WorldWideScience

Sample records for burnable absorbers boron

  1. Transient performance and design aspects of low boron PWR cores with increased utilization of burnable absorbers

    International Nuclear Information System (INIS)

    Papukchiev, Angel; Schaefer, Anselm

    2008-01-01

    In conventional pressurized water reactor (PWR) designs, soluble boron is used for reactivity control over core fuel cycle. As high boron concentrations have significant impact on reactivity feedback properties and core transient behaviour, design changes to reduce boron concentration in the reactor coolant are of general interest in view of improving PWR inherent safety. In order to assess the potential advantages of such strategies in current PWRs, two low boron core configurations based on fuel with increased utilization of gadolinium and erbium burnable absorbers have been developed. The new PWR designs permit to reduce the natural boron concentration in reactor coolant at begin of cycle to 518 (Gd) and 805 (Er) ppm. An innovative low boron core design methodology was implemented combining a simplified reactivity balance search procedure with a core design approach based on detailed 3D diffusion calculations. Fuel cross sections needed for nuclear libraries were generated using the 2D lattice code HELIOS [2] and full core configurations were modelled with the 3D diffusion code QUABOX/CUBBOX [3]. For dynamic 3D calculations, the coupled code system ATHLET - QUABOX/CUBBOX was used [4]. The new cores meet German acceptance criteria regarding stuck rod, departure from nucleate boiling ratio (DNBR), shutdown margin, and maximal linear power. For the assessment of potential safety advantages of the new cores, comparative analyses were performed for three PWR core designs: the already mentioned two low boron designs and a standard design. The improved safety performance of the low boron cores in anticipated transients without scram (ATWS), boron dilution scenarios and beyond design basis accidents (BDBA) has already been reported in [1, 2 and 3]. This paper gives a short reminder on the results obtained. Moreover, it deals not only with the potential advantages, but also addresses the drawbacks of the new PWR configurations - complex core design, increased power

  2. New burnable absorber for long-cycle low boron operation of PWRs

    International Nuclear Information System (INIS)

    Choe, Jiwon; Shin, Ho Cheol; Lee, Deokjung

    2016-01-01

    Highlights: • A burnable absorber design for advanced PWRs with a low soluble boron concentration. • The burnable absorber consists of a UO 2 – 157 Gd 2 O 3 rod with a thin layer of Zr 167 Er 2 . • Three verification cases: two kinds of fuel assemblies and an OPR-1000 core. - Abstract: This paper presents a new high performance burnable absorber (BA) design for advanced Pressurized Water Reactors (PWRs) aiming for a long-cycle operation with a low soluble boron concentration. The new BA consists of a UO 2 – 157 Gd 2 O 3 rod covered with a thin layer of Zr 167 Er 2 . A key feature of this new BA is that enriched isotopes, 157 Gd and 167 Er, are used as absorber materials. Since the high absorption cross section of 157 Gd can reduce the mass fraction of Gd 2 O 3 in UO 2 –Gd 2 O 3 , the thermal margin of fuel rods will increase with higher heat conductivity. Also, the 157 Gd transmutes into 158 Gd by neutron absorption and therefore the residual penalty at the end of cycle (EOC) will decrease. Since 167 Er has a resonance near the thermal neutron energy region, the moderator temperature coefficient (MTC) will become more negative and the control rod worth will increase. These advantages of the new BA are demonstrated with three verification cases: a 17 × 17 Westinghouse (WH) type fuel assembly, a 16 × 16 Combustion Engineering (CE) type fuel assembly, and an OPR-1000 equilibrium core.

  3. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    Radford, K.C.; Carlson, W.G.

    1985-01-01

    This patent deals with the fabrication of pellets for neutron absorber rods. Such a pellet includes a matrix of a refractory material which may be aluminum or zirconium oxide, and a burnable poison distributed throughout the matrix. The neutron absorber material may consist of one or more elements or compounds of the metals boron, gadolinium, samarium, cadmium, europium, hafnium, dysprosium and indium. The method of fabricating pellets of these materials outlined in this patent is designed to produce pores or voids in the pellets that can be used to take up the expansion of the burnable poison and to absorb the helium gas generated. In the practice of this invention a slurry of Al 2 O 3 is produced. A hard binder is added and the slurry and binder are spray dried. This powder is mixed with dry B 4 C powder, forming a homogeneous mixture. This mixture is pressed into green tubes which are then sintered. During sintering the binder volatilizes leaving a ceramic with nearly spherical high-density regions of

  4. PWR burnable absorber evaluation

    International Nuclear Information System (INIS)

    Cacciapouti, R.J.; Weader, R.J.; Malone, J.P.

    1995-01-01

    The purpose of the study was to evaluate the relative neurotic efficiency and fuel cycle cost benefits of PWR burnable absorbers. Establishment of reference low-leakage equilibrium in-core fuel management plans for 12-, 18- and 24-month cycles. Review of the fuel management impact of the integral fuel burnable absorber (IFBA), erbium and gadolinium. Calculation of the U 3 O 8 , UF 6 , SWU, fuel fabrication, and burnable absorber requirements for the defined fuel management plans. Estimation of fuel cycle costs of each fuel management plan at spot market and long-term market fuel prices. Estimation of the comparative savings of the different burnable absorbers in dollar equivalent per kgU of fabricated fuel. (author)

  5. Incorporation of Integral Fuel Burnable Absorbers Boron and Gadolinium into Zirconium-Alloy Fuel Clad Material

    International Nuclear Information System (INIS)

    Sridharan, K.; Renk, T.J.; Lahoda, E.J.; Corradini, M.L

    2004-01-01

    Long-lived fuels require the use of higher enrichments of 235U or other fissile materials. Such high levels of fissile material lead to excessive fuel activity at the beginning of life. To counteract this excessive activity, integral fuel burnable absorbers (IFBA) are added to some rods in the fuel assembly. The two commonly used IFBA elements are gadolinium, which is added as gadolinium-oxide to the UO2 powder, and boron, which is applied as a zirconium-diboride coating on the UO2 pellets using plasma spraying or chemical vapor deposition techniques. The incorporation of IFBA into the fuel has to be performed in a nuclear-regulated facility that is physically separated from the main plant. These operations tend to be very costly because of their small volume and can add from 20 to 30% to the manufacturing cost of the fuel. Other manufacturing issues that impact cost and performance are maintaining the correct levels of dosing, the reduction in fuel melting point due to gadolinium-oxide additions, and parasitic neutron absorption at fuel's end-of-life. The goal of the proposed research is to develop an alternative approach that involves incorporation of boron or gadolinium into the outer surface of the fuel cladding material rather than as an additive to the fuel pellets. This paradigm shift will allow for the introduction of the IFBA in a non-nuclear regulated environment and will obviate the necessity of additional handling and processing of the fuel pellets. This could represent significant cost savings and potentially lead to greater reproducibility and control of the burnable fuel in the early stages of the reactor operation. The surface alloying is being performed using the IBEST (Ion Beam Surface Treatment) process developed at Sandia National Laboratories. IBEST involves the delivery of energetic ion beam pulses onto the surface of a material, near-surface melting, and rapid solidification. The non-equilibrium nature of such processing allows f or surface

  6. Burnable absorber coated nuclear fuel

    International Nuclear Information System (INIS)

    Chubb, W.; Radford, K.C.; Parks, B.H.

    1984-01-01

    A nuclear fuel body which is at least partially covered by a burnable neutron absorber layer is provided with a hydrophobic overcoat generally covering the burnable absorber layer and bonded directly to it. In a method for providing a UO 2 fuel pellet with a zirconium diboride burnable poison layer, the fuel body is provided with an intermediate niobium layer. (author)

  7. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    Radford, K.C.; Carlson, W.G.

    1983-01-01

    A neutron-absorber body for use in burnable poison rods in a nuclear reactor. The body is composed of a matrix of Al 2 O 3 containing B 4 C, the neutron absorber. Areas of high density polycrystalline Al 2 O 3 particles are predominantly encircled by pores in some of which there are B 4 C particles. This body is produced by initially spray drying a slurry of A1 2 O 3 powder to which a binder has been added. The powder of agglomerated spheres of the A1 2 O 3 with the binder are dry mixed with B 4 C powder. The mixed powder is formed into a green body by isostatic pressure and the green body is sintered. The sintered body is processed to form the neutron-absorber body. In this case the B 4 C particles are separate from the spheres resulting from the spray drying instead of being embedded in the sphere

  8. Absorber management using burnable poisons

    International Nuclear Information System (INIS)

    Mortensen, L.

    1977-06-01

    An investigation of the problem of optimal control carried out by means of a two-dimensional model of a PWR reactor. A solution is found to the problem, and the possibility of achieving optimal control with burnable poisons such as boron, cadmium and gadolinium is discussed. Further, an attempt is made to solve the control problem of BWR, but no final solution is found. (author)

  9. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    Radford, K.C.; Carlson, W.G.

    1985-01-01

    This invention provides ceramic processing including sintering schedules which produce annular pellets containing burnable poisons for use in reactor control rods. Typically the powder includes Al 2 O 3 and from 1 to 50 weight percent B 4 C. The Al 2 O 3 and B 4 C, appropriately sized, are milled in a ball mill with liquid to produce a slurry. The slurry is spray dried to produce small spheres of the mixed powder, which is mixed with adequate organic binder and plasticizer and formed into a hollow green body having the shape of a tube. The green body is sintered to produce a ceramic tube from which the pellets are cut. The tube is sintered to size so that the pellets have the required dimensions. It is an important feature of this invention that the powder is formed into the green body by applying isostatic pressure to the powder

  10. Nuclear reactor core having nuclear fuel and composite burnable absorber arranged for power peaking and moderator temperature coefficient control

    International Nuclear Information System (INIS)

    Kapil, S.K.

    1992-01-01

    This patent describes a burnable absorber coated nuclear fuel. It comprises a nuclear fuel substrate containing a fissionable material; and an outer burnable absorber coating applied on an outer surface of the substrate; the outer absorber coating being composed of an inner layer of a boron-bearing material except for erbium boride and an outer layer of an erbium material

  11. Nuclear reactor core having nuclear fuel and composite burnable absorber arranged for power peaking and moderator temperature coefficient control

    International Nuclear Information System (INIS)

    Kapil, S.K.

    1991-01-01

    This patent describes a nuclear reactor core. It comprises a first group of fuel rods containing fissionable material and being free of burnable absorber material; and a second group of fuel rods containing fissionable material and first and second burnable absorber material; the first burnable absorber material being a boron-bearing material which does not contain erbium and the second burnable absorber material being an erbium material; the first and second burnable absorber materials being in the form of an outer coating on the fissionable material, the outer coating being composed of an inner layer of one of the boron-bearing material which does not contain erbium and the erbium material and an outer layer of the other of the boron-bearing material which does not contain erbium and the erbium material

  12. Burnable absorber for the PIK reactor

    International Nuclear Information System (INIS)

    Gostev, V.V.; Smolskii, S.L.; Tchmshkyan, D.V.; Zakharov, A.S.; Zvezdkin, V.S.; Konoplev, K.A.

    1998-01-01

    In the reactor PIK design a burnable absorber is not used and the cycle duration is limited by the rods weight. Designed cycle time is two weeks and seams to be not enough for the 100 MW power research reactor equipped by many neutron beams and experimental facilities. Relatively frequent reloading reduces the reactor time on full power and in this way increases the maintenance expenses. In the reactor core fuel elements well mastered by practice are used and its modification was not approved. We try to find the possibilities of installation in the core separate burnable elements to avoid poison of the fuel. It is possible to replace a part of the fuel elements by absorbers, since the fuel elements are relatively small (diameter 5.15mm, uranium 235 content 7.14g) and there are more then 3800 elements in the core. Nevertheless, replacing decreases the fuel burnup and its consumption. In the PIK fuel assembles a little part of the volume is occupied by the dumb elements to create a complete package of the assembles shroud, that is necessary in the hydraulic reasons. In the presented report the assessment of such a replacement is done. As a burnable material Gadolinium was selected. The measurements or the beginning of cycle were performed on the critical facility PIK. The burning calculation was confirmed by measurements on the 18MW reactor WWR-M. The results give the opportunity to twice the cycle duration. The proposed modification of the fuel assembles does not lead to alteration in the other reactor systems, but it touch the burned fuel reprocessing technology. (author)

  13. Benchmark solution of contemporary PWR integral fuel burnable absorbers

    International Nuclear Information System (INIS)

    Stucker, D.L.; Hone, M.J.; Holland, R.A.

    1993-01-01

    This paper presents a closely controlled benchmark solution of the two major contemporary pressurized water reactor integral burnable absorber designs: zirconium diboride (ZrB 2 ) and gadolinia (Gd 2 O 3 ). The comparison is accomplished using self-generating equilibrium cycles with equal energy, equal discharge burnup, and equal safety constraints. The reference plant for this evaluation is a 3411-MW(thermal) Westinghouse four-loop nuclear steam supply system operating with an inlet temperature of 285.9 degrees C, a core coolant mass now rate of 16877.3 kg/s, and coolant pressure of 15.5 MPa. The reactor consists of 193 VANTAGE 5H fuel assemblies that are discharged at a region average burnup of 48.4 GWd/tonne U. Each fuel assembly contains a natural uranium axial blanket 15.24 cm long at the top and the bottom of the fuel rod. The burnable absorber rods are symmetrically radially dispersed within the fuel assembly such that intrabundle power peaking is minimized. The burnable absorber material for both ZrB 2 and Gd 2 O 3 is axially zoned to the central 304.8 cm of the absorber-bearing fuel rods. The fuel management was constrained such that the thermal and safety limitations of F δH q -5 /degrees C were simultaneously achieved. The maximum long-term operating soluble boron concentration was also limited to 446 effective full-power days (EFPDs) including 14 EFPDs of power coastdown were assumed

  14. Effects of Burnable Absorbers on PWR Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    O'Leary, P.M.; Pitts, M.L.

    2000-01-01

    Burnup credit is an ongoing issue in designing and licensing transportation and storage casks for spent nuclear fuel (SNF). To address this issue, in July 1999, the U.S. Nuclear Regulatory Commission (NRC), Spent Fuel Project Office, issued Interim Staff Guidance-8 (ISG-8), Revision 1 allowing limited burnup credit for pressurized water reactor (PWR) spent nuclear fuel (SNF) to be used in transport and storage casks. However, one of the key limitations for a licensing basis analysis as stipulated in ISG-8, Revision 1 is that ''burnup credit is restricted to intact fuel assemblies that have not used burnable absorbers''. Because many PWR fuel designs have incorporated burnable-absorber rods for more than twenty years, this restriction places an unnecessary burden on the commercial nuclear power industry. This paper summarizes the effects of in-reactor irradiation on the isotopic inventory of PWR fuels containing different types of integral burnable absorbers (BAs). The work presented is illustrative and intended to represent typical magnitudes of the reactivity effects from depleting PWR fuel with different types of burnable absorbers

  15. Report on the evaluation of the tritium producing burnable absorber rod lead test assembly. Revision 1

    International Nuclear Information System (INIS)

    1997-03-01

    This report describes the design and fabrication requirements for a tritium-producing burnable absorber rod lead test assembly and evaluates the safety issues associated with tritium-producing burnable absorber rod irradiation on the operation of a commercial light water reactor. The report provides an evaluation of the tritium-producing burnable absorber rod design and concludes that irradiation can be performed within U.S. Nuclear Regulatory Commission regulations applicable to a commercial pressurized light water reactor

  16. Impact of burnable absorber Gd on nuclide composition for VVER-440 fuel (Gd-2)

    International Nuclear Information System (INIS)

    Zajac, R.; Chrapciak, V.

    2010-01-01

    The latest version of Russian fuel VVER-440 includes burnable absorber in 6 pins. In this article is impact of burnable absorber on nuclide composition and criticality analyzed. In part 1 was analyzed whole burnup interval 0-50 MWd/kgU. In present part 2 are detailed analysis only for first cycle (burnup 0-10 MWd/kgU). (Authors)

  17. First results on study of gadolinium as burnable absorber

    International Nuclear Information System (INIS)

    Abbate, Maximo J.; Sbaffoni, Maria M.

    2000-01-01

    Following on with the work included in the 'Burnable absorbers research plan' several experiments were carried out oriented to determine Ga 2 O 3 burn up. Cold tests were performed and samples were irradiated in the RA-3 reactor. In this paper, some calculated values are presented together with their comparisons with experimental ones. The parameters foreseen for performing the experiments were verified and also the predictions on burn up of uranium and gadolinium isotopes concentrations. These results imply that the nuclear data of these isotopes included in the library are satisfactory. Next steps will be to measure other isotopes concentrations, gamma spectrum, and the irradiation of one pellet to determine self shielding effects in order to obtain effective cross sections i.e. for CAREM geometry. (author)

  18. A model for fuel shuffling and burnable absorbers optimization in low leakage PWRs

    International Nuclear Information System (INIS)

    Zavaljevski, N.

    1990-01-01

    A nonlinear model for the simultaneous optimization of fuel shuffling and burnable absorbers in PWRs is formulated using the depletion perturbation theory. The sensitivity coefficients are defined in a new way, using a macroscopic burnup model coupled with the explicit burnable absorbers depletion equation. Since first-order perturbation theory is limited to small changes in burnable absorber concentration, the associated control variable is continuous, with a constraint on maximal increment. Fuel shuffling is described by Boolean variables. Thus a special case of a mixed-integer quadratic programming problem is obtained, since the interaction of fuel and absorber optimization is considered. (author)

  19. A feasibility study for the application of enriched gadolinia burnable absorber rods in nuclear core design

    International Nuclear Information System (INIS)

    Lee, Chung Chan; Zee, Sung Quun; Kim, Kang Seog; Song, Jae Seung

    2000-12-01

    An analysis model using MICBURN-3/CASMO-3 is established for the enriched gadolinia burnable absorber rods. A homogenized cross section editing code, PROLOG, is modified so that it can handle such a fuel assembly that includes two different types of gadolinia rods. Study shows that Gd-155 and Gd-157 are almost same in suppressing the excess reactivity and it is recommended to enrich both odd number isotopes, Gd-155 and Gd-157. It is estimated that the cycle length increases by 2 days if enriched gadolinia rods are used in the commercial nuclear power plant such as YGN-3 of which the cycle length is assumed 2 years. For the advanced integral reactor SMART in which ultra long cycle length and soluble boron-free operation concept is applied, natural gadolinia burnable absorber rods fail to control the excess reactivity. On the other hand, enriched gadolinia rods are successful in controling the excess reactivity. To minimize power peakings, various placements of gadolinia rods are tested. Also initial reactivity holddown and gadolinia burnout time are parametrized with respect to the number of gadolinia rods and gadolinia weight fractions

  20. Generalized pin factor methodology for LWR reload cores with discrete burnable absorbers

    International Nuclear Information System (INIS)

    Hah, C.J.; Hideki Matsumoto; Toshikazu Ida; Lee, C.; Chao, Y.A.

