WorldWideScience

Sample records for burners

  1. Burner (Stinger)

    Science.gov (United States)

    ... feel overly tired. These are symptoms of a concussion . The doctor will ask you questions about what ... a Burner? Injuries to the brachial plexus can happen when a person's head is pushed forcefully down ...

  2. Multifuel burner

    Energy Technology Data Exchange (ETDEWEB)

    Raybould, J.D.

    1982-04-28

    A design is proposed for turbulent burner (B) for simultaneous burning of powder, liquid and/or gaseous fuel (F). The liquid F is sprayed with the help of a rotation sprayer arranged on the axis of the burner device. The gas can be supplied through the opening made in the dish-shaped bottom encompassing the central part of the B. The powder F (aeromixture) enters the combustion zone through the channels with vortex blades arranged on the periphery of the bottom of the B. Through the annular channel arranged around the rotation sprayer, primary air is supplied, and through the channels arranged on the periphery of the B, secondary air. The percentage of solid F during operation of the B can be 75-90%.

  3. Gas flat flame burner

    Energy Technology Data Exchange (ETDEWEB)

    Revun, M.P.; Chernov, V.Ye.; Perelman, L.D.; Rudnitskiy, O.I.; Yerinov, A.Ye.; Zyryanov, V.V.

    1981-01-01

    A burner is proposed in which it is possible to burn gas with low calorific value, Q/SUB n//SUP p/. The burner consists of a housing and screw-shaped insert installed on the central gassupply pipe. The latter ends at the outlet adapter equipped with nozzles of elliptical outlet section directed towards twisting of the air stream. The nozzles are bent at a right angle, and their axes are also arranged at the angle ..cap alpha.. in relation to the section plane of the adapter. ..cap alpha.. changes in limits of 0-45/sup 0/ depending on Q /SUB n/ /SUP p/ the lower the calorific value of the burned fuel, the higher the size of the angle ..cap alpha.. might be.

  4. Catalyzed Ceramic Burner Material

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant

  5. Ecothal burner development; Ecothal braennarutveckling

    Energy Technology Data Exchange (ETDEWEB)

    Lewin, Thomas [KANTHAL AB, Hallstahammar (Sweden)

    2004-08-01

    A SER burner system with catalytic cleaning have been optimised for an outer tube OD 100-115 mm. The aim has been to develop a burner with an emission of nitrogen oxides below 50 ppm and an efficiency higher than 80%. An optimised burner system have been realised but will not be stable enough for commercialisation. In order to fullfill the requirements it have to be regulated with closed loop oxygen sensor system regulating the air/gas supply (Lambda-value). Practically it is possible to reach 200-300 ppm nitrogen oxide with an efficiency around 70-80%. Following work have to focus on how to improve the stability considering geometrical changes when in operation but also towards accomodation of production tolerances and fluctuations in gas supply systems.

  6. Numerical simulation of porous burners and hole plate surface burners

    Directory of Open Access Journals (Sweden)

    Nemoda Stevan

    2004-01-01

    Full Text Available In comparison to the free flame burners the porous medium burners, especially those with flame stabilization within the porous material, are characterized by a reduction of the combustion zone temperatures and high combustion efficiency, so that emissions of pollutants are minimized. In the paper the finite-volume numerical tool for calculations of the non-isothermal laminar steady-state flow, with chemical reactions in laminar gas flow as well as within porous media is presented. For the porous regions the momentum and energy equations have appropriate corrections. In the momentum equations for the porous region an additional pressure drop has to be considered, which depends on the properties of the porous medium. For the heat transfer within the porous matrix description a heterogeneous model is considered. It treats the solid and gas phase separately, but the phases are coupled via a convective heat exchange term. For the modeling of the reaction of the methane laminar combustion the chemical reaction scheme with 164 reactions and 20 chemical species was used. The proposed numerical tool is applied for the analyses of the combustion and heat transfer processes which take place in porous and surface burners. The numerical experiments are accomplished for different powers of the porous and surface burners, as well as for different heat conductivity character is tics of the porous regions.

  7. Pulverized fuel-oxygen burner

    Science.gov (United States)

    Taylor, Curtis; Patterson, Brad; Perdue, Jayson

    2017-09-05

    A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through the solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.

  8. Optimization of burners in oxygen-gas fired glass furnace

    NARCIS (Netherlands)

    Kersbergen, M.J. van; Beerkens, R.G.C.; Sarmiento-Darkin, W.; Kobayashi, H.

    2012-01-01

    The energy efficiency performance, production stability and emissions of oxygen-fired glass furnaces are influenced by the type of burner, burner nozzle sizes, burner positions, burner settings, oxygen-gas ratios and the fuel distribution among all the burners. These parameters have been optimized

  9. Furnaces with multiple ?ameless combustion burners

    NARCIS (Netherlands)

    Danon, B.

    2011-01-01

    In this thesis three different combustion systems, equipped with either a single or multiple ?ameless combustion burner(s), are discussed. All these setups were investigated both experimentally and numerically, i.e., using Computational Fluid Dynamics (CFD) simulations. Flameless combustion is a

  10. Computational fluid dynamics in oil burner design

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A. [Brookhaven National Labs., Upton, NY (United States)

    1997-09-01

    In Computational Fluid Dynamics, the differential equations which describe flow, heat transfer, and mass transfer are approximately solved using a very laborious numerical procedure. Flows of practical interest to burner designs are always turbulent, adding to the complexity of requiring a turbulence model. This paper presents a model for burner design.

  11. Burners

    Science.gov (United States)

    ... and Sugar Substitutes Exercise and Fitness Exercise Basics Sports Safety Injury Rehabilitation Emotional Well-Being Mental Health Sex and ... and Sugar Substitutes Exercise and Fitness Exercise Basics Sports Safety Injury Rehabilitation Emotional Well-Being Mental Health Sex and ...

  12. DESIGN AND DEVELOPMENT OF MILD COMBUSTION BURNER

    Directory of Open Access Journals (Sweden)

    M.M. Noor

    2013-12-01

    Full Text Available This paper discusses the design and development of the Moderate and Intense Low oxygen Dilution (MILD combustion burner using Computational Fluid Dynamics (CFD simulations. The CFD commercial package was used to simulate preliminary designs for the burner before the final design was sent to the workshop for fabrication. The burner is required to be a non-premixed and open burner. To capture and use the exhaust gas, the burner was enclosed within a large circular shaped wall with an opening at the top. An external EGR pipe was used to transport the exhaust gas which was mixed with the fresh oxidant. To control the EGR and exhaust flow, butterfly valves were installed at the top opening as a damper to close the exhaust gas flow at a certain ratio for EGR and exhaust out to the atmosphere. High temperature fused silica glass windows were installed to view and capture images of the flame and analyze the flame propagation. The burner simulation shows that MILD combustion was achieved for the oxygen mole fraction of 3-13%. The final design of the burner was fabricated and ready for the experimental validation.

  13. Burners and combustion apparatus for carbon nanomaterial production

    Science.gov (United States)

    Alford, J. Michael; Diener, Michael D; Nabity, James; Karpuk, Michael

    2013-02-05

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  14. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  15. Fuel-flexible burner apparatus and method for fired heaters

    Energy Technology Data Exchange (ETDEWEB)

    Zink, Darton J.; Isaacs, Rex K.; Jamaluddin, A. S. (Jamal); Benson, Charles E.; Pellizzari, Roberto O.; Little, Cody L.; Marty, Seth A.; Imel, K. Parker; Barnes, Jonathon E.; Parker, Chris S.

    2017-03-14

    A burner apparatus for a fired heating system and a method of burner operation. The burner provides stable operation when burning gas fuels having heating values ranging from low to high and accommodates sudden wide changes in the Wobbe value of the fuel delivered to the burner. The burner apparatus includes a plurality of exterior fuel ejectors and has an exterior notch which extends around the burner wall for receiving and combusting a portion of the gas fuel. At least a portion of the hot combustion product gas produced in the exterior notch is delivered through channels formed in the burner wall to the combustion area at the forward end of the burner. As the Wobbe value of the gas fuel decreases, one or more outer series of addition ejectors can be automatically activated as needed to maintain the amount of heat output desired.

  16. Industrial Energy Conservation, Forced Internal Recirculation Burner

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Rabovitser

    2003-06-19

    The overall objective of this research project is to develop and evaluate an industrial low NOx burner for existing and new gas-fired combustion systems for intermediate temperature (1400 degree to 2000 degree F) industrial heating devices such as watertube boilers and process fluid heaters. A multi-phase effort is being pursued with decision points to determine advisability of continuance. The current contract over Phases II and III of this work. The objectives of each phase are as follows. Phase II - to design, fabricate, and evaluate prototype burners based on the Forced Internal Recirculation (FIR) concept. Phase III - to evaluate the performance of an FIR burner under actual operating conditions in a full-scale field test and establish the performance necessary for subsequent commercialization

  17. 30 CFR 56.7803 - Lighting the burner.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lighting the burner. 56.7803 Section 56.7803... Piercing Rotary Jet Piercing § 56.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner. ...

  18. 30 CFR 57.7803 - Lighting the burner.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lighting the burner. 57.7803 Section 57.7803... Jet Piercing Rotary Jet Piercing-Surface Only § 57.7803 Lighting the burner. A suitable means of protection shall be provided for the employee when lighting the burner. ...

  19. Bed burners for grate boilers; Baeddbraennare foer rosterpannor

    Energy Technology Data Exchange (ETDEWEB)

    Sendelius, Mikael; Schuster, Robert [AaF-Energikonsult AB, Stockholm (Sweden)

    2003-10-01

    The objective of this work is to increase the knowledge of bed burners and their optimal positions in furnaces. The results from several computational fluid mechanics calculations are presented. An investigation concerning bed burners among plant owners is included as well. A bed burner is defined as a burner used for enhancing the combustion process on the bed i.e. it is used to dry incoming wet fuel. A load burner is used to quickly increase the boiler load and primarily not for creating better combustion conditions on the grate. Fluid mechanics calculations have been performed for five different cases, including the reference case. The following four bed burner arrangements have been examined: flat flame burner, six burners placed in the combustion chamber, two symmetric placed burners and two asymmetric placed burners. The same furnace model has been used through all the simulations. The incident radiation has been calculated in order to determine which one of the bed burners having the best possibility to improve the combustion process on the grate. The results showed that the flat flame burner and the six burners placed in the combustion chamber gave the most incident radiation on the first two grate zones. Bed burners placed further back in the furnace gave less good results. A comparison between the reference case (the case without burners) and the case with two burners showed that there was almost no difference in incident radiation between the two cases. The case with six burners placed in the combustion chamber gave most incident radiation, however this arrangement gave an irregular distribution of the radiation on the bed. Too high or irregular distributed radiation increases the risk for getting regions, on the grate, where the fuel is completely burnt. Primary air will pass through these regions. This phenomenon will lead to high temperatures that cause increased levels of emissions, in particular NO{sub x}. Reorganizing the burner positions and

  20. Pressure Melting and Ice Skating / Bunsen Burner

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Pressure Melting and Ice Skating / Bunsen Burner - Revisited. Classroom Volume 1 Issue 5 May 1996 pp 71-78. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/05/0071-0078. Resonance ...

  1. On Bunsen Burners, Bacteria and the Bible

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. On Bunsen Burners, Bacteria and the Bible. Milind Watve. Classroom Volume 1 Issue 2 February 1996 pp 84-89. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/02/0084-0089 ...

  2. Burner Characteristics for Activated Carbon Production

    Directory of Open Access Journals (Sweden)

    zakaria Supaat

    2017-01-01

    Full Text Available Carbonization process has become an important stage in developing activated carbon. However, existing burner are not efficient in time production which take 24 hours to15 days for charcoal production. Therefore, new design of burner/kilns is quite needed in order to produce larger number of charcoal in short time production, to improve charcoal quality regarding to the smooth surface area and pore volume. This research proposed new design burner which divided into two types which are vertical and horizontal types. Vertical is not completed by auto-rotating system while horizontal type is complete by auto-rotating and fume handling system. It developed using several equipment such as welding, oxy-cutting, drilling grinding and cutting machine. From the result of carbonization process shows that coconut shell charcoal need shorter time of 30 minutes as compared to palm shell charcoal of 2 h to completely carbonized. This result claim that the new design better than existing kiln that need longer time up to 24 h. The result of the palm and coconut shell charcoal believe will produce better properties of activated carbon in large surface area and higher total volume of pores. Therefore, this burner is high recommended for producing palm and coconut shell charcoal as well as other bio-based material.

  3. Market assessment for the fan atomized oil burner

    Energy Technology Data Exchange (ETDEWEB)

    Westphalen, D. [A.D. Little, Inc., Cambridge, MA (United States)

    1996-07-01

    The market potential for the fan atomized burner (FAB) in water and space heating applications was examined. The major findings of the study are as follows. (1). The FAB`s low-input capability allows development of oil-fired room heaters and wall furnaces, a new market area for oil heat. (2). Among conventional oil-fired products, furnaces will benefit most from the burner`s low input capability due to (1) their quick delivery of heat and (2) their more prevalent use in warmer climates and smaller homes. (3). The greatest potential for increased product sales or oil sales exists in the use of the burner with new products (i.e., room heaters). Sales of boilers and direct-fired water heaters are not likely to increase with the use of the burner. (4). Acceptance of the burner will be dependent on proof of reliability. Proof of better reliability than conventional burners would accelerate acceptance.

  4. Catalytic burners in larger boiler appliances

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik; Persson, Mikael (Catator AB, Lund (Sweden))

    2009-02-15

    This project focuses on the scale up of a Catator's catalytic burner technology to enable retrofit installation in existing boilers and the design of new innovative combinations of catalytic burners and boilers. Different design approaches are discussed and evaluated in the report and suggestions are made concerning scale-up. Preliminary test data, extracted from a large boiler installation are discussed together with an accurate analysis of technical possibilities following an optimization of the boiler design to benefit from the advantages of catalytic combustion. The experimental work was conducted in close collaboration with ICI Caldaie (ICI), located in Verona, Italy. ICI is a leading European boiler manufacturer in the effect segment ranging from about 20 kWt to several MWt. The study shows that it is possibly to scale up the burner technology and to maintain low emissions. The boilers used in the study were designed around conventional combustion and were consequently not optimized for implementation of catalytic burners. From previous experiences it stands clear that the furnace volume can be dramatically decreased when applying catalytic combustion. In flame combustion, this volume is normally dimensioned to avoid flame impingement on cold surfaces and to facilitate completion of the gas-phase reactions. The emissions of nitrogen oxides can be reduced by decreasing the residence time in the furnace. Even with the over-dimensioned furnace used in this study, we easily reached emission values close to 35 mg/kWh. The emissions of carbon monoxide and unburned hydrocarbons were negligible (less than 5 ppmv). It is possible to decrease the emissions of nitrogen oxides further by designing the furnace/boiler around the catalytic burner, as suggested in the report. Simultaneously, the size of the boiler installation can be reduced greatly, which also will result in material savings, i.e. the production cost can be reduced. It is suggested to optimize the

  5. Fuel burner and combustor assembly for a gas turbine engine

    Science.gov (United States)

    Leto, Anthony

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  6. Refinery burner simulation design architecture summary.

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  7. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  8. Coal-water mixture fuel burner

    Science.gov (United States)

    Brown, T.D.; Reehl, D.P.; Walbert, G.F.

    1985-04-29

    The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.

  9. Perbandingan Unjuk Kerja Kompor Methanol dengan Variasi Diameter Burner

    Directory of Open Access Journals (Sweden)

    Subroto Subroto

    2016-08-01

    Full Text Available Sampai saat ini sebagian masyarakat masih anyak menggunakan minyak tanah sebagai bahan bakar untuk keperluan rumah tangga maupun industri, walaupun harga minyak tanah naik cukup tinggi karena subsidi dari pemerintah dicabut. Untuk mengurangi ketergantungan minyak tanah perlu penggunaan bahan bakar alternatif yaitu methanol. Methanol mempunyai kelebihan mudah didapatkan di lapangan dan dengan harga yang lebih murah dari minyak tanah. Kompor methanol sudah dikenal masyarakat akan tetapi penggunaannya masih sangat terbatas karena unjuk kerjanya masih kurang baik dibandingkan kompor minyak tanah. Penelitian ini bertujuan untuk mengetahui unjuk kerja kompor methanol melalui pengaruh variasi diameter burner.               Penelitian dimulai dengan rancang bangun burner terbuat dari bahan kuningan dengan tiga macam model dengan variasi diameter burner dan tinggi burner maupun jumlah lubang tetap. Pengujian unjuk kerja berdasarkan karakteristik pembakaran dilakukan melalui water boiling test. Parameter yang diukur meliputi temperatur api pembakaran, temperatur air, konsumsi bahan bakar, dan waktu pendidihan.               Hasil penelitian menunjukkan bahwa variasi diameter burner berpengaruh terhadap karakteristik pembakaran yang dihasilkan. Temperatur pembakaran yang tinggi dicapai oleh burner dengan diameter 12,8mm dan 10mm, konsumsi bahan bakar yang kecil burner diameter 12,8mm dan waktu pendidihan yang pendek dicapai burner 12,8mm. Jadi kompor methanol dengan unjuk kerja terbaik adalah kompor methanol dengan diameter burner 12,8mm.

  10. Burners for Supersonic Ramjets - Some Observations on Instability in a Two-Inch Ramjet Burner

    Science.gov (United States)

    1950-01-01

    a burner comprising a simple 0.75" oxyhydrogen pilot cone (Igniter 1-2, Figure 3) is much more prone to insta- bility than one comprising the same...occurred largely with a "poor igniter." Most of the work described above was done with a simple 0.75 inch oxyhydrogen cone. 2. It was accompanied

  11. Some parameters and conditions defining the efficiency of burners ...

    Indian Academy of Sciences (India)

    A number of new wordings and statements regarding the targeted problem of destruction of long-lived wastes (transmutation) is considered. Some new criteria concerning the efficiency of a particular burner type are proposed. It is shown that the destruction efficiency of a specific burner is greatly influenced by the ...

  12. DEMONSTRATION BULLETIN: CELLO PULSE COMBUSTION BURNER SYSTEM/SONOTECH INC.

    Science.gov (United States)

    Sonotech, Inc. (Sonotech), of Atlanta, GA, the developer of the Cello® pulse combustion burner, claims that its burner system can be beneficial to a variety of combustion processes. The system incorporates a combustor that can be tuned to induce large amplitude sonic pulsation...

  13. Combustion starter and maintenance burner for pulverized solid fossil fuels, and combustion chamber equipped with burners of the kind

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, J.; Malaubier, F.; Mevel, J-C.

    1990-05-15

    A power station boiler is described, which is fired by pulverized coal. The boiler has an axial conduit for feeding the pulverized fuel in a primary combustion supporting gas. The burner incorporates a flame detector and an igniter in the refractory tap-hole or in the axial conduit. The advantage of the burner is improved efficiency and reduced operating cost.

  14. Fan Atomized Burner design advances & commercial development progress

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, B. [Heat-Wise, Inc., Ridge, NY (United States); Butcher, T.A. [Brookhaven National Lab., Upton, NY (United States)

    1996-07-01

    As a part of the Oil Heat Research and Development program, sponsored by the US Department of Energy, Brookhaven National Laboratory (BNL) has an on-going interest in advanced combustion technologies. This interest is aimed at: improving the initial efficiency of heating equipment, reducing long term fouling and efficiency degradation, reducing air pollutant emissions, and providing practical low-firing rate technologies which may lead to new, high efficiency oil-fired appliances. The Fan-Atomized Burner (FAB) technology is being developed at BNL as part of this general goal. The Fan-Atomized Burner uses a low pressure, air atomizing nozzle in place of the high pressure nozzle used in conventional burners. Because it is air-atomized the burner can operate at low firing rates without the small passages and reliability concerns of low input pressure nozzles. Because it uses a low pressure nozzle the burner can use a fan in place of the small compressor used in other air-atomized burner designs. High initial efficiency of heating equipment is achieved because the burner can operate at very low excess air levels. These low excess air levels also reduce the formation of sulfuric acid in flames. Sulfuric acid is responsible for scaling and fouling of heat exchanger surfaces.

  15. Flashback Avoidance in Swirling Flow Burners

    Directory of Open Access Journals (Sweden)

    Vigueras-Zúñiga Marco Osvaldo

    2014-10-01

    Full Text Available Lean premixed combustion using swirling flows is widely used in gas turbines and combustion. Although flashback is not generally a problem with natural gas combustion, there are some reports of flashback damage with existing gas turbines, whilst hydrogen enriched fuel blends cause concerns in this area. Thus, this paper describes a practical approach to study and avoid flashback in a pilot scale 100 kW tangential swirl burner. The flashback phenomenon is studied experimentally via the derivation of flashback limits for a variety of different geometrical conditions. A high speed camera is used to visualize the process and distinguish new patterns of avoidance. The use of a central fuel injector is shown to give substantial benefits in terms of flashback resistance. Conclusions are drawn as to mitigation technologies.

  16. Firing in fluid beds and burners

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.; Lans, R. van der; Storm Pedersen, L.; Philbert Nielsen, H.; Aslaug Hansen, L.; Lin, W.; Johnsson, J.E.; Dam-Johansen, K.

    1998-02-01

    An investigation of the effect of co-firing straw and pulverized coal was performed. Based on experiments from pilot-scale and full-scale it was concluded that a higher fraction of straw in the fuel feedstock mixture results in lower NO and SO{sub 2} emissions. The lower NO emission was mainly due to the higher volatile content of the straw, which leads to lower stoichiometry in the gas phase and in subsequent suppression of NO{sub x} formation. This conclusion is consistent with experimental and modeling results for pure coal combustion. The effect of coal quality on NO emissions has been investigated with three coals of different characteristics in three furnaces: in the Funen power station, unit 7 (FVO7), the Midtkraft Studstrup power station, unit 4 (MKS4), and the Mitsui Babcock Energy Ltd (MBEL) test-rig. The MBEL test-rig was able to reproduce qualitatively the emissions from the MKS4 plant, and quantitatively the emissions from the FVO7 plant. The better agreement between the MBEL test-rig and FVO7 is presumed to be related to the existence of a large primary zone with a relatively low stoichiometry, diminishing the influence of near burner air and fuel mixing rate on the NO emissions. An engineering model has been developed for the prediction of NO emissions and burnout from pulverized fuel combustion in swirl burners. A simplified model for reduction of N{sub 2}O in CFBC has been developed, and simulation results are in good agreement with experimental data from a 12 MW{sub th} CFB-boiler. (EG) EFP-94. 108 refs.

  17. Investigation of the Combustion Stability of Methane-Air Mixture in Recuperative Burners of Different Geometries

    Directory of Open Access Journals (Sweden)

    Krainov Alexey

    2016-01-01

    Full Text Available The results of numerical investigations of 5.5% methane-air combustion stability in heat recuperative burners (counter flow burner, U-shape burner and Swiss-roll burner are presented in this paper. The investigation is carried out with the use of commercial CFD package Ansys-Fluent. The boundaries of combustion stability of 5.5% methane-air mixture depending on the gas flow rate at the inlet of the burners are determined.

  18. Evaluating the efficacy of a minor actinide burner

    Energy Technology Data Exchange (ETDEWEB)

    Dobbin, K.D.; Kessler, S.F.; Nelson, J.V.; Omberg, R.P.; Wootan, D.W.

    1993-06-01

    The efficacy of a minor actinide burner can be evaluated by comparing safety and economic parameters to the support ratio. Minor actinide mass produced per unit time in this number of Light Water Reactors (LWRs) can be burned during the same time period in one burner system. The larger the support ratio for a given set of safety and economic parameters, the better. To illustrate this concept, the support ratio for selected Liquid Metal Reactor (LMR) burner core designs was compared with corresponding coolant void worths, a fundamental safety concern following the Chernobyl accident. Results can be used to evaluate the cost in reduced burning of minor actinides caused by LMR sodium void reduction efforts or to compare with other minor actinide burner systems.

  19. Assessment of PWR plutonium burners for nuclear energy centers

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, A J; Shapiro, N L

    1976-06-01

    The purpose of the study was to explore the performance and safety characteristics of PWR plutonium burners, to identify modifications to current PWR designs to enhance plutonium utilization, to study the problems of deploying plutonium burners at Nuclear Energy Centers, and to assess current industrial capability of the design and licensing of such reactors. A plutonium burner is defined to be a reactor which utilizes plutonium as the sole fissile addition to the natural or depleted uranium which comprises the greater part of the fuel mass. The results of the study and the design analyses performed during the development of C-E's System 80 plant indicate that the use of suitably designed plutonium burners at Nuclear Energy Centers is technically feasible.

  20. Simulation tools for the design of natural gas domestic burners

    Energy Technology Data Exchange (ETDEWEB)

    Hilka, M. [DEG Gaz de France, Saint Denise la Plaine (France). Direction de la Recherche; Quilichini, V.; Gicquel, O.; Darabiha, N. [Laboratoire E.M2.C., Ecole Centrale Paris, CNRS, Chatenay-Malabry (France)

    2000-07-01

    The design of domestic burners crucially depends on the availability of tools taking into account complex interactions between flame chemistry, heat transfer and fluid flow. A very promising approach is therefore the development of modern simulation tools incorporating appropriate physical models that enable the predicition of flame stability and pollutant formation in practical devices. Given the complex, 3D geometry of practical burners, we decided to adapt the commercially available, general purpose CFD-code ESTET to the simulation of combustion in domestic burners. This has been achieved through the implementation of a complex chemical kinetics library (BISCUIT) within the CFD code and an adaptation of the graphical user interface. The resulting tool is capable to predict partially premixed flames that characterize domestic burners, as well as the formation of pollutants such as NO{sub x} and has been carefully validated against experimental data obtained for a model burner. Computational ressources required for multi-dimensional burner configurations are standard UNIX workstations. Computing time typically varies from 3 h to 150 h, depending on the physical models used. (orig.)

  1. Advanced burner test reactor preconceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  2. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  3. Flashback Analysis in Tangential Swirl Burners

    Directory of Open Access Journals (Sweden)

    Valera-Medina A.

    2011-10-01

    Full Text Available Premixed lean combustion is widely used in Combustion Processes due to the benefits of good flame stability and blowoff limits coupled with low NOx emissions. However, the use of novel fuels and complex flows have increased the concern about flashback, especially for the use of syngas and highly hydrogen enriched blends. Thus, this paper describes a combined practical and numerical approach to study the phenomenon in order to reduce the effect of flashback in a pilot scale 100 kW tangential swirl burner. Natural gas is used to establish the baseline results and effects of different parameters changes. The flashback phenomenon is studied with the use of high speed photography. The use of a central fuel injector demonstrates substantial benefits in terms of flashback resistance, eliminating coherent structures that may appear in the flow channels. The critical boundary velocity gradient is used for characterization, both via the original Lewis and von Elbe formula and via analysis using CFD and investigation of boundary layer conditions in the flame front.

  4. Influence of burner form and pellet type on domestic pellet boiler performance

    Science.gov (United States)

    Rastvorov, D. V.; Osintsev, K. V.; Toropov, E. V.

    2017-10-01

    The study presents combustion and emission results obtained using two serial pellet boilers of the same heating capacity 40 kW. These boilers have been designed by producers for domestic conditions of exploitation. The principal difference between boilers was the type of the burner. The study concerns the efficiency and ecological performance difference between burners of circular and rectangular forms. The features of the combustion process in both types of burners were studied when boiler operated with different sorts of pellets. The results suggest that the burner of circular form excels the rectangular form burner. However, there is some difference of NOx emission between circular and rectangular burners.

  5. Development of a non-premixed radiant burner. Experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, P.; Myken, A.N.; Rasmussen, N.B.

    1997-12-31

    The objective was to develop and test a non-premixed radiant burner. A burner concept, pro-type 1, was developed with special attention to minimise emissions and foam peak-temperatures. During the test of the prototype it became evident that the construction was not feasible, because the ceramic gas distribution tubes eventually were blocked by soot. Experiments to investigate if the gas would crack conducted prior to the construction of the burner did not indicate that any problems would occur. It can therefore be concluded that the experiments did not simulate burner conditions adequately. Alternative prototypes in which the gas is not heated prior to injection into the combustion chamber have been established. The concept operated satisfactorily without preheating of the combustion air, although NO{sub x}-emissions were high. The measured process efficiencies were superior to previous results for different kinds of surface burners. When the combustion air was preheated to 400 deg. C, the foam sections broke down. The experimental results can be summarised in the following conclusions: The developed prototypes can not be operated with combustion air preheated to 400 deg. C or higher; A relative improvement of the process efficiency by 22% has been observed when the combustion air is preheated to 400 deg. C; The NO{sub x}-emissions increase significantly and much more than the process efficiency when the combustion air is preheated; The process efficiency obtained with prototype 5 is better than previously investigated surface burners, especially at high loads. Possible means to improve durability, efficiency and emission level for both burner concepts are suggested. These include cooling of the gas in prototype 1, coating of the downstream side of the foam section to improve the radiant efficiency and multistep combustion. (EHS)

  6. Advanced Burner Reactor Preliminary NEPA Data Study.

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, L. L.; Cahalan, J. E.; Deitrich, L. W.; Fanning, T. H.; Grandy, C.; Kellogg, R.; Kim, T. K.; Yang, W. S.; Nuclear Engineering Division

    2007-10-15

    The Global Nuclear Energy Partnership (GNEP) is a new nuclear fuel cycle paradigm with the goals of expanding the use of nuclear power both domestically and internationally, addressing nuclear waste management concerns, and promoting nonproliferation. A key aspect of this program is fast reactor transmutation, in which transuranics recovered from light water reactor spent fuel are to be recycled to create fast reactor transmutation fuels. The benefits of these fuels are to be demonstrated in an Advanced Burner Reactor (ABR), which will provide a representative environment for recycle fuel testing, safety testing, and modern fast reactor design and safeguard features. Because the GNEP programs will require facilities which may have an impact upon the environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), preparation of a Programmatic Environmental Impact Statement (PEIS) for GNEP is being undertaken by Tetra Tech, Inc. The PEIS will include a section on the ABR. In support of the PEIS, the Nuclear Engineering Division of Argonne National Laboratory has been asked to provide a description of the ABR alternative, including graphics, plus estimates of construction and operations data for an ABR plant. The compilation of this information is presented in the remainder of this report. Currently, DOE has started the process of engaging industry on the design of an Advanced Burner Reactor. Therefore, there is no specific, current, vendor-produced ABR design that could be used for this PEIS datacall package. In addition, candidate sites for the ABR vary widely as to available water, geography, etc. Therefore, ANL has based its estimates for construction and operations data largely on generalization of available information from existing plants and from the environmental report assembled for the Clinch River Breeder Reactor Plant (CRBRP) design [CRBRP, 1977]. The CRBRP environmental report was chosen as a resource because it thoroughly

  7. Compact Green's Function for a Generic Rijke Burner

    Directory of Open Access Journals (Sweden)

    P. R. Murray

    2011-09-01

    Full Text Available A theoretical examination is made of the thermo-acoustic properties of a Rijke burner of large aspect ratio rectangular cross-section. Such a generic device has been proposed by Kok et al. (2009 paper presented at the 16th International Congress on Sound & Vibration to make canonical studies of combustion instabilities. An aeroacoustic Green's function is derived which permits the sound pressure produced by arbitrary thermal and vortex sources within the burner to be calculated by convolution. The Green's function corresponds to the potential flow sound field produced by an impulsive point source; its calculation taking account of flame-holder geometry is facilitated by use of the Schwarz-Christoffel transformation. The transformation is performed numerically to accommodate complex burner geometry and validated by comparison with an alternative procedure involving the direct numerical integration of Laplace's equation.

  8. Experiments on a rotating-pipe swirl burner

    NARCIS (Netherlands)

    Hübner, A.W.; Tummers, M.J.; Hanjalic, K.; van der Meer, Theodorus H.

    2003-01-01

    Laser-Doppler measurements of mean velocity components and Reynolds stresses are reported in the near-field of a stable swirling flame of a newly designed natural-gas-fired experimental burner. The swirling motion is generated by the rotating outer pipe of the annular air passage, thus providing

  9. How Efficient is a Laboratory Burner in Heating Water?

    Science.gov (United States)

    Jansen, Michael P.

    1997-01-01

    Describes an experiment in which chemistry students determine the efficiency of a laboratory burner used to heat water. The reaction is assumed to be the complete combustion of methane, CH4. The experiment is appropriate for secondary school chemistry students familiar with heats of reaction and simple calorimetry. Contains pre-laboratory and…

  10. Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations

    Science.gov (United States)

    Ne´el, Bastien; Crespo, Gasto´n A.; Perret, Didier; Cherubini, Thomas; Bakker, Eric

    2014-01-01

    A flame emission spectrometer was built in-house for the purpose of introducing this analytical technique to students at the high school level. The aqueous sample is sprayed through a homemade nebulizer into the air inlet of a consumer-grade propane camping burner. The resulting flame is analyzed by a commercial array spectrometer for the visible…

  11. Design and flow analysis for an oxygen-blown pulverized coal burner

    Energy Technology Data Exchange (ETDEWEB)

    Haeyang Pak; Nobuyuki Iwashima; Noriyuki Kobayashi; Masanobu Hasatani [Nagoya University, Nagoya (Japan). Department of Energy Engineering and Science

    2006-07-01

    An oxygen-blown pulverized coal burner for utilization of various kinds of coal was newly proposed and developed. The combustion efficiency of 99.7% was achieved by the moderate swirl burner. The flame stabilization could not be realized by the strong swirl burner, and the content of unburned carbon in ash was more than that of the moderate swirl burner experiment. The distribution of vorticity in the moderate swirling flow was equally proportioned even though the flow ratio was changed between 0.15 and 0.88. Additionally, the state of untidiness was observed near the central part of the burner nozzle in the strong swirling flow. The close relationship between combustion efficiency and vorticity profiles was found by PIV analysis of the flow. The moderate swirl burner was suitable for designing the burner structure in oxygen-blown pulverized coal combustion.

  12. The zero age main sequence of WIMP burners

    Science.gov (United States)

    Fairbairn, Malcolm; Scott, Pat; Edsjö, Joakim

    2008-02-01

    We modify a stellar structure code to estimate the effect upon the main sequence of the accretion of weakly-interacting dark matter onto stars and its subsequent annihilation. The effect upon the stars depends upon whether the energy generation rate from dark matter annihilation is large enough to shut off the nuclear burning in the star. Main sequence weakly-interacting massive particles (WIMP) burners look much like proto-stars moving on the Hayashi track, although they are in principle completely stable. We make some brief comments about where such stars could be found, how they might be observed and more detailed simulations which are currently in progress. Finally we comment on whether or not it is possible to link the paradoxically hot, young stars found at the galactic center with WIMP burners.

  13. Physicochemical properties of nanoparticles titania from alcohol burner calcination

    Directory of Open Access Journals (Sweden)

    Supan Yodyingyong

    2011-08-01

    Full Text Available The physicochemical properties of synthesized TiO2 nanoparticles from integrating sol-gel with flame-based techniques were studied. The synthesized nanoparticles properties were compared after using methanol, ethanol, and propanol fuel sources. The synthesized TiO2 were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, thermal analysis (thermogravimetric analysis, TGA, and differential scanning calorimetry, DSC, and surface area Brunauer–Emmett–Teller (BET method. The photocatalytic activity of TiO2 nanoparticles was investigated by measuring the degradation of methylene blue. It was found that methanol and ethanol burners can be used as an alternative furnace that can yield TiO2 nanoparticles with physicochemical properties comparable to that of commercial TiO2 nanoparticles, while a propanol burner cannot be used as an alternative fuel.

  14. District heating biofuel burner efficiency and energy balance

    OpenAIRE

    Okoro, Oluwashola Aderemi

    2015-01-01

    District heating is an optimal system of distributing heat to residential building in a centralized location through pipeline networks. The district heating of woodchip is cost effective, improve energy efficiency, reduce gas emissions and improve energy security. The thermal efficiency and energy balance in a boiler is obtained by combustion analysis of the wood (fuel). In this report, the district heating bio fuel burner in Skien Fjernvarme is considered. The capacity of the boiler is 6MW a...

  15. Structure of diffusion flames from a vertical burner

    Science.gov (United States)

    Mark A. Finney; Dan Jimenez; Jack D. Cohen; Isaac C. Grenfell; Cyle Wold

    2010-01-01

    Non-steady and turbulent flames are commonly observed to produce flame contacts with adjacent fuels during fire spread in a wide range of fuel bed depths. A stationary gas-fired burner (flame wall) was developed to begin study of flame edge variability along an analagous vertical fuel source. This flame wall is surrogate for a combustion interface at the edge of a deep...

  16. Effect of cycled combustion ageing on a cordierite burner plate

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Eugenio [Instituto de Ceramica y Vidrio, CSIC, c/ Kelsen 5, Campus de Cantoblanco, 28049 Madrid (Spain); Gancedo, J. Ramon [Instituto de Quimica Fisica ' Rocasolano' , CSIC, c/ Serrano 119, 28006 Madrid (Spain); Gracia, Mercedes, E-mail: rocgracia@iqfr.csic.es [Instituto de Quimica Fisica ' Rocasolano' , CSIC, c/ Serrano 119, 28006 Madrid (Spain)

    2010-11-15

    A combination of {sup 57}Fe-Moessbauer spectroscopy and X-ray Powder Diffraction analysis has been employed to study modifications in chemical and mechanical stability occurring in a cordierite burner aged under combustion conditions which simulate the working of domestic boilers. Moessbauer study shows that Fe is distributed into the structural sites of the cordierite lattice as Fe{sup 2+} and Fe{sup 3+} ions located mostly at octahedral sites. Ferric oxide impurities, mainly hematite, are also present in the starting cordierite material accounting for {approx_equal}40% of the total iron phases. From Moessbauer and X-ray diffraction data it can be deduced that, under the combustion conditions used, new crystalline phases were formed, some of the substitutional Fe{sup 3+} ions existing in the cordierite lattice were reduced to Fe{sup 2+}, and ferric oxides underwent a sintering process which results in hematite with higher particle size. All these findings were detected in the burner zone located in the proximity of the flame and were related to possible chemical reactions which might explain the observed deterioration of the burner material. Research Highlights: {yields}Depth profile analyses used as a probe to understand changes in refractory structure. {yields}All changes take place in the uppermost surface of the burner, close to the flame. {yields}Reduction to Fe{sup 2+} of substitutional Fe{sup 3+} ions and partial cordierite decomposition. {yields}Heating-cooling cycling induces a sintering of the existing iron oxide particles. {yields}Chemical changes can explain the alterations observed in the material microstructure.

  17. Combustion Characteristics of Butane Porous Burner for Thermoelectric Power Generation

    Directory of Open Access Journals (Sweden)

    K. F. Mustafa

    2015-01-01

    Full Text Available The present study explores the utilization of a porous burner for thermoelectric power generation. The porous burner was tested with butane gas using two sets of configurations: single layer porcelain and a stacked-up double layer alumina and porcelain. Six PbSnTe thermoelectric (TE modules with a total area of 54 cm2 were attached to the wall of the burner. Fins were also added to the cold side of the TE modules. Fuel-air equivalence ratio was varied between the blowoff and flashback limit and the corresponding temperature, current-voltage, and emissions were recorded. The stacked-up double layer negatively affected the combustion efficiency at an equivalence ratio of 0.20 to 0.42, but single layer porcelain shows diminishing trend in the equivalence ratio of 0.60 to 0.90. The surface temperature of a stacked-up porous media is considerably higher than the single layer. Carbon monoxide emission is independent for both porous media configurations, but moderate reduction was recorded for single layer porcelain at lean fuel-air equivalence ratio. Nitrogen oxides is insensitive in the lean fuel-air equivalence ratio for both configurations, even though slight reduction was observed in the rich region for single layer porcelain. Power output was found to be highly dependent on the temperature gradient.

  18. Multifuel burners based on the porous burner technology for the application in fuel cell systems; Mehrstofffaehige Brenner auf Basis der Porenbrennertechnik fuer den Einsatz in Brennstoffzellensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Diezinger, S.

    2006-07-01

    The present doctoral thesis describes the development of multifuel burners based on the porous burner technology for the application in hydrocarbon driven fuel cell systems. One objective of such burners is the heating of the fuel cell system to the operating temperature at the cold start. In stationary operation the burner has to postcombust the waste gases from the fuel cell and the gas processing system in order to reduce the pollutant emissions. As the produced heat is required for endothermal processes like the steam reforming the burner has a significant influence on the system's efficiency. The performed investigations are targeting on a gasoline driven PEMFC-System with steam reforming. In such systems the burner has to be capable to combust the system's fuel gasoline at the cold start, a low calorific fuel cell offgas (HU = 6,4 MJ/kg) in stationary operation and a hydrogen rich gas in the case of an emergency shut down. Pre-tests revealed that in state of the art porous burners the flame front of hydrogen/air combustion can only be stabilized at very high excess air ratios. In basic investigations concerning the stabilization of flame fronts in porous media the dominant influence parameters were determined. Based on this findings a new flame trap was developed which increases the operational range with hydrogen rich mixtures significantly. Furthermore the burning velocity at stationary combustion in porous media was investigated. The dependency of the porous burning velocity on the excess air ratio for different hydrocarbons and hydrogen as well as for mixtures of both was determined. The results of these basic investigations were applied for the design of a multifuel burner. In order to achieve an evaporation of the gasoline without the use of additional energy, an internal heat exchanger section for heating the combustion air was integrated into the burner. Additionally different experimental and numerical methods were applied for designing the

  19. Design and analysis of the federal aviation administration next generation fire test burner

    Science.gov (United States)

    Ochs, Robert Ian

    The United States Federal Aviation Administration makes use of threat-based fire test methods for the certification of aircraft cabin materials to enhance the level of safety in the event of an in-flight or post-crash fire on a transport airplane. The global nature of the aviation industry results in these test methods being performed at hundreds of laboratories around the world; in some cases testing identical materials at multiple labs but yielding different results. Maintenance of this standard for an elevated level of safety requires that the test methods be as well defined as possible, necessitating a comprehensive understanding of critical test method parameters. The tests have evolved from simple Bunsen burner material tests to larger, more complicated apparatuses, requiring greater understanding of the device for proper application. The FAA specifies a modified home heating oil burner to simulate the effects of large, intense fires for testing of aircraft seat cushions, cargo compartment liners, power plant components, and thermal acoustic insulation. Recently, the FAA has developed a Next Generation (NexGen) Fire Test burner to replace the original oil burner that has become commercially unavailable. The NexGen burner design is based on the original oil burner but with more precise control of the air and fuel flow rates with the addition of a sonic nozzle and a pressurized fuel system. Knowledge of the fundamental flow properties created by various burner configurations is desired to develop an updated and standardized burner configuration for use around the world for aircraft materials fire testing and airplane certification. To that end, the NexGen fire test burner was analyzed with Particle Image Velocimetry (PIV) to resolve the non-reacting exit flow field and determine the influence of the configuration of burner components. The correlation between the measured flow fields and the standard burner performance metrics of flame temperature and

  20. Direct ignition of pulverized coal. A new burner for a 600 MWe boiler

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.P.; Malaubier, F.; Mevel, J.C.

    Operation of pulverized coal boilers requires gas or oil burners for starting up which is expensive especially in France where electricity is produced by nuclear energy and for peak hours by coal burners. A 1 MW pilot plant was developed in 1983 and an industrial 10.7 MW burner for a 600 MW boiler was built in 1985 and tested in 1986. Results are reported.

  1. Effects of Burner Configurations on the Natural Oscillation Characteristics of Laminar Jet Diffusion Flames

    Directory of Open Access Journals (Sweden)

    K. R. V. Manikantachari

    2015-09-01

    Full Text Available In this work, effects of burner configurations on the natural oscillations of methane laminar diffusion flames under atmospheric pressure and normal gravity conditions have been studied experimentally. Three regimes of laminar diffusion flames, namely, steady, intermittent flickering and continuous flickering have been investigated. Burner configurations such as straight pipe, contoured nozzle and that having an orifice plate at the exit have been considered. All burners have the same area of cross section at the exit and same burner lip thickness. Flame height data has been extracted from direct flame video using MATLAB. Shadowgraph videos have been captured to analyze the plume width characteristics. Results show that, the oscillation characteristics of the orifice burner is significantly different from the other two burners; orifice burner produces a shorter flame and wider thermal plume width in the steady flame regime and the onset of the oscillation/flickering regimes for the orifice burner occurs at a higher fuel flow rate. In the natural flickering regime, the dominating frequency of flame flickering remains within a small range, 12.5 Hz to 15 Hz, for all the burners and for all fuel flow rates. The time-averaged flame length-scale parameters, such as the maximum and the minimum flame heights, increase with respect to the fuel flow rate, however, the difference in the maximum and the minimum flame heights remains almost constant.

  2. Engineering models for low-NO{sub x} burners

    Energy Technology Data Exchange (ETDEWEB)

    Storm Pedersen, Lars

    1997-08-01

    The present Ph.D. thesis describes a theoretical investigation of NO formation in pulverised coal combustion and an experimental investigation of co-combustion of straw and pulverised coal. The theoretical work has resulted in a simplified mathematical model of a swirling pulverised coal flame able to predict the NO emission and the burnout of coal. In order to simplify the flow pattern of a confined swirling flame, the residence time distribution (RTD) in a swirling pulverised coal flame was determined. This was done by using the solution of a detailed fluid dynamic mathematical model for a 2.2 MW{sub th} and a 12 MW{sub th} pulverised coal flame. From the mathematical solution the RTD was simulated by tracing a number of fluid particles or inert particles. The RTD in the near burner zone was investigated by use of the mathematical model for the 2.2 MW{sub th} and 12 MW{sub th} flame. Results showed that the gas phase in the near burner zone may be approximated as a CSTR and that the mean residence time increased with particle size. In pulverised coal flames, the most important volatile nitrogen component forming NO{sub x} is HCN. To be able to model the nitrogen chemistry in coal flames it is necessary to have an adequate model for HCN oxidation. In order to develop a model for HCN/NH{sub 3}/NO conversion, a systematic reduction of a detailed chemical kinetic model was performed. Based on the simplification of the flow pattern for a swirling flame and the reduced chemistry developed, a chemical engineering model of pulverised coal flame was established. The objectives were to predict the NO emission, the CO emission, and the burnout of char. The effects of co-firing straw and pulverised coal was investigated in a 2.5 MW{sub th} pilot-scale burner and a 250 MW{sub e} utility boiler. In the 2.5 MW{sub th} trial the straw was chopped and fed separately to the burner, whereas in the full-scale experiment the straw was pre-processed as pellets and pulverised with the

  3. Oil fired boiler/solar tank- and natural gas burner/solar tank-units

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Frederiksen, Karsten Vinkler

    1999-01-01

    During the last few years new units consisting of a solar tank and either an oil fired boiler or a natural gas burner have been introduced on the Danish market. Three different marketed units - two based on a natural gas burner and one based on an oil fired boiler - have been tested in a heat...

  4. Numerical investigation of a novel burner to combust anode exhaust gases of SOFC stacks

    Directory of Open Access Journals (Sweden)

    Pianko-Oprych Paulina

    2017-09-01

    Full Text Available The aim of the present study was a numerical investigation of the efficiency of the combustion process of a novel concept burner under different operating conditions. The design of the burner was a part of the development process of a complete SOFC based system and a challenging combination of technical requirements to be fulfilled. A Computational Fluid Dynamics model of a non-premixed burner was used to simulate combustion of exhaust gases from the anode region of Solid Oxide Fuel Cell stacks. The species concentrations of the exhaust gases were compared with experimental data and a satisfactory agreement of the conversion of hydrocarbons was obtained. This validates the numerical methodology and also proves applicability of the developed approach that quantitatively characterized the interaction between the exhaust gases and burner geometry for proper combustion modelling. Thus, the proposed CFD approach can be safely used for further numerical optimisation of the burner design.

  5. Laboratory measurements in a turbulent, swirling flow. [measurement of soot inside a flame-tube burner

    Science.gov (United States)

    Hoult, D. P.

    1979-01-01

    Measurements of soot inside a flame-tube burner using a special water-flushed probe are discussed. The soot is measured at a series of points at each burner, and upon occasion gaseous constitutents NO, CO, hydrocarbons, etc., were also measured. Four geometries of flame-tube burners were studied, as well as a variety of different fuels. The role of upstream geometry on the downstream pollutant formation was studied. It was found that the amount of soot formed in particularly sensitive to how aerodynamically clean the configuration of the burner is upstream of the injector swirl vanes. The effect of pressure on soot formation was also studied. It was found that beyond a certain Reynolds number, the peak amount of soot formed in the burner is constant.

  6. Development of the Radiation Stabilized Distributed Flux Burner - Phase III Final Report

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Sullivan; A. Webb

    1999-12-01

    The development and demonstration of the Radiation Stabilized Burner (RSB) was completed as a project funded by the US Department of Energy Office of Industrial Technologies. The technical goals of the project were to demonstrate burner performance that would meet or exceed emissions targets of 9 ppm NOx, 50 ppm CO, and 9 ppm unburned hydrocarbons (UHC), with all values being corrected to 3 percent stack oxygen, and incorporate the burner design into a new industrial boiler configuration that would achieve ultra-low emissions while maintaining or improving thermal efficiency, operating costs, and maintenance costs relative to current generation 30 ppm low NOx burner installations. Both the ultra-low NOx RSB and the RSB boiler-burner package are now commercially available.

  7. A small porous-plug burner for studies of combustion chemistry and soot formation.

    Science.gov (United States)

    Campbell, M F; Schrader, P E; Catalano, A L; Johansson, K O; Bohlin, G A; Richards-Henderson, N K; Kliewer, C J; Michelsen, H A

    2017-12-01

    We have developed and built a small porous-plug burner based on the original McKenna burner design. The new burner generates a laminar premixed flat flame for use in studies of combustion chemistry and soot formation. The size is particularly relevant for space-constrained, synchrotron-based X-ray diagnostics. In this paper, we present details of the design, construction, operation, and supporting infrastructure for this burner, including engineering attributes that enable its small size. We also present data for charactering the flames produced by this burner. These data include temperature profiles for three premixed sooting ethylene/air flames (equivalence ratios of 1.5, 1.8, and 2.1); temperatures were recorded using direct one-dimensional coherent Raman imaging. We include calculated temperature profiles, and, for one of these ethylene/air flames, we show the carbon and hydrogen content of heavy hydrocarbon species measured using an aerosol mass spectrometer coupled with vacuum ultraviolet photoionization (VUV-AMS) and soot-volume-fraction measurements obtained using laser-induced incandescence. In addition, we provide calculated mole-fraction profiles of selected gas-phase species and characteristic profiles for seven mass peaks from AMS measurements. Using these experimental and calculated results, we discuss the differences between standard McKenna burners and the new miniature porous-plug burner introduced here.

  8. Development of KB-200. Kawasaki digital burner control system

    Energy Technology Data Exchange (ETDEWEB)

    Miyayama, Toshio; Hoshino, Norihiko; Nakamori, Hideki; Wasada, Norihiko

    1988-04-20

    Control equipments of a thermal generation plant are making progress in getting higher in level, complex and integrated digitalization. Concerning the digital control technology, as micro-electronics technology progresses, programmable controller which excels in flexibility and expandability of software is now widely popularized. Recently, however, higher level of reliability, maintenance ability and safety are required as in the discovery of abnormality and fact-finding or the protection of human error. To respond to these, Kawasaki Heavy Industries, in cooperationwith Fuji Electric Co., has developed a distributed digital burner control unit on the basis of the recent programmable controller. This report outlines the system control functions, construction, measures for high reliability, controllers, and system maintenance, etc.. (8 figs, 2 tabs, 2 refs)

  9. Deposition stress effects on thermal barrier coating burner rig life

    Science.gov (United States)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  10. Pulverized straw combustion in a low-NOx multifuel burner

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse; Yin, Chungen

    2010-01-01

    , the influence of inlet boundary conditions and the effect of particles on the carrier phase turbulence. It is concluded that straw combustion is associated with a significantly longer flame and smaller recirculation zones compared to coal combustion for the present air flow specifications. The particle size......A CFD simulation of pulverized coal and straw combustion using a commercial multifuel burner have been undertaken to examine the difference in combustion characteristics. Focus has also been directed to development of the modeling technique to deal with larger non-spherical straw particles...... and to determine the relative importance of different modeling choices for straw combustion. Investigated modeling choices encompass the particle size and shape distribution, the modification of particle motion and heating due to the departure from the spherical ideal, the devolatilization rate of straw...

  11. Exposure calculation code module for reactor core analysis: BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Cunningham, G.W.

    1979-02-01

    The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules.

  12. Combustion of solid alternative fuels in the cement kiln burner

    DEFF Research Database (Denmark)

    Nørskov, Linda Kaare

    stability, and process efficiency. Alternative fuel substitution in the calciner unit has reached close to 100% at many cement plants and to further increase the use of alternative fuels rotary kiln substitution must be enhanced. At present, limited systematic knowledge of the alternative fuel combustion...... properties and the influence on the flame formation is available. In this project a scientific approach to increase the fundamental understanding of alternative fuel conversion in the rotary kiln burner is employed through literature studies, experimental combustion characterisation studies, combustion...... modelling, data collection and observations at an industrial cement plant firing alternative fuels. Alternative fuels may differ from conventional fossil fuels in combustion behaviour through differences in physical and chemical properties and reaction kinetics. Often solid alternative fuels are available...

