based on the replaceable shield assembly concept for both of the breeder and burner SFRs. Korean Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR) like SFR was used as the reference reactor and calculation method reported in the reference was used for shielding analysis. In this paper, characteristics of in-vessel shielding design were studied for the burner SFR and breeder SFR based on the replaceable shield assembly concept. An in-vessel shield to prevent secondary sodium activation (SSA) in the intermediate heat exchangers (IHXs) is one of the most important structures for the pool type Sodium-cooled Fast Reactor (SFR). In our previous work, two in-vessel shielding design concepts were compared each other for the burner SFR. However, a number of SFRs have been designed and operated with the breeder concept, in which axial and radial blankets were loaded for fuel breeding, during the past several decades. Since axial and radial blanket plays a role of neutron shield, comparison of required in-vessel shield amount between the breeder and burner SFRs may be an interesting work for SFR designer. Due to the blanket, the breeder SFR showed better performance in axial neutron shielding. Hence, 10.1 m diameter reactor vessel satisfied the design limit of SSA at the IHXs. In case of the burner SFR, due to more significant axial fast neutron leakage, 10.6 m diameter reactor vessel was required to satisfy the design limit of SSA at the IHXs. Although more efficient axial shied such as a mixture of ZrH{sub 2} and B{sub 4}C can improve shielding performance of the burner SFR, additional fabrication difficulty may mitigate the advantage of improved shielding performance. Therefore, it can be concluded that the breeder SFR has better characteristic in invessel shielding design to prevent SSA at the IHXs than the burner SFR in the pool-type reactor.

  3. HT-NR3旋流燃烧器冷态试验%Cold-state test study on an HT-NR3 swirl burner

    Institute of Scientific and Technical Information of China (English)

    成汭珅; 张广才; 陈国辉; 周科; 王一坤; 解冰

    2014-01-01

    针对采用 HT-NR3旋流燃烧器锅炉存在的水冷壁以及侧墙高温腐蚀、燃烧器喷口烧损等问题,将燃烧器扩口角度从45°改为35°,并对这2种不同扩口角度的 HT-NR3燃烧器进行冷态试验研究。结果表明,与采用45°扩口的燃烧器相比,采用35°扩口燃烧器的回流区和出口气流扩展角均较小,外二次风旋流叶片的调节范围更广,对煤种的适应性更强,可有效防止燃烧器喷口结渣和烧毁,提高燃烧的稳定性,有利于降低N Ox 的排放。%To solve such problems as high temperature corrosion and burner outlet burnt occurred in water wall and furnace side wall in boilers equipped with HT-NR3 swirl burners,the burner flaring angle was changed from 45°to 35°,and cold-state tests were carried out on the HT-NR3 swirl burner with the above two burner flaring angles.The results show that,compared with the burner with flaring angle of 45°,the one with that of 35°has smaller recirculation zone and outlet gas spread angle,wider regulation range of outer secondary air swirl blade and stronger adaptability for coal type.Therefore,it can prevent the burner outlet from slagging and being burnt effectively,which improved the stability of the combustion and was helpful to the reduction of NOx emission.

  4. First archeointensity determinations on Maya incense burners from Palenque temples, Mexico: New data to constrain the Mesoamerica secular variation curve

    Science.gov (United States)

    Fanjat, G.; Camps, P.; Alva Valdivia, L. M.; Sougrati, M. T.; Cuevas-Garcia, M.; Perrin, M.

    2013-02-01

    We present archeointensity data carried out on pieces of incense burners from the ancient Maya city of Palenque, Chiapas, Mexico, covering much of the Mesoamerican Classic period, from A.D. 400 to A.D. 850. We worked on pieces from 24 incense burners encompassing the five Classic ceramic phases of Palenque: Motiepa (A.D. 400-500), Cascadas (A.D. 500-600), Otulum (A.D. 600-700), Murcielagos (A.D. 700-770), and Balunté (A.D. 770-850). All the samples come from highly elaborate, flanged pedestal of incense burners that are undoubtedly assigned to a ceramic phase by means of their iconographic, morphological and stylistic analyses. Archeointensity measurements were performed with the Thellier-Thellier's method on pre-selected samples by means of their magnetic properties. We obtained archeointensities of very good technical quality from 19 of 24 pieces, allowing the determination of a precise mean value for each ceramic phase, between 29.1±0.9 μT and 32.5±1.2 μT. The firing temperatures of ceramics were estimated with Mössbauer spectroscopy between 700 °C and 1000 °C. These values ensure that a full thermo-remanent magnetization was acquired during the original heating. Our results suggest a relative stability of the field intensity during more than 400 years in this area. The abundance of archeological material in Mesoamerica contrasts with the small amount of archeomagnetic data available that are, in addition, of uneven quality. Thus, it is not possible to establish a trend of intensity variations in Mesoamerica, even using the global databases and secular variation predictions from global models. In this context, our high technical quality data represent a strong constraint for the Mesoamerican secular variation curve during the first millennium AD. The corresponding Virtual Axial Dipole Moments (VADM) are substantially smaller than the ones predicted by the last global geomagnetic models CALS3k.4, suggesting the need for additional data to develop a

  5. Aerothermodynamic cycle analysis of a dual-spool, separate-exhaust turbofan engine with an interstage turbine burner

    Science.gov (United States)

    Liew, Ka Heng

    This study focuses on a specific engine, i.e., a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). This conventional turbofan engine has been modified to include a secondary isobaric burner, i.e., ITB, in a transition duct between the high-pressure turbine and the low-pressure turbine. The preliminary design phase for this modified engine starts with the aerothermodynamics cycle analysis is consisting of parametric (i.e., on-design) and performance ( i.e., off-design) cycle analyses. In parametric analysis, the modified engine performance parameters are evaluated and compared with baseline engine in terms of design limitation (maximum turbine inlet temperature), flight conditions (such as flight Mach condition, ambient temperature and pressure), and design choices (such as compressor pressure ratio, fan pressure ratio, fan bypass ratio etc.). A turbine cooling model is also included to account for the effect of cooling air on engine performance. The results from the on-design analysis confirmed the advantage of using ITB, i.e., higher specific thrust with small increases in thrust specific fuel consumption, less cooling air, and less NOx production, provided that the main burner exit temperature and ITB exit temperature are properly specified. It is also important to identify the critical ITB temperature, beyond which the ITB is turned off and has no advantage at all. With the encouraging results from parametric cycle analysis, a detailed performance cycle analysis of the identical engine is also conducted for steady-state engine performance prediction. The results from off-design cycle analysis show that the ITB engine at full throttle setting has enhanced performance over baseline engine. Furthermore, ITB engine operating at partial throttle settings will exhibit higher thrust at lower specific fuel consumption and improved thermal efficiency over the baseline engine. A mission analysis is also presented to predict the fuel

  6. EXERGY ANALYSIS OF COMBUSTION PROCESS OF CERAMIC BURNER%陶瓷燃烧器燃烧过程的可用能分析

    Institute of Scientific and Technical Information of China (English)

    饶荣水

    2001-01-01

    Based on exergy analysis of combustion process,the exergy loss rate was presented to estimate the irreversible exergy loss.The paper computed exergy loss rate of combustion process of ceramic burner,and the results showed that compared with tube in tube type ceramic burner,the new type ceramic burner could preheat air and gas,raise theoretical combustion temperature of gas,reduce exergy loss rate during combustion process and raise utilization efficiency of energy.The essential differences between new type ceramic burner and tube in tube type ceramic burner were revealed from the point of view of exergy analysis.%在燃烧过程可用能分析的基础上,提出可用能损失率指标,它可用于衡量燃烧过程不可逆损失的程度。对陶瓷燃烧器燃烧过程的可用能损失率,计算结果表明:与套筒式陶瓷燃烧器相比,新型陶瓷燃烧器对空、煤气有预热作用,可提高煤气的理论燃烧温度,降低燃烧过程的可用能损失率,提高能量的有效利用率。从可用能的观点揭示了新型陶瓷燃烧器与套筒式陶瓷燃烧器的本质区别。

  7. Research and application of hydrocarbon steam reformer ’s burners%烃类蒸汽转化炉燃烧器的研究与应用

    Institute of Scientific and Technical Information of China (English)

    徐凯

    2016-01-01

    针对KBR烃类蒸汽转化炉炉顶燃烧器工况恶化的现状,数值模拟计算了燃料组分、混合方式对燃烧特性的影响,对燃烧器形式及结构参数等关键因素进行了研究。在原有“燃料分段”加“烟气再循环”技术的基础上,提出了“空气分段”加“烟气再循环”的国产化改造方案。将原有“圆筒型燃料器”改造为新型超低NOx排放设计的“扁平式燃烧器”。通过改造,燃烧状况得到明显改善,达到了节能减排的目的。%According to the present situation of condition deterioration in the KBR hydrocarbon steam reformerˊs arch burners, the influences of fuel composition and mixed mode on the combustion characteristics were calculated by numerical simulation, and the key factors such as the form and structure parameters of the burner were studied. On the basis of the original "Staged-Fuel Burners" and "Flue Gas Recirculation" technology, a localized modification plan of "Staged-Air Burners” and "Flue Gas Recirculation" was proposed. The original "Cylinder Type Burner" was transformed into a new type of "Flat Flame Burner for the Design of Ultra Low NOx Emissions". By means of modification, the combustion state could be improved obviously, achieving the purpose of energy-saving and emission reduction.

  8. Oil burners: Crude oil, atomization, and combustion efficiency. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The bibliography contains citations concerning fuel properties and boiler operations techniques to make maximum use of heavy crude oil, shale oil, and low grade fuels to reduce energy costs in boiler firing. Fuel properties pertain to chemical constituents, viscosity, desulfurization, and processing methods to upgrade the fuels. Operating techniques include atomization, dual-fuel burners, emission characteristics, and cost factors. Combustion efficiency is examined and some citations report on additives or processing techniques to improve the efficiency. The citations also report on studies of health effects in the use of synfuels, mostly as coal liquids to replace oil. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Co-firing straw with coal in a swirl-stabilized dual-feed burner: modelling and experimental validation

    DEFF Research Database (Denmark)

    Yin, Chungen; Kær, Søren Knudsen; Rosendahl, Lasse

    2010-01-01

    This paper presents a comprehensive computational fluid dynamics (CFD) modelling study of co-firing wheat straw with coal in a 150 kW swirl-stabilized dual-feed burner flow reactor, in which the pulverized straw particles (mean diameter of 451μm) and coal particles (mean diameter of 110.4μm) are ...... burnout of the two fuels is predicted: about 93% for coal char vs. 73% for straw char. As the conclusion, a reliable modelling methodology for pulverized biomass/coal co-firing and some useful co-firing design considerations are suggested....... conversion. It is found that for pulverized biomass particles of a few hundred microns in diameter the intra-particle heat and mass transfer is a secondary issue at most in their conversion, and the global four-step mechanism of Jones and Lindstedt may be better used in modelling volatiles combustion...

  10. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States)

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  11. Research and Development of Ethylene Cracking Furnace Hearth Burner%大型裂解炉用底部燃烧器的国产化研发

    Institute of Scientific and Technical Information of China (English)

    李金科; 徐红兵; 刘韫砚; 张建

    2012-01-01

    Aiming at the request of ethylene cracking furnace hearth burner for the flame shape, the flame stability, the heat flux distribution and the NO, emission, by fuel classification method combined with research of the burner tips and the wind channel, the original structure of the hearth burner was determined. The burner structure was improved by computational fluid dynamics simulation, and the pollution emission and the heat flux distribution were validated through thermal state test. Then, the hearth burner of large-scale ethylene cracking furnace was developed successfully. Industrial application of the hearth burner indicated that the combustion was complete and the flame was flat and steady. The max wall temperature of the furnace tube was 1 044 ℃ after the furnace running 55 d and NOx emission was 127 mg/m3(standard state).%针对大型裂解炉用底部燃烧器对火焰形状、火焰刚性、热通量分布和NOx排放的要求,利用燃料分级原理,结合喷嘴和配风方面的研究确定了燃烧器的结构型式;通过多方案流体动力学模拟计算对燃烧器的结构进行改进,同时通过热态试验验证了燃烧器的污染物排放、热通量分布等性能,最终开发出具有自主知识产权的大型裂解炉用底部燃烧器.在1Mt/a乙烯装置裂解炉的工业应用结果表明,裂解炉内燃烧完全,火焰扁平刚直,运行55d时管壁最高温度为1044℃,NOx放量为127mg/m3(标准状态),燃烧器的性能完全满足裂解炉的工艺要求及环保要求.

  12. Powder Leakage Cause Analysis and Control Measures of Double Cyclone Pulverized Coal Burner%双旋风煤粉燃烧器漏粉原因分析和控制措施

    Institute of Scientific and Technical Information of China (English)

    王勇; 蒋治其

    2015-01-01

    "W"type flame boiler burner is pulverized coal burner. Because of the large number and big size of the devices, the design layout is compact and there are many flange connections between devices. In order to ensure installation quality and operation safety of the burner, this article analyzes the causes and introduces the control measures of burner powder leakage from the aspect of installation.%“W”型火焰锅炉燃烧器为旋风煤粉燃烧器,因其设备多、设备尺寸较大,因而设计布置紧凑、设备间法兰连接较多。为保证燃烧器安装质量以及运行安全,本文从安装角度出发对燃烧器漏粉进行了原因分析和控制措施。

  13. Principles of Selecting Type of Direct Flow Pulverized Coal Burner before Retrofit%直流煤粉燃烧器改造前的选型原则

    Institute of Scientific and Technical Information of China (English)

    李凤瑞

    2001-01-01

    针对锅炉燃烧器改造问题,提出在燃烧器改造前如何根据锅炉实际情况选择合适燃烧器类型的5项选型原则,包括煤种匹配原则、炉型匹配原则、工作业绩及创新性原则、经济性及安装检修方便性原则、运行自适应原则。对电厂煤粉燃烧器的改造有一定参考作用。%Which structure type of burner should be adopted for various utilities pulverized coal-fired boilers﹖ This paper puts forward five principles of selecting burner's type being of directive significance for the power plant that is going to retrofit burners.

  14. Efficiency of using direct-flow burners and nozzles in implementation of dry-bottom ash removal at the TPP-210A boiler furnace

    Science.gov (United States)

    Arkhipov, A. M.; Kanunnikov, A. A.; Kirichkov, V. S.; Prokhorov, V. B.; Fomenko, M. V.; Chernov, S. L.

    2017-02-01

    In reconstruction of operating pulverized coal-fired boilers, one of the main factors is the choice of a method for slag removal: dry bottom ash removal (DBAR) or slag-tap removal (STR). In this case, ecological and economic aspects should be taken into account, and also the early ignition of pulverized coal fuel, the reliability of operation of the furnace walls in the mode without slagging, and the stability of slag removal should be provided. In this work, issues of changeover of the pulverized coal-fired boilers of the TPP-210A type from the STR mode to the DBAR mode are considered. As of today, the main problems during the operation of these boilers are the high emissions of nitrogen oxides together with flue gases into the atmosphere and the appropriated payoffs, a small range of loads available, the necessity of stabilization of the pulverizedcoal flame sustainability by using the highly reactive fuel, large mechanical fuel underburning, etc. Results of studying aerodynamics of a furnace with DBAR obtained in the process of physical simulation are given; technical solutions and preliminary design (configuration of burners and nozzles in the boiler furnace, conceptual design of the pulverized coal burner, configuration of TPP-210A boiler with the low heat liberation of furnace cross-section and volumetric heat release) are set forth, which are associated with the optimization of aerodynamics of furnace volume, when the direct-flow burners and nozzles are used, and with organization of the efficient staged combustion of solid fuel. Two versions of possible modernization of a boiler unit are considered. Under conditions of the planned increase in the steam production capacity, the most promising measures are as follows: the DBAR implementation with reducing heat releases of the cross-section and volume of the furnace approximately by half, the installation of the direct-flow burners and nozzles with injection of recirculation gases into the active combustion

  15. Experimental and theoretical investigations for optimizing the electric ignition of natural gas fuelled industrial burners; Experimentelle und theoretische Untersuchungen zur Optimierung der elektrischen Zuendung von erdgasbetriebenen Industriebrennern

    Energy Technology Data Exchange (ETDEWEB)

    Koesters, M.; Scherello, A.; Flamme, M.; Kremer, H.

    2001-07-01

    The effects of the key flow, mixing and ignition parameters on the ignition process was investigated in near-practical conditions. It was found that the ignition energy can be minimized by careful selection of the electrode configuration and positioning near the burner. Further, a criterion was developed for developing characteristic fields and design specifications for gas burners. The FLUENT code can calculate the mixing, flow and turbulence situation of a burner. This, and plus the newly established ignition criterion, can support the development of characteristic fields and help to minimize the experimental expenditure. [German] Der Einfluss der wichtigsten Stroemungs-, Mischungs- und Zuendparameter auf die Zuendung wurde mit Hilfe gezielter experimenteller und theoretischer Untersuchungen unter industrienahen Bedingungen getestet. Hierbei konnte eine gute Uebereinstimmung zwischen den Messungen und Rechnungen erzielt werden. Die Ergebnisse haben gezeigt, dass durch eine geeignete Wahl der Elektrodenkonfiguration und der Elektrodenpositionierung im Brennernahbereich eine Zuendenergieminimierung erreicht werden kann. Gleichzeitig wurde ein Kriterium entwickelt, das zur Erarbeitung von Kennfeldern und Auslegungsvorschriften fuer Gasbrenner genutzt werden kann. Mit Hilfe des kommerziellen CFD-Programms FLUENT kann die Mischungs-, Stroemungs- und Turbulenzsituation eines Brenners numerisch berechnet werden. Mittels dieser Ergebnisse und unter Anwendung des ermittelten Zuendkriteriums kann die Erstellung von Arbeits- und Zuendkennfeldern fuer die Neuentwicklung bzw. Verbesserung von Industriegasbrennern unterstuetzt und somit der experimentelle Aufwand minimiert werden. (orig.)

  16. Real-Time Thermographic-Phosphor-Based Temperature Measurements of Thermal Barrier Coating Surfaces Subjected to a High-Velocity Combustor Burner Environment

    Science.gov (United States)

    Eldridge, Jeffrey I.; Jenkins, Thomas P.; Allison, Stephen W.; Cruzen, Scott; Condevaux, J. J.; Senk, J. R.; Paul, A. D.

    2011-01-01

    Surface temperature measurements were conducted on metallic specimens coated with an yttria-stabilized zirconia (YSZ) thermal barrier coating (TBC) with a YAG:Dy phosphor layer that were subjected to an aggressive high-velocity combustor burner environment. Luminescence-based surface temperature measurements of the same TBC system have previously been demonstrated for specimens subjected to static furnace or laser heating. Surface temperatures were determined from the decay time of the luminescence signal of the YAG:Dy phosphor layer that was excited by a pulsed laser source. However, the furnace and laser heating provides a much more benign environment than that which exists in a turbine engine, where there are additional challenges of a highly radiant background and high velocity gases. As the next step in validating the suitability of luminescence-based temperature measurements for turbine engine environments, new testing was performed where heating was provided by a high-velocity combustor burner rig at Williams International. Real-time surface temperature measurements during burner rig heating were obtained from the decay of the luminescence from the YAG:Dy surface layer. The robustness of several temperature probe designs in the sonic velocity, high radiance flame environment was evaluated. In addition, analysis was performed to show whether the luminescence decay could be satisfactorily extracted from the high radiance background.

  17. Design and manufacture of an atmospheric burner of biogas with rural application; Diseno y construccion de un quemador atmosferico de biogas con aplicaciones rurales

    Energy Technology Data Exchange (ETDEWEB)

    Nunez Nunez, Jorge; Suarez Pacheco, Jose; Novelo Navarrete, Jose H; Soto Apolinar, Efrain [Universidad de Quintana Roo, Chetumal, Quintana Roo (Mexico)

    2000-07-01

    In this text it's resumed the methodology that was carried out to make an atmospheric burner of biogas, as the criteria that were taken in account in order to determine the main parameters of it. It introduces a synthesis of the stages of design and manufacture of the device. The utility of this type of burner increase the efficiency of the oxidation of the biogas compared with the use of conventional burners that aren't designed for this purpose. [Spanish] En este trabajo se resume la metodologia que se llevo a cabo para la construccion de un quemador de biogas tipo atmosferico, asi como los criterios que se tomaron para la determinacion de los parametros principales del mismo. Se presenta una sintesis de las etapas de diseno y manufactura del dispositivo. El uso de este tipo de quemadores aumenta la eficiencia de la oxidacion del biogas en comparacion con el uso de quemadores convencionales que no estan disenados para quemar biogas.

  18. Comparative study of the combustion characteristics of slot burner%缝隙式燃烧器燃烧特性对比研究分析

    Institute of Scientific and Technical Information of China (English)

    刘艳领; 陈玉忠

    2012-01-01

    The paper introduced varies of typical construction characteristics of the slot burner. Through comparative analysis of the stability, combustion economy, slagging property of the W - type flame boiler in different slot burner, the paper presented the improving direction of the slot burner, which layout the exhaust steam in the second tuyere near the center of the furnace health and layout the anti - slagging second wind in the primary wind front and rear wall side.%介绍了几种典型的缝隙式燃烧器的结构特点,通过对不同缝隙式燃烧器“W”火焰锅炉的燃烧稳定性、燃烧经济性、结渣特性的对比分析,指出了缝隙式燃烧器的改进方向,即乏汽应布置于靠炉膛中心侧的二次风喷口处,在一次风靠前后墙侧布置防结渣的二次风。

  19. Studies on Low Calorific Value Coal Bed Methane Burner and Optimal Analysis%低热值煤层气燃烧器的研究

    Institute of Scientific and Technical Information of China (English)

    杨盼盼; 施永红

    2015-01-01

    低热值煤层气一般与固体燃料混烧,被广泛应用于发电、化工等工业领域。因此,研究和开发适合低热值煤层气的燃烧器具有重要的工业应用价值和学术意义。介绍了三种燃气燃烧器的结构、工作原理及其特点,对其燃烧效率等进行分析对比。并介绍了低热值煤层气燃烧器的研究进展、存在问题和未来的发展趋势。%Low calorific value CBM generally burn with solid fuel.It is widely used in industrial fields for power generation, chemical industry and so on.Therefore, researching and development suited to low calorific value coal bed methane burner has important industrial application value and academic significance. This paper introduces three gas burner structure, working principle and characteristics, comparatively analyzed to combustion efficiency,etc. And describes the research progress,the existing problems and future trends in low calorific value coal bed methane burner.

  20. Assessment against Experiments of Devolatilization and Char Burnout Models for the Simulation of an Aerodynamically Staged Swirled Low-NOx Pulverized Coal Burner

    Directory of Open Access Journals (Sweden)

    Marco Torresi

    2017-01-01

    Full Text Available In the next few years, even though there will be a continuous growth of renewables and a loss of the share of fossil fuel, energy production will still be strongly dependent on fossil fuels. It is expected that coal will continue to play an important role as a primary energy source in the next few decades due to its lower cost and higher availability with respect to other fossil fuels. However, in order to improve the sustainability of energy production from fossil fuels, in terms of pollutant emissions and energy efficiency, the development of advanced investigation tools is crucial. In particular, computational fluid dynamics (CFD simulations are needed in order to support the design process of low emission burners. Even if in the literature several combustion models can be found, the assessment of their performance against detailed experimental measurements on full-scale pulverized coal burners is lacking. In this paper, the numerical simulation of a full-scale low-NO x , aerodynamically-staged, pulverized coal burner for electric utilities tested in the 48 MW th plant at the Combustion Environment Research Centre (CCA - Centro Combustione e Ambiente of Ansaldo Caldaie S.p.A. in Gioia del Colle (Italy is presented. In particular, this paper is focused on both devolatilization and char burnout models. The parameters of each model have been set according to the coal characteristics without any tuning based on the experimental data. Thanks to a detailed description of the complex geometry of the actual industrial burner and, in particular, of the pulverized coal inlet distribution (considering the entire primary air duct, in order to avoid any unrealistic assumption, a correct selection of both devolatilization and char burnout models and a selection of suited parameters for the NO x modeling, accurate results have been obtained in terms of NO x formation. Since the model parameters have been evaluated a priori, the numerical approach proposed

  1. Study on Operation Performance of a New Swirl Burner%一种新型旋流燃烧器的工作特性研究

    Institute of Scientific and Technical Information of China (English)

    王慧青; 罗睿; 周屈兰; 田明泉; 赵钦新; 惠世恩

    2011-01-01

    A new type of swirl burner for dense-dilute pulverized coal is presented,of which the outlet jet is composed of dense-dilute primary air and inside/outside secondary air,and the spout structure is specially made.Parameters of aerodynamic field at outlet of model burner was measured using hot-wire anemometer,while the effect of gas-solid separation studied in the way of particle capture after the mixture of primary air and pulverized coal having passed through the burner was analyzed.Results indicate that the new type burner can form a superior and stable aerodynamic field,which is able to strengthen the recirculating flow,enhance the turbulent intensity around axis,improve the ignition condition and therefore control the NOx emission.The coal concentrator has a significant effect on the dense-dilute seperation and the rich-lean ratio at burner outlet can be increased up to 4∶1.%提出了一种具有新型结构的浓淡式旋流燃烧器,其出口射流由浓淡一次风、内外二次风组成,喷口为特制结构.采用热线风速仪对燃烧器模型出口空气动力场参数进行了测试,同时以颗粒捕集法为手段对一次风粉混合物在经过燃烧器后的气固分离效果进行了试验研究.结果表明:新型燃烧器具有优越且稳定的空气动力场,能够强化回流,提高轴线附近湍动度水平,有利于改善着火条件,抑制NOx污染物的形成;煤粉浓缩装置对实现浓淡分离的作用显著,燃烧器出口浓淡比可达4∶1以上.

  2. Numerical study of effect of oxygen fraction on local entropy generation in a methane–air burner

    Indian Academy of Sciences (India)

    Huseyin Yapici; Gamze Basturk; Nesrin Kayatas; Bilge Albayrak

    2004-12-01

    This study considers numerical simulation of the combustion of methane with air, including oxygen and nitrogen, in a burner and the numerical solution of local entropy generation rate due to high temperature and velocity gradients in the combustion chamber. The effects of equivalence ratio () and oxygen percentage () on combustion and entropy generation rates are investigated for different (from 0·5 to 1·0) and values (from 10 to 30%). Combustion is simulated for the fuel mass flow rate resulting in the same heat transfer rate $(\\dot{Q})$ to the combustion chamber in each case. Numerical calculation of combustion is performed individually for all cases with the use of the Fluent CFD code. Furthermore, a computer program has been developed to calculate the volumetric entropy generation rate and the other thermodynamic parameters numerically by using the results of the calculations performed with the FLUENT code. The predictions show that the increase of (or the decrease of ) significantly reduces the reaction rate levels. Average temperature in the combustion chamber increases by about 70 and 35% with increase of (from 10 to 30%) and (from 0·5 to 1·0) respectively. With increase of from 10 to 30%, volumetric local entropy generation rate decreases by about 9 and 4% for $\\phi =$ 0·5 and 1·0 respectively, while total entropy generation rate decreases exponentially and the merit numbers increase. The ratio of the rates useful energy transfer to irreversibility therefore improves as the oxygen percentage increases.

  3. Development and demonstration plant operation of an opposed multi-burner coal-water slurry gasification technology

    Institute of Scientific and Technical Information of China (English)

    WANG Fuchen; ZHOU Zhijie; DAI Zhenhua; GONG Xin; YU Guangsuo; LIU Haifeng; WANG Yifei; YU Zunhong

    2007-01-01

    The features of the opposed multi-burner (OMB) gasification technology,the method and process of the research,and the operation results of a pilot plant and demon stration plants have been introduced.The operation results of the demonstration plants show that when Beisu coal was used as feedstock,the OMB CWS gasification process at Yankuang Cathy Coal Co.Ltd had a higher carbon conversion of 3%,a lower specific oxygen consumption of about 8%,and a lower specific carbon consumption of 2%-3% than that of Texaco CWS gasification at the Lunan Fertilizer Plant.When Shenfu coal was used as feedstock,the OMB CWS gasification process at Hua-lu Heng-sheng Chemical Co.Ltd had a higher carbon conversion of more than 3%,a lower specific oxygen consumption of about 2%,and a lower specific coal consumption of about 8% than that of the Texaco CWS gasification process at Shanghai Coking & Chemical Corporation.The OMB CWS gasification technology is proven by industrial experience to have a high product yield,low oxygen and coal consumption and robust and safe operation.

  4. Effect of the Number of Injectors on the Mixing Process in a Rapidly Mixed Type Tubular Flame Burner

    Directory of Open Access Journals (Sweden)

    Y. Chouari

    2017-01-01

    Full Text Available Three-dimensional simulations are performed to study the non-reactive mixing process in a rapidly mixed type tubular flame burner (RTFB. The current work examines the effect of the number of injectors (N= 2, 4 and 6 on the mixing process by focusing on three criterions (Flow structure, local swirl intensity and mixing layer thickness. The Discrete Phase Model (DPM is used to track the particle trajectories. Validation of the numerical results is carried out by comparing the predicted particle trajectories, central recirculation zone (CRZ and tangential velocity results to the experimental data. It is concluded that the model offers a satisfactory prediction of the flow field in a RTFB. Numerical results show that, for the same geometrical swirl number (Sw and the same Reynolds number (ReT, the increasing of the number of injectors enhances the mixing process by generating a larger reverse flow and reducing the mixing layer thickness. It is also concluded that the local swirl intensity along of the RTFB can be correlated in terms of geometric swirl number and number of injectors.

  5. 浅谈一段蒸汽转化炉辐射段炉顶燃烧器%A brief introduction to furnace top burner of primary steam reformer radiant section

    Institute of Scientific and Technical Information of China (English)

    何军

    2012-01-01

    The effect of attemperator replacement and improvement of furnace top at primary steam reformer radiant section of Kellogg 300kt/a synthetic ammonia device to burner was introduced; relative resolving scheme to existent problem was suggested. Whereas effects by structural change of furnace top attemperator and existent problems of burner, new type burner was considered. The feasibility of two kinds of burners at self - sucking air condition was identified, by relative data from two burners running at same technical process.%介绍美荷型300kt/a合成氨装置一段蒸汽转化炉辐射段炉顶保温更换和改造对炉顶燃烧器的影响,针对存在的问题提出相应的解决方案。考虑到炉顶保温结构的改变和影响以及燃烧器“存在的问题”想采用新型燃烧器来解决,通过两种燃烧器在同工况条件下使用得出相应数据,论证在“自吸方式进空气”条件下两种燃烧器的可行性。

  6. Numerical modelling of the CHEMREC black liquor gasification process. Conceptual design study of the burner in a pilot gasification reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marklund, Magnus

    2001-02-01

    The work presented in this report is done in order to develop a simplified CFD model for Chemrec's pressurised black liquor gasification process. This process is presently under development and will have a number of advantages compared to conventional processes for black liquor recovery. The main goal with this work has been to get qualitative information on influence of burner design for the gas flow in the gasification reactor. Gasification of black liquor is a very complex process. The liquor is composed of a number of different substances and the composition may vary considerably between liquors originating from different mills and even for black liquor from a single process. When a black liquor droplet is gasified it loses its organic material to produce combustible gases by three stages of conversion: Drying, pyrolysis and char gasification. In the end of the conversion only an inorganic smelt remains (ideally). The aim is to get this smelt to form a protective layer, against corrosion and heat, on the reactor walls. Due to the complexity of gasification of black liquor some simplifications had to be made in order to develop a CFD model for the preliminary design of the gasification reactor. Instead of modelling droplets in detail, generating gas by gasification, sources were placed in a prescribed volume where gasification (mainly drying and pyrolysis) of the black liquor droplets was assumed to occur. Source terms for the energy and momentum equations, consistent with the mass source distribution, were derived from the corresponding control volume equations by assuming a symmetric outflow of gas from the droplets and a uniform degree of conversion of reactive components in the droplets. A particle transport model was also used in order to study trajectories from droplets entering the reactor. The resulting model has been implemented in a commercial finite volume code (AEA-CFX) through customised Fortran subroutines. The advantages with this simple

  7. Evaluation of gas reburning and low NO{sub x} burners on a wall-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    An evaluation of Gas Reburning (GR) and Low NO{sub x} Burners (LNB) has been completed at Public Service Company of Colorado`s Cherokee Station Unit 3. The goal of the demonstration was to reduce NO{sub x} emissions by 70%. The reduction was to be achieved from the pre-project level prior to LNB retrofit. The GR system was supplied by Energy and Environmental Research Corporation (EER) and the LNBs were supplied by the Foster Wheeler Energy Corporation. The project was carried out in three phases in which EER designed the GR system and obtained necessary permits (Phase 1), constructed the system and completed start-up tasks (Phase 2), and evaluated its performance with both Optimization Tests and a Long-Term Demonstration (Phase 3). As directed by the Cooperative Agreement, environmental monitoring was conducted in each phase. Measurements were taken by plant personnel and an EER Field Testing Team and were divided into two types. ``Compliance Monitoring`` was conducted by plant personnel to satisfy requirements of regulatory agencies, while ``Supplemental Monitoring`` was conducted by EER personnel to develop a database of environmental impacts of the technology and to ensure environmental acceptability of the project. This document presents environmental monitoring data obtained during the Optimization Testing period, November 11, 1992 to April 23, 1993. Compliance Monitoring was conducted primarily in two areas, air emissions and aqueous discharges. The unit is required to meet an SO{sub 2} limit of 1.2 lb/MBtu and an opacity limit of 20 percent (6 minute average). Therefore, the plant monitors flue gas SO{sub 2} and opacity continuously and submits Excess Emissions Reports to the Colorado Air Pollution Control Division on a quarterly basis. Discharge limits for the aqueous effluent from the plant and monitoring requirements are specified by a permit issued by the Colorado Water Quality Control Division.