    2005-01-01

    Discrete burnable absorbers are used to suppress excess reactivity as well as peak pin power in an assembly. After the burn-out of absorption material, discrete burnable absorbers are usually removed from assembly guide tubes for the next cycle. For that case, the pin factors with discrete burnable absorbers cannot be used since the assembly configuration is physically changed. The pin factors without discrete burnable absorbers also have noticeable deviation from the actual case because they do not take into account the history effect due to the residence of discrete burnable absorbers for the previous cycle. In this paper, the generalized pin factor (GPF) method is developed to accurately predict pin powers by considering the history effect. The method uses a second-order polynomial function to approximate the history effect which builds up during the residence of burnable absorber material and employs a linear approximation to simulate the decay of the history effect after discrete burnable absorbers are removed. The verification results from Westinghouse Vantage- 5H assemblies with WABAs showed that pin power errors were significantly reduced by using the GPF. (authors)

  1. Experience in the use of low concentration gadolinia as a PWR fuel burnable absorber

    International Nuclear Information System (INIS)

    Mildrum, C.M.; Segovia, M.A.

    2001-01-01

    A description is provided of the low concentration gad design being used in the Spanish 3-loop 17 x 17 fueled PWR's. This design uses a relatively small number of high concentration gadolinia fuel rods (6 and 8 w/o Gd 2 O 3 ) with a large number of low concentration gad rods (2 w/o Gd 2 O 3 ). The 2 w/o gad rods substitute, in part, the high concentration gad rods, thereby helping reduce the end of cycle reactivity penalty from the residual absorption in the gadolinium. The low concentration gad design is advantageous for long cycles (18+ months) and plant up-rating scenarios in that the soluble boron concentration increases that would otherwise result for these situations are avoided. These boron concentration increases could have potentially adverse effects on the plant, since the moderator temperature coefficient (MTC) is made less negative, the effectiveness of the boron shutdown safety systems is reduced, and the safety margins are eroded for some accidents, such as for boron dilution events. These increases in the boron concentration would also require the plant to operate at higher lithium (Li) concentrations in the coolant in order to maintain the pH level at the desired value. Operation at the higher Li concentrations is undesirable because of the concerns over the potential impact on the fuel assembly material performance (e.g., crud and corrosion). This paper also reviews the APA (Alpha/Phoenix-P/ANC) nuclear design code system performance for the low concentration gad design. The design system performance for the reload cores that have or are employing this design has been completely satisfactory. The performance and accuracy of the nuclear design methodology is found to be as good for this design as for the reload cores that use exclusively high gad concentrations, or those that use WABA's - the discrete burnable absorber (BA) used prior to its substitution for gadolinium. (authors)

  2. Preliminary Nuclear Analysis for the HANARO Fuel Element with Burnable Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chul Gyo; Kim, So Young; In, Won Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Burnable absorber is used for reducing reactivity swing and power peaking in high performance research reactors. Development of the HANARO fuel element with burnable absorber was started in the U-Mo fuel development program at HANARO, but detailed full core analysis was not performed because the current HANARO fuel management system is uncertain to analysis the HANARO core with burnable absorber. A sophisticated reactor physics system is required to analysis the core. The McCARD code was selected and the detailed McCARD core models, in which the basic HANARO core model was developed by one of the McCARD developers, are used in this study. The development of nuclear fuel requires a long time and correct developing direction especially by the nuclear analysis. This paper presents a preliminary nuclear analysis to promote the fuel development. Based on the developed fuel, the further nuclear analysis will improve reactor performance and safety. Basic nuclear analysis for the HANARO and the AHR were performed for getting the proper fuel elements with burnable absorber. Addition of 0.3 - 0.4% Cd to the fuel meat is promising for the current HANARO fuel element. Small addition of burnable absorber may not change any fuel characteristics of the HANARO fuel element, but various basic tests and irradiation tests at the HANARO core are required.

  3. Safe core management with burnable absorbers in WWERs

    International Nuclear Information System (INIS)

    1996-01-01

    The objective of this TECDOC is to present state of the art information on burnable poisoned fuel during the CRP. It is based on experimental evidence and on the utilization of theoretical models and will help achieve improvements in safety and economy of LWR cores with hexagonal geometries. 149 refs, figs and tabs

  4. Evaluation of the presence of a burnable absorber in an assembly 3x3 type PWR

    International Nuclear Information System (INIS)

    Martinez F, M. A.; Del Valle G, E.; Alonso V, G.

    2008-01-01

    In the present work the effect is evaluated that causes the presence of a burnable absorber in an adjustment of rods of 3x3 of a fuel assembly type PWR using CASMO-4 code, when comparing the infinite multiplication factor and some average cross sections by means of codes MCNP-4A, CASMO-3 and HELIOS. For this evaluation two cases are evaluated: first consists of an adjustment of rods of 3x3 full completely of fuel and the second consists of a central rod full with a burnable absorber type wet annular burnable absorber (WABA) and the remaining full fuel rods. In both cases the enrichment of the fissile isotopes is varied, for two types of fuel, MOX degree armament and UO 2 . (Author)

  5. Gadolinium burnable absorber optimization by the method of conjugate gradients

    International Nuclear Information System (INIS)

    Drumm, C.R.; Lee, J.C.

    1987-01-01

    The optimal axial distribution of gadolinium burnable poison in a pressurized water reactor is determined to yield an improved power distribution. The optimization scheme is based on Pontryagin's maximum principle, with the objective function accounting for a target power distribution. The conjugate gradients optimization method is used to solve the resulting Euler-Lagrange equations iteratively, efficiently handling the high degree of nonlinearity of the problem

  6. Group constants calculation for fuel assemblies containing burnable absorbers; Prorachun grupnih konstanti gorivnih elemenata koji sadrzhe sagorive apsorbere

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, B [Institut Rudjer Boskovic, Zagreb (Yugoslavia); Pevec, D [Elektrotehnicki Fakultet, Zagreb Univ. (Yugoslavia); Urli, N; Shmuc, T [Institut Rudjer Boskovic, Zagreb (Yugoslavia)

    1988-07-01

    The upgrading of the computer code package PSU-LEOPARD/MCRAC is described. The upgraded package enables modelling of fuel assemblies containing burnable absorbers in the form of borosilicate glass rodlets, or, integral fuel burnable absorbers. The package is tested using the NPP Krsko core data. (author)

  7. A study on the nuclear characteristics of enriched gadolinia burnable absorber rods; the first year (2000) report

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C.C.; Song, J. S.; Cho, B. O.; Joo, H. G.; Park, S. Y.; Kim, H. Y.; Cho, J. Y.; Kim, K. S.

    2001-04-01

    An analysis model using MICBURN-3/CASMO-3 is established for the enriched gadolinia burnable absorber rods. A homogenized cross section editing code, PROLOG, is modified so that it can handle such a fuel assembly that includes two different types of gadolinia rods. Study shows that Gd-155 and Gd-157 are almost same in suppressing the excess reactivity and it is recommended to enrich both odd number isotopes, Gd-155 and Gd-157. It is estimated that the cycle length increases by 2 days if enriched gadolinia rods are used in the commercial nuclear power plant such as YGN-3 of which the cycle length is assumed 2 years. For the advanced integral reactor SMART in which ultra long cycle length and soluble boron-free operation concept is applied, natural gadolinia burnable absorber rods fail to control the excess reactivity. On the other hand, enriched gadolinia rods are successful in controling the excess reactivity. To minimize power peakings, various placements of gadolinia rods are tested. Also initial reactivity holddown and gadolinia burnout time are parametrized with respect to the number of gadolinia rods and gadolinia weight fractions

  8. Application of B{sub 4}C/Al{sub 2}O{sub 3} Burnable Absorber Rod to Control Excess Reactivity of SMR

    Energy Technology Data Exchange (ETDEWEB)

    Muth, Boravy; Hah, C. J. [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-10-15

    Soluble boron in a nuclear reactor coolant is one of the methods to control excess reactivity of the reactor. However, the use of soluble boron also causes some negative effects such as corrosion, more-positive tendency of Moderator Temperature Coefficient (MTC) and the requirement of Chemical Volume Control System (CVCS). One of the conceptual design features of SMR having been developed in Korea is soluble boron- free reactor to eliminate those drawbacks. Control rods and Burnable Absorber (BA) rods can be other methods than soluble to control excess reactivity. WABA (Wet Annular Burnable Absorber) and PYREX are such type. The other type is IFBA (Integral Fuel Burnable Absorber) in which fuel pellet surface is coated with BA. This paper compares nuclear characteristics of three types of BA as well as SLOBA in terms of k-infinite vs. burnup and explain design basis of SLOBA. This paper also presents the application of SLOBA rods to control long-term excess reactivity of SMR. The SMR loaded with SLOBA rods has been developed for the past few years in Korean. It is named as Bandi-50 with design features of 180 MWth, 37 FAs, fuel assembly height of 200 cm. Soluble-boron-free is one of nuclear design requirements of Bandi-50 and is achieved by controlling excess reactivity of the SMR using BAs and control rods only. To achieve this design requirement, LP is carefully determined in such way that CBC should be as low as possible. Fuel assembly cross-sections are generated by CASMO-3, and core depletion calculations are performed by MASTER.

  9. New Small LWR Core Designs using Particle Burnable Poisons for Low Boron Concentration

    International Nuclear Information System (INIS)

    Yoo, Ho Seong; Hwang, Dae Hee; Hong, Ser Gi

    2015-01-01

    The soluble boron has two major important roles in commercial PWR operations : 1) the control of the long-term reactivity to maintain criticality under normal operation, and 2) the shutdown of the reactor under accidents. However, the removal of the soluble boron gives several advantages in SMRs (Small Modular Reactor). These advantages resulted from the elimination of soluble boron include the significant simplification of nuclear power plant through the removal of pipes, pumps, and purification systems. Also, the use of soluble boron mitigates corrosion problems on the primary coolant loop. Furthermore, the soluble boron-free operation can remove an inadvertent boron dilution accident (BDA) which can lead to a significant insertion of positive reactivity. From the viewpoint of core physics, the removal of soluble boron or reduction of soluble boron concentration makes the moderator temperature coefficient (MTC) more negative. From the core design studies using new fuel assemblies, it is shown that the cores have very low critical soluble boron concentrations less than 500ppm, low peaking factors within the design targets, strong negative MTCs over cycles, and large enough shutdown margins both at BOC and EOC. However, the present cores have relatively low average discharge burnups of ∼ 30MWD/kg leading to low fuel economy because the cores use lots of non-fuel burnable poison rods to achieve very low critical boron concentrations. So, in the future, we will perform the trade-off study between the fuel discharge burnup and the boron concentrations by changing fuel assembly design and the core loading pattern

  10. New Small LWR Core Designs using Particle Burnable Poisons for Low Boron Concentration

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ho Seong; Hwang, Dae Hee; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    The soluble boron has two major important roles in commercial PWR operations : 1) the control of the long-term reactivity to maintain criticality under normal operation, and 2) the shutdown of the reactor under accidents. However, the removal of the soluble boron gives several advantages in SMRs (Small Modular Reactor). These advantages resulted from the elimination of soluble boron include the significant simplification of nuclear power plant through the removal of pipes, pumps, and purification systems. Also, the use of soluble boron mitigates corrosion problems on the primary coolant loop. Furthermore, the soluble boron-free operation can remove an inadvertent boron dilution accident (BDA) which can lead to a significant insertion of positive reactivity. From the viewpoint of core physics, the removal of soluble boron or reduction of soluble boron concentration makes the moderator temperature coefficient (MTC) more negative. From the core design studies using new fuel assemblies, it is shown that the cores have very low critical soluble boron concentrations less than 500ppm, low peaking factors within the design targets, strong negative MTCs over cycles, and large enough shutdown margins both at BOC and EOC. However, the present cores have relatively low average discharge burnups of ∼ 30MWD/kg leading to low fuel economy because the cores use lots of non-fuel burnable poison rods to achieve very low critical boron concentrations. So, in the future, we will perform the trade-off study between the fuel discharge burnup and the boron concentrations by changing fuel assembly design and the core loading pattern.

  11. Reloading optimization of pressurized water reactor core with burnable absorber fuel

    International Nuclear Information System (INIS)

    Shi Xiuan; Liu Zhihong; Hu Yongming

    2008-01-01

    The reloading optimization problem of PWR with burnable absorber fuel is very difficult, and common optimization algorithms are inefficient and have bad global performance for it. Characteristic statistic algorithm (CSA) is very fit for the problem. In the past, the reloading optimization using CSA has shortcomings of separating the fuel assemblies' loading pattern (LP) optimization from burnable absorber's placement (BP) optimization. In this study, LP and BP were optimized simultaneously using CSA coupled with CYCLE2D, which is a core analysis code. The corresponding reloading coupling optimization software, CSALPBP, was developed. The 10th cycle reloading design of Daya Bay Nuclear Power Plant was optimized using CSALPBP. The results show that CSALPBP has high efficiency and excellent global performance. (authors)

  12. Neutron physical investigations on the use of burnable poisons and gray absorber rods in large pressurized water reactors

    International Nuclear Information System (INIS)

    Brosche, C.; Katinger, T.; Kollmar, W.; Thieme, K.; Wagner, M.R.

    1977-11-01

    Methods and results of neutron physics calculations are described using burnable poisons and gray absorber rods in large PWR's. Calculated and measured values are compared, the effort for programming has been guessed. (orig.) [de

  13. Computed phase equilibria for burnable neutron absorbing materials for advanced pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Corcoran, E.C. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000, St. Forces, Kingston, Ont., K7K 7B4 (Canada)], E-mail: emily.corcoran@rmc.ca; Lewis, B.J.; Thompson, W.T. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000, St. Forces, Kingston, Ont., K7K 7B4 (Canada); Hood, J. [Atomic Energy of Canada Ltd., Sheridan Park, 2251 Speakman Drive, Mississauga, Ont., L5K 1B2 (Canada); Akbari, F.; He, Z. [Atomic Energy of Canada Ltd., Chalk River Laboratories, Chalk River, Ont., K0J 1J0 (Canada); Reid, P. [Atomic Energy of Canada Ltd., Sheridan Park, 2251 Speakman Drive, Mississauga, Ont., L5K 1B2 (Canada)

    2009-03-31

    Burnable neutron absorbing materials are expected to be an integral part of the new fuel design for the Advanced CANDU [CANDU is as a registered trademark of Atomic Energy of Canada Limited.] Reactor. The neutron absorbing material is composed of gadolinia and dysprosia dissolved in an inert cubic-fluorite yttria-stabilized zirconia matrix. A thermodynamic model based on Gibbs energy minimization has been created to provide estimated phase equilibria as a function of composition and temperature. This work includes some supporting experimental studies involving X-ray diffraction.

  14. Fuel with advanced burnable absorbers design for the IRIS reactor core: Combined Erbia and IFBA

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, Fausto [Westinghouse Electric Company LLC, Science and Technology Department, Pittsburgh, PA 15235 (United States)], E-mail: FranceF@westinghouse.com; Petrovic, Bojan [Georgia Institute of Technology, Nuclear and Radiological Engineering, G.W. Woodruff School, Atlanta, GA 30332-0405 (United States)

    2009-08-15

    IRIS is an advanced medium-size (1000 MW) PWR with integral primary system targeting deployment already around 2015-2017. Consistent with its aggressive development and deployment schedule, the 'first IRIS' core design assumes current, licensed fuel technology, i.e., UO{sub 2} fuel with less than 5% {sup 235}U enrichment. The core consists of 89 fuel assemblies employing the 17x17 Westinghouse Robust Fuel Assembly (RFA) design and Standard Fuel dimensions. The adopted design enables to meet all the objectives of the first IRIS core, including over 3-year cycle length with low soluble boron concentration, within the envelope of licensed, readily available fuel technology. Alternative fuel designs are investigated for the subsequent waves of IRIS reactors in pursuit of further improving the fuel utilization and/or extending the cycle length. In particular, an increase in the lattice pitch from the current 0.496 in. for the Standard Fuel to 0.523 in. is among the objectives of this study. The larger fuel pitch and increased moderator-to-fuel volume ratio that it entails fosters better neutron thermalization in an altogether under-moderated lattice thereby offering the potential for considerable increase of fuel utilization and cycle length, up to 5% in the two-batch fuel management scheme considered for IRIS. However, the improved moderation also favors higher values of the Moderator Temperature Coefficient, MTC, which must be properly counteracted to avoid undesired repercussions on the plant safety parameters or controllability during transient operations. This paper investigates counterbalancing the increase in the MTC caused by the enhanced moderation lattice by adopting a suitable choice of fuel burnable absorber (BA). In particular, a fuel design combining erbia, which benefits MTC due to its resonant behavior but leads to residual reactivity penalty, and IFBA, which maximizes cycle length, is pursued. In the proposed approach, IFBA provides the bulk

  15. New long-cycle small modular PWR cores using particle type burnable poisons for low boron operation

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hoseong; Hwang, Dae Hee [Department of Nuclear Engineering, Kyung Hee University, Deogyeong-daero, GiHeung-gu, Yongin, Gyeonggi-do 446-701 (Korea, Republic of); Hong, Ser Gi, E-mail: sergihong@khu.ac.kr [Department of Nuclear Engineering, Kyung Hee University, Deogyeong-daero, GiHeung-gu, Yongin, Gyeonggi-do 446-701 (Korea, Republic of); Shin, Ho Choel [Core and Fuel Analysis Group, Korea Hydro & Nuclear Power Central Research Institute (KHNP-CRI), Daejon 305-343 (Korea, Republic of)

    2017-04-01

    Highlights: • New advanced burnable poison rods (BPR) are suggested for low boron operation in PWR. • The new SMR cores have long cycle length of ∼4.5 EFPYs with low boron concentration. • The SMR core satisfies all the design targets and constraints. - Abstract: In this paper, new small long-cycle PWR (Pressurized Water Reactor) cores for low boron concentration operation are designed by employing advanced burnable poison rods (BPRs) in which the BISO (Bi-Isotropic) particles of burnable poison are distributed in a SiC matrix. The BPRs are designed by adjusting the kernel diameter, the kernel material and the packing fraction to effectively reduce the excess reactivity in order to reduce the boron concentration in the coolant and achieve a flat change in excess reactivity over a long operational cycle. In addition, axial zoning of the BPRs was suggested to improve the core performances, and it was shown that the suggested axial zoning of BPRs considerably extends the cycle length compared to a core with no BPR axial zoning. The results of the core physics analyses showed that the cores using BPRs with a B{sub 4}C kernel have long cycle lengths of ∼4.5 EFPYs (Effective Full Power Years), small maximum CBCs (Critical Boron Concentration) lower than 370 ppm, low power peaking factors, and large shutdown margins of control element assemblies.