  13. A quantitative study of acoustic growth rates in a characterized Rijke burner with particle combustion

    Science.gov (United States)

    Newbold, Brian Russell

    2000-12-01

    The acoustic growth rate, frequency, and limiting amplitude of a characterized Rijke burner were quantitatively measured during the combustion of aluminum and zirconium carbide particles, which are common solid propellant additives. Extremely narrow size distributions of aluminum particles with mean diameters of 9.2, 19.0, 35.6, and 68.7 μm were tested at mass loadings up to 3% for frequencies of 800 and 1200 Hz. Large aluminum particles were ignited in the C3H8/O2 flame of a welding nozzle, mounted flush with the burner's flat, C3H8/O 2/N2 flame. Testing provided no conclusive evidence of distributed particle combustion affecting the acoustic driving in the Rijke burner. In solid propellant rockets, the distributed combustion of aluminum particles far from the propellant surface may contribute to pressure oscillations caused by acoustic combustion instability. The Rijke burner was developed as an experimental platform to investigate the phenomenon. Research into the transient acoustic response of Rijke burners is almost nonexistent; consequently, the current burner's acoustic response was quantified as a function of gas flow rate, gas composition, geometry, and burner orientation for two frequencies. Acoustic growth rate trends were explained in terms of the pulsing flame's heat release and the flame's position relative to the optimal acoustic driving point. Variations in gas flow rate, flame temperature, geometry, and exhaust temperature profile could affect a 300 s-1 change in acoustic growth rate for the conditions tested. Frequency remained approximately constant, except for acoustic mode shifts which occurred due to geometry alterations or changing gas temperatures in the burner's hot section. The Rijke burner's acoustic response was not significantly altered by the installation of the welding nozzle with its gas mixture operated near stoichiometric or fuel rich. The radial and axial temperature profiles of the gas temperatures in the burner's hot section

  14. Premixed burner experiments: Geometry, mixing, and flame structure issues

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.K.; Lewis, M.J.; Gupta, M. [Univ of Maryland, College Park, MD (United States)] [and others

    1995-10-01

    This research program is exploring techniques for improved fuel-air mixing, with the aim of achieving combustor operations up to stoichiometric conditions with minimal NO x and maximum efficiency. The experimental studies involve the use of a double-concentric natural gas burner that is operable in either premixed or non-premixed modes, and the system allows systematic variation of equivalence ratio, swirl strength shear length region and flow momentum in each annulus. Flame structures formed with various combinations of swirl strengths, flow throughput and equivalence ratios in premixed mode show the significant impact of swirl flow distribution on flame structure emanating from the mixedness. This impact on flame structure is expected to have a pronounced effect on the heat release rate and the emission of NO{sub x}. Thus, swirler design and configuration remains a key factor in the quest for completely optimized combustion. Parallel numerical studies of the flow and combustion phenomena were carried out, using the RSM and thek-{epsilon} turbulence models. These results have not only indicated the strengths and limitations of CFD in performance and pollutants emission predictions, but have provided guidelines on the size and strength of the recirculation produced and the spatio-temporal structure of the combustion flowfield. The first stage of parametric studies on geometry and operational parameters at Morgan State University have culminated in the completion of a one-dimensional flow code that is integrated with a solid, virtual model of the existing premixed burner. This coupling will provide the unique opportunity to study the impact of geometry on the flowfield and vice-versa, with particular emphasis on concurrent design optimization.

  15. Design of Counter Flow Burner for Oxy-Combustion Studies Using CFD

    Science.gov (United States)

    Holifield, Laura; Uddi, Mruthunjaya

    2017-11-01

    Flat flames are useful for studying the fundamental physics of combustion through laser diagnostics and comparison with commercially (or open source) available 1D software such as Chemkin or Cantera. A counter flow burner is capable of producing this flat flame by achieving a flat velocity profile along the outlet. However, what is necessary to achieve this is not readily available. In order to find the optimal design parameters for a counter flow burner, different geometries and velocities were tested at the University of Alabama using Ansys Fluent CFD software. The geometry was axisymmetric and oriented horizontally on the xy-plane. The design of this burner was aimed at reducing the boundary layer while keeping the radial velocity at a minimum. The objective of this paper is to examine the effects of varying the angle, nozzle length, filet radius, inlet to outlet ratio, and velocity on the boundary layer and radial velocity of a counter flow burner. NSF Grant: EEC 1659710.

  16. Development of stoker-burner wood chip combustion systems for the UK market

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The document makes a case for the development of a design of wood chip stoker-burner more suited to the UK than those currently imported from Sweden and Finland. The differences would centre on market conditions, performance and cost-effectiveness and the devices would be manufactured or part-manufactured in the UK. Econergy Limited was contracted by the DTI as part of its Sustainable Energy Programmes to design and construct an operational prototype stoker-burner rated at 120 kWth. A test rig was built to: (i) study modified burner heads and (ii) develop control hardware and a control strategy. Both (i) and (ii) are described. Tests brought about an increase in performance of the burner head and its wet wood performance. It was considered that further improvements are achievable and six areas for future study were suggested.

  17. Mathematical model of stacked one-sided arrangement of the burners

    Directory of Open Access Journals (Sweden)

    Oraz J.A.

    2017-01-01

    Full Text Available Paper is aimed at computer simulation of the turbulent methane-air combustion in upgraded U-shaped boiler unit. To reduce the temperature in the flame and hence NOx release every burner output was reduced, but the number of the burners was increased. The subject of studying: complex of characteristics with space-time fields in the upgraded steam boiler E-370 with natural circulation. The flare structure, temperature and concentrations were determined computationally.

  18. A flat flame burner for the calibration of laser thermometry techniques

    Science.gov (United States)

    Hartung, G.; Hult, J.; Kaminski, C. F.

    2006-09-01

    The design and experimental characterization of a burner is described, which has favourable characteristics for the accurate calibration of a range of optical thermometry techniques. The burner supports stable laminar flames and combines many of the advantages of several widely used burner designs without their disadvantages. It permits the application of point measurement techniques, line-of-sight techniques and planar imaging techniques; trace species, such as metal atoms, can be easily introduced into the flame. The implementation of the burner is described, followed by the presentation of data obtained from coherent anti-Stokes Raman scattering (CARS) measurements and numerical simulations. Spatially resolved measurements were performed over the entire flame profile at three different stoichiometries and factors causing systematic and random errors are described in detail. Measurement errors on mean temperatures were determined to be less than 1%. The shot-to-shot measurement precision was determined to be 3.5-4.0% (FWHM of temperature probability density function). The burner design together with the data presented in this paper can be used for the validation and calibration, respectively, of a variety of combustion thermometry techniques. Complete details of the burner design together with the obtained temperature data will be provided on the World Wide Web. Other researchers intending to validate and calibrate their own laser-based thermometry techniques will be able to cost-effectively reconstruct this burner and adopt the characterization presented here, thus being able to apply it without the need of their own basic validation. The authors are confident that a reconstructed burner, which is applied under the same conditions, will yield the same high level of accuracy and precision as that presented in this paper.

  19. Low NOx Burner Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Seltzer

    2005-05-01

    The objective of the low NOx burner design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent computer program. Four burner designs were developed: (1) with no over-fire gas (OFG) and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas swirl, coal burnout was relatively small, due to the low oxygen content of the primary gas stream. Consequently, the burners were modified to include primary gas swirl to bring the coal particles in contact with the secondary gas. An optimal primary gas swirl was chosen to achieve sufficient burnout.

  20. Fat burners: nutrition supplements that increase fat metabolism.

    Science.gov (United States)

    Jeukendrup, A E; Randell, R

    2011-10-01

    The term 'fat burner' is used to describe nutrition supplements that are claimed to acutely increase fat metabolism or energy expenditure, impair fat absorption, increase weight loss, increase fat oxidation during exercise, or somehow cause long-term adaptations that promote fat metabolism. Often, these supplements contain a number of ingredients, each with its own proposed mechanism of action and it is often claimed that the combination of these substances will have additive effects. The list of supplements that are claimed to increase or improve fat metabolism is long; the most popular supplements include caffeine, carnitine, green tea, conjugated linoleic acid, forskolin, chromium, kelp and fucoxanthin. In this review the evidence for some of these supplements is briefly summarized. Based on the available literature, caffeine and green tea have data to back up its fat metabolism-enhancing properties. For many other supplements, although some show some promise, evidence is lacking. The list of supplements is industry-driven and is likely to grow at a rate that is not matched by a similar increase in scientific underpinning. © 2011 The Authors. obesity reviews © 2011 International Association for the Study of Obesity.

  1. Development of a lean premixed burner for hydrogen utilization

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.O. [Sandia National Lab., Livermore, CA (United States)

    1996-10-01

    The long-term mandate of the hydrogen program is to develop the technologies needed to establish a hydrogen economy. Although a hydrogen fueled automobile has been established as a demonstration project, there are at least three other end use sectors that are recognized by the H{sub 2} program and that are addressed by this project. These end uses are: (1) power generation from stationary turbines, (2) generation of process heat or steam, and (3) commercial and residential direct use applications. Eliminating carbon from the fuel will remove carbon containing species from the emissions, however, NO{sub x} resulting from thermal NO production cannot be ignored. Thermal NO production is minimized by reducing the peak combustion temperature and the residence time at the peak temperature. NO can be reduced to extremely low levels (a few ppm) by operating sufficiently lean to reduce the peak combustion temperatures below 1700 to 1800 K. The objectives for this project are to: (1) develop an environmentally benign and safe burner operating on hydrogen in a lean premixed mode, (2) provide a facility in which fundamental investigations can be performed to support other programs.

  2. Preliminary safety evaluation of the advanced burner test reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, F. E.; Fanning, T. H.; Cahalan, J. E.; Nuclear Engineering Division

    2006-09-15

    Results of a preliminary safety evaluation of the Advanced Burner Test Reactor (ABTR) pre-conceptual design are reported. The ABTR safety design approach is described. Traditional defense-in-depth design features are supplemented with passive safety performance characteristics that include natural circulation emergency decay heat removal and reactor power reduction by inherent reactivity feedbacks in accidents. ABTR safety performance in design-basis and beyond-design-basis accident sequences is estimated based on analyses. Modeling assumptions and input data for safety analyses are presented. Analysis results for simulation of simultaneous loss of coolant pumping power and normal heat rejection are presented and discussed, both for the case with reactor scram and the case without reactor scram. The analysis results indicate that the ABTR pre-conceptual design is capable of undergoing bounding design-basis and beyond-design-basis accidents without fuel cladding failures. The first line of defense for protection of the public against release of radioactivity in accidents remains intact with significant margin. A comparison and evaluation of general safety design criteria for the ABTR conceptual design phase are presented in an appendix. A second appendix presents SASSYS-1 computer code capabilities and modeling enhancements implemented for ABTR analyses.

  3. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  4. Thermo-Acoustic Properties of a Burner with Axial Temperature Gradient: Theory and Experiment

    Directory of Open Access Journals (Sweden)

    Béla Kosztin

    2013-03-01

    Full Text Available This paper presents a model for thermo-acoustic effects in a gas turbine combustor. A quarter-wavelength burner with rectangular cross-section has been built and studied from an experimental and theoretical perspective. It has a premixed methane-air flame, which is held by a bluff body, and spans the width of the burner. The flame is compact, i.e. its length is much smaller than that of the burner. The fundamental mode of the burner is unstable; its frequency and pressure distribution have been measured. The complex pressure reflection coefficients at the upstream and downstream end of the burner were also measured. For the theoretical considerations, we divide the burner into three regions (the cold pre-combustion chamber, the flame region and the hot outlet region, and assume one-dimensional acoustic wave propagation in each region. The acoustic pressure and velocity are assumed continuous across the interface between the precombustion chamber and flame region, and across the interface between the flame region and outlet region. The burner ends are modelled by the measured pressure reflection coefficients. The mean temperature is assumed to have the following profile: uniformly cold and uniformly hot in the pre-combustion chamber and outlet region, respectively, and rising continuously from cold to hot in the flame region. For comparison, a discontinuous temperature profile, jumping directly from cold to hot, is also considered. The eigenfrequencies are calculated, and the pressure distribution of the fundamental mode is predicted. There is excellent agreement with the experimental results. The exact profile of the mean temperature in the flame region is found to be unimportant. This study gives us an experimentally validated Green's function, which is a very useful tool for further theoretical studies.

  5. Development of advanced low NOx and wide range burner for pulverized coal combustion; Bifunsumiyo choteiNOx {center_dot} waidorenjibana no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Naoto; Kimoto, Masayoshi [Central Research Institure of Electric Power Inductry, Tokyo (Japan); Kiga, Takashi; Endo, Kiyohiko [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1999-07-15

    Coal is becoming more and more important as an energy source for thermal power generation. In pulverized coal fired boilers, it is necessary to develop econometrically friendly technology for reducing NOx emission and unburned carbon in fly ash, and stable combustion technology at low flexible operation. An advanced low NOx burner (CI-{alpha} burner) has been developed, this burner is capable of reducing the NOx formation to about 30% lower than conventional burners at the same unburned carbon important to add the ability which the pulverized coal can be concentrated in the burner before ignition. In this paper, two coal particle concentrating methods are investigated for the CI-{alpha} burner. Each method can concentrate the pulverized coal particles greater than 1.5 times in the primary air nozzle. The new burner which combines this concentrating equipment with the CI-{alpha} burner offers stable combustion at 20%, on the same level as oil burners. This advanced low NOx and wide range burner (CI-{alpha} {center_dot} WR burner) has same the NOx and unburned carbon generation characteristics at the standard load as the CI-{alpha} burner and can reduce the unburned carbon in fly ash lower than the CI-{alpha} burner at low loads. (author)

  6. A critical review of noise production models for turbulent, gas-fueled burners

    Science.gov (United States)

    Mahan, J. R.

    1984-01-01

    The combustion noise literature for the period between 1952 and early 1984 is critically reviewed. Primary emphasis is placed on past theoretical and semi-empirical attempts to predict or explain observed direct combustion noise characteristics of turbulent, gas-fueled burners; works involving liquid-fueled burners are reviewed only when ideas equally applicable to gas-fueled burners are pesented. The historical development of the most important contemporary direct combustion noise theories is traced, and the theories themselves are compared and criticized. While most theories explain combustion noise production by turbulent flames in terms of randomly distributed acoustic monopoles produced by turbulent mixing of products and reactants, none is able to predict the sound pressure in the acoustic farfield of a practical burner because of the lack of a proven model which relates the combustion noise source strenght at a given frequency to the design and operating parameters of the burner. Recommendations are given for establishing a benchmark-quality data base needed to support the development of such a model.

  7. Parametric Study of High-Efficiency and Low-Emission Gas Burners

    Directory of Open Access Journals (Sweden)

    Shuhn-Shyurng Hou

    2013-01-01

    Full Text Available The objective of this study is to investigate the influence of three significant parameters, namely, swirl flow, loading height, and semi-confined combustion flame, on thermal efficiency and CO emissions of a swirl flow gas burner. We focus particularly on the effects of swirl angle and inclination angle on the performance of the swirl flow burner. The results showed that the swirl flow burner yields higher thermal efficiency and emits lower CO concentration than those of the conventional radial flow burner. A greater swirl angle results in higher thermal efficiency and CO emission. With increasing loading height, the thermal efficiency increases but the CO emission decreases. For a lower loading height (2 or 3 cm, the highest efficiency occurs at the inclination angle 15°. On the other hand, at a higher loading height, 4 cm, thermal efficiency increases with the inclination angle. Moreover, the addition of a shield can achieve a great increase in thermal efficiency, about 4-5%, and a decrease in CO emissions for the same burner (swirl flow or radial flow.

  8. Effects of the Burner Diameter on the Flame Structure and Extinction Limit of Counterflow Non-Premixed Flames

    Directory of Open Access Journals (Sweden)

    Chang Bo Oh

    2010-09-01

    Full Text Available Experiments and numerical simulations were conducted to investigate the effects of the burner diameter on the flame structure and extinction limit of counterflow non-premixed methane flames in normal gravity and microgravity. Experiments were performed for counterflow flames with a large inner diameter (d of 50 mm in normal gravity to compare the extinction limits with those obtained by previous studies where a small burner (d < 25 mm was used. Two-dimensional (2D simulations were performed to clarify the flame structure and extinction limits of counterflow non-premixed flame with a three-step global reaction mechanism. One-dimensional (1D simulations were also performed with the same three-step global reaction mechanism to provide reference data for the 2D simulation and experiment. For microgravity, the effect of the burner diameter on the flame location at the centerline was negligible at both high (ag = 50 s−1 and low (ag = 10 s−1 strain rates. However, a small burner flame (d = 15 mm in microgravity showed large differences in the maximum flame temperature and the flame size in radial direction compared to a large burner flame (d = 50 mm at low strain rate. In addition, for normal gravity, a small burner flame (d = 23.4 mm showed differences in the flame thickness, flame location, local strain rate, and maximum heat release rate compared to a large burner flame (d = 50 mm at low strain rate. Counterflow non-premixed flames with low and high strain rates that were established in a large burner were approximated by 1D simulation for normal gravity and microgravity. However, a counterflow non-premixed flame with a low strain rate in a small burner could not be approximated by 1D simulation for normal gravity due to buoyancy effects. The 2D simulations of the extinction limits correlated well with experiments for small and large burner flames. For microgravity, the extinction limit of a small burner flame (d = 15 mm was much lower than that

  9. Development of lean premixed low-swirl burner for low NO{sub x} practical application

    Energy Technology Data Exchange (ETDEWEB)

    Yegian, D.T.; Cheng, R.K.

    1999-07-07

    Laboratory experiments have been performed to evaluate the performance of a premixed low-swirl burner (LSB) in configurations that simulate commercial heating appliances. Laser diagnostics were used to investigate changes in flame stabilization mechanism, flowfield, and flame stability when the LSB flame was confined within quartz cylinders of various diameters and end constrictions. The LSB adapted well to enclosures without generating flame oscillations and the stabilization mechanism remained unchanged. The feasibility of using the LSB as a low NO{sub x} commercial burner has also been verified in a laboratory test station that simulates the operation of a water heater. It was determined that the LSB can generate NO{sub x} emissions < 10 ppm (at 3% O{sub 2}) without significant effect on the thermal efficiency of the conventional system. The study has demonstrated that the lean premixed LSB has commercial potential for use as a simple economical and versatile burner for many low emission gas appliances.

  10. Optimal Switching Control of Burner Setting for a Compact Marine Boiler Design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan M.

    2010-01-01

    This paper discusses optimal control strategies for switching between different burner modes in a novel compact  marine boiler design. The ideal behaviour is defined in a performance index the minimisation of which defines an ideal trade-off between deviations in boiler pressure and water level...... approach is based on a generalisation of hysteresis control. The strategies are verified on a simulation model of the compact marine boiler for control of low/high burner load switches.  ...... from their respective setpoints and the cost of burner switches and variation of continuous input flows. Direct minimisation was found computational infeasible and two different suboptimal strategies have beenconsidered. The first one is based on the Mixed Logical Dynamical framework. Thesecond...

  11. Development and certification of the innovative pioneer oil burner for residential heating appliances

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, B. [Heat Wise Inc., Ridge, NY (United States)

    1997-09-01

    The Pioneer burner represents another important milestone for the oil heat industry. It is the first practical burner design that is designated for use in small capacity heating appliances matching the needs of modern energy efficient home designs. Firing in the range of 0.3 GPH to 0.65 GPH (40,000-90,000 Btu/hr) it allows for new oil heating appliance designs to compete with the other major fuel choices in the small design load residential market. This market includes energy efficient single family houses, town-houses, condominiums, modular units, and mobile homes. The firing range also is wide enough to cover a large percentage of more conventional heating equipment and home designs as well. Having recently passed Underwriters Laboratory certification tests the burner in now being field tested in several homes and samples are being made available to interested boiler and furnace manufacturers for product development and application testing.

  12. Regenerative burner systems for batch furnaces in the steel industry; Regenerativbrenner fuer Doppel-P-Strahlheizrohre in einer Feuerverzinkungslinie

    Energy Technology Data Exchange (ETDEWEB)

    Georgiew, Alexander [Salzgitter Flachstahl GmbH, Salzgitter (Germany); Wuenning, Joachim G.; Bonnet, Uwe [WS Waermeprozesstechnik GmbH, Renningen (Germany)

    2009-07-01

    This article will describe the application of a new self regenerative burner in a continuous galvanizing line. After a brief introduction of the process line, the self regenerative burner will be described. Very high air preheat temperatures enable considerable energy savings and flameless oxidation suppresses the formation of NO{sub X}. (orig.)

  13. Development of combined low-emissions burner devices for low-power boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Yu. V.; Khokhlov, D. A.

    2017-08-01

    Low-power water boilers are widely used for autonomous heat supply in various industries. Firetube and water-tube boilers of domestic and foreign manufacturers are widely represented on the Russian market. However, even Russian boilers are supplied with licensed foreign burner devices, which reduce their competitiveness and complicate operating conditions. A task of developing efficient domestic low-emissions burner devices for low-power boilers is quite acute. A characteristic property of ignition and fuel combustion in such boilers is their flowing in constrained conditions due to small dimensions of combustion chambers and flame tubes. These processes differ significantly from those in open combustion chambers of high-duty power boilers, and they have not been sufficiently studied yet. The goals of this paper are studying the processes of ignition and combustion of gaseous and liquid fuels, heat and mass transfer and NO x emissions in constrained conditions, and the development of a modern combined low-emissions 2.2 MW burner device that provides efficient fuel combustion. A burner device computer model is developed and numerical studies of its operation on different types of fuel in a working load range from 40 to 100% of the nominal are carried out. The main features of ignition and combustion of gaseous and liquid fuels in constrained conditions of the flame tube at nominal and decreased loads are determined, which differ fundamentally from the similar processes in steam boiler furnaces. The influence of the burner devices design and operating conditions on the fuel underburning and NO x formation is determined. Based on the results of the design studies, a design of the new combined low-emissions burner device is proposed, which has several advantages over the prototype.

  14. Thermal performances and CO emissions of gas-fired cooker-top burners

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.B.; Wong, T.T.; Leung, C.W. [The Hong Kong Polytechnic University, Kowloon (Hong Kong). Department of Mechanical Engineering; Probert, S.D. [Cranfield University, Bedford (United Kingdom). School of Mechanical Engineering

    2006-12-15

    Domestic cooker-top burners operate at low pressure and low Reynolds numbers. They do not usually have a flue, and are fired with impinging premixed natural-gas/air flames. There are two major considerations in using such burners, namely, poor energy utilization and indoor-air pollution. Because of the large number of cooker-top burners being used, even a slight improvement in thermal performance resulting from a better design will lead to significant reductions of domestic and commercial energy consumptions. In view of the need to raise the thermal performance and to reduce indoor-air pollution, advanced statistical experimental designs have been applied in the present study to evaluate the individual and combined effects of the major cooker-top design parameters. The experimental study was carried out using a 4-factor and 3-level Box-Behnken design-method, utilizing a premixed gas-fired impinging-flame. A cooker-top burner, with circular nozzles with an inner diameter of 3mm, was used in this experiment. Design parameters of the burner under consideration include Reynolds number, equivalence ratio, nozzle-to-plate distance, and jet-to-jet spacing. Based on an analysis of the experimental data, variations of the thermal efficiency and the carbon monoxide (CO) emission with each of the above mentioned parameters have been reported. Multiple regression models of the thermal efficiency and the CO emissions were obtained in terms of all the major design parameters. Some of the 2-factor interactions on the thermal efficiency and the CO emissions were significant. The findings are important for the designer of a fuel-efficient and environmentally-friendly cooker-top burner. (author)

  15. Development of the Radiation Stabilized Distributed Flux Burner. Phase 1, final report

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.D.; Duret, M.J.

    1997-06-01

    The RSB was first developed for Thermally Enhanced Oil Recovery steamers which fire with a single 60 MMBtu/hr burner; the California Energy Commission and Chevron USA were involved in the burner development. The burner has also since found applications in refinery and chemical plant process heaters. All Phase I goals were successfully met: the RSB achieved sub-9 ppM NOx and sub-50 ppM CO emissions using high excess air, external flue gas recirculation (FGR), and fuel staging in the 3 MMBtu/hr laboratory watertube boiler. In a test in a 50,000 lb/hr oil field steamer with fuel staging, it consistently achieved sub-20 ppM NOx and as low as 10 ppM NOx. With high CO{sub 2} casing gas in this steamer, simulating external FGR, sub-20 ppM NOx and as low as 5 ppM NOx were achieved. Burner material cost was reduced by 25% on a per Btu basis by increasing the effective surface firing rate at the burner; further reductions will occur in Phase II. The market for 30 ppM and 9 ppM low NOx burners has been identified as package boilers in the 50,000 to 250,000 lb/hr size range (the 30 ppM is for retrofit, the 9 ppM for the new boiler market). Alzeta and Babcock & Wilcox have teamed to sell both boiler retrofits and new boilers; they have identified boiler designs which use the compact flame shape of the RSB and can increase steam capacity while maintaining the same boiler footprint. Alzeta, Chevron, and B & W have teamed to identify sites to demonstrate the RSB in Phases II and III. In Phase II, the RSB will be demonstrated in a 100,000 lb/hr industrial watertube boiler.

  16. Application of roof radiant burners in large pusher-type furnaces

    Directory of Open Access Journals (Sweden)

    A. Varga

    2009-07-01

    Full Text Available The paper deals with the application of roof flat-flame burners in the pusher-type steel slab reheating furnaces, after furnace reconstruction and replacement of conventional torch burners, with the objective to increase the efficiency of radiative heat transfer from the refractory roof to the charge. Based on observations and on measurements of the construction and process parameters under operating conditions, the advantages and disadvantages of indirectly oriented radiant heat transfer are analysed in relation to the heat transfer in classically fired furnaces.

  17. COST-EFFECTIVE CONTROL OF NOx WITH INTEGRATED ULTRA LOW-NOx BURNERS AND SNCR

    Energy Technology Data Exchange (ETDEWEB)

    Hamid Farzan; Jennifer Sivy; Alan Sayre; John Boyle

    2003-07-01

    Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), McDermott Technology, Inc. (MTI), the Babcock & Wilcox Company (B&W), and Fuel Tech teamed together to investigate an integrated solution for NOx control. The system was comprised of B&W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NO{sub x}OUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. The technology's emission target is achieving 0.15 lb NO{sub x}/10{sup 6} Btu for full-scale boilers. Development of the low-NOx burner technology has been a focus in B&W's combustion program. The DRB-4Z{trademark} burner (see Figure 1.1) is B&W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner is designed to reduce NO{sub x} by diverting air away from the core of the flame, which reduces local stoichiometry during coal devolatilization and, thereby, reduces initial NO{sub x} formation. Figure 1.2 shows the historical NO{sub x} emission levels from different B&W burners. Figure 1.2 shows that based on three large-scale commercial installations of the DRB-4Z{trademark} burners in combination with OFA ports, using Western subbituminous coal, the NO{sub x} emissions ranged from 0.16 to 0.18 lb/10{sup 6} Btu. It appears that with continuing research and development the Ozone Transport Rule (OTR) emission level of 0.15 lb NO{sub x}/10{sup 6} Btu is within the reach of combustion modification techniques for boilers using western U.S. subbituminous coals. Although NO{sub x} emissions from the DRB-4Z{trademark} burner are nearing OTR emission level with subbituminous coals, the utility boiler owners that use bituminous coals can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them.

  18. Confronting the "Bra-Burners": Teaching Radical Feminism with a Case Study

    Science.gov (United States)

    Kreydatus, Beth

    2008-01-01

    In many of the U.S. History courses the author has taught, she has encountered students who refer to the second-wave feminists of the 1960s and 1970s as "bra-burners." Unsurprisingly, these students know very little about the origin of this epithet, and frequently, they know even less about the women's movement generally. Second-wave feminism, and…

  19. SONOTECH, INC. FREQUENCY-TUNABLE PULSE COMBUSTION SYSTEM (CELLO PULSE BURNER) - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    Sonotech, Inc. (Sonotech) of Atlanta, Georgia, has developed a pulse combustion burner technology that claims to offer benefits when applied in a variety of combustion processes. The technology incorporates a combustor that can be tuned to induce large-amplitude acoustic or soni...

  20. Formation of nitric oxide in an industrial burner measured by 2-D laser induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A.; Bombach, R.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    We have performed two-dimensional Laser Induced Fluorescence (2-D LIF) measurements of nitric oxide and hydroxyl radical distributions in an industrial burner at atmospheric pressure. The relative 2-D LIF data of NO were set to an absolute scale by calibration with probe sampling combined with gas analysis. (author) 3 figs., 7 refs.

  1. ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel

    Science.gov (United States)

    Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

    2013-04-02

    The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

  2. Improvement of cyclic operation on pulverized coal fired boilers by applying wide range burners

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Toshihiko; Watanabe, Shinji; Kiga, Takashi; Koyata, Kazuo

    1999-07-01

    There are recently urgent requirements to operate pulverized coal fired power plants as well as oil fired units cyclically or at low loads. In order to cope with this, wide range burners (WRB) were jointly developed to obtain a high turndown operation by the Central Research Institute of Electric Power Industry (CRIEPI) and Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI). In accordance with the results of various fundamental researches, including combustion tests with a tunnel furnace of 12 MW[thermal], it was confirmed the stability of the flame and the combustion characteristics at low loads as well as that of ordinary burners. The WRB have been applied to the new actual boilers that are Saijo Power Station NO. 2 unit of Sikoku Electric Power Co., Inc., Nanao-Ota Power Station NO. 2 unit of Hokuriku Electric Power Co., Inc. and Miike Power Station NO. 1 unit of Miike Thermal Power Co., Ltd.. The results of the trial operation have shown that the minimum burner load was below half of that of conventional burners, and accordingly the pulverized coal firing minimum load could be reduced. This paper explains about the cyclic operation of their boilers and the improvement effect by applying WRBs.

  3. Control of flames by tangential jet actuators in oxy-fuel burners

    Energy Technology Data Exchange (ETDEWEB)

    Boushaki, Toufik [CORIA UMR 6614 CNRS-Universite et INSA de ROUEN, Site Universitaire du Madrillet, 76801 Saint Etienne du Rouvray, Cedex (France); Universite de Toulouse-INPT-UPS, IMFT (Institut de Mecanique des Fluides de Toulouse), Allee Camille Soula, F-31400 Toulouse, Cedex (France); Sautet, Jean-Charles [CORIA UMR 6614 CNRS-Universite et INSA de ROUEN, Site Universitaire du Madrillet, 76801 Saint Etienne du Rouvray, Cedex (France); Labegorre, Bernard [Air Liquide, Centre de Recherche Claude-Delorme, Les Loges-en-Josas, B.P. 126 78354 Jouy-en-Josas, Cedex (France)

    2009-11-15

    The active control of oxy-fuel flames from burners with separated jets is investigated. The control system consists of four small jet actuators, placed tangential to the exit of the main jets to generate a swirling flow. These actuators are able to modify the flow structure and to act on mixing between the reactants and consequently on the flame behavior. The burner (25 kW) is composed of separated jets, one jet of natural gas and one or two jets of pure oxygen. Experiments are conducted with three burner configurations, according to the number of jets, the jet exit velocities, and the separation distance between the jets. OH chemiluminescence measurements, particle image velocimetry, and measurements of NO{sub x} emissions are used to characterize the flow and the flame structure. Results show that the small jet actuators have a significant influence on the behavior of jets and the flame characteristics, particularly in the stabilization zone. It is shown that the control leads to a decrease in lift-off heights and to better stability of the flame. The use of jet actuators induces high jet spreading and an increase in turbulence intensity, which improves the mixing between the reactants and the surrounding fluid. Pollutant measurements show important results in terms of NO{sub x} reductions (up to 60%), in particular for low swirl intensity. The burner parameters, such as the number of jets and the spacing between the jets, also impact the flame behavior and NO{sub x} formation. (author)

  4. Research and Development of Natural Draft Ultra-Low Emissions Burners for Gas Appliances

    Energy Technology Data Exchange (ETDEWEB)

    Therkelsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cheng, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sholes, Darren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-31

    Combustion systems used in residential and commercial cooking appliances must be robust and easy to use while meeting air quality standards. Current air quality standards for cooking appliances are far greater than other stationary combustion equipment. By developing an advanced low emission combustion system for cooking appliances, the air quality impacts from these devices can be reduced. This project adapted the Lawrence Berkeley National Laboratory (LBNL) Ring-Stabilizer Burner combustion technology for residential and commercial natural gas fired cooking appliances (such as ovens, ranges, and cooktops). LBNL originally developed the Ring-Stabilizer Burner for a NASA funded microgravity experiment. This natural draft combustion technology reduces NOx emissions significantly below current SCAQMD emissions standards without post combustion treatment. Additionally, the Ring-Stabilizer Burner technology does not require the assistance of a blower to achieve an ultra-low emission lean premix flame. The research team evaluated the Ring-Stabilizer Burner and fabricated the most promising designs based on their emissions and turndown.

  5. Comparison of heat transfer and soil impacts of air curtain burner burning and slash pile burning

    Science.gov (United States)

    Woongsoon Jang; Deborah S. Page-Dumroese; Han-Sup Han

    2017-01-01

    We measured soil heating and subsequent changes in soil properties between two forest residue disposal methods: slash pile burning (SPB) and air curtain burner (ACB). The ACB consumes fuels more efficiently and safely via blowing air into a burning container. Five burning trials with different fuel sizes were implemented in northern California, USA. Soil temperature...

  6. Characteristics of premixed flames stabilized in an axisymmetric curved-wall jet burner with tip modification

    KAUST Repository

    Kim, Daejoong

    2009-11-10

    The stabilization characteristics of premixed flames in an axisymmetric curved-wall jet burner have been experimentally investigated. This burner utilized the Coanda effect on top of a burner tip. The initially spherical burner tip was modified to a flat tip and a concave tip in order to improve flame stabilization by providing enough space for flow recirculation above the burner tip region. The flow characteristics have been visualized using a schlieren technique. Small-scale turbulence structure has been observed mainly in the interaction jet region (located downstream of the recirculation region) for large jet velocity (Reynolds number >11,500). An appreciable amount of air entrainment was exhibited from the half-angle of the jet spread, approximately 20. The averaged planar laser-induced fluorescence images of the flames for this large velocity demonstrated that the strong signal of OH radicals, representing reaction zones, existed in the recirculation zone, while it was weak in the interaction jet region due to intermittency and local extinction by the generation of small scale turbulence. The OH radical signals strengthened again in the merged jet region (downstream of the interaction jet region). In extreme cases of Reynolds number over 19,000, a unique flame exhibiting OH radicals only in the recirculation zone was observed for the concave tip. The flame stabilization has been mapped by varying jet velocity and equivalence ratio, and the result showed that the stabilization characteristics were improved appreciably from the initial spherical tip design, especially for rich mixtures. The flow fields measured by a laser Doppler velocimetry confirmed the existence of recirculation zone and the expansion of the recirculation zones for the modified tips. The temperature profile measured by a coherent anti-Stokes Raman spectroscopy exhibited an intermittent nature, especially near the recirculation zone.

  7. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE's Clean Coal Technology Program Round II.

  8. Burners. Reduction of nitrogen oxides in combustion: 2. generation of GR LONOxFLAM burner; Les bruleurs. La reduction des oxydes d`azote dans la combustion: bruleur GR LONOxFLAM de 2. generation

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, J.C. [EGCI Pillard, 13 - Marseille (France)

    1997-12-31

    This paper presents the research work carried out by the French Pillard company in collaboration with Gaz de France for the design of low NO{sub x} burners. The different type of low NO{sub x} burners are presented according to the type of fuel: gas, liquid fuels and fuel oils. The gas burner uses the fuel staging principle and the recirculation of smokes and leads to NO{sub x} emissions lower than 100 mg/Nm{sup 3}. The liquid fuel and fuel oil burners use the separate flames and the smoke self-recirculation methods (fuel-air mixture staging, reduction of flame temperature and of the residence time in flames). (J.S.)

  9. Burners. The decrease of nitrogen oxides in combustion process: the 2 nd generation GR LONOxFLAM burner; Les bruleurs, la reduction des oxydes d`azote dans la combustion: bruleur GR LONOxFLAM de 2. generation

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, J.C. [EGCI Pillard, 13 - Marseille (France)

    1997-12-31

    The Pillard company has developed, in cooperation with GDF (the French national gas utility), the GR-LONOxFLAM burner concept for reducing NOx emission levels and solid combustion products. The concept consists, for gaseous fuels, in the combination of an internal recirculation and a gas staging process; for liquid fuels, a separated flame process and air staging are combined. These concepts allow for an important reduction in NOx and non-burned residues, even with standard-size burners

  10. IR sensor for monitoring of burner flame; IR sensor foer oevervakning av braennarflamma

    Energy Technology Data Exchange (ETDEWEB)

    Svanberg, Marcus; Funkquist, Jonas; Clausen, Soennik; Wetterstroem, Jonas

    2007-12-15

    To obtain a smooth operation of the coal-fired power plants many power plant managers have installed online mass flow measurement of coal to all burners. This signal is used to monitor the coal mass flow to the individual burner and match it with appropriate amount of air and also to monitor the distribution of coal between the burners. The online mass flow measurement system is very expensive (approximately 150 kEUR for ten burners) and is not beneficial for smaller plants. The accuracy of the measurement and the sample frequency are also questionable. The idea in this project has been to evaluate a cheaper system that can present the same information and may also provide better accuracy and faster sample frequency. The infrared sensor is a cheap narrow banded light emission sensor that can be placed in a water cooed probe. The sensor was directed at the burner flame and the emitted light was monitored. Through calibration the mass flow of coal can be presented. Two measurement campaigns were performed. Both campaigns were carried out in Nordjyllandsverket in Denmark even though the second campaign was planned to be in Uppsala. Due to severe problems in the Uppsala plant the campaign was moved to Nordjyllandsverket. The pre-requisites for the test plant were that online measurement of coal flow was installed. In Nordjyllandsverket 4 out of 16 burners have the mass flow measurement installed. Risoe Laboratories has vast experiences in the IR technology and they provided the IR sensing equipment. One IR sensor was placed in the flame guard position just behind the flame directed towards the ignition zone. A second sensor was placed at the boiler wall directed towards the flame. The boiler wall position did not give any results and the location was not used during the second campaign. The flame-guard-positioned-sensor- signal was thoroughly evaluated and the results show that there is a clear correlation between the coal mass flow and the IR sensor signal. Tests were

  11. Development of an advanced high efficiency coal combustor for boiler retrofit. Task 1, Cold flow burner development: Final report

    Energy Technology Data Exchange (ETDEWEB)

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.

    1989-10-01

    The overall objective of this program is to develop a high efficiency advanced coal combustor (HEACC) for coal-based fuels capable of being retrofitted to industrial boilers originally designed for firing natural gas, distillate, and/or residual oil. The HEACC system is to be capable of firing microfine coal water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system are that it be simple to operate and will offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal fired combustor technology. The specific objective of this report is to document the work carried out under Task 1.0 of this contract, ``Cold Flow Burner Development``. As are detailed in the report, key elements of this work included primary air swirler development, burner register geometry design, cold flow burner model testing, and development of burner scale up criteria.

  12. Experimental data regarding the characterization of the flame behavior near lean blowout in a non-premixed liquid fuel burner

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2016-03-01

    The data are related to the research article “Image processing for the characterization of flame stability in a non-premixed liquid fuel burner near lean blowout” in Aerospace Science and Technology [1].

  13. Combustion systems: a porous-matrix burner and a surface combustor. Topical report, June 1984-December 1985

    Energy Technology Data Exchange (ETDEWEB)

    Jasionowski, W.J.; Kunc, W.; Khinkis, M.J.; Zawacki, T.S.

    1987-12-01

    In this study, two combustion systems were experimentally evaluated for potential application to gas-fired appliances: an atmospheric porous-matrix burner and a packed-bed surface combustor. The normal radiant output of a porous matrix burner was measured over a range of input from 30,000 to 110,000 Btu/h-sq ft and aerations from 0% to 40% excess air. The data were compared to similar published data for radiant tile burners. Emissions of nitric oxide (NO), nitrogen dioxide (NO/sub 2/), and carbon monoxide (CO) were also measured and reported. The potential advantage of the type of burner is its ability to produce high levels of radiation heat at high gas-loading levels (Btu/h-sq ft.).

  14. Performance test reports and comparison of emission characteristics of prototype liquid multifuel burners developed for US military field cooking applications

    Energy Technology Data Exchange (ETDEWEB)

    Litzke, W.; Celebi, Y.; McDonald, R.

    1994-08-01

    The objective of this project is to provide data to the U.S. Army Natick RD&E Center on the performance of three prototype burners, which have the capability of firing with multiple types of fuels (diesel and JP-8), and the conventional gasoline-fired M-2 burner. The prototype burners are intended to replace the M-2 unit currently used in food cooking appliances in the Army. The burners supplied to Brookhaven National Laboratory (BNL) for the purpose of testing under this project included one M-2 unit, one M-3 prototype unit designed by Natick, one Babington prototype unit designed by Babington Engineering, and one ITR prototype designed by International Thermal Research Ltd. It should be noted, however, that after the project began, Babington Engineering provided an upgraded prototype unit for testing which replaced the unit initially provided by the Natick Center. The M-3 unit replaced the Karcher unit listed in the contract. The test procedures which were described in a Test Method Report allowed for the measurement of the concentrations of specific compounds emitted from the burners. These compounds included oxygen (O{sub 2}), carbon monoxide (CO), oxides of nitrogen (NOx), formaldehyde, and particulate emissions. The level of smoke produced was also measured by using a Bacharach Smoke Number system (ASTM Standard D2156). A separate Performance Test Report for each burner was prepared as part of this project, and is attached as part of this report. In those reports details of the measurement techniques, instrumentation, test operating conditions, and data for each burner were included. This paper provides a summary and a comparison of the results for all burners. A brief discussion of emissions from other similar small oil combustion systems is also part of this document to provide perspective on the type of contaminants and levels expected from these systems.

  15. Full-scale demonstration of low-NO{sub x} cell{trademark} burner retrofit. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eckhart, C.F.; Kitto, J.B.; Kleisley, R.J. [and others

    1994-07-01

    The objective of the Low-NO{sub x} Cell{trademark}Burner (LNCB{trademark}) demonstration is to evaluate the applicability of this technology for reducing NO{sub x} emissions in full-scale, cell burner-equipped boilers. More precisely, the program objectives are to: (1) Achieve at least a 50% reduction in NO{sub x} emissions. (2) Reduce NO{sub x} with no degradation to boiler performance or life of the unit. (3) Demonstrate a technically and economically feasible retrofit technology. Cell burner equipped boilers comprise 13% of the Pre-New Source Performance Standards (NSPS) coal-fired generating capacity. This relates to 34 operating units generating 23,639 MWe, 29 of which are opposed wall fired with two rows of two-nozzle cell burners on each wall. The host site was one of these 29. Dayton Power & Light offered use of J.M. Stuart Station`s Unit No. 4 as the host site. It was equipped with 24, two-nozzle cell burners arranged in an opposed wall configuration. To reduce NO{sub x} emissions, the LNCB{trademark} has been designed to delay the mixing of the fuel and combustion air. The delayed mixing, or staged combustion, reduces the high temperatures normally generated in the flame of a standard cell burner. A key design criterion for the burner was accomplishing delayed fuel-air mixing with no pressure part modifications to facilitate a {open_quotes}plug-in{close_quotes} design. The plug-in design reduces material costs and outage time required to complete the retrofit, compared to installing conventional, internally staged low-NO{sub x} burners.

  16. Increased Coal Replacement in a Cement Kiln Burner by Feeding a Mixture of Solid Hazardous Waste and Shredded Plastic Waste

    OpenAIRE

    Ariyaratne, W.K. Hiromi; Melaaen, Morten Christian; Tokheim, Lars-André

    2013-01-01

    The present study aims to find the maximum possible replacement of coal by combined feeding of plastic waste and solid hazardous waste mixed with wood chips (SHW) in rotary kiln burners used in cement kiln systems. The coal replacement should be achieved without negative impacts on product quality, emissions or overall operation of the process. A full-scale experiment was carried out in the rotary kiln burner of a cement kiln by varying SHW and plastic waste feeding rates. Experimental result...

  17. Industrial thermal oxidation with an innovative burner management system; Industrielle thermische Nachverbrennung mit innovativem Brenner-Managementsystem

    Energy Technology Data Exchange (ETDEWEB)

    Gnoss, T. [Siemens Building Technologies HVAC Product GmbH, Rastatt (Germany); Pilz, R. [Control and Heating-Systems, Felsberg-Gensungen (Switzerland); Saenger, P. [Siemens Building Technologies HVAC Product GmbH, Frankfurt am Main(Germany)

    2006-06-15

    In view of rising energy costs and the emission limits stipulated by the latest 'TA-Luft' (Technical Directive: Prevention of Air Pollution) and 'BImSchV' (Federal Immission Control Ordinance in force in Germany), industrial thermal oxidation plants must be either completely replaced or a new burner system must be installed to ensure compliance with the latest environmental standards that demand restriction of pollutant emissions. Replacement of the original burner control system by a state-of-the-art burner management system improves not only the combustion process and the flue gas quality but also saves energy and thus costs through the use of a thermal incinerator. One of the key features of a thermal oxidation plant is a new technology used for controlling and monitoring the burner. The following article examines the innovative LMV5.. burner management system which offers a host of functions, such as burner control, electronic fuel / air ratio control, valve proving and load control - components which, previously, had to be separately assembled and electrically interconnected. (orig.)

  18. Correction of edge-flame propagation speed in a counterflow, annular slot burner

    KAUST Repository

    Tran, Vu Manh

    2015-10-22

    To characterize the propagation modes of flames, flame propagation speed must be accurately calculated. The impact of propagating edge-flames on the flow fields of unburned gases is limited experimentally. Thus, few studies have evaluated true propagation speeds by subtracting the flow velocities of unburned gases from flame displacement speeds. Here, we present a counterflow, annular slot burner that provides an ideal one-dimensional strain rate and lengthwise zero flow velocity that allowed us to study the fundamental behaviors of edge-flames. In addition, our burner has easy optical access for detailed laser diagnostics. Flame displacement speeds were measured using a high-speed camera and related flow fields of unburned gases were visualized by particle image velocimetry. These techniques allowed us to identify significant modifications to the flow fields of unburned gases caused by thermal expansion of the propagating edges, which enabled us to calculate true flame propagation speeds that took into account the flow velocities of unburned gases.

  19. Large Eddy Simulation of Flow Structures in the Sydney Swirl Burner

    DEFF Research Database (Denmark)

    Yang, Yang

    This thesis represents the research on swirling flow using large eddy simulation(LES). Three cases from the Sydney swirl burner database have been chosen as test cases; one medium swirl isothermal case N29S054, one high swirl isothermal case N16S159 and one medium swirl reacting case SM1...... zone which starts at the burner surface. As for the medium swirling isothermal case, there are two reverse flow zones in the reacting case. Due to the low stoichiometric mixture fraction in the methane flame, only the outer layer of the bluff‐body induced reverse zone is reactive. The main reactive...... zone is held at the bubblerecirculation. By using two‐dimensional proper orthogonal decomposition (POD) on the cross‐plane, the periodic oscillating movement of the jet has been interpretation. Through this research, a practical guideline is provided for the industry LES user. Nevertheless, the LES...

  20. Coal Particle Flow Patterns for O2 Enriched, Low NOx Burners

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer Sinclair Curtis

    2005-08-01

    This project involved a systematic investigation examining the effect of near-flame burner aerodynamics on standoff distance and stability of turbulent diffusion flames and the resultant NO{sub x} emissions from actual pulverized coal diffusion flames. Specifically, the scope of the project was to understand how changes in near-flame aerodynamics and transport air oxygen partial pressure can influence flame attachment and coal ignition, two properties essential to proper operation of low NO{sub x} burners. Results from this investigation utilized a new 2M tall, 0.5m in diameter combustor designed to evaluate near-flame combustion aerodynamics in terms of transport air oxygen partial pressure (Po{sub 2}), coal fines content, primary fuel and secondary air velocities, and furnace wall temperature furnish insight into fundamental processes that occur during combustion of pulverized coal in practical systems. Complementary cold flow studies were conducted in a geometrically similar chamber to analyze the detailed motion of the gas and particles using laser Doppler velocimetry. This final technical report summarizes the key findings from our investigation into coal particle flow patterns in burners. Specifically, we focused on the effects of oxygen enrichment, the effect of fines, and the effect of the nozzle velocity ratio on the resulting flow patterns. In the cold flow studies, detailed measurements using laser Doppler velocimetry (LDV) were made to determine the details of the flow. In the hot flow studies, observations of flame stability and measurements of NO{sub x} were made to determine the effects of the flow patterns on burner operation.

  1. CFD simulation of a burner for syngas characterization and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Fantozzi, Francesco; Desideri, Umberto [University of Perugia (Italy). Dept. of Industrial Engineering], Emails: fanto@unipg.it, umberto.desideri@unipg.it; D' Amico, Michele [University of Perugia (Italy). Dept. of Energetic Engineering], E-mail: damico@crbnet.it

    2009-07-01

    Biomass and waste are distributed and renewable energy sources that may contribute effectively to sustainability if used on a small and micro scale. This requires the transformation through efficient technologies (gasification, pyrolysis and anaerobic digestion) into a suitable gaseous fuel to use in small internal combustion engines and gas turbines. The characterization of biomass derived syngas during combustion is therefore a key issue to improve the performance of small scale integrated plants because synthesis gas show significant differences with respect to Natural Gas (mixture of gases, low calorific value, hydrogen content, tar and particulate content) that may turn into ignition problems, combustion instabilities, difficulties in emission control and fouling. To this aim a burner for syngas combustion and LHV measurement through mass and energy balance was realized and connected to the rotary-kiln laboratory scale pyrolyzer at the Department of Industrial Engineering of the University of Perugia. A computational fluid dynamics (CFD) simulation of the burner was carried out considering the combustion of propane to investigate temperature and pressure distribution, heat transmission and distribution of the combustion products and by products. The simulation was carried out using the CFD program Star-CD. Before the simulation a geometrical model of the burner was built and the volume of model was subdivided in cells. A sensibility analysis of cells was carried out to estimate the approximation degree of the model. Experimental data about combustion emission were carried out with the propane combustion in the burner, the comparison between numerical results and experimental data was studied to validate the simulation for future works involved with the combustion of treated or raw (syngas with tar) syngas obtained from pyrolysis process. (author)

  2. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-06-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants and they are typically used without venting. The objective of this study is to quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass balance model was applied to estimate time-dependent pollutant concentrations throughout homes and the "exposure concentrations" experienced by individual occupants. The model was applied to estimate nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for one week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs, NO{sub 2} and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of CO and NO{sub 2} were obtained from available databases. Ventilation rates, occupancy patterns, and burner use were inferred from household characteristics. Proximity to the burner(s) and the benefits of using venting range hoods were also explored. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying less than 10%. The simulation model estimates that in homes using NGCBs without coincident use of venting range hoods, 62%, 9%, and 53% of occupants are routinely exposed to NO{sub 2}, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3000, and 20 ppb for NO{sub 2}, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health

  3. Fuel Evaporation in an Atmospheric Premixed Burner: Sensitivity Analysis and Spray Vaporization

    Directory of Open Access Journals (Sweden)

    Dávid Csemány

    2017-12-01

    Full Text Available Calculation of evaporation requires accurate thermophysical properties of the liquid. Such data are well-known for conventional fossil fuels. In contrast, e.g., thermal conductivity or dynamic viscosity of the fuel vapor are rarely available for modern liquid fuels. To overcome this problem, molecular models can be used. Currently, the measurement-based properties of n-heptane and diesel oil are compared with estimated values, using the state-of-the-art molecular models to derive the temperature-dependent material properties. Then their effect on droplet evaporation was evaluated. The critical parameters were liquid density, latent heat of vaporization, boiling temperature, and vapor thermal conductivity where the estimation affected the evaporation time notably. Besides a general sensitivity analysis, evaporation modeling in a practical burner ended up with similar results. By calculating droplet motion, the evaporation number, the evaporation-to-residence time ratio can be derived. An empirical cumulative distribution function is used for the spray of the analyzed burner to evaluate evaporation in the mixing tube. Evaporation number did not exceed 0.4, meaning a full evaporation prior to reaching the burner lip in all cases. As droplet inertia depends upon its size, the residence time has a minimum value due to the phenomenon of overshooting.

  4. Reconsideration of natural-gas immersion burners to melt recycled aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Clark, John A., III; Thekdi, Arvind (E3M, Inc., North Potomac, MD); Ningileri, S. (Secat Inc, Lexington KY); Han, Q. (Oak Ridge National Laboratory)

    2005-09-01

    The best open flame reverberatory aluminum melting furnaces are approximately 45% efficient. Furnace efficiency can be increased by using immersed tube burners. Currently, recuperated tube burners with capacities to remelt aluminum are available. Tube burners would allow remelt furnaces to operate at lower temperatures, reduce dross formation, reduce particulate emissions, and provide clean flue gas to other energy intensive processes. Babcock and Wilcox, under GRI (now GTI – Gas Technology Institute) contract in the late-1980’s, demonstrated the technically feasibility of immersion melting of aluminum. However, tube reliability was problematic due to metal penetration, dross build-up, thermal shock, and mechanical failure. Also, the concept of “cold start” melting was not addressed. The Albany Research Center (U.S. DOE) is cooperating with Secat, E3M Inc., the University of Kentucky, and Oak Ridge National Laboratory in an ITP-sponsored program to combine emerging technologies in a retrofitable furnace package targeting improved remelt efficiency ranging from 55% to 75%.