  8. The flow field structure of highly stabilized partially premixed flames in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.

    2015-08-29

    The stability limits, the stabilization mechanism, and the flow field structure of highly stabilized partially premixed methane flames in a concentric flow conical nozzle burner with air co-flow have been investigated and presented in this work. The stability map of partial premixed flames illustrates that the flames are stable between two extinction limits. A low extinction limit when partial premixed flames approach non-premixed flame conditions, and a high extinction limit, with the partial premixed flames approach fully premixed flame conditions. These two limits showed that the most stable flame conditions are achieved at a certain degree of partial premixed. The stability is improved by adding air co-flow. As the air co-flow velocity increases the most stable flames are those that approach fully premixed. The turbulent flow field of three flames at 0, 5, 10 m/s co-flow velocity are investigated using Stereo Particle Image Velocimetry (SPIV) in order to explore the improvement of the flame stability due to the use of air co-flow. The three flames are all at a jet equivalence ratio (Φj) of 2, fixed level of partial premixing and jet Reynolds number (Rej) of 10,000. The use of co-flow results in the formation of two vortices at the cone exit. These vortices act like stabilization anchors for the flames to the nozzle tip. With these vortices in the flow field, the reaction zone shifts toward the reduced turbulence intensity at the nozzle rim of the cone. Interesting information about the structure of the flow field with and without co-flow are identified and reported in this work.

  9. Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions.

    Science.gov (United States)

    Oh, Hyukjin; Annamalai, Kalyan; Sweeten, John M

    2008-04-01

    Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass [FB]) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash "fouling" were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss through ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash-fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out.

  10. Evaluation of gas reburning and low NO{sub x} burners on a wall-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    An evaluation of Gas Reburning (GR) and Low NO{sub x}, Burners (LNB) has been completed at Public Service Company of Colorado`s Cherokee Station Unit 3. The goal of the demonstration, which was carried out in a US DOE Clean Coal Technology Round 3 Program, was to reduce NO{sub x} emissions by 70%. The reduction was to be achieved from the pre-project level, prior to LNB retrofit. The GR system was supplied by Energy and Environmental Research Corporation (EER) and the LNBs were supplied by the Foster Wheeler Energy Corporation. The project was carried out in three phases in which EER designed the GR system and obtained necessary permits (Phase 1), constructed the system and completed start-up tasks (Phase 2), and evaluated its performance with both Optimization Tests and a Long-Term Demonstration (Phase 3). As directed by the cooperative agreement, environmental monitoring was conducted in each phase. Measurements were taken by plant personnel and an EER Field Testing Team and were divided into two types. ``Compliance Monitoring`` was conducted by plant personnel to satisfy requirements of regulatory agencies, while ``Supplemental Monitoring`` was conducted by EER personnel to develop a database of environmental impacts of the technology and to ensure environmental acceptability of the project. This document presents environmental monitoring data obtained during the Long-Term Testing period, April 27, 1993 to January 27, 1995. During this period, ten months of testing of the GR-LNB system was followed by a modification into a ``second-generation`` GR-LNB system, which was evaluated for six months. Compliance Monitoring was conducted primarily in two areas, air emissions and aqueous discharges.

  11. Experimental and numerical study on combustion of baled biomass in cigar burners and effects of flue gas re-circulation

    Directory of Open Access Journals (Sweden)

    Erić Aleksandar M.

    2016-01-01

    Full Text Available The paper presents results of experimental and numerical investigation addressing combustion of baled agricultural biomass in a 50 kW experimental furnace equipped with cigar burners. Experiments performed included measurements of all parameters deemed important for mass and energy balance, as well as parameters defining quality of the combustion process. Experimental results were compared with results of numerical simulations performed with previously developed CFD model. The model takes into account complex thermo mechanical combustion processes occurring in a porous layer of biomass bales and the surrounding fluid. The combustion process and the corresponding model were deemed stationary. Comparison of experimental and numerical results obtained through research presented in this paper showed satisfactory correspondence, leading to the conclusion that the model developed could be used for analysis of different effects associated with variations in process parameters and/or structural modifications in industrial biomass facilities. Mathematical model developed was also utilized to examine the impact of flue gas recirculation on maximum temperatures in the combustion chamber. Gas recirculation was found to have positive effect on the reduction of maximum temperature in the combustion chamber, as well as on the reduction of maximum temperature zone in the chamber. The conclusions made provided valuable inputs towards prevention of biomass ash sintering, which occurs at higher temperatures and negatively affects biomass combustion process. [Projekat Ministarstva nauke Republike Srbije, br. III 42011: Development and improvement of technologies for energy efficient and environmentally sound use of several types of agricultural and forest biomass and possible utilization for cogeneration i br. TR33042: Fluidized bed combustion facility improvements as a step forward in developing energy efficient and environmentally sound waste combustion

  12. The Correlation of the TBC Lifetimes in Burner Cycling Test with Thermal Gradient and Furnace Isothermal Cycling Test by TGO Effects

    Science.gov (United States)

    Li, Chang-Jiu; Dong, Hui; Ding, Hang; Yang, Guan-Jun; Li, Cheng-Xin

    2017-02-01

    Two types of typical thermal cycling tests are used for the evaluation of thermal cycling lifetime of thermal barrier coatings. Those are the burner cycling test with a thermal gradient and the isothermal furnace cycling test. There are diverse explanations to test results up to now. Although certain correlations should exist between the results obtained by two types of the tests, no evident parameters in two tests were directly related, possibly due to large range of difference test conditions. In this investigation, a series of TBC samples with carefully prepared Al2O3-based TGO of different thicknesses were used for both the burner cycling and the furnace cycling tests. The relationships between thermal cycling lifetime and TGO thickness were obtained for two types of the tests. It was found that TGO thickness presents the same influence tendency despite of different types of thermal cycling test. The results reveal the existence of the critical TGO thickness by which the transition of failure mode takes place. Moreover, the values of the critical TGO thickness for two tests are comparable. The results evidently suggest that the lifetimes during different thermal cycling tests can be correlated by TGO effects on failure behavior. However, it is clear that the apparent dominant driving factors to TBC failure are different in two types of tests. Accordingly, the burner cycling test could be used for optimizing the durability of ceramic top coat by separating the effect of individual factors through test condition design, while the furnace cycling test results represent the integrated TBC durable performance of the bond coat and top ceramic coating.

  13. Development and use of a new burner rig facility to mimic service loading conditions of Ni-based single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Mauget Florent

    2014-01-01

    Full Text Available Performing representative experiments of in-service operating conditions of Ni-based superalloys used as high pressure turbine blades in aeroengines is a challenging issue due to the complex environmental, mechanical and thermal solicitations encountered by those components. A new burner rig test facility called MAATRE (French acronym for Mechanics and Aerothermics of Cooled Turbine Blades has been developed at ENSMA – Pprime Institute to mimic as close as possible those operating conditions. This new test bench has been used to perform complex non-isothermal creep tests representative of thermomechanical solicitations seen by some sections of HP turbine blades during engine certification procedure.

  14. Multi-load Optimal Design of Burner-inner-liner Under Performance Index Constraint by Second-Order Polynomial Taylor Series Method

    Directory of Open Access Journals (Sweden)

    Tu Gaoqiao

    2016-01-01

    Full Text Available Using maximum expansion pressure of n-decane, the aeroengine burner-inner-liner combustion pressure load is computed. Aerodynamic loads are obtained from internal gas pressure load and gas momentum. Multi-load second-order Taylor series equations are established using multi-variant polynomials and their sensitivities. Optimal designs are carried out using various performance index constraints. When 0.25 to 0.8 rectifications of different design variants are implemented, they converge under 5×10‒4 d-norm difference ratio.

  15. Numerical modelling of lighting process in pulverized-coal burner of a boiler unit by the low-temperature plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Miloshevich, H.; Rychkov, A.D. [Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Occupational Technologies

    1999-07-01

    The authors numerically modelled the process of aeromixture ignition in a pulverized-coal burner by a central axysymmetric jet of air that is heated in an electrical are plasma generator up to about 5000 K. The aim was to investigate the process of coal particle ignition in the flow and establish the conditions under which the independent combustion of pulverized coal mixture occurs. The results obtained showed the important role of radiation heat transfer in initiating the combustion process of solid fuel particles. 8 refs., 5 figs.

  16. Sinoswirl型双旋流煤粉燃烧器在活性石灰窑的应用%Application of Sinoswirl type dual-cyclone coal burner in active lime kiln

    Institute of Scientific and Technical Information of China (English)

    刘万平; 张连鹏; 李亮; 王文清; 李宁

    2014-01-01

    The original design of three channels coal burner into Sinoswirl type dual -cyclone coal burner on the production line of active lime kiln is modified .The result shows that the dual-cyclone coal burner has advantages of higher productivity and lower energy comsuption to a large extent with remarkable economic benefits .%在活性石灰窑生产线上,将原设计的三通道煤粉燃烧器改造为Sinoswirl型双旋流煤粉燃烧器,改造之后使用效果良好,产量大幅提升,煤耗、电耗均大幅降低,回转窑结圈问题得以解决,为公司带来了巨大的经济利益。

  17. Experimental study of a separated jets burner: application to the natural gas-pure oxygen combustion; Etude experimentale du comportement de bruleurs a jets separes: application a la combustion gaz naturel-oxygene pur

    Energy Technology Data Exchange (ETDEWEB)

    Salentey, L.

    2002-04-15

    The evolution of pollution standards and the optimisation of furnaces performances require a development of new burner generation and also the improvement of combustion techniques. Actually, the use of oxy-combustion in separated jets burners offers interesting prospects for NO{sub x} emission reduction and on the modularity of flames properties (lift off, flame front topology, flame length). The complex geometry of those burners leads to several problems like the three-dimensional character of the flow, which may sometimes disturb the flame stability as flames are lifted above the burner. This experimental study deals with a simplified version of that kind of burner constituted with a central natural gas jet surrounded by two oxygen jets. Primary, the study of non-reactive jet was planned in order to understand dynamic and mixture phenomena involved between jets and to provide a database useful for the computer code validation. The reactive flow developed in a furnace, which simulates the real conditions, had been characterised. The studies of the dynamic field using Laser Doppler Velocimetry (LDV) and of the turbulent mixture by conditional Laser tomography were supplemented in combustion by the visualisation of the spontaneous emission of radical OH, in the initial and final zone of the oxy-flames, like by the measurement of pollutants like NO{sub x} and soot. The measurements carried out while varying speeds of injection as well as the gap between the jets made possible the highlight of the influence of these parameters upon the stabilisation of the oxy-flames as well as the modification of the topology and the characteristics of the flows. The comparison of the measurements made in non-reactive and reactive flow shows the influence of oxy-combustion on the dynamic and scalar development of the flow for this type of burners. (author)

  18. Flashback analysis in tangential swirl burners; Analisis de reflujo de flama en combustores tangenciales de flujo giratorio

    Energy Technology Data Exchange (ETDEWEB)

    Valera-Medina, A. [CIATEQ A.C., Centro de Tecnologia Avanzada, Queretaro (Mexico)]. E-mail: agustin.valera@ciateq.mx; Syred, N. Abdulsada, M. [United Kingdom Cardiff University (United Kingdom)]. E-mails: syredn@cf.ac.uk; abdulsadam@cf.ac.uk

    2011-10-15

    Premixed lean combustion is widely used in Combustion Processes due to the benefits of good flame stability and blow off limits coupled with low NO{sub x} emissions. However, the use of novel fuels and complex flows have increased the concern about flashback, especially for the use of syngas and highly hydrogen enriched blends. Thus, this paper describes a combined practical and numerical approach to study the phenomenon in order to reduce the effect of flashback in a pilot scale 100 kW tangential swirl burner. Natural gas is used to establish the baseline results and effects of different parameters changes. The flashback phenomenon is studied with the use of high speed photography. The use of a central fuel injector demonstrates substantial benefits in terms of flashback resistance, eliminating coherent structures that may appear in the flow channels. The critical boundary velocity gradient is used for characterization, both via the original Lewis and von Elbe formula and via analysis using CFD and investigation of boundary layer conditions in the flame front. [Spanish] La combustion ligera premezclada se utiliza ampliamente en los procesos de combustion debido a los beneficios que brinda en terminos de buena estabilidad de flama y limites de extincion, aunado a la baja emision de NO{sub x}. Sin embargo, el uso de nuevos combustibles y de flujos complejos han incrementado la preocupacion por el reflujo de flama, especialmente para el uso de gas sintetico (syngas) y mezclas altamente hidrogenadas. Por ello, en este articulo se describe un metodo practico y numerico para el estudio del fenomeno a modo de reducir los efectos del reflujo de flama en un combustor piloto de tipo tangencial de flujo giratorio de 100 kW. Se usa gas natural para establecer la linea base de resultados y los efectos del cambio de diferentes parametros. El fenomeno de reflujo de flama se estudia por medio de fotografia de rapida adquisicion. El uso de un inyector central de combustible

  19. Parametric (On-Design) Cycle Analysis for a Separate-Exhaust Turbofan Engine With Interstage Turbine Burner

    Science.gov (United States)

    Liew, K. H.; Urip, E.; Yang, S. L.; Siow, Y. K.; Marek, C. J.

    2005-01-01

    Today s modern aircraft is based on air-breathing jet propulsion systems, which use moving fluids as substances to transform energy carried by the fluids into power. Throughout aero-vehicle evolution, improvements have been made to the engine efficiency and pollutants reduction. The major advantages associated with the addition of ITB are an increase in thermal efficiency and reduction in NOx emission. Lower temperature peak in the main combustor results in lower thermal NOx emission and lower amount of cooling air required. This study focuses on a parametric (on-design) cycle analysis of a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). The ITB considered in this paper is a relatively new concept in modern jet engine propulsion. The ITB serves as a secondary combustor and is located between the high- and the low-pressure turbine, i.e., the transition duct. The objective of this study is to use design parameters, such as flight Mach number, compressor pressure ratio, fan pressure ratio, fan bypass ratio, and high-pressure turbine inlet temperature to obtain engine performance parameters, such as specific thrust and thrust specific fuel consumption. Results of this study can provide guidance in identifying the performance characteristics of various engine components, which can then be used to develop, analyze, integrate, and optimize the system performance of turbofan engines with an ITB. Visual Basic program, Microsoft Excel macrocode, and Microsoft Excel neuron code are used to facilitate Microsoft Excel software to plot engine performance versus engine design parameters. This program computes and plots the data sequentially without forcing users to open other types of plotting programs. A user s manual on how to use the program is also included in this report. Furthermore, this stand-alone program is written in conjunction with an off-design program which is an extension of this study. The computed result of a selected design

  20. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  1. Determination of convective diffusion heat/mass transfer rates to burner rig test targets comparable in size to cross-stream jet diameter

    Science.gov (United States)

    Gokoglu, S. A.; Santoro, G. J.

    1985-01-01

    Two sets of experiments have been performed to be able to predict the convective diffusion heat/mass transfer rates to a cylindrical target whose height and diameter are comparable to, but less than, the diameter of the circular cross-stream jet, thereby simulating the same geometric configuration as a typical burner rig test specimen located in the cross-stream of the combustor exit nozzle. The first set exploits the naphthalene sublimation technique to determine the heat/mass transfer coefficient under isothermal conditions for various flow rates (Reynolds numbers). The second set, conducted at various combustion temperatures and Reynolds numbers, utilized the temperature variation along the surface of the above-mentioned target under steady-state conditions to estimate the effect of cooling (dilution) due to the entrainment of stagnant room temperature air. The experimental information obtained is used to predict high temperature, high velocity corrosive salt vapor deposition rates in burner rigs on collectors that are geometrically the same. The agreement with preliminary data obtained from Na2SO4 vapor deposition experiments is found to be excellent.

  2. Operating experience with low-NO{sub x} burners in the Netherlands; Betriebserfahrungen mit Low-NO{sub x}-Brennern in kohlenbefeuerten Kesseln in den Niederlanden

    Energy Technology Data Exchange (ETDEWEB)

    Kluyver, J.P. de [N.V. Elektriciteits-Produktiemaatschappij Zuid-Nederland (EPZ), Limburg (Netherlands); Gast, C.H. [N.V. KEMA, Arnheim (Netherlands)

    1995-07-01

    In June 1990, a plan was agreed between operators and the government to reduce NO{sub x} emissions from power stations in the Netherlands from 74 million kilograms in the year 1989 to 55 million kilograms in the year 1994 and 35 million kilograms in the year 2000. For coal-fired power stations, this meant: conversion of burners to low-NO{sub x} burners, improvements in existing pulverized coal mills, application of secondary measures in some coal-fired power stations, use of the latest low-NO{sub x} technology in the design of new plant. The results so far obtained are compared with the targets set and further developments are described. (orig.) [Deutsch] Im Juni 1990 wurde zwischen Betreibern und Regierung ein Plan vereinbart, die NO{sub x}-Emissionen aus niederlaendischen Kraftwerken von 74 Mill. kg im Jahre 1989 auf 55 Mill. kg im Jahre 1994 und 35 Mill. kg im Jahre 2000 zu senken. Fuer die Kohlekraftwerke hiess das: Umbau der Brenner zu Low-NO{sub x}-Brennern, Verbesserungen der vorhandenen Kohlenstaubmuehlen. Anwendung sekundaerer Massnahmen in einigen kohlebefeuerten Kraftwerken. Einsatz der neuesten Low-NO{sub x}-Techniken beim Bau neuer Anlagen. Die bis jetzt erreichten Ergebnisse werden mit den Zielsetzungen verglichen und die weiteren Entwicklungen beschrieben. (orig.)

  3. PARTICULATE CHARACTERIZATION AND ULTRA LOW-NOx BURNER FOR THE CONTROL OF NO{sub x} AND PM{sub 2.5} FOR COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Ralph Bailey; Hamid Sarv; Jim Warchol; Debi Yurchison

    2001-09-30

    In response to the serious challenge facing coal-fired electric utilities with regards to curbing their NO{sub x} and fine particulate emissions, Babcock and Wilcox and McDermott Technology, Inc. conducted a project entitled, ''Particulate Characterization and Ultra Low-NO{sub x} Burner for the Control of NO{sub x} and PM{sub 2.5} for Coal Fired Boilers.'' The project included pilot-scale demonstration and characterization of technologies for removal of NO{sub x} and primary PM{sub 2.5} emissions. Burner development and PM{sub 2.5} characterization efforts were based on utilizing innovative concepts in combination with sound scientific and fundamental engineering principles and a state-of-the-art test facility. Approximately 1540 metric tonnes (1700 tons) of high-volatile Ohio bituminous coal were fired. Particulate sampling for PM{sub 2.5} emissions characterization was conducted in conjunction with burner testing. Based on modeling recommendations, a prototype ultra low-NO{sub x} burner was fabricated and tested at 100 million Btu/hr in the Babcock and Wilcox Clean Environment Development Facility. Firing the unstaged burner with a high-volatile bituminous Pittsburgh 8 coal at 100 million Btu/hr and 17% excess air achieved a NO{sub x} goal of 0.20 lb NO{sub 2}/million Btu with a fly ash loss on ignition (LOI) of 3.19% and burner pressure drop of 4.7 in H{sub 2}O for staged combustion. With the burner stoichiometry set at 0.88 and the overall combustion stoichiometry at 1.17, average NO{sub x} and LOI values were 0.14 lb NO{sub 2}/million Btu and 4.64% respectively. The burner was also tested with a high-volatile Mahoning 7 coal. Based on the results of this work, commercial demonstration is being pursued. Size classified fly ash samples representative of commercial low-NO{sub x} and ultra low-NO{sub x} combustion of Pittsburgh 8 coal were collected at the inlet and outlet of an ESP. The mass of size classified fly ash at the ESP outlet was

  4. Small Scale Burner Review

    Science.gov (United States)

    2009-07-01

    3 2.3 Flame Ignition, Flame Stability, and Extinction Characteristics in Microchannel ........3...3. Approaches to Achieve Combustion in Microscale 4 3.1 Heat Recirculation in Microchannels and Swiss Roll Combustors...19, 20). Blowout occurs when a flame gets swept out of the reactor at low residence time (i.e., high flow rates). In radical quenching, the free

  5. 生物质混燃的新型旋流燃烧器特性分析%Feature Analysis of the New-type Swirl Burner with Mixing Combustion of Biomass

    Institute of Scientific and Technical Information of China (English)

    李志坚; 刘晓晴; 王泽璞; 周磊

    2012-01-01

    This study designed a kind of swirl burner applying to mixing combustion of biomass and pulverized coal. The CFD software was used to simulate the co-firing characteristics in the boiler, so as to make sure the combustion process and corresponding combustion parameters, which can offer strong reference for practically manufacturing this co-firing swirl burner. Compared with coal burner, this co-firing swirl burner is much better economically, environmentally, and efficiently.%设计了一种适用于生物质和煤粉混燃的旋流燃烧器,并用CFD软件对其混燃的燃烧特性进行数值模拟,明晰其燃烧过程及相应的燃烧参数,得到最佳混燃比和最佳燃烧状态。分析结果表明:生物质和煤粉混燃与燃煤锅炉相比,其经济性、环保性、效率性等都有明显提高,

  6. Experimental Study of Ⅰ-Type Radiant Tube Burner for Low Heat Value Gas%低热值煤气Ⅰ型辐射管烧嘴的实验研究

    Institute of Scientific and Technical Information of China (English)

    丁翠娇; 宋中华; 杨超; 刘占增; 陈超; 刘刚峰

    2012-01-01

    A kind of Ⅰ -type radiant tube burner for low heat value gas is successfully developed by experimental study,and the lowest Calorific Value of gas suitable for the burner is up to 4 598 kJ/m3. The results of burner ignition experiment show that the flame detecting signal gradually weakens with the decrease of gas calorific value, and enhances with the increase of air excessive coefficient and gas flow. Besides having the advantage of using low heat value gas, the burner has many other advantages such as high heat efficiency, good temperature uniformity and low emission of NO, and CO.%通过实验研究,得到一种超低热值煤气Ⅰ型辐射管烧嘴,该烧嘴可适用煤气最低热值达4598 kJ/m3(1100kcal/m3).点火实验结果表明:烧嘴火焰检测信号随着煤气热值下降逐步减弱,随着空气消耗系数的增加而增强,随着供气流量的加大而增强.实验烧嘴除可适用低热值煤气外,同时还具有热效率高、加热温度均匀性好和有害气体排放低等优点.

  7. Towards a better understanding of biomass suspension co-firing impacts via investigating a coal flame and a biomass flame in a swirl-stabilized burner flow reactor under same conditions

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2012-01-01

    This paper investigates the combustion characteristics of firing pure coal and firing pure wheat straw in a 150 kW swirl-stabilized burner flow reactor under nearly same conditions. The results indicate very different combustion characteristics between the coal flame and straw flame. In the straw...... char....

  8. Cost and performance of available low NO{sub x} burners using oil, gas or wood powder; Marknadsstudie av laag-NO{sub x}-braennare foer olja, gas och traepulver

    Energy Technology Data Exchange (ETDEWEB)

    Eklund, Anders

    2002-04-01

    Emission of nitrous oxides or NO{sub x} which is formed during combustion, has during several years been in focus and countermeasures in order to reduce them have been carried out by the industry and energy companies. However, the current trend is towards even tougher demands on lower NO{sub x} and, therefore, the suppliers have even further developed the technique for low NO{sub x}-burners. The purpose with this report is to summarize and update the present technology situation of low NO{sub x}-burners, especially for those that are in use or can be used by the pulp and paper industry and among energy companies. Since the demand for even better low NO{sub x}-burners is estimated to increase in the future. This report shows that the suppliers of low NO{sub x}-burners, usually use one of the following techniques: Good atomizing of the fuel to obtain optimal fuel drop size; Flue gas recycling; Staged supply of air to the combustion; and Different methods for cooling the flame. This have resulted in lower NO{sub x}-emissions and typical values for different fuels are: Oil no. EO1 {approx} 60 mg NO{sub x}/MJ; Oil no. EO5 {approx} 130 mg NO{sub x}/MJ; Gas {approx} 40 mg NO{sub x}/MJ; Pulverized Wood = 40-100 mg NO{sub x}/MJ. The price situation is however complex and despite the fact that all suppliers received the same request, the prices varied from 0,4 MSEK up to and above 10 MSEK. From this the following conclusions can be drawn: An even better specification must be made; Sophisticated burners are expensive; Burners for higher heat rate are more expensive; The possibilities to use several different fuels make the burners more expensive. In conclusion, the report also shows that several suppliers are specialized towards different markets. Thus, at a normal purchase, the number of possible suppliers will be limited.

  9. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-15

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  10. Titanium subhydride potassium perchlorate (TiH1.65/KClO4) burn rates from hybrid closed bomb-strand burner experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Marcia A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Oliver, Michael S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-08-01

    A hybrid closed bomb-strand burner is used to measure the burning behavior of the titanium subhydride potassium perchlorate pyrotechnic with an equivalent hydrogen concentration of 1.65. This experimental facility allows for simultaneous measurement of the closed bomb pressure rise and pyrotechnic burn rate as detected by electrical break wires over a range of pressures. Strands were formed by pressing the pyrotechnic powders to bulk densities between 60% and 90% theoretical maximum density. The burn rate dependance on initial density and vessel pressure are measured. At all initial strand densities, the burn is observed to transition from conductive to convective burning within the strand. The measured vessel pressure history is further analyzed following the closed bomb analysis methods developed for solid propellants.

  11. Positive ion chemistry in the exhaust plumes of an air craft jet engine and a burner: investigations with a quadrupole ion trap mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kiendler, A.; Aberle, S.; Arnold, F. [Max Planck Institute for Nuclear Physics, Heidelberg (Germany). Atmospheric Physics Div.

    2000-07-01

    Using a quadrupole ion trap mass spectrometer detailed composition analyses were made of positive ions in the exhaust of an aircraft jet engine and of a jet fuel burner. For both scenarios complex organic ions with large mass numbers were most abundant. By employing the MS{sup 2}-mode of the quadrupole ion trap mass spectrometer, mass selected trapped ions were intendently broken up and characteristic fragment ions were observed. The latter indicate that the parent ions contain hydrogen, carbon and oxygen which is indicative of oxygenated hydrocarbons. This contrasts recent composition measurements of negative ions in aircraft jet engine exhaust made by our group which revealed that negative ions contain the inorganic acid H{sub 2}SO{sub 4}. Our present measurements support the view that positive ions in aircraft jet engine exhaust contain preferably organic molecules. (author)

  12. Fundamental studies on porous flame reactors for minimizing pollutant emissions of premix burners. Continued report; Grundlagenuntersuchungen an poroesen Flammenreaktoren zur Minimierung von Schadgasemissionen bei der vorgemischten Verbrennung. Fortsetzungsbericht

    Energy Technology Data Exchange (ETDEWEB)

    Durst, F.; Moessbauer, S.

    2001-01-31

    The report summarizes investigations of effective heat transport processes inside highly porous solid structures. These heat transport processes are of decisive importance for the pore burner technology developed at Erlangen-Nuremberg University. A test stand was set up for recording the two-dimensional temperature field of cross-flowed solid structures. [German] Der vorliegende Bericht fasst Arbeiten zusammen, die sich mit der Bestimmung effektiver Waermetransportvorgaenge im Inneren von hochporoesen Festkoerperstrukturen befassen. Diese Waermetransportvorgaenge sind entscheidend fuer die Vorteile der am Lehrstuhl fuer Stroemungsmechanik der Friedrich-Alexander-Universitaet Erlangen-Nuernberg entwickelten Porenbrennertechnologie. Um diese Vorteile besser zu nutzen und um diese neuartige Technologie weiter verbessern zu koennen, ist es erforderlich, dass die ablaufenden Waermetransportvorgaenge im Inneren von hochporoesen Strukturen im Detail verstanden werden. Zu diesem Zweck wurde ein Versuchsstand erstellt, mit dem das zweidimensionale Temperaturfeld von durchstroemten Festkoerperstrukturen erfasst werden kann. (orig.)

  13. Experiments for the determination of convective diffusion heat/mass transfer to burner rig test targets comparable in size to jet stream diameter

    Science.gov (United States)

    Santoro, G. J.; Gokoglu, S. A.

    1988-01-01

    The application of a recently formulated vapor transport theory to predict deposition rates of corrosive salts from alkali-seeded combustion gases of a small-capacity, high-velocity, atmospheric-pressure burner rig was hampered by the relatively large dimensions of the cylindrical deposit collector compared to the diameter of the combustion gas stream. The relative dimensions lead to a highly nonadiabatic combustion gas flow around the collector and necessitate two series of experiments. In the first series, mass transfer coefficients are determined by utilizing the naphthalene sublimation technique. The second series of experiments determines the dilution effect on the sodium species concentrations due to the entrainment of ambient air. This second series involves the measurement of the temperature variation along the surface of the collector under steady state conditions. Vapor deposition rates are determined exploiting this information and the results are found to compare favorably with experimentally obtained rates.

  14. Burner Improvement of Full-hydrogen Bell-type Annealing Furnace%全氢罩式退火炉加热罩烧嘴的改进

    Institute of Scientific and Technical Information of China (English)

    薛垂义

    2013-01-01

    针对全氢罩式退火炉加热罩烧嘴存在煤气和空气混合不均匀、煤气燃烧不充分、煤气消耗高等问题,对烧嘴结构进行了改进,即在煤气管路内部靠近出口端的部位增设上、下空气导人支管,将原单一集中的煤气出口通道改进为5路分散布置的煤气出口通道,使一次点火成功率由82%提高到91%,吨钢煤气消耗由104m3减少到81m3.%In view of the serial of problems of burner of the heating hood of the full-hydrogen bell-type annealing furnace,such as gas and air mixture not uniform,gas combustion not sufficient and gas consumption high,the structure of burner was improved,i.e.the trachea road close to the outlet end was added up and below pipe to lead-in air,the gas outlet channel original concentration was improved as the gas outlet channel 5 scattered layout.So,ignition rate increased from 82% to 91%,gas consumption decreased from 104m3/t to 81m3/t.

  15. Effect on Particulate and Gas Emissions by Combusting Biodiesel Blend Fuels Made from Different Plant Oil Feedstocks in a Liquid Fuel Burner

    Directory of Open Access Journals (Sweden)

    Norwazan Abdul Rahim

    2016-08-01

    Full Text Available This paper focuses on the combustion performance of various blends of biodiesel fuels and diesel fuel from lean to rich mixtures. The biodiesel blend fuel combustion experiments were carried out using a liquid fuel burner and biodiesel fuel made from various plant oil feedstocks, including jatropha, palm and coconut oils. The results show that jatropha oil methyl ester blend 25 (JOME B25 and coconut oil methyl ester blend 25 (COME B25 blended at 25% by volume in diesel fuel produced lower carbon monoxide (CO and unburned hydrocarbon (UHC emissions due to more complete combustion. Overall, JOME B25 had the highest CO emission reduction, at about 42.25%, followed by COME B25 at 26.44% emission reduction relative to pure diesel fuel. By contrast, the palm oil methyl ester blend 25 (POME B25 showed a 48.44% increase in these emissions. The results showed that the nitrogen oxides (NOx emissions were slightly higher for all biodiesel blend fuels compared with pure diesel fuel combustion. In case of sulphur dioxide (SO2 and UHC emissions, all biodiesel blends fuels have significantly reduced emissions. In the case of SO2 emission, the POME B25, JOME B25 and COME B25 emissions were reduced 14.62%, 14.45% and 21.39%, respectively, relative to SO2 emission from combusting pure diesel fuel. UHC emissions of POME B25, JOME B25 and COME B25 showed 51%, 71% and 70% reductions, respectively, compared to diesel fuel. The conclusion from the results is that all the biodiesel blend fuels are suitable and can be recommended for use in liquid fuel burners in order to get better and ‘greener’ environmental outcomes.