  16. Implementation of a Gadolinium Burnable Absorber in the Carbide LEU-NTR

    International Nuclear Information System (INIS)

    Venneria, Paolo; Kim, Yonghee

    2015-01-01

    Among the most crucial are the rapid reactivity depletion during full-power operation and the positive reactivity insertion during the full-submersion criticality accident. In previous work, it has been suggested that both challenges can be mitigated through the successful implementation of a burnable absorber in the active core. Of the poisons previously surveyed, one of the most promising is Gadolinium in the form of Gadolina (Gd2O4). This paper explores the possibility of different methods by which the Gadolinia can be implemented in the core and makes a preliminary study of its effect on the full submersion criticality accident and the reactivity depletion during operation. The application of a Gadolinium neutron absorber in the active core region of the LEU-NTR has been shown to be neutronically feasible. It can be introduced into the core in various locations without resulting in core performance loss. The utility of the poison in terms of mitigating the full-submersion reactivity accident and the rapid change in reactivity during full-power operation have been preliminarily shown and the first steps towards eventual implementation made. Future work will consist of determining the maximum poison content in the core and tailoring the self-shielding effect in order to determine a specific Gd depletion rate

  17. Assessment of erbium as candidate burnable absorber for future PWR operaning cycles: A neutronic and fabrication study

    International Nuclear Information System (INIS)

    Asou, M.; Dehaudt, P.; Porta, J.

    1995-01-01

    Erbium begins to play a role in the control of PWR core reactivity. Generally speaking, burnable absorbers were only used to establish fresh core equilibrium. In France, since the possibility of extending irradiation cycles by 12 to 18 months, then up to 24 and 30 months, has been envisaged, there is renewed interest in burnable absorbers. The fabrication of PWR pellets has been investigated, providing high density and a good erbium homogeneity. The pellets characteristics were consistent with the specifications of PWR fuel. However, with the present process, the grain size remains small. Studies in progress now shows that erbium is not only a valuable alternative to gadolinium, for long fuel cycles (≥18 months) but also a new fuel concept. (orig.)

  18. Heterogeneous burnable poisons. Sinterability study in oxidizing atmosphere of alumina-gadolinia and alumina-boron carbide compounds

    International Nuclear Information System (INIS)

    Agueda, H.C.; Leiva, S.F.; Russo, D.O.

    1990-01-01

    Solid burnable poisons are used in reactors cooled by pressure light water (PLWR) with the purpose of controlling initial reactivity in the first reactor's core. The burnable poisons may be uniformly mixed with the fuel -known as 'homogeneous' poisons-; or constituting separate elements -known as heterogeneous poisons-. The purpose of this work is to present the results of two sinterability studies, performed on Al 2 O 3 -Gd 2 O 3 and Al 2 O 3 -B 4 C, where alumina acts as inert matrix, storing the absorbing elements as Gd 2 O 3 or B 4 C. The elements were sintered at an air atmosphere and additives permitting the obtention of a greater density alumina were tested at lower temperatures than the characteristic for this material, in order to determine its compatibility with the materials dealt with herein. (Author) [es

  19. Optimizing the use of gadolinium as burnable poison in nuclear fuel: towards a boron free PWR

    International Nuclear Information System (INIS)

    Pieck, D.

    2013-01-01

    Reactivity excess in Nuclear Power Plants is controlled by reactor's active systems: boric acid dilution and control rods. Alternatively, negative reactivity insertion can be made in a passive way using burnable poisons, i.e. neutron absorbers, this is the case of gadolinium (Gd). In the industrial framework of U 235 enrichment increase and boric acid restraint, the goal of this thesis is to optimize the distribution of gadolinium in UO 2 ceramics to obtain a high-performance provision of negative reactivity in Pressurized Water Reactors. In this sense, the work is focus on new gadolinium-rich materials. Thus, U-Gd-O phase diagram was explored in the field of high Gd contents. Two cubic phases were found and characterized: the C1 and C2 phases. With the aim of an industrial application, C1 phase was selected as candidate for Gd addition into UO 2 pellets. The optimal distribution of C1 phase within a nuclear fuel assembly was studied using APOLLO 2.8 neutron transport code. Parametric calculations were performed. These neutronic studies have ends in a successful 'concept of poisoned pellet'. Finally, some prototype pellets following this concept were made in laboratory to proof it feasibility. All the obtained results shows that the proposed concept of a neutro-phage C1-phase coating on UO 2 pellets is a convenient way to reduce reactivity excess within the framework of long irradiation cycles. This concept could be potentially applied in industrial scale. Consequently a patent application process was initiated.(author) [fr

  20. Burnable poison rod

    International Nuclear Information System (INIS)

    Natsume, Tomohiro.

    1988-01-01

    Purpose: To decrease the effect of water elimination and the effect of burn-up residue boron, thereby reduce the effect of burnable poison rods as the neutron poisons at the final stage of reactor core lifetime. Constitution: In a burnable poison rod according to the present invention, a hollow burnable poison material is filled in an external fuel can, an inner fuel can mounted with a carbon rod is inserted to the hollow portion of the burnable poison material and helium gases are charged in the outer fuel can. In such a burnable poison rod, the reactivity worths after the burning are reduced to one-half as compared with the conventional case. Accordingly, since the effect of the burnable poison as the neutron poisons is reduced at the final stage of the reactor core of lifetime, the excess reactivity of the reactor core is increased. (Horiuchi, T.)

  1. Calculational modeling of fuel assemblies of WWER-1000 type with the use of burnable absorber Gadolinum; comparative analysis

    International Nuclear Information System (INIS)

    Yeremenko, M.L.; Kovbasenko, Yu.P.; Loetsch, T.

    2001-01-01

    In connection with the beginning of the use of fuel assemblies with burnable absorbers by integration of Gadolinum into the nuclear fuel at Ukrainian NPP the task of testing the code systems and the pertinent neutron cross section libraries for the new fuel arose. Taking into account the long term experience of German experts with calculations and evaluation of nuclear fuel containing Gadolinum it was decided to carry out a series of test calculations for fuel assembly lattices of PWR, WWER-440 and WWER-1000 types using the NESSEL/PYTHIA and CASMO/SIMULATE code systems (Authors)

  2. Burnable absorber-integrated Guide Thimble (BigT) - 1. Design concepts and neutronic characterization on the fuel assembly benchmarks

    International Nuclear Information System (INIS)

    Yahya, Mohd-Syukri; Yu, Hwanyeal; Kim, Yonghee

    2016-01-01

    This paper presents the conceptual designs of a new burnable absorber (BA) for the pressurized water reactor (PWR), which is named 'Burnable absorber-integrated Guide Thimble' (BigT). The BigT integrates BA materials into standard guide thimble in a PWR fuel assembly. Neutronic sensitivities and practical design considerations of the BigT concept are points of highlight in the first half of the paper. Specifically, the BigT concepts are characterized in view of its BA material and spatial self-shielding variations. In addition, the BigT replaceability requirement, bottom-end design specifications and thermal-hydraulic considerations are also deliberated. Meanwhile, much of the second half of the paper is devoted to demonstrate practical viability of the BigT absorbers via comparative evaluations against the conventional BA technologies in representative 17x17 and 16x16 fuel assembly lattices. For the 17x17 lattice evaluations, all three BigT variants are benchmarked against Westinghouse's existing BA technologies, while in the 16x16 assembly analyses, the BigT designs are compared against traditional integral gadolinia-urania rod design. All analyses clearly show that the BigT absorbers perform as well as the commercial BA technologies in terms of reactivity and power peaking management. In addition, it has been shown that sufficiently high control rod worth can be obtained with the BigT absorbers in place. All neutronic simulations were completed using the Monte Carlo Serpent code with ENDF/B-VII.0 library. (author)

  3. Burnable poison rod

    International Nuclear Information System (INIS)

    Natsume, Tomohiro.

    1988-01-01

    Purpose: To increase the reactor core lifetime by decreasing the effect of neutron absorption of burnable poison rods by using material with less neutron absorbing effect. Constitution: Stainless steels used so far as the coating material for burnable poison rods have relatively great absorption in the thermal neutral region and are not preferred in view of the neutron economy. Burnable poison rods having fuel can made of zirconium alloy shows absorption the thermal neutron region lower by one digit than that of stainless steels but they shows absorption in the resonance region and the cost is higher. In view of the above, the fuel can of the burnable poison material is made of aluminum or aluminu alloy. This can reduce the neutron absorbing effect by stainless steel fuel can and effectively utilize neutrons that have been wastefully absorbed and consumed in stainless steels. (Takahashi, M.)

  4. Substitution of the soluble boron reactivity control system of a pressurized water reactor by gadolinium burnable poisons

    International Nuclear Information System (INIS)

    Galperin, A.; Segev, M.; Radkowsky, A.

    1986-01-01

    The results are presented of a research project that is aimed at designing a gadolinium burnable poison (BP) system for complete reactivity control of a pressurized water reactor (PWR) core during the ''equilibrium'' cycle, resulting in the elimination of the soluble boron system, which represents a considerable saving in both capital and operating costs. A flat and strong negative moderator temperature coefficient is assured for a poison-free moderator. The design analysis of a core, heavily loaded with gadolinium BP rods, was based on a BGUCORE neutronic package and cluster model of a fuel assembly. The project objective was achieved by a novel lumped BP rod, designed as an annulus of gadolinium, clad by zirconium, and inserted into vacant guide thimbles of fresh-fuel assemblies. Specific combinations were found for the inner/outer radii of the poison ring, gadolinium densities, and number of rods per assembly, resulting in an almost flat criticality curve during the cycle. A reactivity swing of ≅1% ΔK can be easily controlled by an existing system of control rods. Comparison of the fuel cycle length of a gadolinium-controlled core with that of the reference, soluble, boron-controlled core indicated that there is no penalty due to residual poison at end of life. Unique guidelines for the fuel loading strategy were applied to find a practical fuel-shuffling scheme by which the design and operational constraints of a typical PWR core of current design were satisfied. Several problems should be solved for a practical implementation of the presented design relative to operational and safety requirements of the existing control rod system. Adequate movement of the regulating rods should be determined and shutdown margins of the safety rods should be ascertained. Final judgment of the feasibility of the concept may be made following the solution of these and other regulatory-related issues

  5. Experience in the use of low concentration gadolinia as a PWR fuel burnable absorber

    International Nuclear Information System (INIS)

    Mildrum, C.M.; Segovia, M.A.

    2001-01-01

    A description is provided of the low concentration gad design being used in the Spanish 3-loop 17 x 17 fueled PWR's. This design uses a relatively small number of high concentration gadolinia fuel rods (6 and 8 w/o Gd2O3) with a large number of low concentration gad rods (2 w/o Gd2O3). The 2 w/o gad rods substitute, in part, the high concentration gad rods, thereby helping reduce the end of cycle reactivity penalty from the residual absorption in the gadolinium. The low concentration gad design is advantageous for long cycles (more than 18 months) and plant up-rating scenarios in that the soluble boron concentration increases that would otherwise result for these situations are avoided. These boron concentration increases could have potentially adverse effects on the plant, since the moderator temperature coefficient (MTC) is made less negative, the effectiveness of the boron shutdown safety systems is reduced, and the safety margins are eroded for some accidents, such as for boron dilution events. This paper also reviews the APA nuclear design code system performance for the low concentration gad design. (author)

  6. Sodium erosion of boron carbide from breached absorber pins

    International Nuclear Information System (INIS)

    Basmajian, J.A.; Baker, D.E.

    1981-03-01

    The purpose of the irradiation experiment was to provide an engineering demonstration of the irradiation behavior of breached boron carbide absorber pins. By building defects into the cladding of prototypic absorber pins, and performing the irradiation under typical FFTF operating conditions, a qualitative assessment of the consequences of a breach was achieved. Additionally, a direct comparison of pin behavior with that of the ex-reactor test could be made

  7. Usage of burnable poison on research reactors

    International Nuclear Information System (INIS)

    Villarino, Eduardo Anibal

    2002-01-01

    The fuel assemblies with burnable poison are widely used on power reactors, but there are not commonly used on research reactors. This paper shows a neutronic analysis of the advantages and disadvantages of the burnable poison usage on research reactors. This paper analyses both burnable poison design used on research reactors: Boron on the lateral wall and Cadmium wires. Both designs include a parametric study on the design parameters like the amount and geometry of the burnable poison. This paper presents the design flexibility using burnable poisons, it does not find an optimal or final design, which it will strongly depend on the core characteristics and fuel management strategy. (author)

  8. Feasibility study of chabazite absorber tube utilization in online absorption of released gaseous fission products and substitution of burnable absorber rods with chabazite absorber tubes in VVER-1000 reactor series

    International Nuclear Information System (INIS)

    Rahmani, Yashar

    2017-01-01

    Highlights: • Chabazite tubes are used for online removal of the released gaseous fission products. • The feasibility of using chabazite tubes instead of burnable absorber rods was studied. • A computational cycle was designed using the WIMSD5-B, CITATION-LDI2 and WERL codes. • In modeling fission gas release, the Weisman, Booth, Mason and T.S. models were used. • By this method, it is possible to increase cycle length and enhance heat transfer. - Abstract: As gaseous fission products, e.g. xenon and krypton have adverse effects such as reducing the rate of heat transfer in fuel rods and adding negative reactivity to the reactor core, the present manuscript was dedicated to development of a novel method for improving these defects. In the proposed method, chabazite absorber tubes were used for online removal of the released gaseous fission products from gaseous gap spaces. Moreover, in this research, feasibility of using chabazite absorber tubes instead of burnable absorber rods was examined. To perform the required modeling and calculations to successfully meet the mentioned objectives, a thermo-neutronic computational cycle was designed using the coupling of WIMSD5-B and CITATION-LDI2 codes in the neutronic section and the WERL code in the thermo-hydraulic calculations. In addition, in modeling the release process of gaseous fission products, the Weisman, Booth, Mason, and T.S. models were examined. It is worth mentioning that in this research, calculations and modeling procedures were based on the first cycle of Bushehr’s VVER-1000 reactor to study the feasibility of the proposed solution. The obtained results revealed that with application of the proposed method in this research, it is possible to increase cycle length, improve safety thresholds, and enhance heat transfer in the core of nuclear reactors.

  9. DESCRIPTION OF THE TRITIUM-PRODUCING BURNABLE ABSORBER ROD FOR THE COMMERCIAL LIGHT WATER REACTOR TTQP-1-015 Rev 19

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Kimberly A.; Love, Edward F.; Thornhill, Cheryl K.

    2012-02-01

    Tritium-producing burnable absorber rods (TPBARs) used in the U.S. Department of Energy’s Tritium Readiness Program are designed to produce tritium when placed in a Westinghouse or Framatome 17x17 fuel assembly and irradiated in a pressurized water reactor (PWR). This document provides an unclassified description of the current design baseline for the TPBARs. This design baseline is currently valid only for Watts Bar reactor production cores. A description of the Lead Use TPBARs will not be covered in the text of the document, but the applicable drawings, specifications and test plan will be included in the appropriate appendices.

  10. Calculation of burnable cells-Hammer versus Leopard

    International Nuclear Information System (INIS)

    Dias, A.M.; Almeida, C.U.C. de; Pina, C.M. de; Prestes, L.F.; Lederman, L.; Nunes, N.P.; Branco, W.H.

    1977-02-01

    The nuclear parameters for the Angra-1 reactor core are obtained from the cross sections of soluble boron and burnable boron, calculated by the code CITHAM. The results are compared with those developed by the code LEOCIT [pt

  11. Application of boron and gadolinium burnable poison particles in UO2 and PUO2 fuels in HTRs

    International Nuclear Information System (INIS)

    Kloosterman, J.L.

    2003-01-01

    Burnup calculations have been performed on a standard HTR fuel pebble (fuel zone with radius of 2.5 cm surrounded with a 0.5 cm thick graphite layer) and burnable poison particles (BPPs) containing B 4 C made of pure 10 B or containing Gd 2 O 3 made of natural Gd. Two types of fuel were considered: UO 2 fuel made of 8% enriched uranium and PuO 2 fuel made of plutonium from LWR spent fuel. The radius of the BPP and the number of particles per fuel pebble were varied to find the flattest reactivity-to-time curve. For the UO 2 fuel, the reactivity swing is lowest (around 2%) for BPPs made of B 4 C with radius of 75 μm. In this case around 1070 BPPs per fuel pebble are needed. For the PuO 2 fuel to get a reactivity swing below 4%, the optimal radius of the BPP is the same, but the number of particles per fuel pebble should be around 1600. The optimal radius of the Gd 2 O 3 particles in the UO 2 fuel is about 10 times that of the B 4 C particles. The reactivity swing is around 3% when each fuel pebble contains only 9 BPPs with radius of 840 μm. The results of the Gd particles illustrate nicely the usage of black burnable poison particles introduced by Van Dam [Ann. Nuclear Energy 27 (2000) 733

  12. Fluorescent converter and neutron absorber being made of boron nitride

    International Nuclear Information System (INIS)

    Matsumoto, G.; Teramura, M.; Sato, J.; Maeda, M.

    1983-01-01

    To improve the sensitivity of fluorescent converter is essential to the neutron radiography (NRG) which utilizes portable, not so strong, neutron sources. The fluorescent converter made of boron nitride (BN) is fabricated and tested. The sensitivity is about 1/20 of the NE426, but the homogeneity may be better. If 10 BN is utilized, the sensitivity will be five times as much as that of natural BN. Using the neutron beam of the Kyoto University Research Reactor, the flux of which is about 10 6 n/cm 2 sec, a good neutron television image was gained by X-ray television camera. As a bi-product of this converter, a flexible absorber was fabricated. (Auth.)

  13. Nuclear criticality safety: general. 5. Reactivity Effect of Burnable Absorbers in Burnup Credit for the CASTOR X/32S Storage and Transport Cask

    International Nuclear Information System (INIS)

    Rombough, Charles T.; Lancaster, Dale B.; Diersch, Rudolf; Spilker, Harry

    2001-01-01

    When considering burnup credit in the licensing of storage and transportation casks, a significant effect is whether or not the burned fuel was depleted with burnable absorbers present. This paper presents the results of detailed calculations to quantitatively determine the burnable absorber effect for the CASTOR X/32S transport cask, which assumes burnup of the fuel in the criticality analysis. A radial view of the CASTOR X/32S cask is shown in Fig. 1. This is the actual plot of the geometry as modeled in KENO V.a. Note that there are no water-filled flux traps and the assemblies are tightly packed. This reduces the overall dimensions of the cask for a given number of fuel assemblies. Reactivity is held down by borated aluminum plates between the fuel assemblies and by placing absorber rod modules (ARMs) in the guide tubes of selected assemblies. If burnup of the fuel is not considered and the initial enrichment is 5.0 wt% 235 U, then 28 of the 32 fuel assemblies must contain an ARM to maintain a k eff 3 ; 4. moderator temperature of 604 K; 5. cooling time of 9.5 yr; 6. specific power of 60 W/g of U metal; 7. conservative axial and radial burnup shape distribution; 8. Westinghouse BP material containing 12.5 wt% B 4 C. Using the model described earlier, calculations were performed with varying numbers of BP fingers inserted for different exposure times. The results are shown in Tables I and II. The 1 s statistical error in these results is σ equals ±0.05%. Note that the BP finger and exposure effects decrease with fuel burnup and the effect is smaller when the cask contains ARMs. Conservatively combining the results from Tables I and II and interpolating, we can equate fewer BP fingers with longer BP exposure time as shown in Table III. The Table III results were checked by running the actual cases (for example, 20 BP fingers for 24 GWd/tonne exposure) to verify that the k eff 's for the cask were always less than the base-case values. These results can also be

  14. Analytical chemistry methods for boron carbide absorber material. [Standard

    Energy Technology Data Exchange (ETDEWEB)

    DELVIN WL

    1977-07-01

    This standard provides analytical chemistry methods for the analysis of boron carbide powder and pellets for the following: total C and B, B isotopic composition, soluble C and B, fluoride, chloride, metallic impurities, gas content, water, nitrogen, and oxygen. (DLC)

  15. Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Renier, J.A.