  5. Testing of a low NOx wire-mesh duct burner for micro-cogeneration unit

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, O.B.; Gauthier, J.E.D. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Hughes, P.M.; Brandon, R. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2007-07-01

    Combined heat and power (CHP) or cogeneration involves the generation of electricity in addition to the productive use of waste heat from the combustion process using the same primary fuel. An alternative to combined electrical power and heat generation is a micro-cogeneration unit which uses a micro-turbine as a prime mover. This type of unit is expected to result in a shift from large and centralized plants to smaller, more economical on-site generation plants. This paper presented a new low nitrogen oxide (NOx) wire-mesh duct burner (WMDB) for the development of a more efficient micro-cogeneration unit. In order to increase its thermal output, the low NOx WMDB was designed, built and integrated for evaluation with the Ingersol-Rand 70 kw micro-cogeneration unit. The wire-mesh burner had a conical shape and was manufactured by ACOTECH. The paper also discussed the advantages of micro-CHP units which are more attractive to building owners, retail establishments, commercial and light industrial facilities. Advantages include quality of the power supply; more economical, cleaner power; and the addition of new capacity without new transmission lines. It was concluded that low levels of emission were achieved with the development of a low NOx wire-mesh duct burner for a micro-cogeneration plant. 2 refs., 5 figs.

  6. Performance evaluation of premixed burner fueled with biomass derived producer gas

    Directory of Open Access Journals (Sweden)

    P. Punnarapong

    2017-03-01

    Full Text Available Energy consumption of liquefied petroleum gas (LPG in ceramic firing process accounts for about 15–40% of production cost. Biomass derived producer gas may be used to replace LPG. In this work, a premixed burner originally designed for LPG was modified for producer gas. Its thermal performance in terms of axial and radial flame temperature distribution, thermal efficiency and emissions was investigated. The experiment was conducted at various gas production rates with equivalence ratios between 0.8 and 1.2. Flame temperatures of over 1200 °C can be achieved, with maximum value of 1260 °C. It was also shown that the burner can be operated at 30.5–39.4 kWth with thermal efficiency in the range of 84 – 91%. The maximum efficiency of this burner was obtained at producer gas flow rate of 24.3 Nm3/h and equivalence ratio of 0.84.

  7. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

    2000-04-01

    Coal continues to be one of the principal energy sources for electric power generation in the United States. One of the biggest environmental challenges involved with coal utilization is the reduction of nitrogen oxides (NO{sub x}) formed during coal combustion. The most economical method of NO{sub x} abatement in coal combustion is through burner modification. Air-staging techniques have been widely used in the development of low-NO{sub x} pulverized coal burners, promoting the conversion of NO{sub x} to N{sub 2} by delaying the mixing in the fuel-rich zone near the burner inlet. Previous studies have looked at the mechanisms of NO{sub x} evolution at relatively low temperatures where primary pyrolysis is dominant, but data published for secondary pyrolysis in the pulverized coal furnace are scarce. In this project, the nitrogen evolution behavior during secondary coal pyrolysis will be explored. The end result will be a complete model of nitrogen evolution and NO{sub x} precursor formation due to primary and secondary pyrolysis.

  8. Application of CALPUFF to PM10 emissions from beehive burners in British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Ciccone, A.D. [Jacques Whitford and Associates Limited, Vancouver, BC (Canada); Waddell, G. [Canadian Forest Products Ltd., Prince George, BC (Canada)

    2000-07-01

    The complex local topography of the Bulkley Valley in the British Columbia interior greatly influences the local meteorology and climatology. The communities of Smithers and Houston which are located in the valley are hosts to three mills which operate conical burners for waste disposal and which define the extent of airshed. The CALMET/CALPUFF modelling system was chosen as a means to evaluate the contribution of the burners to the local airshed. CALPUFF was chosen because of the combined conditions of complex terrain and low wind speed in the region. Since MM5 gridded meteorological data was available from the BC Ministry of Environment to initialize the wind fields for CALMET in 1995, modelling was conducted in that year. CALPUFF provided 24-hour PM10 ground level concentrations over a 54 km by 72 km range. This included monitoring stations in the airshed. The impact from the conical burners was found to be low compared to the monitoring data which was collected. However, it was determined that the model was able to describe hourly changes in ambient PM10 levels, which reflected the hourly monitoring station data. The region is now equipped with a modelling platform that can be used to help in air pollution source appointment as well as for the management general air quality.

  9. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX

  10. Synthesis of Titanium Dioxide Nanoparticles Using a Double-Slit Curved Wall-Jet Burner

    KAUST Repository

    Ismail, Mohamed

    2016-05-04

    A novel double-slit curved wall-jet (DS-CWJ) burner was proposed and utilized for flame synthesis. This burner was comprised of double curved wall-jet nozzles with coaxial slits; the inner slit was for the delivery of titanium tetraisopropoxide (TTIP) precursor while the outer one was to supply premixed fuel/air mixture of ethylene (C2H4) or propane (C3H8). This configuration enabled rapid mixing between the precursor and reactants along the curved surface and inside the recirculation zone of the burner. Particle growth of titanium dioxide (TiO2) nanoparticles and their phases was investigated with varying equivalence ratio and Reynolds number. Flow field and flame structure were measured using particle image velocimetry (PIV) and OH planar laser-induced fluorescence (PLIF) techniques, respectively. The nanoparticles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and nitrogen adsorption Brunauer–Emmett–Teller (BET) for surface area analysis. The flow field consisted of a wall-jet region leading to a recirculation zone, an interaction jet region, followed by a merged-jet region. The DS-CWJ burner revealed appreciable mixing characteristics between the precursor and combustion gases near the nozzle regions, with a slight increase in the axial velocity due to the precursor injection. The precursor supply had a negligible effect on the flame structure. The burner produced a reasonably uniform size (13–18 nm) nanoparticles with a high BET surface area (>100 m2/g). The phase of TiO2 nanoparticles was mainly dependent on the equivalence ratio and fuel type, which impact flame height, heat release rate, and high temperature residence time of the precursor vapor. For ethylene flames, the anatase content increased with the equivalence ratio, whereas it decreased in the case of propane flames. The synthesized TiO2 nanoparticles exhibited high crystallinity and the anatase phase was dominant at high equivalence

  11. Scale-up of Advanced Low NO{sub x} and High Turndown Pulverized Coal Burner; Teifuka taioyo tei NO{sub x} bana no sukeruappu kento

    Energy Technology Data Exchange (ETDEWEB)

    Kimoto, Masayoshi.; Tsuji, Hirofumi.; Makino, Hisao. [Central research institute of electric power industry, Tokyo (Japan). Chemical energy engineering department; Kiga, Takashi. [Ishikawajima-Harima Heavy Industries Crop., Tokyo (Japan). Combustion engineering department, Power plant division

    1999-06-20

    The specific low NOx burner, which is enabled to reduce both NOx and unburned carbon extremely and to perform the stable combustion at 20% load as like an oil burner, has been developed with a small size burner whose coal feed rate is 0.12 t/h in the previous study. To apply this burner to utility boilers, the influence of burner capacity on the combustion characteristics was investigated by comparison between the small burner (0.12 t/h) and a large burner (1.5 t/h) in this paper. The concept of this burner is follows. Coal particle is concentrated at outside of primary air nozzle by centrifugal force, and the coal concentration is controlled by a ring. At the exit of nozzle, the swirl of primary air is inhibited by straightener to reduce NOx efficiently. The swirl at the burner exit decreased with the increase of the straightener coefficient, which is a ratio of the gross area of the straightener to the cross section area of the primary pipe. When the straightener coefficient became greater than 1.2, the swirl was inhibited completely as sane as 0.12 t/h burner. When the pulverized coal concentration control ring was placed close to the exit of nozzle, the local concentration of pulverized coal rose 1.7 times as high as the mean concentration in primary air. With this arrangement, the comproved to 20% as like an oil burner. The unburned carbon in the fly ash was reduced very efficiently with a little increase of the NOx emission at lower load by controlling the coal concentration higher. (author)

  12. Scale-up of Advanced Low NO[sub x] and High Turndown Pulverized Coal Burner. Teifuka taioyo tei NO[sub x] bana no sukeruappu kento

    Energy Technology Data Exchange (ETDEWEB)

    Kimoto, Masayoshi.; Tsuji, Hirofumi.; Makino, Hisao. (Central research institute of electric power industry, Tokyo (Japan). Chemical energy engineering department); Kiga, Takashi. (Ishikawajima-Harima Heavy Industries Crop., Tokyo (Japan). Combustion engineering department, Power plant division)

    1999-06-20

    The specific low NOx burner, which is enabled to reduce both NOx and unburned carbon extremely and to perform the stable combustion at 20% load as like an oil burner, has been developed with a small size burner whose coal feed rate is 0.12 t/h in the previous study. To apply this burner to utility boilers, the influence of burner capacity on the combustion characteristics was investigated by comparison between the small burner (0.12 t/h) and a large burner (1.5 t/h) in this paper. The concept of this burner is follows. Coal particle is concentrated at outside of primary air nozzle by centrifugal force, and the coal concentration is controlled by a ring. At the exit of nozzle, the swirl of primary air is inhibited by straightener to reduce NOx efficiently. The swirl at the burner exit decreased with the increase of the straightener coefficient, which is a ratio of the gross area of the straightener to the cross section area of the primary pipe. When the straightener coefficient became greater than 1.2, the swirl was inhibited completely as sane as 0.12 t/h burner. When the pulverized coal concentration control ring was placed close to the exit of nozzle, the local concentration of pulverized coal rose 1.7 times as high as the mean concentration in primary air. With this arrangement, the comproved to 20% as like an oil burner. The unburned carbon in the fly ash was reduced very efficiently with a little increase of the NOx emission at lower load by controlling the coal concentration higher. (author)

  13. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a

  14. The three-dimensional numerical aerodynamics of a movable block burner

    Directory of Open Access Journals (Sweden)

    Fudihara T.J.

    2003-01-01

    Full Text Available Computational fluid-dynamics techniques were employed to study the aerodynamics of a movable block swirl burner, developed by the International Flame Research Foundation, IFRF, which is characterized by the ability to adjust continuously and dynamically the intensity of the swirl by means of the simultaneous rotation of eight movable blocks, inserted between eight fixed blocks. Five three-dimensional grids were constructed for the burner, corresponding to five positions of the movable blocks. Both the k-e and RNG k-e isotropic turbulence models were applied. Only the latter described the existence of a central reverse flow along the annular duct. The employment of first-order and second-order interpolation schemes provided distinct results. The later provided results closer to the experimental tests. The swirl number decayed in the annular duct. The predicted swirl numbers for this movable block swirl burner were lower than the corresponding IFRF's experimental data, as was also observed by other researchers. This gave rise to the suspicion of some possible measurement error in the IFRF's experiments. On the other hand, the lack of agreement between the experimental data and the predictions regarding swirling flows could be attributed to the possible inadequate performance of the k-e model, as a consequence of its isotropic approximation. Still another possible explanation could be a phenomenon called bifurcation, in which one given swirl number can be associated with two distinct conditions of steady state flow. In addition, this complex flows requires a scrupulous development of the grids for the boundary condition and the employment of adequate interpolation schemes.

  15. Impact of fuel quality and burner capacity on the performance of wood pellet stove

    Directory of Open Access Journals (Sweden)

    Petrović-Bećirović Sanja B.

    2015-01-01

    Full Text Available Pellet stoves may play an important role in Serbia in the future when fossil fuel fired conventional heating appliances are replaced by more efficient and environmentally friendly devices. Experimental investigation was conducted in order to examine the influence of wood pellet quality, as well as burner capacity (6, 8 and 10 kW, used in the same stove configuration, on the performance of pellet stove with declared nameplate capacity of 8 kW. The results obtained showed that in case of nominal load and combustion of pellets recommended by the stove manufacturer, stove efficiency of 80.03% was achieved. The use of lower quality pellet caused additional 1.13 kW reduction in heat output in case of nominal load and 0.63 kW in case of reduced load. This was attributed to less favourable properties and lower bulk and particle density of lower quality pellet. The use of different burner capacity has shown to have little effect on heat output and efficiency of the stove when pre-set values in the control system of the stove were not altered. It is concluded that replacement of the burner only is not sufficient to increase/decrease the declared capacity of the same stove configuration, meaning that additional measures are necessary. These measures include a new set up of the stove control system, which needs to be properly adjusted for each alteration in stove configuration. Without the adjustment mentioned, declared capacity of the stove cannot be altered, while its CO emission shall be considerably increased.

  16. Premixing hydrogen burners for surface refinement of glass; Vormischende Wasserstoffbrenner zur Oberflaechenbearbeitung von Glas

    Energy Technology Data Exchange (ETDEWEB)

    Goerisch, Matthias [Linde AG, Linde Gas Deutschland, Nuernberg (Germany)

    2013-02-15

    As a result, inter alia, of unceasing globalisation, European glass producers in practically all sectors - flat glass, container glass, crystal glass and special glasses - are faced with ever tougher competition from Asia. In the 2012 to 2015 period and beyond, the principal focuses in the manufacture of glass products will again be on reducing overall production costs and increasing process efficiency wherever possible, on greater productivity and on enhanced product (surface) quality. To meet these challenges in the field of surface refinement and flame polishing of glass products as efficiently as possible, Linde AG/Linde Gases Division has developed premixing Hydropox {sup registered} burner technology for hydrogen/oxygen fuels. (orig.)

  17. A numerical study of porous medium properties effect on late mixing porous burner performance

    Directory of Open Access Journals (Sweden)

    Kanokkarn Wongwatcharaphon

    2014-03-01

    Full Text Available The objective of this research is to investigate the effect of properties of porous combustor (PC of the late mixing porous burner (LMPB on the thermal structure and radiant output efficiency by mean of numerical modeling. The flow and heat transfer are one-dimensional. The combustion reaction is considered as a single-step first order reaction. The parametric study is a porosity and absorption coefficient. The results indicate that the optimum property of porous medium that is used as porous combustor of LMPB is a porosity in the range of 0.4 - 0.6 and absorption coefficient is 100.

  18. Combustion of low calorific value gases in porous burners; Verbrennung von niederkalorischen Gasen in Porenbrennern

    Energy Technology Data Exchange (ETDEWEB)

    Diezinger, S.; Talukdar, P.; Issendorff, F. von; Trimis, D. [Lehrstuhl fuer Stroemungsmechanik Friedrich-Alexander-Univ., Erlangen-Nuernberg (Germany)

    2005-04-01

    By the use of low calorific value gases significant energy amounts can be saved, emissions can be reduced and system efficients can be increased. These mixtures are generated in different fields like waste sites and fuel cell systems with reformation of hydrocarbons. Conventional combustion techniques are not suited for the combustion of this kind of gases. Due to its high internal heat recuperation the porous burner technology has great potential for the combustion of low calorific value gases. In this work the influence of the combustion zone properties, the surface load and the educt temperature were determined by numerical simulations and experiments. (orig.)

  19. Experimental verification of corrosive vapor deposition rate theory in high velocity burner rigs

    Science.gov (United States)

    Gokoglu, S. A.; Santoro, G. J.

    1986-01-01

    The ability to predict deposition rates is required to facilitate modelling of high temperature corrosion by fused salt condensates in turbine engines. A corrosive salt vapor deposition theory based on multicomponent chemically frozen boundary layers (CFBL) has been successfully verified by high velocity burner rig experiments. The experiments involved internally air-impingement cooled, both rotating full and stationary segmented cylindrical collectors located in the crossflow of sodium-seeded combustion gases. Excellent agreement is found between the CFBL theory an the experimental measurements for both the absolute amounts of Na2SO4 deposition rates and the behavior of deposition rate with respect to collector temperature, mass flowrate (velocity) and Na concentration.

  20. Interim design status and operational report for remote handling fixtures: primary and secondary burners

    Energy Technology Data Exchange (ETDEWEB)

    Burgoyne, R.M.

    1976-12-01

    The HTGR reprocessing flowsheet consists of two basic process elements: (1) spent fuel crushing and burning and (2) solvent extraction. Fundamental to these elements is the design and development of specialized process equipment and support facilities. A major consideration of this design and development program is equipment maintenance: specifically, the design and demonstration of selected remote maintenance capabilities and the integration of these into process equipment design. This report documents the current status of the development of remote handling and maintenance fixtures for the primary and secondary burners.

  1. Numerical Study of NOx and Flame Shape of a DLE Burner

    OpenAIRE

    Hamedi, Naser

    2012-01-01

    For natural gas combustion, there is a large amount of experience in the gas turbine industry. However, much of the design work is based on costly combustion tests due to insufficient accuracy of existing prediction tools for data such as emissions and effects due to fuel composition. In the present work, Computational Fluid Dynamics (CFD) approach is used to study partially premixed combustion in the 3rd generation DLE (Dry Low Emission) burner that is used in SGT-700 and SGT-800 gas turbine...

  2. Numerical investigation on burning stability of the coal-dust methane-air mixture in a recuperative burner

    Science.gov (United States)

    Krainov, A. Yu; Moiseeva, K. M.; Moiseev, D. M.

    2017-11-01

    The paper is devoted to numerical investigation on combustion singularities of the bi-dispersed coal-dust methane-air mixture in a slot recuperative burner. The aim of the research is to determine the stable combustion conditions of the methane-air mixture depending on the fuel flow rate at the inlet of the burner and on the parameters of the mixture (the particle size and the mass concentration of the coal particles, the percentage composition of inert particles and the methane volume content). The problem was solved by finite difference method. The regimes of stable combustion for the coal-dust methane-air mixture depending on the fuel content and the fuel flow rate at the inlet of the burner the have been defined.

  3. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Science.gov (United States)

    2010-07-01

    ... Units With Group 1 or Cell Burner Boilers A Appendix A to Part 76 Protection of Environment... 1 or Cell Burner Boilers Table 1—Phase I Tangentially Fired Units State Plant Unit Operator ALABAMA... TOWER 9 CEN ILLINOIS PUB SER. INDIANA CULLEY 2 STHERN IND GAS & EL. INDIANA CULLEY 3 STHERN IND GAS & EL...

  4. Design process and instrumentation of a low NOx wire-mesh duct burner for micro-cogeneration unit

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, O.B.; Gauthier, J.E.D. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Hughes, P.M.; Brandon, R. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2007-07-01

    Air pollution and global climate change have become a serious environmental problem leading to increasingly stringent government regulations worldwide. New designs and methods for improving combustion systems to minimize the production of toxic emissions, like nitrogen oxides (NOx) are therefore needed. In order to control smog, acid rain, ozone depletion, and greenhouse-effect warming, a reduction of nitrogen oxide is necessary. One alternative for combined electrical power and heat generation (CHP) are micro-cogeneration units which use a micro-turbine as a prime mover. However, to increase the efficiencies of these units, micro-cogeneration technology still needs to be developed further. This paper described the design process, building, and testing of a new low NOx wire-mesh duct burner (WMDB) for the development of a more efficient micro-cogeneration unit. The primary goal of the study was to develop a practical and simple WMDB, which produces low emissions by using lean-premixed surface combustion concept and its objectives were separated into four phases which were described in this paper. Phase I involved the design and construction of the burner. Phase II involved a qualitative flow visualization study for the duct burner premixer to assist the new design of the burner by introducing an efficient premixer that could be used in this new application. Phase III of this research program involved non-reacting flow modeling on the burner premixer flow field using a commercial computational fluid dynamic model. In phase IV, the reacting flow experimental investigation was performed. It was concluded that the burner successfully increased the quantity and the quality of the heat released from the micro-CHP unit and carbon monoxide emissions of less than 9 ppm were reached. 3 refs., 3 figs.

  5. Experimental and numerical investigation of flame characteristics during swirl burner operation under conventional and oxy-fuel conditions

    Directory of Open Access Journals (Sweden)

    Jovanović Rastko D.

    2017-01-01

    Full Text Available Oxy-fuel coal combustion, together with carbon capture and storage or utilization, is a set of technologies allowing to burn coal without emitting globe warming CO2. As it is expected that oxy-fuel combustion may be used for a retrofit of existing boilers, development of a novel oxy-burners is very important step. It is expected that these burners will be able to sustain stable flame in oxy-fuel conditions, but also, for start-up and emergency reasons, in conventional, air conditions. The most cost effective way of achieving dual-mode boilers is to introduce dual-mode burners. Numerical simulations allow investigation of new designs and technologies at a relatively low cost, but for the results to be trustworthy they need to be validated. This paper proposes a workflow for design, modeling, and validation of dual-mode burners by combining experimental investigation and numerical simulations. Experiments are performed with semi-industrial scale burners in 0.5 MWt test facility for flame investigation. Novel CFD model based on ANSYS FLUENT solver, with special consideration of coal combustion process, especially regarding devolatilization, ignition, gaseous and surface reactions, NOx formation, and radiation was suggested. The main model feature is its ability to simulate pulverized coal combustion under different combusting atmospheres, and thus is suitable for both air and oxy-fuel combustion simulations. Using the proposed methodology two designs of pulverized coal burners have been investigated both experimentally and numerically giving consistent results. The improved burner design proved to be a more flexible device, achieving stable ignition and combustion during both combustion regimes: conventional in air and oxy-fuel in a mixture of O2 and CO2 (representing dry recycled flue gas with high CO2 content. The proposed framework is expected to be of use for further improvement of multi-mode pulverized fuel swirl burners but can be also used

  6. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    Science.gov (United States)

    Schiro, Fabio; Stoppato, Anna; Benato, Alberto

    2017-11-01

    The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen). Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  7. Computational fluid dynamics analysis of a synthesis gas turbulent combustion in a round jet burner

    Science.gov (United States)

    Mansourian, Mohammad; Kamali, Reza

    2017-05-01

    In this study, the RNG-Large Eddy Simulation (RNG-LES) methodology of a synthesis gas turbulent combustion in a round jet burner is investigated, using OpenFoam package. In this regard, the extended EDC extinction model of Aminian et al. for coupling the reaction and turbulent flow along with various reaction kinetics mechanisms such as Skeletal and GRI-MECH 3.0 have been utilized. To estimate precision and error accumulation, we used the Smirinov's method and the results are compared with the available experimental data under the same conditions. As a result, it was found that the GRI-3.0 reaction mechanism has the least computational error and therefore, was considered as a reference reaction mechanism. Afterwards, we investigated the influence of various working parameters including the inlet flow temperature and inlet velocity on the behavior of combustion. The results show that the maximum burner temperature and pollutant emission are affected by changing the inlet flow temperature and velocity.

  8. Chemical and toxicological characterization of residential oil burner emissions. II. Mutagenic, tumorigenic, and potential teratogenic activity

    Energy Technology Data Exchange (ETDEWEB)

    Braun, A.G.; Busby, W.F. Jr.; Liber, H.L.; Thilly, W.G.

    1987-08-01

    Extracts of effluents from a modern residential oil burner have been evaluated in several toxicological assay systems. Bacterial mutagens were detected in extracts from both the particulate and vapor phase emissions. Effluents from continuous operation were an order of magnitude less mutagenic than those from cyclic (5 min on, 10 min off) operations. No difference in the yield of bacterial mutagens per gram of fuel burned was found between cyclic operation under low and moderate sooting conditions. On the basis of elution behavior from alumina it appeared that the bacterial mutagens collected from high sooting effluents were more polar than those from low sooting effluent. An extract that was mutagenic in bacteria did not induce a significant increase in mutation frequency to human lymphoblasts. No evidence of tumorigenicity was observed in a limited number of newborn mice after IP injection of effluent extract when compared to historical control data. Putative nonmutagenic teratogens were detected in effluent using an attachment inhibition assay. The level of these agents was reduced in effluents from continuous oil burner operation.

  9. Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners

    Energy Technology Data Exchange (ETDEWEB)

    Lobscheid, Agnes; Singer, Brett C.; Klepeis, Neil E.

    2011-06-01

    We developed a physics-based data-supported model to investigate indoor pollutant exposure distributions resulting from use of natural gas cooking appliances across households in California. The model was applied to calculate time-resolved indoor concentrations of CO, NO2 and formaldehyde resulting from cooking burners and entry with outdoor air. Exposure metrics include 1-week average concentrations and frequency of exceeding ambient air quality standards. We present model results for Southern California (SoCal) using two air-exchange scenarios in winter: (1) infiltration-only, and (2) air exchange rate (AER) sampled from lognormal distributions derived from measurements. In roughly 40percent of homes in the SoCal cohort (N=6634) the 1-hour USEPA NO2 standard (190 ?g/m3) was exceeded at least once. The frequency of exceeding this standard was largely independent of AER assumption, and related primarily to building volume, emission rate and amount of burner use. As expected, AER had a more substantial impact on one-week average concentrations.

  10. A numerical investigation of the aerodynamics of a furnace with a movable block burner

    Directory of Open Access Journals (Sweden)

    T. J. Fudihara

    2007-06-01

    Full Text Available In this work the air flow in a furnace was computationally investigated. The furnace, for which experimental test data are available, is composed of a movable block burner connected to a cylindrical combustion chamber by a conical quarl. The apertures between the movable and the fixed blocks of the burner determine the ratio of the tangential to the radial air streams supplied to the furnace. Three different positions of the movable blocks were studied at this time. A three-dimensional investigation was performed by means of the finite volume method. The numerical grid was developed by the multiblock technique. The turbulence phenomenon was addressed by the RNG k-epsilon model. Profiles of the axial, tangential and radial velocities in the combustion chamber were outlined. The map of the predicted axial velocity in the combustion chamber was compared with a map of the experimental axial velocity. The internal space of the furnace was found to be partially filled with a reverse flow that extended around the longitudinal axis. A swirl number profile along the furnace length is presented and shows an unexpected increase in the swirl in the combustion chamber.

  11. Investigation of aerodynamic structure of isothermal swirl flow in a two-stage burner

    Science.gov (United States)

    Yusupov, R. R.; Krasinsky, D. V.; Shtork, S. I.

    2017-09-01

    The work is devoted to experimental and numerical study of aerodynamic structure of a swirl flow in isothermal model of a vortex burner device that is characterized by the fluid flow supply via two sequentially-mounted tangential swirlers. Depending on the way of the flow supply into the second-stage swirler, either co-swirl or counter-swirl of two flows can be realized. The effect of the second-stage supply direction on the resulting aerodynamic structure has been investigated. Using LDA measurement system the profiles of averaged axial and tangential velocity components were obtained. Experiments have shown that in the co-swirl case the flow inside the vortex burner model is characterized by strong non-uniformity, while in the counter-swirl regime a rapid mixing of the flows from the first and second stages occurs, resulting in a uniform distribution of the flow across the chamber section. Numerical simulation of 3D isothermal turbulent flow has been performed for the counter-swirl regime using the differential Reynolds stress model in the time-dependent formulation. Using the Q-criterion for the identification of vortices in numerical data arrays, the evolution of large-scale vortex structures of the swirl flow inside the vortex chamber has been visualized, indicating the presence of two spiral-shape vortex filaments in the vortex chamber. The periodic character of dynamics of these vortex structures has been revealed.

  12. Numerical Investigation of the Low-Caloric Gas Burning Process in a Bottom Burner

    Directory of Open Access Journals (Sweden)

    Redko A.

    2017-08-01

    Full Text Available The use of low-grade gases in the fuel and energy balance of enterprises makes it possible to increase the energy efficiency of technological processes. The volumes of low-grade gases (blast furnace and coke oven gases, synthesis gas of coal gasification processes, biogas, coal gas, etc. that are utilized more significant in technological processes but their calorific value are low. At the same time artificial gases contain ballast gaseous (СО2, H2O and mechanical impurities that are harmful gas impurities. Their use requires technological preparation. Thus coal methane is characterized of high humidity, coal dust and drip moisture, variable composition. Thus was effective burning of coal methane it is required the development of constructive and regime measures that ensure a stable and complete burning of gaseous fuels. In this article it is presented the results of computer simulation of a stationary turbulent diffusion flame in a restricted space in the process of burning natural gas and coal methane in a bottom burner. The calculation results contain the fields of gear, temperature, concentration of CH4‚ CO‚ H2O‚ CO2 and nitrogen oxides. The structural elements of the flame (recirculation zone, hot "dome", mixing layer and far trace are determined. It has been established that complete combustion of coal methane in a modified bottom burner is ensured and the numerical values of nitrogen oxide concentrations in the flame are consistent with the literature data.

  13. Behaviors of tribrachial edge flames and their interactions in a triple-port burner

    KAUST Repository

    Yamamoto, Kazuhiro

    2015-05-01

    In a triple-port burner, various non-premixed flames have been observed previously. Especially for the case with two lifted flames, such configuration could be suitable in studying interaction between two tribrachial flames. In the present study, the flame characteristics have been investigated numerically by adopting a reduced kinetic mechanism in the triple-port burner. Four different types of flame configurations, including two attached flames, inner lifted/outer attached flames, inner attached/outer lifted flames, and twin lifted flames, were successfully simulated depending on the flow conditions. The representative edge propagation speed of a single lifted flame or an upstream lifted flame in the case of twin lifted flames increased as the liftoff height became higher. In the twin lifted flames, the inner lifted flame was affected appreciably when the other flame was located further upstream such that the lifted flame located further downstream encountered the axial velocity acceleration induced by the gas expansion from the lifted flame located upstream, while thermal effects were not observed since the temperature of the incoming flow toward the lifted flame was not affected. A unique flip-flop behavior between the inner and outer flames, observed experimentally previously, was successfully captured in the simulation such that the inner lifted flame became attached to the nozzle as the liftoff height of the outer lifted flame grew higher with an increase in the outer air velocity.

  14. Propagating nonpremixed edge-flames in a counterflow, annular slot burner under DC electric fields

    KAUST Repository

    Tran, Vu Manh

    2016-09-11

    Characteristics of propagating nonpremixed edge-flames were investigated in a counterflow, annular slot burner. A high-voltage direct current (DC) was applied to the lower part of the burner and the upper part was grounded, creating electric field lines perpendicular to the direction of edge-flame propagation. Upon application of an electric field, an ionic wind is caused by the migration of positive and negative ions to lower and higher electrical potential sides of a flame, respectively. Under an applied DC, we found a significant decrease in edge-flame displacement speeds unlike several previous studies, which showed an increase in displacement speed. Within a moderate range of field intensity, we found effects on flame propagation speeds to be negligible after correcting the flame displacement speed with respect to the unburned flow velocity ahead of the flame edge. This indicates that the displacement speed of an edge-flame strongly depends on ionic wind and that an electric field has little or no impact on propagation speed. The ionic wind also influenced the location of the stoichiometric contour in front of the propagating edge in a given configuration such that a propagating edge was relocated to the higher potential side due to an imbalance between ionic winds originating from positive and negative ions. In addition, we observed a steadily wrinkled flame following transient propagation of the edge-flame, a topic for future research. © 2016 The Combustion Institute

  15. Hazardous waste and used oil fuel burning; Continuing regulatory concerns for generators, marketers and burners

    Energy Technology Data Exchange (ETDEWEB)

    Voelpel, J.W. (Honigman Miller Schwartz and Cohn, Detroit, MI (US))

    1987-01-01

    With the closing of interim status 'windows' and with the interest of many present HWF blenders and burners in restricting entry into the field, the concerns and opportunities associated with the blending and burning marketplace remain topical and in some areas not yet clearly defined. Also, further regulation, such as the promised rules for burners due in April, 1987, may force some to leave the field, thus creating additional concerns and opportunities. In any event, because hazardous wastes with substantial heat value will be generated for many years to come and because of the present load on available hazardous waste incinerators, blending and burning of HWF and used oil promise to remain an extremely important means of destruction of these materials. The author presents a discussion of the following areas: history, who can blend and who can't, who can burn and who can't, regulation of combustion residuals, impact of the land disposal ban rules, and state and other federal regulatory impacts.

  16. A New Method to Measure Temperature and Burner Pattern Factor Sensing for Active Engine Control

    Science.gov (United States)

    Ng, Daniel

    1999-01-01

    The determination of the temperatures of extended surfaces which exhibit non-uniform temperature variation is very important for a number of applications including the "Burner Pattern Factor" (BPF) of turbine engines. Exploratory work has shown that use of BPF to control engine functions can result in many benefits, among them reduction in engine weight, reduction in operating cost, increase in engine life, while attaining maximum engine efficiency. Advanced engines are expected to operate at very high temperature to achieve high efficiency. Brief exposure of engine components to higher than design temperatures due to non-uniformity in engine burner pattern can reduce engine life. The engine BPF is a measure of engine temperature uniformity. Attainment of maximum temperature uniformity and high temperatures is key to maximum efficiency and long life. A new approach to determine through the measurement of just one radiation spectrum by a multiwavelength pyrometer is possible. This paper discusses a new temperature sensing approach and its application to determine the BPF.

  17. Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner

    Energy Technology Data Exchange (ETDEWEB)

    Galpin, Jeremy [IFP, B.P. 311, 92506 Rueil-Malmaison Cedex (France); INSA - CORIA - CNRS, Institut National des Sciences Appliquees de Rouen (France); Naudin, Alexandre; Vervisch, Luc; Domingo, Pascale [INSA - CORIA - CNRS, Institut National des Sciences Appliquees de Rouen (France); Angelberger, Christian; Colin, Olivier [IFP, B.P. 311, 92506 Rueil-Malmaison Cedex (France)

    2008-10-15

    Large-eddy simulation (LES) of a fuel-lean premixed turbulent swirling flame is performed, in the configuration of a burner experimentally studied by Meier et al. [Combust. Flame 150 (1-2) (2007) 2-26]. Measurements of velocity field, temperature, and major species concentrations are compared against LES results. The unresolved sub-grid scale turbulent species and temperature fluctuations are accounted for using a presumed probability density function and flamelet tabulated detailed chemistry. Before the turbulent burner is simulated, various strategies to introduce tabulated detailed chemistry into a fully compressible Navier-Stokes solver are discussed and tested for laminar flames. The objective is to ensure a proper coupling between chemical tables and unsteady solutions of the Navier-Stokes equations in their fully compressible form, accounting for the inherent constraints of high-performance computing. Comparisons of LES results with experiments are discussed in terms of filtered quantities, leading to the introduction of an extra term to account for the difference in filter sizes used in experiment and LES. Velocity, temperature, and major species LES fields are then compared against measurements. Most of the turbulent flame features are reproduced, and observed discrepancies are analyzed to seek out possible improvements of the subgrid-scale modeling. (author)

  18. Gas fired boilers: Perspective for near future fuel composition and impact on burner design process

    Directory of Open Access Journals (Sweden)

    Schiro Fabio

    2017-01-01

    Full Text Available The advancements on gas boiler technology run in parallel with the growth of renewable energy production. The renewable production will impact on the fuel gas quality, since the gas grid will face an increasing injection of alternative fuels (biogas, biomethane, hydrogen. Biogas allows producing energy with a lower CO2 impact; hydrogen production by electrolysis can mitigate the issues related to the mismatch between energy production by renewable and energy request. These technologies will contribute to achieve the renewable production targets, but the impact on whole fuel gas production-to-consumption chain must be evaluated. In the first part of this study, the Authors present the future scenario of the grid gas composition and the implications on gas fed appliances. Given that the widely used premixed burners are currently designed mainly by trial and error, a broader fuel gas quality range means an additional hitch on this design process. A better understanding and structuring of this process is helpful for future appliance-oriented developments. The Authors present an experimental activity on a premixed condensing boiler setup. A test protocol highlighting the burners' flexibility in terms of mixture composition is adopted and the system fuel flexibility is characterized around multiple reference conditions.

  19. Hybrid model predictive control applied to switching control of burner load for a compact marine boiler design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan

    2008-01-01

    This paper discusses the application of hybrid model predictive control to control switching between different burner modes in a novel compact marine boiler design. A further purpose of the present work is to point out problems with finite horizon model predictive control applied to systems for w...

  20. Making a Low-Cost Soda Can Ethanol Burner for Out-of-Laboratory Flame Test Demonstrations and Experiments

    Science.gov (United States)

    Yu, Henson L. Lee; Domingo, Perfecto N., Jr.; Yanza, Elliard Roswell S.; Guidote, Armando M., Jr.

    2015-01-01

    This article demonstrates how to make a low-cost ethanol burner utilizing soda cans. It burns with a light blue flame suitable for out-of-laboratory flame test demonstrations where interference from a yellow flame needs to be avoided.

  1. Increasing the speed of computational fluid dynamics procedure for minimization the nitrogen oxide polution from the premixed atmospheric gas burner

    Directory of Open Access Journals (Sweden)

    Fotev Vasko G.

    2017-01-01

    Full Text Available This article presents innovative method for increasing the speed of procedure which includes complex computational fluid dynamic calculations for finding the distance between flame openings of atmospheric gas burner that lead to minimal NO pollution. The method is based on standard features included in commercial computational fluid dynamic software and shortens computer working time roughly seven times in this particular case.

  2. 41 CFR 101-26.602-3 - Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Procurement of gasoline, fuel oil (diesel and burner), kerosene, and solvents. 101-26.602-3 Section 101-26.602-3 Public... REGULATIONS SUPPLY AND PROCUREMENT 26-PROCUREMENT SOURCES AND PROGRAM 26.6-Procurement Sources Other Than GSA...

  3. Biomass Suspension Combustion: Effect of Two-Stage Combustion on NOx Emissions in a Laboratory-Scale Swirl Burner

    DEFF Research Database (Denmark)

    Lin, Weigang; Jensen, Peter Arendt; Jensen, Anker Degn

    2009-01-01

    A systematic study was performed in a suspension fired 20 kW laboratory-scale swirl burner test rig for combustion of biomass and co-combustion of natural gas and biomass. The main focus is put on the effect of two-stage combustion on the NO emission, as well as its effect on the incomplete...

  4. Fuel rich and fuel lean catalytic combustion of the stabilized confined turbulent gaseous diffusion flames over noble metal disc burners

    Directory of Open Access Journals (Sweden)

    Amal S. Zakhary

    2014-03-01

    Full Text Available Catalytic combustion of stabilized confined turbulent gaseous diffusion flames using Pt/Al2O3 and Pd/Al2O3 disc burners situated in the combustion domain under both fuel-rich and fuel-lean conditions was experimentally studied. Commercial LPG fuel having an average composition of: 23% propane, 76% butane, and 1% pentane was used. The thermal structure of these catalytic flames developed over Pt/Al2O3 and Pd/Al2O3 burners were examined via measuring the mean temperature distribution in the radial direction at different axial locations along the flames. Under-fuel-rich condition the flames operated over Pt catalytic disc attained high temperature values in order to express the progress of combustion and were found to achieve higher activity as compared to the flames developed over Pd catalytic disc. These two types of catalytic flames demonstrated an increase in the reaction rate with the downstream axial distance and hence, an increase in the flame temperatures was associated with partial oxidation towards CO due to the lack of oxygen. However, under fuel-lean conditions the catalytic flame over Pd catalyst recorded comparatively higher temperatures within the flame core in the near region of the main reaction zone than over Pt disc burner. These two catalytic flames over Pt and Pd disc burners showed complete oxidation to CO2 since the catalytic surface is covered by more rich oxygen under the fuel-lean condition.

  5. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. Of Texas, El Paso, TX (United States)

    2013-09-30

    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO2 from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H2 concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO2 and H2O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient gF) values for CH4-O2-CO2 flames. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH4/21%O2/79%N2 and CH4/38%O2/72%CO2 mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of

  6. Highly stabilized partially premixed flames of propane in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.

    2018-01-11

    Partially premixed turbulent flames with non-homogeneous jet of propane were generated in a concentric flow conical nozzle burner in order to investigate the effect of the coflow on the stability and flame structure. The flame stability is first mapped and then high-speed stereoscopic particle image velocimetry, SPIV, plus OH planar laser-induced fluorescence, OH-PLIF, measurements were conducted on a subset of four flames. The jet equivalence ratio Φ = 2, Jet exit Reynolds number Re = 10,000, and degree of premixing are kept constant for the selected flames, while the coflow velocity, Uc, is progressively changed from 0 to 15 m/s. The results showed that the flame is stable between two extinction limits of mixture inhomogeneity, and the optimum stability is obtained at certain degree of mixture inhomogeneity. Increasing Φ, increases the span between these two extinction limits, while these limits converge to a single point (corresponding to optimum mixture inhomogeneity) with increasing Re. Regardless the value of Φ, increasing the coflow velocity improves the flame stability. The correlation between recessed distance of the burner tubes and the fluctuation of the mixture fraction, Δξ, shows that at Δξ around 40% of the flammability limits leads to optimum flame stability. The time averaged SPIV results show that the coflow induces a big annular recirculation zone surrounds the jet flames. The size and the location of this zone is seen to be sensitive to Uc. However, the instantaneous images show the existence of a small vortical structure close to the shear layer, where the flame resides there in the case of no-coflow. These small vertical structures are seen playing a vital role in the flame structure, and increasing the flame corrugation close to the nozzle exit. Increasing the coflow velocity expands the central jet at the expense of the jet velocity, and drags the flame in the early flame regions towards the recirculation zone, where the flame tracks

  7. Testing and Modeling Fuel Regression Rate in a Miniature Hybrid Burner

    Directory of Open Access Journals (Sweden)

    Luciano Fanton

    2012-01-01

    Full Text Available Ballistic characterization of an extended group of innovative HTPB-based solid fuel formulations for hybrid rocket propulsion was performed in a lab-scale burner. An optical time-resolved technique was used to assess the quasisteady regression history of single perforation, cylindrical samples. The effects of metalized additives and radiant heat transfer on the regression rate of such formulations were assessed. Under the investigated operating conditions and based on phenomenological models from the literature, analyses of the collected experimental data show an appreciable influence of the radiant heat flux from burnt gases and soot for both unloaded and loaded fuel formulations. Pure HTPB regression rate data are satisfactorily reproduced, while the impressive initial regression rates of metalized formulations require further assessment.

  8. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack (062056); Kemal O. Pasamehmetoglu (103171); David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  9. Pollutant exposures from unvented gas cooking burners: A Simulation-based Assessment for Southern California

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Indoor Environment Group and Residential Building Systems Group; Klepeis, Neil E. [Stanford Univ., CA (United States). Dept. of Civil and Environmental Engineering; San Diego Univ., CA (United States). Center for Behavioral Epidemiology and Community Health; Lobscheid, Agnes B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Indoor Environment Group; Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Indoor Environment Group and Residential Building Systems Group

    2014-01-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants, and they are typically used without venting range hoods. In this study, LBNL researchers quantified pollutant concentrations and occupant exposures resulting from NGCB use in California homes.The simulation model estimated that—in homes using NGCBs without coincident use of venting range hoods -- 62%, 9%, and 53% of occupants are routinely exposed to NO2, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3,000, and 20 ppb for NO2, CO, and HCHO, respectively. The study recommends that reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health-based standards.

  10. Deposition stress effects on the life of thermal barrier coatings on burner rigs

    Science.gov (United States)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  11. Numerical study of turbulent normal diffusion flame CH4-air stabilized by coaxial burner

    Directory of Open Access Journals (Sweden)

    Riahi Zouhair

    2013-01-01

    Full Text Available The practical combustion systems such as combustion furnaces, gas turbine, engines, etc. employ non-premixed combustion due to its better flame stability, safety, and wide operating range as compared to premixed combustion. The present numerical study characterizes the turbulent flame of methane-air in a coaxial burner in order to determine the effect of airflow on the distribution of temperature, on gas consumption and on the emission of NOx. The results in this study are obtained by simulation on FLUENT code. The results demonstrate the influence of different parameters on the flame structure, temperature distribution and gas emissions, such as turbulence, fuel jet velocity, air jet velocity, equivalence ratio and mixture fraction. The lift-off height for a fixed fuel jet velocity is observed to increase monotonically with air jet velocity. Temperature and NOx emission decrease of important values with the equivalence ratio, it is maximum about the unity.

  12. Experiments on the TECFLAM standard burner. Final colloquium; Experimente am TECFLAM Standard-Brenner. Abschlusskolloquium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This year's annual seminar had two main subjects: First, the final colloquium of the CRAY-TECFLAM project in which an industrial code for simulation of combustion processes in furnaces and gas turbines was developed in cooperation with the relevant industry, and secondly, investigations on a TECFLAM standard burner which served to establish a reliable set of state variables by different methods that were applied simultaneously, as well as the validation of the mathematical models. [German] Das alljaehrliche oeffentliche Seminar stand in diesem Jahr unter zwei zentralen Themen: zum einen das Abschlusskolloquium des CRAY-TECFLAM-Projekts, in dem ein Industriecode zur Simulation der Verbrennungsvorgaenge in Feuerungen und Gasturbinen - unter Beteiligung der relevanten Industrie - entwickelt wurde, zum anderen die Untersuchungen am TECFLAM Standardbrenner, mit denen ein verlaesslicher Satz von Zustandsgroessen mit unterschiedlichen, aber simultan angewandten Messmethoden ermittelt wird und die mathematischen Modelle validiert werden. (orig.)

  13. Numerical Simulation of Air Staged Mechanism Effect in a High Velocity Burner

    Directory of Open Access Journals (Sweden)

    Bernardo A. Herrera-Múnera

    2013-11-01

    Full Text Available In this work, staged air combustion in a high speed burner was analyzed by mean of numerical simulation in order to determine its effects on temperature distribution and pollutant chemical species formation such as CO and NOx. The simulations were achieved using the commercial software ANSYS FLUENT as a design tool to predict the behavior of the thermal system and to establish operation conditions with or without staged air. Eddy Dissipation model was used for combustion simulation, while k - ε Realizable and Discrete Ordinates models were utilized for turbulence and radiation simulation, respectively. Results show that staged air mechanism allows better flame stabilization, combustion reactions initiation and fuel-air mixing. The CO formation was different in reaction zone and NOx emissions were not significantly influenced by the staged air.

  14. Neutronics design study on a minor actinide burner for transmuting spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok

    1998-08-01

    A liquid metal reactor was designed for the primary purpose of burning the minor actinide waste from commercial light water reactors. The design was constrained to maintain acceptable safety performance as measured by the burnup reactivity swing, the doppler coefficient, and the sodium void worth. Sensitivity studies were performed for homogeneous and decoupled core designs, and a minor actinide burner design was determined to maximize actinide consumption and satisfy safety constraints. One of the principal innovations was the use of two core regions, with a fissile plutonium outer core and an inner core consisting only of minor actinides. The physics studies performed here indicate that a 1200 MWth core is able to transmute the annual minor actinide inventory of about 16 LWRs and still exhibit reasonable safety characteristics. (author). 34 refs., 22 tabs., 14 figs.

  15. Studi Eksperimen Distribusi Temperatur Nyala Api Kompor Bioetanol Tipe Side Burner dengan Variasi Diameter Firewall

    Directory of Open Access Journals (Sweden)

    R.R. Vienna Sona Saputri Soetadi

    2012-09-01

    Full Text Available Untuk mendapatkan kompor bioetanol efisiensi thermal maksimal diperlukan penelitian komprehensif. Salah satunya adalah penelitian terhadap posisi peletakkan beban pada kompor bioetanol kompak. Pengujian dilakukan pada kompor uji bioetanol dengan kadar 99%, yaitu kompor bioetanol tipe side burner dengan firewall 2.5 inci dan firewall 3 inci. Pengukuran temperatur api dengan 13 thermocouple K dengan pengukuran searah api keatas setiap 5 mm-an. Kemudian, water boiling test dilakukan untuk mendapatkan daya dan beban dan dilanjutkan mengukur waktu pendidihan air. Hasil penelitian ini menunjukkan gambaran total distribusi temperatur nyala api difusi. Hasil menunjukkan untuk kompor 2.5 inci dengan daya 1.6 kW mempunyai temperatur 542 ºC dengan jarak ketinggian 5 mm dari rim kompor sedangkan kompor 3 inci menghasilkan daya 2.38 kW dengan temperatur 516 ºC.

  16. Use of ceramic recuperator burners for process optimization of a hearth bogie furnace; Prozessoptimierung an einem Herdwagenofen durch Einsatz keramischer Rekuperatorbrenner

    Energy Technology Data Exchange (ETDEWEB)

    Maeder, Dirk; Rakette, Roland [NOXMAT GmbH (Germany); Schlager, Stefan [Schlager Industrieofenbau GmbH, Hagen (Germany)

    2009-07-01

    Potentials for optimization are outlined using the example of a new hearth bogie furnace for a heat-treatment installation. The use of modern recuperator burners which, in this case, are employed for direct heating, favors the exhaustive exploitation of these potentials. The burner and furnace technologies are examined in detail, and initial operating experience is reported. Many of the provisions outlined can be applied analogously to other furnace types, including existing installations. Close cooperation between the burner manufacturer, the furnace engineer and the operator plays a vital role in process optimization. (orig.)

  17. ASSESSMENT OF THE USE FOR FERTILISATION PURPOSES INCINERATION ASH PELLETS USING GASIFICATION BURNER LESTER

    Directory of Open Access Journals (Sweden)

    Marzena Gibczyńska

    2016-12-01

    Full Text Available The use of biomass in system energetics for the purpose of increasing the share of renewable energy sources in the overall energy mix by biomass and coal co-combustion is not an optimal solution in the light of previous experience in Poland. It is appropriate to develop local biomass market for energy purposes as a basis for future distributed energy generation based on biomass. This solution facilitates the use of ash from biomass combustion for plant fertilisation. The present paper concerns the assessment of the use of ash from combustion of pellets in an innovative gasifying pellet burner – LESTER type, for soil fertilisation. The paper presents the analysis of the content of macro- and microelements in ash against the chemical composition of pellets in relation to permissible contents in fertilisers. The content of phosphorus, potassium, calcium and magnesium in bottom and fly ash from combustion of wood pellet and rye straw in LESTER gasifying burner validates the use of this material for soil fertilisation purposes. However, due to low nitrogen content – comparable to that found in soil, the material is not to be considered as fertiliser supplying this macroelement to soil. The analysed bottom ash used for fertilisation meets the conditions set out in the Regulation of the Minister of Environment of 9 September 2002. However, fly ash should be used with considerable caution due to high content of iron, zinc and nickel. The yield of bottom ash is several times higher than that of fly ash, therefore the possibility of its use in the form of mixtures in adequate proportions should be considered.

  18. Effect on Particulate and Gas Emissions by Combusting Biodiesel Blend Fuels Made from Different Plant Oil Feedstocks in a Liquid Fuel Burner

    National Research Council Canada - National Science Library

    Abdul Rahim, Norwazan; Mohd Jaafar, Mohammad; Sapee, Syazwan; Elraheem, Hazir

    2016-01-01

    .... The biodiesel blend fuel combustion experiments were carried out using a liquid fuel burner and biodiesel fuel made from various plant oil feedstocks, including jatropha, palm and coconut oils...

  19. Heat transfer characteristics of a porous radiant burner under the influence of a 2-D radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, Prabal; Mishra, S.C. E-mail: scm_iitg@yahoo.com; Trimis, D.; Durst, F

    2004-04-01

    This paper deals with the heat transfer analysis of a 2-D rectangular porous radiant burner. Combustion in the porous medium is modelled as a spatially dependent heat generation zone. The gas and the solid phases are considered in non-local thermal equilibrium, and separate energy equations are used for the two phases. The solid phase is assumed to be absorbing, emitting and scattering, while the gas phase is considered transparent to radiation. The radiative part of the energy equation is solved using the collapsed dimension method. The alternating direction implicit scheme is used to solve the transient 2-D energy equations. Effects of various parameters on the performance of the burner are studied.

  20. Flat flame burner on an aluminium melting and holding furnace. A demonstration at Alycast Ltd. (Telford (GB)). Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    The installation of a flat flame burner furnace at a pressure diecasting foundry as part of a UK Energy Efficiency Demonstration Project is described. The new furnace has a higher thermal efficiency, requires reduced maintenance and has increased operational flexibility compared to conventional furnaces. The energy savings are such as to achieve a payback period of six months. Suggestions for future improvements are also included.

  1. Evaluating measurements of carbon dioxide emissions using a precision source--A natural gas burner.

    Science.gov (United States)

    Bryant, Rodney; Bundy, Matthew; Zong, Ruowen

    2015-07-01

    A natural gas burner has been used as a precise and accurate source for generating large quantities of carbon dioxide (CO2) to evaluate emissions measurements at near-industrial scale. Two methods for determining carbon dioxide emissions from stationary sources are considered here: predicting emissions based on fuel consumption measurements-predicted emissions measurements, and direct measurement of emissions quantities in the flue gas-direct emissions measurements. Uncertainty for the predicted emissions measurement was estimated at less than 1%. Uncertainty estimates for the direct emissions measurement of carbon dioxide were on the order of ±4%. The relative difference between the direct emissions measurements and the predicted emissions measurements was within the range of the measurement uncertainty, therefore demonstrating good agreement. The study demonstrates how independent methods are used to validate source emissions measurements, while also demonstrating how a fire research facility can be used as a precision test-bed to evaluate and improve carbon dioxide emissions measurements from stationary sources. Fossil-fuel-consuming stationary sources such as electric power plants and industrial facilities account for more than half of the CO2 emissions in the United States. Therefore, accurate emissions measurements from these sources are critical for evaluating efforts to reduce greenhouse gas emissions. This study demonstrates how a surrogate for a stationary source, a fire research facility, can be used to evaluate the accuracy of measurements of CO2 emissions.

  2. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  3. Time evolution of propagating nonpremixed flames in a counterflow, annular slot burner under AC electric fields

    KAUST Repository

    Tran, Vu Manh

    2016-06-19

    The mechanism behind improved flame propagation speeds under electric fields is not yet fully understood. Although evidence supports that ion movements cause ionic wind, how this wind affects flame propagation has not been addressed. Here, we apply alternating current electric fields to a gap between the upper and lower parts of a counterflow, annular slot burner and present the characteristics of the propagating nonpremixed edge-flames produced. Contrary to many other previous studies, flame displacement speed decreased with applied AC voltage, and, depending on the applied AC frequency, the trailing flame body took on an oscillatory wavy motion. When flame displacement speeds were corrected using measured unburned flow velocities, we found no significant difference in flame propagation speeds, indicating no thermal or chemical effects by electric fields on the burning velocity. Thus, we conclude that the generation of bidirectional ionic wind is responsible for the impact of electric fields on flames and that an interaction between this bidirectional ionic wind and the flame parameters creates visible and/or measurable phenomenological effects. We also explain that the presence of trailing flame bodies is a dynamic response to an electric body force on a reaction zone, an area that can be considered to have a net positively charged volume. In addition, we characterize the wavy motion of the transient flame as a relaxation time independent of mixture strength, strain rate, and Lewis number.