  16. Experiment on fuel flexibility of biomass pellet burner%生物质颗粒燃烧器燃料适应性试验

    Institute of Scientific and Technical Information of China (English)

    王月乔; 田宜水; 侯书林; 赵立欣; 孟海波

    2014-01-01

    为深入研究生物质颗粒燃料的燃烧特性,探讨自动燃烧器的燃料适应性,该文基于PB-20型生物质颗粒燃烧器,选择了5种灰分小于25%(空气干燥基)的颗粒燃料,分别研究了燃烧工况中进料量和空气量对燃烧性能的影响。试验结果表明灰分含量大于20%的颗粒燃料燃烧不充分,工况不稳定,效率低,结渣大,易熄火,不适用于此类生物质颗粒燃烧器;灰分含量为12.40%的颗粒燃料推荐参数为进料量4 kg/h,风机转速2600~2800 r/min,清渣速度为3 r/min,转5 s/停35 s;灰分在7.21%的颗粒燃料推荐控制参数为进料量3~4 kg/h,风机转速2600~2800 r/min,清渣速度相对应为3 r/min,转5 s/停60~55 s;灰分值低于1%的颗粒燃料均以进料量3~4 kg/h,风机转速2600~2800 r/min,不需清渣为推荐参数。该研究总结了生物质颗粒燃烧器的燃料适用控制参数,为燃烧器的推广应用提供了数据支持。%Because there exists much diversity in raw materials, biomass fuel pellet properties, and corresponding combustion equipment, research to develop the fuel adaptability of biomass burners is necessary. The research was accomplished on a self-build biomass combustion equipment-monitoring platform. The monitoring platform has multiple sensors to collect and process data of the burner’s control parameters and combustion state parameters. Based on the platform, the author used a PB-20-type biomass pellet burner, which is designed by the Chinese Academy of Agricultural Engineering. The author investigated five kinds of biomass pellets with ash values from 0 to 25 percent, And tested nine kinds of working conditions for each pellet with 3, 4, and 5 kg/h fuel feed rates and 2 600, 2 700, and 2 800 r/min fan speed. The thermal performance of the burner was tested according to the GB/T10180-2003 Thermal performance test code for industrial boilers and the GB13271-2001 Emission

  17. Reduction of NO{sub x} from a pellet burner - a parametric study; Reduktion av NOx fraan en pelletsbraennare - en parameterstudie

    Energy Technology Data Exchange (ETDEWEB)

    Eskilsson, David; Roennbaeck, Marie; Tullin, Claes [Swedish National Testing and Research Inst., Boraas (Sweden); Leckner, Bo [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    2000-05-01

    NO{sub x} emissions from small-scale combustion of pellets derive mainly from the fuel nitrogen. A conversion from combustion of oil to pellets will probably lead to increasing NO{sub x}-emissions. Today, pellets are produced mainly from sawdust and wood shavings which consist of pure wood with a low nitrogen content. The expected increase in pellet utilisation will probably lead to that other raw materials with higher nitrogen content will be used. This means that NOx-emissions from small-scale BAKE combustion of pellets can increase dramatically if not 'low-NO{sub x} burners' are developed. This report can be used as a support in the development of new design and automatic control strategies for pellet burners. NH{sub 3} and HCN dominate the nitrogen compounds in the volatiles leaving the pellet during the devolatilisation. The fuel properties, the residence time and the devolatilisation conditions affect the ratio between these two compounds. The transformation of NH{sub 3} to N{sub 2} takes place through a short and relatively uncomplicated reaction path while the reduction of HCN has a much more complex reaction path with a slower chemical kinetics which leads to longer reaction times. The optimal stoichiometry depends on the residence time, mixing and the composition of the devolatilisation gas in the primary zone. The objective with this study has been to, with a modified pellet burner, minimise NOx in practical experiments with a small literature study as background. In the experiments reported in this project, the performance of a modified pellet burner and the emissions have been studied while the ratio between primary- and secondary air and the addition of primary air have been varied. During the experiments, the air flow, the different emissions, the boiler effect and the temperature in the burner have been measured continuously. A few parameters have been identified as crucial for the NO{sub x}-emissions: Addition of primary air: The primary

  18. Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation

    Energy Technology Data Exchange (ETDEWEB)

    R. Demler

    2006-04-01

    Accurate, cost-efficient monitoring instrumentation has long been considered essential to the operation of power plants. Nonetheless, for the monitoring of coal flow, such instrumentation has been sorely lacking and technically difficult to achieve. With more than half of the electrical power in the United States currently supplied by coal, energy generated by this resource is critical to the US economy. The demand for improvement in this area has only increased as a result of the following two situations: First, deregulation has produced a heightened demand for both reduced electrical cost and improved grid connectivity. Second, environmental concerns have simultaneously resulted in a need for both increased efficiency and reduced carbon and NOx emissions. A potential approach to addressing both these needs would be improvement in the area of combustion control. This would result in a better heat rate, reduced unburned carbon in ash, and reduced NOx emissions. However, before feedback control can be implemented, the ability to monitor coal flow to the burners in real-time must be established. While there are several ''commercially available'' products for real-time coal flow measurement, power plant personnel are highly skeptical about the accuracy and longevity of these systems in their current state of development. In fact, following several demonstration projects of in-situ coal flow measurement systems in full scale utility boilers, it became obvious that there were still many unknown influences on these instruments during field applications. Due to the operational environment of the power plant, it has been difficult if not impossible to sort out what parameters could be influencing the various probe technologies. Additionally, it has been recognized for some time that little is known regarding the performance of coal flow splitters, even where rifflers are employed. Often the coal flow distribution from these splitters remains mal

  19. Burner redesign for the reduction of the unburned particulate emission in thermal power stations of Comision Federal de Electricidad; Rediseno de quemadores para la reduccion de la emision de particulas inquemadas en centrales termicas de la Comisionon Federal de Electricidad

    Energy Technology Data Exchange (ETDEWEB)

    Huerta Espino, Mario; Espipnoza Garza, Jesus; Mani Gonzalez, Alejandro; Giles Alarcon, Armando; Pena Garcia, Adriana; Albarran Sanchez, Irma L.; Mendez Aranda, Angel [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2001-07-01

    In the presence of the increasing demand for reaching higher efficiencies and a smaller production of polluting emissions in combustion systems, studies focused to the optimization of the present designs of burners are required. The Comision Federal de Electricidad (CFE) and the Instituto de Investigaciones Electricas (IIE) have established a project that contemplates the redesign of burners in ten of its units of thermoelectric generation. In this work the redesign of the flame stabilizer or diffuser for the reduction of the unburned particulate emission is explained. The results of the modeling of a burner of rotational flow of steam generators of the CFE are shown, as well as the graphs of the contours of the recirculation zone generated by each diffuser without combustion and a figure of the velocity profile that is generated in front of the diffuser. In agreement with the results obtained in the aerodynamic evaluation of frontal burners of rotational flow, it is possible to established that the characteristics of the recirculation zone, generated by this type of burners, are related to geometric parameters of the diffuser that identify with the number of turns and the pressure drop, where it is necessary to look for designs that improve the conditions of the mixing process and combustion in the burner. [Spanish] Ante la creciente demanda por alcanzar mayores eficiencias y una menor produccion de emisiones contaminantes en sistemas de combustion, se requieren estudios enfocados a la optimizacion de los disenos actuales de quemadores. La Comision Federal de Electricidad (CFE) y el Instituto de Investigaciones Electricas (IIE) han establecido un proyecto que contempla el rediseno de quemadores en diez de sus unidades de generacion termoelectrica. En este trabajo se explica el rediseno del estabilizador de flama o difusor para la reduccion de la emision de particulas inquemadas. Se muestran los resultados de la modelacion de un quemador de flujo rotacional de

  20. PASSIVE CONTROL OF PARTICLE DISPERSION IN A PARTICLE-LADEN CIRCULAR JET USING ELLIPTIC CO-ANNULAR FLOW: A MEANS FOR IMPROVING UTILIZATION AND EMISSION REDUCTIONS IN PULVERIZED COAL BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan R. Choudhuri

    2003-06-01

    A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.

  1. 浅谈浮法玻璃熔窑用重油燃烧器的结构设计及其发展%A Discussion on Structural Design and Development of Heavy Oil Burner Used for Float Glass Furnace

    Institute of Scientific and Technical Information of China (English)

    张海梁; 傅鑫杰; 梅书霞; 谢峻林

    2011-01-01

    燃烧器是浮法玻璃熔窑中极为关键的热工设备.以浮法玻璃空气助燃技术以及全氧燃烧工艺为背景,从结构类型、工作原理、燃烧状态、优缺点以及发展历程等方面对几种具有代表性的重油燃烧器进行了详细介绍.%Burner is one of the crucial thermotechnical equipment in float glass melting furnace. Based on air - fuel combustion technology and oxy - fuel burning process for melting float glass, the principal technical aspects, such as structural type, working principle, combustion status, analysis of advantages and disadvantages and history of development of typical heavy oil burners were detailed reviewed.

  2. 水煤浆加压气化烧嘴在线运行周期的影响因素及分析%Effecting Factor and Analysis of Water Coal Slurry Pressurizing Gasification Burner on Running Period in Line

    Institute of Scientific and Technical Information of China (English)

    刘乐利

    2014-01-01

    分析了影响水煤浆加压气化烧嘴长周期运行的原因,分别从烧嘴的设计选型、材料选用及加工制造、运行维护与检修等方面提出了应对措施,对水煤浆气化生产企业选用相应的气化烧嘴给出了建议。%Author has analyzed the reason influencing long-term operation of burner for water coal slurry pressurizing gasification , has presented the countermeasures separately from aspects of design and type selection of burner,material selection and processing/manufacturing, operation/maintainance and inspection.

  3. EXPERIMENTAL STUDIES ON YQTY-300 OIL & GAS FLAME CONTROLLABLE BURNER%武钢YQTY-300型油气两用调焰烧嘴的试验研究

    Institute of Scientific and Technical Information of China (English)

    蒋扬虎; 丁翠娇; 郑兆平; 张茂杰; 李世照; 万晓丹; 彭光涛

    2001-01-01

    通过对YQTY-300油气两用烧嘴的试验研究,确定了烧嘴的结构,得到了烧嘴的各项性能参数。结果表明,该烧嘴能够满足武钢热轧厂1号加热炉改造的需要。%The structure and parameters of property of YQTY-300 type oil & gas burner have been determined through experimental studies. Results indicate that this burner can satisfy the needs of technical revamp on the No.1 reheating Furnace in the Hot Rolling Mill of WISCO.

  4. 合成氨转化炉高效节能燃烧器的研究与应用%Study and application of high-efficiency and energy-saving burner in reformer of ammonia plant

    Institute of Scientific and Technical Information of China (English)

    祝杰; 叶世超; 白洁; 吴振元; 刘振华

    2013-01-01

    The problems with the existing burners of the primary reformer in ammonia plant were investigated through the analysis of excess combustion air in combustion process.The influence of various mixed ways on burner characteristics was studied by contrast experiment.A new type of burner was developed,which can obtain good effect via industrial test and trial.It shows that the consumption of combustion air in the new type of burner reduces significantly,the combustion state is proved in good condition,and the heat transfer characteristics of conversion tubes are improved; furnace temperature and transformation temperature increase significantly without adding fuels,the exhaust gas temperature and oxygen consumption of the secondary reformer are reduced,and the efficiency of methane conversion is improved,thus the output of ammonia is increased by 5 700 t/a.%通过分析燃烧过程中助燃空气的过剩量,对合成氨一段转化炉现有燃烧器存在的问题进行了诊断.采用对比实验的方法研究了混合方式对燃烧器特性的影响,开发了一种新型燃烧器,经过工业性试验和试用,取得了良好效果.新型燃烧器消耗的助燃空气量明显减少,燃烧状况良好,转化管的传热特性改善,在不增加燃料消耗的情况下,炉膛温度和转化气温度显著升高,排烟温度降低,二段转化炉耗氧量下降,甲烷转化率提高,年增产氨5700t.

  5. Inlet Exhaust Gas Temperature Condition for a Burner-type DPF at the Low and Moderate Load Steady State%喷油助燃再生DPF过滤体入口废气温度条件研究

    Institute of Scientific and Technical Information of China (English)

    伏军; 龚金科; 吴钢; 余明果; 吁璇; 张文强

    2011-01-01

    阐述了DPF喷油助燃再生的工作原理,在考虑过滤体内沉积微粒氧化反应次模型的基础上,以壁流式蜂窝陶瓷过滤体为研究对象,建立柴油机稳态工况下过滤体人口孔道的再生简化模型.考虑到柴油机中小负荷排气富氧条件,通过无量纲化,结合DPF的排气背压模型,得到了喷油助燃再生DPF时过滤体入口端所需的温度条件.试验表明,以该条件获得的理论过滤体入口废气温度所对应的喷油率来调节燃烧器功率可顺利实现DPF的再生过程,为DPF喷油助燃再生系统的设计提供了一定的理论依据.%The operation principle of a burner-type diesel particulate filter was presented. Taking the subordinate oxidation reaction model into consideration, and taking the honeycomb wall-flow ceramic monolith filter as a research object, the simplified regeneration model in the single inlet channel of the filter was built at the steady state of the diesel engine. Based on the non-dimensionalization and the exhaust back-pressure model of DPF, the required temperature condition of the inlet exhaust for the burner-type DPF was obtained. The tests showed that the DPF regeneration could be smoothly completed by the burner power adjustment according to the oil spray rate correspond to the theoretical inlet exhaust temperature. It provided a definite theory basis to the design of the burner-type DPF.

  6. 浅谈一段蒸汽转化炉顶部燃烧器燃料气管两次改造%Shallow analysis twice transformation of the steam conversion furnace top- burner fuel tube

    Institute of Scientific and Technical Information of China (English)

    何军

    2012-01-01

    一段蒸汽化炉炉顶保温层的整体更换造成燃烧器的砖孔中心偏移和燃烧器对中固定困难,保温层更新造成炉顶砖标高的增加,使燃烧器连接管过长造成软连接管过度弯曲,且不能保障金属软管安全使用结果造成燃烧器烧炉砖、烧燃烧器扩口管、回火和火焰调调整困难等问题,根据产生的不同原因先后提出由硬管连接结构改为“s型”软管连接结构、再由“S型”软管结构改为倒“L型”的软管结构的解决方案,通过两次的连接管改造解决了炉顶保温更换和更新带来的问题。%Total replacement for stovetop insulation of the steam conversion furnace resulted in some problems. For example, the brick hole center offset of burner, burner fixed difficultly, the elevation of Stovetop brick in- creased, burner connection tube is too long to soft connection tube was excessive bending, the safe use of metal soft tube was not guaranteed, combustion furnace brick and burner flared tube, anti - back flame, the flame adjusted difficultly and so on. According to the different reasons, firstly, taking the S - type soft tube connection structure was instead of the hard structure, secondly, the L - type was instead of the S - type. Through two transformation of connecting tube, the problems of insulation replacement and update of stove -top has been solved.

  7. Design and Research on Upper Inlet Air Burner of Household Gas Stove%家用燃气灶上进风燃烧器的设计与研究

    Institute of Scientific and Technical Information of China (English)

    周亮; 陈光耀; 李志强; 钟家淞

    2014-01-01

    本文介绍了一种新型嵌入式家用燃气灶的上进风燃烧器,包括大气式引射器、喷嘴组件和燃烧器头部。该燃烧器引射腔设计合理,具有强劲的一次空气引射能力,通过改变喷嘴组件的装配方向,具有防堵塞能力。同时通过设置可调风门调节一次空气,环境适应性强。%This paper introduces the a new type of upper inlet wind burner of embedded household gas stove, including atmospheric injector, nozzle module and burner head. The design of burner cavity is reasonable. Through changing the assemble direction of nozzle module, it is anti-clogging. Through setting the adjustable damper to adjust primary air, it has a better adaptability to environment.

  8. 直流扩散式燃气燃烧器燃烧特性试验研究%Experimental Study on Combustion Characteristics of DC Diffusion Type Gas Burner

    Institute of Scientific and Technical Information of China (English)

    刘峰; 廖晓炜; 窦文宇

    2014-01-01

    Aiming at the present domestic widely running pot shell with gas boiler, and widely used direct current diffusion type gas burner in this boiler, the experimental method was used to study the effect of gas burner under different loads, furnace backpressure, excess air coefficients, etc. The results can play great significance on guiding the gas boiler safe and economic operation and was instructive to structure optimization of the gas burner.%针对目前国内广泛运行的锅壳式燃气锅炉,以在该结构锅炉上大量使用的直流扩散式天然气燃烧器为研究对象,研究了燃气燃烧器在不同负荷、炉膛背压、过量空气系数等参数对锅炉炉膛内火焰燃烧场分布的影响,其试验结果对燃气锅炉的安全经济运行以及燃气燃烧器的结构优化具有重要意义。

  9. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix D. Assessment of NO/sub x/ control technology for coal fired utility boilers. [Low-excess-air, staged combustion, flu gas recirculation and burner design

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    An NOx control technology assessment study was conducted to examine the effectiveness of low-excess-air firing, staged combustion, flue gas recirculation, and current burner/boiler designs as applied to coal-fired utility boilers. Significant variations in NOx emissions exist with boiler type, firing method, and coal type, but a relative comparison of emissions control performance, cost, and operational considerations is presented for each method. The study emphasized the numerous operational factors that are of major importance to the user in selecting and implementing a combustion modification technique. Staged combustion and low-excess-air operation were identified as the most cost-effective methods for existing units. Close control of local air/fuel ratios and rigorous combustion equipment maintenance are essential to the success of both methods. Flue gas recirculation is relatively ineffective and has the added concern of tube erosion. More research is needed to resolve potential corrosion concerns with low-NOx operating modes. Low-NOx burners in conjunction with a compartmentalized windbox are capable of meeting a 0.6-lb/million Btu emission level on new units. Advanced burner designs are being developed to meet research emission goals of approximately 0.25 lb/MBtu.

  10. 热轧加热炉掺烧天然气后烧嘴流量特性热态试验研究%Experimental Research on Flow Characteristic of Reheating Furnace's Burners Pre-mixed with Natural Gas

    Institute of Scientific and Technical Information of China (English)

    刘刚锋; 丁翠娇

    2014-01-01

    Based on the thermal tests of hot rolling heating furnace burner , the paper analyzed the change in flow characteristics of natural gas mixed in burner firing conditions .The results showed that :under the same heating value circumstances ,both the density of mixed gas burner flame and stable com-bustion gas pressure would rise with the gas mixing proportion increasing ,and that the gas pressure in-creased about 20% w hen the proportion of natural gas is 22% .%通过热轧加热炉烧嘴热态试验,分析了天然气掺烧条件下烧嘴流量特性的变化规律,结果表明:等热值条件下,随着天然气掺烧比例的增大,混合煤气密度增加,调焰烧嘴稳定燃烧时煤气压力提高;在天然气比例为22%时,煤气压力提高约20%。

  11. Investigations of coal ignition in a short-range flame burner using optical measuring systems; Untersuchungen zur Kohlezuendung am Flachflammenbrenner unter Verwendung optischer Messtechnik

    Energy Technology Data Exchange (ETDEWEB)

    Hackert, G.; Kremer, H.; Wirtz, S. [Bochum Univ. (Germany). Lehrstuhl fuer Energieanlagentechnik

    1999-09-01

    The short-range flame burner and the KOALA reactor of DMT are experimental facilities for realistic simulation of coal conversion processes at high temperatures and pressures in atmospheric conditions. The TOSCA system enable measurements of temperatures, sizes, shapes and velocities of the fuel particles, which serve as a basis for a three-dimensional simulation model of coal combustion. In the future, further parameter studies will deepen the present knowledge of coal dust combustion under pressure and enable optimisation of the numerical models for simulation of industrial-scale systems for coal dust combustion under pressure. [Deutsch] Mit dem Flachflammenbrenner und dem KOALA-Reaktor der DMT stehen Versuchsapparaturen zur Verfuegung, mit deren Hilfe die Kohleumwandlungsprozesse bei hohen Temperaturen unter Druck und unter atmosphaerischen Bedingungen realistisch wiedergegeben werden. Das TOSCA-System erlaubt dabei die Bestimmung von Temperaturen, Groessen, Formen und Geschwindigkeiten der Brennstoffpartikel. Diese Daten liefern die Grundlage fuer die Erstellung eines dreidimensionalen Simulationsmodells zur Modellierung der Kohleverbrennung. In Zukunft werden weitere Parameterstudien das Verstaendnis der Kohlenstaubdruckverbrennung vertiefen und ein Optimierung der numerischen Modelle ermoeglichen, so dass die Simulation grosstechnischer Kohlenstaubdruckverbrennungsanlagen realisiert werden kann. (orig.)

  12. Comprehensive report to Congress: Clean Coal Technology program: Evaluation of gas reburning and low-NO sub x burners on a wall-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report briefly describes the Gas Reburning and Low-NO{sub x} Burners technology which is a low-cost technology that can be applied in both retrofit and new applications. This demonstration will be conducted on a utility boiler in Colorado at Cherokee Station {number sign}3; however, the technology is applicable to industrial boilers and other combustion systems. Although this technology is primarily a NO{sub x} reduction technology, some reductions in other emissions will take place. Since 15--20% of the coal is replaced with natural gas, SO{sub 2} and particulate emissions are reduced commensurately. Also the lower carbon-to-hydrogen ratio of natural gas compared to coal reduces CO{sub 2} emissions. The formation of NO{sub x} is controlled by several factors: (1) the amount of nitrogen that is chemically bound in the fuel; (2) the flame temperature; (3) the residence time that combustion products remain at very high temperatures; and (4) the amount of excess oxygen available, especially at the hottest parts of the flame. Decreasing any of these parameters, tends to reduce NO{sub x} formation. 6 figs., 1 tab.

  13. Investigation and modelling of fuel utilisation in the zone near the burner of technical combustion systems. Final report; Untersuchung und Modellierung der Brennstoffumsetzung im Brennernahbereich technischer Verbrennungssysteme. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, H.; Wirtz, S.

    1999-06-01

    Optimisation and development of technical combustion systems in order to generate energy efficiently and reduce pollution is an ever-increasing challenge. Mathematical and numerical simulations play a very important role in this context. This project was dedicated to the implementation and improvement of mathematical models and subsequent verification of the modelling concepts. Verification used data measured by the university department for combined cyle turbines. The focal point of interest was the reaction zone near the burner. Further points of interest: development and improvement of models for two-phase effects, fuel consumption and turbulence interaction as well as further development of the methods of numerical simulation. Simulating the combustion chamber of the combined cycle turbines was prioritised.(orig.) [German] Die Optimierung und Weiterentwicklung technischer Verbrennungssysteme mit dem Ziel einer moeglichst effizienten und schadstoffarmen Energiebereitstellung stellt eine staendig wachsende Herausforderung dar. Bei der technologischen Umsetzung dieses Ziels kommt der mathematisch-numerischen Simulation eine immer groessere Bedeutung zu. In diesem Projekt sollte die Implementierung und Verbesserung von mathematischen Modellierungsansaetzen sowie die anschliessende Verifikation der Modellierungskonzepte anhand der Messdaten des Lehrstuhls fuer Dampf- und Gasturbinen (LDuG) durchgefuehrt werden. Der Schwerpunkt lag in der brennernahen Reaktionszone. Konkrete Arbeitsschwerpunkte waren die Weiterentwicklung und Verbesserung der Modellansaetze fuer Zweiphaseneffekte, Brennstoffumsatz und Turbulenzinteraktion sowie die Weiterentwicklung der Methodik der numerischen Simulation. Dabei stand die Simulation der Brennkammer des LDuG im Vordergrund. (orig.)

  14. Temperature measurement of axisymmetric partially premixed methane/air flame in a co-annular burner using Mach-Zehnder interferometry

    Science.gov (United States)

    Irandoost, M. S.; Ashjaee, M.; Askari, M. H.; Ahmadi, S.

    2015-11-01

    In this paper partially premixed laminar methane/air co-flow flame is studied experimentally. Methane-air flame is established on an axisymmetric co-annular burner. The fuel-air jet flows from the central tube while the secondary air flows from the region between the inner and the outer tube. The aim is to investigate the flame characteristics for methane/air axisymmetric partially premixed flame using Mach-Zehnder interferometry. Different equivalence ratios (φ=1.4-2.2) and Reynolds numbers (Re=100-1200) are considered in the study. Flame generic visible appearance and the corresponding fringe map structures are also investigated. It is seen that the fringe maps are poorly influenced by equivalence ratio variations at constant Reynolds number but are significantly affected by Reynolds number variations in constant equivalence ratio. Temperatures obtained from optical techniques are compared with those obtained from thermocouples and good agreement is observed. It is concluded that the effect of Reynolds number increment on maximum flame temperature is negligible while equivalence ratio reduction increases maximum flame temperature substantially.

  15. On the Narrative Ethics of the NovelXuande Incense Burner%论小说《宣德炉》的叙事伦理

    Institute of Scientific and Technical Information of China (English)

    焦文倩

    2015-01-01

    《宣德炉》以三线工厂为背景,讲述了一个小人物与命运抗争的故事.小说不仅蕴含了宏大的国家集体叙事伦理,还展现了个体在复杂的历史文化现实中独特的生存悖论、生命感觉的自由叙事伦理,个体话语和宏大的国家民族叙事之间的挣扎,以及采用零聚焦叙述、多层时空叙事、独特的叙述语言的叙事形式,形成了小说独特的叙事伦理.%Xuande Incense Burner tells a story of a common people who struggle with the fate in a factory. The novel not only contains national collective narrative ethics, but also shows the unique survival paradox, the free narrative ethics, the individual discourse and the unique narrative form of the novel. It uses zero-focalization, space-time narration, unique narrative language, formed its own unique narrative ethics.

  16. 某300MW电站机组低氮燃烧器改造研究%Study on Low NOx Burner Retrofit for a 300MW Unit Boiler

    Institute of Scientific and Technical Information of China (English)

    幸双喜; 郑海国; 张健; 刘亮亮

    2016-01-01

    The NOx emission concentration of a 300MW unit Boiler in Taiyuan exceed national standards though SCR was used.Thus,we used the new type burner and the whole furnace staged combustion technology to conduceted the low NOX combustion system.In the upstream decreased the production of NOx,the NOx emissions decreased by about 70%.After the transformation,the exhaust gas temperature of the unit was reduced by about 6℃compared with that before the transforma-tion,the carbon content of fly ash was not changed much,and the boiler efficiency is increased slightly.%太原某300MW机组采用SCR后,NOx排放还是不能满足国家要求。使用新型燃烧器和分级燃烧等技术对机组进行了低氮改造,在上游降低了NOx的生成量,在下游脱销装置和之前相同的情况下, NOx排放量降低了约70%。改造后,通过燃烧调整试验,机组的排烟温度较改造前降低了6℃左右,飞灰含碳量变化不大,锅炉效率略有提高。

  17. Development of Pre-mixed Gas Burners for Commercial Gas Cooking Ovens%燃气大锅灶用全预混燃烧器的研制

    Institute of Scientific and Technical Information of China (English)

    周梅; 冯良; 贺宗彦; 王会祥

    2013-01-01

    通过比较分析三种形式大锅灶燃烧器的特点,设计和制作了大功率鼓风预混式金属纤维燃烧器系统,实验和测试结果表明,试制的大锅灶燃烧器具有高效节能、环保、安全、低噪音、使用方便的优点,能够满足炊用大锅灶升级换代的技术要求。%Comparing to the features of three types of commercial gas cooking ovens, this paper designs and makes heavy-duty pre-mixed blasting metal fiber burner systems.The results of the experiments show that the prototype is efficient, energy saving, environmentally friendly, low-noise and convenient, which meets the technical requirements for the upgrading of commercial gas cooking ovens.

  18. Stabilization and structure of N-heptane flame on CWJ-spray burner with kHZ SPIV and OH-PLIF

    KAUST Repository

    Mansour, Morkous S.

    2015-08-31

    A curved wall-jet (CWJ) burner was employed to stabilize turbulent spray flames that utilized a Coanda effect by supplying air as annular-inward jet over a curved surface, surrounding an axisymmetric solid cone fuel spray. The stabilization characteristics and structure of n-heptane/air turbulent flames were investigated with varying fuel and air flow rates and the position of pressure atomizer (L). High-speed planar laser-induced fluorescence (PLIF) of OH radicals delineated reaction zone contours and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the flow field features, involving turbulent mixing within spray, ambient air entrainment and flame-turbulence interaction. High turbulent rms velocities were generated within the recirculation zone, which improved the flame stabilization. OH fluorescence signals revealed a double flame structure near the stabilization edge of lifted flame that consisted of inner partially premixed flame and outer diffusion flame front. The inner reaction zone is highly wrinkled and folded due to significant turbulent mixing between the annular-air jet and the fuel vapor generated from droplets along the contact interface of this air jet with the fuel spray. Larger droplets, having higher momentum are able to penetrate the inner reaction zone and then vaporized in the low-speed hot region bounded by these reaction zones; this supports the outer diffusion flame. Frequent local extinctions in the inner reaction zone were observed at low air flow rate. As flow rate increases, the inner zone is more resistant to local extinction despite of its high wrinkling and corrugation degree. However, the outer reaction zone exhibits stable and mildly wrinkled features irrespective of air flow rate. The liftoff height increases with the air mass flow rate but decreases with L.

  19. Effect of the mixing fields on the stability and structure of turbulent partially premixed flames in a concentric flow conical nozzle burner

    KAUST Repository

    Mansour, Mohy S.

    2016-10-22

    The mixing field is known to be one of the key parameters that affect the stability and structure of partially premixed flames. Data in these flames are now available covering the effects of turbulence, combustion system geometry, level of partially premixing and fuel type. However, quantitative analyses of the flame structure based on the mixing field are not yet available. The aim of this work is to present a comprehensive study of the effects of the mixing fields on the structure and stability of partially premixed methane flames. The mixing field in a concentric flow conical nozzle (CFCN) burner with well-controlled mechanism of the mixing is investigated using Rayleigh scattering technique. The flame stability, structure and flow field of some selected cases are presented using LIF of OH and PIV. The experimental data of the mixing field cover wide ranges of Reynolds number, equivalence ratio and mixing length. The data show that the mixing field is significantly affected by the mixing length and the ratio of the air-to-fuel velocities. The Reynolds number has a minimum effect on the mixing field in high turbulent flow regime and the stability is significantly affected by the turbulence level. The temporal fluctuations of the range of mixture fraction within the mixing field correlate with the flame stability. The highest point of stability occurs at recess distances where fluid mixtures near the jet exit plane are mostly within the flammability limits. This paper provides some correlations between the stability range in mixture fraction space and the turbulence level for different equivalence ratios.

  20. 新型燃气燃烧器的数值模拟研究%Numerical Simulation Research of New Type Gas Burner

    Institute of Scientific and Technical Information of China (English)

    胡远庆; 蒋利桥; 呼和涛力; 杨卫斌; 赵黛青

    2013-01-01

    采用数值模拟方法对自行设计的可调自吸式烟气再循环燃气燃烧器的燃烧性能进行了研究,探讨了预燃室和引射器喉部结构尺寸参数对燃烧器燃烧特性的影响.结果表明:预燃室尺寸参数对烟气的自循环量影响作用显著,当预燃室过大或者过小时,均不利于烟气自循环;引射器喉部尺寸适当地增大,有利于增加自循环的烟气量;随着自循环烟气量增大,火焰温度峰值位置前移,火焰长度变短.%The numerical simulation method was used to investigate the combustion characteristics of a new type gas burner with adjustable self-sucked flue gas recirculation(FGR),and the influences of the size of premix chamber and ejector throat on combustion characteristics were analyzed.The results show that the premix chamber size had an important influence on flue gas recirculation(FGR).While the premix chamber too big or too small,it was unfavorable for FGR.Larger throat diameter of ejector contributed to more amount of recirculation flue gas.And with increasing the amount of recirculation flue gas,the peak flame temperature position moved forward and the flame length got shortened.