    2002-04-17

    Burnable poisons are used in all modern nuclear reactors to permit higher loading of fuel without the necessity of an overly large control rod system. This not only permits a longer core life but can also be used to level the power distribution. Commercial nuclear reactors commonly use B{sub 4}C in separate non-fueled rods and more recently, zirconium boride coatings on the fuel pellets or gadolinium oxide mixed with the fuel. Although the advantages are great, there are problems with using these materials. Boron, which is an effective neutron absorber, transmutes to lithium and helium upon absorption of a neutron. Helium is insoluble and is eventually released to the interior of the fuel rod, where it produces an internal pressure. When sufficiently high, this pressure stress could cause separation of the cladding from the fuel, causing overly high centerline temperatures. Gadolinium has several very strongly absorbing isotopes, but not all have large cross sections and result in residual burnable poison reactivity worth at the end of the fuel life. Even if the amount of this residual absorber is small and the penalty in operation small, the cost of this penalty, even if only several days, can be very high. The objective of this investigation was to study the performance of single isotopes in order to reduce the residual negative reactivity left over at the end of the fuel cycle. Since the behavior of burnable poisons can be strongly influenced by their configuration, four forms for the absorbers were studied: homogeneously mixed with the fuel, mixed with only the outer one-third of the fuel pellet, coated on the perimeter of the fuel pellets, and alloyed with the cladding. In addition, the numbers of fuel rods containing burnable poison were chosen as 8, 16, 64, and 104. Other configurations were chosen for a few special cases. An enrichment of 4.5 wt% {sup 235}U was chosen for most cases for study in order to achieve a 4-year fuel cycle. A standard pressurized

  16. Low reactivity penalty burnable poison rods

    International Nuclear Information System (INIS)

    1978-01-01

    A nuclear reactor burnable poison rod is described which consists of an elongated tubular sheath enclosing a neutron absorbing material which, at least during reactor operation, also encloses a neutron moderating material. The excess reactivity existing at the beginning of core life is compensated for by the depletion of the burnable poison throughout the life of the core, so that the life of the core is extended. (UK)

  17. Experimental validation of calculation schemes connected with PWR absorbers and burnable poisons; Validation experimentale des schemas de calcul relatifs aux absorbants et poisons consommables dans les REP

    Energy Technology Data Exchange (ETDEWEB)

    Klenov, P.

    1995-10-01

    In France 80% of electricity is produced by PWR reactors. For a better exploitation of these reactors a modular computer code Apollo-II has been developed. his code compute the flux transport by discrete ordinate method or by probabilistic collisions on extended configurations such as reactor cells, assemblies or little cores. For validation of this code on mixed oxide fuel lattices with absorbers an experimental program Epicure in the reactor Eole was induced. This thesis is devoted to the validation of the Apollo code according to the results of the Epicure program. 43 refs., 65 figs., 1 append.

  18. Standard specification for boron-Based neutron absorbing material systems for use in nuclear spent fuel storage racks

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This specification defines criteria for boron-based neutron absorbing material systems used in racks in a pool environment for storage of nuclear light water reactor (LWR) spent-fuel assemblies or disassembled components to maintain sub-criticality in the storage rack system. 1.2 Boron-based neutron absorbing material systems normally consist of metallic boron or a chemical compound containing boron (for example, boron carbide, B4C) supported by a matrix of aluminum, steel, or other materials. 1.3 In a boron-based absorber, neutron absorption occurs primarily by the boron-10 isotope that is present in natural boron to the extent of 18.3 ± 0.2 % by weight (depending upon the geological origin of the boron). Boron, enriched in boron-10 could also be used. 1.4 The materials systems described herein shall be functional – that is always be capable to maintain a B10 areal density such that subcriticality Keff <0.95 or Keff <0.98 or Keff < 1.0 depending on the design specification for the service...

  19. Evaluation of Aluminum-Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lumin [Univ. of Michigan, Ann Arbor, MI (United States). Department of Nuclear Engineering and Radiological Science; Wierschke, Jonathan Brett [Univ. of Michigan, Ann Arbor, MI (United States). Department of Nuclear Engineering and Radiological Science

    2015-04-08

    The objective of this work was to understand the corrosion behavior of Boral® and Bortec® neutron absorbers over long-term deployment in a used nuclear fuel dry cask storage environment. Corrosion effects were accelerated by flowing humidified argon through an autoclave at temperatures up to 570°C. Test results show little corrosion of the aluminum matrix but that boron is leaching out of the samples. Initial tests performed at 400 and 570°C were hampered by reduced flow caused by the rapid build-up of solid deposits in the outlet lines. Analysis of the deposits by XRD shows that the deposits are comprised of boron trioxide and sassolite (H3BO3). The collection of boron- containing compounds in the outlet lines indicated that boron was being released from the samples. Observation of the exposed samples using SEM and optical microscopy show the growth of new phases in the samples. These phases were most prominent in Bortec® samples exposed at 570°C. Samples of Boral® exposed at 570°C showed minimal new phase formation but showed nearly the complete loss of boron carbide particles. Boron carbide loss was also significant in Boral samples at 400°C. However, at 400°C phases similar to those found in Bortec® were observed. The rapid loss of the boron carbide particles in the Boral® is suspected to inhibit the formation of the new secondary phases. However, Material samples in an actual dry cask environment would be exposed to temperatures closer to 300°C and less water than the lowest test. The results from this study conclude that at the temperature and humidity levels present in a dry cask environment, corrosion and boron leaching will have no effect on the performance of Boral® and Bortec® to maintain criticality control.

  20. Evaluation of Aluminum-Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear Fuel

    International Nuclear Information System (INIS)

    Wang, Lumin; Wierschke, Jonathan Brett

    2015-01-01

    The objective of this work was to understand the corrosion behavior of Boral® and Bortec® neutron absorbers over long-term deployment in a used nuclear fuel dry cask storage environment. Corrosion effects were accelerated by flowing humidified argon through an autoclave at temperatures up to 570°C. Test results show little corrosion of the aluminum matrix but that boron is leaching out of the samples. Initial tests performed at 400 and 570°C were hampered by reduced flow caused by the rapid build-up of solid deposits in the outlet lines. Analysis of the deposits by XRD shows that the deposits are comprised of boron trioxide and sassolite (H 3 BO 3 ). The collection of boron- containing compounds in the outlet lines indicated that boron was being released from the samples. Observation of the exposed samples using SEM and optical microscopy show the growth of new phases in the samples. These phases were most prominent in Bortec® samples exposed at 570°C. Samples of Boral® exposed at 570°C showed minimal new phase formation but showed nearly the complete loss of boron carbide particles. Boron carbide loss was also significant in Boral samples at 400°C. However, at 400°C phases similar to those found in Bortec® were observed. The rapid loss of the boron carbide particles in the Boral® is suspected to inhibit the formation of the new secondary phases. However, Material samples in an actual dry cask environment would be exposed to temperatures closer to 300°C and less water than the lowest test. The results from this study conclude that at the temperature and humidity levels present in a dry cask environment, corrosion and boron leaching will have no effect on the performance of Boral® and Bortec® to maintain criticality control.

  1. Reinforcement against crack propagation of PWR absorbers by development of boron-carbon-hafnium composites

    International Nuclear Information System (INIS)

    Provot, B.; Herter, P.

    2000-01-01

    In order to improve the mechanical behaviour of materials used as neutron absorbers in nuclear reactors, we have developed CERCER or CERMET composites with boron and hafnium. Thus a new composite B 4 C/HfB 2 has been especially studied. We have identified three kinds of degradation under irradiation (thermal gradient, swelling due to fission products and accidental corrosion) that induce imposed deformations cracking phenomena. Mechanical behaviour and crack propagation resistance have been studied by ball-on-three-balls and double torsion tests. A special device was developed to enable crack propagation and associated stress intensity factor measurements. Effects of structure and of a second phase are underline. First results show that these materials present crack initiation and propagation resistance much higher than pure boron carbide or hafnium diboride. We observe R-Curves effects, crack bridging or branching, crack arrests, and toughness increases that we can relate respectively to the composite structures. (author)

  2. The research on burnup characteristic of doping burnable poison in PWR

    International Nuclear Information System (INIS)

    Qiang Shenglong; Qin Dong; Chai Xiaoming; Yao Dong

    2014-01-01

    In PWR core design, burnable poisons are usually used for reactive compensation and power flatten. The choice of burnable poisons and how to match burnup would be the key-points for a long-life core design. We study the burnup character of doping burnable poisons (such as natural element, manual nuclide and soluble boron) in the PWR by the core burnup code MOI based on Monte Carlo method. The results show that Hf, Er and Eu doping burnable poison would be applicable for the nuclear design research on the long-life PWR core. (authors)

  3. Feasibility of using gadolinium as a burnable poison in PWR cores. Final report

    International Nuclear Information System (INIS)

    Rothleder, B.M.

    1981-02-01

    As an alternative to the use of lumped burnable absorbers in PWR cores, distributed burnable absorbers are being considered for generic application. These burnable absorbers take the form of Gd 2 O 3 mixed with UO 2 in selected fuel rods (as is currently done in BWR cores). The work discussed herein concerns a three-dimensional feasibility study of the use of such distributed burnable absorbers in PWR cores. This study of distributed burnable absorbers was performed for the first cycle of a typical current design PWR using the following steps: analysis of a generic reference core design; determination of gadolinium assembly designs; determination of a generic gadolinium core design; evaluation of feasibility by examining selected parameters; and redesign of the generic gadolinium core, using axial zoning

  4. Heterogeneous burnable poisons:

    International Nuclear Information System (INIS)

    Leiva, Sergio; Agueda, Horacio; Russo, Diego

    1989-01-01

    The use of materials possessing high neutron absorption cross-section commonly known as 'burnable poisons' have its origin in BWR reactors with the purpose of improving the efficiency of the first fuel load. Later on, it was extended to PWR to compensate of initial reactivity without infringing the requirement of maintaining a negative moderator coefficient. The present tendency is to increase the use of solid burnable poisons to extend the fuel cycle life and discharge burnup. There are two concepts for the burnable poisons utilization: 1) heterogeneously distributions in the form of rods, plates, etc. and 2) homogeneous dispersions of burnable poisons in the fuel. The purpose of this work is to present the results of sinterability studies, performed on Al 2 O 3 -B 4 C and Al 2 O 3 -Gd 2 O 3 systems. Experiments were carried on pressing at room temperature mixtures of powders containing up to 5 wt % of B 4 C or Gd 2 O 3 in Al 2 O 3 and subsequently sintering at 1750 deg C in reducing atmosphere. Evaluation of density, porosity and microstructures were done and a comparison with previous experiences is shown. (Author) [es

  5. Benefits of Low Boron Core Design Concept for PWR

    Energy Technology Data Exchange (ETDEWEB)

    Daing, Aung Tharn; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2009-10-15

    Nuclear design study was carried out to develop low boron core (LBC) based on one of current PWR concepts, OPR-1000. Most of design parameters were the same with those of Ulchin unit-5 except extensive utilization of burnable poison (BP) pins in order to compensate reactivity increase in LBC. For replacement of reduced soluble boron concentration, four different kinds of integral burnable absorbers (IBAs) such as gadolinia, integral fuel burnable absorber (IFBA), erbia and alumina boron carbide were considered in suppressing more excess reactivity. A parametric study was done to find the optimal core options from many design candidates for fuel assemblies and cores. Among them, the most feasible core design candidate was chosen in accordance with general design requirements. In this paper, the feasibility and design change benefits of the most favorable LBC design were investigated in more detail through the comparison of neutronic and thermal hydraulic design parameters of LBC with the reference plant (REF). As calculation tools, the HELIOS/MASTER code package and the MATRA code were utilized. The main purpose of research herein is to estimate feasibility and capability of LBC which was mainly designed to mitigate boron dilution accident (BDA), and for reduction of corrosion products. The LBC design concept using lower boron concentration with an elevated enrichment in {sup 10}B allows a reduction in the concentration of lithium in the primary coolant required to maintain the optimum coolant pH. All in all, LBC with operation at optimum pH is expected to achieve some benefits from radiation source reduction of reduced corrosion product, the limitation of the Axial Offset Anomaly (AOA) and fuel cladding corrosion. Additionally, several merits of LBC are closely related to fluid systems and system related aspects, reduced boron and lithium costs, equipment size reduction for boric acid systems, elimination of heat tracing, and more aggressive fuel design concepts.

  6. Benefits of Low Boron Core Design Concept for PWR

    International Nuclear Information System (INIS)

    Daing, Aung Tharn; Kim, Myung Hyun

    2009-01-01

    Nuclear design study was carried out to develop low boron core (LBC) based on one of current PWR concepts, OPR-1000. Most of design parameters were the same with those of Ulchin unit-5 except extensive utilization of burnable poison (BP) pins in order to compensate reactivity increase in LBC. For replacement of reduced soluble boron concentration, four different kinds of integral burnable absorbers (IBAs) such as gadolinia, integral fuel burnable absorber (IFBA), erbia and alumina boron carbide were considered in suppressing more excess reactivity. A parametric study was done to find the optimal core options from many design candidates for fuel assemblies and cores. Among them, the most feasible core design candidate was chosen in accordance with general design requirements. In this paper, the feasibility and design change benefits of the most favorable LBC design were investigated in more detail through the comparison of neutronic and thermal hydraulic design parameters of LBC with the reference plant (REF). As calculation tools, the HELIOS/MASTER code package and the MATRA code were utilized. The main purpose of research herein is to estimate feasibility and capability of LBC which was mainly designed to mitigate boron dilution accident (BDA), and for reduction of corrosion products. The LBC design concept using lower boron concentration with an elevated enrichment in 10 B allows a reduction in the concentration of lithium in the primary coolant required to maintain the optimum coolant pH. All in all, LBC with operation at optimum pH is expected to achieve some benefits from radiation source reduction of reduced corrosion product, the limitation of the Axial Offset Anomaly (AOA) and fuel cladding corrosion. Additionally, several merits of LBC are closely related to fluid systems and system related aspects, reduced boron and lithium costs, equipment size reduction for boric acid systems, elimination of heat tracing, and more aggressive fuel design concepts

  7. Nodal Diffusion Burnable Poison Treatment for Prismatic Reactor Cores

    International Nuclear Information System (INIS)

    Ougouag, A.M.; Ferrer, R.M.

    2010-01-01

    The prismatic block version of the High Temperature Reactor (HTR) considered as a candidate Very High Temperature Reactor (VHTR)design may use burnable poison pins in locations at some corners of the fuel blocks (i.e., assembly equivalent structures). The presence of any highly absorbing materials, such as these burnable poisons, within fuel blocks for hexagonal geometry, graphite-moderated High Temperature Reactors (HTRs) causes a local inter-block flux depression that most nodal diffusion-based method have failed to properly model or otherwise represent. The location of these burnable poisons near vertices results in an asymmetry in the morphology of the assemblies (or blocks). Hence the resulting inadequacy of traditional homogenization methods, as these 'spread' the actually local effect of the burnable poisons throughout the assembly. Furthermore, the actual effect of the burnable poison is primarily local with influence in its immediate vicinity, which happens to include a small region within the same assembly as well as similar regions in the adjacent assemblies. Traditional homogenization methods miss this artifact entirely. This paper presents a novel method for treating the local effect of the burnable poison explicitly in the context of a modern nodal method.

  8. Depletion optimization of lumped burnable poisons in pressurized water reactors

    International Nuclear Information System (INIS)

    Kodah, Z.H.