  4. Curved wall-jet burner for synthesizing titania and silica nanoparticles

    KAUST Repository

    Ismail, Mohamed

    2015-01-01

    A novel curved wall-jet (CWJ) burner was designed for flame synthesis, by injecting precursors through a center tube and by supplying fuel/air mixtures as an annular-inward jet for rapid mixing of the precursors in the reaction zone. Titanium dioxide (TiO2) and silicon dioxide (SiO2) nanoparticles were produced in ethylene (C2H4)/air premixed flames using titanium tetraisopropoxide (TTIP) and hexamethyldisiloxane (HMDSO) as the precursors, respectively. Particle image velocimetry measurements confirmed that the precursors can be injected into the flames without appreciably affecting flow structure. The nanoparticles were characterized using X-ray diffraction, Raman spectroscopy, the Brunauer-Emmett-Teller (BET) method, and high-resolution transmission electron microscopy. In the case of TiO2, the phase of nanoparticles could be controlled by adjusting the equivalence ratio, while the particle size was dependent on the precursor loading rate and the flame temperature. The synthesized TiO2 nanoparticles exhibited high crystallinity and the anatase phase was dominant at high equivalence ratios (φ > 1.3). In the case of SiO2, the particle size could be controlled from 11 to 18 nm by adjusting the precursor loading rate. © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  5. Research on Performance of H2 Rich Blowout Limit in Bluff-Body Burner

    Directory of Open Access Journals (Sweden)

    Hongtao Zheng

    2012-01-01

    Full Text Available In order to investigate H2 rich blowout limit at different blockage ratios and flow velocities, a CFD software FLUENT was used to simulate H2 burning flow field in bluff-body burner, and the software CHEMKIN was adopted to analyze the sensitivity of each elementary reaction. Composition Probability Density Function (C-PDF model was adopted to simulate H2 combustion field in turbulence flame. The numerical results show that reactions R2 and R9 possess the largest positive and negative temperature sensitivity. Temperature has a very important influence on these two reactions. When equivalence ratio is 1, the mixture is most ignitable, and the critical ignition temperature is 1550 K. There should be an optimal blockage ratio which can stabilize the flame best. When the blockage ratio remains unchanged, the relationship between H2 RBL and flow velocity is a logarithmic function. When the flow velocity remains unchanged, the relationship between H2 RBL and blockage ratio is a parabolic function. A complete extinction requires three phases: the temperature sudden decline in the main stream, the energy dissipation from the recirculation zone to the main stream, and the complete extinction of the flame.

  6. Flame emission spectroscopy measurement of a steam blast and air blast burner

    Directory of Open Access Journals (Sweden)

    Jozsa Viktor

    2017-01-01

    Full Text Available Control and online monitoring of combustion have become critical to meet the increasingly strict pollutant emission standards. For such a purpose, optical sensing methods, like flame emission spectrometry, seem to be the most feasible technique. Spectrometry is capable to provide information about the local equivalence ratio inside the flame through the chemiluminescence intensity ratio measurement of various radicals. In the present study, a 15 kW atmospheric burner was analyzed utilizing standard diesel fuel. Its plain jet type atomizer was operated with both air and steam atomizing mediums. Up to now, injection of steam into the reaction zone has attracted less scientific attention contrary to its practical importance. Spatial plots of OH*, CH*, and C2* excited radicals were analyzed at 0.35, 0.7, and 1 bar atomization gauge pressures, utilizing both atomizing mediums. The C2* was found to decrease strongly with increasing steam addition. The OH*/CH* and OH*/C2* chemiluminescence intensity ratios along the axis showed a divergent behavior in all the analyzed cases. Nevertheless, CH*/C2* chemiluminescence intensity ratio decreased only slightly, showing low sensitivity to the position of the spectrometer. The findings may be directly applied in steady operating combustion systems, i. e., gas turbines, boilers, and furnaces.

  7. Large Eddy Simulations of the Vortex-Flame Interaction in a Turbulent Swirl Burner

    Science.gov (United States)

    Lu, Zhen; Elbaz, Ayman M.; Hernandez Perez, Francisco E.; Roberts, William L.; Im, Hong G.

    2017-11-01

    A series of swirl-stabilized partially premixed flames are simulated using large eddy simulation (LES) along with the flamelet/progress variable (FPV) model for combustion. The target burner has separate and concentric methane and air streams, with methane in the center and the air flow swirled through the tangential inlets. The flame is lifted in a straight quarl, leading to a partially premixed state. By fixing the swirl number and air flow rate, the fuel jet velocity is reduced to study flame stability as the flame approaches the lean blow-off limit. Simulation results are compared against measured data, yielding a generally good agreement on the velocity, temperature, and species mass fraction distributions. The proper orthogonal decomposition (POD) method is applied on the velocity and progress variable fields to analyze the dominant unsteady flow structure, indicating a coupling between the precessing vortex core (PVC) and the flame. The effects of vortex-flame interactions on the stabilization of the lifted swirling flame are also investigated. For the stabilization of the lifted swirling flame, the effects of convection, enhanced mixing, and flame stretching introduced by the PVC are assessed based on the numerical results. This research work was sponsored by King Abdullah University of Science and Technology (KAUST) and used computational resources at KAUST Supercomputing Laboratory.

  8. Large Eddy Simulation Analysis on Confined Swirling Flows in a Gas Turbine Swirl Burner

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2017-12-01

    Full Text Available This paper describes a Large Eddy Simulation (LES investigation into flow fields in a model gas turbine combustor equipped with a swirl burner. A probability density function was used to describe the interaction physics of chemical reaction and turbulent flow as liquid fuel was directly injected into the combustion chamber and rapidly mixed with the swirling air. Simulation results showed that heat release during combustion accelerated the axial velocity motion and made the recirculation zone more compact. As the combustion was taking place under lean burn conditions, NO emissions was less than 10 ppm. Finally, the effects of outlet contraction on swirling flows and combustion instability were investigated. Results suggest that contracted outlet can enhance the generation of a Central Vortex Core (CVC flow structure. As peak RMS of velocity fluctuation profiles at center-line suggested the turbulent instability can be enhanced by CVC motion, the Power Spectrum Density (PSD amplitude also explained that the oscillation at CVC position was greater than other places. Both evidences demonstrated that outlet contraction can increase the instability of the central field.

  9. Evaluation of the Battelle Agglomerating Ash Burner High Btu Coal Gasification Process

    Energy Technology Data Exchange (ETDEWEB)

    Malow, M.; West, A.S.

    1978-06-01

    The economics of the Battelle Agglomerating Ash Burner Process for the production of high Btu gas (SNG) from coal has been evaluated. A conceptual process design including process flowsheets, heat and material balances and equipment specifications has been prepared. Capital costs, operating costs and gas costs have been developed using the CFBraun ''Gas Cost Guidelines''. The estimated capital and gas costs for the Battelle process have been compared to the alternative high Btu processes described in CFBraun's ''Factored Estimates for Western Coal Commercial Concepts'' and were found to be economically unattractive. Some of the reasons for the higher capital cost and gas costs for the Battelle process are: Low Gasifier and Combustor Operating Pressure, Low Methane Make and Concentration in the Gasifier Effluent, Large Volume of Combustion Gases Produced and SO/sub 2/ Content, Use of Dual CO/sub 2/ Removal Units, and the Methanation Scheme. The Battelle process shows thermal efficiencies significantly lower than the most efficient processes, i.e., HYGAS, CO/sub 2/ Acceptor and BI-GAS.

  10. Standard test method for sulfur in liquefied petroleum gases (oxyhydrogen burner or lamp)

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This method covers the determination of total sulfur in LP-gases containing more than 1 ppM. Samples should not contain more than 100 ppM of halogens. The sample is burned in an oxy-hydrogen burner, or in a lamp in a closed system in a carbon dioxide-oxygen atmosphere. The latter is not recommended for trace quantities of sulfur due to the inordinately long combustion times needed. The oxides of sulfur are absorbed and oxidized to sulfuric acid in a hydrogen peroxide solution. The sulfate ions are then determined by either of the following finishes: barium perchlorate titration - the sulfate is titrated with barium perchlorate using a thorin-methylene blue mixed indicator; turbidimetric - the sulfate is precipitated as barium sulfate and the turbidity of a suspension of the precipitate is measured with a photometer. It is important to have the sulfur content of liquefied petroleum gases at low enough concentration to meet government regulations. The presence of sulfur may result in corrosion of metal surfaces. Sulfur may be poisonous to catalysts in subsequent processing.

  11. Research on the numerical simulation of secondary air diffusion angle to the swirl burners combustion process

    Science.gov (United States)

    Yu, Lei; Chang, Zhen; Liu, He; Yang, Guotian; Li, Xinli

    2017-09-01

    In this paper, the combustion process of swirl burners during 660 MW unit power plant is simulated. The influence of secondary air diffusion angle on the furnace temperature and furnace slagging is studied. In detail the temperature field and the carbon concentration field and velocity field inside the furnace are analysed when the secondary air diffusion angle is set as 30 °, 45 ° and 60 ° respectively. The simulation results show that when the secondary air diffusion angle is set as 30°, the center temperature of the furnace is highest, and at this time the pulverized coal combustion is sufficient, the carbon concentration near the water wall is the lowest, moreover, it is not easy to slag in the furnace. With the increase of secondary air diffusion angle, the center temperature of boiler burning zone gradually decline, carbon concentration near the water wall increase, it is the more prone to coking inside the furnace. The numerical simulation results not only provide a reference basis for the boiler operation, but also provide an important reference value for exquisite combustion research of the boiler.

  12. Blow-off characteristics of turbulent premixed flames in curved-wall Jet Burner

    KAUST Repository

    Mansour, Morkous S.

    2015-08-02

    This study concerns the flame dynamics of a curved-wall jet (CWJ) stabilized turbulent premixed flame as it approaches blow-off conditions. Time resolved OH planar laser-induced fluorescence (PLIF) delineated reaction zone contours and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the turbulent flow field features. Ethylene/air flames were stabilized in CWJ burner to determine the sequence of events leading to blowoff. For stably burning flames far from blowoff, flames are characterized with a recirculation zone (RZ) upstream for flame stabilization followed by an intense turbulent interaction jet (IJ) and merged-jet regions downstream; the flame front counterparts the shear layer vortices. Near blowoff, as the velocity of reactants increases, high local stretch rates exceed the extinction stretch rates instantaneously resulting in localized flame extinction along the IJ region. As Reynolds number (Re) increases, flames become shorter and are entrained by larger amounts of cold reactants. The increased strain rates together with heat loss effects result in further fragmentation of the flame, eventually leading to the complete quenching of the flame. This is explained in terms of local turbulent Karlovitz stretch factor (K) and principal flow strain rates associated with C contours. Hydrogen addition and increasing the RZ size lessen the tendency of flames to be locally extinguished.

  13. A high turndown, ultra low emission low swirl burner for natural gas, on-demand water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Vi H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cheng, Robert K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Therkelsen, Peter L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-13

    Previous research has shown that on-demand water heaters are, on average, approximately 37% more efficient than storage water heaters. However, approximately 98% of water heaters in the U.S. use storage water heaters while the remaining 2% are on-demand. A major market barrier to deployment of on-demand water heaters is their high retail cost, which is due in part to their reliance on multi-stage burner banks that require complex electronic controls. This project aims to research and develop a cost-effective, efficient, ultra-low emission burner for next generation natural gas on-demand water heaters in residential and commercial buildings. To meet these requirements, researchers at the Lawrence Berkeley National Laboratory (LBNL) are adapting and testing the low-swirl burner (LSB) technology for commercially available on-demand water heaters. In this report, a low-swirl burner is researched, developed, and evaluated to meet targeted on-demand water heater performance metrics. Performance metrics for a new LSB design are identified by characterizing performance of current on-demand water heaters using published literature and technical specifications, and through experimental evaluations that measure fuel consumption and emissions output over a range of operating conditions. Next, target metrics and design criteria for the LSB are used to create six 3D printed prototypes for preliminary investigations. Prototype designs that proved the most promising were fabricated out of metal and tested further to evaluate the LSB’s full performance potential. After conducting a full performance evaluation on two designs, we found that one LSB design is capable of meeting or exceeding almost all the target performance metrics for on-demand water heaters. Specifically, this LSB demonstrated flame stability when operating from 4.07 kBTU/hr up to 204 kBTU/hr (50:1 turndown), compliance with SCAQMD Rule 1146.2 (14 ng/J or 20 ppm NOX @ 3% O2), and lower CO emissions than state

  14. Pollutant Concentrations and Emission Rates from Scripted Natural Gas Cooking Burner Use in Nine Northern California Homes

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Delp, William W.; Lorenzetti, David M.; Maddalena, Randy L.

    2018-02-13

    METHODS: Combustion pollutant concentrations were measured during the scripted operation of natural gas cooking burners in nine homes. In addition to a base condition of closed windows, no forced air unit (FAU) use, and no mechanical exhaust, additional experiments were conducted while operating an FAU and/or vented range hood. Test homes included a 26m2 two-room apartment, a 134m2 first floor flat, and seven detached homes of 117–226m2. There were four single-story, four two-story and one 1.5 story homes. Cooktop use entailed boiling and simmering activities, using water as a heat sink. Oven and broiler use also were simulated. Time-resolved concentrations of carbon dioxide (CO2), nitric oxide (NO), nitrogen oxides (NOX), nitrogen dioxide (NO2), particles with diameters of 6 nm or larger (PN), carbon monoxide (CO), and fine particulate matter (PM2.5) were measured in the kitchen (K) and bedroom area (BR) of each home. CO2, NO, NO2, and PN data from sequential experiments were analyzed to quantify the contribution of burner use to the highest 1h and 4h time-integrated concentrations in each room. RESULTS: Four of the nine homes had kitchen 1h NO2 exceed the national ambient air quality standard (100 ppb). Two other homes had 1h NO2 exceed 50 ppb in the kitchen, and three had 1h NO2 above 50 ppb in the bedroom, suggesting substantial exposures to anyone at home when burners are used for a single substantial event. In all homes, the highest 1h kitchen PN exceeded 2 x105 cm-3-h, and the highest 4h PN exceeded 3 x105 cm-3-hr in all homes. The lowest 1h kitchen/bedroom ratios were 1.3–2.1 for NO in the apartment and two open floor plan homes. The largest K/BR ratios of 1h NO2 were in a two-story 1990s home retrofitted for deep energy savings: ratios in this home were 3.3 to 6.6. Kitchen 1h ratios of NO, NO2 and PN to CO2 were used to calculate fuel normalized emission factors (ng J-1). Range hood use substantially reduced cooking burner pollutant concentrations both

  15. Blending of hydrogen in natural gas distribution systems. Volume II. Combustion tests of blends in burners and appliances. Final report, June 1, 1976--August 30, 1977. [8, 11, 14, 20, 22, 25, and 31% hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-10-01

    The emerging ''hydrogen economy'' is a strong contender as one method to supplement or extend the domestic natural gas supply. This volume of the subject study ''Blending Hydrogen in Natural Gas Distribution Systems'' describes combustion studies to determine the maximum amount of hydrogen that can be blended in natural gas and utilized satisfactorily in typical appliances with no adjustment or conversion. Eleven pilot burners and twenty-three main burners typical of those in current use were operated on hydrogen-natural gas mixtures containing approximately 8, 11, 14, 20, 22, 25, and 31 percent, by volume, hydrogen. The eleven pilot burners and thirteen main burners were tested outside the appliance they were a part of. Ten main burners were tested in their respective appliances. Performance of the various burners tested are as follows: (1) Gas blends containing more than 6 to 11% hydrogen are the limiting mixtures for target type pilot burners. (2) Gas blends containing more than 20 to 22% hyrogen are the limiting mixtures for main burners operating in the open. (3) Gas blends containing more than 22 to 25% hydrogen are the limiting mixtures for main burners tested in appliances. (4) Modification of the orifice in target pilots or increasing the supply pressure to a minimum of 7 inches water column will permit the use of gas blends with 20% hydrogen.

  16. Duquesne Light Company`s burner modification for NO{sub x} RACT compliance on a 200 MW single face fired pulverized coal unit

    Energy Technology Data Exchange (ETDEWEB)

    Bionda, J.P. [Energy Systems Associates, Pittsburgh, PA (United States); Gabrielson, J.E.; Hallo, A.

    1994-12-31

    This paper discusses the result of a research test program conducted on Duquesne Light Company`s Elrama Unit 4. The program was designed to determine the viability of achieving compliance with the recently enacted PA DER Reasonably Available Control Technology (RACT) regulations. These regulations stipulate presumptive RACT requirements for wall fired boilers which include the installations and operation of low NO{sub x} burners with separated overfire air. Duquesne Light Company contracted Energy Systems, Associates (ESA) to aide in the design and testing of a novel low NO{sub x} burner design and separated overfire air system. By modifying the coal burners, it has been possible to reduce the NO{sub x} emissions by 50% to 60% on Unit 4, with minimal impact to the unburned carbon in the ash. The burner modifications create fuel rich streams which are surrounded by air rich zones in the primary flame region, thus staging combustion at the burner. Additional NO{sub x} reductions are realized when the combustion is further staged by use of the separated overfire air system.

  17. NASA GRC's High Pressure Burner Rig Facility and Materials Test Capabilities

    Science.gov (United States)

    Robinson, R. Craig

    1999-01-01

    The High Pressure Burner Rig (HPBR) at NASA Glenn Research Center is a high-velocity. pressurized combustion test rig used for high-temperature environmental durability studies of advanced materials and components. The facility burns jet fuel and air in controlled ratios, simulating combustion gas chemistries and temperatures that are realistic to those in gas turbine engines. In addition, the test section is capable of simulating the pressures and gas velocities representative of today's aircraft. The HPBR provides a relatively inexpensive. yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials. The facility has the unique capability of operating under both fuel-lean and fuel-rich gas mixtures. using a fume incinerator to eliminate any harmful byproduct emissions (CO, H2S) of rich-burn operation. Test samples are easily accessible for ongoing inspection and documentation of weight change, thickness, cracking, and other metrics. Temperature measurement is available in the form of both thermocouples and optical pyrometery. and the facility is equipped with quartz windows for observation and video taping. Operating conditions include: (1) 1.0 kg/sec (2.0 lbm/sec) combustion and secondary cooling airflow capability: (2) Equivalence ratios of 0.5- 1.0 (lean) to 1.5-2.0 (rich), with typically 10% H2O vapor pressure: (3) Gas temperatures ranging 700-1650 C (1300-3000 F): (4) Test pressures ranging 4-12 atmospheres: (5) Gas flow velocities ranging 10-30 m/s (50-100) ft/sec.: and (6) Cyclic and steady-state exposure capabilities. The facility has historically been used to test coupon-size materials. including metals and ceramics. However complex-shaped components have also been tested including cylinders, airfoils, and film-cooled end walls. The facility has also been used to develop thin-film temperature measurement sensors.

  18. Two-dimensional concentration and temperature measurements in extended flames of industrial burners using PLIF

    Science.gov (United States)

    Mueller, Dirk; Triebel, Wolfgang; Bochmann, Arne; Schmidl, Gabriele; Eckardt, Daniel; Burkert, Alfons; Roeper, Juergen; Schwerin, Malte

    2003-11-01

    Concentration profiles of OH, O2 and NO as well as temperature fields in diffusion flames of a length of approx. 300 mm and 40 mm in diameter used for gas-phase synthesis of fused silica have been determined by Planar Laser Induced Fluorescence (PLIF). The measurements have been carried out using a tunable spectrally narrowed KrF laser, whose wavelengths could be switched pulse-to-pulse. The laser beam was shaped as a light sheet into the flame at a fixed position. The flame area under investigation was monitored by moving the burner mounted on a stepper motor. By adapted synchronization the laser induced fluorescence was continuously recorded over the height of the flame perpendicular to the laser light sheet with an intensified CCD camera (10 fps, 8 bit dynamic range, 768 x 576 pixels). By image processing the spatial offset between images was corrected and superposed images were averaged and analyzed. This method allows to investigate the flame by recording 2D-fluorescence images including an automatic correction of intensity inhomogeneities of the laser light sheet. Based on the excited radical or molecule the fluorescence images were used to determine concentration and temperature distributions to build up a 2D-map of the flame. The PLIF experiment was calibrated with precise determination of the temperature at one coordinate of the flame by Spontaneous Vibrational Raman Scattering (VRS) of N2. As a result temperatures up to 3200 K could be determined with an accuracy better than 3% and a spatial resolution better than 1 mm. Temperature variations in the flame at different gas flows of fuel and oxidizer could be monitored sensitively. Also, the influence of different carrier gases like N2, Ar and He on the temperature distribution was investigated. Fluctuations in gas flow caused by turbulence could be monitored as well.

  19. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  20. Premixed Combustion of Kapok (ceiba pentandra seed oil on Perforated Burner

    Directory of Open Access Journals (Sweden)

    I.K.G. Wirawan

    2014-05-01

    Full Text Available Availability of fossil fuels in the world decrease gradually due to excessive fuel exploitation. This situations push researcher to look for alternative fuels as a source of renewable energy, one of them is kapok (ceiba pentandra seed oil. The aim this study was to know the behavior of laminar burning velocity, secondary Bunsen flame with open tip, cellular and triple flame. Premixed combustion of kapok seed oil was studied experimentally on perforated burner with equivalence ratio (φ varied from 0.30 until 1.07. The results showed that combustion of glycerol requires a large amount of air so that laminar burning velocity (SL is the highest at very lean mixture (φ =0.36 in the form of individual Bunsen flame on each of the perforated plate hole.  Perforated and secondary Bunsen flame both reached maximum SL similar with that of ethanol and higher than that of hexadecane. Slight increase of φ decreases drastically SL of perforated and secondary Bunsen flame. When the mixture was enriched, secondary Bunsen and perforated flame disappears, and then the flame becomes Bunsen flame with open tip and triple flame (φ = 0.62 to 1.07. Flame was getting stable until the mixture above the stoichiometry. Being isolated from ambient air, the SL of perforated flame, as well as secondary Bunsen flame, becomes equal with non-isolated flame. This shows the decreasing trend of laminar burning velocity while φ is increasing. When the mixture was enriched island (φ = 0.44 to 0.48 and petal (φ = 0.53 to 0.62 cellular flame take place. Flame becomes more unstable when the mixture was changed toward stoichiometry.

  1. Holy smoke in medieval funerary rites: chemical fingerprints of frankincense in southern Belgian incense burners.

    Science.gov (United States)

    Baeten, Jan; Deforce, Koen; Challe, Sophie; De Vos, Dirk; Degryse, Patrick

    2014-01-01

    Frankincense, the oleogum resin from Boswellia sp., has been an early luxury good in both Western and Eastern societies and is particularly used in Christian funerary and liturgical rites. The scant grave goods in late medieval burials comprise laterally perforated pottery vessels which are usually filled with charcoal. They occur in most regions of western Europe and are interpreted as incense burners but have never been investigated with advanced analytical techniques. We herein present chemical and anthracological results on perforated funerary pots from 4 Wallonian sites dating to the 12-14th century AD. Chromatographic and mass spectrometric analysis of lipid extracts of the ancient residues and comparison with extracts from four Boswellia species clearly evidence the presence of degraded frankincense in the former, based on characteristic triterpenoids, viz. boswellic and tirucallic acids, and their myriad dehydrated and oxygenated derivatives. Cembrane-type diterpenoids indicate B. sacra (southern Arabia) and B. serrata (India) as possible botanical origins. Furthermore, traces of juniper and possibly pine tar demonstrate that small amounts of locally available fragrances were mixed with frankincense, most likely to reduce its cost. Additionally, markers of ruminant fats in one sample from a domestic context indicate that this vessel was used for food preparation. Anthracological analysis demonstrates that the charcoal was used as fuel only and that no fragrant wood species were burned. The chars derived from local woody plants and were most likely recovered from domestic fires. Furthermore, vessel recycling is indicated by both contextual and biomarker evidence. The results shed a new light on funerary practices in the Middle Ages and at the same time reveal useful insights into the chemistry of burned frankincense. The discovery of novel biomarkers, namely Δ2-boswellic acids and a series of polyunsaturated and aromatic hydrocarbons, demonstrates the high

  2. Holy smoke in medieval funerary rites: chemical fingerprints of frankincense in southern Belgian incense burners.

    Directory of Open Access Journals (Sweden)

    Jan Baeten

    Full Text Available Frankincense, the oleogum resin from Boswellia sp., has been an early luxury good in both Western and Eastern societies and is particularly used in Christian funerary and liturgical rites. The scant grave goods in late medieval burials comprise laterally perforated pottery vessels which are usually filled with charcoal. They occur in most regions of western Europe and are interpreted as incense burners but have never been investigated with advanced analytical techniques. We herein present chemical and anthracological results on perforated funerary pots from 4 Wallonian sites dating to the 12-14th century AD. Chromatographic and mass spectrometric analysis of lipid extracts of the ancient residues and comparison with extracts from four Boswellia species clearly evidence the presence of degraded frankincense in the former, based on characteristic triterpenoids, viz. boswellic and tirucallic acids, and their myriad dehydrated and oxygenated derivatives. Cembrane-type diterpenoids indicate B. sacra (southern Arabia and B. serrata (India as possible botanical origins. Furthermore, traces of juniper and possibly pine tar demonstrate that small amounts of locally available fragrances were mixed with frankincense, most likely to reduce its cost. Additionally, markers of ruminant fats in one sample from a domestic context indicate that this vessel was used for food preparation. Anthracological analysis demonstrates that the charcoal was used as fuel only and that no fragrant wood species were burned. The chars derived from local woody plants and were most likely recovered from domestic fires. Furthermore, vessel recycling is indicated by both contextual and biomarker evidence. The results shed a new light on funerary practices in the Middle Ages and at the same time reveal useful insights into the chemistry of burned frankincense. The discovery of novel biomarkers, namely Δ2-boswellic acids and a series of polyunsaturated and aromatic hydrocarbons

  3. A NEW DOUBLE-SLIT CURVED WALL-JET (CWJ) BURNER FOR STABILIZING TURBULENT PREMIXED AND NON-PREMIXED FLAMES

    KAUST Repository

    Mansour, Morkous S.

    2015-06-30

    A novel double-slit curved wall-jet (CWJ) burner was proposed and employed, which utilizes the Coanda effect by supplying fuel and air as annular-inward jets over a curved surface. We investigated the stabilization characteristics and structure of methane/air, and propane/air turbulent premixed and non-premixed flames with varying global equivalence ratio, , and Reynolds number, Re. Simultaneous time-resolved measurements of particle image velocimetry and planar laser-induced fluorescence of OH radicals were conducted. The burner showed potential for stable operation for methane flames with relatively large fuel loading and overall rich conditions. These have a non-sooting nature. However, propane flames exhibit stable mode for a wider range of equivalence ratio and Re. Mixing characteristics in the cold flow of non-premixed cases were first examined using acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions.PIV measurements revealed that velocity gradients in the shear layers at the boundaries of the annularjets generate the turbulence, enhanced with the collisions in the interaction jet, IJ,region. Turbulent mean and rms velocities were influenced significantly by Re and high rms turbulent velocities are generated within the recirculation zone improving the flame stabilization in this burner.Premixed and non-premixed flames with high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Re. For flames with low equivalence ratio, the processes of local quenching at IJ region and of re-ignition within merged jet region maintained these flames further downstream particularly for non-premixed methane flame, revealing a strong intermittency.

  4. Research, development, and testing of a prototype two-stage low-input rate oil burner for variable output heating system applications

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, R.F.; Butcher, T.A. [Brookhaven National Labs., Upton, NY (United States)

    1997-09-01

    The use of a Two-Stage Fan Atomized Oil Burner (TSFAB) in space and water heating applications will have dramatic advantages in terms of it`s potential for a high Annual Fuel Utilization Efficiency (AFUE) and/or Energy Factor (EF) rating for the equipment. While demonstrations of a single rate burner in an actual application have already yielded sufficient confidence that space and domestic heating loads can be met at a single low firing rate, this represents only a narrow solution to the diverse nature of building space heating and domestic water loads that the industry must address. The mechanical development, proposed control, and testing of the Two-Stage burner is discussed in terms of near term and long term goals.

  5. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho

    2013-03-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of burner diameter, burner gap, and velocity ratio. A critical nitrogen mole fraction exists beyond which the flame cannot be sustained; the critical nitrogen mole fraction versus global strain rate curves have C-shapes for various burner diameters, burner gaps, and velocity ratios. At sufficiently high strain-rate flames, these curves collapse into one curve; therefore, the flames follow the one-dimensional flame response of a typical diffusion flame. Low strain-rate flames are significantly affected by radial conductive heat loss, and therefore flame length. Three flame extinction modes are identified: flame extinction through shrinkage of the outer-edge flame with or without oscillations at the outer-edge flame prior to the extinction, and flame extinction through a flame hole at the flame center. The extinction modes are significantly affected by the behavior of the outer-edge flame. Detailed explanations are provided based on the measured flame-surface temperature and numerical evaluation of the fractional contribution of each term in the energy equation. Radial conductive heat loss at the flame edge to ambience is the main mechanism of extinction through shrinkage of the outer-edge flame in low strain-rate flames. Reduction of the burner diameter can extend the flame extinction mode by shrinking the outer-edge flame in higher strain-rate flames. © 2012 Elsevier Ltd. All rights reserved.

  6. Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of

  7. Numerical and experimental investigation of combustion processes of low-calorific gases in pore burners; Numerische und experimentelle Untersuchung von Verbrennungsvorgaengen niederkalorischer Gase in Porenbrennern

    Energy Technology Data Exchange (ETDEWEB)

    Diezinger, S.; Steven, M.; Talukdar, P.; Al-Hamamre, Z.; Issendorff, F. von; Trimis, D. [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Stroemungsmechanik

    2005-07-01

    Combustion of H2-containing low-calorific mixtures in a pore burner was investigated both numerically and experimentally. The mixtures under investigation are representative of SOFC exhaust and pyrolysis gases. In preliminary experiments, the limits of operation of a pore burner were identified by equilibrium calculations and kinetic calculations. On this basis, 3D simulations of the combustion processes were made, taking into account all relevant heat and mass transfer processes including radiation in porous media. Finally, the limits of operation of both mixtures were identified experimentally, as were the CO and NOx emissions. (orig.)

  8. Opposed Jet Burner Approach for Characterizing Flameholding Potentials of Hydrocarbon Scramjet Fuels

    Science.gov (United States)

    Pellett, Gerald L.; Convery, Janet L.; Wilson, Lloyd G.

    2006-01-01

    Opposed Jet Burner (OJB) tools have been used extensively by the authors to measure Flame Strength (FS) extinction limits of laminar H2/N2 air and (recently) hydrocarbon (HC) air Counterflow Diffusion Flames (CFDFs) at one atm. This paper details normalization of FSs of N2- diluted H2 and HC systems to account for effects of fuel composition, temperature, pressure, jet diameter, inflow Reynolds number, and inflow velocity profile (plug, contoured nozzle; and parabolic, straight tube). Normalized results exemplify a sensitive accurate means of validating, globally, reduced chemical kinetic models at approx. 1 atm and the relatively low temperatures approximating the loss of non-premixed idealized flameholding, e.g., in scramjet combustors. Laminar FS is defined locally as maximum air input velocity, U(sub air), that sustains combustion of a counter-jet of g-fuel at extinction. It uniquely characterizes a fuel. And global axial strain rate at extinction (U(sub air) normalized by nozzle or tube diameter, D(sub n or (sub t)) can be compared directly with computed extinction limits, determined using either a 1-D Navier Stokes stream-function solution, using detailed transport and finite rate chemistry, or (better yet) a detailed 2-D Navier Stokes numerical simulation. The experimental results define an idealized flameholding reactivity scale that shows wide ranging (50 x) normalized FS s for various vaporized-liquid and gaseous HCs, including, in ascending order: JP-10, methane, JP-7, n-heptane, n-butane, propane, ethane, and ethylene. Results from H2 air produce a unique and exceptionally strong flame that agree within approx. 1% of a recent 2-D numerically simulated FS for a 3 mm tube-OJB. Thus we suggest that experimental FS s and/or FS ratios, for various neat and blended HCs w/ and w/o additives, offer accurate global tests of chemical kinetic models at the Ts and Ps of extinction. In conclusion, we argue the FS approach is more direct and fundamental, for

  9. Use of freeze-casting in advanced burner reactor fuel design

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin Madison, 1500 Engineering Drive, Madison, WI 53711 (United States); Burger, J.; Hunger, P. M.; Wegst, U. G. K. [Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755 (United States)

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models

  10. Numerical modeling of combustion of low-calorific-producer-gas from Mangium wood within a late mixing porous burner (LMPB

    Directory of Open Access Journals (Sweden)

    Kanokkarn Jirakulsomchok

    2017-08-01

    Full Text Available This article presents a numerical study of combustion of low-calorific-producer-gas from Mangium wood within a late mixing porous burner (LMPB. The LMPB consists of four main components, i.e., the fuel preheating porous (FP, the porous combustor (PC, the air jacket, and the mixing chamber. Interestingly, this LMPB was able to highly preheated and it still maintained high safety in operation. A single-step global reaction, steady state approach and a one-dimensional model were considered. The necessary information for burner characteristics, i.e., temperature profile, flame location and maximum temperature were also presented. The results indicated that stable combustion of a low-calorific-producer-gas within LMPB was possible achieved. Increasing equivalence ratio resulted in increasing in the flame temperature. Meanwhile, increasing the firing rate caused slightly decrease in flame temperature. The flame moved to downstream zone of the PC when the firing rate increased. Finally, it was found that the equivalence ratio did not affect the flame location.

  11. Fundamental study of spray combustion using a model burner; Model nenshoki wo mochiita funmu nensho no kiso kenky

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, N.; Hori, M. [Takushoku University, Tokyo (Japan); To, H.; Yonezawa, Y. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan); Higashiyama, T.

    2000-12-25

    Using a model burner, spray flame was investigated for the fundamental case of laminar and axisymmetric conditions and at low load. The experimental data were compared with the calculated results by a numerical code (Fluent Ver. 4.3). In the model burner, kerosene/air spray was generated by an airblast atomizer and ignited by annular and central pilot flames. The range of flame stability, the distributions of temperature and species concentrations (CO{sub 2}, O{sub 2}, CO, NO{sub x} and total hydrocarbons), and the velocity, mean diameter and number density of fuel droplets were measured. A phase Doppler velocimeter was used to measure the behavior of fuel droplets. Both temperature and the concentration of CO{sub 2} are higher downstream of the flame and in the recirculating zone surrounding the flame. Fuel droplets are accelerated as the evaporation and combustion proceed, while their Sauter mean diameter is not changed significantly. Although the predicted temperature values are higher by 200 - 300 K than the measurements, the trend of the temperature variation is reproduced well by the calculation. The concentration distributions of CO as well as of CO{sub 2} are predicted fairly well despite the simplified two-step reaction scheme. The calculated droplet trajectories are also in fair agreement with the measured behavior of fuel droplets. (author)

  12. Cooling Effectiveness Measurements for Air Film Cooling of Thermal Barrier Coated Surfaces in a Burner Rig Environment Using Phosphor Thermometry

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. In this investigation, surface temperature mapping was performed using recently developed Cr-doped GdAlO3 phosphor thermometry. Measurements were performed in the NASA GRC Mach 0.3 burner rig on a TBC-coated plate using a scaled up cooling hole geometry where both the mainstream hot gas temperature and the blowing ratio were varied. Procedures for surface temperature and cooling effectiveness mapping of the air film-cooled TBC-coated surface are described. Applications are also shown for an engine component in both the burner rig test environment as well as an engine afterburner environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  13. Numerical Study of Flame Stabilization Mechanism in a Premixed Burner with LES Non-adiabatic Flamelet Approach

    Science.gov (United States)

    Tang, Yihao; Hassanaly, Malik; Raman, Venkat

    2015-11-01

    In the development of highly efficient gas turbine combustion system, using high-hydrogen-content fuels is a new solution that limits pollutant emissions but also triggers flame stabilization issues. One promising concept to handle such instabilities within a large range of operating conditions is the FLOX® burner. A noticeable feature of the FLOX® burner is that it discharges high momentum jets without swirl, and flame stabilization is achieved in the shear layer around the jets. Experimental investigations have concluded that low velocity zones were absent and the flashback propensity was effectively decreased. It is proposed to study the stabilization mechanism to understand what physical phenomena are decisive in the process. In a preliminary numerical study, an adiabatic flamelet table was used along with LES simulations. Although the flow field's main features were captured, the simulation had issues in accurately predicting some important thermochemical quantities, including near wall quenching effects and OH mass fraction distribution. This work focuses on the effect of the adiabatic hypothesis on the flame stabilization mechanism. A non-adiabatic flamelet model is implemented and the impact on the stabilization mechanism is being quantified.

  14. The effects of hydrogen addition on Fenimore NO formation in low-pressure, fuel-rich-premixed, burner-stabilized CH4/O-2/N-2 flames

    NARCIS (Netherlands)

    Sepman, A. V.; van Essen, V. M.; Mokhov, A. V.; Levinsky, H. B.

    2008-01-01

    We investigate the effects of hydrogen addition on Fenimore NO formation in fuel-rich, low-pressure burner-stabilized CH4/O-2/N-2 flames. Towards this end, axial profiles of temperature and mole fractions of CH and NO are measured using laser-induced fluorescence (LIF). The experiments are performed

  15. Extending the predictions of chemical mechanisms for hydrogen combustion by Comparison of predicted and measured flame temperatures in burner-stabilized, 1-D flames

    NARCIS (Netherlands)

    Sepman, A. V.; Mokhov, A. V.; Levinsky, H. B.

    A method is presented for extending the range of conditions for which the performance of chemical mechanisms used to predict hydrogen burning velocities can be evaluated. Specifically, by comparing the computed variation of flame temperature with mass flux in burner-stabilized flat flames with those

  16. The effects of hydrogen addition on NO formation in atmospheric-pressure, fuel-rich-premixed, burner-stabilized methane, ethane and propane flames

    NARCIS (Netherlands)

    Sepman, A. V.; Mokhov, A. V.; Levinsky, H. B.

    The effects of hydrogen addition on NO formation in fuel-rich, burner-stabilized methane, ethane and propane flames are reported. Profiles of temperature and NO mole fraction were obtained using spontaneous Raman scattering and laser-induced fluorescence (LIF), respectively. Experiments were

  17. Experimental characterization of a radiant porous burner for low temperatures using natural gas; Caracterizacao experimental de um queimador poroso radiante a gas natural para baixas temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Catapan, Rafael C.; Hissanaga, Newton Junior; Pereira, Fernando M.; Oliveira Junior, Amir A.M. de [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica; Serfaty, Ricardo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Freire, Luiz G.M. [PETROBRAS - RedeGasEnergia, RJ (Brazil)

    2004-07-01

    This article describes the experimental characterization of a radiant porous burner for temperatures between 500 deg C and 900 deg C. These low temperature radiant burners can be used in many practical applications as drying of paper and wood, plastic coating, food cooking and ambient heating. Two different configurations of silicon carbide porous ceramic foams were tested: one with a radian reflecting region (RRR) at the outlet and another without this region. Both configurations were able to sustain the reaction with equivalent ratio under 0,35. The configuration with a reflecting region was able to sustain flames with a minimum power of 60 kW/m{sup 2} and the other configuration with 100 W/m{sup 2}.The configuration with the RRR reached minimum superficial temperatures about 100 deg C lower than the other one. These results show that the reflecting region increases the heat recirculation inside the porous burner. The radiant efficiency varied from 20% to 35% for both burners. (author)

  18. From Bunsen Burners to Fuel Cells: Invoking Energy Transducers to Exemplify "Paths" and Unify the Energy-Related Concepts of Thermochemistry and Thermodynamics

    Science.gov (United States)

    Hladky, Paul W.

    2009-01-01

    The conversion of chemical energy entirely into thermal energy by Bunsen burners and into thermal energy and electrical energy by fuel cells of varying efficiencies illustrates different paths by which a chemical reaction can occur. Using the efficiency of producing electrical energy as a path label allows all of the energy-related quantities to…

  19. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, June--September 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE`s Clean Coal Technology Program Round II.

  20. Use of the ATBURN computer program for design of atmospheric injector burners for low-pressure operation; Auslegung von atmosphaerischen Injektorbrennern fuer niedrigen Druck mit dem Rechenprogramm ATBURN

    Energy Technology Data Exchange (ETDEWEB)

    Rao, N.S. [Bochum Univ. (Germany). Lehrstuhl fuer Energieanlagentechnik; Kremer, H. [Bochum Univ. (Germany). Lehrstuhl fuer Energieanlagentechnik; Jaeschke, S. [Gaswaerme-Institut e.V., Essen (Germany)

    1995-03-01

    A computer program which permits configuration of diverse burner geometries, such as those for cooker burners, water-heaters and bar-type boiler burners, has been developed. The program, ATBURN, is based on a computation model proven in practical use which takes the regularities of the natural jet as its basis. The coefficient of excess air is the target variable in all calculations. The burner outlet section area and furnace-chamber pressure are the manipulated variables. Calculation of the dimensions of optimum burners is included in the program. An integrated gas library, using which the relevant properties of gases can be automatically integrated into the calculation process, is a special feature of the ATBURN program. Data input is accomplished by means of the user-friendly Borland interface. The values calculated are shown on the screen in either graphic or tabular form and can also be printed out. (orig.) [Deutsch] Es wurde ein Rechenprogramm entwickelt, das die Auslegung verschiedenartiger Brennergeometrien wie Kochstellenbrenner, Wasserheizer und Kesselstabbrenner ermoeglicht. Das Programm ATBURN basiert auf dem in der Praxis bewaehrten Rechenmodell, das von den Gesetzmaessigkeiten des Freistrahls ausgeht. Die Luftzahl ist bei allen Berechnungen die Zielgroesse. Als Stellgroessen gehen die Brenneraustrittsflaeche und der Ofenraumdruck ein. Die Berechnung der Abmessungen optimaler Brenner ist ein Teil des Programmes. Ein besonderes Merkmal des Programmes ATBURN ist eine integrierte Gasbibliothek, mit der die relevanten Eigenschaften von Gasen automatisch in den Berechnungsvorgang eingeladen werden koennen. Die Dateneingabe erfolgt ueber die komfortable Borland-Oberflaeche. Die berechneten Werte erscheinen auf dem Bildschirm entweder grafisch oder als Tabellen und koennen auch ausgedruckt werden. (orig.)

  1. Development and optimization of swirl-stabilized ceramic two-dimensional flame recuperator burners for decentralized heat recovery; Entwicklung und Optimierung drallstabilisierter, keramischer Flachflammenrekuperatorbrenner zur dezentralen Waermerueckgewinnung

    Energy Technology Data Exchange (ETDEWEB)

    Brune, M.; Konold, U.; Kremer, H.; Flamme, M.

    2000-07-01

    A swirl-stabilized ceramic two-dimensional flame recuperator burner was developed and optimized which was to combine the advantages of decentralized air preheating and the excellent heat transfer from 2D flame burners at process temperatures up to 1300 C. The burner can be operated at a connected gas load of 70-140 kW with a flame that is stable at the burner stone. Optimization of the ceramic heat exchanger resulted in a 48% decrease in fuel consumption, while nitric oxide concentrations were reduced to 107 mg/m{sup 3}. This burner technology is suited for furnaces but also for melting processes. Installed in compact furnace systems with high combustion chamber loads, it could enhance the process efficiency. The research project was successful. [German] Um die Vorteile der dezentralen Luftvorwaermung und der Waermeuebertragungseigenschaften von Flachflammenbrenner auf das Waermgut fuer Prozesstemperaturen bis 1300 C zu vereinen, wurde ein drallstabilisierter, keramischer Flachflammenrekuperatorbrenner entwickelt und optimiert. Der Brenner kann bei einer Gasanschlussleistung zwischen 70 und 140 kW mit einer am Brennerstein stabil anliegenden Flamme betrieben werden. Durch die Optimierung des keramischen Waermeaustauschers konnte bei einer Gasanschlussleistung von 100 kW und einer Prozesstemperatur von 1250 C eine relative Luftvorwaermung von 0,78 erreicht werden, was zu einer Brennstoffersparnis von 48% gegenueber einer Verbrennung ohne Abgaswaermetemperatur fuehrt zu einer Steigerung der Strahlungsintensitaet am Brennerstein von bis zu 100 kW/m{sup 2}. Die NO{sub x}-Konzentration konnte fuer diesen Anwendungsfall auf 207 mg/m{sup 3} gesenkt werden. Diese Brennertechnik ist im Bereich der Waermoefen aber auch der Schmelzprozesse einsetzbar. Besonders der Einsatz in zukuenftige, kompakte Ofenanlagen mit hoher Feuerraumbelastung, wie z.B. Banddurchlauf- oder Schnellbrandoefen, koennte den Anlagenwirkungsgrad steigern. Das Ziel des Forschungsvorhabens wurde erreicht

  2. Co-firing straw with coal in a swirl-stabilized dual-feed burner: modelling and experimental validation.

    Science.gov (United States)

    Yin, Chungen; Kaer, Søren K; Rosendahl, Lasse; Hvid, Søren L

    2010-06-01

    This paper presents a comprehensive computational fluid dynamics (CFD) modelling study of co-firing wheat straw with coal in a 150kW swirl-stabilized dual-feed burner flow reactor, in which the pulverized straw particles (mean diameter of 451microm) and coal particles (mean diameter of 110.4microm) are independently fed into the burner through two concentric injection tubes, i.e., the centre and annular tubes, respectively. Multiple simulations are performed, using three meshes, two global reaction mechanisms for homogeneous combustion, two turbulent combustion models, and two models for fuel particle conversion. It is found that for pulverized biomass particles of a few hundred microns in diameter the intra-particle heat and mass transfer is a secondary issue at most in their conversion, and the global four-step mechanism of Jones and Lindstedt may be better used in modelling volatiles combustion. The baseline CFD models show a good agreement with the measured maps of main species in the reactor. The straw particles, less affected by the swirling secondary air jet due to the large fuel/air jet momentum and large particle response time, travels in a nearly straight line and penetrate through the oxygen-lean core zone; whilst the coal particles are significantly affected by secondary air jet and swirled into the oxygen-rich outer radius with increased residence time (in average, 8.1s for coal particles vs. 5.2s for straw particles in the 3m high reactor). Therefore, a remarkable difference in the overall burnout of the two fuels is predicted: about 93% for coal char vs. 73% for straw char. As the conclusion, a reliable modelling methodology for pulverized biomass/coal co-firing and some useful co-firing design considerations are suggested. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Actinide transmutation using inert matrix fuels versus recycle in a low conversion fast burner reactor

    Energy Technology Data Exchange (ETDEWEB)

    Deinert, M.R.; Schneider, E.A.; Recktenwald, G.; Cady, K.B. [The Department of Mechanical Engineering, The University of Texas at Austin, 1 University Station, C2200, Austin, 78712 (United States)

    2009-06-15

    would require an infinite fuel residence time. In previous work we have shown that the amount of fluence required to achieve a unit of burnup in yttrium stabilized ZrO{sub 2} based IMF with 85 w/o zirconium oxide and 15 w/o minor actinides (MA) and plutonium increases dramatically beyond 750 MWd/kgIHM (75% burnup). In this paper we discuss the repository implications for recycle of actinides in LWR's using this type of IMF and compare this to actinide recycle in a low conversion fast burner reactor. We perform the analysis over a finite horizon of 100 years, in which reprocessing of spent LWR fuel begins in 2020. Reference [1] C. Lombardi and A. Mazzola, Exploiting the plutonium stockpiles in PWRs by using inert matrix fuel, Annals of Nuclear Energy. 23 (1996) 1117-1126. [2] U. Kasemeyer, J.M. Paratte, P. Grimm and R. Chawla, Comparison of pressurized water reactor core characteristics for 100% plutonium-containing loadings, Nuclear Technology. 122 (1998) 52-63. [3] G. Ledergerber, C. Degueldre, P. Heimgartner, M.A. Pouchon and U. Kasemeyer, Inert matrix fuel for the utilisation of plutonium, Progress in Nuclear Energy. 38 (2001) 301-308. [4] U. Kasemeyer, C. Hellwig, J. Lebenhaft and R. Chawla, Comparison of various partial light water reactor core loadings with inert matrix and mixed oxide fuel, Journal of Nuclear Materials. 319 (2003) 142-153. [5] E.A. Schneider, M.R. Deinert and K.B. Cady, Burnup simulations of an inert matrix fuel using a two region, multi-group reactor physics model, in Proceedings of the physics of advanced fuel cycles, PHYSOR 2006, Vancouver, BC, 2006. [6] E.A. Schneider, M.R. Deinert and K.B. Cady, Burnup simulations and spent fuel characteristics of ZRO{sub 2} based inert matrix fuels, Journal of Nuclear Materials. 361 (2007) 41-51. (authors)

  4. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States)

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  5. Efficiency of using direct-flow burners and nozzles in implementation of dry-bottom ash removal at the TPP-210A boiler furnace

    Science.gov (United States)

    Arkhipov, A. M.; Kanunnikov, A. A.; Kirichkov, V. S.; Prokhorov, V. B.; Fomenko, M. V.; Chernov, S. L.

    2017-02-01

    In reconstruction of operating pulverized coal-fired boilers, one of the main factors is the choice of a method for slag removal: dry bottom ash removal (DBAR) or slag-tap removal (STR). In this case, ecological and economic aspects should be taken into account, and also the early ignition of pulverized coal fuel, the reliability of operation of the furnace walls in the mode without slagging, and the stability of slag removal should be provided. In this work, issues of changeover of the pulverized coal-fired boilers of the TPP-210A type from the STR mode to the DBAR mode are considered. As of today, the main problems during the operation of these boilers are the high emissions of nitrogen oxides together with flue gases into the atmosphere and the appropriated payoffs, a small range of loads available, the necessity of stabilization of the pulverizedcoal flame sustainability by using the highly reactive fuel, large mechanical fuel underburning, etc. Results of studying aerodynamics of a furnace with DBAR obtained in the process of physical simulation are given; technical solutions and preliminary design (configuration of burners and nozzles in the boiler furnace, conceptual design of the pulverized coal burner, configuration of TPP-210A boiler with the low heat liberation of furnace cross-section and volumetric heat release) are set forth, which are associated with the optimization of aerodynamics of furnace volume, when the direct-flow burners and nozzles are used, and with organization of the efficient staged combustion of solid fuel. Two versions of possible modernization of a boiler unit are considered. Under conditions of the planned increase in the steam production capacity, the most promising measures are as follows: the DBAR implementation with reducing heat releases of the cross-section and volume of the furnace approximately by half, the installation of the direct-flow burners and nozzles with injection of recirculation gases into the active combustion

  6. SENSOR FOR INDIVIDUAL BURNER CONTROL OF COAL FIRING RATE, FUEL-AIR RATIO AND COAL FINENESS CORRELATION

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Hill

    2004-02-01

    The project's overall objective is to development a commercially viable dynamic signature based sensing system that is used to infer the flow rate and fineness of pulverized coal. This eighteen month effort will focus on developments required to transfer the measurement system from the laboratory to a field ready prototype system. This objective will be achieved through the completion of the laboratory development of the sensor and data algorithm followed by full scale field tests of a portable measurement system. The sensing system utilizes accelerometers attached externally to coal feeder pipes. Raw data is collected from the impingement of the coal particles as well as the acoustic noise generated from the flow and is transformed into characteristic signatures through proper calibration that are meaningful to the operator. The laboratory testing will use a portable version of the sensing system to collect signature data from a variety of flow conditions including coal flow rates, flow orientations, and coal particle characteristics. This work will be conducted at the Coal Flow Measurement Laboratory that is sponsored by EPRI and operated by Airflow Sciences. The data will be used to enhance the algorithm and neural network required to perform real time analysis of the non-specific signature data. The system will be installed at two full scale power plants to collect data in a real time operating scenario. These short term duration tests will evaluate the ability of the algorithm to accurately infer coal flow rates and determine if the measurement system can be used effectively in an active control loop for combustion diagnostics and burner balancing. At the completion of this project, prototype versions of both a portable system and a permanent installation will be available for final packaging and commercialization by one of the team members. Both types of systems will be marketed for conducting combustion diagnostics and balancing of individual flows to

  7. Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Hill; Roger Demler

    2004-06-01

    The project's overall objective is to develop a commercially viable dynamic signature based sensing system that is used to infer the flow rate and fineness of pulverized coal. This eighteen month effort will focus on developments required to transfer the measurement system from the laboratory to a field ready prototype system. This objective will be achieved through the completion of the laboratory development of the sensor and data algorithm followed by full scale field tests of a portable measurement system. The sensing system utilizes accelerometers attached externally to coal feeder pipes. Raw data is collected from the impingement of the coal particles as well as the acoustic noise generated from the flow and is transformed into characteristic signatures through proper calibration that are meaningful to the operator. The laboratory testing will use a portable version of the sensing system to collect signature data from a variety of flow conditions including coal flow rates, flow orientations, and coal particle characteristics. This work will be conducted at the Coal Flow Measurement Laboratory that is sponsored by EPRI and operated by Airflow Sciences. The data will be used to enhance the algorithm and neural network required to perform real time analysis of the nonspecific signature data. The system will be installed at two full scale power plants to collect data in a real time operating scenario. These short term duration tests will evaluate the ability of the algorithm to accurately infer coal flow rates and determine if the measurement system can be used effectively in an active control loop for combustion diagnostics and burner balancing. At the completion of this project, prototype versions of both a portable system and a permanent installation will be available for final packaging and commercialization by one of the team members. Both types of systems will be marketed for conducting combustion diagnostics and balancing of individual flows to

  8. Real-Time Thermographic-Phosphor-Based Temperature Measurements of Thermal Barrier Coating Surfaces Subjected to a High-Velocity Combustor Burner Environment

    Science.gov (United States)

    Eldridge, Jeffrey I.; Jenkins, Thomas P.; Allison, Stephen W.; Cruzen, Scott; Condevaux, J. J.; Senk, J. R.; Paul, A. D.