  1. EXPERIMENTAL INVESTIGATION ON THE NEW TYPE CERAMIC BURNER%新型陶瓷燃烧器的模型实验研究

    Institute of Scientific and Technical Information of China (English)

    饶荣水; 戴方钦; 王立

    2001-01-01

    Based on the theoretical analysis,a new type ceramic burner is invented and the cold state model experiment is carried out.It is shown that the pressure loss factor of air and gas piping is 4.8~5.0 and 1.8~2.0;the homogeneous rate of gas piping system is 92.46%;the homogeneous rate of the first and secondary air is 90.66% and 94.57%.The result of the field experiment proves that preheated air temperature achieves 1100℃ under the condition of burning blast furnace gas.%在理论分析的基础上,设计了一种新型陶瓷燃烧器,并进行了冷态模型实验研究,实验结果表明:(1)空、煤气通道联吹的阻力系数分别为4.8~5.0和1.8~2.0;(2)煤气通道的配气均匀度达到了92.46%;(3)一、二次风出口配气均匀度达到了90.66%和94.57%。现场使用情况表明,本陶瓷燃烧器在纯烧高炉煤气的情况下,风温可稳定在1100℃的水平。

  2. 测定电弧炉中燃烧器喷尖“距废料距离”的SERAFIN传感器%SERAFIN sensor in the determination of "Distance-to-scrap" at burner tip in electric arc furnace

    Institute of Scientific and Technical Information of China (English)

    Mathy; Monfort G; Vanderheyden B; TussetV

    2011-01-01

    开发了用以测定电弧炉(EAF)中燃烧器喷尖“距废料距离”的SERAFIN传感器,同时讨论了其具有监测熔化废钢的工艺优点.详细描述了传感器测量原理和光学测量头的设计特点.SERAFIN传感器是一种适用于环形燃烧器、组合燃烧器以及氧气喷枪内部的在线测量“距废料距离”的测量技术,工业试验表明运用此传感器可以监测每个注射器前面废料的熔化情况,进而优化其操作,并可在发生损坏前检测逆吹情况.仪表盘过热比较结果表明其可以用于逆吹倾向的预测.%SERAFIN sensor for "Distance-to-scrap" determination at burner tip in electric arc furnace is developed. The process benefit of this sensor, devoted to the monitoring of the melting scraps, will be discussed. Meanwhile, its principle of measurement and the design feature of optical head are described in detail. SERAFIN sensor is an on-line "distance-to-scrap" measurement technique which is fitted inside annular burners, combined burners or oxygen lances. Industrial experiment shows that this sensor could be used to monitor the melting of scrap in front of each injector, and thus optimising its operation and detecting blow-back occurrences before any damage is created. The comparison made with the panel overheating proves their ability to predict blow-back proclivity.

  3. 新型低氮旋流燃烧器在马莲台发电厂中的应用%Application of new type low NOx cyclone burner in Maliantai Power Plant

    Institute of Scientific and Technical Information of China (English)

    朱金义

    2013-01-01

    In order to obtain the aim of reducing NOx emission in power plant and improving the en-vironment, aiming at the problem of using DDR cyclone burner engender highered NOx, Maliantai Power Plant uses the new type low NOx cyclone burner combine with SCR (selective catalytic reduc-tion) flue gas denitrification technology application into the denitrification improvement project, ob-tains better effects. The result shows that after the improvement of the burner, each operation index of the boiler is normally, the efficiency of the boiler increases, Nox emission density decreases obviously from original 679.85 mg/Nm3 to 290 mg/Nm3 , gains great social and economic benefits.%为了达到降低发电厂NOx排放物、改善生态环境的目的,针对采用DDR旋流燃烧器产生NOx较高的问题,马莲台发电厂在脱硝改造工程中大胆采用新型低氮燃烧器与SCR烟气脱硝相结合的技术,取得了良好效果。结果表明:燃烧器改造后锅炉运行各项指标正常,锅炉效率略有提高,NOx排放浓度明显减少,由原来的679.85 mg/Nm3降为290 mg/Nm3,取得了巨大的社会效益和经济效益。

  4. 新型缝隙式直流燃烧器的研究与应用%Research and application on new type split direct flow burner in W-flame boiler

    Institute of Scientific and Technical Information of China (English)

    陈玉忠; 石践; 罗小鹏; 侯玉波

    2012-01-01

    For the problems of the poor combustion stability, low combustion efficiency and severely slagging in W flame boiler split burner, based on the analysis of combustion principle and the numerical simulation experiment, a new type split direct flow burner was designed. The exhaust gas fire nozzle was laid in two secondary air areas next to the furnace center. A secondary air nozzle was laid in a primary air nozzle next to water wall. The results show that new type split burner enhance the combustion stability and combustion efficiency of the boiler, and slagging can be effectively controlled.%针对缝隙式燃烧器“W”型火焰锅炉存在的燃烧稳定性差、燃烧效率低、结渣严重等问题.通过燃烧机理分析和数值模拟试验,设计了一种新型缝隙式直流燃烧器.其主要特点是将乏气风火嘴布置于炉膛中心侧相邻的2条二次风处,一次风喷口背火侧布置1个二次风喷口.实践证明,新型缝隙式直流燃烧器使锅炉燃烧稳定性和锅炉燃烧效率得到提高,炉膛结渣现象得到有效控制.

  5. Test analysis of pulverizer starting up or shutting down without burner firing oil%锅炉磨煤机启停不投油的试验分析

    Institute of Scientific and Technical Information of China (English)

    贺光宇; 陈祥

    2015-01-01

    针对火电厂磨煤机启停时锅炉需投油助燃,增加发电成本的问题,华能大坝电厂对现有的磨煤机启停规程进行调整,对4台锅炉的磨煤机在设定条件下进行了启停不投油试验,确定了磨煤机启停时对应的燃烧器不投助燃油的锅炉运行条件。应用结果表明:实施磨煤机启停燃烧器不投油技术后,大坝电厂4台机组2014年至少节约燃油575 t,约合人民币413万多元,经济效益非常显著。%Aiming at the problem that when the pulverizer starting up or shutting down,burner need add oil to support hearth combustion,increasing the generation cost of coal-fired plant,under designed condition,makes the test of pulverizer starting up or shutting down without burner firing oil in Huaneng Ningxia Daba Power Plant,confirms the boiler running conditions of burner without the oil when the pulverizer starting up or shutting down. The application result shows that:after to implement the technology,4 units at least saving burning oil 575 ton,or about 4 130 000 Chinese yuan in Huaneng Ningxia Daba Power Plant,the economic benefit is evident.

  6. A laboratory investigation on the influence of adsorbed gases and particles from the exhaust of a kerosene burner on the evaporation rate of ice crystals and the ice nucleating ability of the exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, K.; Mitra, S.K.; Pruppacher, H.R. [Johannes Gutenberg Univ., Mainz (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    Laboratory experiments are described during which the influence of the exhausts of a kerosene burner on microphysical processes were studied. In one experimental investigation the evaporation rates of polluted ice crystals were compared with the evaporation rates of pure ice crystals. During another experimental investigation the ice nucleating ability of the exhaust particles was studied. The results show that the evaporation rate of polluted ice crystals was significantly reduced and also that ice nucleation takes place between -20 and -38 deg C. (author) 7 refs.

  7. A Study on the Reform of the Low-nitrogen Burner Adopting Blended Combustion with Different Types of Coal%关于低氮燃烧器掺烧不同煤质的改造

    Institute of Scientific and Technical Information of China (English)

    张俊友

    2012-01-01

    This essay introduces the reform of the louver-type horizontal dense-dilute burner which is equipped for the DG1025/18.2-Ⅱ4 boiler produced by Dongfang Boiler Group Co. , Ltd.. To retain the basic pattern of the original main combustion zone, the stratified combustion technology was used, and the wide-bluff-body-big-backflow-type vertical dense-dilute burner was used in the primary air spout. The secondary air spout on AA stratum was enlarged to increase its coal powder capacity. The tertiary air on Y stratum was moved down between burner C and burner D, and the coal powder carried by it was sent to the high-temperature area of the main combustion zone. Micro-oil igni- tion devices were increased in the combustion zone of A stratum. Appropriate amount of refractory belts were ar- ranged in the low-temperature zone near the tertiary air, to optimize the after-combustion condition of the coal pow- der as well as ensuring the temperatures of both main-heat and reheat steam. The boiler efficiency has increased by 2.52% after the reform and the boiler is operating well.%对东锅DGl025/18.2-Ⅱ4型锅炉所配备的百叶窗式水平浓淡燃烧器进行改造,采用分层燃烧技术,保留原主燃烧区域基本格局不变,一次风喷口采用宽钝体大回流式垂直浓淡燃烧器;增大底部AA层二次风喷口,使托粉能力增强;将Y层三次风下移到C、D两组燃烧器之间,将三次风中携带的煤粉送人主燃烧区域的高温区域;在A层燃烧器区域增加微油点火装置;在三次风附近低温区域布置适量卫燃带,优化煤粉燃尽条件,并保证主、再热蒸汽气温。改造后锅炉效率提高了2.52%,且锅炉运行正常。

  8. Effect of burners with different feeding modes on emission characteristics of biomass molding fuel particles%不同进料方式燃烧器对生物质燃料颗粒物排放特性的影响

    Institute of Scientific and Technical Information of China (English)

    张学敏; 张永亮; 姚宗路; 赵立欣; 孟海波; 田宜水

    2014-01-01

    为摸清不同进料方式的燃烧器对生物质成型燃料燃烧后颗粒物排放的影响,该文对上进料式(A 型)、水平进料式(B型)和下进料式(C型)等3种类型的燃烧器进行燃烧颗粒排放试验,采用低压电子冲击仪对玉米秸秆、棉秆、木质3种成型燃料燃烧后颗粒物排放开展数量浓度和质量浓度研究,并计算出每种燃料在3种燃烧器中每秒排放的颗粒物数量和质量分布。试验结果表明:3种燃烧器中的颗粒物质量分布都成双峰分布,主要集中在5~7级和12级,占总颗粒物质量的90%;木质和棉杆燃料在A型燃烧器中的颗粒物质量排放最少,玉米秸秆燃料在B型中颗粒物质量最少。3种燃烧器中的颗粒物数量分布都成单峰分布玉米秸秆和木质在B型燃烧器上的颗粒物数量主要集中在1~5级,在A型和C型燃烧器上颗粒物数量主要集中在3~6级;棉杆在C型燃烧器上集中在1~5级,在A型和B型燃烧器上颗粒物数量主要集中在3~6级。3种燃烧器对颗粒物质量的分布影响不大。根据试验结果,建议不同的燃料匹配不同的燃烧器。从颗粒物排放总量角度,玉米秸秆应该匹配B型燃烧器,棉杆和木质燃料应该匹配A型燃烧器。从PM2.5所占比例得出,玉米秸秆燃料应匹配C型燃烧器,棉杆匹配 B 型燃烧器,木质匹配 A 型燃烧器。并建议生物质成型燃料燃烧器结构应具有以下特点:进料连续平稳;带有主动清渣装置并且清渣波动小;鼓风配风,保证过量空气系数高。研究结果为中国生物质固体成型燃料的颗粒物排放法规的制定提供参考。%Different structure and the different feeding mode burners affect the emission and the combustion efficiency of various biomass solid fuels. However, how the burner structure and feeding mode impact on the particle emissions is not clearly understood. To investigate this

  9. 新型浓淡分离型稳燃器内气固两相流动的数值模拟%NUMERICAL SIMULATION FOR GAS-SOLID TWO-PHASE FLOW IN NEW TYPE RICH-LEAN STEADY BURNER

    Institute of Scientific and Technical Information of China (English)

    李凤瑞; 池作和; 周昊; 岑可法

    2001-01-01

    利用对新型浓淡分离型稳燃器内的气固两相流动进行的数值模拟,得出了不同预热室长度时其空气动力特性的变化,对开发应用新型稳燃器具有一定的指导意义。%In this paper, numerical simulation is carried out to analyze aerodynamics of new type rich-lean burner with different length preheator, which can develop the burner further.

  10. Achievement report for fiscal 1999 on project for supporting the formation of energy/environmental technology verification project. International joint verification research project (Verification project relative to ignition and NOx reduction using plasma sub-burner in pulverized coal-fired furnace); 1999 nendo plasma sabubana ni yoru bifuntan nenshoro ni okeru chakka oyobi NO{sub x} teigen gijutsu ni kansuru jissho project seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This project is executed through the cooperation of a Russian research institute, Akita Prefectural University, and the Ishikawajima-Harima Heavy Industries Co., Ltd. In the development of a plasma sub-burner and the basic research for its verification, a pulverized coal burning plasma sub-burner is designed and fabricated, a basic burning experiment is conducted for the plasma sub-burner, and plasma stabilization in a pulverized coal flow is simulated. In the verification study of the ignition by the plasma sub-burner in a pulverized coal-fired furnace, it is found that the newly-developed plasma sub-burner satisfies the prescribed operating conditions in the system and that the ignition of pulverized coal takes place across the air ratio range of 0.5-1.5 when pulverized coal is fed to the sub-burner. It is also found that NOx is reduced a great deal when a plasma operating on an orifice gas of air or nitrogen is generated in a gas which contains NOx. (NEDO)

  11. 铝熔炼炉燃烧器水平夹角的优化模拟%Optimization and Simulation of Horizontal Angle between Burners in an Aluminum Melting Furnace

    Institute of Scientific and Technical Information of China (English)

    王计敏; 闫红杰; 周孑民; 李世轩; 贵广臣

    2011-01-01

    In order to improve the energy efficiency and melt quality and to reduce the pollutant emission, based on validating results by heat balance test for regenerative aluminum melting furnace from a company, a reasonable model of aluminum melting furnace was established to optimize processing parameters. CFD software Fluent was used to simulate and optimize coupling field between liquid aluminum and combustion space at the varied horizontal angle between burners of the aluminum melting furnace. The results show that the desirable melting performance can be obtained with the horizontal angle between burners of 90°.%为提升铝熔炼炉热效率、降低污染物排放和提高熔体质量,在对某厂蓄热式铝熔炼炉热平衡测试的基础上,建立合理的铝熔炼炉模型,提出了优化准则.运用计算流体力学软件Fluent对铝熔炼炉燃烧器不同水平夹角下铝液和炉膛的耦合物理场进行了仿真优化.经过对不同燃烧器水平夹角下的优化分析,结果表明,燃烧器水平夹角为90°时,铝熔炼炉能获得最佳的熔炼性能.

  12. Influence of staged-air on airflow, combustion characteristics and NO(x) emissions of a down-fired pulverized-coal 300 MW(e) utility boiler with direct flow split burners.

    Science.gov (United States)

    Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang

    2010-02-01

    Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers.

  13. Experimental Research on Suction and Blast Self-Balance U-Type Radiant Tube Burner%抽鼓自平衡式U型辐射管烧嘴的实验研究

    Institute of Scientific and Technical Information of China (English)

    易敏

    2012-01-01

    The experimental research was carried on suction and blast self-balance U-type radiant tube burner, and the adjustment methods of the zero pressure surface of the burner were got from the experiment. The experiment showed that, by the way of combining the suction and blast of the air, and adding the Staged combustion device simultaneously, the premise of negative pressure in the radiant tube could be ensured, the preheating temperature and temperature efficiency were increased, and the surface temperature distribution of the radiation tube was improved. At the same time, the staged combustion had important effect on the formation of Nox.%对抽鼓式U型辐射管烧嘴进行了实验研究,通过实验得到辐射管内零压面的调节手段.实验表明,采用鼓风和吸风相结合的供风方式,同时添加分级燃烧装置,能够在保证辐射管内负压的前提下,提高换热器预热温度和温度效率,改善辐射管的表面温度分布.同时分级燃烧对抑制NOx的生成有重要的作用.

  14. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  15. Design of Weishaupt burner's safe use in heat medium heater system%威索燃烧器在热煤炉系统中的安全使用设计

    Institute of Scientific and Technical Information of China (English)

    刘治宝

    2011-01-01

    为了解决热煤炉点炉受环境因素影响这一难题,中石油管道公司引入国外先进的点炉装置--威索燃烧器.为了安全有效的使用和控制威索燃烧器,在控制电路上,我们采用"远程控制"和"现场控制"相结合的方法,为该设备的安全使用上了一个"双保险".实践证明,采用这种电路来控制这套装置,在热煤炉正常运行过程中,可以在"远程控制"和"现场控制"之间自由切换,不需要停炉.而且在两种控制方式当中的一种失灵的情况下,仍然可以对热煤炉的运行进行安全的保护.因此,通过威索燃烧器的安全使用可以为原油的输送安全提供更好的保障.%To solve the hard problem that the ignition of heat medium heater is affected by environment, China Petroleum Pipeline Company introduced the advanced igniting equipment Weishaupt Oil Burner from abroad. In order to use and control the burner safely and effectively, "remote control" and "local control" were combined in the control circuit, which offers "a double insurance" for the equipment's safe use. Practice has proved that the conjoint control of this equipment can realize flee switches between the remote control and local control in the normal running of the heat medium heater instead of stopping the heater. The conjoint control can insure the safe protection of the heater when one control fails. The,use of the Weishaupt Oil Burner can guarantee the safe conveyance of crude oil.

  16. 超级燃烧室混合室掺混特性数值研究%Numerical Study of Mixing Characteristics in Hyper-burner Mixing Chamber

    Institute of Scientific and Technical Information of China (English)

    程晓军; 范育新; 蔡迪; 张斌; 贾冰岳

    2014-01-01

    Two enhanced mixing schemes were proposed to achieve high mixing efficiency and low resis-tance in the turbine based combined cycle hyper-burner in all the operating modes using square lobed mixer com-bined with adjustable deflectors. Scheme A is composed of the scattered deflectors located just above the trough and the unequal penetration angle of lobed mixer located directly behind the split ring. While,scheme B is com-posed of the annular deflector and equal penetration angle of lobed mixer in which diameter is less than the split ring. The flow characteristics of these two mixing schemes was numerically simulated. The results indicate that the appearance of reflow blockage and flow separation were not observed for both schemes. Apart from the stream-line distribution of scheme B at the peak section better at ramjet mode,the streamline distribution of scheme A at the peak and though section was superior to scheme B at other modes. With comparing of the total pressure re-covery coefficient, thermal mixing efficiency and momentum mixing coefficient, it is found that the total pres-sure recovery coefficient of scheme A is 3.5%higher than that of scheme B with flight Mach number from 0 to 3. Furthermore,scheme A provides a uniform-mixed velocity and temperature in a shorter mixing distance. On the whole,the mixing scheme A has superior enhanced mixing features in flight Mach number from 0 to 3.%为了满足TBCC超级燃烧室的各工作模式下的低阻高效混合,设计了两种采用方形波瓣混合器和结构可调的导流片相结合的强化掺混方案。方案A由上下扩张角不等的波瓣混合器和处于波谷上方的离散状导流片组成,波瓣混合器正对于分流环;方案B由全环形导流片和上下等扩张角的波瓣混合器组成,波瓣混合器的中径小于分流环直径。通过数值研究对比分析了两种混合方案的流动特征发现,两种方案都未出现倒流和流动分离现象;除冲压模

  17. 多喷嘴对置式水煤浆气化炉内固体颗粒微观特性研究%Microscopic characteristics of solid pa rticle s in op posed multi-burner gasifier

    Institute of Scientific and Technical Information of China (English)

    孙利军; 龚岩; 郭庆华; 于广锁

    2014-01-01

    气化炉内固体颗粒微观结构特性对气流床气化过程中熔渣、粗渣和细渣的形成具有重要影响。基于多喷嘴对置式水煤浆气化实验,对典型工况(O/C原子比为1.0)下气化炉轴向不同位置的固体颗粒进行取样,利用氮气等温吸附法和扫描电子显微镜对颗粒孔隙结构和微观形态进行研究。结果表明,气化炉内固体颗粒典型形态为不规则多孔状和规则球状,喷嘴平面有少量致密性不规则颗粒和中空颗粒。从喷嘴平面沿气化炉轴向向下,随着气化反应的进行,颗粒表面愈加粗糙,孔隙结构愈加发达。颗粒吸附曲线属于II型等温线,迟滞回线属于H3型回线,表明颗粒具有大量裂缝形孔和较连续的完整孔系统。比表面积和孔容积均随着与喷嘴平面距离的增加而增大,而平均孔径逐渐减小,在喷嘴平面附近变化幅度较大。孔结构以孔径小于10 nm的孔为主,随着气化反应的进行颗粒中小于10 nm 的孔逐渐增多,而大于10 nm的孔分布状态变化不大。%The microscopic characteristics of solid particles have important influence on the forma tion fo fluid slag, cora se slag and fine slag during entrained-flow gasification process.Based on the bench-scale opposed multi-burner ( OMB) gasifei r, solid particles were sampled at different aix al distances along the gasifier chameb r under typci al oep rating oc nditino s (oxygen na d carbon atomic ratio at 1.0).The microscopic characteristics of solid particles were studied by using N2 adsorption-deos rption and scanning electron microscopy (S EM ) methods.The results show that the solid particles are comprised mainly of porous irregular particle and spherical particle, and few solid particles generated at burner plane perform as dense irregular and hollow shape.As the gasification reaction proceeds along the axis of gasifier, the surface strucut re of particles becomes rougher, and the

  18. Verbundprojekt PyrInno: Miniature burners for liquid fuels in the range of 1 - 8 kW; Verbundprojekt PyrInno: Kleinstbrenner auf Basis fluessiger Brennstoffe im Leistungsbereich 1 kW bis 8 kW

    Energy Technology Data Exchange (ETDEWEB)

    Paesler, L.; Schloss, J. vom; Lucka, K.; Koehne, H. [OWI Oel-Waerme Inst. gGmbH, Aachen-Herzogenrath (Germany); Mach, A.; Issendorff, F. von; Delgado, A. [Inst. fuer Stroemungsmechanik (LSTM), Univ. Erlangen (Germany); Eberspach, G.; Schmidt, O. [J. Eberspaecher GmbH und Co. KG, Esslingen (Germany); Sproten, H.P. [Fachverband Sanitaer-Klima-Heizung Nordrhein Westfahlen, Duesseldorf (Germany); Hamacher, R. [Heizungsbau Hamacher, Herzogenrath (Germany); Issendorff, E. [Issendorff Mikroelektronik GmbH, Rethen (Germany); Grodt, J. [Inst. fuer wirtschaftliche Oelheizung e.V., Hamburg (Germany); Muehlenberg, R. [Muehlenberg Haus und Technik Planungsbuero, Herzogenrath (Germany); Volkert, J.; Keim, E. [Promeos GmbH, Erlangen (Germany); Scholer, W. [Rotex Heating Systems GmbH, Gueglingen (Germany); Morawe, A.; Lahmann, F. [SOLVIS GmbH und Co. KG, Braunschweig (Germany); Volkert, H. [Volkert Heizungstechnik GmbH, Pommelsbrunn (Germany)

    2007-07-01

    Modern household heating systems must exhibit a low minimal power, a wide power modulation range and a high power density. The combination of innovative concepts and technologies like the evaporation in porous media, the preparation of a homogeneous fuel/air mixture supported by cool flames and the combustion in inert porous media will help to meet the changed requirements. The intention of the project 'PyrInno' is to develop an extremely compact oil heating system which reveals low emissions, a power modulation range from 1 kW to 8kW and meets the German air pollution guidelines for environmental protection. In this contribution the first operating model of this compact premix burner for light fuel oil is presented and the first experimental results are shown. (orig.)

  19. Application of WYYQ - DQ Type Oil and Gas Joint Burner in Atmospheric Heating Furnace%WYYQ-DQ型油气联合燃烧器在常压加热炉中的应用

    Institute of Scientific and Technical Information of China (English)

    纪春春

    2011-01-01

    为适应提高原油加工量的需要,对常减压装置的加热炉进行局部改造,采用新型油气联合燃烧器,降低了炉膛温度,改善了辐射室内的传热,提高了加热炉的总负荷,并使其能在高效率、大负荷下长周期安全运行.%In order to adapt enhances the crude oil process load the need, the partial transformation often to the vacuumed heating furnace was carried on, the new oil gas union burner was used, reducing the furnace temperature and improving the exposure cell heat transfer. The heating furnace total load was enhanced, and its high efficiency enables in heavy load for long period safe operation.

  20. Turbulent Non-Premixed Flames Stabilized on Double-Slit Curved Wall-Jet Burner with Simultaneous OH-Planar Laser-Induced Fluorescence and Particle Image Velocimetry Measurements

    KAUST Repository

    Mansour, Morkous S.

    2015-04-29

    A double-slit curved wall-jet (CWJ) burner utilizing a Coanda effect by supplying fuel and air as annular-inward jets over a curved surface was employed to investigate the stabilization characteristics and structure of propane/air turbulent non-premixed flames with varying global equivalence ratio and Reynolds number. Simultaneous time-resolved measurements of particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) of OH radicals were conducted. The burner showed a potential of stable and non-sooting operation for relatively large fuel loading and overall rich conditions. Mixing characteristics in cold flow were first examined using an acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions. PIV measurements revealed that the flow field consisted of a wall-jet region leading to a recirculation zone through flow separation, an interaction jet region resulting from the collision of annular-inward jets, followed by a merged-jet region. The flames were stabilized in the recirculation zone and, in extreme cases, only a small flame seed remained in the recirculation zone. Together with the collision of the slit jets in the interaction jet region, the velocity gradients in the shear layers at the boundaries of the annular jets generate the turbulence. Turbulent mean and rms velocities were influenced by the presence of the flame, particularly in the recirculation zone. Flames with a high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Reynolds numbers. For flames with a low equivalence ratio, local quenching and re-ignition processes maintained flames in the merged jet region, revealing a strong intermittency, which was substantiated by the increased principal strain rates for these flames. © 2015 Taylor & Francis Group, LLC.

  1. Effect of tertiary air speed on combustion efficiency of pulverized coal burners%三次风速对煤粉燃烧器燃烧效率的影响

    Institute of Scientific and Technical Information of China (English)

    张文学; 郭彩; 武建新

    2015-01-01

    In order to study the influence of tertiary alr speed on burning efficiency of LB2000 type asphalt mixing station pulverized coal burners,a mathematical model was established.By using the Fluent software and the standard k-εmodel,numerical simulation on pulverized coal combustion in the burner was carried out.With different tertiary alr speeds,the temperature field,component concentration field,burning rate distribution field and particle traj ectory in the buerner were studied.According to the evaluation standard of combustion efficiency,the optimal tertiary alr speed should be from 40 m/s to 50 m/s.%为了研究三次风速对LB2000型沥青搅拌站煤粉燃烧器燃烧效率的影响,建立煤粉燃烧器数学模型,应用Fluent软件,采用标准k-ε模型对煤粉燃烧器中的煤粉燃烧进行模拟.在不同三次风风速下,对沥青搅拌站煤粉燃烧器的温度场、组分浓度场、燃尽率分布场和颗粒轨迹进行了分析.根据燃烧效率评价标准,得出了最佳三次风风速为40~50 m/s.

  2. Study of the Structural Optimization of a Partially Pre-mixed Type Swirling Burner Burning the Coal Bed Gas With a Low Heat Value%低热值煤层气部分预混式旋流燃烧器结构优化研究

    Institute of Scientific and Technical Information of China (English)

    杨鑫; 张力; 杨仲卿

    2012-01-01

    For a partially premixed type swirling burner burning the coal-bed gas with a low heating value, optimization studied was its structure by additionally installing a bluff body on it and .investigated was the law that the bluff body influences the speed,temperature and distribution of the methane concentration at the outlet of the burner by using a numerical analytic method. It has been found that to additionally install a bluff body onto the outer wall of the fuel gas tube can improve the partially premixing effectiveness of the burner and shorten the length of the flame. To additionally mount a bluff body at the outlet of the supporting tube can enhance the jet flow rigidity of the gas flow at the outlet of the burner, making the in-furnace temperature distribution tend to be uniform and at the same time enhance the capacity and area of the flow return zone to entrain the high temperature flue gas,thus forming.a stable high temperature zone at the outlet of the spout. To partially optimize the burner by additionally install two pieces of bluff body can achieve good combustion stability at the same time of ensuring a rigidity of the jet flow of the optimized burner. The axial speed gradient and temperature at the outlet of the burner will increase with an increase of the taperness of the bluff body at the outlet and it is proper to choose 34.21 degrees as the taperness of the bluff body at the outlet of a burner.%针对低热值煤层气部分预混式旋流燃烧器,通过加装钝体对其结构进行了优化研究,采用数值分析的方法考察了钝体对燃烧器出口速度、温度及甲烷浓度分布等的影响规律.研究表明:在燃气管外壁上加装钝体可以提高燃烧器的部分预混效果,缩短火焰长度;在支撑管出口加装钝体可以提高燃烧器出口气流的射流刚性,使炉内温度分布趋于均匀,同时提高回流区卷吸高温烟气的能力和范围,在喷口出口形成稳定的高温区.通过加装两部

  3. Study of the Combustion Characteristics of Liquid N-heptane in a Tiny Straight Tube Type Burner%液体正庚烷在微细直管燃烧器中的燃烧特性研究

    Institute of Scientific and Technical Information of China (English)

    赵俊英; 李军伟; 黄景怀; 王宁飞

    2013-01-01

    To learn the flame extinction and diffusion characteristics of liquid fuel in a micro space, various sleeve tubes and porous media were used. In a tiny straight tube, the diffused flame of heptane was experimentally studied. The re search results show that with an increase of the flow rate of heptane, the stable location of the flame will gradually move to the outlet of the straight tube type burner,the flammable limits will first become wide at a high speed and then tend to be constant. To increase the number of the sleeve tubes can effectively expand the flammable limits and the structure of the sleeve tubes has a big influence on the flame stability and flammable limits. The more the num ber of the sleeve tubes, the smaller the heat quantity released from the burner. In addition, the location of the porous medium influences greatly the flame stability. When the nozzle of heptane is placed at the upper reaches of the por ous medium or in it, the evaporation and mixing effectiveness of liquid heptane will be the best, thus obtaining a bet ter oxygen-enriched combustion limit.%为了解液体燃料在微小空间中的熄火和火焰传播特性,采用不同的外套管和多孔介质,在微细直管中对庚烷扩散火焰进行了实验研究.研究结果表明:随着庚烷流量的增加,火焰稳定位置逐渐向直管燃烧器出口移动,可燃极限先迅速增大又趋于不变.增加外套管可以有效扩展可燃极限,外套管的结构对火焰稳定性和可燃极限有很大影响.外套管层数越多,燃烧器散热量越小,火焰稳定性越好.此外,多孔介质的位置对火焰稳定性也有很大影响.庚烷喷嘴放置在多孔介质上游及多孔介质中时,液体庚烷的蒸发以及混合效果最好,可以得到更好的富燃极限.