    1982-01-01

    Techniques were developed to construct a set of basic poison depletion curves which deplete in a monotonical manner. These curves were combined to match a required optimized depletion profile by utilizing either linear or non-linear programming methods. Three computer codes, LEOPARD, XSDRN, and EXTERMINATOR-2 were used in the analyses. A depletion routine was developed and incorporated into the XSDRN code to allow the depletion of fuel, fission products, and burnable poisons. The Three Mile Island Unit-1 reactor core was used in this work as a typical PWR core. Two fundamental burnable poison rod designs were studied. They are a solid cylindrical poison rod and an annular cylindrical poison rod with water filling the central region.These two designs have either a uniform mixture of burnable poisons or lumped spheroids of burnable poisons in the poison region. Boron and gadolinium are the two burnable poisons which were investigated in this project. Thermal self-shielding factor calculations for solid and annular poison rods were conducted. Also expressions for overall thermal self-shielding factors for one or more than one size group of poison spheroids inside solid and annular poison rods were derived and studied. Poison spheroids deplete at a slower rate than the poison mixture because each spheroid exhibits some self-shielding effects of its own. The larger the spheroid, the higher the self-shielding effects due to the increase in poison concentration

  9. Boron

    Science.gov (United States)

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  10. Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors

    International Nuclear Information System (INIS)

    Grossbeck, M. L.; Renier, J-P.A.; Bigelow, Tim

    2003-01-01

    Burnable poisons are used in nuclear reactors to produce a more level distribution of power in the reactor core and to reduce to necessity for a large control system. An ideal burnable poison would burn at the same rate as the fuel. In this study, separation of neutron-absorbing isotopes was investigated in order to eliminate isotopes that remain as absorbers at the end of fuel life, thus reducing useful fuel life. The isotopes Gd-157, Dy-164, and Er-167 were found to have desirable properties. These isotopes were separated from naturally occurring elements by means of plasma separation to evaluate feasibility and cost. It was found that pure Gd-157 could save approximately $6 million at the end of four years. However, the cost of separation, using the existing facility, made separation cost- ineffective. Using a magnet with three times the field strength is expected to reduce the cost by a factor of ten, making isotopically separated burnable poisons a favorable method of increasing fuel life in commercial reactors, in particular Generation-IV reactors. The project also investigated various burnable poison configurations, and studied incorporation of metallic burnable poisons into fuel cladding

  11. Design and test of the borosilicate glass burnable poison rod for Qinshan nuclear power plant core

    International Nuclear Information System (INIS)

    Huang Jinhua; Sun Hanhong

    1988-08-01

    Material for the burnable poison of Qinshan Nuclear Power Plant core is GG-17 borosilicate glass. The chemical composition and physico-chemical properties of GG-17 is very close to Pyrex-7740 glass used by Westinghouse. It is expected from the results of the experiments that the borosilicate glass burnable poison rod can be successfully used in Qinshan Nuclear Power Plant due to good physical, mechanical, corrosion-resistant and irradiaton properties for both GG-17 glass and cold-worked stainless steel cladding. Change of material for burnable poison from boron-bearing stainless steel to borosilicate glass will bring about much more economic benefit to Qinshan Naclear Power Plant

  12. Evaluation of the in pile performance of boron containing fuel pellets

    International Nuclear Information System (INIS)

    Jeong, Gwanyoon; Sohn, Dongseong

    2012-01-01

    The world rare earth resource are heavily concentrated in certain area and if these natural resources are weaponized by a country, we may confront serious difficulty because rare earth element gadolinium(Gd) is used as burnable poison material in some nuclear power plants (NPP) in Korea. Gd is used as a neutron absorbing material in Gd 2 O 3 form and mixed with UO 2 When boron is used as burnable poison in nuclear fuel, in fuel pellets. The burnable poison mixed in the fuel pellets is called integral burnable absorber (BA) design which differentiates it from the old separate BA design. In the old separate BA design, boron(B) was used in borosilicate glass (PYREX) form and placed in guide tubes. With the development of the concern over the availability of rare earth material Gd, B is considered as a candidate material replacing Gd for the case when the rare earth material is weaponized. However the idea for new boron BA design is integral type because the integral type BA design has several benefits over the separate BA design, such as reduction of radioactive waste, more positions for BA location, etc. 10 B absorbs a neutron and produces helium by the following reaction: 10 B + n → 7 Li + 4 He The helium produced by the nuclear reaction may cause the increase of rod internal pressure and change the gap conductivity if the significant amount of helium gas is released to the gap between the pellet and the cladding. Thus, it is necessary to investigate the in-pile behaviors of B containing pellet. However, few experiment have been carried out so far on the behavior of in-pile produced helium in UO 2 fuel pellets, especially for the cases boron compound is mixed with UO 2 In this paper, we will evaluate the production and the release of helium depending on fuel. 10 B concentration in the fuel

  13. Burnable absorber rod releasable latching structure

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Wilson, J.F.

    1987-01-01

    An elongated nuclear reactivity control member, a releasable latching structure useful for releasably attaching the control member at an end to a top nozzle adapter plate of a nuclear fuel assembly is described comprising: (a) a mounting body including an inner plug portion attached to the end of the control member and an outer end portion disposed axially outward from the inner plug portion and the end of the member; and (b) a spring latch disposed about the mounting body and being attached to the outer end portion. The spring latch has at least one latch finger extending toward the inner plug portion of the body and is movable toward and away from the body between an outer latching position in which the finger is adapted to engage a fuel assembly top nozzle adapter plate and retain the elongated member in a stationary relationship with respect to the adapter plate and an inner unlatching position in which the finger is adapted to disengage from the adapter plate and allow removal of the member from the adapter plate

  14. Burnable poison option for DUPIC fuel

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Cupta, H. P.

    1996-08-01

    The mechanisms of positive coolant void reactivity of CANDU natural uranium and DUPIC fuel have been studied. The design study of DUPIC fuel was performed using the burnable poison material in the center pin to reduce the coolant void reactivity. The amount of burnable poison was determined such that the prompt inverse period of DUPIC fuel upon full coolant voiding is the same as that of natural uranium fuel at equilibrium burnup. A parametric study on various burnable poisons has shown that natural dysprosium has more merit over other materials because it uniformly controls the void reactivity throughout the burnup with reasonable amount of poison. Additional studies on the option of using scattering or absorber material in the center pin position and the option using variable fuel density were performed. In any case of option using variable fuel density were performed. In any case of options to reduce the void reactivity, it was found that either the discharge burnup and/or the relative linear pin power are sacrificed. A preliminary study was performed for the evaluation of reference DUPIC fuel performance especially represented by Stress Corrosion Cracking(SCC) parameters which is mainly influenced by the refueling operations. For the reference 2-bundle shift refueling scheme, the predicted ramped power and power increment of the reference DUPIC fuel are below the SCC thresholds of CANDU natural uranium fuel. For a 4-bundle shift refueling scheme, the envelopes of element ramped power and power increment upon refueling are 8% and 44% higher than those of a 2-bundle shift refueling scheme on the average, respectively, but still have margins to the failure thresholds of natural uranium fuel. 23 tabs., 25 figs., 20 refs. (Author)

  15. Results for heterogeneous poisoning of the critical HTR-test facility KAHTER using absorber elements containing hafnium and boron

    International Nuclear Information System (INIS)

    Drueke, V.; Filges, D.; Nabi, R.; Neef, R.D.; Paul, N.; Schaal, H.

    1979-10-01

    Experiments and checking computations for investigating the initial-core poisoning of the pebble bed high temperature reactor are described. Following the example of the THTR-300, THTR absorber elements poisoned with hafnium/boron were added to the THTR fuel- and graphite elements of the KAHTER core. Three different hafnium-boron poisoned core loadings, corresponding to 2.7, 5.3 and 8% reactivity compensation, were used in the experiments. For purposes of comparison, two cores exclusively boron poisoned were also studied. The poisoning of these cores correspond to 2.7 and 8% reactivity compensation. The experiments and checking computations should serve to test the accuracy of the theoretical models and data sets in modeling the reactivity effects of absorber poisoned elements in the THTR. In particular, the applicability of the nuclear data of hafnium and the treatment of resonance calculations should be verified. In addition, to determining critical masses and ksub(eff), special emphasis was placed in the experiments on the exact determination of all reactivity effects. In some cases, repeated loading of a configuration also provided a measure of the reproducibility of ksub(eff). The experiments were checked computationally using the GAMTEREX code package and the program system RSYST. These two computation packages contain different data bases, - although the hafnium data are identical -, and the computing models differ in certain phases of the calculations. Both code systems compute ksub(eff) values to within the present accuracy requirements, whereas the program system RSYST gives better agreement with experimental measurements. (orig.) 891 RW/orig. 892 RDG [de

  16. Neutronic analysis of the JMTR with LEU fuel and burnable poison

    International Nuclear Information System (INIS)

    Nagaoka, Yoshiharu; Oyamada, Rokuro; Matos, J.E.; Woodruff, W.L.

    1985-01-01

    The results of neutronics calculations are presented for the JMTR equilibrium core with LEU silicide fuel, boron and cadmium burnable poisons in the sideplates, and a cycle length of 24 days instead of 11 days with the current HEU fuel. The data indicate that several options are feasible provided that silicide fuels with high uranium densities are successfully demonstrated and licensed (author)

  17. Neutronic analysis of the JMTR with LEU fuel and burnable poison

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Yoshiharu; Oyamada, Rokuro [Japan Atomic Energy Research Institute, Oarai-machi Ibaraki-ken (Japan); Matos, J E; Woodruff, W L [Argonne National Laboratory, Argonne, IL (United States)

    1985-07-01

    The results of neutronics calculations are presented for the JMTR equilibrium core with LEU silicide fuel, boron and cadmium burnable poisons in the sideplates, and a cycle length of 24 days instead of 11 days with the current HEU fuel. The data indicate that several options are feasible provided that silicide fuels with high uranium densities are successfully demonstrated and licensed (author)

  18. Influence of boron reduction strategies on PWR accident management flexibility

    International Nuclear Information System (INIS)

    Papukchiev, Angel Aleksandrov; Liu, Yubo; Schaefer, Anselm

    2007-01-01

    In conventional pressurized water reactor (PWR) designs, soluble boron is used for reactivity control over core fuel cycle. Design changes to reduce boron concentration in the reactor coolant are of general interest regarding three aspects - improved reactivity feedback properties, lower impact of boron dilution scenarios on PWR safety and eventually more flexible accident management procedures. In order to assess the potential advantages through the introduction of boron reduction strategies in current PWRs, two low boron core configurations based on fuel with increased utilization of gadolinium and erbium burnable absorbers have been developed. The new PWR designs permit to reduce the natural boron concentration in reactor coolant at begin of cycle to 518 ppm and 805 ppm. For the assessment of the potential safety advantages of these cores a hypothetical beyond design basis accident has been simulated with the system code ATHLET. The analyses showed improved inherent safety and increased accident management flexibility of the low boron cores in comparison with the standard PWR. (author)

  19. Development of a process to recover boron carbide from nuclear reactor absorber rods

    International Nuclear Information System (INIS)

    Roth, C.; Lehnert, T.

    1991-01-01

    Boron carbide enriched with 10 B is used as a control rod in reactor engineering. At present spent rods are disposed of, although major amounts of 10 B are still 'unused'. The objective was to recover 10 B from the control rods by an energy and cost saving method in order to use it for making new control rods, thus saving raw materials and minimizing the radioactive waste volume. For this purpose, the well-known pyrohydrolysis process was taken and analysed for possible improvements. By mixing boron carbide with CO 2 as an oxidation-supporting agent, a lowering of the reaction temperature by 300deg C, and an increase in the oxidation speed by 350% were achieved. Since C0 2 is not consumed and can be circulated, the method for reprocessing spent control rods presented in this paper is both an economy-priced an energy-saving one. (orig.) With 98 refs., 9 tabs., 14 figs [de

  20. Reactivity and neutron flux measurements in IPEN/MB-01 reactor with B4C burnable poison

    International Nuclear Information System (INIS)

    Fer, Nelson Custodio; Moreira, Joao Manoel Losada

    2000-01-01

    Burnable poison rods, made of B 4 C- Al 2 O 3 pellets with 5.01 mg/cm 3 10 B concentration, have been manufactured for a set of experiments in the IPEN/MB-01 zero-power reactor. Several core parameters which are affected by the burnable poisons rods have been measured. The principal results, for the situation in which the burnable poison rods are located near the absorber rods of a control rod, are they cause a 29% rod worth shadowing, a reduction of 39% in the local void coefficient of reactivity, a reduction of 4.8% in the isothermal temperature coefficient of reactivity, and a reduction of 9% in the thermal neutron flux in the region where the burnable poison rods are located. These experimental results will be used for the validation of burnable poison calculation methods in the CTMSP. (author)

  1. Neutronic analysis of Gd2O3 as burnable poison

    International Nuclear Information System (INIS)

    Lecot, C.A.

    1990-01-01

    For the reactors core design, the use of burnable poisons is one of the options for the control of in excess reactivity and the power form factor. As alternative procedures, the absorbing material may be included in pellets of an inert material or in fuel pellets. Besides, a cladding material and the locations of the fuel elements must be chosen for the first case. The CAREM reactor core design foresees the use of gadolinium oxide (Gd 2 O 3 ) as burnable poison. In this work, a comparative study was made, from the neutronic point of view, among the following alternatives for the poisons location: a) Gd 2 O 3 bars supports in alumina (Al 2 O 3 ), sheathed in steel; b) Gd 2 O 3 bars supports in alumina sheathed in Zry-4; c) Gd 2 O 3 in uranium dioxide (UO 2 ) fuel pellets. (Author) [es

  2. MCNP apply in calculating reactor critical coefficient Keff under the changing of the burnable poison rod

    International Nuclear Information System (INIS)

    Wang Xinghua; Zhou Sichun; Zhang Qingxian; Zhao Feng; Liu Jun; Zhu Jian

    2013-01-01

    Taking Qinshan nuclear power plant as an example, in this paper, Monte Carlo method was used in the MCNP procedures for the establishment of nuclear power station simulation model, construct the reactor pressure vessel and vessel core component composition and arrangement, KCODE card was used to calculate the effect of the number and the location of burnable poison control rod factor K eff by the boron acid. The calculation results show that, with the increasing in the number of burnable poison control rod value-added factor K eff shown a downward trend, and with the burnable poison control rod from the dense to sparse, which K eff will be decreasing slowly. This condition is consistent with the theoretical. (authors)

  3. Boron nitride coated uranium dioxide and uranium dioxide-gadolinium oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gunduz, G [Department of Chemical Engineering, Middle East Technical Univ., Ankara (Turkey); Uslu, I; Tore, C; Tanker, E [Turkiye Atom Enerjisi Kurumu, Ankara (Turkey)

    1997-08-01

    Pure Urania and Urania-gadolinia (5 and 10%) fuels were produced by sol-gel technique. The sintered fuel pellets were then coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron trichloride and ammonia. The coated samples were sintered at 1600 K. The analyses under scanning electron microscope (SEM) showed a variety of BN structures, mainly platelike and rodlike structures were observed. Burnup calculations by using WIMSD4 showed that BN coated and gadolinia containing fuels have larger burnups than other fuels. The calculations were repeated at different pitch distances. The change of the radius of the fuel pellet or the moderator/fuel ratio showed that BN coated fuel gives the highest burnups at the present design values of a PWR. Key words: burnable absorber, boron nitride, gadolinia, CVT, nuclear fuel. (author). 32 refs, 14 figs.

  4. Boron nitride coated uranium dioxide and uranium dioxide-gadolinium oxide fuels

    International Nuclear Information System (INIS)

    Gunduz, G.; Uslu, I.; Tore, C.; Tanker, E.

    1997-01-01

    Pure Urania and Urania-gadolinia (5 and 10%) fuels were produced by sol-gel technique. The sintered fuel pellets were then coated with boron nitride (BN). This is achieved through chemical vapor deposition (CVD) using boron trichloride and ammonia. The coated samples were sintered at 1600 K. The analyses under scanning electron microscope (SEM) showed a variety of BN structures, mainly platelike and rodlike structures were observed. Burnup calculations by using WIMSD4 showed that BN coated and gadolinia containing fuels have larger burnups than other fuels. The calculations were repeated at different pitch distances. The change of the radius of the fuel pellet or the moderator/fuel ratio showed that BN coated fuel gives the highest burnups at the present design values of a PWR. Key words: burnable absorber, boron nitride, gadolinia, CVT, nuclear fuel. (author). 32 refs, 14 figs

  5. A Neutronic Feasibility Study of an OPR-1000 Core Design with Boron-bearing Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Hoon; Park, Sang Yoon; Lee, Chung Chan; Yang, Yong Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In Westinghouse plants, boron is mainly used as a form of the integral fuel burnable absorber (IFBA) with a thin coating of zirconium diboride (ZrB{sub 2}) or wet annular burnable absorber (WABA) with a hollow Al{sub 2}O{sub 3}+B{sub 4}C pellet. In OPR-1000, on the other hand, gadolinia is currently employed as a form of an admixture which consists of Gd{sub 2}O{sub 3} of 6∼8 w/o and UO{sub 2} of natural uranium. Recently, boron-bearing UO{sub 2} fuel (BBF) with the high density of greater than 94%TD has been developed by using a low temperature sintering technique. In this paper, the feasibility of replacing conventional gadolinia-bearing UO{sub 2} fuel (GBF) in OPR-1000 with newly developed boron-bearing fuel is evaluated. Neutronic feasibility study to utilize the BBF in OPR-1000 core has been performed. The results show that the OPR-1000 core design with the BBF is feasible and promising in neutronic aspects. Therefore, the use of the BBF in OPR-1000 can reduce the dependency on the rare material such as gadolinium. However, the burnout of the {sup 10}B isotope results in helium gas, so fuel performance related study with respect to helium generation is needed.

  6. Minor actinide transmutation on PWR burnable poison rods

    International Nuclear Information System (INIS)

    Hu, Wenchao; Liu, Bin; Ouyang, Xiaoping; Tu, Jing; Liu, Fang; Huang, Liming; Fu, Juan; Meng, Haiyan

    2015-01-01

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing k eff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR k eff markedly. The PWR k eff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  7. Burnable poison fuel element and its fabrication

    International Nuclear Information System (INIS)

    Zukeran, Atsushi; Inoue, Kotaro; Aizawa, Hiroko.

    1985-01-01

    Purpose: To enable to optionally vary the excess reactivity and fuel reactivity. Method: Burnable poisons with a large neutron absorption cross section are contained in fuel material, by which the excess reactivity at the initial stage in the reactor is suppressed by the burnable poisons and the excess reactivity is released due to the reduction in the atomic number density of the burnable poisons accompanying the burning. The burnable poison comprises spherical or rod-like body made of a single material or spherical or rod-like member made of a plurality kind of materials laminated in a layer. These spheres or rods are dispersed in the fuel material. By adequately selecting the shape, combination and the arrangement of the burnable poisons, the axial power distribution of the fuel rods are flattened. (Moriyama, K.)

  8. Damage analysis of ceramic boron absorber materials in boiling water reactors and initial model for an optimum control rod management

    International Nuclear Information System (INIS)

    Schulz, W.

    2000-01-01

    Operating experience has proved so far that BWR control rods cannot be used for the total reactor life time as originally presumed, but instead has to be considered as a consumable article. After only few operating cycles, the mechanism of absorber failure has been shown to be neutron induced boron carbide swelling and stress cracking of the absorber tubes, followed by erosion of the absorber material. In the case that operation of such a control rod is continued in control cells, this can lead to an increase of the local power density distribution in the core and, under certain conditions, can even cause fuel rod damage. A non destructive testing method has been developed called 'UNDERWATER NEUTRON RADIOGRAPHY' applicable for any BWR control rod. 'Lead-control rods' being radiographed are used to evaluate their actual nuclear worth by the help of a special analytical procedure developed and verified by the author. Nuclear worth data plotted against bum up history data will allow to create an 'EMPIRIC MODEL'. This model includes the basic idea of operating control rods of a certain design first in a control position up to a target fluence limited to an amount just below the appearance of control rod washout. Afterwards they have to be moved in a shut down position to work therefor the total remaining holding period. The initial model is applicable to any CR-design as long as sufficient measuring-data and thus data about the nuclear worth are available. The results of these experiences are extrapolated to the whole reactor holding period. After modelling no further measurements of this particular control rod type are necessary in any reactor. The second focal point is to provide an APPROXIMATION EQUATION. By knowing the absorber radius, B 4 C density and absorber enclosure data an engineer will calculate reliably the working life of any control rod design on control position. indicated as maximum allowable neutron fluence margin until absorber wash-out starts. This

  9. Standard practice for qualification and acceptance of boron based metallic neutron absorbers for nuclear criticality control for dry cask storage systems and transportation packaging

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice provides procedures for qualification and acceptance of neutron absorber materials used to provide criticality control by absorbing thermal neutrons in systems designed for nuclear fuel storage, transportation, or both. 1.2 This practice is limited to neutron absorber materials consisting of metal alloys, metal matrix composites (MMCs), and cermets, clad or unclad, containing the neutron absorber boron-10 (10B). 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  10. Neutronic analysis of the JMTR with LEU fuel and burnable poison

    International Nuclear Information System (INIS)

    Nagaoka, Yoshiharu; Oyamada, Rokuro; Matos, J.E.; Woodruff, W.L.