    2011-01-01

    Surface temperature measurements were conducted on metallic specimens coated with an yttria-stabilized zirconia (YSZ) thermal barrier coating (TBC) with a YAG:Dy phosphor layer that were subjected to an aggressive high-velocity combustor burner environment. Luminescence-based surface temperature measurements of the same TBC system have previously been demonstrated for specimens subjected to static furnace or laser heating. Surface temperatures were determined from the decay time of the luminescence signal of the YAG:Dy phosphor layer that was excited by a pulsed laser source. However, the furnace and laser heating provides a much more benign environment than that which exists in a turbine engine, where there are additional challenges of a highly radiant background and high velocity gases. As the next step in validating the suitability of luminescence-based temperature measurements for turbine engine environments, new testing was performed where heating was provided by a high-velocity combustor burner rig at Williams International. Real-time surface temperature measurements during burner rig heating were obtained from the decay of the luminescence from the YAG:Dy surface layer. The robustness of several temperature probe designs in the sonic velocity, high radiance flame environment was evaluated. In addition, analysis was performed to show whether the luminescence decay could be satisfactorily extracted from the high radiance background.

  9. Performance of a hydrogen burner to simulate air entering scramjet combustors. [simulation of total temperature, total pressure, and volume fraction of oxygen of air at flight conditions

    Science.gov (United States)

    Russin, W. R.

    1974-01-01

    Tests were conducted to determine the performance of a hydrogen burner used to produce a test gas that simulates air entering a scramjet combustor at various flight conditions. The test gas simulates air in that it duplicates the total temperature, total pressure, and the volume fraction of oxygen of air at flight conditions. The main objective of the tests was to determine the performance of the burner as a function of the effective exhaust port area. The conclusions were: (1) pressure oscillations of the chugging type were reduced in amplitude to plus or minus 2 percent of the mean pressure level by proper sizing of hydrogen, oxygen, and air injector flow areas; (2) combustion efficiency remained essentially constant as the exhaust port area was increased by a factor of 3.4; (3) the mean total temperature determined from integrating the exit radial gas property profiles was within plus or minus 5 percent of the theoretical bulk total temperature; (4) the measured exit total temperature profile had a local peak temperature more than 30 percent greater than the theoretical bulk total temperature; and (5) measured heat transfer to the burner liner was 75 percent of that predicted by theory based on a flat radial temperature profile.

  10. Industrial Medium-Btu Fuel Gas Demonstration-Plant Program. Technical support report: combustion system data. Part 2. Burner conversion survey

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    This study was limited to an analysis of the feasibility of burning the IFG in the existing burners and combustion chambers among a group of prospective IFG customers. The results of this study indicate that the great majority of burner and equipment manufacturers recommend that the IFG can be utilized with their equipment. This is especially true with the boilers which make up the largest part of the load among the potential users of the IFG. A small number of burners representing a small part of the total potential load will probably have to be replaced. This study did not address the changes that would be required with respect to the fuel distribution piping within each facility. At a minimum of the existing regulators, flow meters, and control valves designed for the natural gas flow rates would have to be replaced to accommodate the higher fuel flow rates requiring with the IFG. In many facilities, the fuel distribution piping would have to be replaced. No changes, however, are requied for the combustion air fans or flues and stacks.

  11. Design and manufacture of an atmospheric burner of biogas with rural application; Diseno y construccion de un quemador atmosferico de biogas con aplicaciones rurales

    Energy Technology Data Exchange (ETDEWEB)

    Nunez Nunez, Jorge; Suarez Pacheco, Jose; Novelo Navarrete, Jose H; Soto Apolinar, Efrain [Universidad de Quintana Roo, Chetumal, Quintana Roo (Mexico)

    2000-07-01

    In this text it's resumed the methodology that was carried out to make an atmospheric burner of biogas, as the criteria that were taken in account in order to determine the main parameters of it. It introduces a synthesis of the stages of design and manufacture of the device. The utility of this type of burner increase the efficiency of the oxidation of the biogas compared with the use of conventional burners that aren't designed for this purpose. [Spanish] En este trabajo se resume la metodologia que se llevo a cabo para la construccion de un quemador de biogas tipo atmosferico, asi como los criterios que se tomaron para la determinacion de los parametros principales del mismo. Se presenta una sintesis de las etapas de diseno y manufactura del dispositivo. El uso de este tipo de quemadores aumenta la eficiencia de la oxidacion del biogas en comparacion con el uso de quemadores convencionales que no estan disenados para quemar biogas.

  12. Influence of the technique for injection of flue gas and the configuration of the swirl burner throat on combustion of gaseous fuel and formation of nitrogen oxides in the flame

    Science.gov (United States)

    Dvoinishnikov, V. A.; Khokhlov, D. A.; Knyaz'kov, V. P.; Ershov, A. Yu.

    2017-05-01

    How the points at which the flue gas was injected into the swirl burner and the design of the burner outlet influence the formation and development of the flame in the submerged space, as well as the formation of nitrogen oxides in the combustion products, have been studied. The object under numerical investigation is the flame of the GMVI combined (oil/gas) burner swirl burner fitted with a convergent, biconical, cylindrical, or divergent throat at the burner outlet with individual supply of the air and injection of the gaseous fuel through tubing. The burners of two designs were investigated; they differ by the absence or presence of an inlet for individual injection of the flue gas. A technique for numerical simulation of the flame based on the CFD methods widely used in research of this kind underlies the study. Based on the summarized results of the numerical simulation of the processes that occur in jet flows, the specific features of the aerodynamic pattern of the flame have been established. It is shown that the flame can be conventionally divided into several sections over its length in all investigations. The lengths of each of the sections, as well as the form of the fields of axial velocity, temperatures, concentrations of the fuel, oxygen, and carbon and nitrogen oxides, are different and determined by the design features of the burner, the flow rates of the agent, and the compositions of the latter in the burner ducts as well as the configuration of the burner throat and the temperature of the environment. To what degree the burner throat configuration and the techniques for injection of the flue gas at different ambient temperatures influence the formation of nitrogen oxides has been established. It is shown that the supply of the recirculation of flue gas into the fuel injection zone enables a considerable reduction in the formation of nitrogen oxides in the flame combustion products. It has been established that the locations of the zones of

  13. Simulasi Numeris Karakteristik Pembakaran CH4/CO2/Udara dan CH4/CO2/O2 pada Counterflow Premixed Burner

    Directory of Open Access Journals (Sweden)

    Hangga Wicaksono

    2017-08-01

    Full Text Available The high amount of CO2 produced in a conventional biogas reactor needs to be considered. A further analysis is needed in order to investigate the effect of CO2 addition especially in thermal and chemical kinetics aspect. This numerical study has been held to analyze the effect of CO2 in CH4/CO2/O­2 and CH4/CO2/Air premixed combustion. In this study one dimensional analisys in a counterflow burner has been performed. The volume fraction of CO2 used in this study was 0%-40% from CH4’s volume fraction, according to the amount of CO2 in general phenomenon. Based on the flammability limits data, the volume fraction of CH4 used was 5-61% in O2 environment and 5-15% in air environment. The results showed a decreasing temperature along with the increasing percentage of CO2 in each mixtures, but the effect was quite smaller especially in stoichiometric and lean mixture. CO2 could affects thermally (by absorbing heat due to its high Cp and also made the production of unburnt fuel species such as CO relatively higher.

  14. Co-firing straw with coal in a swirl-stabilized dual-feed burner: modelling and experimental validation

    DEFF Research Database (Denmark)

    Yin, Chungen; Kær, Søren Knudsen; Rosendahl, Lasse

    2010-01-01

    . The baseline CFD models show a good agreement with the measured maps of main species in the reactor. The straw particles, less affected by the swirling secondary air jet due to the large fuel/air jet momentum and large particle response time, travels in a nearly straight line and penetrate through the oxygen......-lean core zone; whilst the coal particles are significantly affected by secondary air jet and swirled into the oxygen-rich outer radius with increased residence time (in average, 8.1s for coal particles vs. 5.2s for straw particles in the 3m high reactor). Therefore, a remarkable difference in the overall......This paper presents a comprehensive computational fluid dynamics (CFD) modelling study of co-firing wheat straw with coal in a 150 kW swirl-stabilized dual-feed burner flow reactor, in which the pulverized straw particles (mean diameter of 451μm) and coal particles (mean diameter of 110.4μm...

  15. Feasibility study of utilizing jatropha curcas oil as bio-diesel in an oil firing burner system

    Science.gov (United States)

    Shaiful, A. I. M.; Jaafar, M. N. Mohd; Sahar, A. M.

    2017-09-01

    Jatropha oil derived from the Jatropha Curcas Linnaeus is one of the high potential plants to be use as bio-diesel. The purpose of this research is to carry out a feasibility study of using jatropha oil as bio-diesel on oil firing burner system. Like other bio-diesels, jatropha oil can also be used in any combustion engine and the performance and emissions such as NOx, SO2, CO and CO2 as well as unburned hydocarbon (UHC) from the engine will vary depending on the bio-diesel blends. The properties of Conventional Diesel Fuel (CDF) obtained will be used as baseline and the jatropha oil properties will be compared as well as other bio-diesels. From several researches, the properties of jatropha oil was found to be quite similar with other bio-diesel such as palm oil, neem, keranja and pongamia bio-diesel and complying with the ASTM standard for bio-diesel. Still, there are factors and issues concerning the use of jatropha oil such as technology, economy, legislation and resource. Plus, there several challenges to the growth of bio-diesel industry development since the world right now do not totally depend on the bio-diesel.

  16. Numerical modelling of the CHEMREC black liquor gasification process. Conceptual design study of the burner in a pilot gasification reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marklund, Magnus

    2001-02-01

    The work presented in this report is done in order to develop a simplified CFD model for Chemrec's pressurised black liquor gasification process. This process is presently under development and will have a number of advantages compared to conventional processes for black liquor recovery. The main goal with this work has been to get qualitative information on influence of burner design for the gas flow in the gasification reactor. Gasification of black liquor is a very complex process. The liquor is composed of a number of different substances and the composition may vary considerably between liquors originating from different mills and even for black liquor from a single process. When a black liquor droplet is gasified it loses its organic material to produce combustible gases by three stages of conversion: Drying, pyrolysis and char gasification. In the end of the conversion only an inorganic smelt remains (ideally). The aim is to get this smelt to form a protective layer, against corrosion and heat, on the reactor walls. Due to the complexity of gasification of black liquor some simplifications had to be made in order to develop a CFD model for the preliminary design of the gasification reactor. Instead of modelling droplets in detail, generating gas by gasification, sources were placed in a prescribed volume where gasification (mainly drying and pyrolysis) of the black liquor droplets was assumed to occur. Source terms for the energy and momentum equations, consistent with the mass source distribution, were derived from the corresponding control volume equations by assuming a symmetric outflow of gas from the droplets and a uniform degree of conversion of reactive components in the droplets. A particle transport model was also used in order to study trajectories from droplets entering the reactor. The resulting model has been implemented in a commercial finite volume code (AEA-CFX) through customised Fortran subroutines. The advantages with this simple

  17. Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions.

    Science.gov (United States)

    Oh, Hyukjin; Annamalai, Kalyan; Sweeten, John M

    2008-04-01

    Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass [FB]) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash "fouling" were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss through ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash-fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out.

  18. Evaluation of gas reburning and low NO{sub x} burners on a wall-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    An evaluation of Gas Reburning (GR) and Low NO{sub x}, Burners (LNB) has been completed at Public Service Company of Colorado`s Cherokee Station Unit 3. The goal of the demonstration, which was carried out in a US DOE Clean Coal Technology Round 3 Program, was to reduce NO{sub x} emissions by 70%. The reduction was to be achieved from the pre-project level, prior to LNB retrofit. The GR system was supplied by Energy and Environmental Research Corporation (EER) and the LNBs were supplied by the Foster Wheeler Energy Corporation. The project was carried out in three phases in which EER designed the GR system and obtained necessary permits (Phase 1), constructed the system and completed start-up tasks (Phase 2), and evaluated its performance with both Optimization Tests and a Long-Term Demonstration (Phase 3). As directed by the cooperative agreement, environmental monitoring was conducted in each phase. Measurements were taken by plant personnel and an EER Field Testing Team and were divided into two types. ``Compliance Monitoring`` was conducted by plant personnel to satisfy requirements of regulatory agencies, while ``Supplemental Monitoring`` was conducted by EER personnel to develop a database of environmental impacts of the technology and to ensure environmental acceptability of the project. This document presents environmental monitoring data obtained during the Long-Term Testing period, April 27, 1993 to January 27, 1995. During this period, ten months of testing of the GR-LNB system was followed by a modification into a ``second-generation`` GR-LNB system, which was evaluated for six months. Compliance Monitoring was conducted primarily in two areas, air emissions and aqueous discharges.

  19. Experimental study of a laminar premixed LFG/air flame in a slot burner using Mach-Zehnder interferometry

    Directory of Open Access Journals (Sweden)

    Najafian Ashrafi Zabihollah

    2016-01-01

    Full Text Available An experimental study was conducted to investigate the influence of Reynolds number and equivalence ratio on flame temperature field and thermal flame height of laminar premixed LFG fuel. Mach-Zehnder interferometry technique is used to obtain an insight to the overall temperature field. The slot burner with large aspect ratio (L/W, length of L=60 mm and width of W=6 mm was used to eliminate the three- dimensional effect of temperature field. Two kinds of mixed fuels, LFG70 (70%CH4- 30%CO2 on volume basis and LFG50 (50%CH4- 50%CO2 were used to investigate flame characteristics under the test conditions of 100 ≤ Re ≤ 600 and 0.7 ≤ φ ≤ 1.3. The present measurement reveals that the variation of maximum flame temperature with increment of Reynolds number is mainly due to heat transfer effects and is negligible. On the other hand, the equivalence ratio and fuel composition have a noticeable effect on flame temperature. In addition, the results show that the LFG flames compared to the CH4 ones have a lower flame temperature. With increment of CO2 volume fraction at lean combustion, thermal flame height is augmented while at stoichiometric and rich combustion, its value reduced. Thermal flame height augments linearly by Reynolds number increase, while its increment at rich mixture is higher and the effect of Reynolds number at lean mixtures is insignificant. For validation of experimental results from Mach-Zehnder Interferometry, K-type thermocouples are used at peripherally low and moderate isotherm lines.

  20. Experimental and numerical study on combustion of baled biomass in cigar burners and effects of flue gas re-circulation

    Directory of Open Access Journals (Sweden)

    Erić Aleksandar M.

    2016-01-01

    Full Text Available The paper presents results of experimental and numerical investigation addressing combustion of baled agricultural biomass in a 50 kW experimental furnace equipped with cigar burners. Experiments performed included measurements of all parameters deemed important for mass and energy balance, as well as parameters defining quality of the combustion process. Experimental results were compared with results of numerical simulations performed with previously developed CFD model. The model takes into account complex thermo mechanical combustion processes occurring in a porous layer of biomass bales and the surrounding fluid. The combustion process and the corresponding model were deemed stationary. Comparison of experimental and numerical results obtained through research presented in this paper showed satisfactory correspondence, leading to the conclusion that the model developed could be used for analysis of different effects associated with variations in process parameters and/or structural modifications in industrial biomass facilities. Mathematical model developed was also utilized to examine the impact of flue gas recirculation on maximum temperatures in the combustion chamber. Gas recirculation was found to have positive effect on the reduction of maximum temperature in the combustion chamber, as well as on the reduction of maximum temperature zone in the chamber. The conclusions made provided valuable inputs towards prevention of biomass ash sintering, which occurs at higher temperatures and negatively affects biomass combustion process. [Projekat Ministarstva nauke Republike Srbije, br. III 42011: Development and improvement of technologies for energy efficient and environmentally sound use of several types of agricultural and forest biomass and possible utilization for cogeneration i br. TR33042: Fluidized bed combustion facility improvements as a step forward in developing energy efficient and environmentally sound waste combustion

  1. Pollutant Formation during the Occurrence of Flame Instabilities under Very-Lean Combustion Conditions in a Liquid-Fuel Burner

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2017-03-01

    Full Text Available Recent advances in gas turbine combustor design are aimed at achieving low exhaust emissions, hence modern aircraft jet engines are designed with lean-burn combustion systems. In the present work, we report an experimental study on lean combustion in a liquid fuel burner, operated under a non-premixed (single point injection regime that mimics the combustion in a modern aircraft engine. The flame behavior was investigated in proximity of the blow-out limit by an intensified high rate Charge-Coupled Device (CCD camera equipped with different optical filters to selectively record single species chemiluminescence emissions (e.g., OH*, CH*. Analogous filters were also used in combination with photomultiplier (PMT tubes. Furthermore this work investigates well-mixed lean low NOx combustion where mixing is good and generation of solid carbon particulate emissions should be very low. An analysis of pollutants such as fine particles and gaseous emissions was also performed. Particle number concentrations and size distributions were measured at the exhaust of the combustion chamber by two different particle size measuring instruments: a scanning mobility particle sizer (SMPS and an Electrical Low Pressure Impactor (ELPI. NOx concentration measurements were performed by using a cross-flow modulation chemiluminescence detection system; CO concentration emissions were acquired with a Cross-flow modulation Non-dispersive infrared (NDIR absorption method. All the measurements were completed by diagnostics of the fundamental combustor parameters. The results herein presented show that at very-lean conditions the emissions of both particulate matter and CO was found to increase most likely due to the occurrence of flame instabilities while the NOx were observed to reduce.

  2. The flow field structure of highly stabilized partially premixed flames in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.

    2015-08-29

    The stability limits, the stabilization mechanism, and the flow field structure of highly stabilized partially premixed methane flames in a concentric flow conical nozzle burner with air co-flow have been investigated and presented in this work. The stability map of partial premixed flames illustrates that the flames are stable between two extinction limits. A low extinction limit when partial premixed flames approach non-premixed flame conditions, and a high extinction limit, with the partial premixed flames approach fully premixed flame conditions. These two limits showed that the most stable flame conditions are achieved at a certain degree of partial premixed. The stability is improved by adding air co-flow. As the air co-flow velocity increases the most stable flames are those that approach fully premixed. The turbulent flow field of three flames at 0, 5, 10 m/s co-flow velocity are investigated using Stereo Particle Image Velocimetry (SPIV) in order to explore the improvement of the flame stability due to the use of air co-flow. The three flames are all at a jet equivalence ratio (Φj) of 2, fixed level of partial premixing and jet Reynolds number (Rej) of 10,000. The use of co-flow results in the formation of two vortices at the cone exit. These vortices act like stabilization anchors for the flames to the nozzle tip. With these vortices in the flow field, the reaction zone shifts toward the reduced turbulence intensity at the nozzle rim of the cone. Interesting information about the structure of the flow field with and without co-flow are identified and reported in this work.

  3. Numerical simulation of the influence of stationary louver and coal particle size on distribution of pulverized coal to the feed ducts of a power plant burner

    Directory of Open Access Journals (Sweden)

    Živković Goran

    2009-01-01

    Full Text Available One of the key requirements related to successful utilization of plasma technology as an oil-free backup system for coal ignition and combustion stabilization in power plant boilers is provision of properly regulated pulverized coal distribution to the feed ducts leading the fuel mixture to a burner. Proper regulation of coal distribution is deemed essential for achieving an adequate pulverized coal concentration in the zone where thermal plasma is being introduced. The said can be efficiently achieved by installation of stationary louver in the coal-air mixing duct ahead of the feed ducts of a burner. The paper addresses numerical simulation of a two-phase flow of air-pulverized coal mixture in the mixing ducts, analyzing the effects of particle size distribution on pulverized coal distribution to the burner feed ducts. Numerical simulation was performed using the FLUENT 6.3 commercial code and related poly-dispersed flow module, based on the PSI-CELL approach. Numerical experiments have been performed assuming a mono-dispersed solid phase with particle diameter ranging from 45 mm to 1200 mm. Distance between the louver blades and the resulting effect on the flow profile was analyzed as well. Results obtained indicate that the size of coal particles considerably influence the overall solid phase distribution. While fine particles, with diameters at the lower end of the above specified range, almost fully follow the streamlines of the continuous phase, coarser particles, which hit the louver blades, deflect towards the thermal plasma zone. In this manner, a desired phase concentration in the considered zone can be reached. For the said reason, installation of stationary louver have been deemed a very efficient way to induce phase separation, primarily due to more pronounced impact of the installed louver on discrete phase flow then the impact on the flow of the continuous phase.

  4. Development and use of a new burner rig facility to mimic service loading conditions of Ni-based single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Mauget Florent

    2014-01-01

    Full Text Available Performing representative experiments of in-service operating conditions of Ni-based superalloys used as high pressure turbine blades in aeroengines is a challenging issue due to the complex environmental, mechanical and thermal solicitations encountered by those components. A new burner rig test facility called MAATRE (French acronym for Mechanics and Aerothermics of Cooled Turbine Blades has been developed at ENSMA – Pprime Institute to mimic as close as possible those operating conditions. This new test bench has been used to perform complex non-isothermal creep tests representative of thermomechanical solicitations seen by some sections of HP turbine blades during engine certification procedure.

  5. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Noam Lior; Stuart W. Churchill

    2003-10-01

    The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at

  6. Experimental study of a separated jets burner: application to the natural gas-pure oxygen combustion; Etude experimentale du comportement de bruleurs a jets separes: application a la combustion gaz naturel-oxygene pur

    Energy Technology Data Exchange (ETDEWEB)

    Salentey, L.

    2002-04-15

    The evolution of pollution standards and the optimisation of furnaces performances require a development of new burner generation and also the improvement of combustion techniques. Actually, the use of oxy-combustion in separated jets burners offers interesting prospects for NO{sub x} emission reduction and on the modularity of flames properties (lift off, flame front topology, flame length). The complex geometry of those burners leads to several problems like the three-dimensional character of the flow, which may sometimes disturb the flame stability as flames are lifted above the burner. This experimental study deals with a simplified version of that kind of burner constituted with a central natural gas jet surrounded by two oxygen jets. Primary, the study of non-reactive jet was planned in order to understand dynamic and mixture phenomena involved between jets and to provide a database useful for the computer code validation. The reactive flow developed in a furnace, which simulates the real conditions, had been characterised. The studies of the dynamic field using Laser Doppler Velocimetry (LDV) and of the turbulent mixture by conditional Laser tomography were supplemented in combustion by the visualisation of the spontaneous emission of radical OH, in the initial and final zone of the oxy-flames, like by the measurement of pollutants like NO{sub x} and soot. The measurements carried out while varying speeds of injection as well as the gap between the jets made possible the highlight of the influence of these parameters upon the stabilisation of the oxy-flames as well as the modification of the topology and the characteristics of the flows. The comparison of the measurements made in non-reactive and reactive flow shows the influence of oxy-combustion on the dynamic and scalar development of the flow for this type of burners. (author)

  7. Experimental investigation and optimisation of burner systems for glass melting ends with regenerative air preheating. Final report; Experimentelle Untersuchung und Optimierung von Brennersystemen fuer Glasschmelzwannen mit regenerativer Luftvorwaermung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Scherello, A.; Flamme, M.; Kremer, H.

    2000-02-15

    The project comprised experiments on burner systems for glass melting ends with regenerative air preheating for the purpose of optimisation. The experimental set-up was to reflect realistic conditions. In the first stage of the investigations, modern burner systems were installed in a GWI test facility and investigated. [German] Ziel des oben genannten Forschungsvorhabens war die Durchfuehrung experimenteller Untersuchungen von Brennersystemen fuer Glasschmelzwannen mit regenerativer Luftvorwaermung sowie deren Optimierung. Dazu war es notwendig, einen experimentellen Aufbau zu realisieren, mit dessen Hilfe die Stroemungs-, Mischungs- und Umsetzungsphaenomene von Glasschmelzoefen realistisch nachgestellt und aussagekraeftige Untersuchungen durchgefuehrt werden koennen. In einem ersten Untersuchungsschritt wurden moderne Brennerlanzen an der GWI-Versuchsanlage installiert und untersucht. (orig.)

  8. Flashback analysis in tangential swirl burners; Analisis de reflujo de flama en combustores tangenciales de flujo giratorio

    Energy Technology Data Exchange (ETDEWEB)

    Valera-Medina, A. [CIATEQ A.C., Centro de Tecnologia Avanzada, Queretaro (Mexico)]. E-mail: agustin.valera@ciateq.mx; Syred, N. Abdulsada, M. [United Kingdom Cardiff University (United Kingdom)]. E-mails: syredn@cf.ac.uk; abdulsadam@cf.ac.uk

    2011-10-15

    Premixed lean combustion is widely used in Combustion Processes due to the benefits of good flame stability and blow off limits coupled with low NO{sub x} emissions. However, the use of novel fuels and complex flows have increased the concern about flashback, especially for the use of syngas and highly hydrogen enriched blends. Thus, this paper describes a combined practical and numerical approach to study the phenomenon in order to reduce the effect of flashback in a pilot scale 100 kW tangential swirl burner. Natural gas is used to establish the baseline results and effects of different parameters changes. The flashback phenomenon is studied with the use of high speed photography. The use of a central fuel injector demonstrates substantial benefits in terms of flashback resistance, eliminating coherent structures that may appear in the flow channels. The critical boundary velocity gradient is used for characterization, both via the original Lewis and von Elbe formula and via analysis using CFD and investigation of boundary layer conditions in the flame front. [Spanish] La combustion ligera premezclada se utiliza ampliamente en los procesos de combustion debido a los beneficios que brinda en terminos de buena estabilidad de flama y limites de extincion, aunado a la baja emision de NO{sub x}. Sin embargo, el uso de nuevos combustibles y de flujos complejos han incrementado la preocupacion por el reflujo de flama, especialmente para el uso de gas sintetico (syngas) y mezclas altamente hidrogenadas. Por ello, en este articulo se describe un metodo practico y numerico para el estudio del fenomeno a modo de reducir los efectos del reflujo de flama en un combustor piloto de tipo tangencial de flujo giratorio de 100 kW. Se usa gas natural para establecer la linea base de resultados y los efectos del cambio de diferentes parametros. El fenomeno de reflujo de flama se estudia por medio de fotografia de rapida adquisicion. El uso de un inyector central de combustible

  9. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  10. PARTICULATE CHARACTERIZATION AND ULTRA LOW-NOx BURNER FOR THE CONTROL OF NO{sub x} AND PM{sub 2.5} FOR COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Ralph Bailey; Hamid Sarv; Jim Warchol; Debi Yurchison

    2001-09-30

    In response to the serious challenge facing coal-fired electric utilities with regards to curbing their NO{sub x} and fine particulate emissions, Babcock and Wilcox and McDermott Technology, Inc. conducted a project entitled, ''Particulate Characterization and Ultra Low-NO{sub x} Burner for the Control of NO{sub x} and PM{sub 2.5} for Coal Fired Boilers.'' The project included pilot-scale demonstration and characterization of technologies for removal of NO{sub x} and primary PM{sub 2.5} emissions. Burner development and PM{sub 2.5} characterization efforts were based on utilizing innovative concepts in combination with sound scientific and fundamental engineering principles and a state-of-the-art test facility. Approximately 1540 metric tonnes (1700 tons) of high-volatile Ohio bituminous coal were fired. Particulate sampling for PM{sub 2.5} emissions characterization was conducted in conjunction with burner testing. Based on modeling recommendations, a prototype ultra low-NO{sub x} burner was fabricated and tested at 100 million Btu/hr in the Babcock and Wilcox Clean Environment Development Facility. Firing the unstaged burner with a high-volatile bituminous Pittsburgh 8 coal at 100 million Btu/hr and 17% excess air achieved a NO{sub x} goal of 0.20 lb NO{sub 2}/million Btu with a fly ash loss on ignition (LOI) of 3.19% and burner pressure drop of 4.7 in H{sub 2}O for staged combustion. With the burner stoichiometry set at 0.88 and the overall combustion stoichiometry at 1.17, average NO{sub x} and LOI values were 0.14 lb NO{sub 2}/million Btu and 4.64% respectively. The burner was also tested with a high-volatile Mahoning 7 coal. Based on the results of this work, commercial demonstration is being pursued. Size classified fly ash samples representative of commercial low-NO{sub x} and ultra low-NO{sub x} combustion of Pittsburgh 8 coal were collected at the inlet and outlet of an ESP. The mass of size classified fly ash at the ESP outlet was

  11. Experimental and numerical study of the accuracy of flame-speed measurements for methane/air combustion in a slot burner

    Energy Technology Data Exchange (ETDEWEB)

    Selle, L.; Ferret, B. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); Poinsot, T. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); CERFACS, Toulouse (France)

    2011-01-15

    Measuring the velocities of premixed laminar flames with precision remains a controversial issue in the combustion community. This paper studies the accuracy of such measurements in two-dimensional slot burners and shows that while methane/air flame speeds can be measured with reasonable accuracy, the method may lack precision for other mixtures such as hydrogen/air. Curvature at the flame tip, strain on the flame sides and local quenching at the flame base can modify local flame speeds and require corrections which are studied using two-dimensional DNS. Numerical simulations also provide stretch, displacement and consumption flame speeds along the flame front. For methane/air flames, DNS show that the local stretch remains small so that the local consumption speed is very close to the unstretched premixed flame speed. The only correction needed to correctly predict flame speeds in this case is due to the finite aspect ratio of the slot used to inject the premixed gases which induces a flow acceleration in the measurement region (this correction can be evaluated from velocity measurement in the slot section or from an analytical solution). The method is applied to methane/air flames with and without water addition and results are compared to experimental data found in the literature. The paper then discusses the limitations of the slot-burner method to measure flame speeds for other mixtures and shows that it is not well adapted to mixtures with a Lewis number far from unity, such as hydrogen/air flames. (author)

  12. Sulfur Oxides Control Burner.

    Science.gov (United States)

    1983-01-01

    calcium oxide (CaO). Dolomite is a mixture of calcium and magnesium carbonates (CaCO-3 .!gCO ). Neither lime nor limestone react well with SO2 at ambient...temperaturel. At high temperatures (1500*F - 1800*F), both CaCO and CaO appear to react with SO2 . At these temperatures, CaCO is radily calcinated to...process development has been placed on naturally occurring materials, such as limestone and dolomite . APPROACH This investigation evolved from prior

  13. EVALUATION OF INTERNALLY STAGED COAL BURNERS AND SORBENT JET AERODYNAMICS FOR COMBINED SO2/NOX CONTROL IN UTILITY BOILERS, VOLUME 1, TESTING IN A 10 MILLION BTU/HR EXPERIMENTAL FURNACE

    Science.gov (United States)

    The document gives results of tests conducted in a 2 MWt experimental furnace to: (1) investigate ways to reduce NOx emissions from utility coal burners without external air ports (i.e., with internal fuel/air staging); and (2) improve the performance of calcium-based sorbents fo...

  14. Cost and performance of available low NO{sub x} burners using oil, gas or wood powder; Marknadsstudie av laag-NO{sub x}-braennare foer olja, gas och traepulver

    Energy Technology Data Exchange (ETDEWEB)

    Eklund, Anders

    2002-04-01

    Emission of nitrous oxides or NO{sub x} which is formed during combustion, has during several years been in focus and countermeasures in order to reduce them have been carried out by the industry and energy companies. However, the current trend is towards even tougher demands on lower NO{sub x} and, therefore, the suppliers have even further developed the technique for low NO{sub x}-burners. The purpose with this report is to summarize and update the present technology situation of low NO{sub x}-burners, especially for those that are in use or can be used by the pulp and paper industry and among energy companies. Since the demand for even better low NO{sub x}-burners is estimated to increase in the future. This report shows that the suppliers of low NO{sub x}-burners, usually use one of the following techniques: Good atomizing of the fuel to obtain optimal fuel drop size; Flue gas recycling; Staged supply of air to the combustion; and Different methods for cooling the flame. This have resulted in lower NO{sub x}-emissions and typical values for different fuels are: Oil no. EO1 {approx} 60 mg NO{sub x}/MJ; Oil no. EO5 {approx} 130 mg NO{sub x}/MJ; Gas {approx} 40 mg NO{sub x}/MJ; Pulverized Wood = 40-100 mg NO{sub x}/MJ. The price situation is however complex and despite the fact that all suppliers received the same request, the prices varied from 0,4 MSEK up to and above 10 MSEK. From this the following conclusions can be drawn: An even better specification must be made; Sophisticated burners are expensive; Burners for higher heat rate are more expensive; The possibilities to use several different fuels make the burners more expensive. In conclusion, the report also shows that several suppliers are specialized towards different markets. Thus, at a normal purchase, the number of possible suppliers will be limited.

  15. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-15

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  16. Experiments for the determination of convective diffusion heat/mass transfer to burner rig test targets comparable in size to jet stream diameter

    Science.gov (United States)

    Santoro, G. J.; Gokoglu, S. A.

    1988-01-01

    The application of a recently formulated vapor transport theory to predict deposition rates of corrosive salts from alkali-seeded combustion gases of a small-capacity, high-velocity, atmospheric-pressure burner rig was hampered by the relatively large dimensions of the cylindrical deposit collector compared to the diameter of the combustion gas stream. The relative dimensions lead to a highly nonadiabatic combustion gas flow around the collector and necessitate two series of experiments. In the first series, mass transfer coefficients are determined by utilizing the naphthalene sublimation technique. The second series of experiments determines the dilution effect on the sodium species concentrations due to the entrainment of ambient air. This second series involves the measurement of the temperature variation along the surface of the collector under steady state conditions. Vapor deposition rates are determined exploiting this information and the results are found to compare favorably with experimentally obtained rates.

  17. Titanium subhydride potassium perchlorate (TiH1.65/KClO4) burn rates from hybrid closed bomb-strand burner experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Marcia A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Oliver, Michael S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-08-01

    A hybrid closed bomb-strand burner is used to measure the burning behavior of the titanium subhydride potassium perchlorate pyrotechnic with an equivalent hydrogen concentration of 1.65. This experimental facility allows for simultaneous measurement of the closed bomb pressure rise and pyrotechnic burn rate as detected by electrical break wires over a range of pressures. Strands were formed by pressing the pyrotechnic powders to bulk densities between 60% and 90% theoretical maximum density. The burn rate dependance on initial density and vessel pressure are measured. At all initial strand densities, the burn is observed to transition from conductive to convective burning within the strand. The measured vessel pressure history is further analyzed following the closed bomb analysis methods developed for solid propellants.

  18. Applicability of RELAP5-3D for Thermal-Hydraulic Analyses of a Sodium-Cooled Actinide Burner Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    C. B. Davis

    2006-07-01

    The Actinide Burner Test Reactor (ABTR) is envisioned as a sodium-cooled, fast reactor that will burn the actinides generated in light water reactors to reduce nuclear waste and ease proliferation concerns. The RELAP5-3D computer code is being considered as the thermal-hydraulic system code to support the development of the ABTR. An evaluation was performed to determine the applicability of RELAP5-3D for the analysis of a sodium-cooled fast reactor. The applicability evaluation consisted of several steps, including identifying the important transients and phenomena expected in the ABTR, identifying the models and correlations that affect the code’s calculation of the important phenomena, and evaluating the applicability of the important models and correlations for calculating the important phenomena expected in the ABTR. The applicability evaluation identified code improvements and additional models needed to simulate the ABTR. The accuracy of the calculated thermodynamic and transport properties for sodium was also evaluated.

  19. Reduction of NO{sub x} from a pellet burner - a parametric study; Reduktion av NOx fraan en pelletsbraennare - en parameterstudie

    Energy Technology Data Exchange (ETDEWEB)

    Eskilsson, David; Roennbaeck, Marie; Tullin, Claes [Swedish National Testing and Research Inst., Boraas (Sweden); Leckner, Bo [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    2000-05-01

    NO{sub x} emissions from small-scale combustion of pellets derive mainly from the fuel nitrogen. A conversion from combustion of oil to pellets will probably lead to increasing NO{sub x}-emissions. Today, pellets are produced mainly from sawdust and wood shavings which consist of pure wood with a low nitrogen content. The expected increase in pellet utilisation will probably lead to that other raw materials with higher nitrogen content will be used. This means that NOx-emissions from small-scale BAKE combustion of pellets can increase dramatically if not 'low-NO{sub x} burners' are developed. This report can be used as a support in the development of new design and automatic control strategies for pellet burners. NH{sub 3} and HCN dominate the nitrogen compounds in the volatiles leaving the pellet during the devolatilisation. The fuel properties, the residence time and the devolatilisation conditions affect the ratio between these two compounds. The transformation of NH{sub 3} to N{sub 2} takes place through a short and relatively uncomplicated reaction path while the reduction of HCN has a much more complex reaction path with a slower chemical kinetics which leads to longer reaction times. The optimal stoichiometry depends on the residence time, mixing and the composition of the devolatilisation gas in the primary zone. The objective with this study has been to, with a modified pellet burner, minimise NOx in practical experiments with a small literature study as background. In the experiments reported in this project, the performance of a modified pellet burner and the emissions have been studied while the ratio between primary- and secondary air and the addition of primary air have been varied. During the experiments, the air flow, the different emissions, the boiler effect and the temperature in the burner have been measured continuously. A few parameters have been identified as crucial for the NO{sub x}-emissions: Addition of primary air: The primary

  20. Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation

    Energy Technology Data Exchange (ETDEWEB)

    R. Demler

    2006-04-01

    Accurate, cost-efficient monitoring instrumentation has long been considered essential to the operation of power plants. Nonetheless, for the monitoring of coal flow, such instrumentation has been sorely lacking and technically difficult to achieve. With more than half of the electrical power in the United States currently supplied by coal, energy generated by this resource is critical to the US economy. The demand for improvement in this area has only increased as a result of the following two situations: First, deregulation has produced a heightened demand for both reduced electrical cost and improved grid connectivity. Second, environmental concerns have simultaneously resulted in a need for both increased efficiency and reduced carbon and NOx emissions. A potential approach to addressing both these needs would be improvement in the area of combustion control. This would result in a better heat rate, reduced unburned carbon in ash, and reduced NOx emissions. However, before feedback control can be implemented, the ability to monitor coal flow to the burners in real-time must be established. While there are several ''commercially available'' products for real-time coal flow measurement, power plant personnel are highly skeptical about the accuracy and longevity of these systems in their current state of development. In fact, following several demonstration projects of in-situ coal flow measurement systems in full scale utility boilers, it became obvious that there were still many unknown influences on these instruments during field applications. Due to the operational environment of the power plant, it has been difficult if not impossible to sort out what parameters could be influencing the various probe technologies. Additionally, it has been recognized for some time that little is known regarding the performance of coal flow splitters, even where rifflers are employed. Often the coal flow distribution from these splitters remains mal

  1. Burner redesign for the reduction of the unburned particulate emission in thermal power stations of Comision Federal de Electricidad; Rediseno de quemadores para la reduccion de la emision de particulas inquemadas en centrales termicas de la Comisionon Federal de Electricidad

    Energy Technology Data Exchange (ETDEWEB)

    Huerta Espino, Mario; Espipnoza Garza, Jesus; Mani Gonzalez, Alejandro; Giles Alarcon, Armando; Pena Garcia, Adriana; Albarran Sanchez, Irma L.; Mendez Aranda, Angel [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2001-07-01

    In the presence of the increasing demand for reaching higher efficiencies and a smaller production of polluting emissions in combustion systems, studies focused to the optimization of the present designs of burners are required. The Comision Federal de Electricidad (CFE) and the Instituto de Investigaciones Electricas (IIE) have established a project that contemplates the redesign of burners in ten of its units of thermoelectric generation. In this work the redesign of the flame stabilizer or diffuser for the reduction of the unburned particulate emission is explained. The results of the modeling of a burner of rotational flow of steam generators of the CFE are shown, as well as the graphs of the contours of the recirculation zone generated by each diffuser without combustion and a figure of the velocity profile that is generated in front of the diffuser. In agreement with the results obtained in the aerodynamic evaluation of frontal burners of rotational flow, it is possible to established that the characteristics of the recirculation zone, generated by this type of burners, are related to geometric parameters of the diffuser that identify with the number of turns and the pressure drop, where it is necessary to look for designs that improve the conditions of the mixing process and combustion in the burner. [Spanish] Ante la creciente demanda por alcanzar mayores eficiencias y una menor produccion de emisiones contaminantes en sistemas de combustion, se requieren estudios enfocados a la optimizacion de los disenos actuales de quemadores. La Comision Federal de Electricidad (CFE) y el Instituto de Investigaciones Electricas (IIE) han establecido un proyecto que contempla el rediseno de quemadores en diez de sus unidades de generacion termoelectrica. En este trabajo se explica el rediseno del estabilizador de flama o difusor para la reduccion de la emision de particulas inquemadas. Se muestran los resultados de la modelacion de un quemador de flujo rotacional de

  2. PASSIVE CONTROL OF PARTICLE DISPERSION IN A PARTICLE-LADEN CIRCULAR JET USING ELLIPTIC CO-ANNULAR FLOW: A MEANS FOR IMPROVING UTILIZATION AND EMISSION REDUCTIONS IN PULVERIZED COAL BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan R. Choudhuri

    2003-06-01

    A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.

  3. Firing of dried sludge from the pulp and paper industry in a pellet burner; Foerbraenning av torkat slam fraan skogsindustrin i pelletbraennare

    Energy Technology Data Exchange (ETDEWEB)

    Herstad Svaerd, S. [SEP Scandinavian Energy Project AB, Goeteborg (Sweden); Eskilsson, David [Swedish National Testing and Research Inst., Boraas (Sweden)

    2001-08-01

    Different types of sludge containing organic material are produced within the pulp and paper industry (fibre sludge, sludge from production of recycled fibres, de-inking sludge, chemical sludge, bio sludge etc). The newly introduced tax on waste deposition, 250 SEK/tonne wet material, has together with the coming law against disposal of different organic material raised the interest for minimising the sludge deposition. The moisture content of the sludge depends on the type of sludge and type of dewatering equipment used. The moisture content is however normally so high that a main part of the theoretical energy content is used for evaporating the water in the sludge. The sludge is successfully destroyed and the amount of sludge being disposed is reduced but there is very little net energy contribution from the sludge firing. An increased dry substance content would considerable reduce handling problems and problems connected with combustion of wet sludge. The energy yield would also increase and instead of destroying a wet waste material useful energy would be generated. One alternative for reducing the problems with wet sludge would therefore be to dry it to a suitable moisture content and then fire the dried sludge in a grate boiler, a fluidized bed boiler, a pulverised fuel boiler or in a pellet burner. In this project the alternative to dry the sludge and produce pellets with a moisture content of about 10 % is covered. The costs for upgrading wet sludge to dry pellets have been estimated in the report. Laboratory studies have also been carried with two different sludge samples to have a first indication of the results from firing sludge pellets in a pellet burner. The results from the project together with experiences from an earlier Vaermeforsk project shows that every sludge in principal is unique meaning that the composition depends on the production situation at the different specific plants. The ash content as well as the ash composition and the moisture

  4. Deposit formation by 20 % (V/V) FAME fuels in premix burner systems; Ablagerungsbildung durch 20% (V/V) FAME-Brennstoffe in Vormischbrennersystemen

    Energy Technology Data Exchange (ETDEWEB)

    Jaschinski, Christian; Rheinberg, Oliver van [OWI Oel-Waerme-Institut GmbH, Aachen (Germany); RWTH Aachen (Germany). An-Institut

    2012-09-15

    In the domestic heating market the development and use of fuels with an increasing share of biogenic or alternative fuels is propagated. Due to the fact, that modern fuel oil burner feature a complex carburation techniques and combustion, changes on the fuel properties and composition can lead to increased emissions or deposit formation therein. Furthermore, the different fuel properties may result in decreased storage stability, which has to be evaluated before introducing them into the market. The scope of the project was to investigate the performance of low-sulfur domestic heating oil (DHO) with up to 20 % v/v FAME on the storage stability and on the use in oil-fired heating systems. The project was split into two major parts. The first part covered a two-year storage of the fuels including sampling and analysis of the fuels every half year. The analysis was conducted according to DIN 51603-1 for the pure DHO and according to DIN SPEC 51603-6 for the blends. It has been shown, that low sulphur domestic heating oil with up to 20 % (V/V) of FAME after two years of storage fits the parameter of the corresponding standards. Furthermore, a new testing method, called 'DGMK-714' derived from the PetroOxy-test (EN 16091) has been defined. With this method for the determination of oxidation stability the fuels can be characterized being comparable to the standardized testing methods of modified Rancimat or PetroOxy. The higher sample volume of the method allows further analysis of the fuel sample after testing for characterization of the fuels. The second part of the project investigated the deposit formation tendencies of the fuels in an idealized testing apparatus and in three different kinds of oil burners. Using the idealized testing apparatus proved an increased tendency of deposit formation during evaporation for an increasing FAME content. However, this tendency could not be observed in the three commercial oil-fired heating systems. A precise fuel

  5. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix D. Assessment of NO/sub x/ control technology for coal fired utility boilers. [Low-excess-air, staged combustion, flu gas recirculation and burner design

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    An NOx control technology assessment study was conducted to examine the effectiveness of low-excess-air firing, staged combustion, flue gas recirculation, and current burner/boiler designs as applied to coal-fired utility boilers. Significant variations in NOx emissions exist with boiler type, firing method, and coal type, but a relative comparison of emissions control performance, cost, and operational considerations is presented for each method. The study emphasized the numerous operational factors that are of major importance to the user in selecting and implementing a combustion modification technique. Staged combustion and low-excess-air operation were identified as the most cost-effective methods for existing units. Close control of local air/fuel ratios and rigorous combustion equipment maintenance are essential to the success of both methods. Flue gas recirculation is relatively ineffective and has the added concern of tube erosion. More research is needed to resolve potential corrosion concerns with low-NOx operating modes. Low-NOx burners in conjunction with a compartmentalized windbox are capable of meeting a 0.6-lb/million Btu emission level on new units. Advanced burner designs are being developed to meet research emission goals of approximately 0.25 lb/MBtu.

  6. The moment of oil burner engineering. Efficient sanitation measures in a Franconian single family household; Die Stunde der Oel-Brennwerttechnik. Effiziente Sanierungsmassnahmen im fraenkischen Einfamilienhausbestand

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2004-07-01

    In the Markt Erlbach region west of the German town of Fuerth, a honey factory and some large horticultural enterprises recently modernized their 2 MW oil-fuelled heating plant and are not prepared to convert to natural gas as this would make the investment null and void. This means that the local gas utility is short of customers and threatens not to construct a new gas supply network. This is the hour of oil-fuelled condensing burners. (orig.) [German] Was hat Heizoel mit Honig zu tun? Direkt hoffentlich nichts. Indirekt dagegen behindert der zuckersuesse Brotaufstrich die Expansionsbemuehungen des Erdgases in der Region um Markt Erlbach westlich von Fuerth. Deshalb naemlich, weil die Honigfabrik des Bezirks - und dazu einige Grossgaertnereien - erst kuerzlich ihre 2-MW-Oelheizungsanlage modernisiert hat und nun nicht gewillt ist, durch einen Wechsel auf Erdgas diese Renovierung sozusagen als Fehlinvestition abzubuchen. Dem oertlichen Gasversorger fehlen dadurch bedeutende Abnehmer. Folge: Er zeigt keine Neigung, den Oel-versorgten Landstrich ueber ein noch zu installierendes Netz zu beliefern. Damit schlaegt hier die Stunde der Oel-Brennwerttechnik. (orig.)

  7. Investigations of coal ignition in a short-range flame burner using optical measuring systems; Untersuchungen zur Kohlezuendung am Flachflammenbrenner unter Verwendung optischer Messtechnik

    Energy Technology Data Exchange (ETDEWEB)

    Hackert, G.; Kremer, H.; Wirtz, S. [Bochum Univ. (Germany). Lehrstuhl fuer Energieanlagentechnik

    1999-09-01

    The short-range flame burner and the KOALA reactor of DMT are experimental facilities for realistic simulation of coal conversion processes at high temperatures and pressures in atmospheric conditions. The TOSCA system enable measurements of temperatures, sizes, shapes and velocities of the fuel particles, which serve as a basis for a three-dimensional simulation model of coal combustion. In the future, further parameter studies will deepen the present knowledge of coal dust combustion under pressure and enable optimisation of the numerical models for simulation of industrial-scale systems for coal dust combustion under pressure. [Deutsch] Mit dem Flachflammenbrenner und dem KOALA-Reaktor der DMT stehen Versuchsapparaturen zur Verfuegung, mit deren Hilfe die Kohleumwandlungsprozesse bei hohen Temperaturen unter Druck und unter atmosphaerischen Bedingungen realistisch wiedergegeben werden. Das TOSCA-System erlaubt dabei die Bestimmung von Temperaturen, Groessen, Formen und Geschwindigkeiten der Brennstoffpartikel. Diese Daten liefern die Grundlage fuer die Erstellung eines dreidimensionalen Simulationsmodells zur Modellierung der Kohleverbrennung. In Zukunft werden weitere Parameterstudien das Verstaendnis der Kohlenstaubdruckverbrennung vertiefen und ein Optimierung der numerischen Modelle ermoeglichen, so dass die Simulation grosstechnischer Kohlenstaubdruckverbrennungsanlagen realisiert werden kann. (orig.)

  8. Sodium sulfate-induced corrosion of pure nickel and superalloy Udimet 700 in a high velocity burner rig at 900 C

    Science.gov (United States)

    Misra, A. K.

    1987-01-01

    Sodium sulfate-induced corrosion of pure nickel and a commercial nickel-base superalloy, Udimet 700 (U-700), were studied at 900 C in a Mach 0.3 burner rig with different Na levels in the combustor. The corrosion rate of Ni was independent of the Na level in the combustor and considerably lower than that measured in laboratory salt spray tests. The lower rates are associated with the deposition of only a small amount of Na2SO4 on the surface of the NiO scale. Corrosion of U-700 was observed to occur in two stages. During the first stage, the corrosion proceeds by reaction of Cr2O3 scale with the Na2SO4 and evaporation of the Na2CrO4 reaction product from the surface of the corroding sample. Cr depletion in the alloy occurs and small sulfide particles are formed in the Cr depletion zone. Extensive sulfidation occurs during the second state of corrosion, and a thick scale forms. The relationship between the corrosion rate of U-700 and the Na level in the combustor gives a good correlation in the range of 0.3 to 1.5 ppm by weight Na. Very low levels of Na in the combustor cause accelerated oxidation of U-700 without producing the typical hot corrosion morphology.

  9. Effect of the mixing fields on the stability and structure of turbulent partially premixed flames in a concentric flow conical nozzle burner

    KAUST Repository

    Mansour, Mohy S.

    2016-10-22

    The mixing field is known to be one of the key parameters that affect the stability and structure of partially premixed flames. Data in these flames are now available covering the effects of turbulence, combustion system geometry, level of partially premixing and fuel type. However, quantitative analyses of the flame structure based on the mixing field are not yet available. The aim of this work is to present a comprehensive study of the effects of the mixing fields on the structure and stability of partially premixed methane flames. The mixing field in a concentric flow conical nozzle (CFCN) burner with well-controlled mechanism of the mixing is investigated using Rayleigh scattering technique. The flame stability, structure and flow field of some selected cases are presented using LIF of OH and PIV. The experimental data of the mixing field cover wide ranges of Reynolds number, equivalence ratio and mixing length. The data show that the mixing field is significantly affected by the mixing length and the ratio of the air-to-fuel velocities. The Reynolds number has a minimum effect on the mixing field in high turbulent flow regime and the stability is significantly affected by the turbulence level. The temporal fluctuations of the range of mixture fraction within the mixing field correlate with the flame stability. The highest point of stability occurs at recess distances where fluid mixtures near the jet exit plane are mostly within the flammability limits. This paper provides some correlations between the stability range in mixture fraction space and the turbulence level for different equivalence ratios.

  10. Stabilization and structure of N-heptane flame on CWJ-spray burner with kHZ SPIV and OH-PLIF

    KAUST Repository

    Mansour, Morkous S.

    2015-08-31

    A curved wall-jet (CWJ) burner was employed to stabilize turbulent spray flames that utilized a Coanda effect by supplying air as annular-inward jet over a curved surface, surrounding an axisymmetric solid cone fuel spray. The stabilization characteristics and structure of n-heptane/air turbulent flames were investigated with varying fuel and air flow rates and the position of pressure atomizer (L). High-speed planar laser-induced fluorescence (PLIF) of OH radicals delineated reaction zone contours and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the flow field features, involving turbulent mixing within spray, ambient air entrainment and flame-turbulence interaction. High turbulent rms velocities were generated within the recirculation zone, which improved the flame stabilization. OH fluorescence signals revealed a double flame structure near the stabilization edge of lifted flame that consisted of inner partially premixed flame and outer diffusion flame front. The inner reaction zone is highly wrinkled and folded due to significant turbulent mixing between the annular-air jet and the fuel vapor generated from droplets along the contact interface of this air jet with the fuel spray. Larger droplets, having higher momentum are able to penetrate the inner reaction zone and then vaporized in the low-speed hot region bounded by these reaction zones; this supports the outer diffusion flame. Frequent local extinctions in the inner reaction zone were observed at low air flow rate. As flow rate increases, the inner zone is more resistant to local extinction despite of its high wrinkling and corrugation degree. However, the outer reaction zone exhibits stable and mildly wrinkled features irrespective of air flow rate. The liftoff height increases with the air mass flow rate but decreases with L.

  11. High-Tech with a question mark. Continuous miniature oil burners fail to meet expectations; High-Tech mit Fragezeichen. Stufenlose Kleinst-Oelbrenner halten nicht, was sie versprechen

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, L.