  4. 弯管和文丘里管组合燃烧器的颗粒分布特性%The Distribution of Pulverized Coal Concentration Inside the Composite Structures Burner of Elbow and Venturi Tube

    Institute of Scientific and Technical Information of China (English)

    康张阳; 杨茉; 杨大海; 陈赛科; 严祯荣; 罗晓明; 高子瑜

    2011-01-01

    This paper investigates a new rich-lean pulverized coal burner combined elbow and Venturi tube.The gas-solid two-phase flow inside elbow,Venturi tube and this new structure are simulated numerically.The Euler-Lagrange method and Dispersed Phase Model(DPM) are adopted in the studies of gas-solid two-phase flow.The Detached-eddy-simulation(DES) approach is involved in the calculation of turbulence dispersion of gas phase.The Discrete random walk model(DRW) is used in the turbulence of solid phase.The results show that,for the particles of 10μm,the effect of rich-lean separation of three types of structure is unobvious.For the particles with a diameter larger than 50μm,this new structure burner can achieve rich-lean separation.In addition,the area of high concentration does not adhere to the wall.%本文给出一种弯管和文丘里管组合结构的新型浓淡煤粉燃烧器,并分别对弯管、文丘里管和这种弯管和文丘里管组合结构燃烧器内的气固两相流动进行了数值模拟。采用Euler-Lagrange方法和离散相模型(DPM)研究气固两相流动,气相湍流采用分离涡(DES)模拟方法,固相湍流采用离散随机游动(DRW)模型。结果表明,这三种结构对10μm的小颗粒分离作用都不好,而对于大于50μm的颗粒来说,弯管和文丘里管的组合结构不仅可以实现浓淡分离,而且高浓度区域不贴壁。

  5. Measurements of the concentration of major chemical species in the flame of a test burner with a air swirling system; Mesures de concentration d`especes chimiques majoritaires dans la flamme d`un bruleur modele avec mise en rotation de l`air

    Energy Technology Data Exchange (ETDEWEB)

    Albert, St. [Gaz de France (GDF), 93 - La Plaine-Saint-Denis (France); Most, J.M.; Poireault, B. [Centre National de la Recherche Scientifique (CNRS), 86 - Poitiers (France)

    1996-12-31

    The study of combustion in industrial burners remains difficult because of the complexity of the equipments used: materials geometry, tri-dimensional flows etc.. The phenomena that control the combustion in a gas burner with a swirl air system has been studied thanks to a collaboration between the Direction of Research of Gaz de France (GdF) and the Laboratory for Combustion and Detonation Research (LCD) of the French National Centre of Scientific Research (CNRS). The burner used is developed by the LCD and the measurements of stable chemical species were performed by the CERSTA centre of GdF. These series of tests, performed in confined environment, have permitted to identify some of the parameters that influence combustion chemistry. Mapping of chemical species allows to distinguish 5 zones of flame development and also the zones of nitrogen oxides formation. Methane is rapidly centrifuged a few millimeters above the injection pipe and centrifuged with rotating combustion air. Carbon monoxide occurs immediately in the central recirculation zone which is weakly reactive (no oxygen and no methane). Oxygen content increases downflow from this area and carbon dioxide reaches its concentration maxima. CO formation decreases when the swirl number increases and CO{sub 2} formation occurs earlier. On the contrary, the emissions of CO and CH{sub 4} do not depend on the swirl value and the NO{sub x} values are only slightly dependent on this value. (J.S.)

  6. STUDY ON DOUBLE-CHANNEL CYCLONE-TYPE PULVERIZED COAL BURNER WITH INNER-POSITIONED FLAME-STABILIZING BODY AND ITS APPLICATION ON 410 t/h BOILER%加内置稳焰体的双通道旋流煤粉燃烧器研究及其在410 t/h锅炉上的应用

    Institute of Scientific and Technical Information of China (English)

    熊立红; 唐必光; 顾昌; 顾山; 高茂; 刘玲; 蔡建国

    2001-01-01

    The combustion-stabilizing mechanism of the title burner has been analyzed.The results of test,measurement and study of cold-state simulation have been given.Based on the results of study,the cyclone-type burner of boiler No 3 in Huozhou Power Plant,Shanxi province,has been retrofitted.The results of commercial experiments show,this kind of burner has better fire-stabilizing capability.%分析了加内置稳焰体的双通道旋流煤粉燃烧器的稳燃机理,给出了冷态模拟试验测量及研究结果,根据研究结果对山西霍州电厂3号炉的旋流燃烧器进行了改造。工业试验结果表明,该燃烧器具有较好的稳燃性能。

  7. 巴威锅炉 DRB-XCL 型燃烧器低氮调整探讨%Discussion on DRB-XLC Burner Low Nitrogen Adjustment in B & W Boiler

    Institute of Scientific and Technical Information of China (English)

    汪国庆

    2014-01-01

    NOx is one of the main sources of atmospheric pollution , mostly from the burning of fossil fuels , the state promulgated the requirements on the new stage of thermal power plant NO x mandatory emissions targets .People pay more and more attention to NO x emission control measures in power plant .This paper discusses the adjustment method for DRB-XCL type burner of low nitrogen , the adjustment factor of influ-ence factors on NO x emission and the actual control scheme .%NOx是大气污染的主要污染源之一,人为活动排放的NOx ,大部分来自化石燃料的燃烧过程,为此国家出台了针对火电厂大中型机组新阶段100mg/Nm3以下的NOx 排放指标强制性要求,火电厂各种低氮燃烧技术逐渐被重视起来,控制NOx 排放的措施受到日益关注。本文针对我厂锅炉DRB-XCL型燃烧器低氮调整方式进行探讨,总结NO x 排放的影响因素和实际控制方案。

  8. Industrial Experimental Study and Application of Plasma Pulverized Coal Ignition Burner%等离子煤粉点火燃烧器工业性试验研究及应用

    Institute of Scientific and Technical Information of China (English)

    崔凤誉; 张玉周

    2001-01-01

    This paper systematically explains the content and method of industrial experiment in plasma pulverized coal ignition burner analyzes the experiment results,and puts forward the two-parameter concentration of pulverized coal and fuel ratio combustion regulation-control of plasma pulverized coal ignition burner.On the basis of the industrial experiment,Shandong Yantai Coal-fired Power Plant has realized successfully the boiler ignition without oil aid by using plasma pulverized coal ignition burner for the first time.%阐释等离子煤粉点火燃烧器工业试验的内容及方法,并对其试验结果进行分析。提出等离子煤粉点火燃烧器燃烧调整的双参数煤粉浓度、燃功比控制法。在对等离子煤粉点火燃烧器工业试验基础上,2000年2月15日,山东烟台发电厂利用等离子煤粉点火燃烧器首次实现了机组无油点火。

  9. Pulverized Coal Fired Burner Using Coflow Jets with Velocity Difference in Revolving Kiln of Cement%回转水泥窑同向速差射流煤粉燃烧器

    Institute of Scientific and Technical Information of China (English)

    张拥军

    2000-01-01

    利用多股气体同向流动,人为控制气流的喷射速度,造成一定的速度差,借助射流的强烈的引射作用,使高温烟气回流至一次风、粉混合气流中,使一次风、粉提前加热、着火,从而强化了煤粉的燃烧,并保证了所需火焰的形状,解决了在回转水泥窑中大比例掺烧无烟煤的技术难题。%Using velocity difference among the multiple coflow jets and the strong entraiment effect of high speed jets,the high temperature flue will be recirculated to the exit of pulverized coal stream and mixed with the steam.The coal will be heated and ignited in advance,and thus the coal combustion will be intensified. Meanwhile the flame configuration can be ensured by using the present burner.Therefore the combustion of large amounts of anthrecite added to the bituminous coal is solved.

  10. Comparative Study on Longquan Celadon Incense Burners from Song Dynasty to Ming Dynasty%宋代至明代的龙泉青瓷香炉的比较研究

    Institute of Scientific and Technical Information of China (English)

    于清华

    2014-01-01

    Longquan kiln made varied celadon censers from Song Dynasty to Ming Dynasty. The most commonly seen include caldron censers, ding censers, ifsh-handled censers, toilet case-shaped censers, cylindric censers, bowl censers, square censers and fumigating censers, all crafted in the same tradition that has been handed down over the continuum of time. This paper makes a longitudinal comparison of Longquan celadon incense burners from Song Dynasty to Ming Dynasty from the perspectives of art design, aesthetics and culturology to extract their respective art characteristics.%宋代至明代的龙泉窑烧造了类别丰富的青瓷香炉,常见的品种有鬲式炉、鼎式炉、鱼耳炉、奁式炉、筒形炉、钵式炉、方炉和薰炉。龙泉青瓷香炉的造物体系具有一脉相承的延续性,对宋代至明代龙泉青瓷香炉的研究以纵向比较为主线,应用设计学、美学和文化学等相关方法,梳理和分析宋元明三朝龙泉青瓷香炉的造物艺术特征。

  11. Cause analysis of slag depositing on platen type reheater tubes after the reform of low-Nox burner%低氮燃烧器改造后再热器管屏积渣原因分析

    Institute of Scientific and Technical Information of China (English)

    马文举

    2015-01-01

    Aiming at the problem of slag depositing on platen type high temperature reheater tubes after the reform of low-Nox burner,analyzes the operation parameters,the coal blending way,the horizontal flue ash type and the heating surface deformation,etc.,puts forward targeted countermeasures. The result shows that the oxygen content is low,leading to temperature to rise at the exit of hearth is main cause of slag depositing on platen type high temperature reheater tubes.%针对某发电厂锅炉低氮燃烧器改造后发生的高温再热器管屏积渣问题,从运行参数、配煤方式、水平烟道吹灰器型式及受热面变形等方面进行了分析,提出了针对性的解决措施。结果表明:运行中锅炉含氧量偏低,导致炉膛出口烟温升高是造成高温再热器管屏间积渣的主要原因。

  12. Analysis for Partial Burning of Top Burner of First Furnace in Synthesis Ammonia%合成氨一段炉炉顶烧嘴偏烧原因分析

    Institute of Scientific and Technical Information of China (English)

    梁忠坪

    2011-01-01

    In recent years,serious over temperature,partial burning and temperature disturbance happens in our synthesis ammonia unit.After deep analysis from the point of burner type,exhaust system,furnace structure,burning medium,catalyst and equipment for a long period,we finally efficiently solved this big problem in production process.This article summarized this progress,and is useful for optimizig the first furnace in the future.%公司合成氨装置一段炉近几年存在严重的超温、偏烧和温度波动现象。经过长期深入分析,从烧嘴类型、配风系统、炉型结构、燃烧介质、触媒以及设备方面逐一进行原因排查、处理,最终有效解决了这一长期困扰工艺生产的难题。对该过程进行分析总结,为今后一段炉的进一步优化拓展思路。

  13. Actinide burner fuel: Potential compositions based on the thermodynamic evaluation of MF-PuF 3 (M = Li, Na, K, Rb, Cs) and LaF 3-PuF 3 systems

    Science.gov (United States)

    Beneš, O.; Konings, R. J. M.

    2008-07-01

    In previous studies a thermodynamic description of the LiF-NaF-KF-RbF-CsF-LaF 3 system was presented. In order to add PuF 3 to this system the assessments of LiF-PuF 3, NaF-PuF 3, KF-PuF 3, RbF-PuF 3, CsF-PuF 3 and LaF 3-PuF 3 binary phase diagrams have been made. In case of the LiF-PuF 3 and NaF-PuF 3 the assessments have been based on known experimental data. The other binary systems have not been measured yet and the thermodynamic description has been made using the excess parameters from the previously assessed binaries containing LaF 3, which is considered as a proxy compound for PuF 3. The main aim of this study is to analyze potential compositions for a molten salt fast burner fuel.

  14. Energetic evaluation of low potential biomass gasifier coupled with a burner of the produced gas for generation of heat; Avaliacao energetica de um gaseificador de biomassa de baixa potencia, associado a um combustor do gas produzido, para geracao de calor

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Samuel [Universidade de Brasilia (FAV/UNB), DF (Brazil). Fac. de Agronomia e Medicina Veterinaria], email: samuelmartin@unb.nr; Silva, Jadir Nogueira [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola; Machado, Cassio Silva; Zanatta, Fabio Luis; Galvarro, Svetlana F.S. [Universidade Federal de Vicosa (UFV), MG (Brazil)

    2011-07-01

    In the search of alternatives for sustainable socio-economic development, this study had the objective of evaluating the energetic performance of a concurrent flow biomass gasifier associated with a burner for the gas produced which was of low potential for air heating using a renewable energy source (substituting non-renewable). In this system 4 tests were performed using eucalyptus chips (tests 1 and 2) and logs (tests 3 and 4) as fuel, for the two fan motor frequencies of 60 and 50 hertz. Temperature in the combustion chamber was monitored, along with fuel consumption and other variables. In the tests, the average exhaust air temperature was maintained between 92.7 and 100.4 deg C, and the reduction in the motor frequency from 60 to 50 Hz caused an increase in the duration of the tests. The system presented the best energetic performance when utilizing a frequency of 60 Hz for both fuel types. However, the results of energy efficiency varied very little when comparing tests performed at the same fan frequency. Thus, the gasification process was little affected by variation in the physical characteristics of the tested fuels, and it was recommended that the equipment operate with a frequency of 60 Hz. (author)

  15. Description d'un nouveau brûleur compact. Fonctionnement en régime de gaz prémélangés Description of a New Compact Premixed Gas Burner

    Directory of Open Access Journals (Sweden)

    Minetti R.

    2006-11-01

    Full Text Available On décrit un nouveau brûleur compact à gaz, de haut rendement et d'une puissance variable de 1 à 5 kW. La source de chaleur est une flamme plate d'un prémélange stoechiométrique de gaz naturel et d'air stabilisé sur une grille d'une surface de 100 cm2. Plusieurs grilles en acier inoxydable sont comparées. Elles diffèrent par leur épaisseur, le nombre et la dimension des trous. Un échangeur de chaleur en laiton à circulation d'eau peut être approché jusqu'à 7 mm de la surface du brûleur. La température des gaz frais, le débit et la position de l'échangeur ont été modifiés et les conditions optimales de fonctionnement sont décrites. Les températures à travers les gaz frais, la flamme, les gaz brûlés et les fumées, ont été mesurées. Un modèle simple des échanges de chaleurs est présenté. Il permet une meilleure compréhension des processus de transfert et facilite le choix des conditions opératoires. Dans les meilleures conditions, 93 % du contenu thermique du mélange gazeux est transféré à l'échangeur. Some general characteristics of a compact and efficient gas burner are described (1-5 kW. The heat source is a premixed flat flame stabilized on a 100 cm2 grid fed by a stoechiometric mixture of air and natural gas. Various types of stainless steel grids have been investigated. They differ according to their thickness and to the number and size of the holes. A circulating water heat exchanger made of brass can be approached to the flame as close as 7 mm above the burner surface. The temperature of the inlet gas mixture, the flow rate, and the position of the heat exchanger have been varied. The best working conditions are given as well as the temperature through the fresh gaseous mixture, the temperature profiles of the flame and the temperature of the fumes. From heat transfer calculations a simple model is presented. It gives better insight into the heat transfer processes and facilitates a judicious

  16. 当量比对涡轮叶间燃烧性能影响的数值模拟%Numerical Simulation of Influence of Equivalence Ratio on Turbine Inter-Vane Burner

    Institute of Scientific and Technical Information of China (English)

    李明; 唐豪; 莫妲; 张超

    2012-01-01

    为探究涡轮叶间燃烧性能,设计了4种不同当量比的工况,利用FLUENT软件的Realizable k-ε湍流模型、PDF燃烧模型、DO辐射模型和离散相模型对燃烧室的流动及燃烧进行数值模拟.结果表明:燃烧室能在广泛的当量比(2.59~ 0.81)下保持性能稳定,燃烧效率保持在96%以上、总压损失低于2.4%,气体温度提高650 K左右;降低当量比,能够提高燃烧效率,降低CO、UHC、NOx等污染物排放,改善温度分布,但会造成更大的总压损失;最优当量比等于1.00,此时燃烧效率在99.95%以上,总压损失相对低(1.5%),出口径向温度呈抛物线型分布,最适合燃烧室设计.与文献对比发现,选取的工况合理,其结果对涡轮叶间燃烧室设计具有参考价值.%To investigate the performance of turbine inter-vane burner (TIB), 4 loading conditions with different equivalence ratios were designed. The realizable k-e turbulent model, PDF combustion model, DO radiation model and DPM model of FLUENT were used to simulate the turbulent flow and combustion in the burner. The TIB can increase the gas temperature by about 650 K under a wide range of equivalence ratio (2.59-0.81). The combustion efficiency remains above 96% with the total pressure loss less than 2.4%. As the equivalence ratio gets lower, the combustion efficiency is increased and the pollutant emissions of CO, UHC and NOX are decreased, thus improving the temperature distribution, but meanwhile increasing the total pressure loss. The optimal equivalence ratio equals 1.00, and in such a case, the combustion efficiency is above 99.95% and the total pressure loss is relatively low(1.5%). Meanwhile, a parabolic shape radial temperature profile emerges, which is appropriate for gas turbine engine design. The comparison with literature data shows that the loading conditions are reasonable and the numerical results provide an important reference to the design of TIB.

  17. 叶片特性和中心风量对一种煤气燃烧器冷态流场的影响%Influence of the Blade Characteristics and Central Air Quantity on the Cold-state Flow Field of a Coal-gas Burner

    Institute of Scientific and Technical Information of China (English)

    严阵; 李鲲; 张世红; 陈汉平

    2012-01-01

    基于高温煤气燃烧特点和对煤气燃烧器的要求,本研究提出了一种新型煤气燃烧器,并建立了冷态试验台架,利用等温模化方法将燃烧器内部结构及运行工况对流场分布的影响进行了冷态试验.试验表明:叶片的旋流角度为60°时比45°和30°时产生的旋流强度大,有利于高温煤气与配风在燃烧室内的旋流混合效果,但同时旋流衰减也在加快;此外,具有8个叶片的燃烧器比6叶片燃烧器的旋流效果好,但流场阻力大;中心风量从额定工况的0.8倍增加到1.2倍时,旋流对直流的影响减弱,有利于火焰形状的改变;叶片到喷口的距离从65mm减小到零时,旋流效果变的明显,有利于气流混合.冷态试验结果对该燃烧器的优化设计和进一步热态试验提供借鉴和参考.%Based on the specific features of the combustion of high temperature coal gas and its requirements for coal gas burners, presented was a novel type coal-gas burner with a cold-state test rig being set up. A cold-state test was performed of the influence of the inner structure of the burner and the operating conditions on the flow field distribution by employing an isothermal modeling method. The test results show that a bigger swirling intensity will be produced when the swirling angle of the blades is set at 60 degrees than those when it is set at 45 degrees and 30 degrees, favorable for the swirling flow mixing effectiveness of the high temperature coal-gas and the air supplied in the combustion chamber and at the same time also quickening the attenuation of the swirling flow. Furthermore, the swirling effectiveness of a burner with 8 blades is better than that of a burner with 6 blades,however,a bigger resistance may result in the flow field. When the central air quantity increases from 0. 8 times provided under the rated operating condition to 1. 2 times, the influence of the swirling flow will be weakened on the straight flow

  18. Numerical Simulation of the Gas-liquid Two-phase Flow and Combustion in the Outlet of Venturi Burner%文丘利型油燃烧器出口 气液两相流动与燃烧的数值模拟

    Institute of Scientific and Technical Information of China (English)

    马哲树; 涂淑平; 姚寿广

    2001-01-01

    According to the characteristics of spray combustion in the oil-burned boiler equipped with Ven turi Burner and based on the simulation results of internal and external aerodynamic field under cold condi tion and gas-phase combustion field employed EBU model, the numerical simulation of the gas-liquid two phase flow and combustion in the outlet of venturi burner are presented. Distributions of pressure, velocity, temperature and ingredient concentration in chamber are provided. By theoretical analysis and contrast with the experimental results about Venturi Burner, the models, numerical methods and the numerical results given in this paper are credible. The numerical results can be used to guide the further design and operation of this type oil-burned boiler.%针对选配文丘利型油燃烧器的燃油锅炉中液雾燃烧的特点,在冷态等温流场数值模拟结果及 EBU-Arrhenius模型模拟气相燃烧所得结果的基础上,数值模拟了单只文丘利油燃烧器出口的气液两相 流动与燃烧,给出了流场中的速度场、温度场以及浓度场的分布信息,这些结论可为该型燃油锅炉的进 一步设计和运行以及燃烧室的布置提供有益的依据。

  19. Altitude Performance and Operational Characteristics of 29-inch-diameter Tail-pipe Burner with Several Fuel Systems and Fuel-cooled Stage-type Flame Holders on J35-A-5 Turbojet Engine / Richard L. Golladay and Harry E. Bloomer

    Science.gov (United States)

    Golladay, Richard L; Bloomer, Harry E

    1950-01-01

    An investigation of tail-pipe burning was conducted in the NACA Lewis altitude wind tunnel with a full-scale turbojet engine and an 29-inch-diameter tail-pipe burner. Effects of fuel distribution and number and arrangement of stages on performance and operational characteristics of several fuel-cooled flame holders are presented and discussed. Operation with a three-stage flame holder having the large stage upstream was the most efficient. Combustion efficiency was slightly increased at high altitudes by injecting fuel upstream of the flame holder.

  20. 600MW机组对冲燃烧锅炉低氮燃烧改造及运行调整%Low NOx burner retrofit and operation adjustment of 600 MW opposed wall firing boiler

    Institute of Scientific and Technical Information of China (English)

    应明良; 戴成峰; 胡伟锋; 徐良; 屠小宝

    2011-01-01

    For the high NO.duscharge density of 600 MW opposed wall firing boiler,the retrofitting of combustors with low NOx was carried on. By replacing low NOx burner,arranging OFA appropriately, and adopting staged-air furnace combustion technology, the NOx discharge density was decreased to 300 mg/m3.The unburned carbon mass fraction in fly ash was not changed greatly.By replacing parts of the low-temperatuer superheater with the economizer, the desuperheating water flow of superheater was reduced,the gas temperature in air preheater outlet was decreased and teh echaust gas temperature of boiler was decreased.All of these are good for improving the boiler efficiency.After the replacing of parts of the low-temperature superheater with the ecoomizer, the water temperature of economizer outlet wasd increated .But the under-saturationg temperaturae difference and the safety margin still exist.%为解决600MW火电机组对冲燃烧锅炉NO,排放质量浓度过高的问题,进行了低氮燃烧改造.通过低氮燃烧器更换,合理布置燃尽风喷嘴,采用全炉膛分级燃烧技术,使NOx排放质量浓度降低至300mg/m3左右,达到了降低NOx排放的效果,同时锅炉飞灰含碳质量分数没有明显的变化.通过部分低温过热器置换为省煤器.降低了过热器减温水流量,同时空气预热器进口烟气温度下降,锅炉排烟温度也会随之下降,有利于提高锅炉热效率.部分低温过热器置换后省煤器出口水温提高,但还有一定的欠饱和温差,距汽化仍有一定的安全裕度.

  1. Combustion-driven oscillation in a furnace with multispud-type gas burners. 4th Report. Effects of position of secondary air guide sleeve and openness of secondary air guide vane on combustion oscillation condition; Multispud gata gas turner ni okeru nensho shindo. 4. Nijigen kuki sleeve ichi oyobi nijigen kuki vane kaido no shindo reiki ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, I.; Okiura, K.; Baba, A.; Orimoto, M. [Babcock-Hitachi K.K., Tokyo (Japan)

    1994-07-25

    Effects of the position of a secondary air guide sleeve and the openness of a secondary air guide vane on combustion oscillation conditions were studied experimentally for multispud-type gas burners. Pressure fluctuation in furnaces was analyzed with the previously reported resonance factor which was proposed as an index to represent the degree of combustion oscillation. As a result, the combustion oscillation region was largely affected by both position of a guide sleeve and openness of a guide vane. As the openness having large effect on the ratio of primary and secondary air/tertiary air and the position hardly having effect on the ratio were adjusted skillfully, the burner with no combustion oscillation region was achieved in its normal operation range. In addition, as the effect of preheating combustion air was arranged with a standard flow rate or mass flow flux of air, it was suggested the combustion oscillation region due to preheating can be described with the same manner as that due to no preheating. 5 refs., 8 figs.

  2. Flex-flame burner and combustion method

    Science.gov (United States)

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  3. PUTTING RURAL POLICY ON THE FRONT BURNER

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A "new countryside" is not a new concept. In 1956, the Chinese Government set a goal of restructuring rural areas, hut that was not specified in its work agenda. In early 2006, the Central Government released its first major document of the year, which calls the construction of a "new socialist countryside" the foremost task facing China in the 2006-10 period. Why did the government put the goal on its agenda this year?Chen Xiwen, Deputy Director of the Office of the Central Financial Work Leading Group,...

  4. Advanced Burner Reactor 1000MWth Reference Concept

    Energy Technology Data Exchange (ETDEWEB)

    Cahalan, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Fanning, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Farmer, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Kim, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Kellogg, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Krajtl, L. [Argonne National Lab. (ANL), Argonne, IL (United States); Lomperski, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Momozaki, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Park, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Reed, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Salev, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Seidensticker, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Tang, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Tzanos, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Wei, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Yang, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Chikazawa, Y. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2007-09-30

    The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence, to validate the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat.

  5. Macroscopic flame structure in a premixed-spray burner. 1st Report. formation and disappearance processes of droplet clusters and two-stage flame structure; Yokongo funmu kaen no kyoshiteki nensho kyodo. 1. Yuteki cluster no keisei shoshitsu katei to niju kaen kozo

    Energy Technology Data Exchange (ETDEWEB)

    Tsushima, S.; Saito, H.; Akamatsu, F.; Katsuki, M. [Osaka University, Osaka (Japan)

    2000-08-25

    In an attempt to elucidate formation and disappearance processes of droplet clusters in spray flames, simultaneous measurements consisting of laser tomography and flame chemiluminescence detection are applied to a premixed-spay burner. The smart combination of measurements provides time-series data-set serving for better understanding of spray flames, which essentially contains inhomogeneity in space and time. It is revealed that referential flame propagation through a premixed-spray stream plays a significant role in creating droplet clusters and that droplet clusters formed in this manner evanesces from their outer boundaries. Those observation confirms that the premixed-spray flame comprises both premixed-mode flame in upstream region and diffusion-mode flame in downstream region, respectively, i.e, two-stage flame structure previously reported for spray flames stabilized in either counter or stagnation flows. (author)

  6. Implantation of a industrial scale combustion laboratory oriented to the evaluation of pollutant emissions, burner efficiency and performance, liquid and gaseous fuels and emulsions; Implantacao de um laboratorio de combustao em escala industrial voltado a avaliacao de emissoes poluentes, eficiencia e performance de queimadores, combustiveis liquidos, gasosos e emulsoes

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Edson J.J. de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    1998-07-01

    There is a well-known relationship between an effective fuel conversion on industry, energy savings and emission control. Nowadays the Brazilian industry deals with such a set of parameters to keep a competitive edge in energy cost and environmental protection. besides the Brazilian energy matrix has been changing over the lat years. New fuel types such as high-heavy residue fuel oils, emulsions and natural gas are available. A combustion test rig for testing fuel, burner performance and emissions may be useful for big fuel consumers and suppliers. This paper discusses a successful case of a combustion test rig construction. A pre-existing fired heater has been fully redesigned and equipped with gas analyzers and an up date instrumentation system. (author)

  7. Development and Application of the New Bottom Housing Low Nitrogen Powder Burner Industrial Boiler System%新型底置式低氮粉体燃烧器工业锅炉系统的研发及其应用

    Institute of Scientific and Technical Information of China (English)

    李明

    2016-01-01

    The commonly used arrangement ways of coal powder boiler burner include overhead combustion type, W-type combustion type or M-type combustion type, quadrangle combustion type, etc. At present, the boilers using the mentioned arrangement ways cannot effectively solve the problem of coking and large quantity of Nox generation, and also has the following disadvantages: the coal powder transportation system is complex, requiring large transportation power, and the installation and using cost is high; the conveying pipe metal wear-resisting bend is easy to wear;the boiler room covers an big area, not conducive to the adjustment and maintenance of the burner, etc. This article introduces a coal burning system, which reaches higher boiler efficiency through technical innovation and reformation; the dust collection impermeability is good and collection efficiency is excellent; The desulfurization efficiency of the desulfurization tower is admirable and the antiscaling and descaling performance is excellent, which ensured efficient desulfurization treatment and saved labor. Finally the gas discharge concentration of the bottom housing low nitrogen powder burner system is far lower than the provisions of the national standard, reaching the effect of energy saving emission reduction and environmental protection.%燃煤粉锅炉燃烧器的常用布置方式有顶置燃烧式、W型燃烧式或M型燃烧式、四角燃烧式等。目前,采用上述几种布置方式的立式锅炉都无法有效解决结焦、氮氧化物生成量大的问题,而且还存在以下几点缺点:煤粉输送系统复杂,所需的输送动力较大、安装和使用的成本较高;输送管金属耐磨弯头容易磨损;锅炉房占地面积大,不利于燃烧器的调整和维修等。文章介绍的燃煤系统通过技术创新及改造,达到较高锅炉热效率;粉尘收集密闭性好且收集效率优异;脱硫塔的脱硫效率极佳且防垢、除垢性能优异,

  8. Innovative Clean Coal Technology (ICCT): 500-MW demonstration of advanced wall-fired cmbustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Field chemical emissions monitoring, Overfire air and overfire air/low NO{sub x} burner operation: Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This report summarizes data gathered by Radian Corporation at a coal-fired power plant, designated Site 16, for a program sponsored by the United States Department of Energy (DOE), Southern Company Services (SCS), and the Electric Power Research Institute (EPRI). Concentrations of selected inorganic and organic substances were measured in the process and discharge streams of the plant operating under two different types of combustion modifications: overfire air (OFA) and a combination of overfire air with low-NO{sub x} burners (OFA/LNB). Information contained in this report will allow DOE and EPRI to determine the effects of low-NO{sub x} modifications on plant emissions and discharges. Sampling was performed on an opposed wall-fired boiler burning medium-sulfur bituminous coal. Emissions were controlled by electrostatic precipitators (ESPs). The testing was conducted in two distinct sampling periods, with the OFA test performed in March of 1991 and the OFA/LNB test performed in May of 1993. Specific objectives were: to quantify emissions of target substances from the stack; to determine the efficiency of the ESPs for removing the target substances; and to determine the fate of target substances in the various plant discharge streams.

  9. Combustion of solid alternative fuels in the cement kiln burner

    OpenAIRE

    Nørskov, Linda Kaare; Dam-Johansen, Kim; Glarborg, Peter; Jensen, Peter Arendt; Larsen, Morten Boberg

    2012-01-01

    I cementindustrien er der en øget miljømœssig og økonomisk motivation for at erstatte konventionelle fossile brœndsler med alternative brœndsler; biomasse og affald. Indførelsen af alternative brœndsler kan dog påvirke emissioner, cementproduktkvalitet, processtabilitet og -effektivitet. I kalcinatoren er substitutionen med alternative brœndsler nået tœt på 100% på mange cementanlœg, og for at øge anvendelsen af alternative brœndsler yderligere må substitutionen i roterovnen øges. Der er begr...

  10. 40 CFR 266.102 - Permit standards for burners.

    Science.gov (United States)

    2010-07-01

    ... exempt from the particulate matter standard under § 266.105(b); (iii) For cement kilns and light-weight... that the hazardous waste, other fuels, and industrial furnace feedstocks fired into the boiler or... based on either trial burn results or alternative data included with part B of a permit...

  11. Dilapidation of the TBC system during the Burner Rig Test

    Directory of Open Access Journals (Sweden)

    S Sreenivas

    2015-06-01

    Full Text Available Substrate of Inconel 718 was deposited with a bond coat of nickel cobalt chromium aluminium yttriym (NiCoCrAlY. A top coat of thermal barrier coating of 8% Yttria stabilised zirconia (YSZ was sprayed over the bond coat by an air plasma spray (APS technique by employing standard process parameters. Static oxidation test conducted at 1000 0C and for 120 hours (h revealed that main degradation modes of the TBC system were connected with formation of porous NiAl2O4 oxides in the thermally grown oxide area followed by formation of micro-cracks, delamination of ceramic layer and spallation of ceramic topcoat.

  12. Numerical simulation of laminar premixed combustion in a porous burner

    Institute of Scientific and Technical Information of China (English)

    ZHAO Pinghui; CHEN Yiliang; LIU Minghou; DING Min; ZHANG Genxuan

    2007-01-01

    Premixed combustion in porous media differs substantially from combustion in free space. The interphase heat transfer between a gas mixture and a porous medium becomes dominant in the premixed combustion process. In this paper, the premixed combustion of CH4/air mixture in a porous medium is numerically simulated with a laminar combustion model. Radiative heat transfer in solids and convective heat transfer between the gas and the solid is especially studied. A smaller detailed reaction mechanism is also used and the results can show good prediction for many combustion phenomena.

  13. 40 CFR 266.103 - Interim status standards for burners.

    Science.gov (United States)

    2010-07-01

    ... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.103... boiler or industrial furnace that on or before August 21, 1991 is either in operation burning or... a boiler or industrial furnace is located at a facility that already has a permit or interim...