    1984-01-01

    The results of neutronics calculations are presented for the JMTR equilibrium core with LEU silicide fuel, boron and cadmium burnable poisons in the sideplates, and a cycle length of 24 days instead of 11 days with the current HEU fuel. The data indicate that several options are feasible provided that silicide fuels with high uranium densities are successfully demonstrated and licensed. 2 refs., 10 figs., 5 tabs

  11. Burnable poison management in light water reactor lattices

    Energy Technology Data Exchange (ETDEWEB)

    Buenemann, D; Mueller, A

    1970-07-01

    For a better reactivity control and power flattening as well as for an increase in dynamic stability the use of burnable poisons in light water reactors has been considered. The main goals for a burnable poison management and its technological realisation are discussed. The poison is assumed to be in the form of separate poison rods or homogeneous or inhomogeneous poisoning in the fuel rods. A new concept with a central poison rod within the fuel rod is discussed. The balance-equation for the needed concentration of burnable poisons for reactivity central as well as the problems of optimization of lumped poisons are treated in connection with the fuel lattice burnup. A first approximation for the design is found. For the calculation of the microburnup of lumped poison and fuel the special code NEUTRA has been developed. The burnup-equation can be chosen either in a simplified burnup-version with 2 pseudo fission products for each fissionable isotope or with an extended system of burnup equations to be used at sophisticated calculations. These burnup equations are coupled to S{sub N}-routines optionally for cylindrical or x-y-geometry for the proper calculation of the microscopic isotope density-, flux-, and power distributions. The theoretical predictions have been checked by means of special experiments so as to determine the accuracy of the computations. Even for a relatively long burnup of the fuel the predicted values are found to be within the experimental error in the case of lumped rods containing a cadmium-alloy or boron carbide. (auth)

  12. Cutting system for burnable poison rod

    International Nuclear Information System (INIS)

    Shiina, Atsushi; Toyama, Norihide; Koshino, Yasuo; Fujii, Toshio

    1989-01-01

    Burnable poison rods attached to spent fuels are contained in a containing box and transported to a receiving pool. The burnable poison rod-containing box is provisionally situated by the operation to a handling device to a provisional setting rack in a cutting pool and attached to a cutting guide of a cutting device upon cutting. The burnable poison rod is cut only in a cutting pool water and tritium generated upon cutting is dissolved into the cutting pool water. Diffusion of tritium is thus restricted. Further, the cutting pool is isolated by a partition device from the receiving pool during cutting of the burnable poison rod. Accordingly, water in which tritium is dissolved is inhibited from moving to the receiving pool and prevail of tritium contamination can be avoided. (T.M.)

  13. Neutron physical investigations on the shutdown effect of small boronated absorbing spheres for pebble-bed high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Sgouridis, S.; Schurrer, F.; Muller, H.; Ninaus, W.; Oswald, K.; Neef, R.D.; Schaal, H.

    1987-01-01

    An emergency shutdown system for high-temperature gas-cooled pebble-bed reactors is proposed in addition to the common absorber rod shutdown system. This system is based on the strongly absorbing effect of small boronated graphite spheres (called KLAK), which trickle in case of emergency by gravity from the top reflector into the reactor core. The inner reflector of the Siemens-Argonaut reactor was substituted by an assembly of spherical Arbeitsgemeinschaft Versuchsreaktor fuel elements, and the shutdown effect was examined by installing well-defined KLAK nests inside this assembly. The purpose was to develop and prove a calculational procedure for determining criticality values for assemblies of large fuel spheres and small absorbing spheres

  14. Fuel assembly and burnable poison rod

    International Nuclear Information System (INIS)

    Hirukawa, Koji.

    1993-01-01

    In a fuel assembly having burnable poison rods arranged therein, the burnable poison comprises an elongate small outer tube and an inner tube coaxially disposed within the outer tube. Upper and lower end tubes each sealed at one end are connected to both of the upper and lower ends in the inner and the outer tubes respectively. A coolant inlet hole is disposed to the lower end tube, while a coolant leakage hole is disposed to the upper end tube. Burnable poison members are filled in an annular space. Further, the burnable poison-filling region is disposed excepting portions for 1/20 - 1/12 of the effective fuel length at each of the upper and the lower ends of the fuel rod. Then, the concentration of the burnable poisons in a region above a boundary defined at a position 1/3 - 1/2, from beneath, of the effective fuel length is made smaller than that in the lower region. This enables to suppress excess reactions of fuels to reduce the mass of the burnable neutron. Excellent reactivity control performance at the initial stage of the burning can be attained. (T.M.)

  15. Heterogeneous neutron absorbers development

    International Nuclear Information System (INIS)

    Boccaccini, Aldo; Agueda, Horacio; Russo, Diego; Perez, Edmundo

    1987-01-01

    The use of solid burnable absorber materials in power light water reactors has increased in the last years, specially due to improvements attained in costs of generated electricity. The present work summarizes the basic studies made on an alumina-gadolinia system, where alumina is the inert matrix and gadolinia acts as burnable poison, and describes the fabrication method of pellets with that material. High density compacts were obtained in the range of concentrations used by cold pressing and sintering at 1600 deg C in inert (Ar) atmosphere. Finally, the results of the irradiation experiences made at RA-6 reactor, located at the Bariloche Atomic Center, are given where variations on negative reactivity caused by introduction of burnable poison rods were measured. The results obtained from these experiences are in good agreement with those coming from calculation codes. (Author)

  16. Irradiation test of borosilicate glass burnable poison

    International Nuclear Information System (INIS)

    Feng Mingquan; Liao Zumin; Yang Mingjin; Lu Changlong; Huang Deyang; Zeng Wangchun; Zhao Xihou

    1991-08-01

    The irradiation test and post-irradiation examinations for borosilicate glass burnable poison are introduced. Examinations include visual examination, measurement of dimensions and density, and determination of He gas releasing and 10 B burnup. The corrosion and phenomenon of irradiation densification are also discussed. Two type glass samples have been irradiated with different levels of neutron flux. It proved that the GG-17 borosilicate glass can be used as burnable poison to replace the 10 B stainless steel in the Qinshan Nuclear Power Plant, and it is safe, economical and reasonable

  17. Burnable poison management in a HTR

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, J

    1971-09-21

    It is the purpose with this paper to describe the state-of-the-art of burnable poison investigations made within the Dragon Project and to give the results of a number of calculations, which show that it is possible to control the large initial surplus reactivity of the first core and the radial power distribution with two types of burnable poison sticks with Gadolinium (one type of stick to be used in the inner core region, the other in the outer core region), where the poison will burn away so that keff always stays around the desired value 1.03, and with the radial form-factor not exceeding 1.20. The calculations made for this paper are not too accurate, especially the chosen timestep for calculating the burn-up of the burnable poison stick proved to be too large. Nevertheless, the calculations are good enough to draw the above mentioned conclusions, although they have not given the concentration of Gadolinium to be used in the burnable poison sticks very accurately.

  18. Spider and burnable poison rod combinations

    International Nuclear Information System (INIS)

    Edwards, G.T.; Schluderberg, D.C.

    1980-01-01

    An improved design of burnable poison rods and associated spiders used in fuel assemblies of pressurized water power reactor cores, is described. The rods are joined to the spider arms in a manner which is proof against the reactor core environment and yet allows the removal of the rods from the spider simply, swiftly and delicately. (U.K.)

  19. Spider and burnable poison rod combinations

    International Nuclear Information System (INIS)

    Walton, L.A.

    1980-01-01

    A description is given of an improved design of burnable poison rods and their associated spiders used in the fuel assemblies of pressurized water power reactor cores which allows the rods to be installed and removed more quickly, simply and gently than in previously described systems. (U.K.)

  20. Rare earths as burnable poison for extended cycles control in electricity generation reactors

    International Nuclear Information System (INIS)

    Asou, M.

    1995-01-01

    The search of an optimization of the French electronuclear network operations leads to a necessary optimization of the core performances. All the economic studies performed by the utilities had shown that there is a real gain to minimize shut down periods for refueling. So, increasing the cycle length from 12 to 18 months will present a gain of shut down for a three years operation period. The theoretical burnable absorber will be a fuel admixed material bringing the required initial negative reactivity with a burn-up kinetic well suited to the fuel and allowing the lowest residual penalty as possible. The residual penalty us defined in this case by the non complete burn up of the poison, by the low of fissile material and by the accumulate of residual isotopes or nuclides. Because of the well known use of gadolinium as burnable absorber for BWR's and PWR's operations, the search for the best compromise to optimize all the above stress is pointed towards the rare earths. In the nuclides family, considering criteria such as cross sections, natural abundance and availability only five nuclides can play the role as burnable absorbers, namely: gadolinium, samarium, dysprosium, europium and erbium. The study presented here will show that only gadolinium and erbium will be considered to control the reactivity of the PWR's. (author). 58 refs., 65 figs., 47 tabs

  1. Optimization of gadolinium burnable poison loading by the conjugate gradients method

    International Nuclear Information System (INIS)

    Drumm, C.R.

    1984-01-01

    Improved use of burnable poison is suggested for pressurized water reactors (PWR's) to insure a sufficiently negative moderator temperature coefficient of reactivity for extended burnup cycles and low leakage refueling patterns. The use of gadolinium as a burnable poison can lead to large axial fluctuations in the power distribution through the cycle. The goal of this work is to determine the optimal axial distribution of gadolinium burnable poison in a PWR to overcome the axial fluctuations, yielding an improved power distribution. The conjugate gradients optimization method is used in this work because of the high degree of nonlinearity of the problem. The neutron diffusion and depletion equations are solved for a one-dimensional one-group core model. The state variables are the flux, the critical soluble boron concentration, and the burnup. The control variables are the number of gadolinium pins per assembly and the beginning-of-cycle gadolinium concentration, which determine the gadolinium cross section. Two separate objectives are considered: 1) to minimize the power peaking factor, which will minimize the capital cost of the plant; and 2) to maximize the cycle length, which will minimize the fuel cost for the plant. It is shown in this work that optimizing the gadolinium distribution can yield an improved power distribution

  2. Toward the question of using a boron-containing reagent for distinguishing absorbent strata in the geological succession of wells

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakov, R B

    1970-01-01

    Neutron logging methods are sensitive to even small concentrations of boron in rocks because of the extremely high cross section of boron for capture of hot neutrons (710 barns). Attempts to mark thief zones in a well were made by pumping borax solution into a well and comparing the standard neutron gamma-logging (NGK-60) curve taken before and after injection of the solution. From preliminary model studies, it was found that increasing the borax concentration from 0 to 10 g/liter decreases the neutron gamma-log reading by 30%. After that there is no further effect. A minimum of 1.5 to 2 g/liter of borax is necessary for detection by comparison of gamma- log readings. The borax solution injected should be 10 to 15 times as concentrated. By combination of the borax injection method with the 2-solution method, it is possible to identify more precisely reservoir rock, particularly fractured rocks. The borax injection method may be recommended for finding thief zones in wells being drilled, finding underground storage reservoirs, and testing the condition of casing.

  3. Neutronic analysis of a fuel element with variations in fuel enrichment and burnable poison

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Rochkhudson B. de; Martins, Felipe; Velasquez, Carlos E.; Cardoso, Fabiano; Fortini, Angela; Pereira, Claubia, E-mail: rochkdefaria@yahoo.com.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    In this work, the goal was to evaluate the neutronic behavior during the fuel burnup changing the amount of burnable poison and fuel enrichment. For these analyses, it was used a 17 x 17 PWR fuel element, simulated using the 238 groups library cross-section collapsed from ENDF/BVII.0 and TRITON module of SCALE 6.0 code system. The results confirmed the effective action of the burnable poison in the criticality control, especially at Beginning Of Cycle (BOC) and in the burnup kinetics, because at the end of the fuel cycle there was a minimal residual amount of neutron absorbers ({sup 155}Gd and {sup 157}Gd), as expected. At the end of the cycle, the fuel element was still critical in all simulated situations, indicating the possibility of extending the fuel burn. (author)

  4. An evaluation of nuclear design characteristics of duplex burnable poison rods for extended cycle core

    International Nuclear Information System (INIS)

    Lee, D. J.; Kim, M. H.; Song, K. W.

    2003-01-01

    Nuclear design characteristics of duplex burnable poison rod were evaluated for three integral type burnable absorbers; Gadolinia, Erbia and IFBA. Inter-comparison was done for both 12 and 24 month cycle for Korean Standard Nuclear Plant. Fuel assemblies with duplex BP was designed to the equivalent assembly with 8 and 16 gadolinia BP 2 . Duplex BP is composed of inner region of natural U-Gd 2 O 3 , and outer shell of, UO 2 -Er2O 3 . In order to evaluate the duplex BP, assemblies with erbia and IFBA were compared with alternative options. A sensitivity studies were performed to the size of region, compositions and location of duplex BPs. It was shown that duplex BP gave favorable k-infinite curve to burnup, but IFBA provided the least residual reactivity penalty as EOC. Erbia was good for more negative MTCs. IFBA and erbia had better neutronic performance than gadolinia od duplex BP in the aspect of pin power peaking

  5. Initial study on burnable poisons in the Dragon HTR design

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U; Pedersen, J

    1971-06-15

    A first study on the effects of burnable poisons in a High Temperature Reactor is given in this paper, and some of the problems concerning the layout and distribution of burnable poison sticks in the core are explained. Time has not allowed us to obtain satisfactory solutions to these problems, but we hope, that this study could form the basis of valuable discussions on ways and means to overcome the difficulties of burnable poison management in HTRs.

  6. Study of burnable poison in the dupic cycle

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Clarysson A.M. da; Almeida, Michel C.B. de; Faria, Rochkhudson B. de; Moreira, Arthur P.C.; Pereira, Claubia, E-mail: clarysson@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    Recent studies confirm the potential of using reprocessed PWR (Pressurized Water Reactor) fuels in the CANDU (Canada Deuterium Uranium) reactor fuel cycle. An important proposal is the 'Direct Use of spent PWR fuel In CANDU' (DUPIC) cycle, where spent fuels from a PWR are packaged into a CANDU fuel bundle with only mechanical reprocessing (cut into pieces) but no chemical reprocessing. The fissile contents of the spent fuel from Pressurized Water Reactor (PWR) are about 1.5 wt%, which is higher than that of the fuel of CANDU. When this reactor is reload with reprocessed fuel, the reactivity of system will increase and this behavior may affect the safety parameters of reactor. To reduce the initial reactivity, Burnable Poison (BP) can be inserted in the fuel bundle of CANDU. In this way, the present paper evaluates the insertion of the different types of BP considering the DUPIC cycle. The following BPs were evaluated: Boron, Cadmium, Dysprosium, Erbium, Europium, Gadolinium, Hafnium and Samarium. The goal is to verify the neutronic behavior of the fuel bundle at steady state and during the reactor burnup. The SCALE 6.0 (Standardized Computer Analyses for Licensing Evaluation) code was employed to model a standard CANDU-6 fuel element. (author)

  7. A state-of-the-art report on the development of B{sub 4}C materials as neutron absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Choong Hwan; Kim, Sun Jae; Park, Jee Yun; Kang, Dae Kab [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-01-01

    Boron of 10 atomic weight is one of the best neutron absorbing elements. Among the boron compounds, B{sub 4}C and its composites exhibit excellent material properties. Those materials absorb thermal and fast neutrons, are thermally and chemically very stable, and are very strong in mechanical properties. By neutron irradiation B-10 transforms into Li releasing one He atom. This He release causes swelling, cracking and fragmentation of B{sub 4}C bulks and results in degradation of the materials. The essence of technical developments of B{sub 4}C-based neutron absorbers is the minimization of the effects of He release, and this can be realized through microstructural optimizations of grain and porosity distributions. While pure B{sub 4}C is very difficult in sintering, new neutron absorbing materials of B{sub 4}C-cermets are being developed. B{sub 4}C-cermets are composite materials in which B{sub 4}C powders are dispersed in the metal matrix of Al or Cu. Those materials show easiness in sintering, mechanical forming, and B{sub 4}C content controlling. Neutron absorbing and shielding materials play an important role for the safety of reactor operations and environmental protections. Those materials are being used as monolithic pellets for control rods, burnable poison fuel rods, rack materials for spent fuel storages, shielding materials for shipping casks, and especially for shielding plates for liquid metal reactors. 37 figs., 12 tabs., 41 refs. (Author).

  8. Research on application of burnable poison in pebble bed HTR

    International Nuclear Information System (INIS)

    Wei Chunlin; Zhang Jian; Shan Wenzhi; Jing Xingqing

    2013-01-01

    Burnable poison in fuel ball was used in pebble bed high-temperature gas-cooled reactor (HTR) to optimize the shape and the peak factor of power distribution in certain conditions. Two options are available and evaluated, that is the homogeneous burnable poison in graphite matrix and burnable poison particles (BPPs) in fuel balls. Due to the absorption cross section of "1"0B, the depletion speed for homogeneous burnable poison is very fast, and difficult to control, on the other side, the depletion speed of BPPs can be optimized respecting to its size, and better shape and peak value of power distribution can be achieved. (authors)

  9. A consolidation process for spent burnable poison rod assemblies

    International Nuclear Information System (INIS)

    Yamamoto, Y.; Harada, M.; Komatsu, Y.

    1985-01-01

    A new consolidation system for the spent burnable poison assembly utilizing a sequence control robot operated under water was proposed. A credible accident in the system was analyzed mainly from the viewpoint of tritium release, based on the diffusion analysis of tritium in borosilicate glass. It was found that the amount of tritium released would be small even after the rupture of burnable poison rods. An experiment on a new consolidation system was performed using spent burnable poison assemblies. The volume of burnable poison assemblies was reduced safely and securely by a factor of 7 to 14 for burnable poison rods and by 22 for hold-down portions. It was proved that the consolidation system is collectively feasible

  10. Analysis of burnable poison in Ford Nuclear Reactor fuel to extend fuel lifetime. Final report, August 1, 1994--September 29, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Burn, R.R.; Lee, J.C.