    1998-11-01

    At the 1998 Frankfurt ISH, a modulated continuous oil burner for the 6-12 kW range was first presented with great promises. HAUS TECH took a new look. [Deutsch] An der vergangenen ISH in Frankfurt wurde am Stand eines Brennerherstellers ein stufenloser Oelbrenner angepriesen, der zwischen 6 und 12 kW moduliert. Es wurde versucht Interessenten davon zu ueberzeugen, dass dies exakt der Brenner sei, auf den die Fachwelt schon immer gewartet habe. Hier sei dem besagten Brennerproduzenten nun quasi ein Quantensprung geglueckt. `HAUS TECH` hat sich diesbezueglich sachkundig gemacht. (orig./MSK)

  12. A laboratory investigation on the influence of adsorbed gases and particles from the exhaust of a kerosene burner on the evaporation rate of ice crystals and the ice nucleating ability of the exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, K.; Mitra, S.K.; Pruppacher, H.R. [Johannes Gutenberg Univ., Mainz (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    Laboratory experiments are described during which the influence of the exhausts of a kerosene burner on microphysical processes were studied. In one experimental investigation the evaporation rates of polluted ice crystals were compared with the evaporation rates of pure ice crystals. During another experimental investigation the ice nucleating ability of the exhaust particles was studied. The results show that the evaporation rate of polluted ice crystals was significantly reduced and also that ice nucleation takes place between -20 and -38 deg C. (author) 7 refs.

  13. An ignition and combustion supporting burner for pulverized solid fossil fuel comprising of a combustion chamber with main burners. Bruleur d'allumage et de soutien de combustion pour combustible solide fossile pulverise, et chambre de combustion comportant de tels bruleurs

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, J.; Malaubier, F.; Mevel, J-C.

    1989-01-25

    An ignition and combustion supporting burner for pulverized solid fuel, comprising: (a) a refractory-tap-hole shaped to allow the confinement of the initial portion of the flame, (b) a conduit for feeding pulverized solid fuel into a primary oxidegas, disposed coaxially to the refractory tap-hole, (c) a first annular conduit for feeding a first portion of secondary combustive gas, equipped at its end with means for creating a turbulent flow of the combustive gas, (d) a second annular conduit for feeding a second portion of secondary combustive gas, equipped at its end with means for creating a turbulent flow of the combustive gas, (e) a conduit for feeding tertiary combustive gas, this conduit partially or entirely surrounding the tap-hole and being supplied at a rate sufficient for ensuring, complementary to the flowrates of the primary and secondary combustive gas, the total combustion of the solid fuel, (f) an ignition element disposed in the refractory tap-hole or in the axial conduit for feeding pulverized fossil fuel, characterized in that the conduit for feeding pulverized solid fuels is provided with translation mean; allowing to adjust the length of the chamber for premixing the solid fuel with the first portion of secondary combustive gas comprised between the end of this conduit and the inlet of the tap-hole, and that a flame detection device is disposed near its tap-hole.

  14. Influence of staged-air on airflow, combustion characteristics and NO(x) emissions of a down-fired pulverized-coal 300 MW(e) utility boiler with direct flow split burners.

    Science.gov (United States)

    Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang

    2010-02-01

    Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers.

  15. The effect the design solutions adopted for a pilot vortex burner with central admission of medium have on setting up the conditions for stable combustion of air-fuel mixture

    Science.gov (United States)

    Dvoinishnikov, V. A.; Khokhlov, D. A.

    2015-04-01

    The effect the design and operating parameters of a pilot vortex burner have on the swirl jet formation and on the jet characteristics is studied. The flow characteristics were studied by mathematically modeling the flow using the ANSYS CFX software package. The performed investigations made it possible to determine the extent to which the swirl parameter n, the ratios of channel diameters m and flow rates of medium in the channels in case of using a two-channel swirl burner design, and the constriction ratio K cnst influence the flow aerodynamic pattern, including the back flow zone and its characteristics. The region of m and n values at which the aerodynamic conditions necessary for maintaining stable combustion are set up is determined. Matters concerned with performance efficiency of the axial swirling apparatus are considered. A correlation for determining the flow swirling loss factor is presented. It is shown that pressure loss in an annular channel with a swirling device depends not only on the blade setting angle, but also on the ratio of annular channel diameters.

  16. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  17. Etudes de brûleurs adaptés au fonctionnement à faible excès d'air. Première partie Research on Burners Adapted to Operate with Low Air Express. Part One

    Directory of Open Access Journals (Sweden)

    Droin R.

    2006-11-01

    Full Text Available Cet article constitue la synthèse des résultats acquis dans le cadre de la recherche coopérative EDF-IFP concernant l'étude des paramètres aérodynamiques gouvernant le fonctionnement d'un brûleur à 2 veines d'air avec stabilisateur central à aubages. Après avoir rappelé les motivations de l'étude, et présenté les équipements expérimentaux mis en ceuvre à FIFP et l'EDF, on présente les renseignements significatifs obtenus sur un brûleur de petite échelle (500 à 1000 th/h opérant sous d'excès d'air - influence des paramètres aérodynamiques et géométriques sur les conditions de mélange; - optimisation des conditions de réglages et mise en évidence d'un type de stabilisateur d'intérêt pratique, - influence du recyclage de gaz brûlés sur la structure des flammes. This article is a synthesis of the results obtained in the joint EDF-IFP research project on the aerodynamic parameters governing the operating of a two-airstream burner with a central vane swirler. After reviewing the reasons behind the project and describing the experimental equipment used by IFP and EDF, the significant data are given for a small-scale burner (500,000 ta 1,000,000 kcal/h operating with a 2 % air excess. These data include : - the influence of aerodynamic and geometric parameters on the mixture conditions; - optimizing adjustment conditions and finding a practicable swirler type; - the influence of burned-gas recycling on flame structure.

  18. Turbulent Non-Premixed Flames Stabilized on Double-Slit Curved Wall-Jet Burner with Simultaneous OH-Planar Laser-Induced Fluorescence and Particle Image Velocimetry Measurements

    KAUST Repository

    Mansour, Morkous S.

    2015-04-29

    A double-slit curved wall-jet (CWJ) burner utilizing a Coanda effect by supplying fuel and air as annular-inward jets over a curved surface was employed to investigate the stabilization characteristics and structure of propane/air turbulent non-premixed flames with varying global equivalence ratio and Reynolds number. Simultaneous time-resolved measurements of particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) of OH radicals were conducted. The burner showed a potential of stable and non-sooting operation for relatively large fuel loading and overall rich conditions. Mixing characteristics in cold flow were first examined using an acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions. PIV measurements revealed that the flow field consisted of a wall-jet region leading to a recirculation zone through flow separation, an interaction jet region resulting from the collision of annular-inward jets, followed by a merged-jet region. The flames were stabilized in the recirculation zone and, in extreme cases, only a small flame seed remained in the recirculation zone. Together with the collision of the slit jets in the interaction jet region, the velocity gradients in the shear layers at the boundaries of the annular jets generate the turbulence. Turbulent mean and rms velocities were influenced by the presence of the flame, particularly in the recirculation zone. Flames with a high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Reynolds numbers. For flames with a low equivalence ratio, local quenching and re-ignition processes maintained flames in the merged jet region, revealing a strong intermittency, which was substantiated by the increased principal strain rates for these flames. © 2015 Taylor & Francis Group, LLC.

  19. Measurements of the concentration of major chemical species in the flame of a test burner with a air swirling system; Mesures de concentration d`especes chimiques majoritaires dans la flamme d`un bruleur modele avec mise en rotation de l`air

    Energy Technology Data Exchange (ETDEWEB)

    Albert, St. [Gaz de France (GDF), 93 - La Plaine-Saint-Denis (France); Most, J.M.; Poireault, B. [Centre National de la Recherche Scientifique (CNRS), 86 - Poitiers (France)

    1996-12-31

    The study of combustion in industrial burners remains difficult because of the complexity of the equipments used: materials geometry, tri-dimensional flows etc.. The phenomena that control the combustion in a gas burner with a swirl air system has been studied thanks to a collaboration between the Direction of Research of Gaz de France (GdF) and the Laboratory for Combustion and Detonation Research (LCD) of the French National Centre of Scientific Research (CNRS). The burner used is developed by the LCD and the measurements of stable chemical species were performed by the CERSTA centre of GdF. These series of tests, performed in confined environment, have permitted to identify some of the parameters that influence combustion chemistry. Mapping of chemical species allows to distinguish 5 zones of flame development and also the zones of nitrogen oxides formation. Methane is rapidly centrifuged a few millimeters above the injection pipe and centrifuged with rotating combustion air. Carbon monoxide occurs immediately in the central recirculation zone which is weakly reactive (no oxygen and no methane). Oxygen content increases downflow from this area and carbon dioxide reaches its concentration maxima. CO formation decreases when the swirl number increases and CO{sub 2} formation occurs earlier. On the contrary, the emissions of CO and CH{sub 4} do not depend on the swirl value and the NO{sub x} values are only slightly dependent on this value. (J.S.)

  20. Energetic evaluation of low potential biomass gasifier coupled with a burner of the produced gas for generation of heat; Avaliacao energetica de um gaseificador de biomassa de baixa potencia, associado a um combustor do gas produzido, para geracao de calor

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Samuel [Universidade de Brasilia (FAV/UNB), DF (Brazil). Fac. de Agronomia e Medicina Veterinaria], email: samuelmartin@unb.nr; Silva, Jadir Nogueira [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola; Machado, Cassio Silva; Zanatta, Fabio Luis; Galvarro, Svetlana F.S. [Universidade Federal de Vicosa (UFV), MG (Brazil)

    2011-07-01

    In the search of alternatives for sustainable socio-economic development, this study had the objective of evaluating the energetic performance of a concurrent flow biomass gasifier associated with a burner for the gas produced which was of low potential for air heating using a renewable energy source (substituting non-renewable). In this system 4 tests were performed using eucalyptus chips (tests 1 and 2) and logs (tests 3 and 4) as fuel, for the two fan motor frequencies of 60 and 50 hertz. Temperature in the combustion chamber was monitored, along with fuel consumption and other variables. In the tests, the average exhaust air temperature was maintained between 92.7 and 100.4 deg C, and the reduction in the motor frequency from 60 to 50 Hz caused an increase in the duration of the tests. The system presented the best energetic performance when utilizing a frequency of 60 Hz for both fuel types. However, the results of energy efficiency varied very little when comparing tests performed at the same fan frequency. Thus, the gasification process was little affected by variation in the physical characteristics of the tested fuels, and it was recommended that the equipment operate with a frequency of 60 Hz. (author)

  1. Description d'un nouveau brûleur compact. Fonctionnement en régime de gaz prémélangés Description of a New Compact Premixed Gas Burner

    Directory of Open Access Journals (Sweden)

    Minetti R.

    2006-11-01

    Full Text Available On décrit un nouveau brûleur compact à gaz, de haut rendement et d'une puissance variable de 1 à 5 kW. La source de chaleur est une flamme plate d'un prémélange stoechiométrique de gaz naturel et d'air stabilisé sur une grille d'une surface de 100 cm2. Plusieurs grilles en acier inoxydable sont comparées. Elles diffèrent par leur épaisseur, le nombre et la dimension des trous. Un échangeur de chaleur en laiton à circulation d'eau peut être approché jusqu'à 7 mm de la surface du brûleur. La température des gaz frais, le débit et la position de l'échangeur ont été modifiés et les conditions optimales de fonctionnement sont décrites. Les températures à travers les gaz frais, la flamme, les gaz brûlés et les fumées, ont été mesurées. Un modèle simple des échanges de chaleurs est présenté. Il permet une meilleure compréhension des processus de transfert et facilite le choix des conditions opératoires. Dans les meilleures conditions, 93 % du contenu thermique du mélange gazeux est transféré à l'échangeur. Some general characteristics of a compact and efficient gas burner are described (1-5 kW. The heat source is a premixed flat flame stabilized on a 100 cm2 grid fed by a stoechiometric mixture of air and natural gas. Various types of stainless steel grids have been investigated. They differ according to their thickness and to the number and size of the holes. A circulating water heat exchanger made of brass can be approached to the flame as close as 7 mm above the burner surface. The temperature of the inlet gas mixture, the flow rate, and the position of the heat exchanger have been varied. The best working conditions are given as well as the temperature through the fresh gaseous mixture, the temperature profiles of the flame and the temperature of the fumes. From heat transfer calculations a simple model is presented. It gives better insight into the heat transfer processes and facilitates a judicious

  2. Combustion-driven oscillation in a furnace with multispud-type gas burners. 4th Report. Effects of position of secondary air guide sleeve and openness of secondary air guide vane on combustion oscillation condition; Multispud gata gas turner ni okeru nensho shindo. 4. Nijigen kuki sleeve ichi oyobi nijigen kuki vane kaido no shindo reiki ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, I.; Okiura, K.; Baba, A.; Orimoto, M. [Babcock-Hitachi K.K., Tokyo (Japan)

    1994-07-25

    Effects of the position of a secondary air guide sleeve and the openness of a secondary air guide vane on combustion oscillation conditions were studied experimentally for multispud-type gas burners. Pressure fluctuation in furnaces was analyzed with the previously reported resonance factor which was proposed as an index to represent the degree of combustion oscillation. As a result, the combustion oscillation region was largely affected by both position of a guide sleeve and openness of a guide vane. As the openness having large effect on the ratio of primary and secondary air/tertiary air and the position hardly having effect on the ratio were adjusted skillfully, the burner with no combustion oscillation region was achieved in its normal operation range. In addition, as the effect of preheating combustion air was arranged with a standard flow rate or mass flow flux of air, it was suggested the combustion oscillation region due to preheating can be described with the same manner as that due to no preheating. 5 refs., 8 figs.

  3. CFD simulations on marine burner flames

    DEFF Research Database (Denmark)

    Cafaggi, Giovanni; Jensen, Peter Arendt; Glarborg, Peter

    The marine industry is changing with new demands concerning high energy efficiency, fuel flexibility and lower emissions of NOX and SOX. A collaboration between the company Alfa Laval and Technical University of Denmark has been established to support the development of the next generation of mar...... of work presented in this paper was to obtain a spray description to setup a particle injection region in the CFD simulations of the boiler....

  4. Advanced Burner Reactor 1000MWth Reference Concept

    Energy Technology Data Exchange (ETDEWEB)

    Cahalan, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Fanning, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Farmer, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Kim, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Kellogg, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Krajtl, L. [Argonne National Lab. (ANL), Argonne, IL (United States); Lomperski, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Momozaki, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Park, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Reed, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Salev, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Seidensticker, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Tang, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Tzanos, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Wei, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Yang, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Chikazawa, Y. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2007-09-30

    The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence, to validate the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat.

  5. Turbine Burners: Turbulent Combustion of Liquids Fuels

    Science.gov (United States)

    2009-09-14

    stabilized combustion facility on liquid fuel adds another level of complex- ity because the fuel must first vaporize before it can mix into the air supply...vortex of the size of the cavity was entrained in a cavity of aspect ratio 1. This vortex was seen using multiple imaging techniques. (b) Schlieren

  6. Distributed combustion in a cyclonic burner

    Science.gov (United States)

    Sorrentino, Giancarlo; Sabia, Pino; de Joannon, Mara; Cavaliere, Antonio; Ragucci, Raffaele

    2017-11-01

    Distributed combustion regime occurs in several combustion technologies were efficient and environmentally cleaner energy conversion are primary tasks. For such technologies (MILD, LTC, etc…), working temperatures are enough low to boost the formation of several classes of pollutants, such as NOx and soot. To access this temperature range, a significant dilution as well as preheating of reactants is required. Such conditions are usually achieved by a strong recirculation of exhaust gases that simultaneously dilute and pre-heat the fresh reactants. However, the intersection of low combustion temperatures and highly diluted mixtures with intense pre-heating alters the evolution of the combustion process with respect to traditional flames, leading to significant features such as uniformity and distributed ignition. The present study numerically characterized the turbulence-chemistry and combustion regimes of propane/oxygen mixtures, highly diluted in nitrogen, at atmospheric pressure, in a cyclonic combustor under MILD Combustion operating conditions. The velocity and mixing fields were obtained using CFD with focus on mean and fluctuating quantities. The flow-field information helped differentiate between the impact of turbulence levels and dilution ones. The integral length scale along with the fluctuating velocity is critical to determine Damköhler and Karlovitz numbers. Together these numbers identify the combustion regime at which the combustor is operating. This information clearly distinguishes between conventional flames and distributed combustion. The results revealed that major controllers of the reaction regime are dilution and mixing levels; both are significantly impacted by lowering oxygen concentration through entrainment of hot reactive species from within the combustor, which is important in distributed combustion. Understanding the controlling factors of distributed regime is critical for the development and deployment of these novel combustion technologies for near zero emissions from high intensity combustors and energy savings using fossil and biofuels for sustainable energy conversion.

  7. Burner liner thermal/structural load modelling

    Science.gov (United States)

    Maffeo, R. J.

    1984-01-01

    A serious problem exists interfacing the output temperatures and temperature gradients from either the heat transfer codes or engine tests with the input to stress analysis codes. A thermal load transfer code was developed and was used in conjunction with a three-dimensional model of a combustor liner for verification. The 3D heat transfer and stress analysis models of combustor liners and turbine blades were used to validate the mapped temperature produced by the transfer module. Verification cases were made for both finite element and finite difference heat transfer codes. A user manual for the code was written and is available.

  8. 40 CFR 266.102 - Permit standards for burners.

    Science.gov (United States)

    2010-07-01

    ...-264.37; (iv) In subpart D (Contingency plan and emergency procedures), §§ 264.51-264.56; (v) In... screening limits for metals and chloride/chlorine, and except low risk waste exempt from the trial burn... of chlorine and chloride in total feedstreams measured and specified as prescribed in paragraph (e)(6...

  9. 40 CFR 266.103 - Interim status standards for burners.

    Science.gov (United States)

    2010-07-01

    ..., hazardous waste analysis for metals content must be sufficient for the owner or operator to determine if... major local newspaper of general circulation and send a copy of the notice to the appropriate units of...) Minimum scrubber blowdown from the system or maximum suspended solids content of scrubber water; and (C...

  10. Some parameters and conditions defining the efficiency of burners ...

    Indian Academy of Sciences (India)

    2000). [2] B R Bergelson, A S Gerasimov, G V Kiselev and G V Tishomirov, Atomnaya Energia. 93, 271 (2002). [3] S A Subbotin, P N Alekseev, V V Ignatiev et al, Harmonization of fuel cycles for long- range and wide-scale nuclear energy system, ...

  11. Florida's Revised Prescribed Fire Law: Protection For Responsible Burners

    Science.gov (United States)

    Jim Brenner; Dale Wade

    2003-01-01

    In Florida, natural communities require periodic fires for maintenance of their ecological integrity. Because of public concerns, wildfires can no longer be allowed to perform this mandatory function so prescribed burning is essential to manage these plant and animal communities. We discuss the importance of prescribed fire in Florida, outline a history of the state...

  12. average probability of failure on demand estimation for burner ...

    African Journals Online (AJOL)

    HOD

    architecture. - Common cause failure. - Proof test interval. Pij – Probability from state i to j. 1. INTRODUCTION. In the process industry, the plant is designed to keep the process within .... parametric) model is developed to model CCFs by ...... design : principles, practice, and economics of plant and process design.

  13. Combustion efficiency of a pressure-swirl nozzle burner | Laryea ...

    African Journals Online (AJOL)

    Journal of Applied Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 16, No 1-2 (2011) >. Log in or Register to get access to full text downloads.

  14. Study for the numerical resolution of combustion phenomena in burners

    OpenAIRE

    Godayol Capdevila, Èric

    2016-01-01

    Combustion is a complex phenomenon of interest that combines chemical reactions and turbulent flows. Resolution of both problems is a difficult task. On the one hand, chemical reactions introduce a large amount of species with different properties and small temporal scales due to chemical kinetics. On the other hand, turbulent flows imply a large span of spatial scales. Different models are commonly applied to reduce these requirements. Chemical reactions can be modeled with reduced chemic...

  15. Moving Science Off the ``Back Burner'': Meaning Making Within an Action Research Community of Practice

    Science.gov (United States)

    Goodnough, Karen

    2008-02-01

    In this study, the participants conceptualized and implemented an action research project that focused on the infusion of inquiry principles into a neglected science curriculum. Specific objectives were to find (a) What factors challenge and support the evolution of an action research community of practice? (b) How are teachers’ beliefs about science teaching and learning transformed? and (c) How does teachers’ knowledge of curriculum, instruction, assessment, and student learning change as a result of learning within a community of practice? In this instrumental case study (Stake 2000, In N. K. Denzin, & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 435-454). Thousand Oaks, CA: Sage), a range of data collection sources and methods were adopted. Outcomes focus on how the design principles for cultivating a community of practice emerged in the action research group, as well as the types of teacher learning that occurred by engaging in action research.

  16. Disposal options for burner ash from spent graphite fuel. Final study report November 1993

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, A.P.

    1994-08-01

    Three major disposal alternatives are being considered for Fort St. Vrain Reactor (FSVR) and Peach Bottom Reactor (PBR) spent fuels: direct disposal of packaged, intact spent fuel elements; (2) removal of compacts to separate fuel into high-level waste (HLW) and low-level waste (LLW); and (3) physical/chemical processing to reduce waste volumes and produce stable waste forms. For the third alternative, combustion of fuel matrix graphite and fuel particle carbon coatings is a preferred technique for head-end processing as well as for volume reduction and chemical pretreatment prior to final fixation, packaging, and disposal of radioactive residuals (fissile and fertile materials together with fission and activation products) in a final repository. This report presents the results of a scoping study of alternate means for processing and/or disposal of fissile-bearing particles and ash remaining after combustion of FSVR and PBR spent graphite fuels. Candidate spent fuel ash (SFA) waste forms in decreasing order of estimated technical feasibility include glass-ceramics (GCs), polycrystalline ceramic assemblages (PCAs), and homogeneous amorphous glass. Candidate SFA waste form production processes in increasing order of estimated effort and cost for implementation are: low-density GCs via fuel grinding and simultaneous combustion and waste form production in a slagging cyclone combustor (SCC); glass or low-density GCs via fluidized bed SFA production followed by conventional melting of SFA and frit; PCAs via fluidized bed SFA production followed by hot isostatic pressing (HIPing) of SFA/frit mixtures; and high-density GCs via fluidized bed SFA production followed by HIPing of Calcine/Frit/SFA mixtures.

  17. Mitigation of nitric oxide and carbon monoxide emissions from burner system utilizing swirling flow

    Science.gov (United States)

    Jaafar, M. N. Mohd; Shaiful, A. I. M.; Sahar, A. M.

    2017-09-01

    The main purpose of this paper is to study the internal flow effect and the emission production of CO and pollutant NO when varying the swirl number inside the combustor. The flow field inside the combustor is controlled by the liner shape and size, wall side holes shape, size and arrangement (primary, secondary and dilution holes), and primary air swirler configuration. Air swirler adds sufficient swirling to the inlet flow to generate central recirculation region (CRZ) which is necessary for flame stabilization and fuel air mixing enhancement. Therefore designing an appropriate air swirler is a challenge to produce stable, efficient and low emission combustion with low pressure losses. Four radial curved vane swirlers with 30o, 40o, 50o and 60o vane angles corresponding to swirl number of 0.366, 0.630, 0.978 and 1.427 respectively were used in this study to show the vane angles effect on the internal flow field. The flow behavior was investigated numerically using CFD solver Ansys 14.0. This study has provided the characteristic insight into the flow pattern inside the combustion chamber. Results show that the swirling action is augmented with the increase in the swirl number, which leads to increase in the turbulence strength, recirculation zone size, and amount of recirculated mass. The current study reports that the 50° swirler (swirl number > 0.7), produced enough swirling flow to generate good CRZ in the combustion chamber and stabilize the formation of CO and pollutant NO at early stage.

  18. Conceptual design of minor actinides burner with an accelerator-driven subcritical system.

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y.; Gohar, Y. (Nuclear Engineering Division)

    2011-11-04

    In the environmental impact study of the Yucca Mountain nuclear waste repository, the limit of spent nuclear fuel (SNF) for disposal is assessed at 70,000 metric tons of heavy metal (MTHM), among which 63,000 MTHM are the projected SNF discharge from U.S. commercial nuclear power plants though 2011. Within the 70,000 MTHM of SNF in storage, approximately 115 tons would be minor actinides (MAs) and 585 tons would be plutonium. This study describes the conceptual design of an accelerator-driven subcritical (ADS) system intended to utilize (burn) the 115 tons of MAs. The ADS system consists of a subcritical fission blanket where the MAs fuel will be burned, a spallation neutron source to drive the fission blanket, and a radiation shield to reduce the radiation dose to an acceptable level. The spallation neutrons are generated from the interaction of a 1 GeV proton beam with a lead-bismuth eutectic (LBE) or liquid lead target. In this concept, the fission blanket consists of a liquid mobile fuel and the fuel carrier can be LBE, liquid lead, or molten salt. The actinide fuel materials are dissolved, mixed, or suspended in the liquid fuel carrier. Therefore, fresh fuel can be fed into the fission blanket to adjust its reactivity and to control system power during operation. Monte Carlo analyses were performed to determine the overall parameters of an ADS system utilizing LBE as an example. Steady-state Monte Carlo simulations were studied for three fission blanket configurations that are similar except that the loaded amount of actinide fuel in the LBE is either 5, 7, or 10% of the total volume of the blanket, respectively. The neutron multiplication factor values of the three configurations are all approximately 0.98 and the MA initial inventories are each approximately 10 tons. Monte Carlo burnup simulations using the MCB5 code were performed to analyze the performance of the three conceptual ADS systems. Preliminary burnup analysis shows that all three conceptual ADS systems consume about 1.2 tons of actinides per year and produce 3 GW thermal power, with a proton beam power of 25 MW. Total MA fuel that would be consumed in the first 10 years of operation is 9.85, 11.80, or 12.68 tons, respectively, for the systems with 5, 7, or 10% actinide fuel particles loaded in the LBE. The corresponding annual MA fuel transmutation rate after reaching equilibrium at 10 years of operation is 0.83, 0.94, or 1.02 tons/year, respectively. Assuming that the ADS systems can be operated for 35 full-power years, the total MAs consumed in the three ADS systems are 30.6, 35.3, and 37.2 tons, respectively. For the three configurations, it is estimated that 3.8, 3.3, or 3.1 ADS system units are required to utilize the entire 115 tons of MA fuel in the SNF inventory, respectively.

  19. Specification of the Advanced Burner Test Reactor Multi-Physics Coupling Demonstration Problem

    Energy Technology Data Exchange (ETDEWEB)

    Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Grudzinski, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, C. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Thomas, J. W. [Argonne National Lab. (ANL), Argonne, IL (United States); Yu, Y. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-12-21

    This document specifies the multi-physics nuclear reactor demonstration problem using the SHARP software package developed by NEAMS. The SHARP toolset simulates the key coupled physics phenomena inside a nuclear reactor. The PROTEUS neutronics code models the neutron transport within the system, the Nek5000 computational fluid dynamics code models the fluid flow and heat transfer, and the DIABLO structural mechanics code models structural and mechanical deformation. The three codes are coupled to the MOAB mesh framework which allows feedback from neutronics, fluid mechanics, and mechanical deformation in a compatible format.

  20. Ceramic compositional interpretation of incense-burner trade in the Palenque Area, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, R.L. (Museum of Fine Arts, Boston, MA); Rands, R.L.; Harbottle, G.

    1982-01-01

    The Clasic Maya culture of southern Mesoamerica had a strong theocratic orientation. Notable aspects of ceremonialism in the Palenque area include incense-burning, expressed archaeologically in ceramic supports and receptacles (incensarios). Incensarios form part of a much larger body of regional ceramics now being intensively studied. Objectives are to determine manufacturing centers and the directional flow of trading relationships; therefore paste composition is accorded special importance. Compositional data are derived through sampling that is successively less extensive but more intensive (binocular examination, petrography, and neutron activation). Focussing primarily on chemical composition, data reduction is achieved by a related set of vector manipulative techniques. The resulting paste compositional reference units are evaluated by correlation with petrographic and archaeological information. Preliminary findings suggest that the ceremonial center of Palenque was the major focus of incensario manufacture.

  1. Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Niels Gronbech; Asta, Mark; Ozolins, Nigel Browning' Vidvuds; de Walle, Axel van; Wolverton, Christopher

    2011-12-29

    The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

  2. Experimental investigation of the burning of mixed and synthetic fuel counterflow burner module

    Science.gov (United States)

    Kononova, V. V.; Gur’yanov, A. I.

    2017-11-01

    All articles must contain an abstract. The abstract text should be formatted using 10 point Times or Times New Roman and indented 25 mm from the left margin. Leave 10 mm space after the abstract before you begin the main text of your article, starting on the same page as the abstract. The abstract should give readers concise information about the content of the article and indicate the main results obtained and conclusions drawn. The abstract is not part of the text and should be complete in itself; no table numbers, figure numbers, references or displayed mathematical expressions should be included. It should be suitable for direct inclusion in abstracting services and should not normally exceed 200 words in a single paragraph. Since contemporary information-retrieval systems rely heavily on the content of titles and abstracts to identify relevant articles in literature searches, great care should be taken in constructing both.

  3. Turbulent transport measurements in a cold model of GT-burner at realistic flow rates

    Directory of Open Access Journals (Sweden)

    Gobyzov Oleg

    2016-01-01

    Full Text Available In the present work simultaneous velocity field and passive admixture concentration field measurements at realistic flow-rates conditions in a non-reacting flow in a model of combustion chamber with an industrial mixing device are reported. In the experiments for safety reasons the real fuel (natural gas was replaced with neon gas to simulate stratification in a strongly swirling flow. Measurements were performed by means of planar laser-induced fluorescence (PLIF and particle image velocimetry technique (PIV at Reynolds number, based on the mean flow rate and nozzle diameter, ≈300 000. Details on experimental technique, features of the experimental setup, images and data preprocessing procedures and results of performed measurements are given in the paper. In addition to the raw velocity and admixture concentration data in-depth evaluation approaches aimed for estimation of turbulent kinetic energy (TKE components, assessment of turbulent Schmidt number and analysis of the gradient closure hypothesis from experimental data are presented in the paper.

  4. Isothermal modeling of aerodynamic structure of the swirling flow in a two-stage burner

    Science.gov (United States)

    Yusupov, Roman; Shtork, Sergey; Alekseenko, Sergey

    2017-10-01

    The work deals with the experimental study of the aerodynamic structure of a swirling flow in the isothermal model of two-stage vortex combustion chamber. The main attention is focused on the process of flow mixing of two successively connected tangential swirlers of the first and second stages of the working section. Data on flow visualization are presented for two patterns of flow swirling. Time-averaged profiles of the axial and tangential velocity components are obtained with the help of laser-Doppler anemometer. In the case of flow co-swirling between two stages of the working section, instability of a secondary flow in the form of precessing vortex was distinguished. For the regime with counter flow swirling, effective mixing of the swirl flows was found; this was reflected by formation of the flow with uniform distribution of axial velocity over the cross-section.

  5. Fast burner reactor benchmark results from the NEA working party on physics of plutonium recycle

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.N.; Wade, D.C. [Argonne National Lab., IL (United States); Palmiotti, G. [CEA - Cadarache, Saint-Paul-Les-Durance (France)

    1995-12-01

    As part of a program proposed by the OECD/NEA Working Party on Physics of Plutonium Recycling (WPPR) to evaluate different scenarios for the use of plutonium, fast reactor physics benchmarks were developed; fuel cycle scenarios using either PUREX/TRUEX (oxide fuel) or pyrometallurgical (metal fuel) separation technologies were specified. These benchmarks were designed to evaluate the nuclear performance and radiotoxicity impact of a transuranic-burning fast reactor system. International benchmark results are summarized in this paper; and key conclusions are highlighted.

  6. A Scientific Basis for the Development of the Next Generation of Biomass Burners

    DEFF Research Database (Denmark)

    Johansen, Joakim Myung; Jensen, Peter Arendt; Clausen, Sønnik

    The kinetics derived from the classical engineering study are used to simulate the devolatilization and char burn-out phases in the CFD model. Likewise, the study on morphology development will be used to estimate suitable sub-routines, e.g. effective drag coeffcients. The full-scale campaign...

  7. Large-eddy simulations of the non-reactive flow in the Sydney swirl burner

    DEFF Research Database (Denmark)

    Yang, Yang; Kær, Søren Knudsen

    2012-01-01

    results. In medium swirling case, there are two reverse-flow regions with a collar-like structure between them. The existence of strong unsteady structure, precessing vortex core, was proven. Coherent structures are detached from the instantaneous field. Q-criterion was used to visualize vorticity field...

  8. Effects of equivalence ratio and dwell time on exhaust emissions from an experimental premixing prevaporizing burner

    Science.gov (United States)

    Anderson, D.

    1975-01-01

    A flame-tube study was performed to determine the effects of equivalence ratio and residence time on exhaust emissions with premixed, prevaporized propane fuel. Nitrogen oxides emissions as low as 0.3 g NO2/kg fuel were measured with greater than 99 percent combustion efficiency at 800 K inlet temperature and an equivalence ratio of 0.4. For a constant combustion efficiency, lower nitrogen oxides emissions were obtained by burning very lean with relatively long residence times than by using somewhat higher equivalence ratios with shorter times.

  9. Design and construction of gas-fed burners for laboratory studies of flame structure

    Science.gov (United States)

    Dan Jimenez; Mark A. Finney; Jack Cohen

    2010-01-01

    The study of buoyant convection for diffusion flames in wildland fires is critical to understanding heating and cooling dynamics related to particle ignition. Studies based on solid biomass fuels are made difficult by short flame residence time associated with fine fuels. An alternative is to use artificial fuel gas rather than relying on pyrolysis of solid fuels to...

  10. Isothermal modeling of aerodynamic structure of the swirling flow in a two-stage burner

    Directory of Open Access Journals (Sweden)

    Yusupov Roman

    2017-01-01

    Full Text Available The work deals with the experimental study of the aerodynamic structure of a swirling flow in the isothermal model of two-stage vortex combustion chamber. The main attention is focused on the process of flow mixing of two successively connected tangential swirlers of the first and second stages of the working section. Data on flow visualization are presented for two patterns of flow swirling. Time-averaged profiles of the axial and tangential velocity components are obtained with the help of laser-Doppler anemometer. In the case of flow co-swirling between two stages of the working section, instability of a secondary flow in the form of precessing vortex was distinguished. For the regime with counter flow swirling, effective mixing of the swirl flows was found; this was reflected by formation of the flow with uniform distribution of axial velocity over the cross-section.

  11. Reduction of combustion noise and instabilities using porous inert material with a swirl-stabilized burner

    Science.gov (United States)

    Sequera, Daniel

    Combustion instabilities represent a major problem during operation of power generation systems that can lead to costly shutdown. Combustion instabilities are self excited large amplitude pressure oscillations caused by the coupling of unsteady heat release and acoustic modes of the combustor. These oscillations cause fluctuating mechanical loads and fluctuating heat transfer that can result in catastrophic premature failure of components. Combustion noise, a significant source of noise in gas turbines, can lead to combustion instabilities. Combustion noise and instabilities are different phenomena; however, they both occur due to unsteady heat release of turbulent flames that excites acoustic modes of the combustor. The instabilities self excite when flame adds energy to the acoustic field at a faster rate than it can dissipate it. Swirl-stabilized combustion and porous inert medium (PIM) combustion are two methods that have extensively been used, although independently, for flame stabilization. In this study, the two concepts are combined so that PIM serves as a passive device to mitigate combustion noise and instabilities. A PIM insert is placed within the lean premixed, swirl-stabilized combustor to affect the turbulent flow field reducing combustion noise. This study is the first step for eventual implementation in liquid fuel systems. After presenting the concept, a numerical investigation of the changes in the mean flow field caused by the PIM is presented. Changes in the flow field can be beneficial for noise reduction by optimizing the geometric parameters of the PIM. Next, atmospheric pressure experiments were conducted at low reactant inlet velocity (interior combustion modes were identified and PIM geometric parameters were optimized. Next, a laboratory facility to conduct experiments at high reactant inlet velocity, high inlet air temperature, and high pressure was designed and developed. Results show that the porous insert substantially reduces combustion noise for a range of operating conditions. Moreover, experiments show that the porous insert can mitigate combustion instabilities without adversely affecting CO and NOx emissions.

  12. Large eddy simulations of turbulent reacting flows in real burners: the status and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Gicquel, L Y M; Staffelbach, G; Cuenot, B [CERFACS, 31057 Toulouse Cedex 1 (France); Poinsot, T [Institut de Mecanique des Fluides de Toulouse, 31400 Toulouse (France)], E-mail: Laurent.Gicquel@cerfacs.fr

    2008-07-15

    Turbulence is a recurrent and recognised challenge for which the scientific community has not been able to provide reliable methodologies necessary for predictions in complex industrial applications. In fact and throughout the past century, that challenge has been identified as a million dollar achievement simply because of the tremendous impact such a contribution would have on existing industrial processes. Among all industries, the gas-turbine companies are probably the most receptive to new contributions in the field of turbulent reacting flows because of the upcoming new regulations and the existing pressure linked to petroleum consumption and pollutant emissions. From a purely scientific point of view, the treatment of combustion and turbulence yields additional difficulties. However, and because of the advent of high-performane computers providing teraflop capabilities, the fully unsteady, temporally and spatially dependent approach that is large eddy simulations (LES) provides new insights and promises when dealing with these industrial applications. In this document, state-of-the-art LES for complex flows is presented, along with developments and potential challenges that are needed to improve LES in order to yield an efficient and reliable tool for the prediction of real industrial turbulent reacting flows.

  13. The i-V curve characteristics of burner-stabilized premixed flames: detailed and reduced models

    KAUST Repository

    Han, Jie

    2016-07-17

    The i-V curve describes the current drawn from a flame as a function of the voltage difference applied across the reaction zone. Since combustion diagnostics and flame control strategies based on electric fields depend on the amount of current drawn from flames, there is significant interest in modeling and understanding i-V curves. We implement and apply a detailed model for the simulation of the production and transport of ions and electrons in one-dimensional premixed flames. An analytical reduced model is developed based on the detailed one, and analytical expressions are used to gain insight into the characteristics of the i-Vcurve for various flame configurations. In order for the reduced model to capture the spatial distribution of the electric field accurately, the concept of a dead zone region, where voltage is constant, is introduced, and a suitable closure for the spatial extent of the dead zone is proposed and validated. The results from the reduced modeling framework are found to be in good agreement with those from the detailed simulations. The saturation voltage is found to depend significantly on the flame location relative to the electrodes, and on the sign of the voltage difference applied. Furthermore, at sub-saturation conditions, the current is shown to increase linearly or quadratically with the applied voltage, depending on the flame location. These limiting behaviors exhibited by the reduced model elucidate the features of i-V curves observed experimentally. The reduced model relies on the existence of a thin layer where charges are produced, corresponding to the reaction zone of a flame. Consequently, the analytical model we propose is not limited to the study of premixed flames, and may be applied easily to others configurations, e.g.~nonpremixed counterflow flames.

  14. CFD and Chemical Reactor Network approaches to model an inter-turbine burner

    NARCIS (Netherlands)

    Perpignan, A.A.V.; Talboom, Thijs; Gangoli Rao, A.

    2017-01-01

    The Flameless Combustion (FC) regime is promising to the attainment of lower emissions in gas turbine engines. The well-distributed reactions, with low peak temperatures present in the regime result in lower emissions and acoustic oscillations. However, the

  15. Equipment for biomass. Wood burners; Materiels pour la biomasse, les chaudieres bois

    Energy Technology Data Exchange (ETDEWEB)

    Chieze, B. [SA Compte R., 63 - Arlanc (France)

    1997-12-31

    A review of the French classification of biomass wastes (and more especially wood and wood wastes) concerning classified burning equipment, is presented: special authorization is thus needed for burning residues from wood second transformation processes. Limits for combustion product emission levels are detailed and their impact on wood burning and process equipment is examined: feeder, combustion chamber, exchanger, fume treatment device, residue disposal. Means for reducing pollutant emissions are reviewed

  16. SENSOR FOR INDIVIDUAL BURNER CONTROL OF FIRING RATE, FUEL-AIR RATIO, AND COAL FINENESS CORRELATION

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Hill

    2004-10-01

    The project's overall objective is to develop a commercially viable sensing system to infer the flow rate and fineness of pulverized coal flows using the dynamic signature from a pipe-mounted accelerometer. The preliminary calibration data for this effort will be obtained using a Coal Flow Test Facility built and operated by our subcontractor, Airflow Sciences Corporation, in support of an EPRI program. Airflow Sciences encountered significant difficulty getting the system up and running, with the final hurdles related to the system controls. These problems were resolved in this reporting period, so that the facility is ready for testing. Shakedown testing with our instrumentation package began late in the reporting period. Preliminary analysis of the resulting data indicates that there are problems with the instrumentation and/or test rig. Even with no flow passing through the test section, a power spectrum of the data shows strong frequency ''lines''. The data should be free of such behaviors, so the instrumentation must be recording behaviors that are unrelated to the flow. This issue must be resolved before calibration data are collected. A preliminary effort to debug the problem through long-distance consultation between Foster-Miller and Airflow Sciences personnel at the end of the reporting period did not discover the source of the problem. Consequently, a Foster-Miller engineer will visit the test facility early in the next reporting period. Assuming this effort is successful, preliminary testing and analysis should be completed in the next reporting period. Because of slack in the program schedule, there should be no net effect on the program scope, cost, or schedule.

  17. SENSOR FOR INDIVIDUAL BURNER CONTROL OF FIRING RATE, FUEL-AIR RATIO, AND COAL FINENESS CORRELATION

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Hill; Roger Demler; Robert G. Mudry

    2004-10-01

    Instrumentation difficulties encountered in the previous reporting period were addressed early in this reporting period, resulting in a new instrumentation configuration that appears to be free of the noise issues found previously. This permitted the collection of flow calibration data to begin. The first issues in question are the effects of the type and location of the transducer mount. Data were collected for 15 different transducer positions (upstream and downstream of an elbow in the pipe), with both a stud mount and a magnetic transducer mount, for each of seven combinations of air and coal flow. Analysis of these data shows that the effects of the transducer mount type and location on the resulting dynamics are complicated, and not easily captured in a single analysis. To maximize the practical value of the calibration data, further detailed calibration data will be collected with both the magnetic and stud mounts, but at a single mounting location just downstream of a pipe elbow. This testing will be performed in the Coal Flow Test Facility in the next reporting period. The program progress in this reporting period was sufficient to put us essentially back on schedule.

  18. Integration of an Inter Turbine Burner to a Jet Turbine Engine

    Science.gov (United States)

    2013-03-01

    70  Figure 4.9: THC emissions...will provide real pressure loss data for flow through the UCC. A second challenge of UCC design is the integration of liquid fuels to the UCC. The...turbine engines use liquid fuels and therefore it is important to understand how liquid fuels will act inside of the circumferential cavity under g

  19. SENSOR FOR INDIVIDUAL BURNER CONTROL OF FIRING RATE, FUEL-AIR RATIO, AND COAL FINENESS CORRELATION

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Hill; Roger Demler; Robert G. Mudry

    2005-04-01

    A no-cost time extension was requested, to permit additional laboratory testing prior to undertaking field data collection. This was received in this reporting period. To minimize program cost, this additional testing is planned to be performed in concert with EPRI-funded testing at the Coal Flow Test Facility. Since the EPRI schedule was undecided, a hiatus occurred in the test effort. Instead, a significant effort was exerted to analyze the available laboratory test data to see whether the source and nature of noise behaviors could be identified, or whether the key flow information could be extracted even in the presence of the noise. One analysis approach involved filtering the data numerically to reject dynamics outside of various frequency bands. By varying the center frequency and width of the band, the effect of signal frequency on flow dynamics could be examined. Essentially equivalent results were obtained for all frequency bands that excluded a neighborhood of the transducer resonance, indicating that there is little advantage to be gained by limiting the experimental frequency window. Another approach examined the variation of the dynamics over a series of 1-second windows of data, producing an improvement in the prediction of coal flow rate. Yet another approach compared the dynamics of a series of 1-second windows to those of a series of 5-second windows, producing still better results. These results will be developed further in the next reporting period, which should also include further laboratory testing at the Coal Flow Test Facility.

  20. Use of numerical modeling in design for co-firing biomass in wall-fired burners

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen

    2004-01-01

    particles are assumed as solid or hollow cylinders in shape, depending on the particle group. To model accurately the motion of biomass particles, the forces that could be important are all considered in the particle force balance, which includes a drag for non-spherical particles, an additional lift due...... of numerical modeling. The models currently used to predict solid fuel combustion rely on a spherical particle shape assumption, which may deviate a lot from reality for big biomass particles. A sphere gives a minimum in terms of the surface-area-to-volume ratio, which impacts significantly both motion...... modification to the motion and reaction due to their non-sphericity. The simulation results show a big difference between the two cases and indicate it is very significant to take into account the non-sphericity of biomass particles in order to model biomass combustion more accurately. Methods to improve...

  1. A comparison of three turbulence models for axisymmetric isothermal swirling flows in the near burner zone

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstedt, H. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1997-12-31

    In this work three different turbulence models, the k - {epsilon}, RNG k - {epsilon} and Reynolds stress model, have been compared in the case of confined swirling flow. The flow geometries are the isothermal swirling flows measured by International Flame Research Foundation (IFRF). The inlet boundary profiles have been taken from the measurements. At the outlet the effect of furnace end contraction has been studied. The k - {epsilon} model falls to predict the correct flow field. The RNG k - {epsilon} model can provide improvements, although it has problems near the symmetry axis. The Reynolds stress model produces the best agreement with measured data. (author) 13 refs.

  2. Nationality as a stigma: The drawbacks of nationality: What do I have to do with book-burners?

    OpenAIRE

    Nagy, Boldizsár

    2014-01-01

    The study deals with two related issues: first with the conundrum of the Hungarian law on nationality and voting rights; second with instances when nationality acts as a stigma. It has two major propositions. First, the Hungarian law on nationality and elections does not lead to any reasonable conclusion concerning who constitutes the Hungarian political community, as millions of Hungarian nationals are practically excluded – but an ever increasing crowd of people who have never lived in H...

  3. Flow Characteristics of Multi-circular Jet Plate in Premix Chamber of Air-Assist Atomizer for Burner System

    Directory of Open Access Journals (Sweden)

    Amirnordin Shahrin Hisham

    2016-01-01

    Full Text Available The flow characteristics of multi-circular jet (MCJ plate in the premix chamber of an atomizer were investigated using Computational Fluid Dynamics. Multiphase volume of fluid behavior inside the chamber was determined via steady simulations. The Eulerian–Eulerian two-fluid approach was used for execution mixing of diesel fuel and air. Spray simulation using the discrete phase with injection was generated from the nozzle hole into the ambient atmosphere. The behavior of three MCJ plates in the premix chamber was studied numerically. Results illustrated that plate open area, Ae, influenced the turbulence inside the chamber. MCJ 3, which had the lowest open area, generated the highest flow velocity and turbulence kinetic energy compared with MCJ 1 and 2. The MCJ plates could increase the turbulence in the premix chamber and contribute to the combustion efficiency.

  4. Flow Characteristics of Multi-circular Jet Plate in Premix Chamber of Air-Assist Atomizer for Burner System

    OpenAIRE

    Amirnordin Shahrin Hisham; Khalid Amir; Ismail Isma Adzrai; Yii Shi Chin Ronny; Fawzi Mas

    2016-01-01

    The flow characteristics of multi-circular jet (MCJ) plate in the premix chamber of an atomizer were investigated using Computational Fluid Dynamics. Multiphase volume of fluid behavior inside the chamber was determined via steady simulations. The Eulerian–Eulerian two-fluid approach was used for execution mixing of diesel fuel and air. Spray simulation using the discrete phase with injection was generated from the nozzle hole into the ambient atmosphere. The behavior of three MCJ plates in t...

  5. Demonstration of Low-NOx Burner Retrofit for Dual-Fuel Package Boilers: Equipment Selection Criteria and Initial Findings

    Science.gov (United States)

    1992-09-01

    Engineering (same as Gordon-Pialt) X Perfection Constructors Co. x Pillard Inc. X Process C-Jmbustion Corp. x Puripher x Pyronics, Inc. X Radiant Superjet, Ltd...John Zink Company 760 Hlauck Manufactunng Company 660 Coen Company. Inc. 639 Gordon-Platt Fnergy Croup. Inc. 578 Pillard , Inc. 569 Bloom Engineenng...216) 464-8013 Pillard Inc. P.O. Box 24401 Riley Stoker Louisville, KY 40224 Sales Department (502) 423-7878 P.O. Box 547 Worcester, MA 01613 Process

  6. Effect of burner geometry on swirl stabilized methane/air flames: A joint LES/OH-PLIF/PIV study

    KAUST Repository

    Liu, X.

    2017-07-04

    Large eddy simulation (LES) using a transported PDF model and OH-PLIF/PIV experiments were carried out to investigate the quarl effects on the structures of swirl stabilized methane/air flames. Two different quarls were investigated, one straight cylindrical quarl and one diverging conical quarl. The experiments show that the flames are significantly different with the two quarls. With the straight cylindrical quarl a compact blue flame is observed while with the diverging conical quarl the flame appears to be long and yellow indicating a sooty flame structure. The PIV results show the formation of a stronger flow recirculation inside the diverging conical quarl than that in the straight quarl. LES results reveal further details of the flow and mixing process inside the quarl. The results show that with the diverging quarl vortex breakdown occurs much earlier towards the upstream of the quarl. As a result the fuel is convected into the air flow tube and a diffusion flame is stabilized inside the air flow tube upstream the quarl. With the straight quarl, vortex breakdown occurs at a downstream location in the quarl. The scalar dissipation rate in the shear layer of the fuel jet is high, which prevents the stabilization of a diffusion flame in the proximity of the fuel nozzle; instead, a compact partially premixed flame with two distinct heat release layers is stablized in a downstream region in the quarl, which allows for the fuel and air to mix in the quarl before combustion and a lower formation rate of soot. The results showed that the Eulerian Stochastic Fields transported PDF method can well predict the details of the swirl flame dynamics.

  7. LES and experimental studies of cold and reacting flow in a swirled partially remixed burner with and without fuel modulation

    NARCIS (Netherlands)

    Sengissen, A.X.; van Kampen, J.F.; Huls, R.A.; Stoffels, Genie G.M.; Kok, Jacobus B.W.; Poinsot, T.J.

    2007-01-01

    In devices where air and fuel are injected separately, combustion processes are influenced by oscillations of the air flow rate but may also be sensitive to fluctuations of the fuel flow rate entering the chamber. This paper describes a joint experimental and numerical study of the mechanisms

  8. Thermo-acoustic characterization of the burner-turbine interface in a can-annular combustor using CFD

    NARCIS (Netherlands)

    Farisco, Federica

    2016-01-01

    Thermo-acoustic instabilities in high power density gas turbine engines need to be understood to avoid unexpected shutdown events. This dissertation is focused on the combustor-turbine interaction for acoustic waves. The first part of the study is based on the acoustic reflection coefficient

  9. Superconducting YBa sub 2 Cu sub 3 O sub x particulate produced by total consumption burner processing

    Energy Technology Data Exchange (ETDEWEB)

    Merkle, B.D.; Kniseley, R.N.; Schmidt, F.A.; Anderson, I.E. (Ames Lab., Iowa State Univ. (USA))

    1990-04-10

    This paper summarizes the results on the characterization of fine particulates of YBa{sub 2}Cu{sub 3}O{sub x} superconducting oxide produced by reacting an atomized nitrate solution containing yttrium: barium:copper in the atomic ratio 1:2:3 respectively, in an oxyhydrogen flame. The characterization of the resulting oxide compound includes microstructural analysis by optical microscopy and scanning electron microscopy (SEM), and X-ray diffraction and magnetic susceptibility measurements. SEM reveals the primary particle size (about 0.1-0.3 {mu}m) and morphology of a substrate deposit, produced from solution concentrations ranging from 5 to 33 g l{sup -1}. X-ray diffraction measurements of oxygen-annealed particulate reveal a crystal structure identical with that of the conventionally produced superconducting oxide. Magnetic susceptibility measurements using a superconducting quantum interference device magnetometer demonstrate that the material is superconducting with a Tc of about 93 K. (orig.).

  10. Combustion Characteristics of a Swirl Dry Low Emission Burner Concept for Gas Turbine Application : Experiments and Simulations

    OpenAIRE

    Kundu, Atanu

    2016-01-01

    In the current global energy scenario, gas turbine can provide delicate balance between the booming worlds energy requirement and a pollutant free sustainable society. Cleaner combustion of fuel (particular natural gas), efficient, reliable, low maintenance and cost effective operation of gas turbine attracted scientific community to push the limit further (high efficiency and zero emission gas turbine). Gas turbine combustion process is complex by nature as it interacts with turbulence, chem...

  11. The Use of an Ultra-Compact Combustor as an Inter-Turbine Burner for Improved Engine Performance

    Science.gov (United States)

    2014-03-27

    Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial Fulfillment of the Requirements...Stand Temperature and Pressure. Pressure measurements are made using a 64 channel ESP-HD pressure scanner connected to an Esterline DTC Initium... DTC Initium [28] Figure 57: Pressure Data Acquisition Components Temperature data is collected using 1/16 inch K-type probe thermocouples. A

  12. Optimization of Fast Critical Experiments to Reduce Nuclear Data Uncertainties in Support of a Fast Burner Reactor Design Concept

    Science.gov (United States)

    Stover, Tracy E., Jr.