  14. Fabrication of particulate metal fuel for fast burner reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin; Lee, Sun Yong; Kim, Jong Hwan; Woo, Yoon Myung; Ko, Young Mo; Kim, Ki Hwan; Park, Jong Man; Lee, Chan Bok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    U Zr metallic fuel for sodium cooled fast reactors is now being developed by KAERI as a national R and D program of Korea. In order to recycle transuranic elements (TRU) retained in spent nuclear fuel, remote fabrication capability in a shielded hot cell should be prepared. Moreover, generation of long lived radioactive wastes and loss of volatile species should be minimized during the recycled fuel fabrication step. Therefore, innovative fuel concepts should be developed to address the fabrication challenges pertaining to TRU while maintaining good performances of metallic fuel. Particulate fuel concepts have already been proposed and tested at several experimental fast reactor systems and vipac ceramic fuel of RIAR, Russia is one of the examples. However, much less work has been reported for particulate metallic fuel development. Spherical uranium alloy particles with various diameters can be easily produced by the centrifugal atomization technique developed by KAERI. Using the atomized uranium and uranium zirconium alloy particles, we fabricated various kinds of powder pack, powder compacts and sintered pellets. The microstructures and properties of the powder pack and pellets are presented.

  15. Combustion of solid alternative fuels in the cement kiln burner

    DEFF Research Database (Denmark)

    Nørskov, Linda Kaare

    In the cement industry there is an increasing environmental and financial motivation for substituting conventional fossil fuels with alternative fuels, being biomass or waste derived fuels. However, the introduction of alternative fuels may influence emissions, cement product quality, process...... stability, and process efficiency. Alternative fuel substitution in the calciner unit has reached close to 100% at many cement plants and to further increase the use of alternative fuels rotary kiln substitution must be enhanced. At present, limited systematic knowledge of the alternative fuel combustion...... modelling, data collection and observations at an industrial cement plant firing alternative fuels. Alternative fuels may differ from conventional fossil fuels in combustion behaviour through differences in physical and chemical properties and reaction kinetics. Often solid alternative fuels are available...

  16. Pollutant emissions from flat-flame burners at high pressures

    Science.gov (United States)

    Maahs, H. G.; Miller, I. M.

    1980-01-01

    Maximum flame temperatures and pollutant emission measurements for NOx, CO, and UHC (unburned hydrocarbons) are reported for premixed methane air flat flames at constant total mass flow rate over the pressure range from 1.9 to 30 atm and for equivalence ratios from 0.84 to 1.12. For any given pressure, maxima typically occur in both the temperature and NOx emissions curves slightly to the lean side of stoichiometric conditions. The UHC emissions show minima at roughly the same equivalence ratios. The CO emissions, however, increase continually with increasing equivalence ratio. Flame temperature and NOx emissions decrease with increasing pressure, while the opposite is true for the CO and UHC emissions. The NOx data correlate reasonably well as a function of flame temperature only. Four flameholders, differing only slightly, were used. In general, the temperature and emissions data from these four flameholders are similar, but some differences also exist. These differences appear to be related to minor variations in the condition of the flameholder surfaces.

  17. Numerical analysis of flow behavior in tuyere and raceway of oxygen blast furnace with new type of oxy-coal burner%氧气高炉新型氧煤燃烧器设计参数对风口区流场影响数值模拟

    Institute of Scientific and Technical Information of China (English)

    张超; 张建良; 孙辉; 刘征建

    2016-01-01

    氧气高炉通过向风口回旋区喷吹煤粉以及脱除CO2的循环高炉煤气,可有效降低CO2排放。运用CFD商业软件,建立风口回旋区三维模型,针对氧气高炉所设计的新型燃烧器中氧煤枪数量及其与直吹管所呈角度和空间物理位置对风口回旋区流场的影响进行数值模拟。研究结果表明:采用单支氧煤枪操作,当其位于直吹管上部时,煤气流速度随喷吹角度由7°~15°变化时逐渐减小,且夹角为9°较为适宜,当其位于下部时,随着夹角越大,对风口回旋区深度增加越有利;采用双氧煤枪操作,当其在直吹管上下、左右分布时,夹角分别为11°和13°较合理;当单支氧煤枪位于直吹管上方且夹角为9°、距离d为75 mm时能较好地促进风口回旋区深度增加并保持足够的鼓风动能。%Oxygen blast furnace can effectively reduce CO2emissions by two means, pulverized coal injection and recycling of CO2-removed blast furnace gas. To study the velocity fieldamongthe tuyere and raceway region, a three-dimensional modelwasbuildupusing the commercial CFD software. The factors these numerical simulations mainly focus on the number of oxygen-coal lances, the angle and distance between the blowpipe and oxy-coal lances. Numerical results show that increasing angle between the blowpipe and oxy-coal lance from 7° to 15° results in lower velocity when the oxy-coal lanceisset above the blowpipe,the appropriate angle is 9°. When the lance is located below the blowpipe, the bigger the angle is, the deeper the raceway will be.Inaddition, when theoxy-coal burner has two lances, the lances are set at two sides of the blowpipe, i.e. vertical and horizontal distribution around the blowpipe, and the reasonable angles are 11° and 13°.Besides,the suitable distance between the blowpipe and oxy-coal lance is 75mm when the oxy-coal lanceisset above the blowpipe.

  18. Moving Science Off the ``Back Burner'': Meaning Making Within an Action Research Community of Practice

    Science.gov (United States)

    Goodnough, Karen

    2008-02-01

    In this study, the participants conceptualized and implemented an action research project that focused on the infusion of inquiry principles into a neglected science curriculum. Specific objectives were to find (a) What factors challenge and support the evolution of an action research community of practice? (b) How are teachers’ beliefs about science teaching and learning transformed? and (c) How does teachers’ knowledge of curriculum, instruction, assessment, and student learning change as a result of learning within a community of practice? In this instrumental case study (Stake 2000, In N. K. Denzin, & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 435-454). Thousand Oaks, CA: Sage), a range of data collection sources and methods were adopted. Outcomes focus on how the design principles for cultivating a community of practice emerged in the action research group, as well as the types of teacher learning that occurred by engaging in action research.

  19. Sound generating flames of a gas turbine burner observed by laser-induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Hubschmid, W; Inauen, A.; Bombach, R.; Kreutner, W.; Schenker, S.; Zajadatz, M. [Alstom (Switzerland); Motz, C. [Alstom (Switzerland); Haffner, K. [Alstom (Switzerland); Paschereit, C.O. [Alstom (Switzerland)

    2002-03-01

    We performed 2-D OH LIF measurements to investigate the sound emission of a gas turbine combustor. The measured LIF signal was averaged over pulses at constant phase of the dominant acoustic oscillation. A periodic variation in intensity and position of the signal is observed and it is related to the measured sound intensity. (author)

  20. Turbulent transport measurements in a cold model of GT-burner at realistic flow rates

    Directory of Open Access Journals (Sweden)

    Gobyzov Oleg

    2016-01-01

    Full Text Available In the present work simultaneous velocity field and passive admixture concentration field measurements at realistic flow-rates conditions in a non-reacting flow in a model of combustion chamber with an industrial mixing device are reported. In the experiments for safety reasons the real fuel (natural gas was replaced with neon gas to simulate stratification in a strongly swirling flow. Measurements were performed by means of planar laser-induced fluorescence (PLIF and particle image velocimetry technique (PIV at Reynolds number, based on the mean flow rate and nozzle diameter, ≈300 000. Details on experimental technique, features of the experimental setup, images and data preprocessing procedures and results of performed measurements are given in the paper. In addition to the raw velocity and admixture concentration data in-depth evaluation approaches aimed for estimation of turbulent kinetic energy (TKE components, assessment of turbulent Schmidt number and analysis of the gradient closure hypothesis from experimental data are presented in the paper.

  1. Study of Jet-Propulsion System Comprising Blower, Burner, and Nozzle

    Science.gov (United States)

    Hall, Eldon W

    1944-01-01

    A study was made of the performance of a jet-propulsion system composed of an engine-driven blower, a combustion chamber, and a discharge nozzle. A simplified analysis is made of this system for the purpose of showing in concise form the effect of the important design variables and operating conditions on jet thrust, thrust horsepower, and fuel consumption. Curves are presented that permit a rapid evaluation of the performance of this system for a range of operating conditions. The performance for an illustrative case of a power plant of the type under consideration id discussed in detail. It is shown that for a given airplane velocity the jet thrust horsepower depends mainly on the blower power and the amount of fuel burned in the jet; the higher the thrust horsepower is for a given blower power, the higher the fuel consumption per thrust horsepower. Within limits the amount of air pumped has only a secondary effect on the thrust horsepower and efficiency. A lower limit on air flow for a given fuel flow occurs where the combustion-chamber temperature becomes excessive on the basis of the strength of the structure. As the air-flow rate is increased, an upper limit is reached where, for a given blower power, fuel-flow rate, and combustion-chamber size, further increase in air flow causes a decrease in power and efficiency. This decrease in power is caused by excessive velocity through the combustion chamber, attended by an excessive pressure drop caused by momentum changes occurring during combustion.

  2. The Influence Of Burner Locations In The Heating Furnace On The Charge Temperature Field

    Directory of Open Access Journals (Sweden)

    Rywotycki M.

    2015-09-01

    Full Text Available Charge heating in industrial furnaces is a difficult and complex process. There are many physical phenomena which influence heat transfer. At the charge surface heat transfer takes place by radiation and convection. In order to ensure correct operation of the technological system, it is necessary to achieve the required charge temperature in the whole volume and ensure its uniformity.

  3. Development and analysis of a metal-fueled accelerator-driven burner

    Energy Technology Data Exchange (ETDEWEB)

    Lypsch, F. [Institute for Safety Research and Reactor Technology, Juelich GmbH (Germany); Hill, R.N. [Argonne National Lab., IL (United States)

    1994-08-01

    The purpose of this paper is to compare the safety characteristics of an accelerator driven metal fueled fast system to a critical core on a consistent basis to determine how these characteristics are affected solely by subcritically of the system. To accomplish this an accelerator proton beam/tungsten neutron source model is surrounded by a subcritical blanket using metallic fuel and sodium as coolant. The consequences of typical accident transients, namely unprotected transient overpower (TOP), loss of heat sink (LOHS), and loss of flow (LOP) were calculated for the hybrid system and compared to corresponding results for a metal-fueled fast reactor. Results indicate that the subcritical system exhibits superior performance for TOP (reactivity-induced) transits; however, only in the critical system are reactivity feedbacks able to cause passive shutdown in the LOHS ad LOP events. Therefore, for a full spectrum of accident initiators considered, the overall safety behavior of accelerator-driven metal-fueled systems can neither be concluded to be worse nor to be better than advanced reactor designs which rely on passive safety features.

  4. 40 CFR 266.108 - Small quantity on-site burner exemption.

    Science.gov (United States)

    2010-07-01

    ... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.108... burn hazardous waste in an on-site boiler or industrial furnace are exempt from the requirements of... boiler or industrial furnace exempt under this section, the quantity limits provided by paragraph...

  5. Hysteresis and Multi-state Behavior of Counterflow Flame in a Blowing Cylindrical Burner

    Institute of Scientific and Technical Information of China (English)

    Hsing-Sheng Chai

    2009-01-01

    velocity enhances hysteresis and the discrepancy between the two curves. However, as fuel-ejection velocity exceeds a critical value, the intensity of hysteresis almost keeps constant and causes the two curves to be parallel to each other.

  6. Turbulent transport measurements in a cold model of GT-burner at realistic flow rates

    Science.gov (United States)

    Gobyzov, Oleg; Chikishev, Leonid; Lobasov, Alexey; Sharaborin, Dmitriy; Dulin, Vladimir; Bilsky, Artur; Tsatiashvili, Vakhtang; Avgustinovich, Valery; Markovich, Dmitriy

    2016-03-01

    In the present work simultaneous velocity field and passive admixture concentration field measurements at realistic flow-rates conditions in a non-reacting flow in a model of combustion chamber with an industrial mixing device are reported. In the experiments for safety reasons the real fuel (natural gas) was replaced with neon gas to simulate stratification in a strongly swirling flow. Measurements were performed by means of planar laser-induced fluorescence (PLIF) and particle image velocimetry technique (PIV) at Reynolds number, based on the mean flow rate and nozzle diameter, ≈300 000. Details on experimental technique, features of the experimental setup, images and data preprocessing procedures and results of performed measurements are given in the paper. In addition to the raw velocity and admixture concentration data in-depth evaluation approaches aimed for estimation of turbulent kinetic energy (TKE) components, assessment of turbulent Schmidt number and analysis of the gradient closure hypothesis from experimental data are presented in the paper.

  7. Conceptual design of minor actinides burner with an accelerator-driven subcritical system.

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y.; Gohar, Y. (Nuclear Engineering Division)

    2011-11-04

    In the environmental impact study of the Yucca Mountain nuclear waste repository, the limit of spent nuclear fuel (SNF) for disposal is assessed at 70,000 metric tons of heavy metal (MTHM), among which 63,000 MTHM are the projected SNF discharge from U.S. commercial nuclear power plants though 2011. Within the 70,000 MTHM of SNF in storage, approximately 115 tons would be minor actinides (MAs) and 585 tons would be plutonium. This study describes the conceptual design of an accelerator-driven subcritical (ADS) system intended to utilize (burn) the 115 tons of MAs. The ADS system consists of a subcritical fission blanket where the MAs fuel will be burned, a spallation neutron source to drive the fission blanket, and a radiation shield to reduce the radiation dose to an acceptable level. The spallation neutrons are generated from the interaction of a 1 GeV proton beam with a lead-bismuth eutectic (LBE) or liquid lead target. In this concept, the fission blanket consists of a liquid mobile fuel and the fuel carrier can be LBE, liquid lead, or molten salt. The actinide fuel materials are dissolved, mixed, or suspended in the liquid fuel carrier. Therefore, fresh fuel can be fed into the fission blanket to adjust its reactivity and to control system power during operation. Monte Carlo analyses were performed to determine the overall parameters of an ADS system utilizing LBE as an example. Steady-state Monte Carlo simulations were studied for three fission blanket configurations that are similar except that the loaded amount of actinide fuel in the LBE is either 5, 7, or 10% of the total volume of the blanket, respectively. The neutron multiplication factor values of the three configurations are all approximately 0.98 and the MA initial inventories are each approximately 10 tons. Monte Carlo burnup simulations using the MCB5 code were performed to analyze the performance of the three conceptual ADS systems. Preliminary burnup analysis shows that all three conceptual ADS systems consume about 1.2 tons of actinides per year and produce 3 GW thermal power, with a proton beam power of 25 MW. Total MA fuel that would be consumed in the first 10 years of operation is 9.85, 11.80, or 12.68 tons, respectively, for the systems with 5, 7, or 10% actinide fuel particles loaded in the LBE. The corresponding annual MA fuel transmutation rate after reaching equilibrium at 10 years of operation is 0.83, 0.94, or 1.02 tons/year, respectively. Assuming that the ADS systems can be operated for 35 full-power years, the total MAs consumed in the three ADS systems are 30.6, 35.3, and 37.2 tons, respectively. For the three configurations, it is estimated that 3.8, 3.3, or 3.1 ADS system units are required to utilize the entire 115 tons of MA fuel in the SNF inventory, respectively.

  8. Equipment for biomass. Wood burners; Materiels pour la biomasse, les chaudieres bois

    Energy Technology Data Exchange (ETDEWEB)

    Chieze, B. [SA Compte R., 63 - Arlanc (France)

    1997-12-31

    A review of the French classification of biomass wastes (and more especially wood and wood wastes) concerning classified burning equipment, is presented: special authorization is thus needed for burning residues from wood second transformation processes. Limits for combustion product emission levels are detailed and their impact on wood burning and process equipment is examined: feeder, combustion chamber, exchanger, fume treatment device, residue disposal. Means for reducing pollutant emissions are reviewed

  9. Integration of an Inter Turbine Burner to a Jet Turbine Engine

    Science.gov (United States)

    2013-03-01

    held in place by spring loaded screws to prevent the ring from cracking due to expansion. The quartz ring allows the core flow to be seen over the...circumferential flow inlet and fuel flow inlet are combined in a well-stirred reactor which is being used to represent the circumferential cavity of the...ITB. The well stirred reactor ensures complete combustion which is what is expected to occur due to the g-loading in the chamber, as discussed in

  10. Specification of the Advanced Burner Test Reactor Multi-Physics Coupling Demonstration Problem

    Energy Technology Data Exchange (ETDEWEB)

    Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Grudzinski, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, C. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Thomas, J. W. [Argonne National Lab. (ANL), Argonne, IL (United States); Yu, Y. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-12-21

    This document specifies the multi-physics nuclear reactor demonstration problem using the SHARP software package developed by NEAMS. The SHARP toolset simulates the key coupled physics phenomena inside a nuclear reactor. The PROTEUS neutronics code models the neutron transport within the system, the Nek5000 computational fluid dynamics code models the fluid flow and heat transfer, and the DIABLO structural mechanics code models structural and mechanical deformation. The three codes are coupled to the MOAB mesh framework which allows feedback from neutronics, fluid mechanics, and mechanical deformation in a compatible format.

  11. Effects of heating the inlet air with a burner when natural air drying

    Energy Technology Data Exchange (ETDEWEB)

    Stock, W.F.; Lischynski, D.E.; Wassermann, J.D.; Frehlich, G.E.; Sokhansanj, S.

    1987-03-01

    During the 1985 and 1986 harvest seasons in Saskatchewan, cool and humid conditions reduced the performance of natural air drying systems for grains. This prompted many producers to consider supplemental heat when natural air drying. Research was conducted to investigate the implications of supplemental heating during grain drying and to develop recommendations about adding supplemental heat. Field tests were performed to compare drying time, energy consumption, quality of work, and ease of operation with different supplemental heat strategies. A computer model was developed to simulate adding supplemental heat during natural air drying, and the simulation was verified by comparing the computer simulation results with those obtained in the field tests. Natural air drying without heat was found to be more economical than with heat in the early fall. In late fall, drying costs by both methods were nearly equal but higher than in early fall. It is therefore recommended to attempt to complete all drying in early fall using natural air. If the harvest is delayed to late fall, natural air drying or supplemental heat drying can both be used. However, by adding supplemental heat, there is a very good chance of completing drying in the fall. Drying by natural air would likely have to be completed in the spring. 30 refs., 15 figs., 28 tabs.

  12. XMMSL1J063045.9-603110: a tidal disruption event fallen into the back burner

    Science.gov (United States)

    Mainetti, Deborah; Campana, Sergio; Colpi, Monica

    2016-07-01

    Black holes at the centre of quiescent galaxies can be switched on when they accrete gas that is gained from stellar tidal disruptions. A star approaching a black hole on a low angular momentum orbit may be ripped apart by tidal forces, which triggers raining down of a fraction of stellar debris onto the compact object through an accretion disc and powers a bright flare. In this paper we discuss XMMSL1J063045.9-603110 as a candidate object for a tidal disruption event. The source has recently been detected to be bright in the soft X-rays during an XMM-Newton slew and later showed an X-ray flux decay by a factor of about 10 in twenty days. We analyse XMM-Newton and Swift data. XMMSL1J063045.9-603110 shows several features typical of tidal disruption events: the X-ray spectrum shows the characteristics of a spectrum arising from a thermal accretion disc, the flux decay follows a t-5/3 law, and the flux variation is >350. Optical observations testify that XMMSL1J063045.9-603110 is probably associated with an extremely small galaxy or even a globular cluster, which suggests that intermediate-mass black holes are located in the cores of (at least) some of them.

  13. 新型低NOX燃烧器%New Type Low NOX Burner

    Institute of Scientific and Technical Information of China (English)

    刘琦; 刘振琪

    2000-01-01

    介绍了美国Babcock & Wilcox公司的新型专利产品--DRB-XCL型低NOX双调风旋流燃烧器的结构特点和应用实绩.对我国从事低NOX燃烧技术研究的有关人士提供一些技术参考.

  14. A comparison of three turbulence models for axisymmetric isothermal swirling flows in the near burner zone

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstedt, H. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1997-12-31

    In this work three different turbulence models, the k - {epsilon}, RNG k - {epsilon} and Reynolds stress model, have been compared in the case of confined swirling flow. The flow geometries are the isothermal swirling flows measured by International Flame Research Foundation (IFRF). The inlet boundary profiles have been taken from the measurements. At the outlet the effect of furnace end contraction has been studied. The k - {epsilon} model falls to predict the correct flow field. The RNG k - {epsilon} model can provide improvements, although it has problems near the symmetry axis. The Reynolds stress model produces the best agreement with measured data. (author) 13 refs.

  15. Development and analysis of a metal-fueled accelerator-driven burner

    Science.gov (United States)

    Lypsch, F.; Hill, R. N.

    1995-09-01

    The purpose of this paper is to compare the safety characteristics of an accelerator driven metal-fueled fast system to a critical core on a consistent basis to determine how these characteristics are affected solely by subcriticality of the system. To accomplish this, an accelerator proton beam/tungsten neutron source model is surrounded by a subcritical blanket using metallic fuel and sodium as coolant. The consequences of typical accident transients, namely unprotected transient overpower (TOP), loss of heat sink (LOHS), and loss of flow (LOF) were calculated for the hybrid system and compared to corresponding results for a metal-fueled fast reactor. Results indicate that the subcritical system exhibits superior performance for TOP (reactivity-induced) transients; however, only in the critical system are reactivity feedbacks able to cause passive shutdown in the LOHS and LOF events. Therefore, for a full spectrum of accident initiators considered, the overall safety behavior of accelerator-driven metal-fueled systems can neither be concluded to be worse nor to be better than advanced reactor designs which rely on passive safety features.

  16. Fast burner reactor benchmark results from the NEA working party on physics of plutonium recycle

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.N.; Wade, D.C. [Argonne National Lab., IL (United States); Palmiotti, G. [CEA - Cadarache, Saint-Paul-Les-Durance (France)

    1995-12-01

    As part of a program proposed by the OECD/NEA Working Party on Physics of Plutonium Recycling (WPPR) to evaluate different scenarios for the use of plutonium, fast reactor physics benchmarks were developed; fuel cycle scenarios using either PUREX/TRUEX (oxide fuel) or pyrometallurgical (metal fuel) separation technologies were specified. These benchmarks were designed to evaluate the nuclear performance and radiotoxicity impact of a transuranic-burning fast reactor system. International benchmark results are summarized in this paper; and key conclusions are highlighted.

  17. New Discovery on Incense Burner of Tangfu%新发现的唐府香炉

    Institute of Scientific and Technical Information of China (English)

    牛宏成

    2006-01-01

    南阳首次发现有铭文纪年和唐王府铸造的大型铁香炉.唐府为明代朱元璋第23子朱柽受封南阳的唐王府,该香炉为朱柽第十代唐王朱聿键所造,为唐王府宗祠焚香祭祖所用之物.

  18. A Scientific Basis for the Development of the Next Generation of Biomass Burners

    DEFF Research Database (Denmark)

    Johansen, Joakim Myung; Jensen, Peter Arendt; Clausen, Sønnik

    The kinetics derived from the classical engineering study are used to simulate the devolatilization and char burn-out phases in the CFD model. Likewise, the study on morphology development will be used to estimate suitable sub-routines, e.g. effective drag coeffcients. The full-scale campaign...

  19. Large-eddy simulations of the non-reactive flow in the Sydney swirl burner

    DEFF Research Database (Denmark)

    Yang, Yang; Kær, Søren Knudsen

    2012-01-01

    This paper presents a numerical investigation using large-eddy simulation. Two isothermal cases from the Sydney swirling flame database with different swirl numbers were tested. Rational grid system and mesh details were presented firstly. Validations showed overall good agreement in time averaged...... package in predicting complex flow field and presented the potential of large eddy simulation in understanding dynamics....

  20. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    OpenAIRE

    Zhang, Guanheng

    2015-01-01

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the 200 Displacements per Atom (DPA) radiation damage constraint of presently verified cladding materials. The S&B core is designed to have an elongated seed (or “driver”) to maximize the fraction of neutrons that radially leak into the su...

  1. XMMSL1J063045.9-603110: a tidal disruption event fallen into the back burner

    CERN Document Server

    Mainetti, Deborah; Colpi, Monica

    2016-01-01

    Black holes at the centre of quiescent galaxies can be switched on when they accrete gas gained from stellar tidal disruptions. A star approaching a black hole on a low angular momentum orbit may be ripped apart by tidal forces, raining a fraction of stellar debris onto the compact object through an accretion disc and powering a bright flare. In this paper we discuss XMMSL1J063045.9-603110 as a candidate object for a tidal disruption event. The source has been recently detected bright in the soft X-rays during an XMM-Newton slew, showing later on an X-ray flux decay by a factor of about 10 in twenty days. We analyse XMM-Newton and Swift data. XMMSL1J063045.9-603110 shows several features typical of tidal disruption events: the X-ray spectrum is consistent to arise from a thermal accretion disc, the flux decay follows a t^-5/3 law and the flux variation is > 350. Optical observations testify that XMMSL1J063045.9-603110 is likely to be associated with an extremely small galaxy or even a globular cluster, sugges...

  2. Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Niels Gronbech; Asta, Mark; Ozolins, Nigel Browning' Vidvuds; de Walle, Axel van; Wolverton, Christopher

    2011-12-29

    The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

  3. The i-V curve characteristics of burner-stabilized premixed flames: detailed and reduced models

    KAUST Repository

    Han, Jie

    2016-07-17

    The i-V curve describes the current drawn from a flame as a function of the voltage difference applied across the reaction zone. Since combustion diagnostics and flame control strategies based on electric fields depend on the amount of current drawn from flames, there is significant interest in modeling and understanding i-V curves. We implement and apply a detailed model for the simulation of the production and transport of ions and electrons in one-dimensional premixed flames. An analytical reduced model is developed based on the detailed one, and analytical expressions are used to gain insight into the characteristics of the i-Vcurve for various flame configurations. In order for the reduced model to capture the spatial distribution of the electric field accurately, the concept of a dead zone region, where voltage is constant, is introduced, and a suitable closure for the spatial extent of the dead zone is proposed and validated. The results from the reduced modeling framework are found to be in good agreement with those from the detailed simulations. The saturation voltage is found to depend significantly on the flame location relative to the electrodes, and on the sign of the voltage difference applied. Furthermore, at sub-saturation conditions, the current is shown to increase linearly or quadratically with the applied voltage, depending on the flame location. These limiting behaviors exhibited by the reduced model elucidate the features of i-V curves observed experimentally. The reduced model relies on the existence of a thin layer where charges are produced, corresponding to the reaction zone of a flame. Consequently, the analytical model we propose is not limited to the study of premixed flames, and may be applied easily to others configurations, e.g.~nonpremixed counterflow flames.

  4. 新型双调节伸缩式喷煤管--Duoflex型燃烧器%A new type double-adjustable and telescopic coal burner-Duoflex burner

    Institute of Scientific and Technical Information of China (English)

    高长明

    2000-01-01

    @@ 1 关于水泥窑煤粉燃烧器设计的基本概念 为了深入研究各种煤粉燃烧器(喷煤管)的特点,首先应对煤粉在水泥窑内燃烧机理的主要研究成果作一回顾.这里省略各研究机构及学者们的研究实验与理论过程,仅旨在归纳具有重要指导意义的观点,总结指导燃烧器设计的基本概念,作为分析比较的基础.

  5. J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    2005-09-01

    This DOE Industrial Program case study describes how the J.R. Simplot Company saved energy and money by increasing the efficiency of the steam system in its potato processing plant in Caldwell, Idaho.

  6. J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant (Steam)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-01

    This DOE Industrial Program case study describes how the J.R. Simplot Company saved energy and money by increasing the efficiency of the steam system in its potato processing plant in Caldwell, Idaho.

  7. The effect of alternative fuel combustion in the cement kiln main burner on production capacity and improvement with oxygen enrichment.

    OpenAIRE

    Ariyaratne, W.K.Hiromi; Melaaen, Morten Christian; Tokheim, Lars-André

    2013-01-01

    A mathematical model based on a mass and energy balance for the combustion in a cement rotary kiln was developed. The model was used to investigate the impact of replacing about 45 % of the primary coal energy by different alternative fuels. Refuse derived fuel, waste wood, solid hazardous waste and liquid hazardous waste were used in the modeling. The results showed that in order to keep the kiln temperature unchanged, and thereby maintain the required clinker quality, the production capa...

  8. Burner blower technology: Adjustable blower with minimum loss and noise; Brennergeblaesetechnik: Regelbares Brennergeblaese mit minimalen Verlusten und Geraeuschen

    Energy Technology Data Exchange (ETDEWEB)

    Kanis, P.G.

    1999-11-01

    The problem of blower control was mentioned in an earlier issue (Waermetechnik 1993, No. 5/6). This contribution presents a novel blower which enables practically loss-free adaptation of the air volume flow and thus helps to save electrical energy and minimize blower noise. [German] In der Waermetechnik 1993, Heft 5 und 6, wurden die Grundlagen der Brennergeblaesetechnik zusammengefasst und dabei auch die Problematik der Geblaeseregelung angesprochen. Im heutigen Beitrag soll ein neues Brennergeblaese vorgestellt werden, welches eine nahezu verlustfreie Anpassung des Luftvolumenstroms an den jeweiligen Bedarf ermoeglicht und dadurch hilft, elektrische Energie einzusparen und die Geblaesegeraeusche zu minimieren. (orig.)

  9. The i-V curve curve characteristics of burner-stabilized premixed flames: detailed and reduced models

    CERN Document Server

    Han, Jie; Casey, Tiernan A; Bisetti, Fabrizio; Im, Hong G; Chen, Jyh-Yuan

    2016-01-01

    The i-V curve describes the current drawn from a flame as a function of the voltage difference applied across the reaction zone. Since combustion diagnostics and flame control strategies based on electric fields depend on the amount of current drawn from flames, there is significant interest in modeling and understanding i-V curves. We implement and apply a detailed model for the simulation of the production and transport of ions and electrons in one dimensional premixed flames. An analytical reduced model is developed based on the detailed one, and analytical expressions are used to gain insight into the characteristics of the i-V curve for various flame configurations. In order for the reduced model to capture the spatial distribution of the electric field accurately, the concept of a dead zone region, where voltage is constant, is introduced, and a suitable closure for the spatial extent of the dead zone is proposed and validated. The results from the reduced modeling framework are found to be in good agre...

  10. Development of a Burner System and Rayleigh Scattering Method to Measure Soot Concentration for Diesel-Relevant Fuels

    Science.gov (United States)

    Fletcher, Sara; Fisher, Brian

    2013-11-01

    Soot, a harmful component of particulate matter, is found in high concentrations in diesel exhaust. This work aims to develop a better understanding of the relationship between chemical structure and soot evolution, which is expected to inform methods to reduce or eliminate soot in diesel combustion. Successful aspects of previous experiments have been combined into a new method to characterize soot formation, growth, and oxidation. Soot is quantified via combined Rayleigh scattering and extinction, using a pulsed 532-nm Nd:YAG laser and sensitive photodetectors. A methane/oxygen diffusion flame serves as a baseline, then species of interest are doped into the fuel stream in low concentration and the change in soot is quantified relative to the base flame. This perturbation method enables study of soot for different species in a flame that has nominally constant global properties. This study focused on fuel components n-heptane and toluene, which have straight-chain and aromatic molecular structures, respectively. Soot was quantified throughout the flame, and it was found that the soot scattering signal was significantly higher for toluene than for n-heptane. Analysis of the signals to quantify actual soot concentrations remains a topic of future work. Funding from NSF REU grant 1062611.

  11. Development of Non-Equilibrium Plasma-Flame Kinetic Mechanism and its Validation Using Gliding Arc Integrated with Counterflow Burner

    Science.gov (United States)

    2010-02-21

    which is for 18% O2 in 82% N2). Also, Vco is the co-flow velocity, a the density ratio between the fuel and oxidizer ρF/ρ∞, q the ratio between the...co-flow velocity and initial jet velocity Vco /u0, Sc the Schmidt number of C3H8 (Sc = 1.366) that was the fuel used in the experiments, and Xv

  12. Survey on the differentiation of consumption in various types of automatic wood burners; Erhebung Verbrauchssplitting bei automatischen Holzfeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Primas, A.; Kistler, M.; Kessler, F.

    2006-07-01

    This final report published by the Swiss Federal Office of Energy (SFOE) takes a look at how statistics on wood-consumption can be differentiated to take various types of wood-fired heating systems into consideration. The approach used, which involved the taking of 1200 random samples from a total of 5200 installations, is described. Figures are presented on the return-quotients reached. The questionnaires returned were sorted according to the types of installation, such as industrial/commercial, farming, services and household. As a result of the high return-rate, the accuracy of the estimates based on the data is also considered to be high. The paper describes how the survey was made and how the results were obtained from the data collected. Details on operation, types of fuel, specific consumption and factors influencing operation are presented in graphical form. An appendix presents the data collected in tabular form.