    1996-12-01

    The objective of the project was to establish the feasibility of extending the lifetime of fuel elements for the Ford Nuclear Reactor (FNR) by replacing current aluminide fuel with silicide fuel comprising a heavier uranium loading but with the same fissile enrichment of 19.5 wt% {sup 235}U. The project has focused on fuel designs where burnable absorbers, in the form of B{sub 4}C, are admixed with uranium silicide in fuel plates so that increases in the control reactivity requirements and peak power density, due to the heavier fuel loading, may be minimized. The authors have developed equilibrium cycle models simulating current full-size aluminide core configurations with 43 {approximately} 45 fuel elements. Adequacy of the overall equilibrium cycle approach has been verified through comparison with recent FNR experience in spent fuel discharge rates and simulation of reactor physics characteristics for two representative cycles. Fuel cycle studies have been performed to compare equilibrium cycle characteristics of silicide fuel designs, including burnable absorbers, with current aluminide fuel. These equilibrium cycle studies have established the feasibility of doubling the fuel element lifetime, with minimal perturbations to the control reactivity requirements and peak power density, by judicious additions of burnable absorbers to silicide fuel. Further study will be required to investigate a more practical silicide fuel design, which incorporates burnable absorbers in side plates of each fuel element rather than uniformly mixes them in fuel plates.

  11. Neutron absorbing article

    International Nuclear Information System (INIS)

    Naum, R.G.; Owens, D.P.; Dooker, G.I.

    1981-01-01

    A neutron-absorbing article suitable for use in spent fuel racks is described. It comprises boron carbide particles, diluent particles, and a phenolic polymer cured to a continuous matrix. The diluent may be silicon carbide, graphite, amorphous carbon, alumina, or silica. The combined boron carbide-diluent phase contains no more than 2 percent B 2 O 3 , and the neutron-absorbing article contains from 20 to 40 percent phenol resin. The ratio of boron carbide to diluent particles is in the range 1:9 to 9:1

  12. Experimental and theoretical burnup investigations on model arrangements with solid burnable poisons

    International Nuclear Information System (INIS)

    Ahlf, J.; Anders, D.; Greim, L.; Knoth, J.; Kolb, M.; Mittelstaedt, B.; Mueller, A.; Schwenke, H.

    1975-01-01

    It is the scope of the two experiments here to improve the methods for computation and measurement as well as the experimental technique appropriate to predict the burnable poison rod burn-up with sufficient accuracy. In the first experiment two nine-rod bundles in a 3 x 3 arrangement are irradiated during several irradiation periods in the research reactor Geesthacht. Each bundle consists of eight outer rods containing fuel and one inner rod containing poison (B 10 or Cd 113). The burn-up of the fuel and the burnable poison is measured by non-destructive methods after each irradiation period and then compared with results of a burn-up calculation. In the second experiment two poison rods with different cadmium concentrations and one rod containing boron are irradiated during several irradiation periods in the research reactor Geesthacht. The burn-up is determined after each irradiation period by reactivity measurements and its result compared to computed effective absorption cross-sections of the rods by aid of a calibration curve. For both experiments the experimental and theoretical results for the poison burn-up are found to be within the error limits of the measurements. (orig.) [de

  13. Experimental and theoretical investigations on solid burnable poison burnup of model arrangements

    International Nuclear Information System (INIS)

    Ahlf, J.; Anders, D.; Greim, L.; Knoth, J.; Kolb, M.; Mittelstaedt, B.; Mueller, A.; Schwenke, H.

    1975-01-01

    It is the scope of the two experiments reported here to improve the methods for computation and measurement as well as the experimental technique appropriate to predict the burnable poison rod burn-up with sufficient accuracy. In the first experiment two nine-rod bundles in a 3 x 3 arrangement are irradiated during several irradiation periods in the research reactor Geesthacht. Each bundle consists of eight outer rods containing fuel and one inner rod containing poison (B 10 or Cd 113). The burn-up of the fuel and the burnable poison is measured by non-destructive methods after each irradiation period and then compared with results of a burn-up calculation. In the second experiment two poison rods with different cadmium concentrations and one rod containing boron are irradiated during several irradiation periods in the research reactor Geesthacht. The burn-up is determined after each irradiation period by reactivity measurements and its result compared to computed effective absorption cross-sections of the rods by aid of a calibration curve. For both experiments the experimental and theoretical results for the poison burn-up are found to be within the error limits of the measurements. (orig.) [de

  14. Neutron absorbing article

    International Nuclear Information System (INIS)

    Naum, R.G.; Owens, D.P.; Dooher, G.I.

    1979-01-01

    A neutron absorbing article, in flat plate form and suitable for use in a storage rack for spent fuel, includes boron carbide particles, diluent particles and a solid, irreversibly cured phenolic polymer cured to a continuous matrix binding the boron carbide and diluent particles. The total conent of boron carbide and diluent particles is a major proportion of the article and the content of cured phenolic polymer present is a minor proportion. By regulation of the ratio of boron carbide particles to diluent particles, normally within the range of 1:9 and 9:1 and preferably within the range of 1:5 to 5:1, the neutron absorbing activity of the product may be controlled, which facilitates the manufacture of articles of particular absorbing activities best suitable for specific applications

  15. Enrichment of boron 10

    International Nuclear Information System (INIS)

    Coutinho, C.M.M.; Rodrigues Filho, J.S.R.; Umeda, K.; Echternacht, M.V.

    1990-01-01

    A isotopic separation pilot plant with five ion exchange columns interconnected in series were designed and built in the IEN. The columns are charged with a strong anionic resin in its alkaline form. The boric acid solution is introduced in the separation columns until it reaches a absorbing zone length which is sufficient to obtain the desired boron-10 isotopic concentration. The boric acid absorbing zone movement is provided by the injection of a diluted hydrochloric acid solution, which replace the boric acid throughout the columns. The absorbing zone equilibrium length is proportional to its total length. The enriched boron-10 and the depleted boron are located in the final boundary and in the initial position of the absorbing zones, respectively. (author)

  16. performance calculations of gadolinium oxide and boron nitride coated fuel

    International Nuclear Information System (INIS)

    Tanker, E.; Uslu, I.; Disbudak, H.; Guenduez, G.

    1997-01-01

    A comparative study was performed on the behaviour of natural uranium dioxide-gadolinium oxide mixture fuel and boron nitride coated low enriched fuel in a pressurized water reactor. A fuel element containing one burnable poison fuel pins was modeled with the computer code WIMS, and burn-up dependent critically, fissile isotope inventory and two dimensional power distribution were obtained. Calculations were performed for burnable poison fuels containing 5% and 10% gadolinium oxide and for those coated with 1μ,5μ and 10μ of boron nitride. Boron nitride coating was found superior to gadolinium oxide on account of its smoother criticality curve, lower power peaks and insignificant change in fissile isotope content

  17. Neutron absorber pellets

    International Nuclear Information System (INIS)

    Radford, K.C.

    1983-01-01

    An annular burnable poison pellet of aluminium oxide - boron carbide (Al 2 O 3 - B 4 C) adapted for positioning in the annular space of concentrically disposed zircaloy tubes. Each tubular pellet is fabricated from Al 2 O 3 powders of moderate sintering activity which serves as a matrix for B 4 C medium size particle distribution. Special pellet moisture controls are incorporated in the pellet for moisture stability and the pellet is sintered in the temperature range of 1630 deg to 1650 deg C. This method of fabrication produces a pellet about 2 inch long with a wall thickness of from 0.020 inch to 0.040 inch. Fabricating each pellet to about 70% theoretical density gives an optimum compromise between fabricability, microstructure, strength and moisture absorption. (author)

  18. Nuclear fuel clad clothed with burnable poison and obtainment process

    International Nuclear Information System (INIS)

    Diez, P.; Netter, P.

    1994-01-01

    This clad has preferentially on its inner surface a boron compound such boron carbide or boron nitrogen deposited by Chemical Vapor Deposition or by Physical Vapor Deposition without any temperature elevation injurious to its mechanical properties. 3 figs

  19. Production method of burnable poison incorporated fuel pellet by coating

    International Nuclear Information System (INIS)

    Naito, Naoyoshi.

    1993-01-01

    A cylindrical member is formed with an organic material which is melted, decomposed or evaporated by heating. Such organic materials include polyethylene and polyvinyl alcohol, for example. A predetermined amount of burnable poisons are homogeneously incorporated in the cylindrical member by a means, such as melting before fabricating it into a cylindrical shape. UO 2 fuel pellets are inserted to the cylindrical member and heated, to scatter only the organic materials, so that non-volatile burnable poisons are homogeneously left on the surface of the pellets. It is preferred that the cylindrical member having pellets inserted therein is inserted to a cladding tube and applied with a heat treatment. With such procedures, a UO 2 pellet is coated with burnable poisons by a convenient and compact device. In addition, grinding step after the coating is unnecessary. (I.N.)

  20. Optimal burnable poison utilization in PWR core reload design

    International Nuclear Information System (INIS)

    Downar, T.J.

    1986-01-01

    A method was developed for determining the optimal distribution and depletion of burnable poisons in a Pressurized Water Reactor core. The well-known Haling depletion technique is used to achieve the end-of-cycle core state where the fuel assembly arrangement is configured in the absence of all control poison. The soluble and burnable poison required to control the core reactivity and power distribution are solved for as unknown variables while step depleting the cycle in reverse with a target power distribution. The method was implemented in the NRC approved licensing code SIMULATE

  1. Analysis of a possible experimental assessment of a prototype fuel element containing burnable poison in the RA-3 reactor

    International Nuclear Information System (INIS)

    Lerner, Ana Maria; Madariaga, Marcelo

    2002-01-01

    The Argentine RA-3 research reactor (5 MW) is presently operated with LEU fuel by the National Atomic Energy Commission (CNEA). It belongs to the group of nuclear installations controlled, from the radiological and nuclear safety point of view, by the Nuclear Regulatory Authority (ARN). A new type of fuel elements containing burnable absorbers, with similar enrichment as the standard fuel elements but greater fissile contents, has recently been proposed for a new Argentine reactor design (RRR). In this framework the ARN considers interesting, if technically possible, the performance of an experiment in the RA-3 reactor. The experiment might enable, for such fuel element containing burnable poison, the verification of its neutronic behaviour under irradiation as well as a validation of the calculation line by comparison to measured values. It should be desirable that such experiment could reproduce as much as possible those conditions estimated for the RRR reactor, still under design in Argentina, having Silicide fuel elements with burnable poison, in the shape of cadmium wires in their structure. We here analyse a possible experiment consisting in the loading of a prototype fuel element with burnable poison in a normally loaded RA-3 core configuration. It would essentially be a standard RA-3 fuel element, having cadmium wires in its frame. This experiment would enable the verification of the prototype behaviour under irradiation, its operation limits and conditions, and particularly, the reactivity safety margins established in Argentine Standards, both calculated and measured. The main part of the experiment would imply some 200 full power days of operation at 5 MW, which would be drastically reduced if the reactor power is increased to 10 MW, as foreseen. We also show that under the proposed conditions, the experiment would not represent a significant penalty to the reactor normal operation. (author)

  2. Managing the reactivity excess of the gas turbine-modular helium reactor by burnable poison and control rods

    International Nuclear Information System (INIS)

    Talamo, Alberto

    2006-01-01

    The gas turbine-modular helium reactor coupled to the deep burn in-core fuel management strategy offers the extraordinary capability to incinerate over 50% of the initial inventory of fissile material. This extraordinary feature, coming from an advanced and well tested fuel element design, which takes advantage of the TRISO particles technology, is maintained while the reactor is loaded with the most different types of fuels. In the present work, we assumed the reactor operating at the equilibrium of the fuel composition, obtained by a 6 years irradiation of light water reactor waste, and we investigated the effects of the introduction of the burnable poison and the control rods; we equipped the core with all the three types of control rods: operational, startup and shutdown ones. We employed as burnable poison natural erbium, due to the 167 Er increasing neutron capture microscopic cross-section in the energy range where the neutron spectrum exhibits the thermal peak; in addition, we utilized boron carbide, with 90% enrichment in 1 B, as the absorption material of the control rods. Concerning the burnable poison studies, we focused on the k eff value, the 167 Er mass during burnup, the influence of modifying the radius of the BISO particles kernel and the fuel and moderator coefficients of temperature. Concerning the control rods studies, we investigated the reactivity worth, the changes in the neutron flux profile due to a partial insertion, the influence of modifying the radius of the BISO particles kernel and the β eff , at the beginning of the operation

  3. Managing the reactivity excess of the gas turbine-modular helium reactor by burnable poison and control rods

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Department of Nuclear and Reactor Physics, Royal Institute of Technology, Roslagstullsbacken 21, S-10691, Stockholm (Sweden)]. E-mail: alby@neutron.kth.se

    2006-01-15

    The gas turbine-modular helium reactor coupled to the deep burn in-core fuel management strategy offers the extraordinary capability to incinerate over 50% of the initial inventory of fissile material. This extraordinary feature, coming from an advanced and well tested fuel element design, which takes advantage of the TRISO particles technology, is maintained while the reactor is loaded with the most different types of fuels. In the present work, we assumed the reactor operating at the equilibrium of the fuel composition, obtained by a 6 years irradiation of light water reactor waste, and we investigated the effects of the introduction of the burnable poison and the control rods; we equipped the core with all the three types of control rods: operational, startup and shutdown ones. We employed as burnable poison natural erbium, due to the {sup 167}Er increasing neutron capture microscopic cross-section in the energy range where the neutron spectrum exhibits the thermal peak; in addition, we utilized boron carbide, with 90% enrichment in {sup 1}B, as the absorption material of the control rods. Concerning the burnable poison studies, we focused on the k {sub eff} value, the {sup 167}Er mass during burnup, the influence of modifying the radius of the BISO particles kernel and the fuel and moderator coefficients of temperature. Concerning the control rods studies, we investigated the reactivity worth, the changes in the neutron flux profile due to a partial insertion, the influence of modifying the radius of the BISO particles kernel and the {beta} {sub eff}, at the beginning of the operation.

  4. Neutron absorbing room temperature vulcanizable silicone rubber compositions

    International Nuclear Information System (INIS)

    Zoch, H.L.

    1979-01-01

    A neutron absorbing composition is described and consists of a one-component room temperature vulcanizable silicone rubber composition or a two-component room temperature vulcanizable silicone rubber composition in which the composition contains from 25 to 300 parts by weight based on the base silanol or vinyl containing diorganopolysiloxane polymer of a boron compound or boron powder as the neutron absorbing ingredient. An especially useful boron compound in this application is boron carbide. 20 claims

  5. Burnable poison rod for a nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Funk, C.E.; Oneufer, A.S.

    1984-01-01

    A burnable poison rod for use in a nuclear reactor fuel assembly which includes concentrically disposed rods having an annular space therebetween which extends the full length of the rods. The inner rod is hollow to permit circulation of coolant therethrough. Annular burnable poison pellets are positioned in the annular space which is closed at both ends by plugs. A spring clip is located in the plenum space above the pellet stack in the rods. The spring clip is of cylindrical configuration having a gap in the material which provides two ends adapted to be squeezed toward each other. A cross section of the clip shows that its ends contain alternating flat and round edges, the round edges conforming to the outer rod inner surface to provide a retentive force which is releasably applied to the pellet stack as it grows during operation in a reactor

  6. Calculation qualification of gadolinium burnable poisons in water reactors

    International Nuclear Information System (INIS)

    Chaucheprat, P.

    1988-01-01

    The work presented in this thesis constitutes the qualification on the one end of Appolo-Neptune scheme for the gadolinium burnable poison in a pressurized water reactor, and on the other end of basis nuclear data on natural gadolinium. This study has permitted to reduce by a factor 3 the actual incertitude on the gadolinium poison comparatively at precisions cited in international benchmarks calculations [fr

  7. Measurement of reactivity worths of burnable poison rods in enriched uranium graphite-moderated core simulated to high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Akino, Fujiyoshi; Takeuchi, Motoyoshi; Kitadate, Kenji; Yoshifuji, Hisashi; Kaneko, Yoshihiko

    1980-11-01

    As the core design for the Experimental Very High Temperature Gas Cooled Reactor progresses, evaluation of design precision has become increasingly important. For a high precision design, it is required to have adequate group constants based on accurate nuclear data, as well as calculation methods properly describing the physical behavior of neutrons. We, therefore, assembled a simulation core for VHTR, SHE-14, using a graphite-moderated 20%-enriched uranium Semi-Homogeneous Experimental Critical Facility (SHE), and obtained useful experimental data in evaluating the design precision. The VHTR is designed to accommodate burnable poison and control rods for reactivity compensation. Accordingly, the experimental burnable poison rods which are similar to those to be used in the experimental reactor were prepared, and their reactivity values were measured in the SHE-14 core. One to three rods of the above experimental burnable poison rods were inserted into the central column of the SHE-14 core, and the reactivity values were measured by the period and fuel rod substitution method. The results of the measurements have clearly shown that due to the self-shielding effect of B 4 C particles the reactivity value decreases with increasing particle diameter. For the particle diameter, the reactivity value is found to increase linearly with the logarithm of boron content. The measured values and those calculated are found to agree with each other within 5%. These results indicate that the reactivity of the burnable poison rod can be estimated fairly accurately by taking into account the self-shielding effect of B 4 C particles and the heterogeneity of the lattice cell. (author)

  8. Neutron evaluation of burnable poison insertion in pressurized water reactor

    International Nuclear Information System (INIS)

    Faria, Rochkhudson Batista de

    2013-01-01

    The development of this work was to match the 'Burn-up Credit Criticality Benchmark - Phase II-D - PWR-UO 2 Assembly Study of Control Rod Effects on Spent Fuel Composition' (case 15), which was modeled using the code MCNP5 and SCALE 6.0. The results of the infinite multiplication factor (k inf ) were compared with those obtained by international institutions. Later we performed in this same benchmark, a sensitivity analysis using SCALE 6.0. Thus, we tested several changes in case 15 of Benchmark, such as insertion of different percentages of burnable poison, changing the number and positions of the rods. In all cases were analyzed, comparisons and discussions about the results. The same methodology was applied to the reactor core of the Nuclear Plant in Brazil, Angra II, initially to evaluate its behavior when subjected to a variation in the percentage of burnable poison and then, introduce changes also in the enrichment of nuclear fuel, doing the appropriate comparisons of results. Considering results and experience gained, the Department of Nuclear Engineering, is prepared to control analysis of reactivity with the use of different types of burnable poisons under the code SCALE 6.0 through its various modules. (author)

  9. Behaviour of a VVER-1000 fuel element with boron carbide/steel absorber tested under severe fuel damage conditions in the CORA facility (Results of experiment CORA-W2)

    International Nuclear Information System (INIS)

    Hagen, S.; Hofmann, P.; Noack, V.; Schanz, G.; Schumacher, G.; Sepold, L.