    An optimization technique has been developed to select optimized experimental design specifications to produce data specifically designed to be assimilated to optimize a given reactor concept. Data from the optimized experiment is assimilated to generate posteriori uncertainties on the reactor concept's core attributes from which the design responses are computed. The reactor concept is then optimized with the new data to realize cost savings by reducing margin. The optimization problem iterates until an optimal experiment is found to maximize the savings. A new generation of innovative nuclear reactor designs, in particular fast neutron spectrum recycle reactors, are being considered for the application of closing the nuclear fuel cycle in the future. Safe and economical design of these reactors will require uncertainty reduction in basic nuclear data which are input to the reactor design. These data uncertainty propagate to design responses which in turn require the reactor designer to incorporate additional safety margin into the design, which often increases the cost of the reactor. Therefore basic nuclear data needs to be improved and this is accomplished through experimentation. Considering the high cost of nuclear experiments, it is desired to have an optimized experiment which will provide the data needed for uncertainty reduction such that a reactor design concept can meet its target accuracies or to allow savings to be realized by reducing the margin required due to uncertainty propagated from basic nuclear data. However, this optimization is coupled to the reactor design itself because with improved data the reactor concept can be re-optimized itself. It is thus desired to find the experiment that gives the best optimized reactor design. Methods are first established to model both the reactor concept and the experiment and to efficiently propagate the basic nuclear data uncertainty through these models to outputs. The representativity of the experiment to the design concept is quantitatively determined. A technique is then established to assimilate this data and produce posteriori uncertainties on key attributes and responses of the design concept. Several experiment perturbations based on engineering judgment are used to demonstrate these methods and also serve as an initial generation of the optimization problem. Finally, an optimization technique is developed which will simultaneously arrive at an optimized experiment to produce an optimized reactor design. Solution of this problem is made possible by the use of the simulated annealing algorithm for solution of optimization problems. The optimization examined in this work is based on maximizing the reactor cost savings associated with the modified design made possible by using the design margin gained through reduced basic nuclear data uncertainties. Cost values for experiment design specifications and reactor design specifications are established and used to compute a total savings by comparing the posteriori reactor cost to the a priori cost plus the cost of the experiment. The optimized solution arrives at a maximized cost savings.

  13. The kiln simulator: An ideal training instrument for kiln burners. Der Ofensimulator: Ein ideales Trainingsinstrument fuer Ofenfuehrer

    Energy Technology Data Exchange (ETDEWEB)

    Burkard, A.

    1989-11-01

    With increasing automation of chemical engineering processes the training of operators for these processes is gaining ever greater importance. The simulator has proved to be an ideal training instrument: many areas - for instance the training of pilots - would be inconceivable now without simulators. Potential applications in cement production are illustrated using the second generation Holderbank kiln simulator as an example. (orig.).

  14. The effects of the hydrogen addition on the HCN profiles in fuel-rich-premixed, burner-stabilized C1-C3 alkane flames

    NARCIS (Netherlands)

    Sepman, A. V.; Mokhov, A. V.; Levinsky, H. B.

    2011-01-01

    The effects of hydrogen addition on HCN formation and consumption in fuel-rich, burnerstabilized methane, ethane and propane flames are reported. The HCN mole fraction was measured using quartz-microprobe sampling followed by direct absorption spectroscopy. Experiments were performed at equivalence

  15. Effects of fractal grid on emissions in burner combustion by using fuel-water-air premix injector derived from biodiesel crude palm oil (CPO base

    Directory of Open Access Journals (Sweden)

    Suardi Mirnah

    2017-01-01

    Full Text Available The alternative fuel is attracted good attention from worldwide especially for renewable and prevention energy such as biodiesel. Biodiesel is one of the hydrocarbon fuels and it has potential for external combustion. As one of the different solutions to these problems, rapid mixing of biodiesel-water-air technique is one of the most significant approaches to improve the combustion and reduce the emissions. The gas emission can be reduced by two methods. First is by improving an injector with fractal and the other is by using a biodiesel-water mixture as an alternative fuel. Mixing of water with fuel in the combustion process is a low cost and effective way. This research used biodiesel Crude Palm Oil (CPO as fuels in which blended with diesel. This study investigated the effects of water content and equivalence ratio on emissions with the rapid mixing injector. Fuels used are diesel, CPO5, CPO10 and CPO15 and the exhausts gaseous tested are CO, CO2, HC and NOX. The gas emissions processes are tested by using the gas analyzer. In this research, water premix of percentage up to 15vol% and blending biodiesel ratio was varied from 5vom% - 15vol%. The result shows that increasing of water content will effected decrement of CO, CO2 and HC emissions but increasing the NOX emissions.

  16. Technical development of a retrofit wood burner for coal under-fed stokers in County Durham, and set up of demonstration facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, N.

    2002-07-01

    Durham County Council wishes to convert its coal-burning solid fuel boilers to make use of readily-available waste wood dust. It is intended that the wood dust be converted to pelleted fuel. The emphasis was on cost-cutting rather than boiler efficiency. The experimental studies were carried out at two schools where the boilers were welded steel and cast iron sectional boilers. Factors studied were air supply to the boilers, fuel feed systems, fuel storage, fuel delivery and pelletization. The results have shown that operating costs of wood burning boilers are a little greater than coal-burning but this is slightly offset by savings elsewhere. The environmental benefits were significant in terms of lower emissions from the boilers, reduced road transport, and the wood waste is no longer sent to landfill. Further areas of study are recommended. The contractor for this study was North Energy Associates Ltd, and the study was part of the DTI Sustainable Energy Programme.

  17. The Feasibility of Detecting a Burner-Can Burn-Through by Means of CO, CO2, Pressure, and Air Temperature Levels in a Jet Engine Nacelle.

    Science.gov (United States)

    feasibility of detecting a burn-through by monitoring the carbon monoxide (CO), carbon dioxide (CO2), a pressure level, or air temperature in the nacelle...before, during, and after engine case rupture. Results of the tests indicated that CO, CO2, pressure, and air temperature in the nacelle cannot be

  18. Fe-Al Weld Overlay and High Velocity Oxy-Fuel Thermal Spray Coatings for Corrosion Protection of Waterwalls in Fossil Fired Plants with Low NOx Burners

    Energy Technology Data Exchange (ETDEWEB)

    Regina, J.R.

    2002-02-08

    Iron-aluminum-chromium coatings were investigated to determine the best candidates for coatings of boiler tubes in Low NOx fossil fueled power plants. Ten iron-aluminum-chromium weld claddings with aluminum concentrations up to 10wt% were tested in a variety of environments to evaluate their high temperature corrosion resistance. The weld overlay claddings also contained titanium additions to investigate any beneficial effects from these ternary and quaternary alloying additions. Several High-Velocity Oxy-Fuel (HVOF) thermal spray coatings with higher aluminum concentrations were investigated as well. Gaseous corrosion testing revealed that at least 10wt%Al is required for protection in the range of environments examined. Chromium additions were beneficial in all of the environments, but additions of titanium were beneficial only in sulfur rich atmospheres. Similar results were observed when weld claddings were in contact with corrosive slag while simultaneously, exposed to the corrosive environments. An aluminum concentration of 10wt% was required to prevent large amounts of corrosion to take place. Again chromium additions were beneficial with the greatest corrosion protection occurring for welds containing both 10wt%Al and 5wt%Cr. The exposed thermal spray coatings showed either significant cracking within the coating, considerable thickness loss, or corrosion products at the coating substrate interface. Therefore, the thermal spray coatings provided the substrate very little protection. Overall, it was concluded that of the coatings studied weld overlay coatings provide superior protection in these Low NOx environments; specifically, the ternary weld composition of 10wt%Al and 5wt%Cr provided the best corrosion protection in all of the environments tested.

  19. Russian roulette with unlicensed fat-burner drug 2,4-dinitrophenol (DNP): evidence from a multidisciplinary study of the internet, bodybuilding supplements and DNP users.

    Science.gov (United States)

    Petróczi, Andrea; Ocampo, Jorge A Vela; Shah, Iltaf; Jenkinson, Carl; New, Rachael; James, Ricky A; Taylor, Glenn; Naughton, Declan P

    2015-10-14

    2,4-Dinitrophenol (DNP) poses serious health-risks to humans. The aims of this three-stage multidisciplinary project were, for the first time, to assess the risks to the general public from fraudulent sale of or adulteration/contamination with DNP; and to investigate motives, reasons and risk-management among DNP-user bodybuilders and avid exercisers. Using multiple search-engines and guidance for Internet research, online retailers and bodybuilding forums/blogs were systematically explored for availability of DNP, advice offered on DNP use and user profiles. Ninety-eight pre-workout and weight-loss supplements were purchased and analysed for DNP using liquid-chromatography-mass-spectrometry. Psychosocial variables were captured in an international sample of 35 DNP users (26.06 ± 6.10 years, 94.3 % male) with an anonymous, semi-qualitative self-reported survey. Although an industrial chemical, evidence from the Internet showed that DNP is sold 'as is', in capsules or tablets to suit human consumption, and is used 'uncut'. Analytical results confirmed that DNP is not on the supplement market disguised under fictitious supplement names, but infrequently was present as contaminant in some supplements (14/98) at low concentration (<100mcg/kg). Users make conscious and 'informed' decisions about DNP; are well-prepared for the side-effects and show nonchalant attitude toward self-experimentation with DNP. Steps are often taken to ensure that DNP is genuine. Personal experience with performance- and appearance enhancing substances appears to be a gateway to DNP. Advice on DNP and experiences are shared online. The significant discrepancy between the normative perception and the actual visibility suggests that DNP use is-contrary to the Internet accounts-a highly concealed and lonesome activity in real life. Positive experiences with the expected weight-loss prevail over the negative experiences from side effects (all but two users considered using DNP again) and help with using DNP safely is considered preferable over scare-tactics. Legislation banning DNP sale for human consumption protects the general public but DNP is sold 'as is' and used 'uncut' by determined users who are not dissuaded from experimenting with DNP based on health threats. Further research with stakeholders' active participation is imperative for targeted, proactive public health policies and harm-reduction measures for DNP, and other illicit supplements.

  20. Fire-induced re-radiation underneath photovoltaic arrays on flat roofs

    DEFF Research Database (Denmark)

    Steemann Kristensen, J.; Merci, B.; Jomaas, Grunde

    2017-01-01

    The impact of the reflection of fire-induced heat from a gas burner was studied experimentally to gain knowledge on the interaction between photovoltaic (PV) panels and a fire. The heat flux was measured in a total of eight points at the same level as the top of the gas burner. The gas burner...

  1. A FUEL-RICH PRECOMBUSTOR. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS - VOLUME IV. ALTERNATE CON- CEPTS FOR SOX, NOX, AND PARTICULATE EMISSIONS CONTROL FROM

    Science.gov (United States)

    The report gives results a study of the use of precombustors for the simultaneous control of S02, NOx, and ash emissions from coal combustion. In Phase 1, exploratory testing was conducted on a small pilot scale--293 kW (million Btu/hr)-pulverized-coal-fired precombustor to ident...

  2. Towards a better understanding of biomass suspension co-firing impacts via investigating a coal flame and a biomass flame in a swirl-stabilized burner flow reactor under same conditions

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2012-01-01

    increases the residence time of coal particles. Both the factors favor a complete burnout of the coal particles. The higher volatile yields of the straw produce more off-gas, requiring more O2 for the fast gas phase combustion and causing the off-gas to proceed to a much larger volume in the reactor prior...... to mixing with oxidizer. For the pulverized straw particles of a few hundred microns in diameters, the intra-particle conversion is found to be a secondary issue at most in their combustion. The simulations also show that a simple switch of the straw injection mode can not improve the burnout of the straw...

  3. EVALUATION OF INTERNALLY STAGED COAL BURNERS AND SORBENT JET AERODYNAMICS FOR COMBINED SO2/NOX CONTROL IN UTILITY BOILERS; VOLUME 2. TESTING IN A 100 MILLION BTU/HR EXPERIMENTAL FURNACE

    Science.gov (United States)

    The report givesresults of100 million Btu/hr (29 MWt) experimental furnace to explore methods for achieving effective S02 removal in a coalfired utility boiler using calcium-based sorbents, through appropriate selection of injection location and injector design/operating paramete...

  4. Advanced radiant combustion system. Final report, September 1989--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.D.; Carswell, M.G.; Long, F.S.

    1996-09-01

    Results of the Advanced Radiant Combustion System (ARCS) project are presented in this report. This work was performed by Alzeta Corporation as prime contractor under a contract to the U.S. Department of Energy Office of Industrial Technologies as part of a larger DOE program entitled Research Program for Advanced Combustion Systems. The goals of the Alzeta ARCS project were to (a) Improve the high temperature performance characteristics of porous surface ceramic fiber burners, (b) Develop an Advanced Radiant Combustion System (ARCS) that combines combustion controls with an advanced radiant burner, and (c) Demonstrate the advanced burner and controls in an industrial application. Prior to the start of this project, Alzeta had developed and commercialized a porous surface radiant burner, the Pyrocore{trademark} burner. The product had been commercially available for approximately 5 years and had achieved commercial success in a number of applications ranging from small burners for commercial cooking equipment to large burners for low temperature industrial fluid heating applications. The burner was not recommended for use in applications with process temperatures above 1000{degrees}F, which prevented the burner from being used in intermediate to high temperature processes in the chemical and petroleum refining industries. The interest in increasing the maximum use temperature of the burner was motivated in part by a desire to expand the number of applications that could use the Pyrocore product, but also because many of the fluid sensitive heating applications of interest would benefit from the distributed flux characteristic of porous surface burners. Background information on porous surface radiant burners, and a discussion of advantages that would be provided by an improved product, are presented in Section 2.

  5. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Philip Malte

    2004-11-30

    The objective of the research is the reduction of emissions of NOx and carbon from wood waste combustion and dryer systems. Focus in on suspension (dust) burners, especially the cyclone burners that are widely used in the industry. Computational fluid dynamics (CFD) is used to help understand the details of combustion and pollutant formation in wood waste combustion systems, and to help determine the potential of combustion modification for reducing emissions. Field burners are examined with the modeling.

  6. Ionic Mechanisms of Carbon Formation in Flames.

    Science.gov (United States)

    1983-01-01

    is that of Street and Thonas 1 1. These au- the burner temperature and burner and chimney thors used an apparatus in which a flow of heated dimensions...slitlctuies would overlap; It is classital mythology [hat prcmixed and dif. the molecules with greatest deviation from the fusion flames have different

  7. Capture Efficiency of Cooking-Related Fine and Ultrafine Particles by Residential Exhaust Hoods

    Energy Technology Data Exchange (ETDEWEB)

    Lunden, Melissa M.; Delp, William W.

    2014-06-05

    Effective exhaust hoods can mitigate the indoor air quality impacts of pollutant emissions from residential cooking. This study reports capture efficiencies (CE) measured for cooking generated particles for scripted cooking procedures in a 121-m3 chamber with kitchenette. CEs also were measured for burner produced CO2 during cooking and separately for pots and pans containing water. The study used four exhaust hoods previously tested by Delp and Singer (Environ. Sci. Technol., 2012, 46, 6167-6173). For pan-frying a hamburger over medium heat on the back burner, CEs for particles were similar to those for burner produced CO2 and mostly above 80percent. For stir-frying green beans in a wok (high heat, front burner), CEs for burner CO2 during cooking varied by hood and airflow: CEs were 34-38percent for low (51?68 L s-1) and 54?72percent for high (109?138 L s-1) settings. CEs for 0.3?2.0 ?m particles during front burner stir-frying were 3?11percent on low and 16?70percent on high settings. Results indicate that CEs measured for burner CO2 are not predictive of CEs of cooking-generated particles under all conditions, but they may be suitable to identify devices with CEs above 80percent both for burner combustion products and for cooking-related particles.

  8. In-Flame Characterization of a 30 MWth Bio-Dust Flame

    DEFF Research Database (Denmark)

    Johansen, Joakim Myung; Jensen, Peter Arendt; Clausen, Sønnik

    This work presents a comprehensive flame characterization campaign on an operating full-scale Danish power plant. Amagerværket Unit 1 (AMV1, 350 MWth, 12 identical burners on 3 burner levels) is 100 % fuelled with wood dust burned in suspension and stabilized by swirling flows in a triple concent...

  9. Histopathology of the organs of Broiler Chickens exposed to flames ...

    African Journals Online (AJOL)

    Histopathology of the organs of broiler chickens exposed to the flame and fumes of refined petroleum product kerosene at varying distances over a period of 16hrs daily for 56 days in a poultry house were evaluated. Kerosene burning was simulated in a designed burner. Kerosene flame in a designed burner was placed 4, ...

  10. Heating Systems Specialist.

    Science.gov (United States)

    Air Force Training Command, Sheppard AFB, TX.

    This instructional package is intended for use in training Air Force personnel enrolled in a program for apprentice heating systems specialists. Training includes instruction in fundamentals and pipefitting; basic electricity; controls, troubleshooting, and oil burners; solid and gas fuel burners and warm air distribution systems; hot water…

  11. Fire-induced reradiation underneath photovoltaic arrays on flat roofs

    DEFF Research Database (Denmark)

    Kristensen, Jens Steemann; Merci, Bart; Jomaas, Grunde

    2018-01-01

    The impact of the reflection of fire-induced heat from a gas burner was studied experimentally to gain knowledge on the interaction between photovoltaic (PV) panels and a fire on flat roofs. The heat flux was measured in a total of eight points at the same level as the top of the gas burner. The ...

  12. Local extinction and reignition of the flame; Liekin paikallinen sammuminen ja uudelleen syttyminen

    Energy Technology Data Exchange (ETDEWEB)

    Kjaeldman, L. [VTT Energia, Espoo (Finland); Brink, A. [Aabo Akademi, Turku (Finland)

    1996-12-01

    A model of the local extinction and reignition of the flame suitable to be used in computational fluid dynamic analysis of primarily multi-burner furnaces is developed. The model is implemented in the computational environment Ardemus of VTT and Imatran Voima Oy, and tested against well defined experiments. The model makes the simulation of especially the near burner processes more realistic. (author)

  13. bilateral orbito-ocular gunshot injury in a nigerian male

    African Journals Online (AJOL)

    steel pipe strapped to a wooden frame, and a metallic burner covered with a flat copper cap screwed to its posterior end. Its central portion is embedded with explosives (4). A loose fitting or rusty burner may thus, act as a high velocity missile if it detaches during firing. Hence, orbito-ocular gunshot injuries are usually severe ...

  14. 40 CFR 98.253 - Calculating GHG emissions.

    Science.gov (United States)

    2010-07-01

    ... coking unit burner prior to the combustion of other fossil fuels and calculate the CO2 emissions... to the combustion of other fossil fuels (dry standard cubic feet per hour, dscfh). %CO2 = Hourly... burner prior to the combustion of other fossil fuels or calculate the volumetric flow rate of this...

  15. Optimization of combustion in gas turbines by applying resonant turbulence

    NARCIS (Netherlands)

    Verbeek, Antonie Alex; Stoffels, Genie G.M.; Bastiaans, R.J.M.; van der Meer, Theodorus H.

    2011-01-01

    Is it possible to optimize the turbulent combustion of a low swirl burner by using resonance in turbulence? To answer that question an active grid with periodically opening and closing holes is constructed and placed upstream of a low swirl burner geometry. The presence of this grid introduces large

  16. 16 CFR 1616.5 - Test procedure.

    Science.gov (United States)

    2010-01-01

    ... the hood fan turned off, use the needle valve to adjust the flame height of the burner to 3.8 cm. (11... specimen when the flame is applied. The specimen shall be fixed between the plates, which shall be held... adjust the height of the flame. The barrel of the burner shall be at an angle of 25 degrees from the...

  17. 10 CFR Appendix O to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Vented Home Heating Equipment

    Science.gov (United States)

    2010-01-01

    ... which carries combustion air from the burner fan to the burner nozzle for combustion. 1.3“Barometic... draft induced by a fan incorporated in the furnace for proper operation. 1.21“Reduced heat input rate... recommendations to give a good flame at this adjustment. Do not allow the deposit of carbon during any test...

  18. How low can the low heating load density district heating be? Environmental aspects on low heating load density district heating of the present generation compared to a domestic oil burner; Hur vaermegles kan den vaermeglesa fjaerrvaermen vara? Miljoeaspekter paa vaermegles fjaerrvaerme med dagens teknik jaemfoerd med villaoljepanna

    Energy Technology Data Exchange (ETDEWEB)

    Froeling, Morgan [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical Environmental Science

    2005-07-01

    In Sweden we can see an increase of district heating networks in residential areas with low heat density. For the customer the economy is normally the most important argument when deciding to choose district heating. For many customers, however, arguments regarding environmental friendliness are important complimentary arguments. When district heating systems are built with decreased heat density, the environmental impacts from use of district heating will increase, depending on such as increased need of pipes and increased heat losses from the distribution system. The purpose of this study is to investigate if there is a limit, a lowest heat density when it is not any longer beneficial to build district heating when district heating replaces local oil furnace heating. Life cycle inventory data for district heating distribution systems in areas with low heat density has been compared with the use of oil furnaces. The environmental impacts are categorized into Global Warming Potential, Acidification Potential, Eutrofication Potential and Use of Finite Resources. To enhance the assessment three single point indicators have also been used: EcoIndicator99, EPS and ExternE. The economics of using district heating in areas with low heat density has not been regarded in this study. A model comparing the space heating of a single family home with an oil furnace or with district heating has been created. The home has an annual heat need of 20 MWh. The district heating distribution network is characterized by its linear heat density. The linear heat density is a rough description of a district heating network, and thus also the results from the model will be general. Still it can give us a general idea of the environmental limit for district heating in areas with low heat density. An assessment of all results indicate that with the type of technology used at present it is not environmentally beneficial to use district heating with lower linear heat density than 0,2 MWh/m. At higher linear heat densities Swedish average district heating production is the environmentally better choice, when compared to a local oil furnace for a single family home with a annual heat demand of 20 MWh and the assumptions described in Chapter 3 in this report. It is important for the environmental performance of district heating to minimize the heat losses from the distribution system. It is also important to avoid emissions contributing to acidification and eutrofication in the heat production. When considering only these two parameters, district heating is the worse alternative compared to a local oil furnace for all linear heat densities in this study. Better insulated distribution systems, preferably with simultaneous lower environmental impacts at production and network construction, would increase the environmental performance of district heating. Suggestions for such distribution systems should be further investigated.

  19. Thermography of flame during diesel fuel combustion with steam gasification

    Science.gov (United States)

    Anufriev, I. S.; Arsentyev, S. S.; Agafontsev, M. V.; Kopyev, E. P.; Loboda, E. L.; Shadrin, E. Yu; Sharypov, O. V.

    2017-11-01

    The paper represents a study concerning the combustion of liquid hydrocarbon fuel in a perspective burner device with the controlled forced supply of overheated steam into the combustion zone, using diesel fuel. The thermal imaging measurements are conducted for the outer flame of the burner device in the wide range of regime parameters (flow rate and temperature of steam). A thermal imaging camera (FLIR, JADE J530SB) is used in the experiments. The effective emissivity coefficient of flame is obtained versus the flow rate of steam supplied. The steam parameters are found to influence on the temperature in the outer flame of the burner device.

  20. Combustion of producer gas from gasification of south Sumatera lignite coal using CFD simulation

    Directory of Open Access Journals (Sweden)

    Vidian Fajri

    2017-01-01

    Full Text Available The production of gasses from lignite coal gasification is one of alternative fuel for the boiler or gas turbine. The prediction of temperature distribution inside the burner is important for the application and optimization of the producer gas. This research aims to provide the information about the influence of excess air on the temperature distribution and combustion product in the non-premixed burner. The process was carried out using producer gas from lignite coal gasification of BA 59 was produced by the updraft gasifier which is located on Energy Conversion Laboratory Mechanical Engineering Department Universitas Sriwijaya. The excess air used in the combustion process were respectively 10%, 30% and 50%. CFD Simulations was performed in this work using two-dimensional model of the burner. The result of the simulation showed an increase of excess air, a reduction in the gas burner temperature and the composition of gas (carbon dioxide, nitric oxide and water vapor.

  1. Análise de compostos sulfurados em efluentes gasosos de refinaria de petróleo

    National Research Council Canada - National Science Library

    Júlio Carlos Afonso; Kátia da Silva Pereira

    2010-01-01

    This work discusses an analytical procedure for analysis of sulfur compounds in treated petroleum refinery gaseous effluents using a sulfur chemiluminescence detector with dual plasma burner (SCD-DP...

  2. Pollution active control: a strategy for a clean and efficient combustion; Le controle actif des polluants: une strategie pour une combustion propre et efficace

    Energy Technology Data Exchange (ETDEWEB)

    Lacas, F. [CNRS Ecole Centrale de Paris, 75 (France). Laboratoire E.M2.C

    1996-12-31

    The active control NOx reduction concept has been applied on two burners (20 kW and 840 kW), using a rotary valve enabling an excitation in the 100 to 1000 Hz band, that can be mounted on existing appliances such as domestic or industrial boilers. NOx level reduction may reach 15 pc for the 20 kW burner, 25 pc for the 840 kW burner with domestic fuel oil and 35 pc for the 840 kW burner using pyridine doped domestic fuel oil. Mechanisms are detailed through flow visualization, and consist mainly in an annular vortex inducing a fuel/air pre-mixing favourable to a large decrease in NOx generation level and establishing a staged process such as in re-burning processes. The pulsed combustion process may be also combined to other pollution control systems

  3. AROMATIC AND POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN A LAMINAR PREMIXED N-BUTANE FLAME. (R825412)

    Science.gov (United States)

    AbstractExperimental and detailed chemical kinetic modeling work has been performed to investigate aromatic and polycyclic aromatic hydrocarbon (PAH) formation pathways in a premixed, rich, sooting, n-butane¯oxygen¯argon burner s...

  4. Collaborating for Multi-Scale Chemical Science

    Energy Technology Data Exchange (ETDEWEB)

    William H. Green

    2006-07-14

    Advanced model reduction methods were developed and integrated into the CMCS multiscale chemical science simulation software. The new technologies were used to simulate HCCI engines and burner flames with exceptional fidelity.

  5. Sports Supplements

    Science.gov (United States)

    ... natural steroids" that can be broken down into testosterone. Andro used to be available over the counter, ... huang, which acts as a stimulant and increases metabolism. Some athletes use fat burners to lose weight ...

  6. SPIV study of two interactive fire whirls

    Science.gov (United States)

    Hartl, Katherine; Smits, Alexander

    2015-11-01

    Fire whirls are buoyancy-driven standing vortex structures that often form in forest fires. Capable of lifting and ejecting flaming debris, fire whirls can hasten the spread of fire lines and start fires in new places. Here we study the interaction of two jets in an externally applied circulation as an introduction to the study of two interacting fire whirls. To study this interaction we use two burner flames supplied with DME and induce swirl by entraining air through a split cylinder that surrounds both burners. Three components of velocity are measured using Stereo Particle Image Velocimetry both inside and outside the fire whirl core, at the base, midsection, and above the top of the fire whirls. The effects on the height and circulation on the distance between the burners, the rate of fuel supplied to the burners, and the gap size, are examined.

  7. Saving energy through improved combustion; Energiesparen durch bessere Verbrennung

    Energy Technology Data Exchange (ETDEWEB)

    Stadelmann, M.

    2010-07-01

    This short article discusses how controlling oxygen supply can reduce residual oxygen in the flue gases of the burners of heating systems. The author discusses how the necessary amount of excess oxygen fed into the burner's flame can be controlled and thus minimised. In this way, the efficiency of the heating system can be improved and, as a result, energy can be saved. Also, the various factors influencing the amount of excess oxygen to be provided are discussed and typical figures for various types of burners, e.g. wood, oil, natural gas, are quoted. The control of the speed of the ventilators in the burners is also looked at. Savings in CO{sub 2} emissions and the pay-back for the oxygen control system are also discussed.

  8. 10 CFR 504.6 - Prohibitions by order (case-by-case).

    Science.gov (United States)

    2010-01-01

    ... distillate to #6 residual oil may be required to adjust or replace burner nozzles and add soot blowers. (d... additions of soot blowers, and additions or alterations outside the boiler, shall not cause the modification...

  9. TECHNOLOGICAL OPTIONS FOR ACID RAIN CONTROL

    Science.gov (United States)

    Discussed are acid rain control options available to the electric utility industry. They include coal switching, flue gas desulfurization, and such emerging lower cost technologies as Limestone Injection Multistage Burners (LIMB) and Advanced Silicate (ADVACATE), both developed ...

  10. ADVANCED COMPUTATIONALMETHODS FOR COMPLEX SIMULATION OF THERMAL PROCESSES IN POWER ENGINEERING

    National Research Council Canada - National Science Library

    Risto V. Filkoski; Ilija J. Petrovski

    2007-01-01

    The overall frame and principal steps of complex numerical modelling of thermal processes in power boiler furnaces on pulverised coal with tangential disposition of the burners are presented in the paper...

  11. A novel high-heat transfer low-NO{sub x} natural gas combustion system. Phase 1 final report

    Energy Technology Data Exchange (ETDEWEB)

    Rue, D.M. [Institute of Gas Technology, Des Plaines, IL (United States); Fridman, A. [Univ. of Illinois, Chicago (United States); Viskanta, R. [Purdue Univ. (United States); Neff, D. [Cumbustion Tec, Inc. (United States)

    1997-11-01

    Phase I of the project focused on acquiring the market needs, modeling, design, and test plan information for a novel high-heat transfer low-NO{sub x} natural gas combustion system. All goals and objectives were achieved. The key component of the system is an innovative burner technology which combines high temperature natural gas preheating with soot formation and subsequent soot burnout in the flame, increases the system`s energy efficiency and furnace throughput, while minimizing the furnace air emissions, all without external parasitic systems. Work has included identifying industry`s needs and constraints, modeling the high luminosity burner system, designing the prototype burner for initial laboratory-scale testing, defining the test plan, adapting the burner technology to meet the industry`s needs and constraints, and outlining the Industrial Adoption Plan.

  12. Development of a Flammability Test Method for Aircraft Blankets

    Science.gov (United States)

    1996-03-01

    Flammability testing of aircraft blankets was conducted in order to develop a fire performance test method and performance criteria for blankets supplied to commercial aircraft operators. Aircraft blankets were subjected to vertical Bunsen burner tes...

  13. Chamberless residential warm air furnace design

    Energy Technology Data Exchange (ETDEWEB)

    Godfree, J. [Product Design consultant, Pugwash (Canada)

    1996-07-01

    This brief paper is an introduction to the concept of designing residential warm air furnaces without combustion chambers. This is possible since some small burners do not require the thermal support of a combustion chamber to complete the combustion process.

  14. 77 FR 58526 - Pacific Fishery Management Council; Public Meeting; Work Session To Review Proposed Salmon...

    Science.gov (United States)

    2012-09-21

    ... public meeting. SUMMARY: The Pacific Fishery Management Council's Salmon Technical Team (STT), Scientific... FURTHER INFORMATION CONTACT: Mr. Mike Burner, Salmon Management Staff Officer, Pacific Fishery Management... National Oceanic and Atmospheric Administration RIN 0648-XC233 Pacific Fishery Management Council; Public...

  15. 46 CFR 164.015-4 - Inspections and tests.

    Science.gov (United States)

    2010-10-01

    ... foam. A marine inspector shall be admitted to any place in the factory where production or partial... dimension forms a 45° angle with the horizontal and with the widths in a vertical position. A bunsen burner...

  16. Improving the operating effectiveness of the shaft kilns of magnesite combine

    Energy Technology Data Exchange (ETDEWEB)

    Utenkov, A.F.; Sinitsyn, E.A.; Gor' kova, T.V.; Strekalova, L.V.; Mezentev, E.P.; Luzin, A.G.; Tarasov, N.N.

    1986-11-01

    The authors analyze the combustion efficiency of a natural gas-fired tunnel kiln and propose design and performance modifications to the burner and fuel systems to provide for optimum combustion and utilization of the calorific value of the fuel.

  17. The role of pair dispersion in turbulent flow

    DEFF Research Database (Denmark)

    Bourgoin, M.; Ouellette, N.T.; Xu, H.T.

    2006-01-01

    Mixing and transport in turbulent flows - which have strong local concentration fluctuations - essential in many natural and industrial systems including reactions in chemical mixers, combustion in engines and burners, droplet formation in warm clouds, and biological odor detection and chemotaxis...

  18. High Efficiency, Ultra-Low Emission, Integrated Process Heater System

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Howard; Boral, Anindya; Chhotray, San; Martin, Matthew

    2006-06-19

    The team of TIAX LLC, ExxonMobil Research and Engineering Company, and Callidus Technologies, LLC conducted a six-year program to develop an ultra-low emission process heater burner and an advanced high efficiency heater design. This project addresses the critical need of process heater operators for reliable, economical emission reduction technologies to comply with stringent emission regulations, and for heater design alternatives that reduce process heater energy requirements without significant cost increase. The key project targets were NOx emissions of 10 ppm (@ 3% O2), and a heater thermal efficiency of 95 percent. The ultra low NOx burner was developed through a series of pilot-scale and field tests combined with computational fluid dynamic modeling to arrive at simultaneous low emissions and suitable flame shape and stability. Pilot scale tests were run at TIAX, at the 2 MMBtu/hr scale, and at Callidus at 8 MMBtu/hr. The full scale burner was installed on a 14 burner atmospheric pipestill furnace at an ExxonMobil refinery. A variety of burner configurations, gas tips and flame stabilizers were tested to determine the lowest emissions with acceptable flame shape and stability. The resulting NOx emissions were 22 ppm on average. Starting in 2001, Callidus commercialized the original ultra low NOx burner and made subsequent design improvements in a series of commercial burners evolving from the original concept and/or development. Emissions in the field with the ultra low-NOx burner over a broad spectrum of heater applications have varied from 5 ppm to 30 ppm depending on heater geometry, heater service, fuel and firing capacity. To date, 1550 of the original burners, and 2500 of subsequent generation burners have been sold by Callidus. The advanced heater design was developed by parametric evaluations of a variety of furnace and combustion air preheater configurations and technologies for enhancing convective and radiative heat transfer. The design evolution

  19. Materiales y estructuras cerámicas para el diseño de quemadores de gas

    Directory of Open Access Journals (Sweden)

    Marín, R.

    2008-10-01

    Full Text Available Ceramic materials have been extensively used in the production of radiant gas burners since decades. The properties of these materials are well adapted for the development of burners: - High melting temperature, adequate for the high flame temperatures. - Good oxidation resistance, producing a long burner lifetime. - Extremely low thermal expansion coefficient, thus reducing thermo-mechanic stress. - Very low thermal conductivity, with strong temperature gradients through the burner head, thus avoiding flame flash-back. - High radiant efficiency, lowering the fumes temperature and NOx production. - Variety of burner shapes and structures: foams, holed plaques, fibres, etc. allowing to produce different burner types. As a consequence, a strong expansion of the ceramic materials application in the development of gas burners for the domestic, catering, and industrial sectors, has been experienced. From the surface radiant burners to the burners for hydrogen or the porous radiant burners, there is a wide range of possibilities for the design of ceramic gas burners. There is a sole requirement: to find out the proper combination material-structure.

    Los materiales cerámicos han sido utilizados en la fabricación de quemadores radiantes desde largo tiempo atrás. Ello se debe a que las propiedades de los materiales cerámicos resultan muy adecuadas para el desarrollo de quemadores: - Elevado punto de fusión, adecuado para soportar las elevadas temperaturas de la llama. - Elevada resistencia a la oxidación, que confiere a los quemadores larga vida sin degradación. - Muy bajo coeficiente de expansión térmica, que reduce las tensiones termomecánicas. - Muy baja conductividad térmica, con fuertes gradientes de temperatura a través del quemador que evitan el retroceso de llama. - Elevada eficiencia radiante, que reduce la temperatura de los humos y minimiza la producción de NOx. - Facilidad de conformado en diferentes

  20. Influence of Process Parameters on Nitrogen Oxide Formation in

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der; Glarborg, Peter; Dam-Johansen, Kim

    1997-01-01

    This paper describes the influence of burner operating conditions, burner geometry and fuel parameters on the formation of nitrogen oxide during combustion of pulverized coal. Main attention has been paid to combustion test facilities with self-sustaining flames, while extensions have been made...... to full scale boilers and furnace modeling. Since coal combustion and flame aerodynamics have been reviewed earlier, these phenomena are only treated briefly....

  1. Component Development to Accelerate Commercial Implementation of Ultra-Low Emissions Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, Jon; Berry, Brian; Lundberg, Kare; Anson, Orris

    2003-03-31

    This final report describes a 2000-2003 program for the development of components and processes to enhance the commercialization of ultra-low emissions catalytic combustion in industrial gas turbines. The range of project tasks includes: development of more durable, lower-cost catalysts and catalytic combustor components; development and design of a catalytic pre-burner and a catalytic pilot burner for gas turbines, and on-site fuel conversion processing for utilization of liquid fuel.

  2. Flame interactions and burning characteristics of two live leaf samples

    Science.gov (United States)

    Brent M. Pickett; Carl Isackson; Rebecca Wunder; Thomas H. Fletcher; Bret W. Butler; David R. Weise

    2009-01-01

    Combustion experiments were performed over a flat-flame burner that provided the heat source for multiple leaf samples. Interactions of the combustion behavior between two leaf samples were studied. Two leaves were placed in the path of the flat-flame burner, with the top leaf 2.5 cm above the bottom leaf. Local gas and particle temperatures, as well as local oxygen...

  3. Development of a Midscale Test for Flame Resistant Protection

    Science.gov (United States)

    2016-08-01

    called Big Bertha burners) are positioned directly in front of the test apparatus to produce a uniform laboratory simulation of a fire (a large fuel ...front of the flat plate test apparatus to produce a uniform laboratory simulation of a fire. These burners produce a large, fuel -rich reddish-yellow...materials designated to be washed, each test specimen should be laundered with one wash and one dry cycle prior to conditioning using the AATCC Test

  4. The Effect of Baghouse Fines and Incomplete Combustion Products in a Drum Drier on the Characteristics of Asphalt Paving Mixtures - Phase I

    OpenAIRE

    Nelson, Thomas Binn; Wood, Leonard E.

    1990-01-01

    The major purpose of this study was to use the high pressure-gel permeation techniques to evaluate the changes in asphalt subjected to different mix production parameters, including plant type, level of aging and fuel used in the burner of the drier. Additional objectives were to establish correlations between physical parameters of asphalts and their chromatographic parameters, and to determine whether the HPGPC technique could be used to detect burner fuel contamination in the mix produced ...

  5. Gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Yong Sik

    2001-08-15

    This book deals with gs turbine engine, including historical background of development of gas turbine engine, classification, definition and conception of it, torque and power, shock waves, subsonic inlets, basic turbojet cycle, turbo-shaft engine, degree of reaction, gas burner, after-burner and water injection method, design of cycle and analysis of performance, characteristic and control of engine noise of aircraft, materials and use of gas turbine engine.

  6. Flame image monitoring and analysis in combustion management

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, D. [CEZ, a.s. Elektrarna Detmarovice, Detmarovice (Czech Republic); Huttunen, A.J.; Nihtinen, J.J. [Imatran Voima Oy, IVO Technology Centre, Vantaa (Finland)

    1997-12-31

    When NO{sub x} emissions are reduced with new low-NO{sub x} burners and infurnace modifications in old pulverised fuel boilers, many changes in the firing conditions may occur. Depending on coal quality and the original furnace design, low-NO{sub x} burners, overtire air, low-excess-air firing and other primary modifications in various combinations may cause flame instability, increased slagging, increased minimum load and other difficulties in controlling the burning process. To find and solve these problems quicker, a new type of burner management system for pulverised fuel and oil-fired boilers was developed by Imatran Voima Oy. The DIMAC combustion management system monitors and analyses individually each burner or burner level. There are special software for wall and corner fired boilers. The DIMAC system is comprised of two functional subsystems: flame monitoring and flame analysis. The DIMAC enables the power plant operators to minimise NO{sub x} emissions and optimise the burning efficiency with varying coal qualities and boiler loads at the same time so that slagging, unburnt carbon in fly ash and flame stability stay in acceptable limits. It also guarantees that burners operate in good safety conditions in each burner level. The DIMAC system monitors perpendicularly each individual burner and evaluates flame parameters. Real-time flame monitoring and analysis allows the operator to directly see the effect of changing fuel distribution on flame pattern and flame stability. Based on data from the DIMAC references the system can improve boiler efficiency by 0.2 - 0.5 per cent unit as a result of more efficient control of the burning process. At the same time, the NO{sub x} formation can be reduced by 10 - 20 % 2 refs.

  7. FruitGrowth - Gasburning in Orchards - Environment friendly weed control

    DEFF Research Database (Denmark)

    Bertelsen, Keld Kjærhus; Duzel, Jasmin; Nielsen, Søren Hundevadt

    Gas burning makes treatment of weed organic. The new ENVO-DAN burner saves 40% gas and treats ½ meter in width. It can be mounted on a standard lawn tractor, orchard tractor or a mobile robot.......Gas burning makes treatment of weed organic. The new ENVO-DAN burner saves 40% gas and treats ½ meter in width. It can be mounted on a standard lawn tractor, orchard tractor or a mobile robot....

  8. NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Apte, Michael G.; Black, Douglas R.; Hotchi, Toshifumi; Lucas, Donald; Lunden, Melissa M.; Mirer, Anna G.; Spears, Michael; Sullivan, Douglas P.

    2009-12-01

    The effect of liquefied natural gas on pollutant emissions was evaluated experimentally with used and new appliances in the laboratory and with appliances installed in residences, targeting information gaps from previous studies. Burner selection targeted available technologies that are projected to comprise the majority of installed appliances over the next decade. Experiments were conducted on 13 cooktop sets, 12 ovens, 5 broiler burners, 5 storage water heaters, 4 forced air furnaces, 1 wall furnace, and 6 tankless water heaters. Air-free concentrations and fuel-based emission factors were determined for carbon monoxide, nitrogen oxides, nitrogen dioxide, and the number of (predominantly ultrafine) particles over complete burns?including transient effects (device warm-up and intermittent firing of burners) following ignition--and during more stable end-of-burn conditions. Formaldehyde was measured over multi-burn cycles. The baseline fuel was Northern California line gas with Wobbe number (a measure of fuel energy delivery rate) of 1320-1340; test fuels had Wobbe numbers of roughly 1390 and 1420, and in some cases 1360. No ignition or operational problems were observed during test fuel use. Baseline emissions varied widely across and within burner groups and with burner operational mode. Statistically significant emissions changes were observed for some pollutants on some burners.

  9. Combustion equipment for fuel cell reformer. Nenryo denchi kaishitsukiyo nensho sochi

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Teruo.

    1989-11-15

    With regard to the fuel cell power generator utilizing cell offgas, the exhaust gas containing hydrogen ingredient from the fuel cell main body as the fuel for heat supply for reforming, it is necessary to watch always detection of ignition and existance of combustion (fire) from the safety and other viewpoints. However, in the above combustion equipment for reformer of the above power generator, the combustion is the low calorie combustion of hydrogen fuel utilizing cell offgas and detection of its ignition and fire cannot be simply done. Hence such large scale and expensive measures that a pilot burner is installed beside the main burner and an ultraviolet flame detector is used are taken or the existance of fire is judged indirectly by monitoring the temperature inside the furnace of the burner, but each of them has its shortcomings. In order to improve them, this invention proposes to mix hydrocarbon based fuel into the cell offgas for combustion, apply voltage between the burner and an electrode which is inserted into the flame of the burner and detect the value of the microcurrent running between the burner and the electrode. 4 figs.

  10. Duquesne Light Company`s modifications for nitric oxide RACT compliance on a 200 MW face fired pulverized coal unit

    Energy Technology Data Exchange (ETDEWEB)

    Breen, B.P.; Bionda, J.P.; Gabrielson, J.E. [Energy Systems Associates, Pittsburgh, PA (United States); Hallo, A.; Gretz, G.F. [Duquesne Light Co., Pittsburgh, PA (United States)

    1996-12-31

    This paper discusses the results of a research test program conducted on Duquesne Light Company`s Elrama Unit 4. The program was designed to determine the viability of achieving compliance with the recently enacted PA DER Reasonably Available Control Technology (RACT) regulations. These regulations stipulate presumptive RACT requirements for wall fired boilers which include the installation and operation of low NO{sub x} burners with separated overfire air. Duquesne Light Company contracted Energy Systems Associates (ESA) to aide in the design and testing of a novel low NO{sub x} burner design and separated overfire air system. A three-dimensional computational furnace model was developed by ESA of the Elrama Unit 4 furnace, and a two-dimensional fluid dynamics model was developed of the coal burner. By modifying the coal burners, it has been possible to reduce the nitric oxide emissions by 30% on Unit 4, with minimal impact of the unburned carbon in the ash. The burner modifications create fuel rich streams which are surrounded by air rich zones in the primary flame region, thus staging combustion at the burner. Additional nitric oxide reductions are realized when the combustion is further staged by use of the separated overfire air system.

  11. NO{sub x} emissions from combustion of hydrogen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Roertveit, Geir Johan

    2002-07-01

    This work includes five different parts each of which has resulted in a paper that is accepted and submitted for publication. Additionally, a short introductory background section precedes these papers. A significant amount of experimental data is presented for the combustion of hydrogen which focus on emission of NO{sub x}. Different dilutes were added to the hydrogen to reduce the flame temperature and subsequently the NO{sub x} emissions. These experiments were performed in a counterflow burner where a flat steady flame layer facilitated accurate measurements. The experiments were compared with numerical calculations to assist the interpretation and discussion of the results. It was found that the experimental results compared well with numerical calculations of NO{sub x} at temperatures of up to 1900 K, while for higher temperatures an increasing discrepancy was found due to the influence of the sampling equipment. Nitrogen diluted methane was enriched by hydrogen from 0to 100 % to study the effect of NO{sub x} with the use of different fuel mixtures in the same counterflow burner. For a similar temperature of the NO{sub x} emitted from a H{sub 2} flame is only 25 % of that of a methane flame. Experiments compared to the pure methane flame showed that there is only a reduction of NO{sub x} when there is very high hydrogen content in the fuel mixture and for most mixtures an actual increase in NO{sub x} is observed. This is found partly due to a triggering of the NO{sub x} from the prompt mechanism. Natural gas and methane have both been substituted by up to 30 % H{sub 2} at constant load in various burners to reveal the effect of H{sub 2} enrichment on emissions. The burners include a swirl burner, a fibre burner, a porous burner and a catalytically supported porous burner. The thermal loads were varied from 2.6 to 21 kW, while excess air ratios were varied form 1 to 1.8. In general little effect of H{sub 2} is found by enriching the fuel. At temperatures of up

  12. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Charles [Environ Holdings, Inc., Arlington, VA (United States); Wilson, Robert [Environ Holdings, Inc., Arlington, VA (United States)

    2014-07-15

    This project culminated in the demonstration of a full-scale industrial burner which allows a broad range of “opportunity” gaseous fuels to be cost-effectively and efficiently utilized while generating minimal emissions of criteria air pollutants. The burner is capable of maintaining a stable flame when the fuel composition changes rapidly. This enhanced stability will contribute significantly to improving the safety and reliability of burner operation in manufacturing sites. Process heating in the refining and chemicals sectors is the primary application for this burner. The refining and chemical sectors account for more than 40% of total industrial natural gas use. Prior to the completion of this project, an enabling technology did not exist that would allow these energy-intensive industries to take full advantage of opportunity fuels and thereby reduce their natural gas consumption. Opportunity gaseous fuels include biogas (from animal and agricultural wastes, wastewater plants, and landfills) as well as syngas (from the gasification of biomass, municipal solid wastes, construction wastes, and refinery residuals). The primary challenge to using gaseous opportunity fuels is that their composition and combustion performance differ significantly from those of conventional fuels such as natural gas and refinery fuel gas. An effective fuel-flexible burner must accept fuels that range widely in quality and change in composition over time, often rapidly. In Phase 1 of this project, the team applied computational fluid dynamics analysis to optimize the prototype burner’s aerodynamic, combustion, heat transfer, and emissions performance. In Phase 2, full-scale testing and refinement of two prototype burners were conducted in test furnaces at Zeeco’s offices in Broken Arrow, OK. These tests demonstrated that the full range of conventional and opportunity fuels could be utilized by the project’s burner while achieving robust flame stability and very low levels of

  13. Experimental Evaluation of Installed Cooking Exhaust Fan Performance

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Delp, William W.; Apte, Michael G.

    2010-11-01

    The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners.Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g., single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (from<5percent to roughly 100percent) across devices and across conditions for some devices. As expected, higher capture efficiencies were achieved with higher fan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range

  14. Numerical Investigation of MILD Combustion Using Multi-Environment Eulerian Probability Density Function Modeling

    Directory of Open Access Journals (Sweden)

    Akshay Dongre

    2014-12-01

    Full Text Available In the present paper, the flames imitating Moderate and Intense Low Oxygen Dilution (MILD combustion are studied using the Probability Density Function (PDF modeling approach. Two burners which imitate MILD combustion are considered for the current study: one is Adelaide Jet-in-Hot-Coflow (JHC burner and the other one is Delft-Jet-In-Hot-Coflow (DJHC burner. 2D RANS simulations have been carried out using Multi-environment Eulerian Probability Density Function (MEPDF approach along with the Interaction-by-Exchange-with-Mean (IEM micro-mixing model. A quantitative comparison is made to assess the accuracy and predictive capability of the MEPDF model in the MILD combustion regime. The computations are performed for two different jet speeds corresponding to Reynolds numbers of Re = 4100 and Re = 8800 for DJHC burner, while Re = 10000 is considered for the Adelaide burner. In the case of DJHC burner, for Re = 4100, it has been observed that the mean axial velocity profiles and the turbulent kinetic energy profiles are in good agreement with the experimental database while the temperature profiles are slightly over-predicted in the downstream region. For the higher Reynolds number case (Re = 8800, the accuracy of the predictions is found to be reduced. Whereas in the case of Adelaide burner, the computed profiles of temperature and the mass fraction of major species (CH4, H2, N2, O2 are found to be in excellent agreement with the measurements while the discrepancies are observed in the mass fraction profiles of CO2 and H2O. In addition, the effects of differential diffusion are observed due to the presence of H2 in the fuel mixture.

  15. Effect of pointed and diffused air injection on premixed flame confined in a Rijke tube

    Directory of Open Access Journals (Sweden)

    Nilaj N. Deshmukh

    2016-12-01

    Full Text Available The coupling between pressure fluctuations and unsteady heat release in a combustion systems results in acoustic oscillations inside the combustion system. These acoustic oscillations, when grow sufficiently, may cause serious structural damage thereby reducing the lifespan of jet engines, gas turbines, and industrial burners. The aim of the first part of study is to define acoustically stable and unstable regions. The second part is focused on studying the effect of change in pressure field near the flame on the amplitude and frequency of the oscillations of instability. This study is carried out for three-burner positions and equivalence ratio of 0.7 by varying heat supply and total flow rate. The results show two acoustically unstable regions for 0.1 and 0.2 burner positions and only one acoustically unstable region for 0.25 burner position. The effect of pointed injection and diffused injection over a premixed flame on the sound pressure level was studied. The results show for burner position of x/L = 0.2 there is 25 dB suppression is possible using pointed injection at higher total flow rate. The experiment of diffused injection shows sound amplification more than 12 dB was observed.

  16. Part I, FAB evaluation & application trials AFUE measurements: Part II, Integrated heating system (IHS) development

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, R.W. [Brookhaven National Lab., Upton, NY (United States); Fisher, L. [BNL Consultant, Colrain, MA (United States)

    1996-07-01

    An oil burner/boiler efficiency test stand has been set up in the BNL oil heat laboratory which can measure the Annual Fuel Utilization Efficiency (AFUE) of burner/boiler combinations in accordance with ASHRAE and DOE standards. Measurements include both steady state efficiencies and heat-up and cool-down characteristics so that cycling effects can be included in an estimate of seasonal average performance. In addition to AFUE measurements, the direct conversion of fuel energy content to enthalpy increase in the boiler water is monitored. The system is largely automated, with most control functions under computer control and data taken electronically and permanently recorded on disks for future reference. To date, a retention-head burner and a fan atomized burner (FAB) have been tested in a steel boiler, the latter operating at two different fuel flow rates. The results are presented below, and verify that the very tight construction of the FAB`s fan results in a significant decrease in off-cycle sensible heat losses. Tests were also performed on a center-flue water heater fired with a conventional retention-head burner and with an FAB. The tests conformed to DOE standard procedures for hot water heaters, and the results are discussed below.

  17. A thermophotovoltaic generator for use in a lightweight electric car: Year 1 progress report

    Science.gov (United States)

    Seal, M. R.

    1995-05-01

    In the nine months since the start of this project significant progress toward the completion of the tasks scheduled in the first year has been made and in some cases exceeded. A number of unforeseen problems have been isolated and solved with redesign of components and specification of different materials. This project has been running concurrently with a Phase 1 DOE Green Car SBIR grant to JX Crystals in which WWU is the sub-contractor to do burner design, construction and testing. As a result of this concurrent project, the design of the single burner for the TPV8 which is nearing completion at this time, incorporates the improvements of the Phase 1 Green Car burner. The status of the tasks scheduled for the first nine months of the contract and the current status are shown.