  13. 烧石油焦GRECO燃烧器及其应用%Application of GRECO burner for petroleum coke combustion

    Institute of Scientific and Technical Information of China (English)

    薛俊东

    2010-01-01

    @@ 我公司承建的希腊TITAN公司阿尔巴尼亚ANTEA项目是一条3300t/d生产线,该生产线带有五级预热器和DDF分解炉.回转窑规格为Ф4.4m×65m,面对窑口,窑是逆时针转向,配有德国CP公司的ETA型第四代篦冷机.所用燃料是石油焦,点火用天然气来引燃重油,再用重油加热到一定温度来点燃石油焦.烧成系统所选用的燃烧器是巴西GRECO-ENFIL公司的燃烧器,此燃烧器是专门为烧石油焦而量身设计的,在生产实践中的使用效果令人满意.

  14. The Use of an Ultra-Compact Combustor as an Inter-Turbine Burner for Improved Engine Performance

    Science.gov (United States)

    2014-03-27

    fuel injector with a 4% and a 2% pressure drop. Results from the CFD study compared well with the experimental results at the same conditions. The CFD ...general purpose vessel tank , and is pressurized with nitrogen to ∼ 41.4 kPa to supply fuel to the JetCat fuel pump. Electrical power was provided... Pressure Compressor (HPC) stall caused by fan overspeed. In the case of Power Extraction (PX) augmentation the ITB engine achieves similar TSFC results

  15. Fuel cycle analysis of TRU or MA burner fast reactors with variable conversion ratio using a new algorithm at equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Salvatores, Massimo [CEA Cadarache, 13108 St-Paul-Lez-Durance (France); Argonne National Laboratory, NE Division, Argonne, IL 60439 (United States)], E-mail: massimo.salvatores@cea.fr; Chabert, Christine [CEA Cadarache, 13108 St-Paul-Lez-Durance (France); Fazio, Concetta [Forschungszentrum Karlsruhe GmbH, P.O. Box 3640, 76021 Karlsruhe (Germany); Hill, Robert [Argonne National Laboratory, NE Division, Argonne, IL 60439 (United States); Peneliau, Yannick; Slessarev, Igor [CEA Cadarache, 13108 St-Paul-Lez-Durance (France); Yang, Won Sik [Argonne National Laboratory, NE Division, Argonne, IL 60439 (United States)

    2009-10-15

    Partitioning and Transmutation (P and T) strategies assessment and implementation play a key role in the definition of advanced fuel cycles, in order to insure both sustainability and waste minimization. Several options are under study worldwide, and their impact on core design and associated fuel cycles are under investigation, to offer a rationale to down selection and to streamline efforts and resources. Interconnected issues like fuel type, minor actinide content, conversion ratio values, etc. need to be understood and their impact quantified. Then, from a practical point of view, studies related to advanced fuel cycles require a considerable amount of analysis to assess performances both of the reactor cores and of the associated fuel cycles. A physics analysis should provide a sound understanding of major trends and features, in order to provide guidelines for more detailed studies. In this paper, it is presented an improved version of a generalization of the Bateman equation that allows performing analysis at equilibrium for a large number of systems. It is shown that the method reproduces very well the results obtained with full depletion calculations. The method is applied to explore the specific issue of the features of the fuel cycle parameters related to fast reactors with different fuel types, different conversion ratios (CR) and different ratios of Pu over minor actinide (Pu/MA) in the fuel feed. As an example of the potential impact of such analysis, it is shown that for cores with CR below {approx}0.8, the increase of neutron doses and decay heat can represent a significant drawback to implement the corresponding reactors and associated fuel cycles.

  16. Effects of fractal grid on emissions in burner combustion by using fuel-water-air premix injector derived from biodiesel crude palm oil (CPO base

    Directory of Open Access Journals (Sweden)

    Suardi Mirnah

    2017-01-01

    Full Text Available The alternative fuel is attracted good attention from worldwide especially for renewable and prevention energy such as biodiesel. Biodiesel is one of the hydrocarbon fuels and it has potential for external combustion. As one of the different solutions to these problems, rapid mixing of biodiesel-water-air technique is one of the most significant approaches to improve the combustion and reduce the emissions. The gas emission can be reduced by two methods. First is by improving an injector with fractal and the other is by using a biodiesel-water mixture as an alternative fuel. Mixing of water with fuel in the combustion process is a low cost and effective way. This research used biodiesel Crude Palm Oil (CPO as fuels in which blended with diesel. This study investigated the effects of water content and equivalence ratio on emissions with the rapid mixing injector. Fuels used are diesel, CPO5, CPO10 and CPO15 and the exhausts gaseous tested are CO, CO2, HC and NOX. The gas emissions processes are tested by using the gas analyzer. In this research, water premix of percentage up to 15vol% and blending biodiesel ratio was varied from 5vom% - 15vol%. The result shows that increasing of water content will effected decrement of CO, CO2 and HC emissions but increasing the NOX emissions.

  17. Design of Injection Mold for the Mosquito-Repellent Incense Burner Cover%蚊香燃烧器外罩注射模设计

    Institute of Scientific and Technical Information of China (English)

    王罕

    2015-01-01

    通过对蚊香燃烧器外罩的结构和工艺性进行分析,结合塑件的结构特点和批量生产纲领及在生产过程中出现的问题,确定了该模具采用1模2腔三板模点浇口转侧浇口混合式浇口进胶方式,局部阶梯分模面、斜导柱内侧分型抽芯机构的模具设计方案.并详细介绍了模具的工作过程.经生产证明便于实现自动化生产,提高了生产率、缩短了成型周期.因此在生产过程中,塑件完全符合要求,并在同类塑件的模具设计中有一定的借鉴作用.

  18. Georgia Tech Studies of Sub-Critical Advanced Burner Reactors with a D-T Fusion Tokamak Neutron Source for the Transmutation of Spent Nuclear Fuel

    Science.gov (United States)

    Stacey, W. M.

    2009-09-01

    The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation's energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.

  19. Kiln process impact of alternative solid fuel combustion in the cement kiln main burner - Mathematical modelling and full-scale experiment

    OpenAIRE

    Ariyaratne, Hiromi Wijesinghe; Melaaen, Morten Christian; Tokheim, Lars André; Manjula, Edirisinghe V. P. J.

    2014-01-01

    Increased use of alternative fuels in cement kilns is a trend in the world. However, replacing fossil fuels like coal with different alternative fuels will give various impacts on the overall kiln process due to the fuel characteristics. Hence, it is important to know to what extent the fossil fuels can be replaced by different alternative fuels without severely changing process conditions, product quality or emissions. In the present study, a mass and energy balance for the combustion of dif...

  20. CWS-Ⅱ系列水煤浆燃烧器的研制%Development of CWS-Ⅱ Series of Coal Water Slurry(CWS) Burners

    Institute of Scientific and Technical Information of China (English)

    夏德宏; 李小民; 赵禹民

    2002-01-01

    水煤浆作为一种有前途的煤基流体燃料,有着极为广泛的应用前景."六五"期间开发的CWS-Ⅰ系列工业炉窑水煤浆燃烧器在水煤浆的示范应用工程中,取得了一系列突破,但也存在磨损严重、寿命短等缺陷,从而限制了水煤浆技术在工业领域的进一步推广和应用.在分析了CWS-Ⅰ系列水煤浆燃烧器存在主要问题的基础上,研制开发了CWS-Ⅱ系列水煤浆专用燃烧器.

  1. 基于BP网络的燃烧器火焰燃烧状态识别%Burner Flame Recognition Based on Backpropagation Neural Network

    Institute of Scientific and Technical Information of China (English)

    董晓峰; 高庆忠; 刘广生

    2005-01-01

    基于原有数字图像处理系统,根据采集的电站锅炉直流燃烧器和旋流燃烧器火焰图像,讨论了特征值的意义和提取方法,运用现代人工神经网络智能理论,设计并训练了BP网络实现燃烧状态实时判断的功能.

  2. 低NOx燃烧器技术减少玻璃窑炉中NOx排放%Reduction of NOx from Glass Furnace by Low-NOx Burner

    Institute of Scientific and Technical Information of China (English)

    吕雷; 童树庭

    2006-01-01

    氮氧化物(NOx)是玻璃工业中污染排放物的主要来源之一.低NOx燃烧器技术是减少NOx排放的方法之一,在玻璃窑炉中广泛应用.针对它进行的技术改进可以使减少NOx排放的效果更加明显.

  3. Introduction of Low NOx Jet PC Burner Design%低NOx直流煤粉燃烧器设计简介

    Institute of Scientific and Technical Information of China (English)

    张建文

    2000-01-01

    采用低NOx直流煤粉燃烧器是我国现阶段控制火电厂NOx排放的主要措施.本文介绍了低NOx直流煤粉燃烧器的组成,各部件功能,根据煤种特性而采取不同的部件组合以满足我国火电厂NOx排放标准,并介绍了低NOx直流煤粉燃烧器对燃烧系统设计的要求.图1表6

  4. STUDY ON ADAPTABILITY OF LOW Nox BURNERS TO VARIOUS COAL QUALITY%低NOx燃烧器的煤质适应性研究

    Institute of Scientific and Technical Information of China (English)

    贺学志; 王春昌

    2003-01-01

    对低NOx燃烧器原理,燃烧初期NOx生成量与煤质挥发分的关系,空气分级燃烧技术对不同煤质所起的作用,以及低NOx燃烧器在我国电站锅炉的应用情况,低NOx燃烧器的煤质适应性进行了分析探讨.提出了低NOx燃烧器的研发和推广建议.

  5. Rheological, optical, and ballistic investigations of paraffin-based fuels for hybrid rocket propulsion using a two-dimensional slab-burner

    Science.gov (United States)

    Kobald, M.; Toson, E.; Ciezki, H.; Schlechtriem, S.; di Betta, S.; Coppola, M.; DeLuca, L.

    2016-07-01

    This paper describes combined rheological, ballistic, and optical analyses performed on paraffin-based mixtures that can be used as high regression rate hybrid rocket fuels. Experimental activities have been done at the DLR Institute of Space Propulsion in Lampoldshausen and at SPLab of Politecnico di Milano [1]. Herein, the experiments that were performed at the DLR are described in detail. Viscosity, surface tension, and regression rate of the fuels have been determined. Furthermore, the combustion was evaluated by optical measurements. Data collected so far indicate an increasing regression rate for decreasing viscosity of the liquid paraffin which is in accordance with the current theories. Droplet entrainment, which is related to high regression rates, is only visible for the low-viscosity paraffin-based fuels.

  6. Application of plasma pulverized coal ignition burners%锅炉等离子点火燃烧器的应用

    Institute of Scientific and Technical Information of China (English)

    吴必科

    2004-01-01

    简单介绍了等离子点火燃烧器的工作原理和系统组成,结合该燃烧器在恒运电厂6号锅炉的成功应用情况,分别从运行方式、运行控制参数、运行控制策略、运行工况等方面分析了该燃烧器的运行特性,对今后推广该技术的应用有借鉴作用.

  7. DSB型低氮旋流燃烧器冷态试验研究%COLD-STATE TEST STUDY ON DSB TYPE LOW NOx CYCLONE BURNER

    Institute of Scientific and Technical Information of China (English)

    梁法光; 周虹光; 张开飞

    2010-01-01

    通过测量不同工况下的出口风量和火花示踪试验,对双分级旋流燃烧器(DSB)进行了冷态试验研究.试验结果表明,DSB燃烧器一次风速调节范围宽,可将空气分级和燃料分级相结合,因此具有很好的多煤种适应性和NOx控制性能.

  8. 低热值燃气往复多孔介质燃烧特性%Combustion characteristics of low calorific gas in reciprocal flow porous media burner

    Institute of Scientific and Technical Information of China (English)

    李涛; 程乐鸣; 郑成航

    2011-01-01

    An experimental system with regenerative sections at both ends was conducted to analyze the combustion characteristics of low calorific premixed gases (equivalence ratio<0. 4)in a reciprocal flow porous media combustor. Temperature fluctuation, axial temperature distribution and flammability limits were investigated. Results show that the flame position directly influences the temperature fluctuation of exhaust gases; Adding regenerative sections leads to the reduction of temperature fluctuation amplitude in ceramic foam; the shape of axial temperature distribution has continuous changes, from saddle-shaped, ladder-shaped, oval-shaped to triangle-shaped when the system reaches flammability limit as the equivalence ratio decreases. The average temperature of high temperature zone rises and the temperature of exhaust gases falls by adding the regenerative sections. The flammability limit is closely related to half-period, inlet velocity and heat load. The flammability limit can be extended to the low equivalence ratio of 0.1.%为了研究低热值预混燃气(当量比<0.4)在往复式多孔介质燃烧器中的燃烧特性,建立两端布置蓄热段的往复多孔介质燃烧试验台,研究温度波动、轴向温度分布及燃烧极限的特性.结果表明,低热值预混燃气温度波动特性与火焰面位置有直接关系,两端布置蓄热段能够减小泡沫陶瓷多孔介质温度波动幅度.随着当量比的降低,轴向温度分布形状从“马鞍形”、“梯形”、“椭圆形”,变化到系统达到燃烧极限时形成的“三角形”分布.加入蓄热小球使高温段平均温度升高、排烟温度降低.燃烧极限与系统半周期、空截面流速及热负荷密切相关.系统能够达到的最低燃烧当量比为0.1.

  9. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Science.gov (United States)

    2010-07-01

    ... BALDWIN 3 ILLINOIS POWER CO. ILLINOIS HENNEPIN 2 ILLINOIS POWER CO. ILLINOIS JOPPA 1 ELECTRIC ENERGY INC... PWR CO. MISSISSIPPI JACK WATSON 5 MISSISSIPPI PWR CO. MISSOURI JAMES RIVER 5 SPRINGFIELD UTL....

  10. Technical development of a retrofit wood burner for coal under-fed stokers in County Durham, and set up of demonstration facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, N.

    2002-07-01

    Durham County Council wishes to convert its coal-burning solid fuel boilers to make use of readily-available waste wood dust. It is intended that the wood dust be converted to pelleted fuel. The emphasis was on cost-cutting rather than boiler efficiency. The experimental studies were carried out at two schools where the boilers were welded steel and cast iron sectional boilers. Factors studied were air supply to the boilers, fuel feed systems, fuel storage, fuel delivery and pelletization. The results have shown that operating costs of wood burning boilers are a little greater than coal-burning but this is slightly offset by savings elsewhere. The environmental benefits were significant in terms of lower emissions from the boilers, reduced road transport, and the wood waste is no longer sent to landfill. Further areas of study are recommended. The contractor for this study was North Energy Associates Ltd, and the study was part of the DTI Sustainable Energy Programme.

  11. 双调风燃烧器改造与调试%Retrofit and Commissioning of Double Adjustable Swirling Flow Burner

    Institute of Scientific and Technical Information of China (English)

    陈锋; 顾彤; 曹鲁华

    2008-01-01

    介绍了华能南通电厂1号锅炉双调风燃烧器的改造与调试情况.通过对燃烧器材料、调风机构、进风方式及调节等方面进行改造,经过冷、热态调试后,原燃烧器存在的问题基本得到解决,调风机构性能较好,锅炉燃烧状况得到改善,经济性提高,NOx排放值也得到降低.最后在加强稳燃、进一步降低NOx排放值以及防止停运燃烧器一次风喷嘴发生超温变形等方面对改造后的燃烧器提出了进一步的改进意见.

  12. 新型燃气燃烧器性能试验研究%Experimental Study on the Performance of a New Type Gas Fired Burner

    Institute of Scientific and Technical Information of China (English)

    欧俭平; 吴慧卿; 肖佩林; 刘艳军; 黄柏良

    2007-01-01

    对自行设计的燃气燃烧器的燃烧性能和根据不同的氧气消耗系数确定的试验工况变化进行了研究分析,并在燃煤锻造炉改造中进行了试用.结果表明,该燃烧器在燃烧过程中性能稳定,燃烧基本完全,烟道气中可燃性成分的含量不超过60×10 ppm(1 ppm=10-6);炉膛内温度分布相对均匀,当试验工况稳定时,炉内气体温度偏差不超过30 ℃,满足高效燃烧的要求;烟气中NOX的含量平均不超过60 ppm,远远低于国家排放标准,较好地控制了废气排放对环境的污染;燃烧器产生的高温高速气流,强化了炉内对流传热,提高了炉子生产率,锻件质量有所改善.

  13. 新型煤气烧嘴的结构与应用%Structure and application of a new type of gas burner

    Institute of Scientific and Technical Information of China (English)

    徐湘

    2004-01-01

    介绍催化剂生产用回转式煅烧炉新型煤气烧嘴的结构及特点,燃料和助燃空气在烧嘴燃烧室和燃烧通道内分二次混合实现充分燃烧,形成高速焰气,焰气的速度可超过100 m/s,温度可在200~1 400℃调节.高速焰气能使气体形成强烈的旋流,从而提高对流传热性能使炉内温度均匀.实际应用情况表明,新型烧嘴具有保证煅烧质量、实现节能降耗、操作简便易行及运行安全等优点.

  14. Quality Controlling of New Type of Two Swirl Burner%新型双旋流燃烧器制造的质量控制

    Institute of Scientific and Technical Information of China (English)

    崔龙菊

    2012-01-01

    1前言 为了适应水泥熟料生产煤质波动较大的情况,我公司在研制开发各类型煤粉燃烧器的基础上又开发出双旋流燃烧器,现已经投入使用.根据现场反馈的信息,该燃烧器火焰形状良好,对煤质的适应性好,综合性能稳定,其优越性逐步显现.

  15. 蓄热式辐射管烧嘴在真空炉上的应用%Application of Regeneration type Radiant Tube Burner in Vacuum Furnace

    Institute of Scientific and Technical Information of China (English)

    宋庆彬

    2001-01-01

    Thanks to the development of new sealing technology,the regeneration type radiant tube nozzle can be used in the vacuum furnace to achieve uniform heating result.In addition,low NOX exhausting is realized by recirculation of external exhausting.%新型密封技术的开发,使蓄热式辐射管烧嘴得以应用在真空炉上,并获得了均匀的加热效果。另外,由于采用外部排气再循环,从而实现了低NOX的排放。

  16. 29 CFR Appendix E to Subpart L of... - Test Methods for Protective Clothing

    Science.gov (United States)

    2010-07-01

    ... sides of the trapezoid so that these sides lie along the lower edge of the upper clamp and the upper... the test specimen and pilot flame. (ii) Burner. The burner shall be equipped with a variable orifice... ±.6 cm) long from a fixed orifice burner with a base from a variable orifice burner. (b) The...

  17. 16 CFR 1633.7 - Mattress test procedure.

    Science.gov (United States)

    2010-01-01

    ... footprint of the burner frame, with the two forward points on wheels, facilitates burner movement and burner... pivot. While holding the burner feed arm horizontal using a spring scale 8 hooked onto the thumbscrew... spring scale reads 170 g to 225 g (6 oz to 8 oz). 8 An acceptable spring scale has a calibrated...

  18. FUEL SAVING AT METAL HEATING IN FURNACES OF MACHINE-BUILDING ENTERPRISES

    Directory of Open Access Journals (Sweden)

    A. A. Shipko

    2010-01-01

    Full Text Available Economical efficiency of application of recuperative burners as compared to the modern traditional burners together with central recuperator and its system of control and automatic is shown.

  19. 16 CFR 1616.5 - Test procedure.

    Science.gov (United States)

    2010-01-01

    ... together with side clamps. (3) Burner. The burner shall be the same as that illustrated in Figure 1 and... input line to the burner shall be equipped with a needle valve. It shall have a variable orifice to... one side of the burned area. The requisite loads are given in table 1. Table 1—Original Fabric...

  20. 40 CFR 76.2 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... Energy's “Clean Coal Technology Demonstration Program,” up to a total amount of $2,500,000,000 for... shall include low NOX burners, overfire air, or low NOX burners with overfire air. Cyclone boiler means... bottom wall-fired boiler, a cyclone boiler, a boiler applying cell burner technology, a vertically...

  1. Development of Energy Efficient Technologies for Burning Coal in Modern Thermal Power Plants and Efficiency Assessment Tools

    Science.gov (United States)

    Dubrovskiy, Vitali; Zubova, Marina; Sedelnikov, Nikolai; Dihnova, Anna

    2016-02-01

    Universal ecological energy-efficient burner was described. The burner allows to burn different types of coal and lignite without the use of fuel oil for kindling the boiler. Efficiency assessment tools of the introduction of the burner for combustion of coal in modern thermal power plants were given.

  2. Development of Energy Efficient Technologies for Burning Coal in Modern Thermal Power Plants and Efficiency Assessment Tools

    Directory of Open Access Journals (Sweden)

    Dubrovskiy Vitali

    2016-01-01

    Full Text Available Universal ecological energy-efficient burner was described. The burner allows to burn different types of coal and lignite without the use of fuel oil for kindling the boiler. Efficiency assessment tools of the introduction of the burner for combustion of coal in modern thermal power plants were given.

  3. New advances in use of natural gas/oxygen burners for replacement of coke in cupola furnaces; Neue Erkenntnisse ueber den Einsatz von Erdgas-Sauerstoff-Brenner in einem Kupolofen zur Kokssubstitution

    Energy Technology Data Exchange (ETDEWEB)

    Frielingsdorf, O. [Air Products GmbH, Hattingen (Germany); Breidenbach, W. [Saint Gobain Gussrohr GmbH und Co. KG, Saarbruecken (Germany)

    2005-12-01

    Air Products GmbH's APCOS-Technology has frequently been featured on these pages. The most recent cooperation program implemented with Saint-Gobain Gussrohr GmbH has yielded significant new discoveries in this field. In addition to the potential for replacement of a considerable percentage of coke and thus attainment of greater independence from this energy source, it also became apparent that the cupola furnace melting process achieves superior operating parameters, thanks to a drastic reduction in combustion draft without any loss in melting performance or iron quality. (orig.)

  4. A FUEL-RICH PRECOMBUSTOR. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS - VOLUME IV. ALTERNATE CON- CEPTS FOR SOX, NOX, AND PARTICULATE EMISSIONS CONTROL FROM

    Science.gov (United States)

    The report gives results a study of the use of precombustors for the simultaneous control of S02, NOx, and ash emissions from coal combustion. In Phase 1, exploratory testing was conducted on a small pilot scale--293 kW (million Btu/hr)-pulverized-coal-fired precombustor to ident...

  5. 大气式浓淡燃烧器低压引射器的设计与研究%Analysis and Design of Low Pressure Ejector for Atmospheric Dense-and-thin Burners

    Institute of Scientific and Technical Information of China (English)

    钟芬; 高乃平; 魏敦崧; 刘晓刚; 徐德明

    2015-01-01

    通过数值模拟方法对一款家用浓淡燃烧器灶具4组不同的2型低压引射器进行了设计与分析,对比了不同工况下引射器的引射系数。研究结果显示引射器引射性能的主要影响因素包括引射器喉部直径、引射器出口压力及喷嘴距离等,其引射系数随着引射器出口压力的减小而增大,且受引射器喉部直径和喷嘴直径的相对大小影响。%Fourkinds of different2# low pressure ejectors are designed and analyzed bynumerical simulation, andinjecting coefficientfor ejectorsunderdifferent working conditionsis comparedas well. The results indicate thattheinjecting coefficient increases with the output pressure of ejector decreasing, and it relates to the relative relation ofthroat diameter with nozzle distance.

  6. E-420-13.7-560KT锅炉低负荷燃烧器及小油枪点火技术改造%Modification and Application of Burner and Small Oil-gun Ignition Technologies in Boilers

    Institute of Scientific and Technical Information of China (English)

    谭雪梅

    2010-01-01

    根据E-420-13.7-560KT锅炉低负荷燃烧器及小油枪点火技术改造情况,通过对运行情况的分析,认为对置翼型水平浓淡煤粉燃烧器及小油枪点火技术的改造有利于煤粉锅炉的启动、停止以及低负荷下的稳燃,可达到节油的目的,值得在同类型锅炉上推广.

  7. 等离子点火燃烧装置的工程应用及效益分析%Application and Economic Analysis of Plasma Pulverized Coal Ignition Burner

    Institute of Scientific and Technical Information of China (English)

    王军

    2001-01-01

    简要介绍等离子点火煤粉燃烧装置的工作原理、结构组成以及系统构成,阐述该装置在现场运行机组上的改造方案和应用方式,着重分析其工程应用产生的经济效益和社会效益.

  8. Study of Burners Positions in Physical Model of Oil-firing Float Glass Furnace%燃油浮法玻璃熔窑物理模型中喷枪位置的研究

    Institute of Scientific and Technical Information of China (English)

    童树庭; 张学文; 丁峰

    2004-01-01

    根据相似准则,制作了燃油浮法玻璃熔窑物理模型以及可在不同位置上插入喷枪的3种小炉模型.将不同数量的喷枪放在小炉模型的不同位置,以常温空气模拟研究了实际燃油浮法玻璃熔窑中火焰空间内的气体流动状况.结果表明,喷枪安装在小炉底部时,炉膛内回流区的位置、回流气层的厚度较为适宜.同时还介绍了燃油喷嘴截面的设计情况以及模型制作方面的体会.

  9. Study of stratified charge wankel rotary engine. (Part 1). ; Summary of the combustion by pilot-burner flame ignition. Sojo kyuki nensho wankel gata kaiten pisuton kikan no kenkyu. (1). ; Pilot kaen chakka ni yoru nensho no gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    Muroki, T. (Chiba Univ., Chiba (Japan). Faculty of Engineering); Morita, K. (Mazda Motor Corp., Hiroshima (Japan))

    1991-01-01

    In the U.S.A., the stratified charge wankel rotary engine (hereinafter referred to as DISC-RE) has been developed. This engine uses various kinds of fuel, has a low compression ratio, is equipped with a turbo supercharger, adopts the pilot flame forced ignition system and shows excellent performance. In order to elucidate the basic characteristics of this new internal combustion engine, an experiment was conducted using a single cylinder two cycle diesel engine as a rapid pressure device, to which a modelled combustion chamber was attached. This article is its first report. The main results of the experiment are as follows: It is considered that the combustion process in the modelled combustion chamber used in this study can be made almost similar to the combustion process in the experimental DISC-RE and is sufficient for understanding the basic characteristics of the combustiion. The form of the basic combustion of main fuel is that violent pre-mixed combustion occurs after ignition, then very slow combustion persists for a long time. In order to activate diffuse combustion, it is necessary to facilitate diffusion of the flame of pre-mixed combustion and mixing of fuel and air, and to raise wall temperature of the combustion chamber, etc. 3 refs., 16 figs., 1 tab.

  10. 新型混配陶瓷纤维烧嘴砖在一段转化炉上的应用%The Application of New Type Mixing Ingredients Ceramic Fiber Burner Brick on the First Stage Conversion Furnace

    Institute of Scientific and Technical Information of China (English)

    宝德杰

    2003-01-01

    针对目前一段转化炉顶部烧嘴砖普遍使用的重质高铝耐火材料在高温运行中频繁出现断裂、脱落的隐患,介绍了新型混配陶瓷纤维烧嘴砖在一段转化炉上的成功应用.

  11. The thermal-state numerical simulation about the combustion of four-channel coal burner for cement rotary kiln%水泥回转窑中煤粉燃烧的热态数值模拟

    Institute of Scientific and Technical Information of China (English)

    袁隆基; 赵志红; 李聪; 钟骏薇

    2011-01-01

    NC型四风道煤粉燃烧器建立了燃烧器-回转窑物理模型,利用流体分析软件FLUENT对窑内燃烧情况进行了数值模拟,分析了窑内煤粉燃烧温度场及组分浓度场的分布规律,并与实际情况进行对比,计算结果符合实际燃烧规律,说明该数值分析结果可以为同类燃烧器的合理设计与优化运行提供参考.

  12. Discussion on the important role of flame stabilizer in rotary kiln pulverized coal burner%浅析回转窑煤粉燃烧器火焰稳定器的重要作用

    Institute of Scientific and Technical Information of China (English)

    江旭昌

    2014-01-01

    通过对各种火焰稳定器的理论分析和实践结果,阐明了它们的性能和重要作用.一个优良的火焰稳定器不仅可使火焰更加稳定、风煤混合更加充分均匀,提高燃烧效率和喷燃管以及火砖的使用寿命;而且通过调节还可以改变火焰形状和强度,满足回转窑工况变化的要求.文章指出,对火焰稳定器设计得是否合理,是鉴别回转窑旋流式四风道煤粉燃烧器真品和赝品的一个重要标志.

  13. EI-XCL双调风旋流燃烧器在W型锅炉上的试验研究%Experimental Research on W-Boiler with Enriched EI-XCL Double Adjustable Swirling Flow Burner

    Institute of Scientific and Technical Information of China (English)

    李文军; 黄伟; 曾伟胜; 刘赞衡

    2006-01-01

    介绍了EI-XCL双调风旋流燃烧器在大唐耒阳电厂W型火焰锅炉上的试验研究情况.通过试验调整,锅炉效率达到设计值,燃烧稳定性增强,最低稳燃出力达到较好水平.

  14. 湿度变化对双旋流合成气非预混燃烧特性的影响%Influence of Humidity on a Double-Swirled Non-Premixed Syngas Burner

    Institute of Scientific and Technical Information of China (English)

    葛冰; 田寅申; 谢岳生; 臧述升

    2014-01-01

    利用平面激光诱导荧光(PLIF)、高温细丝热电偶及红外气体分析仪对不同空气湿度下的双旋流合成气非预混燃烧流场进行了实验研究.实验结果表明,随着空气湿度的增加,合成气火焰的基本形态已经发生很大变化,燃烧室中心轴线处OH自由基浓度越来越低,荧光信号强度明显变弱,火焰根部逐渐出现W型分布特征,燃烧室排气温度缓慢下降;当空气加湿量φ(空气中水蒸气体积与干空气体积之比)为0~30%时,CO排放量变化不大,但是当φ=40%时CO排放迅速增加,而当φ=50%时,CO排放已经不稳定,燃烧振荡,容易熄火.此外,NOx排放随着φ增加下降明显,但是当φ>20%时,NOx排放的下降趋势会变慢,继续增加水蒸气对NOx排放的影响不大.

  15. Numerical simulation of air dynamic field for a low calorific value gas double-swirl burner%低热值燃气双旋流燃烧器空气动力场数值模拟

    Institute of Scientific and Technical Information of China (English)

    韩秋业; 李国俊; 李明浩; 刘传鹏; 郁鸿凌

    2015-01-01

    介绍了一款燃用低热值燃气的双旋流燃烧器,重点分析了旋流装置和喧口的设计,并采用Fluent软件研究燃烧器的空气动力学特性,获得了燃烧器在不同负荷下的流场形式.模拟结果表明:该燃烧器能够营造良好的流场结构,适用于低热值燃气的燃烧,具有良好的负荷适应性.

  16. Numerical Simulation of Primary Pulverized Coal Air Flow for PAX Double Adjustable Swirling Burner%PAX型双调风旋流燃烧器一次风煤粉气流的数值模拟

    Institute of Scientific and Technical Information of China (English)

    荆有印; 宋燕; 李强

    2008-01-01

    为了揭示煤粉气流在带有乏气管道的一次风管内的运动轨迹及一次风进口段弯头的分离机理,采用标准k-ε双方程模型描述了旋流式燃烧器一次风气相场湍流流动,用随机轨道模型描述了其颗粒相运动,通过颗粒与流体相互耦合PISC算法,对管内气固两相流进行了数值模拟,为确定燃烧器出口一次风气流的着火和燃烧工况及弯管煤粉浓淡分离技术的应用提供了理论依据.