  18. Visualisation of the velocity field in a scaled water model for validation of numerical calculations for a powder fuelled boiler

    Energy Technology Data Exchange (ETDEWEB)

    Dumortier, Laurent [Luleaa Univ. of Technology (Sweden)

    2001-01-01

    Validation of numerical predictions of the flow field in a powder fired industry boiler by flow visualisation in a water model has been studied. The bark powder fired boiler at AssiDomaen Kraftliner in Piteaa has been used as a case study. A literature study covering modelling of combusting flows by water models and different flow visualisation techniques has been carried out. The main conclusion as regards the use of water models is that only qualitative information can be expected. As far as turbulent flow is assured in the model as well as the real furnace, the same Reynolds number is not required. Geometrical similarity is important but modelling of burner jets requires adaptation of the jet diameters in the model. Guidelines for this are available and are presented in the report. The review of visualisation techniques shows that a number of methods have been used successfully for validation of flow field predictions. The conclusion is that the Particle Image Velocimetry and Particle Tracking Velocimetry methods could be very suitable for validation purposes provided that optical access is possible. The numerical predictions include flow fields in a 1130 scale model of the AssiDomaen furnace with water flow as well as flow and temperature fields in the actual furnace. Two burner arrangements were considered both for the model and the actual furnace, namely the present configuration with four front burners and a proposed modification where an additional burner is positioned at a side wall below the other burners. There are many similarities between the predicted flow fields in the model and the full scale furnace but there are also some differences, in particular in the region above the burners and the effects of the low region re-circulation on the lower burner jets. The experiments with the water model have only included the arrangement with four front burners. There were problems determining the velocities in the jets and the comparisons with predictions are

  19. Flame tolerant secondary fuel nozzle

    Science.gov (United States)

    Khan, Abdul Rafey; Ziminsky, Willy Steve; Wu, Chunyang; Zuo, Baifang; Stevenson, Christian Xavier

    2015-02-24

    A combustor for a gas turbine engine includes a plurality of primary nozzles configured to diffuse or premix fuel into an air flow through the combustor; and a secondary nozzle configured to premix fuel with the air flow. Each premixing nozzle includes a center body, at least one vane, a burner tube provided around the center body, at least two cooling passages, a fuel cooling passage to cool surfaces of the center body and the at least one vane, and an air cooling passage to cool a wall of the burner tube. The cooling passages prevent the walls of the center body, the vane(s), and the burner tube from overheating during flame holding events.

  20. Self-Exited Oscillation in a Combustion Chamber Driven by Phase Change in the Liquid Fuel Feed System

    Directory of Open Access Journals (Sweden)

    C. Hassa

    2011-12-01

    Full Text Available A new mechanism for the generation of a self-exited oscillation of combustion in a generic combustion chamber typical for aeroengine combustors is described. The cause of the oscillation is the phase change from liquid to vapour which happens when the preheat temperature of the air flowing through the burner exceeds the boiling temperature at the operating pressure and the fuel flow is so low that heat transfer to the liquid fuel causes evaporation within the fuel channels of the burner. Liquid fuel and vapour alternatively enter the airstream of the burner. This leads to an unstable situation for the flame. Measurements of chemiluminescence and liquid fuel show nearly complete extinction and re-ignition for the limit cycle. Prevention of the oscillation is possible by better thermal management of the fuel path.

  1. Large-eddy simulation of pulverized coal combustion in swirling flow

    Energy Technology Data Exchange (ETDEWEB)

    Tanno, K.; Watanabe, H.; Hashimoto, N.; Shirai, H. [Central Research Institute of Electric Power Industry (CRIEPI), Kanagawa (Japan). Energy Engineering Research Lab.; Kurose, R. [Kyoto Univ. (Japan). Dept. of Mechanical Engineering and Science

    2013-07-01

    Large-eddy simulation (LES) is applied to both a pulverized coal combustion and non-combustion field in a combustion test furnace with a practical advanced low NO{sub x} burner called CI-{alpha} burner, and investigated the effect to coal combustion on flow field and ignition mechanism. The results show that predicted flow field and coal particle behavior are in general agreement with the experiment. Coal combustion strongly affect flow filed. Primary air jet and swirling flow is enhanced by the burned gas expansion. Moreover, a recirculation flow formed by strong swirling flow is observed near the burner region and keeps stable coal combustion by transporting hot gas and increasing coal particle residence time.

  2. Freeze-casting as a Novel Manufacturing Process for Fast Reactor Fuels. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wegst, Ulrike G.K. [Dartmouth College, Hanover, NH (United States). Thayer School of Engineering; Allen, Todd [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States)

    2014-04-07

    Advanced burner reactors are designed to reduce the amount of long-lived radioactive isotopes that need to be disposed of as waste. The input feedstock for creating advanced fuel forms comes from either recycle of used light water reactor fuel or recycle of fuel from a fast burner reactor. Fuel for burner reactors requires novel fuel types based on new materials and designs that can achieve higher performance requirements (higher burn up, higher power, and greater margins to fuel melting) then yet achieved. One promising strategy to improved fuel performance is the manufacture of metal or ceramic scaffolds which are designed to allow for a well-defined placement of the fuel into the host, and this in a manner that permits greater control than that possible in the production of typical CERMET fuels.

  3. Emissions from residential gas-fired appliances. Topical report, December 1982-March 1984

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.T.; Zawacki, T.S.

    1985-02-01

    Emission data from over 200 residential gas-fired appliances were obtained through a literature survey, catalogued, and reviewed. Both vented and unvented equipment were included in the study. Emission factors for nitric oxide (NO), nitrogen dioxide (NO/sub 2/), carbon monoxide (CO), unburned hydrocarbons, total aldehydes, and other trace constituents were compiled for 9 appliance categories. Emission factors were found to be dependent on appliance design and operation and test method. Specifically, burner type, primary aeration, impingement of a flame on a surface, length of burner on-time, location of the appliance during a test and test protocol were all found to influence emissions. Methods of reducing emissions through burner modification and re-design were also compiled and presented.

  4. Multi-stage desulfurizing fluid-bed combustor for coal-fired hot gas generator systems: Topical report No. 3. Task 6. Modifications to Materials Handling Equipment. Task 7. Testing

    Energy Technology Data Exchange (ETDEWEB)

    Lowell, C.

    1981-04-01

    This report covers the modification of Materials Handling Equipment, Testing and Program Management of Tasks 6, 7 and 8 of Phase 2. The Cohogg system contains a pyrolyzer for partial gasification of the coal through sub-stoichiometric combustion, a char burner which burns the char (generated in the pyrolyzer) in excess air, and an afterburner where the pyrolyzer gases and the char burner gases mix to produce a high temperature (approx. 3000/sup 0/F) environmentally clean flame capable of replacing an oil or gas burner. The system has operated successfully and demonstrated the capability of producing an environmentally clean high temperature flame. Operation with 15% excess air overall demonstrated a 3200/sup 0/F capability while sulfur retention was in excess of 90%. After more than 100 hours of operation the system shows itself to have flexibility in coal type, sorbent type, and operating temperatures while maintaining a clean high temperature flame and meeting or exceeding current pollution restrictions.

  5. Industrial combustion monitoring using optical sensors

    Science.gov (United States)

    Von Drasek, William A.; Charon, Olivier; Marsais, Olivier

    1999-01-01

    With stricter environmental regulations optimization of the combustion process for reduced pollutant emission and higher fuel efficiency is a major objective for manufacturers. The promotion of oxy-fuel combustion is one alternative technology that has been demonstrated as a means for manufacturers to meet their environmental objectives. Despite the benefits oxy-fuel combustion can offer further optimization using monitoring and control techniques are still needed. Here we present a novel method for monitoring and controlling oxy-fuel burners by strategic placement of optical sensors. The sensors are integrated into an industrial oxy-fuel capable of withstanding harsh environments. Radiation from the flame at selected wavelength regions is collected by fiber optics attached to the burner and transported to a miniaturized PC-based spectrometer. The spectral information obtained is used to construct a neural network (NN) model that relates the real- time signal collected to burner operating parameters such as, stoichiometry, power, and fueled and/or oxidizer changes. This processed information from the NN can then be used in a control-loop for adjusting and optimizing combustion parameters or alerting operators of potential burner problems. Examples of using this technology on AIr Liquide's pilot furnaces in both the US and France and from an industrial glass melting tank will be presented. The potential of the sensor and NN approach is demonstrated for both conventional burner and an advanced wide flame burner. The results show that both stoichiometry and power changes can reliably be detected by use of the optical sensors. In addition, an example demonstrating the method on oxy-fuel oil flames to monitor oil atomization quality and stoichiometry will be presented.

  6. [Lead intoxication in shipscrapping employees in Taiwan].

    Science.gov (United States)

    Chiang, H C; Chang, P Y

    1989-05-01

    The shipscrapping industry in Taiwan is located at Kaohsiung harbor. The scrapping yard at Kaohsiung can be divided into the "Da-Jen" area and the "Da-Lin" area, including 23 and 13 docks respectively. About 5000-8000 dock workers are employed in the yard. Because shipscrapping has been considered to be a "temporary" industry by the secondary metal dealers, so the dealers did not well equip and offer the appropriate safety and health programs for the industry. Of those who work on the docks the metal burners are those most continuously exposed to substantial amounts of inorganic lead and other unidentified metals along with health stresses such as noise, asbestos, explosions and accidents. In this study, 140 oxyacetylene torch metal burners (83 working on scrapping ships and 57 working at the yard) and 21 dock workers without direct lead exposure as the control group were included. The mean values of blood lead and urine lead were 63.22 +/- 22.04 micrograms/d1 and 122.15 +/- 44.10 micrograms/1 for metal burners on the ship, and 65.25 +/- 37.11 micrograms/d1 and 101.54 +/- 37.11 micrograms/1 for the metal burners at the yard, values for the control group were 37.24 +/- 20.63 micrograms/d1 and 67.62 +/- 38.39 micrograms/1 respectively. The subjective symptoms mainly were fatigue, numbness over extremities, headache and dizzness. There were 49 metal burners, 35% of the total burners examined in this study, whose blood lead exceeded 80 micrograms/d1 with more than 2 suspicious intoxication symptoms. The precautions in terms of environmental mornitoring, medical surveillance and engineering control should be taken.

  7. Residence Time Distributions in a Cold, Confined Swirl Flow

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der; Glarborg, Peter; Dam-Johansen, Kim

    1997-01-01

    Residence time distributions (RTD) in a confined, cold swirling flow have been measured with a fast-response probe and helium as a tracer. The test-rig represented a scaled down version of a burner. The effect of variation of flow velocities and swirl angle on the flow pattern in the near-burner ......, well characterised flow pattern makes it possible to investigate the importance of mixing intensity on the (pollution) chemistry in furnaces. The reactor model developed here will be the basis for the development of a chemical reaction engineering combustion model....

  8. System model development for a methanol reformed 5 kW high temperature PEM fuel cell system

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    This work investigates the system performance when reforming methanol in an oil heated reformer system for a 5 kW fuel cell system. A dynamic model of the system is created and evaluated. The system is divided into 4 separate components. These components are the fuel cell, reformer, burner...... and evaporator, which are connected by two separate oil circuits, one with a burner and reformer and one with a fuel cell and evaporator. Experiments were made on the reformer and measured oil and bed temperatures are presented in multiple working points. The system is examined at loads from 0 to 5000 W electric...

  9. Apparatus and process to enhance the uniform formation of hollow glass microspheres

    Science.gov (United States)

    Schumacher, Ray F

    2013-10-01

    A process and apparatus is provided for enhancing the formation of a uniform population of hollow glass microspheres. A burner head is used which directs incoming glass particles away from the cooler perimeter of the flame cone of the gas burner and distributes the glass particles in a uniform manner throughout the more evenly heated portions of the flame zone. As a result, as the glass particles are softened and expand by a released nucleating gas so as to form a hollow glass microsphere, the resulting hollow glass microspheres have a more uniform size and property distribution as a result of experiencing a more homogenous heat treatment process.

  10. Synthesis of Nano-Particles in Flames

    DEFF Research Database (Denmark)

    Johannessen, Tue

    flame burner and a premixed burner with a precursor jet. The experimental setups and results are shown and discussed in detail. Alumina powder with specific surface area between 45 m2/g and 190 m2/g was obtained.Temperature and flow fields of the flame processes are analysed by numerical simulations...... (Computational Fluid Dynamics) where the fundamental equation for flow, heat- and mass transfer are solved numerically in computational domains similar to the real systems.A model describing the particle dynamics in the flame is coupled with the flow-field information in order to compute effluent particle...

  11. Heating plants. Comparison between the main available techniques that allow heating plants to respect the new regulations; Les chaudieres. Comparaison des principales techniques disponibles permettant aux chaudieres de respecter les nouvelles reglementations

    Energy Technology Data Exchange (ETDEWEB)

    Bouju, J.L. [Babcock Entreprise, 93 - La Courneuve (France)

    1997-12-31

    This paper gives an overview of the main methods available today to improve the thermal and environmental performances of heating plants and burners and points out the technical and economical advantages and drawbacks of these methods. The methods are described according to the type of pollutant: SO{sub x} (fuel treatment, smokes desulfurization, in-situ desulfurizers injection, lime treatment of solid and liquid fuels), NO{sub x} (smokes recycling, low-NO{sub x} burners, air staging, over-dimensioning of combustion chambers, reduction of combustion air temperature, re-burning, denitrifier injection, combination of several methods), dusts (filters and cyclones). (J.S.)

  12. Controlled pilot oxidizer for a gas turbine combustor

    Science.gov (United States)

    Laster, Walter R.; Bandaru, Ramarao V.

    2010-07-13

    A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.

  13. Lead-cooled fast reactor (LFR) overview and perspectives

    OpenAIRE

    CINOTTI Luciano; Smith, Craig F.; SEKIMOTO, HIROSHI

    2009-01-01

    The GIF Technology Roadmap identified the Lead-cooled Fast Reactor (LFR) as a technology with great potential to meet the small-unit electricity needs of remote sites while also offering advantages as a large system for grid-connected power stations. The LFR features a fast- neutron spectrum and a closed fuel cycle for efficient conversion of fertile uranium. It can also be used as a burner of minor actinides from spent fuel and as a burner/breeder. An important feature of the LFR is the ...

  14. Fully automatic and self-learning process optimisation to increase efficiency of large-scale power plants by correlation of data from the process control system with optical and acoustic information; Vollautomatische und selbstlernende Prozessoptimierung zur Wirkungsgradsteigerung von Grosskraftwerken. Softwaregestuetzte Korrelation der Prozessdaten mit optischen und akustischen Informationen

    Energy Technology Data Exchange (ETDEWEB)

    Hanf, Alexander Carl [Powitec Intelligent Technologies GmbH, Essen (Germany)

    2009-07-01

    Economic necessities have led to new challenges for the operation of coal steam generators in large power plants. The strongly fluctuating quality, in particular of imported coal, design and coal-dependent uneven distribution of pulverised coal results in a sub-optimal combustion air distribution if classical control concepts are used. This has a direct negative impact on efficiency. By using a system package consisting of intelligent software and optical sensors for flame analysis and acoustic sensors for milling degree analysis, the fuel-/air-ratio for each burner and over the burner levels is optimised. (orig.)

  15. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane

    DEFF Research Database (Denmark)

    Glarborg, Peter; Bentzen, L.L.B.

    2008-01-01

    in terms of a detailed chemical kinetic mechanism for hydrocarbon oxidation. On the basis of results of the present study, it can be expected that oxy-fuel combustion will lead to strongly increased CO concentrations in the near-burner region. The CO2 present will compete with O-2 for atomic hydrogen...... CO2. The high local CO levels may have implications for near-burner corrosion and stagging, but increased problems with CO emission in oxy-fuel combustion are not anticipated....

  16. Development of stoker-burning technology; Stokeripolton kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H. [VTT Energy, Jyvaeskylae (Finland); Nojonen, O. [Finntech Oy, Espoo (Finland)

    1997-12-01

    The present horizontal stoker burners are based on downstream combustion principle, which means that the fuel and the flue gases flow into same direction. It is known that the propagation of the ignition front restricts the power in this kind of combustion while using moist fuels. The heat formed in pyrolysis and char burn out zones flows away from drying and ignition zones. VTT Energy has an idea, by which it is possible to alter the horizontal stoker burner to operate so, that the heat formed in combustion of fuel flows towards the ignition and drying zones, hence the drying of the moist fuel and ignition of it are intensified remarkably. (orig.)

  17. A Review on Suspended Wood Dust Combustion. Efficiency and Fuel Quality

    Science.gov (United States)

    Silins, Kaspars

    2012-09-01

    The paper is dedicated to review the combustion efficiency in low capacity wood dust suspension burners. Fuel quality is reviewed as the main contributor to the combustion efficiency. Wood dust moisture content, particle size and shape, amount of volatiles are discussed as the main contributors. Some additional aspects like burner ignition, fuel and combustion air feeding are reviewed to increase the efficiency. A brief overview of particle combustion process is provided followed by an identification and discussion of combustion efficiency influencing parameters. The significance of fuel feeding and air supply is discussed at the end of the paper.

  18. Afnor NF D 35-330. Gas-fired central heating boilers. Type B{sub 11} and B{sub 11BIS} boilers fitted with atmospheric burners of nominal heat input not exceeding 70 kW. (European standard EN 297); Afnor NF D 35-330. Chaudieres de chauffage central utilisant les combustibles gazeux. Chaudieres des types B{sub 11} et B{sub 11BIS} equipees de bruleurs atmospheriques dont le debit calorifique nominal est inferieur ou egal a 70 kW. (Norme europeenne EN 297)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This standard document defines the specifications and testing techniques relative to the manufacturing, safety, energy rational use, functioning capacity, classification and labeling of gas-fueled heating plants. It replaces the previous NF D 35-331 norm from November 1989 which comprised the NF D 35-331 norm from January 1980, its additives 1 (January 1980) and 2 (June 1984), its modifications 1 (July 1980), 2 (September 1986), 3 (December 1988) and 4 (November 1989) and the D 30-005 experimental norm of November 1991. (J.S.)

  19. development of gas boy medical incinerator as a substitute for ...

    African Journals Online (AJOL)

    ABSTRACT. A high temperature medical incinerator of 0. 4011 at capacity was designed and built with specially manufactured refractory bricks and high temperature bauxite mortars with local gas burners rated at 158Kilojoules(150 B.T.U.) High pressure regulators were fitted onto the 52kg gas cylinders to enable the ...

  20. Evaluating Foreign Direct Investment and Africa's Development ...

    African Journals Online (AJOL)

    The question of Africa's development has continued to occupy the front burner from the social and economic discussions by scholars of various divides. But Africa's development through foreign direct investment has become a recent challenge to the African continent. African social critics and commentators as well as ...

  1. Mixing and Processing of Complex Biological Fluids

    Science.gov (United States)

    2003-03-01

    microscopy was used to visualize X-DNA molecules. The molecules were labeled with the fluorescent dye YOYO -1 at a base pair:dye ratio of 5:1. In all...burner served as the illumination source. A fluorescence cube having the following optical characteristics was used with the probe YOYO -I: excitation

  2. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana. Nesrin Kayatas. Articles written in Sadhana. Volume 29 Issue 6 December 2004 pp 641-667. Numerical study of effect of oxygen fraction on local entropy generation in a methane–air burner · Huseyin Yapici Gamze Basturk Nesrin Kayatas Bilge Albayrak · More Details Abstract Fulltext PDF.

  3. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Pressure Melting and Ice Skating / Bunsen Burner - Revisited · More Details Fulltext PDF. pp 79-81 Think It Over. Capillarity / To Switch or Not to Switch. More Details Fulltext PDF. pp 82-84 Research News. Evidence for Bird Mafia! Raghavendra Gadagkar Milind Kolatkar · More Details Fulltext PDF. pp 85-86 Book Review.

  4. Boeing Tests Critical Components for Advanced Rocket Engine

    National Research Council Canada - National Science Library

    Mitchell, John

    2003-01-01

    .... Stennis Space Center (SSC) in Mississippi. This test, one of nine that have been planned, follows a related series of hot-fire tests in which a Rocketdyne-built pre-burner -- which provides oxygen-rich gasses to the oxidizer turbopump turbine...

  5. Using a Homemade Flame Photometer to Measure Sodium Concentration in a Sports Drink

    Science.gov (United States)

    LaFratta, Christopher N.; Jain, Swapan; Pelse, Ian; Simoska, Olja; Elvy, Karina

    2013-01-01

    The purpose of this experiment was to create a simple and inexpensive flame photometer to measure the concentration of sodium in beverages, such as Gatorade. We created a nebulizer using small tubing and sprayed the sample into the base of a Bunsen burner. Adjacent to the flame was a photodiode with a filter specific for the emission of the sodium…

  6. The Church and Entrepreneurship – Hope for the Youth in Nigeria ...

    African Journals Online (AJOL)

    Religion Dept

    However, the impact of the current global financial crisis and its attendant mass unemployment and job losses has brought to the front burner the issue of entrepreneurship and economic recovery. Thus, as the number of unemployed graduates in Nigeria continues to increase, there is a growing need to promote youth ...

  7. Interim report on the tandem mirror hybrid design study

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W. (ed.)

    1979-08-01

    The initial phase of a 2-year design study of a tandem mirror fusion reactor is presented. The following chapters are included: (1) mechanical design of the plant; (2) plasma physics; (3) blanket design; (4) magnet design; (5) injector design; (6) direct convertor design; (7) balance of plant design; (8) fission burner reactor; (9) environment and safety; and (10) economic analysis. (MOW)

  8. 40 CFR 60.101 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... catalytic cracking unit catalyst regenerators and fluid coking burners. Fuel gas does not include vapors... removed from the surface of the fluid catalytic cracking unit catalyst by combustion in the catalyst... hydrogen sulfide (H2S), carbonyl sulfide (COS) and carbon disulfide (CS2). (m) Fluid catalytic cracking...

  9. BIOPHYSICAL AND MECH ATTRIBUTES TO LOSSES CAL AND ...

    African Journals Online (AJOL)

    User

    small family business as seen in e Mill Complex in Ebonyi State- ere there are clusters of Rice trepreneurs. ... 3339 (universal testing machine), Beaker, water,. Electric burner, hand glove, indelible ink, pencil, pen and paper. ..... need them to flourish capacity building that are private sector driven as seen at the mill complex.

  10. Studies on the Removal of Carbon Monoxide From the Atmosphere at Ambient Temperature.

    Science.gov (United States)

    1980-05-01

    concentration from an emergency such as fire, combined with a loss of power such as to render the CO burners inoperable, could produce dangerously high...economic advantage over acid or ammoniacal solutions. Ethanolamine is presently employed in scrubbers on submarines for removal of carbon dioxide, by

  11. Hey, Capitol Hill: Fund Graduate Education

    Science.gov (United States)

    Cohen, Philip

    2005-01-01

    In this brief paper, the author asserts that our nation would be well served if our elected officials made improving graduate education a high priority. At first glance, graduate education seems like an unlikely candidate for the legislative front burner. Surely, Americans are beset by far more critical issues, such as the war on terrorism,…

  12. Proceedings of the Zel’Dovich Memorial International Conference on Combustion, Detonation, Shock Waves Held in Moscow, Russia on 12-17 September 1994. Volume 2

    Science.gov (United States)

    1994-09-17

    New interest in metal combustion has arisen recently due to the plans of using in-situ propellants in lunar and Mars missions. Recent research have...measurements of burner inlet conditions and cold flow in furnace room. Report for Fase 1 of Project 02259. Department of Combustion Research, IsO National

  13. Heavy metals found at Umzimvubu River Estuary in the Eastern ...

    African Journals Online (AJOL)

    songca

    2013-05-10

    May 10, 2013 ... A Varian Spectra AA 100 atomic absorption spectrophotometer equipped with a single slot burner was used. Measurements were carried out in triplicate. All glass and propylene ware used were first soaked in dilute HNO3, thoroughly washed with liquid soap and then rinsed with double distilled de-ionised ...

  14. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  15. Characterization of porous materials by small-angle scattering

    Indian Academy of Sciences (India)

    For numerous industrial and technological applications, it is often necessary to introduce pores in ... Similarly many sensors, catalytic systems and gas burners require materials to be permeable and to provide ... 2.26–3.06 nm−1, the scattering profile follows a power law ~q−2.93 which is close to. ~ q−3.02 as observed in ...

  16. Cross-Fertilization of Indigenous Media and New Media for ...

    African Journals Online (AJOL)

    This work cross examined the chance, consequences and challenges of crossfertilizing indigenous media with new media for the purpose of practicing development journalism in Africa with reference to the Nigeria society. The call to cross-fertilize indigenous media and new media has been on the front burner since 1980's ...

  17. Fabrication of silicon based glass fibres for optical communication

    Indian Academy of Sciences (India)

    Unknown

    creasing demand of fibre in diverse application areas. Various processes are being modified such as preform making, melting process, melting environment, homoge- ... sition temperature (Fleming 1978). The flow of reactants and the speed of traversing oxyhydrogen burner are closely monitored using a video camera.

  18. Proceedings of the 1998 oil heat technology conference

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1998-04-01

    The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

  19. Reintroduction of Fire into Fire-Dependent Ecosystems: Some Southern Examples

    Science.gov (United States)

    Dale Wade; George Custer; Jim Thorsen; Paul Kaskey; John Kush; Bill Twomey; Doug Voltolina

    1997-01-01

    Natural resource problems associated with, or resulting from, attempted fire exclusion are challenging managers across the United States. Critical issues range from epidemic insect and disease conditions to species extirpations. Southern burners continue to demonstrate that seemingly insurmountable constraints can be overcome through commitment and cooperation, and...

  20. 75 FR 65023 - Notice of Issuance of Final Determination Concerning Certain Heating Boilers

    Science.gov (United States)

    2010-10-21

    ... H119218 Ms. Regina Vargo Greenberg Traurig, LLP 2101 L Street NW, Suite 1000 Washington, D.C. 20037 Re: U.S. Government Procurement; Heating Boilers Dear Ms. Vargo: This is in response to your letter, dated... Canadian supplier, and is assembled in Canada from U.S. origin stainless steel plates and tubes. The burner...

  1. Heat Transfer Model for Hot Air Balloons

    Science.gov (United States)

    Llado-Gambin, Adriana

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.

  2. Trends and pattern of women participation and representation in Africa

    African Journals Online (AJOL)

    The debates, discussion and literature on women participation in developed and developing democracies has brought to the front burner the place of women in Africa's emerging democracies. While much literature has looked at political participation of women in developed democracies, there is little information and ...

  3. Development of an advanced high efficiency coal combustor for boiler retrofit

    Energy Technology Data Exchange (ETDEWEB)

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.

    1989-10-01

    The overall objective of this program is to develop a high efficiency advanced coal combustor (HEACC) for coal-based fuels capable of being retrofitted to industrial boilers originally designed for firing natural gas, distillate, and/or residual oil. The HEACC system is to be capable of firing microfine coal water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system are that it be simple to operate and will offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal fired combustor technology. The specific objective of this report is to document the work carried out under Task 1.0 of this contract, Cold Flow Burner Development''. As are detailed in the report, key elements of this work included primary air swirler development, burner register geometry design, cold flow burner model testing, and development of burner scale up criteria.

  4. Evaluation of SHABERTH: A bearing simulation computer program

    Science.gov (United States)

    1978-01-01

    To investigate lubrication effects on bearing thermal performance, an investigation was performed to determine the feasibility of using the SKF program SHABERTH for simulating the performance of cryogenically lubricated ball bearings. As a part of this study, the particular application chosen for SHABERTH was to simulate the performance of the Space Shuttle main engine turbo-pump and pre-burner bearing system.

  5. Molten iron oxysulfide as a superior sulfur sorbent. Final report, [September 1989--1993

    Energy Technology Data Exchange (ETDEWEB)

    Hepworth, M.T.

    1993-03-31

    The studies had as original objective the analysis of conditions for using liquid iron oxysulfide as a desulfuring agent during coal gasification. Ancillary was a comparison of iron oxysulfide with lime as sorbents under conditions where lime reacts with S-bearing gases to form Ca sulfate or sulfide. Primary thrust is to determine the thermodynamic requirements for desulfurization by iron additions (e.g., taconite concentrate) during combustion in gasifiers operating at high equivalence ratios. Thermodynamic analysis of lime-oxygen-sulfur system shows why lime is injected into burners under oxidizing conditions; reducing conditions forms CaS, requiring its removal, otherwise oxidation and release of S would occur. Iron as the oxysulfide liquid has a range of stability and can be used as a desulfurizing agent, if the burner/gasifier operates in a sufficiently reducing regime (high equivalence ratio); this operating range is given and is calculable for a coal composition, temperature, stoichiometry. High moisture or hydrogen contents of the coal yield a poorer degree of desulfurization. Kinetic tests on individual iron oxide particles on substrates or Pt cups with a TGA apparatus fail to predict reaction rates within a burner. Preliminary tests on the Dynamic Containment Burner with acetylene give some promise that this system can produce the proper conditions of coal gasification for use of added iron as a sulfur sorbent.

  6. Fulltext PDF

    Indian Academy of Sciences (India)

    IAS Admin

    ture on Equilibrium. Aim: To demonstrate the effect of pressure and tem- perature chan- ges on the equilibrium involving NO2 and. N204 by observing change in colour. Apparatus: A 20 cc syringe with needle, conical flask, glass tube, beakers, aluminium foil, Bunsen burner, stands. Chemicals: Pb(NO3)2 (lead nitrate), ice.

  7. 76 FR 14686 - National Register of Historic Places; Notification of Pending Nominations and Related Actions

    Science.gov (United States)

    2011-03-17

    ... County Bay de Noquet Lumber Company Waste Burner, South end of River St., Nahma, 11000177 Grand Traverse County Dougherty Mission House, 18459 Mission Road, Peninsula, 11000176 Stickney Summer House, 13512... Armory, 1225 E Henry Clay St., Whitefish Bay, 02000650 Walworth County Bradley Knitting Company, 902...

  8. A five-year record of lightning storms and forest fires

    Science.gov (United States)

    H. T. Gisborne

    1931-01-01

    According to the records compiled by the supervisors of the national forests in the northern Rocky Mountain region, lightning has been responsible for a greater number of fires, more burned area, more damage, and more expense of suppression in this territory than all other causes of forest fires combined. Smokers, campers, brush burners, incendiarists, lumbering...

  9. Improvement on life and NO{sub x} discharge of radiant heat transfer tube heating system by the elasto-plasticity creep analysis; Dansosei kuripukaiseki ni yoru hosha dennetsukan kanetsu shisutemu no jumyo to NO{sub x} haishutsuryo no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Futahiko; Ikaruda, Kunihiro; Abe, Yoshio; Arai, Norio

    1999-06-05

    Combustion thermal process using the radiant heat transfer tube has widely been applied as a heating method which separates the combustion atmosphere from the heating-e atmosphere in various heating furnace such as iron and steel industry. In this thermal process, in order to burn the fuel in tight space in radiant heat transfer service area, radiant heat transfer tube and burner life were short under high temperature and high-load combustion, and there was a problem that that and, burning characteristic such as NO{sub x} generation rate are improved was difficult. In this study, large temperature distribution by the combustion in the radiant heat transfer tube clarified that the life of the radiant heat transfer tube was shortened by elasto-plasticity creep analysis of the radiant heat transfer tube. Then, two steps combustion burner of the exhaust gas self recycling type was developed as a method for reducing the NO{sub x} generation rate, while the temperature distribution of the radiant heat transfer tube was equalized. As the result, it was possible to reduce over 20% in comparison with conventional two steps combustion burner, while radiant heat transfer tube and life of the burner are extended over the conventional double, in respect of the NO{sub x} generation rate. (translated by NEDO)

  10. 40 CFR 279.64 - Used oil storage.

    Science.gov (United States)

    2010-07-01

    ... store used oil in units other than tanks, containers, or units subject to regulation under parts 264 or 265 of this chapter. (b) Condition of units. Containers and aboveground tanks used to store oil at... aboveground tanks used to store used oil at burner facilities must be equipped with a secondary containment...

  11. Ignition behavior of live California chaparral leaves

    Science.gov (United States)

    J.D. Engstrom; J.K Butler; S.G. Smith; L.L. Baxter; T.H. Fletcher; D.R. Weise

    2004-01-01

    Current forest fire models are largely empirical correlations based on data from beds of dead vegetation Improvement in model capabilities is sought by developing models of the combustion of live fuels. A facility was developed to determine the combustion behavior of small samples of live fuels, consisting of a flat-flame burner on a moveable platform Qualitative and...

  12. LOW OZONE-DEPLETING HALOCARBONS AS TOTAL-FLOOD AGENTS: VOLUME 2. LABORATORY-SCALE FIRE SUPPRESSION AND EXPLOSION PREVENTION TESTING

    Science.gov (United States)

    The report gives results from (1) flame suppression testing of potential Halon-1301 (CF3Br) replacement chemicals in a laboratory cup burner using n-heptane fuel and (2) explosion prevention (inertion) testing in a small-scale explosion sphere using propane and methane as fuels. ...

  13. Large Eddy Simulation of Sydney Swirl Non-Reaction Jets

    DEFF Research Database (Denmark)

    Yang, Yang; Kær, Søren Knudsen; Yin, Chungen

    The Sydney swirl burner non-reaction case was studied using large eddy simulation. The two-point correlation method was introduced and used to estimate grid resolution. Energy spectra and instantaneous pressure and velocity plots were used to identify features in flow field. By using these methods...

  14. Development Of A Biogas-Powered Poultry Egg Incubator ...

    African Journals Online (AJOL)

    This study advances the utilization of biogas energy for chick production. A wooden frame still-air incubator was developed, which uses biogas as a fuel to supply heat through a burner installed at the base. A no-load test was carried out during which incubator temperatures were calibrated against ambient temperatures ...

  15. 24 CFR 3280.702 - Definitions.

    Science.gov (United States)

    2010-04-01

    ... and delivers the oil under a constant head to an oil-burning appliance. Btu. British thermal units.... Btuh means British thermal units per hour. Burner means a device for the final conveyance of fuel or a... appliance(s). Gas clothes dryer means a device used to dry wet laundry by means of heat derived from the...

  16. Bioactive nanocrystalline wollastonite synthesized by sol–gel ...

    Indian Academy of Sciences (India)

    The chicken eggs were collected from Vellore market and boiled in beaker containing water for 20 min on Bunsen burner. The eggshells were removed and dried in ..... The authors thank the VIT management for the financial sup- port. The authors express their sincere gratitude to Prof R. Vijayaraghavan (Assistant Director ...

  17. Page 1 Intrinsic control of anaerobic digestion 243 Occasional ...

    Indian Academy of Sciences (India)

    Occasional measurements of gas chromatography were conducted to determine methane level. Gas was burnt in a gas burner regularly to determine the earliest time of gas burning. The temperature of the bioliquid (spot measurements) was also determined. 2.4a No special seeding measures were necessary: The run ...

  18. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana. Huseyin Yapici. Articles written in Sadhana. Volume 29 Issue 6 December 2004 pp 641-667. Numerical study of effect of oxygen fraction on local entropy generation in a methane–air burner · Huseyin Yapici Gamze Basturk Nesrin Kayatas Bilge Albayrak · More Details Abstract Fulltext PDF.

  19. Numerical investigation of pulverized coal aero mixture combustion at the presence of flow swirling

    Directory of Open Access Journals (Sweden)

    Kuznetsov V.A.

    2015-01-01

    Full Text Available Numerical investigation results of burning pulverized coal aero mixture in the presence of swirl flow have been presented. The mathematical model has been chosen allowing describing correctly the pulverized coal combustion processes in the furnace with a swirl burner.

  20. Pyrolysis kinetics and combustion of thin wood using advanced cone calorimetry test method

    Science.gov (United States)

    Mark A. Dietenberger

    2011-01-01

    Mechanistic pyrolysis kinetics analysis of extractives, holocellulose, and lignin in solid wood over entire heating regime was possible using specialized cone calorimeter test and new mathematical analysis tools. Added hardware components include: modified sample holder for thin specimen with tiny thermocouples, methane ring burner with stainless steel mesh above cone...

  1. Pyrolysis kinetics and combustion of thin wood by an advanced cone caorimetry test method

    Science.gov (United States)

    Mark Dietenberger

    2012-01-01

    Pyrolysis kinetics analysis of extractives, holocellulose, and lignin in the solid redwood over the entire heating regime was possible by specialized cone calorimeter test and new mathematical analysis tools. Added hardware components include: modified sample holder for the thin specimen with tiny thermocouples, the methane ring burner with stainless-steel mesh above...

  2. Sandia Combustion Research: Technical review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  3. 75 FR 64155 - Approval of Implementation Plans of Wisconsin: Nitrogen Oxides Reasonably Available Control...

    Science.gov (United States)

    2010-10-19

    ... tangentially fired, coal burning, 0.50 for dry bottom wall fired (other than cell burner), coal burning, 0.20... Milwaukee-Racine and Sheboygan nonattainment areas, as well as downwind areas, will be breathing cleaner air... people live, and these monitors are usually placed at ground-level where people are breathing the ambient...

  4. Micro-Scale Flapping Wings for the Advancement of Flying MEMS

    Science.gov (United States)

    2009-03-01

    to explore a few potential areas that may provide the power required to fly these devices untethered. Thermoelectric power generation is one... Generation Burner . . . . . . . . . . . . . . . . . . . . . 21 2.14. Simple Solar Cell . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.15. 4...been ongoing at the Air Force Institute of Technology (AFIT) since 2005 under the funding support of the Air Force Research Laboratory’s Munitions

  5. Thermodynamics between RAP/RAS and virgin aggregates during asphalt concrete production : a literature review.

    Science.gov (United States)

    2015-09-01

    In hot-mix asphalt (HMA) plants, virgin aggregates are heated and dried separately before being mixed with : RAP/RAS and virgin asphalt binder. RAP/RAS materials are not heated or dried directly by a burner to avoid : burning of aged binder coating o...

  6. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. V V Seliverstov. Articles written in Pramana – Journal of Physics. Volume 68 Issue 2 February 2007 pp 173-179. Some parameters and conditions defining the efficiency of burners in the destruction of long-lived nuclear wastes · V V Seliverstov · More Details Abstract Fulltext ...

  7. Oxygen-Fired CO{sub 2} Recycle for Application to Direct CO{sub 2} Capture form Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Gale

    2010-09-26

    The Southern Research/Southern Company 1 MWth Pilot-Scale Coal-Fired Test Facility was successfully retrofit to fire in either the traditional air-fired mode or with 100% oxygen and recycled flue gas, with a fully integrated feedback and control system, including oxygen and recycled flue gas modulation during startup, transfer, and shutdown, safety and operational interlocks, and data acquisition. A MAXON Staged Oxygen Burner for Oxy-Coal Applications produced a stable flame over a significant range of firing turn-down, staging, and while firing five different U.S. coal types. The MAXON burner design produces lower flame temperatures than for air firing, which will enable (A) Safe operation, (B) Reduction of recycle flow without concern about furnace flame temperatures, and (C) May likely be affective at reducing slagging and fouling in the boiler and super heater at full-scale Power Plants. A CFD model of the Oxy-fired Combustion Research Facility (OCRF) was used to predict the flame geometry and temperatures in the OCRF and make a comparison with the air-fired case. The model predictions were consistent with the experimental data in showing that the MAXON burner fired with oxygen produced lower flame temperatures than the air-fired burner while firing with air.

  8. Investigating water absorption and thickness swelling tendencies of ...

    African Journals Online (AJOL)

    Replacing external metallic wall of refrigerated vehicles has been on the front burner in many published works as weight of the metallic insulated panel continues to pose a challenge on refrigeration unit and environment. As a follow - up to this problem statement, five (5) composite materials were fabricated as replacement ...

  9. Development and performance of a direct fired pulverized biomass combustion process

    Energy Technology Data Exchange (ETDEWEB)

    Lincoln, J.F.L.; Litchney, T.C.

    1988-01-01

    Weyerhaeuser has committed significant resources to the development of biomass energy technologies which will directly substitute for oil and natural gas. Major in-house oil and gas uses include supplementary firing in wood waste boilers and operation of lime sludge kilns in kraft pulp mills. Process options for both wood gasification and pulverized fuel firing technologies have been examined. The pulverized fuel firing development program investigated areas of combustion fundamentals, burner design and development, fuel drying, fuel metering, pulverization and overall process design. Short term full-scale burner tests demonstrated the feasibility of pulverized biomass firing into a water-walled furnace without fossil fuel support forflame stabilization. A full-scale burner test facility was built to gain long-term with pulverized biomass burners, and to serve as a test bed for component development. The parallel fundamentals and implementation efforts developed both process understanding and the practical experience necessary to ensure reliable performance in an operating environment. Based on the two efforts, a direct-fired process design (no storage of pulverized fuel) has been developed which requires no fossil fuel for flame stabilization. Design and performance of the first commercial application of the technolgy at Weyerhaeuser's pulp mill in Cosmopolis, Washington is described. Other potential applications of the technology are discussed. 3 refs., 7 figs.

  10. 29 CFR 1910.110 - Storage and handling of liquefied petroleum gases.

    Science.gov (United States)

    2010-07-01

    ... gas section or both. (j) Vaporizers shall not be equipped with fusible plugs. (k) Vaporizer houses... shall not be provided with fusible plugs. (l) Vaporizers shall not have unprotected drains to sewers or... the vapor. (i) The vaporizer section of vaporizer-burners shall not be provided with fusible plugs. (j...

  11. Staying Alive: Social Studies in Elementary Schools

    Science.gov (United States)

    Pascopella, Angela

    2005-01-01

    Social studies, particularly in the elementary grades, has been pushed to the back burner in schools. Time is the biggest nemesis. Increased attention to math and language arts under the federal No Child Left Behind law is squeezing out social studies. Many states have standards in social studies so teachers are expected to cover the topic, but…

  12. 40 CFR 60.40Da - Applicability and designation of affected facility.

    Science.gov (United States)

    2010-07-01

    ... generators used with duct burners and associated with an electric utility combined cycle gas turbine that are... subpart to an electric utility combined cycle gas turbine other than an IGCC electric utility steam... Performance for Electric Utility Steam Generating Units for Which Construction is Commenced After September 18...

  13. 40 CFR 97.302 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... cycle, any associated duct burner, heat recovery steam generator, and steam turbine. Commence commercial... capacity means, starting from the initial installation of a generator, the maximum electrical generating... generator resulting in an increase in the maximum electrical generating output (in MWe) that the generator...

  14. 40 CFR 51.124 - Findings and requirements for submission of State implementation plan revisions relating to...

    Science.gov (United States)

    2010-07-01

    ... cycle, any associated duct burner, heat recovery steam generator, and steam turbine. Commence operation... electrical generating output (in MWe) that the generator is capable of producing on a steady state basis and... physical change in the generator resulting in an increase in the maximum electrical generating output (in...

  15. The Determination of Lead in Gasoline by Atomic Absorption Spectrometry.

    Science.gov (United States)

    Coleman, M. F. M.

    1985-01-01

    Describes an experiment that involves the extraction of lead from gasoline into an aqueous solvent using iodine monochloride reagent. This method (which avoids the aspiration of organic solvents) also illustrates the use of wavelengths other than the most sensitive wavelength and effects of flame stoichiometry and burner height upon absorbance.…

  16. Fractal turbulence enhancing low-swirl combustion

    NARCIS (Netherlands)

    Verbeek, Antonie Alex; Bouten, Thijs W.F.M.; Stoffels, Genie G.M.; Geurts, Bernardus J.; van der Meer, Theodorus H.

    The use of fractal grids in a low-swirl burner can significantly increase the turbulent combustion rate, realizing a higher power density in these flames. The standard turbulence generating blocking grid has been replaced by one consisting of a pattern of cruciform structures of different sizes,

  17. J.K. Nsiah

    African Journals Online (AJOL)

    Administrator

    electricity generation, have specially designed circular areas through which heat passes or gen- erates. Since these areas are circular in ... round ceramic kilns, electric generation plants, and burner areas of gas or oil boilers. ..... discussed in this pa- per. REFERENCES. Vincenzini P. (1991), Fundamentals of Ceramic.

  18. Plasma Assisted Combustion: Flame Regimes and Kinetic Studies

    Science.gov (United States)

    2015-01-05

    diffusional cool flames • A heated counterflow burner integrated with vaporization system1 • n-heptane/nitrogen vs. oxygen/ozone • Ozone generator...Schauer, Yiguang Ju, Schlieren Imaging and Pulsed Detonation Engine Testing of Ignition by a Nanosecond Repetitively Pulsed Discharge, submitted to

  19. Influence of reaction products of K-getter fuel additives on commercial vanadia-based SCR catalysts

    DEFF Research Database (Denmark)

    Castellino, Francesco; Jensen, Anker Degn; Johnsson, Jan Erik

    2009-01-01

    Commercial vanadia-based full-length monoliths have been exposed to aerosols formed by injection of K3PO4 (dissolved in water) in a hot flue gas (T > 850 °C) from a natural gas burner. Such aerosols may form when burning fuels with high K- and P-content, or when P-compounds are mixed with biomass...

  20. Education for Employment in Nigeria in the 21st Century: Some ...

    African Journals Online (AJOL)

    Education for employment has been on the front burner of most public and educational discourse in recent times. In April 2000, educational stakeholders from the world over gathered at the World Education Forum in Dakar, Senegal and adopted the Dakar framework for Action. These stakeholders reaffirmed the vision of ...

  1. Vol. 6 No. 1

    African Journals Online (AJOL)

    chocolate bars (Williams 1979). In additions caffeine is known to be a fat burner and therefore to be beneficial in assisting weight loss (Blader, 2000). As a result of the commercial importance of kolanut, most of the research work in. Nigeria to date has been done mainly on. C. nitida (Oladokun, 1982), the cola of commerce.

  2. 30 CFR 7.26 - Flame test apparatus.

    Science.gov (United States)

    2010-07-01

    ... approximately 23/16-inches from the front and back ends of the test gallery, 11/2-inches from the ceiling... in the fan housing. The fan housing must be tightly connected to the tapered duct section; (e) A methane-fueled impinged jet burner igniting source, measuring 12 inches long from the threaded ends of the...

  3. PHYSICOCHEMICAL PROPERTIES OF NANOPARTICLES TITANIA ...

    African Journals Online (AJOL)

    Preferred Customer

    2 Nataional Science and Technology Development Agency (NSTDA), Klong 1, Klong Lunag,. Prathumthani12120 ... methanol, ethanol, and propanol fuel sources. The synthesized TiO2 were ... was found that methanol and ethanol burners can be used as an alternative furnace that can yield TiO2 nanoparticles with ...

  4. 26 CFR 1.23-2 - Definitions.

    Science.gov (United States)

    2010-04-01

    ... Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY INCOME TAX INCOME TAXES Changes in Rates... of fuel consumed as a result of increased combustion efficiency. The burner must replace an existing... terms of the financing (including any special tax treatment) provided to the taxpayer in connection with...

  5. Chemical structures and theoretical models of lean premixed ...

    African Journals Online (AJOL)

    To better understand the chemistry involved in the lean-fuel combustion, the chemical structure of lean premixed propene-oxygen-nitrogen flames stabilized on a flat-flame burner at atmospheric pressure was determined experimentally. The species mole fraction profiles were also computed by the Premix code and three ...

  6. 78 FR 8705 - Approval and Promulgation of Air Quality Implementation Plans; States of Minnesota and Michigan...

    Science.gov (United States)

    2013-02-06

    ... Lake Band of Ojibwe, the National Tribal Air Association, the Red Cliff Band of Lake Superior Chippewas... having to install low NO X burners. Commenter: Red Cliff Band of Lake Superior Chippewa. Comment: Red... impairment of visibility in mandatory class I Federal areas arising from manmade air pollution. DATES: This...

  7. Measurements and computer calculations of pulverized-coal combustion at Asnaes Power Station 4

    Energy Technology Data Exchange (ETDEWEB)

    Biede, O.; Swane Lund, J.

    1996-07-01

    Measurements have been performed on a front-fired 270 MW (net electrical out-put) pulverized-coal utility furnace with 24 swirl-stabilized burners, placed in four horizontal rows. Apart from continuous operational measurements, special measurements were performed as follows. At one horizontal level above the upper burner row, gas temperatures were measured by an acoustic pyrometer. At the same level and at the level of the second upper burner row, irradiation to the walls was measured in ten positions by means of specially designed 2 {pi}-thermal radiation meters. Fly-ash was collected and analysed for unburned carbon. Coal size distribution to each individual burner was measured. Eight different cases were measured. On a Columbian coal, three cases with different oxygen concentrations in the exit-gas were measured at a load of 260 MW, and in addition, measurements were performed at reduced loads of 215 MW and 130 MW. On a South African coal blend measurements were performed at a load of 260 MW with three different oxygen exit concentrations. Each case has been simulated by a three-dimensional numerical computer code for the prediction of distribution of gas temperatures, species concentrations and thermal radiative net heat absorption on the furnace walls. Comparisons between measured and calculated gas temperatures, irradiation and unburned carbon are made. Measured results among the cases differ significantly, and the computational results agree well with the measured results. (au)

  8. Africa - Still a continent in drift in the 21st century?

    NARCIS (Netherlands)

    Ong'ayo, A.O.O.

    2012-01-01

    The political developments in Tunisia, Egypt and Libya under the burner of Arab spring, the birth of South Sudan as the fifty fourth African state and the recent political problems witnessed in Mali, Sudan, Ethiopia, Ivory Coast, Zimbabwe, Kenya, Uganda, Rwanda, Democratic Republic of Congo and

  9. Biomass Co-Firing in Suspension-Fired Power Plants

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Hvid, Søren Lovmand; Baxter, Larry

    The objective of the project is to investigate critical issues associated with cofiring with low-NOx burners and cofiring in advanced suspension-fired plants with for example high-temperature steam cycles. Experience has been gained using biofuels for cofiring in older power plant units. However,...

  10. System analyse cellulose ethanol in combines - Combustion characterisation of lignin from cellulose based ethanol production; Systemanalys foer cellulosabaserad etanol i kombinat - Foerbraenningskarakterisering av lignin fraan cellulosabaserad etanolproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Lindstedt, Jan; Wingren, Anders; Magnusson, Staffan; Wiinikka, Henrik; Westbom, Urban; Lidman, Marcus; Groenberg, Carola

    2012-02-15

    In this work 3 different hydrolysed lignin fractions produced from Sugarcane Bagasse, Spruce and Wheat Straw were burned in a 150 kW horizontal furnace equipped with a powder burner to assess the combustion behaviour of hydrolysed lignin fuels. The combustion experiments showed that the feeding properties of all three lignin fractions were better compared to ordinary wood powder

  11. Experimental and numerical investigations of the dry-low-NOx hydrogen micromix combustion chamber of an industrial gas turbine

    Directory of Open Access Journals (Sweden)

    A. Haj Ayed

    2015-09-01

    The study reveals great potential for the successful application of numerical flow simulation to predict flame structure and NOx emission level of micromix hydrogen combustion, help understanding the flow phenomena related with the micromixing, reaction zone and NOx formation and support further optimization of the burner performance.

  12. CFD based exploration of the dry-low-NOx hydrogen micromix combustion technology at increased energy densities

    Directory of Open Access Journals (Sweden)

    A. Haj Ayed

    2017-03-01

    The study reveals great optimization potential of the micromix combustion technology with respect to the DLN characteristics and gives insight into the impact of geometry modifications on flame structure and NOx emission. This allows to further increase the energy density of the micromix burners and to integrate this technology in industrial gas turbines.

  13. 10 CFR 440.3 - Definitions.

    Science.gov (United States)

    2010-01-01

    ... crops and trees, wood and wood wastes and residues, plants (including aquatic plants), grasses, residues... cooling modifications which require a substantial amount of funds, including replacement and major repairs... including, but not limited to— (i) Replacement burners, furnaces, or boilers or any combination thereof; (ii...

  14. Numerical study of effect of oxygen fraction on local entropy ...

    Indian Academy of Sciences (India)

    This study considers numerical simulation of the combustion of methane with air, including oxygen and nitrogen, in a burner and the numerical solution of local entropy generation rate due to high temperature and velocity gradients in the combustion chamber. The effects of equivalence ratio () and oxygen percentage () ...

  15. 40 CFR 1065.260 - Flame-ionization detector.

    Science.gov (United States)

    2010-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon Measurements § 1065.260 Flame... meet the specifications of § 1065.750. Do not allow the FID fuel and burner air to mix before entering....265, or with a gas chromatograph as described in § 1065.267. Instead of measuring methane, you may...

  16. Laser induced fluorescence measurements of the mixing of fuel oil with air

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A.; Bombach, R.; Hubschmid, W.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    We report on measurements of the mixing of fuel oil with air at atmospheric pressure in an industrial premixed gas turbine burner. The concentration of the vaporized fuel oil was measured with laser induced fluorescence. We reason that the fuel oil concentration can be considered with good accuracy as proportional to the fluorescence intensity. (author) 6 fig., 3 refs.

  17. Experimental Characterization of Soot Formation in Diffusion Flames and Explosive Fireballs

    Science.gov (United States)

    2012-04-01

    profiles for the opposed jet burner using Unicorn and Chemkin Pro, ethylene/air flame, Wang-Colket mechanism. .............................33 Figure...35 Figure 31. Flame simulations using UNICORN (Katta et al...two-dimensional (2-D) flame simulation computer code UNICORN (Katta et al., 2006) with those obtained using the one- dimensional (1-D) flame

  18. MERCURY OXIDATION PROMOTED BY A SELECTIVE CATALYTIC REDUCTION CATALYST UNDER SIMULATED POWDER RIVER BASIN COAL COMBUSTION CONDITIONS

    Science.gov (United States)

    A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury oxidation under SCR conditions. A low sulfur Power River Basin (PRB) coal combustion ...

  19. Determination of Sulfate by Conductometric Titration: An Undergraduate Laboratory Experiment

    Science.gov (United States)

    Garcia, Jennifer; Schultz, Linda D.

    2016-01-01

    The classic technique for sulfate analysis in an undergraduate quantitative analysis lab involves precipitation as the barium salt with barium chloride, collection of the precipitate by gravity filtration using ashless filter paper, and removal of the filter paper by charring over a Bunsen burner. The entire process is time-consuming, hazardous,…

  20. Executive corruption in Nigeria: a critical overview of its socio ...

    African Journals Online (AJOL)

    In the recent times, the issue of executive corruption has taken a front burner. Simply defined as corruptive practices involving politicians, policy makers, bureaucrats, top members of business community, the paper argued that the phenomenon is very rampant in Nigeria. Tracing the evolution of executive corruption in the ...