  17. Effect of co- and counter-swirl on the isothermal flow- and mixture field of a double-airflow burner; Einfluss gleich- und gegensinniger Verdrallung auf das isotherme Stroemungs- und Mischungsfeld eines luftseitig zweiflutigen Brenners

    Energy Technology Data Exchange (ETDEWEB)

    Merkle, K.; Haessler, H.; Zarzalis, N. [Universitaet Karslruhe (Germany). Lehrstuhl fuer Verbrennungstechnik

    2002-11-01

    Atomization of liquid fuel in aircraft engines requires application of airblast atomizers, where the kerosene is supplied into the shear layer between two swirling airstreams. The transfer of this functional principle towards gaseous fuel, as illustrated in Fig. 1, yielded a strong influence of the swirl arrangement of the airflows on flame stability and homogeneity of the fuel/air-mixture. Compared to the co-swirl configuration the flow field of the counter-swirl arrangement exhibits a marked increase of the mass flow recirculated in the internal recirculation zone and a reduction of its length in axial direction. This is attributed to the faster decay of tangential velocity maxima in case of counter-rotating airflows. This generates a stronger positive axial pressure gradient dp/dx, thus enhancing the internal recirculation zone. Analysis of local turbulence quantities yields a restriction of turbulent exchange to smaller radial sections and lower maximum values in the jet dominated domain of the flow field in case of counter-swirling airflows. These findings are in good accordance to Rayleigh's criterion, which considers the forces of radial pressure gradient and centrifugal forces acting on a turbulence element deviated from its initial track. Comparison of the mixture fields exhibits faster macro-mixing of fuel and combustion air in case of the co-swirl arrangement. These findings confirm the observation, that turbulent exchange is dampened by application of counter-swirling airflows. (orig.) [German] In der Luftfahrt werden zur Zerstaeubung des fluessigen Brennstoffs ueblicherweise Airblastduesen eingesetzt, d.h. das Kerosin wird in die Scherschicht zweier verdrallter Luftstroeme zugefuehrt. Bei der Uebertragung dieses Konstruktionsprinzips auf gasfoermigen Brennstoff gemaess Bild 1 haben Untersuchungen gezeigt, dass die Drallanordnung grossen Einfluss auf die Flammenstabilitaet und Homogenitaet der Gemischbildung hat. Im Vergleich zu der Gleichdrallanordnung zeichnet sich das zeitmittlere Stroemungsfeld bei gegensinniger Verdrallung trotz der damit verbundenen Reduktion der resultierenden Gesamtdrallzahl durch eine deutliche Zunahme des zentral rezirkulierten Massenstroms aus. Dieses Ergebnis wird auf einen hoeheren axialen Druckgradienten dp/dx im duesennahen Bereich in Folge des schnelleren Abbaus der Tangentialgeschwindigkeit beim Gegendrall zurueckgefuehrt. Die Auswertung der Tubulenzgroessen zeigt, dass durch Einsatz der gegensinnigen Verdrallung der turbulente Impulstransport quer zur Hauptstroemungsrichtung abgeschwaecht wird. Entsprechend dem Rayleigh-Kriterium liegt die Ursache fuer diese Beobachtungen in der stabileren Stroemungsschichtung, die sich durch Verwendung gegensinniger Verdrallung ergibt. In Analogie zum turbulenten Impulstransport zeigt der Vergleich der erhaltenen Mischungsfelder anhand des schnelleren Konzentrationsausgleichs stromab der Duese, dass der turbulente Stoffaustausch in radialer Richtung durch die gegensinnige Verdrallung ebenfalls verlangsamt wird. (orig.)

  18. Industrial Test Research on EI-XCL Double Adjustable Swirling Flow Burner%EI-XCL型双调风旋流燃烧器性能工业试验研究

    Institute of Scientific and Technical Information of China (English)

    张广全; 董建勋; 伊磊

    2007-01-01

    通过在某发电厂600 MW机组锅炉上进行的空气动力场试验和热态性能试验,对该机组锅炉的EI-XCL型双调风旋流燃烧器的性能进行研究,掌握此类型燃烧器的性能特性,为锅炉热态运行提供参考.

  19. Numerical simulation on the performance of a new type high efficiency and low emission gas fired burner%高效低污染燃气燃烧器燃烧特性的数值模拟

    Institute of Scientific and Technical Information of China (English)

    欧俭平; 吴青娇; 赵迪; 肖佩林; 张兴华

    2009-01-01

    运用流体动力学软件Fluent6.3对自行设计的燃气燃烧器的燃烧性能进行了数值模拟研究,分析了不同外圈助燃空气和中心辅助空气配比条件下炉膛内的速度场、温度场以及NOX的生成情况,并对试验结果进行了验证.结果表明,采用适当的外圈助燃空气和中心辅助空气比例,该旋流燃烧器的燃烧性能稳定,燃料燃烧完全,烟气中可燃成分比例不超过0.06%(600 ppm);炉膛内温度分布相对均匀,炉内气体温度偏差不超过30℃,满足高效燃烧的要求;烟气中NOX的含量平均不超过0.006%(60 ppm),远远低于国家排放标准,可以很好控制燃烧产物对大气的污染.随着外圈助燃空气和中心辅助空气的比例增大,炉膛最高温度和平均温度降低,NOX生成量降低,加入空气总量增大,系统的热效率有所降低,但燃烧器产生的高温高速气流,强化了炉内的对流传热,可提高炉子生产率.

  20. 新型多旋流煤气燃烧器的研制与应用%Application and research on a new type of multi-whirl gas fired burner

    Institute of Scientific and Technical Information of China (English)

    刘武标

    2013-01-01

    针对常规燃气燃烧器不能很好适应低压低热值煤气的燃烧特性,导致燃烧效率低,易脱火等问题,介绍了一种新型多旋流煤气燃烧器的结构特性、设计要点及实际应用情况,实践证明该燃烧器具有燃烧稳定、不回火、不脱火,燃烧效率高,NO,排放低等特性.

  1. Study on the Combustion Performance of a New Type Gas Fired Burner%高效低污染燃气燃烧器及其燃烧特性实验

    Institute of Scientific and Technical Information of China (English)

    马爱纯; 吴慧卿; 张智谋; 刘艳军; 肖佩林; 黄柏良; 欧俭平

    2007-01-01

    工业燃烧过程中,燃烧器起着极其重要的作用,开发先进的燃烧装置,对提高能源利用率以及环境保护有重大意义.介绍一种新型燃气燃烧器的结构特点,并通过实验研究,分析了其燃烧性能.结果表明,该燃烧器性能稳定,燃料基本完全燃烧,烟道气中可燃性成分的含量不超过60×10-6,炉膛内温度分布相对均匀,温度偏差不超过30℃,满足高效燃烧的要求;烟气中NOx的含量平均不超过60×10-6,远远低于国家NOx排放标准的要求.

  2. DEVELOPMENT OF PW-TYPE GAS BURNER FOR LAIGANG №2 SHAFT FURNACE%莱钢2号竖炉PW型煤气烧嘴的开发

    Institute of Scientific and Technical Information of China (English)

    王延松; 程继涛

    2006-01-01

    针对莱钢2号竖炉煤气烧嘴在使用过程中存在的问题,分析了该烧嘴结构上的缺陷.通过对烧嘴结构进行改造,研制出了PW型新烧嘴,并取得了较高的经济效益.

  3. 锅炉点火和稳燃装置——节油点火燃烧器%Igntion and Stabilizing burner for Urility Boiler-Oil-saving

    Institute of Scientific and Technical Information of China (English)

    王永正

    2001-01-01

    针对火电万厂节约点为火用油和提高调峰能力等问题,介绍一种新型节油点火燃烧器的结构和特点。经现场实际运行,该燃烧器可节约点火用油60%-90%;可在低负茶稳定燃烧,并达到免维护水平。%In order to save iol for ingition and raise cyclic operation capability of utility boilers,this article introduces the structrue and features of a nes oil-saving type ignition buner.The on-site practical operation of this type buner i8ndcated that the ignition lil could be e economized by 60%-90%,boiler could steadily operate at low load gnd reach maintenance-free level.

  4. ND-400型气化焚烧炉在茶叶初制加工中的应用初探%The appilication of ND-400 type burner on primary processing of tea

    Institute of Scientific and Technical Information of China (English)

    刘宜渠

    2001-01-01

    ND-400型气化焚烧炉是.节能环保型的可燃气发生装置,在毛茶生产加工的试探性应用中,体现了操作简便,整洁卫生,节约成本,改善环境等特点,其机械结构合理,性能稳定.在燃料来源充足,仓贮条件好的茶区,可酌情推广应用.

  5. 220 t/h锅炉高炉煤气多管式燃烧器的改造%Improvement of Blast Furnace Gas Fired Multitube Type Burners of 220 t/h Boiler

    Institute of Scientific and Technical Information of China (English)

    高惠江

    2001-01-01

    梅山热电压厂1#锅炉升炉时尾部烟道积水、煤粉无法投用,经过对锅炉煤气燃烧器的改造、点火方案的优化,问题得以解决,且高炉煤气掺烧量高于国内同类型锅炉.

  6. HOT TEST OF THE BURNER FOR PREHEATING 320 t TORPEDO LADLE AT WISGCO%武钢320t鱼雷罐国产烘烤燃烧器的热态试验研究

    Institute of Scientific and Technical Information of China (English)

    肖世华; 蒋扬虎; 肖坤伟; 丁翠娇

    1998-01-01

    通过对研制的武钢320 t鱼雷罐烘烤燃烧器进行1:1的热态试验研究,得到了该燃烧器的各项技术性能:燃烧器点火时间<4 s,无明显着火延迟;燃烧能力(煤气流量)为1285 m3/h;燃烧能力调节比为5.5;在最小空气消耗因数n=1.035下工作时,燃烧废气中CO<1000×10-6;在调节比正常范围内工作时,燃烧火焰稳定,火焰长度为1.5~4.5 m,罐外噪音最大为80.2 dB(A).该燃烧器的各项技术性能达到了设计目标并满足了武钢生产工艺要求.

  7. 旋流燃烧器内一次风流场的理论分析%The theoretical analysis of primary air current field in the rotational flow burner

    Institute of Scientific and Technical Information of China (English)

    张文革

    2002-01-01

    通过对旋流燃烧器内的一次风流场CAT研究和分析,发现燃烧器入口处的磨损与一次风在燃烧器内二次流的存在有很大的关系,从而对燃烧器的结构改进提供了理论依据.

  8. Investigations of operation problems at a 200 MWe PF boiler

    Directory of Open Access Journals (Sweden)

    Peta Sandile

    2015-09-01

    Full Text Available To minimize oxides of nitrogen (NOx emission, maximize boiler combustion efficiency, achieve safe and reliable burner combustion, it is crucial to master global boiler and at-the-burner control of fuel and air flows. Non-uniform pulverized fuel (PF and air flows to burners reduce flame stability and pose risk to boiler safety by risk of reverse flue gas and fuel flow into burners. This paper presents integrated techniques implemented at pilot ESKOM power plants for the determination of global boiler air/flue gas distribution, wind-box air distribution and measures for making uniform the flow being delivered to burners within a wind-box system. This is achieved by Process Flow Modelling, at-the-burner static pressure measurements and CFD characterization. Global boiler mass and energy balances combined with validated site measurements are used in an integrated approach to calculate the total (stoichiometric + excess air mass flow rate required to burn the coal quality being fired, determine the actual quantity of air that flows through the burners and the furnace ingress air. CFD analysis and use of at-the-burner static, total pressure and temperature measurements are utilized in a 2-pronged approach to determine root-causes for burner fires and to evaluate secondary air distribution between burners.

  9. Experiment research of slag renovation in the corner-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Zhijun; Wu, Wenfei [Inner Mongolia Univ. of Science and Technology, Baotou (China). School of Energy and Environment

    2013-07-01

    Aiming at serious slag on the water wall around the burner of corner-fired boiler with low-ash-fusion-point coal, cold experimental model has been established. In this experiment, particle image velocimetry (PIV) has been employed to accurately measure aerodynamic field of burner region, and the experimental research of furnace slag renovation has been conducted through changing the burner jet arrangement. The experiment results show that it has significantly effect on aerodynamic field in the furnace by changing burner jet deflection angle. A reasonable actual tangential circle diameter can be formed through adjusting the burner jet deflection angle, to prevent primary air attacking the wall, and further more, to effectively prevent serious slag on the water wall around the burner.

  10. Measurements of wall heat transfer in the presence of large-amplitude combustion-driven oscillations

    Science.gov (United States)

    Perry, E. H.; Culick, F. E. C.

    1974-01-01

    In the studies reported use was made of the T-burner to obtain a correlation between the average heat transfer coefficient along the burner and the amplitude of the flow oscillations. The T-burner used consists of a centrally-vented cylindrical chamber with disks of solid propellant bonded in each end. The obtained data provide a basis for predicting heat transfer rates in other combustion chambers containing oscillatory flows.

  11. Excavation of the Foote Site Dump (10-AA-96).

    Science.gov (United States)

    1982-01-01

    1 2 2 Nails - Total cut1 Wire Sheet Strap Plate I Suspender Kerosene Lamp Burner Cartridge 1 1 Shotgun shell 1 1 Safety pin Cord finial Chain Fitting...Lamp Burner Cartridge Shotgun shell Safety pin Cord finial Chain Fitting Screw Shoe hook Paper clip Token Miscellaneous White Metal - Total Strap...Nails - Total Cut Wire Sheet I Strap Plate Suspender Kerosene Lamp Burner Cartridge 1 Shotgun shell Safety pin 2 Cord finial Chain 2 Fitting Screw

  12. Advanced radiant combustion system. Final report, September 1989--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.D.; Carswell, M.G.; Long, F.S.

    1996-09-01

    Results of the Advanced Radiant Combustion System (ARCS) project are presented in this report. This work was performed by Alzeta Corporation as prime contractor under a contract to the U.S. Department of Energy Office of Industrial Technologies as part of a larger DOE program entitled Research Program for Advanced Combustion Systems. The goals of the Alzeta ARCS project were to (a) Improve the high temperature performance characteristics of porous surface ceramic fiber burners, (b) Develop an Advanced Radiant Combustion System (ARCS) that combines combustion controls with an advanced radiant burner, and (c) Demonstrate the advanced burner and controls in an industrial application. Prior to the start of this project, Alzeta had developed and commercialized a porous surface radiant burner, the Pyrocore{trademark} burner. The product had been commercially available for approximately 5 years and had achieved commercial success in a number of applications ranging from small burners for commercial cooking equipment to large burners for low temperature industrial fluid heating applications. The burner was not recommended for use in applications with process temperatures above 1000{degrees}F, which prevented the burner from being used in intermediate to high temperature processes in the chemical and petroleum refining industries. The interest in increasing the maximum use temperature of the burner was motivated in part by a desire to expand the number of applications that could use the Pyrocore product, but also because many of the fluid sensitive heating applications of interest would benefit from the distributed flux characteristic of porous surface burners. Background information on porous surface radiant burners, and a discussion of advantages that would be provided by an improved product, are presented in Section 2.

  13. In-Flame Characterization of a 30 MWth Bio-Dust Flame

    DEFF Research Database (Denmark)

    Johansen, Joakim Myung; Jensen, Peter Arendt; Clausen, Sønnik;

    This work presents a comprehensive flame characterization campaign on an operating full-scale Danish power plant. Amagerværket Unit 1 (AMV1, 350 MWth, 12 identical burners on 3 burner levels) is 100 % fuelled with wood dust burned in suspension and stabilized by swirling flows in a triple...

  14. Deployable Fuel Cell Power Generator - Multi-Fuel Processor

    Science.gov (United States)

    2009-02-01

    apparent difference between the two investigations is the catalyst; however, the larger capacity of the packed-bed over that of microchannel reactor might...Steam Reforming Reactor and the Radiant Burner ................................................................... 7  6: Combustion Fuel Vaporizer...demonstrate the direct steam reforming concept. Packed-bed steam reforming reactor and coiled tube steam generator with radiant burners were used. The

  15. Local extinction and reignition of the flame; Liekin paikallinen sammuminen ja uudelleen syttyminen

    Energy Technology Data Exchange (ETDEWEB)

    Kjaeldman, L. [VTT Energia, Espoo (Finland); Brink, A. [Aabo Akademi, Turku (Finland)

    1996-12-01

    A model of the local extinction and reignition of the flame suitable to be used in computational fluid dynamic analysis of primarily multi-burner furnaces is developed. The model is implemented in the computational environment Ardemus of VTT and Imatran Voima Oy, and tested against well defined experiments. The model makes the simulation of especially the near burner processes more realistic. (author)

  16. Combustion system for hybrid solar fossil fuel receiver

    Science.gov (United States)

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2004-05-25

    A combustion system for a hybrid solar receiver comprises a pre-mixer which combines air and fuel to form an air-fuel mixture. The mixture is introduced tangentially into a cooling jacket. A burner plenum is fluidically connected to the cooling jacket such that the burner plenum and the cooling jacket are arranged in thermal contact with one another. The air-fuel mixture flows through the cooling jacket cooling the burner plenum to reduce pre-ignition of the air-fuel mixture in the burner plenum. A combustion chamber is operatively associated with and open to the burner plenum to receive the air-fuel mixture from the burner plenum. An igniter is operatively positioned in the combustion chamber to combust the air-fuel mixture, releasing heat. A recuperator is operatively associated with the burner plenum and the combustion chamber and pre-heats the air-fuel mixture in the burner plenum with heat from the combustion chamber. A heat-exchanger is operatively associated and in thermal contact with the combustion chamber. The heat-exchanger provides heat for the hybrid solar receiver.

  17. Interim Guidance for Oil Heating Equipment Selection for Naval Residential Housing.

    Science.gov (United States)

    1984-01-01

    correct nozzle size (see Section V), spray angle, and pattern. (See the equipment manufacturers sug- gestions for spray angles and patterns in the...BURNER C-56 ’a.- MANUAL NO. 17,000/500019-82 INSTALLATION SERVICE AND OPERATING MANUAL ,-RTLI AMERICAN OIL BURNER MODELOE -2 12 6 ,-p. -~ OE-22 I . 6 _ _ OE

  18. 40 CFR Appendix A to Part 20 - Guidelines for Certification

    Science.gov (United States)

    2010-07-01

    ... afterburners. (6) Catalytic afterburners. (7) Gas absorption equipment. (8) Vapor condensers. (9) Vapor recovery systems. (10) Floating roofs for storage tanks. (11) Fuel cleaning equipment. (12) Combinations of... from a coal-fired boiler and the addition of gas or oil burners. The purpose of the burners is...

  19. Heating Systems Specialist.

    Science.gov (United States)

    Air Force Training Command, Sheppard AFB, TX.

    This instructional package is intended for use in training Air Force personnel enrolled in a program for apprentice heating systems specialists. Training includes instruction in fundamentals and pipefitting; basic electricity; controls, troubleshooting, and oil burners; solid and gas fuel burners and warm air distribution systems; hot water…

  20. Efficiently generated turbulence for an increased flame speed

    NARCIS (Netherlands)

    Verbeek, Antonie Alex

    2014-01-01

    In this study two different methods to generate turbulence in an efficient way are studied. This turbulence is used to increase the flame speed of a low-swirl burner, which makes this low NOx burner more applicable for gas turbine application. The first approach adopts an active grid that forms a ti

  1. Capture Efficiency of Cooking-Related Fine and Ultrafine Particles by Residential Exhaust Hoods

    Energy Technology Data Exchange (ETDEWEB)

    Lunden, Melissa M.; Delp, William W.

    2014-06-05

    Effective exhaust hoods can mitigate the indoor air quality impacts of pollutant emissions from residential cooking. This study reports capture efficiencies (CE) measured for cooking generated particles for scripted cooking procedures in a 121-m3 chamber with kitchenette. CEs also were measured for burner produced CO2 during cooking and separately for pots and pans containing water. The study used four exhaust hoods previously tested by Delp and Singer (Environ. Sci. Technol., 2012, 46, 6167-6173). For pan-frying a hamburger over medium heat on the back burner, CEs for particles were similar to those for burner produced CO2 and mostly above 80percent. For stir-frying green beans in a wok (high heat, front burner), CEs for burner CO2 during cooking varied by hood and airflow: CEs were 34-38percent for low (51?68 L s-1) and 54?72percent for high (109?138 L s-1) settings. CEs for 0.3?2.0 ?m particles during front burner stir-frying were 3?11percent on low and 16?70percent on high settings. Results indicate that CEs measured for burner CO2 are not predictive of CEs of cooking-generated particles under all conditions, but they may be suitable to identify devices with CEs above 80percent both for burner combustion products and for cooking-related particles.

  2. 40 CFR 1065.260 - Flame-ionization detector.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Flame-ionization detector. 1065.260 Section 1065.260 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... emissions at a temperature of (191 ± 11) °C. (d) FID fuel and burner air. Use FID fuel and burner air...

  3. Residence Time Distributions in a Cold, Confined Swirl Flow

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der; Glarborg, Peter; Dam-Johansen, Kim;

    1997-01-01

    Residence time distributions (RTD) in a confined, cold swirling flow have been measured with a fast-response probe and helium as a tracer. The test-rig represented a scaled down version of a burner. The effect of variation of flow velocities and swirl angle on the flow pattern in the near-burner ...

  4. Microwave plasma combustion of coal

    Energy Technology Data Exchange (ETDEWEB)

    P.M. Kanilo; V.I. Kazantsev; N.I. Rasyuk; K. Schuenemann; D.M. Vavriv [Institute of Machine Building Problems of the National Academy of Sciences of Ukraine, Kharkov (Ukraine)

    2003-01-01

    Microwave plasma is studied as an alternative to oil or gas fuel for ignition and stabilisation of burning of lean coal. The study is performed on an experimental set-up, which includes a burner with a microwave plasma generator, coal and air supply systems, and measurement equipment. Power and thermochemical characteristics of the coal-plasma interaction have been measured and analysed. The obtained results indicate an essential intensification of ignition and combustion processes in the microwave burner compared to those in conventional burners. In particular, it has been demonstrated that the microwave energy consumption is only about 10% of the required expenditure of oil or gas, measured in heat equivalent. A design of an industrial microwave-plasma burner is proposed. Prospects of such burner for applications at industrial boilers of power plants are discussed. 6 refs., 4 figs., 2 tabs.

  5. How low can the low heating load density district heating be? Environmental aspects on low heating load density district heating of the present generation compared to a domestic oil burner; Hur vaermegles kan den vaermeglesa fjaerrvaermen vara? Miljoeaspekter paa vaermegles fjaerrvaerme med dagens teknik jaemfoerd med villaoljepanna

    Energy Technology Data Exchange (ETDEWEB)

    Froeling, Morgan [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical Environmental Science

    2005-07-01

    In Sweden we can see an increase of district heating networks in residential areas with low heat density. For the customer the economy is normally the most important argument when deciding to choose district heating. For many customers, however, arguments regarding environmental friendliness are important complimentary arguments. When district heating systems are built with decreased heat density, the environmental impacts from use of district heating will increase, depending on such as increased need of pipes and increased heat losses from the distribution system. The purpose of this study is to investigate if there is a limit, a lowest heat density when it is not any longer beneficial to build district heating when district heating replaces local oil furnace heating. Life cycle inventory data for district heating distribution systems in areas with low heat density has been compared with the use of oil furnaces. The environmental impacts are categorized into Global Warming Potential, Acidification Potential, Eutrofication Potential and Use of Finite Resources. To enhance the assessment three single point indicators have also been used: EcoIndicator99, EPS and ExternE. The economics of using district heating in areas with low heat density has not been regarded in this study. A model comparing the space heating of a single family home with an oil furnace or with district heating has been created. The home has an annual heat need of 20 MWh. The district heating distribution network is characterized by its linear heat density. The linear heat density is a rough description of a district heating network, and thus also the results from the model will be general. Still it can give us a general idea of the environmental limit for district heating in areas with low heat density. An assessment of all results indicate that with the type of technology used at present it is not environmentally beneficial to use district heating with lower linear heat density than 0,2 MWh/m. At higher linear heat densities Swedish average district heating production is the environmentally better choice, when compared to a local oil furnace for a single family home with a annual heat demand of 20 MWh and the assumptions described in Chapter 3 in this report. It is important for the environmental performance of district heating to minimize the heat losses from the distribution system. It is also important to avoid emissions contributing to acidification and eutrofication in the heat production. When considering only these two parameters, district heating is the worse alternative compared to a local oil furnace for all linear heat densities in this study. Better insulated distribution systems, preferably with simultaneous lower environmental impacts at production and network construction, would increase the environmental performance of district heating. Suggestions for such distribution systems should be further investigated.

  6. CWS-I Coal-Water Slurry Burner Series and Their Applications in Spraying Dryer of Ceramics%CWS-Ⅰ系列水煤浆燃烧器及其在陶瓷喷雾干燥塔上的应用

    Institute of Scientific and Technical Information of China (English)

    夏德宏; 赵禹民; 韩守梅; 陶保国

    2002-01-01

    针对水煤浆这种两相浆体燃料开发的CWS-Ⅰ系列专用燃烧器,具有燃烧效率高、使用和调节方便等一系列优点,在多家陶瓷企业的成功应用证明,水煤浆在陶瓷喷雾干燥塔上的燃烧技术及燃烧系统是可靠的,能为企业带来显著的经济效益和环保效益,值得大力推广.

  7. IMC预测控制在德州电厂摆角控制再热汽温的应用%IMC Model Predictive Control Technology in Reheat Steam Temperature and Tilting Angle of Burner Combined Control Application in Dezhou Power Plant

    Institute of Scientific and Technical Information of China (English)

    李明; 郭忠波; 王建华; 李全; 开平安

    2012-01-01

    通过摆角自动控制实现弄热汽温的精细调控,一直是燃煤机组电厂的一大难题.通过德州电厂1号机组摆角再热汽温控制改造前后的系统分析,得出采用北京控软公司先进控制系统AECS - 2000 INTUNE(建模、优化引擎)与MANTRA(运行引擎)中的IMC内模预测控制、MMC多变量解耦控制器、CC协调控制模块以及APC模块等先进控制技术及策略方法,能够解决再热汽温的精细控制,并能提高机组的安全经济运行和节能减排效果,对同类型电厂具有一定的应用参考价值.简单分析了该软件的新控制技术以及策略方法,展望未来电厂先进控制技术的发展方向和前景.

  8. 新型加热炉引射式多喷头预混燃气燃烧器及其应用%Introduction of the New Type Multi-injector Nozzle Premix Gas Burner for the Nature Gas Heater and Its Application

    Institute of Scientific and Technical Information of China (English)

    于晓亮; 刘小波

    2015-01-01

    为提高化工行业现有加热炉的热效率,降低其能耗和污染,经Fluent数值模拟计算,利用航天发动机燃烧技术试验平台优势,研制出新型加热炉引射式多喷头预混燃气燃烧器.在某企业天然气加热炉中使用后,解决了温度场分布不合理、热效率低、能耗大、污染高等问题.同时,利用该企业合成氨工艺产生的废气作为新型燃烧器的燃料,可节约天然气燃料4 800 m3/d~9 600 m3/d,年节约成本259.2万元~518.4万元.实现了废气的零排放,经济、环保效益显著.

  9. 侧边风对浓淡分离型预热室内气固两相流动影响的数值模拟%Numerical Simulation for Effect of Side-gas on Gas-solid Two-phase Flow in New Type Rich-lean Steady Burner

    Institute of Scientific and Technical Information of China (English)

    李凤瑞; 池作和; 周昊; 岑可法

    2001-01-01

    针对燃煤锅炉稳燃问题日益突出的现象,介绍了1种新型浓淡分离型稳燃器.在介绍气固两相流动物理和数学模型的基础上,对侧边风投入前后,浓淡分离型稳燃器预热室内的气固两相流动的变化规律进行了数值模拟,其结果对开发应用新型稳燃器具有一定的指导意义.

  10. Thermal Response of UHMWPE Materials in a Flash Flame Test Environment

    Science.gov (United States)

    2014-11-13

    adjusting the standoff and positioning of the burner flame. Propane is supplied to the burners at 25 psi, and for these tests, a 3/16- inch burner orifice ...13.5-inch diameter test cylinder as shown in Figure 6a, and clamped on the back side of the cylinder as shown in Figure 6b. The circumference of the...on 180° of the front side of the test cylinder. The sensors are arranged in offset rows (three rows of five sensors and two rows of four sensors

  11. Technology Being Developed at Lawrence Berkeley National Laboratory: Ultra-Low- Emission Combustion Technologies for Heat and Power Generation

    Science.gov (United States)

    Cheng, Robert K.

    2001-01-01

    The Combustion Technologies Group at Lawrence Berkeley National Laboratory has developed simple, low-cost, yet robust combustion technologies that may change the fundamental design concept of burners for boilers and furnaces, and injectors for gas turbine combustors. The new technologies utilize lean premixed combustion and could bring about significant pollution reductions from commercial and industrial combustion processes and may also improve efficiency. The technologies are spinoffs of two fundamental research projects: An inner-ring burner insert for lean flame stabilization developed for NASA- sponsored reduced-gravity combustion experiments. A low-swirl burner developed for Department of Energy Basic Energy Sciences research on turbulent combustion.

  12. Collaborating for Multi-Scale Chemical Science

    Energy Technology Data Exchange (ETDEWEB)

    William H. Green

    2006-07-14

    Advanced model reduction methods were developed and integrated into the CMCS multiscale chemical science simulation software. The new technologies were used to simulate HCCI engines and burner flames with exceptional fidelity.

  13. Combustion of producer gas from gasification of south Sumatera lignite coal using CFD simulation

    Directory of Open Access Journals (Sweden)

    Vidian Fajri

    2017-01-01

    Full Text Available The production of gasses from lignite coal gasification is one of alternative fuel for the boiler or gas turbine. The prediction of temperature distribution inside the burner is important for the application and optimization of the producer gas. This research aims to provide the information about the influence of excess air on the temperature distribution and combustion product in the non-premixed burner. The process was carried out using producer gas from lignite coal gasification of BA 59 was produced by the updraft gasifier which is located on Energy Conversion Laboratory Mechanical Engineering Department Universitas Sriwijaya. The excess air used in the combustion process were respectively 10%, 30% and 50%. CFD Simulations was performed in this work using two-dimensional model of the burner. The result of the simulation showed an increase of excess air, a reduction in the gas burner temperature and the composition of gas (carbon dioxide, nitric oxide and water vapor.

  14. Chamberless residential warm air furnace design

    Energy Technology Data Exchange (ETDEWEB)

    Godfree, J. [Product Design consultant, Pugwash (Canada)

    1996-07-01

    This brief paper is an introduction to the concept of designing residential warm air furnaces without combustion chambers. This is possible since some small burners do not require the thermal support of a combustion chamber to complete the combustion process.

  15. 77 FR 3712 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Regional Haze

    Science.gov (United States)

    2012-01-25

    ..., Chicago, Illinois 60604, (312) 886-6524, rau.matthew@epa.gov . SUPPLEMENTARY INFORMATION: Throughout this..., cyclones and electrostatic precipitators, and its NO X control devices, low-NO X burners with over-fire...

  16. Engine related combustion technology. Final report; Motorrelaterad foerbraenningsteknik. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Bengt [Lund Univ. (Sweden). Dept. of Heat and Power Engineering

    2000-06-01

    Within the project a new burner has been been constructed to study turbulent flame propagation. Advanced laser diagnostics has been used for detailed studies of what happens before, inside, and after the flame zone, from laminar to very turbulent flames.

  17. Fire Safety (For Parents)

    Science.gov (United States)

    ... to the burner; a toaster or toaster oven flare-up; a coffee pot accidentally left on. Always ... Carbon monoxide (CO) is a colorless, odorless, tasteless gas produced by wood- or gas-fueled appliances (such ...

  18. A novel high-heat transfer low-NO{sub x} natural gas combustion system. Phase 1 final report

    Energy Technology Data Exchange (ETDEWEB)

    Rue, D.M. [Institute of Gas Technology, Des Plaines, IL (United States); Fridman, A. [Univ. of Illinois, Chicago (United States); Viskanta, R. [Purdue Univ. (United States); Neff, D. [Cumbustion Tec, Inc. (United States)

    1997-11-01

    Phase I of the project focused on acquiring the market needs, modeling, design, and test plan information for a novel high-heat transfer low-NO{sub x} natural gas combustion system. All goals and objectives were achieved. The key component of the system is an innovative burner technology which combines high temperature natural gas preheating with soot formation and subsequent soot burnout in the flame, increases the system`s energy efficiency and furnace throughput, while minimizing the furnace air emissions, all without external parasitic systems. Work has included identifying industry`s needs and constraints, modeling the high luminosity burner system, designing the prototype burner for initial laboratory-scale testing, defining the test plan, adapting the burner technology to meet the industry`s needs and constraints, and outlining the Industrial Adoption Plan.

  19. 40 CFR 279.71 - Prohibitions.

    Science.gov (United States)

    2010-07-01

    ... THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.71 Prohibitions. A used oil fuel marketer may initiate a shipment of off-specification used oil only to a used oil burner who:...

  20. Highlighting Hospital and Patient Concerns this Election Year.

    Science.gov (United States)

    Nickels, Tom

    2016-03-01

    Campaign 2016 is in full swing, and the American Hospital Association is seizing the opportunity to make sure the concerns of patients and hospitals are heard. On the front burner: escalating drug prices.