    1994-10-01

    The 'Severe Fuel Damage' (SFD) experiments of the Kernforschungszentrum Karlsruhe (KfK), Federal Republic of Germany, were carried out in the out-of-pile facility 'CORA' as part of the international Severe Fuel Damage (SFD) research. The experimental program was set up to provide information on the failure mechanisms of Light Water Reactor (LWR) fuel elements in a temperature range from 1200 C to 2000 C and in few cases up to 2400 C. Between 1987 and 1992 a total of 17 CORA experiments with two different bundle configurations, i.e. PWR (Pressurized Water Reactor) and BWR (Boiling Water Reactor) bundles were performed. These assemblies represented 'Western-type' fuel elements with the pertinent materials for fuel, cladding, grid spacer, and absorber rod. At the end of the experimental program two VVER-1000 specific tests were run in the CORA facility with identical objectives but with genuine VVER-type materials. The experiments, designated CORA-W1 and CORA-W2 were conducted on February 18, 1993 and April 21, 1993, respectively. Test bundle CORA-W1 was without absorber material whereas CORA-W2 contained one absorber rod (boron carbide/steel). As in the earlier CORA tests the test bundles were subjected to temperature transients of a slow heatup rate in a steam environment. The transient phases of the tests were initiated with a temperature ramp rate of 1 K/s. With these conditions a so-called small-break LOCA was simulated. The temperature escalation due to the exothermal zircon/niobium-steam reaction started at about 1200 C, leading the bundles to maximum temperatures of approximately 1900 C. The thermal response of bundle CORA-W2 is comparable to that of CORA-W1. In test CORA-W2, however, the temperature front moved faster from the top to the bottom compared to test CORA-W1 [de

  10. Multi level optimization of burnable poison utilization for advanced PWR fuel management

    Science.gov (United States)

    Yilmaz, Serkan

    The objective of this study was to develop an unique methodology and a practical tool for designing burnable poison (BP) pattern for a given PWR core. Two techniques were studied in developing this tool. First, the deterministic technique called Modified Power Shape Forced Diffusion (MPSFD) method followed by a fine tuning algorithm, based on some heuristic rules, was developed to achieve this goal. Second, an efficient and a practical genetic algorithm (GA) tool was developed and applied successfully to Burnable Poisons (BPs) placement optimization problem for a reference Three Mile Island-1 (TMI-1) core. This thesis presents the step by step progress in developing such a tool. The developed deterministic method appeared to perform as expected. The GA technique produced excellent BP designs. It was discovered that the Beginning of Cycle (BOC) Kinf of a BP fuel assembly (FA) design is a good filter to eliminate invalid BP designs created during the optimization process. By eliminating all BP designs having BOC Kinf above a set limit, the computational time was greatly reduced since the evaluation process with reactor physics calculations for an invalid solution is canceled. Moreover, the GA was applied to develop the BP loading pattern to minimize the total Gadolinium (Gd) amount in the core together with the residual binding at End-of-Cycle (EOC) and to keep the maximum peak pin power during core depletion and Soluble boron concentration at BOC both less than their limit values. The number of UO2/Gd2O3 pins and Gd 2O3 concentrations for each fresh fuel location in the core are the decision variables and the total amount of the Gd in the core and maximum peak pin power during core depletion are in the fitness functions. The use of different fitness function definition and forcing the solution movement towards to desired region in the solution space accelerated the GA runs. Special emphasize is given to minimizing the residual binding to increase core lifetime as

  11. Effects of the burnable poison heterogeneity on the long term control of excess of reactivity

    International Nuclear Information System (INIS)

    Talamo, Alberto

    2006-01-01

    According to the different geometry shape, the theory of black burnable particles predicts that the evolution of the poison macroscopic absorption cross section is exponentially, quadratic or linear when the burnable poison is displaced in homogeneous distribution, microspheres or needlecylinders heterogeneous distributions, respectively. In the present studies, we took advantage of the Monte Carlo Continuous Energy Burnup Code MCB to verify the black burnable particles theory on the Gas Turbine - Modular Helium Reactor fuelled by military plutonium at the year the fuel reaches the equilibrium composition; we investigated 8 different burnable poisons, B, Cd, Er, Eu, Gd, Dy, Hf and Sm, in three different geometry configurations and we have found that the numerical results qualitatively match the theory predictions when burnable poisons are disposed in small particles

  12. Effects of the burnable poison heterogeneity on the long term control of excess of reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Department of Nuclear and Reactor Physics, Royal Institute of Technology - KTH, Roslagstullsbacken 21, S-10691, Stockholm (Sweden)]. E-mail: alby@neutron.kth.se

    2006-06-15

    According to the different geometry shape, the theory of black burnable particles predicts that the evolution of the poison macroscopic absorption cross section is exponentially, quadratic or linear when the burnable poison is displaced in homogeneous distribution, microspheres or needlecylinders heterogeneous distributions, respectively. In the present studies, we took advantage of the Monte Carlo Continuous Energy Burnup Code MCB to verify the black burnable particles theory on the Gas Turbine - Modular Helium Reactor fuelled by military plutonium at the year the fuel reaches the equilibrium composition; we investigated 8 different burnable poisons, B, Cd, Er, Eu, Gd, Dy, Hf and Sm, in three different geometry configurations and we have found that the numerical results qualitatively match the theory predictions when burnable poisons are disposed in small particles.

  13. Study of ceramic mixed boron element as a neutron shielding

    International Nuclear Information System (INIS)

    Ismail Mustapha; Mohd Reusmaazran Yusof; Md Fakarudin Ab Rahman; Nor Paiza Mohamad Hasan; Samihah Mustaffha; Yusof Abdullah; Mohamad Rabaie Shari; Airwan Affandi Mahmood; Nurliyana Abdullah; Hearie Hassan

    2012-01-01

    Shielding upon radiation should not be underestimated as it can causes hazard to health. Precautions on the released of radioactive materials should be well concerned and considered. Therefore, the combination of ceramic and boron make them very useful for shielding purpose in areas of low and intermediate neutron. A six grades of ceramic tile have been produced namely IMN05 - 5 % boron, IMN06 - 6 % boron, IMN07 - 7 % boron, IMN08 - 8 % boron, IMN09 - 9 % boron, IMN10 - 10 % boron from mixing, press and sintered process. Boron is a material that capable of absorbing and capturing neutron, so that neutron and gamma test were conducted to analyze the effectiveness of boron material in combination with ceramic as shielding. From the finding, percent reduction number of count per minute shows the ceramic tiles are capable to capture neutron. Apart from all the percentage of boron used, 10 % is the most effective shields since the percent reduction indicating greater neutron captured increased. (author)

  14. Boron reclamation

    International Nuclear Information System (INIS)

    Smith, R.M.

    1980-07-01

    A process to recover high purity 10 B enriched crystalline boron powder from a polymeric matrix was developed on a laboratory basis and ultimately scaled up to production capacity. The process is based on controlled pyrolysis of boron-filled scrap followed by an acid leach and dry sieving operation to return the powder to the required purity and particle size specifications. Typically, the recovery rate of the crystalline powder is in excess of 98.5 percent, and some of the remaining boron is recovered in the form of boric acid. The minimum purity requirement of the recovered product is 98.6 percent total boron

  15. Rare earths as burnable poison for extended cycles control in electricity generation reactors; Etude des terres rares en tant que poison consommable pour le controle des cycles allonges pour les reacteurs electrogenes

    Energy Technology Data Exchange (ETDEWEB)

    Asou, M

    1995-05-12

    The search of an optimization of the French electronuclear network operations leads to a necessary optimization of the core performances. All the economic studies performed by the utilities had shown that there is a real gain to minimize shut down periods for refueling. So, increasing the cycle length from 12 to 18 months will present a gain of shut down for a three years operation period. The theoretical burnable absorber will be a fuel admixed material bringing the required initial negative reactivity with a burn-up kinetic well suited to the fuel and allowing the lowest residual penalty as possible. The residual penalty us defined in this case by the non complete burn up of the poison, by the low of fissile material and by the accumulate of residual isotopes or nuclides. Because of the well known use of gadolinium as burnable absorber for BWR`s and PWR`s operations, the search for the best compromise to optimize all the above stress is pointed towards the rare earths. In the nuclides family, considering criteria such as cross sections, natural abundance and availability only five nuclides can play the role as burnable absorbers, namely: gadolinium, samarium, dysprosium, europium and erbium. The study presented here will show that only gadolinium and erbium will be considered to control the reactivity of the PWR`s. (author). 58 refs., 65 figs., 47 tabs.

  16. Burnable poisons in the light water reactor design, microburnup experiments and calculations. Part of a coordinated programme on burnup calculations and experiments for thermal reactors

    International Nuclear Information System (INIS)

    Penndorf, K.

    1976-04-01

    Investigations on Research Agreement N 1519/CF (1.8.1974 - 31.7.1975) entitled ''Burnable poisons in light water reactor design, microburnup experiments and calculations'' were carried out in the frame of the IAEA's coordinated research programme on ''Burn-up calculation and experiments for thermal reactors''. The theoretical and experimental work on application of solid burnable poison used for reduction of the amount of boric acid necessary to control of PWR or to lower the number of control rods needed in a BWR. Solid burnable poisons are needed in present PWR designs for the reduction of the boron acid concentration in order to prevent positive coefficients of reactivity. The special operational conditions of a ship reactor lead to the application of this kind of poison for compensation of almost all burnup reactivity. This strengthens the necessity of a very accurate and many dimensional calculations because an appropriate binding of reactivity has to be kept over the whole cycle time. Several burnup experiments had been run in the 15 MW material test reactor FRG-II. The following devices have been irradiated: poison pins within and without PWR fuel pin lattice segments and fuel pins containing pellets with a poison core. Measurements of reactivity, fluence, fission product concentration have been performed. Methods applied were γ-scanning and neutron pulse, radiography and transmission measurement techniques. Evaluation of the experiments was done by one and two dimensional Ssub(N) transport burnup calculations. In parallel a collision probability transport burnup code for current PWR design work is being developed, the main feature of which is economy in manpower and computer time

  17. Safe transport of tritium-producing burnable absorber rods: Intergovernmental regulations perspective

    International Nuclear Information System (INIS)

    Steinhoff, R.L.; Patterson, J.; Helvey, E.

    2000-01-01

    The state, tribal, and local governments along the shipment corridors share the US Department of Energy's (DOE's) goal of safe and uneventful radioactive materials transportation. The various governmental bodies involved can have different interpretations of a safe and uneventful shipping campaign. However, that gap has narrowed in recent years, due in part to improved coordination among DOE and the affected states, tribes, and municipal governments. This paper describes how the interactions between a new DOE radioactive materials transportation program and the corridor governments bridged that gap to create a shipping campaign that most of those involved viewed as safer and more publicly acceptable than had the process not occurred. It also describes the successful interaction between two DOE shipment campaigns transporting along much of the same route during the same time period

  18. The treatment of burnable poison pins in LWRWIMS

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1982-12-01

    This report describes an investigation into the modelling approximations normally made when the LWR lattice code LWRWIMS is used for design calculations on assemblies containing burnable poison pins. Parameters investigated include energy group structure, intervals between calculations in MWd/te and spatial subdivision of the poison pins. An estimate is made of the effect of using pin-cell smearing with diffusion theory for the assembly geometry, instead of a more exact heterogeneous transport theory calculation. The influence on reactivity of the minor gadolinium isotopes 152, 154, 156, 158 and 160 in a poison pin dominated by the isotopes 155 and 157 is presented, and finally, recommendations on the use of LWRWIMS for this type of calculation are made. (author)

  19. The burnable poisons utilization for fissile enriched CANDU fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Serghiuta, D; Nainer, O [Team 3 Solutions, Don Mills, ON (Canada)

    1996-12-31

    Utilization of burnable poison for the fissile enriched fueled CANDU 6 Mk1 core is investigated. The main incentives for this analysis are the reduction of void reactivity effects, the maximization of the fissile content of fresh fuel bundles, and the achievement of better power shape control, in order to preserve the power envelope of the standard 37 rod fuel bundle. The latter allows also the preservation of construction parameters of the standard core (for example: number and location of reactivity devices). It also permits the use of regular shift fueling schemes. The paper makes analyses of MOX weapons-grade plutonium and 1.2% SEU fueled CANDU 6 Mk 1 cores. (author). 6 refs., 4 tabs., 10 figs.

  20. Helium diffusion in irradiated boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.

    1981-03-01

    Boron carbide has been internationally adopted as the neutron absorber material in the control and safety rods of large fast breeder reactors. Its relatively large neutron capture cross section at high neutron energies provides sufficient reactivity worth with a minimum of core space. In addition, the commercial availability of boron carbide makes it attractive from a fabrication standpoint. Instrumented irradiation experiments in EBR-II have provided continuous helium release data on boron carbide at a variety of operating temperatures. Although some microstructural and compositional variations were examined in these experiments most of the boron carbide was prototypic of that used in the Fast Flux Test Facility. The density of the boron carbide pellets was approximately 92% of theoretical. The boron carbide pellets were approximately 1.0 cm in diameter and possessed average grain sizes that varied from 8 to 30 μm. Pellet centerline temperatures were continually measured during the irradiation experiments

  1. Absorbing rods for nuclear fast neutron reactor absorbing assembly

    International Nuclear Information System (INIS)

    Aji, M.; Ballagny, A.; Haze, R.

    1986-01-01

    The invention proposes a neutron absorber rod for neutron absorber assembly of a fast neutron reactor. The assembly comprises a bundle of vertical rods, each one comprising a stack of pellets made of a neutron absorber material contained in a long metallic casing with a certain radial play with regard to this casing; this casing includes traps for splinters from the pellets which may appear during reactor operation, at the level of contact between adjacent pellets. The present invention prevents the casing from rupture involved by the disintegration of the pellets producing pieces of boron carbide of high hardness [fr

  2. Liquid metal reactor absorber technology

    International Nuclear Information System (INIS)

    Pitner, A.L.

    1990-10-01

    The selection of boron carbide as the reference liquid metal reactor absorber material is supported by results presented for irradiation performance, reactivity worth compatibility, and benign failure consequences. Scram response requirements are met easily with current control rod configurations. The trend in absorber design development is toward larger sized pins with fewer pins per bundle, providing economic savings and improved hydraulic characteristics. Very long-life absorber designs appear to be attainable with the application of vented pin and sodium-bonded concepts. 3 refs., 3 figs

  3. Investigation of the burn-up behavior of boron poison rods, placed in a fuel assembly of a pressurized water reactor

    International Nuclear Information System (INIS)

    Arnold, C.; Lutz, D.C.

    1979-09-01

    The excess reactivity of a pressurized water reactor is compensated by boron, disolved in the moderator. In addition during the first cycle boron poison rods are placed in fuel assemblies without control rods. The burn-up behavior of a poison rod in a Biblis B fuel assembly is analysed in the present paper. Multigroup spectrum calculations were performed. The influence of critical boron concentration depending from burn-up, the changes of fuel concentration and the concentration of burnable poison were taken into consideration. Furthermore the built-up of rapidly saturating fisson products 135 Xe and 149 Sm was considered. The interaction of these effects are discussed. Spatial influences are emphasized most. Finally two group cross sections were calculated. The results are compared with calculations for a fuel assembly of the same type without burnable poison rods. (orig.) [de

  4. Hot channel calculation methodologies in case of Gd burnable poison

    International Nuclear Information System (INIS)

    Panka, I.; Kereszturi, A.

    2008-01-01

    The final step in the safety analysis is the investigation of the fulfilment of the acceptance criteria using hot channel calculations. Recently, there has been under way at Paks NPP to introduce a new, higher enriched (4.2 %) fuel type containing Gd burnable poison. To do that, for some transients the DBA analyses must be repeated and last year, as one of the first steps in this process, it was needed to review the hot channel calculation methodologies used in the analyses. The goal of the paper is to summarize some aspects of the hot channel calculation methodologies using different lattice pitches and different fuel types (Gd or non Gd and different enrichments). Mainly, three topics are discussed. First, the influence of the radial power distribution (and other burnup dependent parameters) inside the fuel pin are investigated, and then we discuss the problem of the selection of the appropriate 'frame parameter' in connection with the initial power level at the initial stationary state of DBA transients. Finally, we are trying to answer the question: is it possible to build up a conservative single closed sub-channel approach against multi channel approach?(Authors)

  5. Shock absorber

    International Nuclear Information System (INIS)

    Housman, J.J.

    1978-01-01

    A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading

  6. Absorbing device for stationary arrangement in the lattice of a boiling water reactor

    International Nuclear Information System (INIS)

    Fredin, B.; Nylund, O.

    1980-01-01

    The invention refers to an absorbing device for stationary arrangement in the lattice of a BWR in a gap between two bundles of vertical fuel rods. It consists of at least one absorbing plate containing burnable absorbing material. Both lateral surfaces of this plate are directed to one surface each of the bundles mentioned above. According to the invention the absorbing material is contained in channels formed by welding together two adjacent sheet elements, at least one of which being corrugated. The welds will be made at the points where to tops of the waves touch the other sheet element. (orig.) [de

  7. Liquid absorber experiments in ZED-2

    International Nuclear Information System (INIS)

    McDonnell, F.N.

    1975-07-01

    A set of liquid absorber experiments was performed in ZED-2 to provide data with which to test the adequacy of calculational methods for zone controller and refuelling studies associated with advanced reactor concepts. The absorber consisted of a full length aluminum tube, containing either i)H 2 O, ii)H 2 O + boron (2.5 mg/ml) or iii)H 2 O + boron (8.0 mg/ml). The tube was suspended vertically at interstitial or in-channel locations. A U-tube absorber was also simulated using two absorber tubes with appropriate spacers. Experiments were carried out at two different square lattice pitches, 22.86 and 27.94 cm. Measurements were made of the reactivity effects of the absorbers and, in some cases, of the detailed flux distribution near the perturbation. The results from one calculational method, the source-sink approach, were compared with the data from selected experiments. (author)

  8. Optimization of PWR fuel assembly radial enrichment and burnable poison location based on adaptive simulated annealing

    International Nuclear Information System (INIS)

    Rogers, Timothy; Ragusa, Jean; Schultz, Stephen; St Clair, Robert

    2009-01-01

    The focus of this paper is to present a concurrent optimization scheme for the radial pin enrichment and burnable poison location in PWR fuel assemblies. The methodology is based on the Adaptive Simulated Annealing (ASA) technique, coupled with a neutron lattice physics code to update the cost function values. In this work, the variations in the pin U-235 enrichment are variables to be optimized radially, i.e., pin by pin. We consider the optimization of two categories of fuel assemblies, with and without Gadolinium burnable poison pins. When burnable poisons are present, both the radial distribution of enrichment and the poison locations are variables in the optimization process. Results for 15 x 15 PWR fuel assembly designs are provided.

  9. Method for manufacture of neutron absorbing articles

    International Nuclear Information System (INIS)

    Owens, D.

    1980-01-01

    A one-step curing method for the manufacture of a neutron absorbing article which comprises irreversibly curing, in desired article form, a form-retaining mixture of boron carbide particles, curable phenolic resin in solid state and in particula te form and a minor proportion of a liquid medium, which boils at a temperature below 200*c., at an elevated temperature so as to obtain bonding of the irreversibly cured phenolic polymer resulting to the boron carbide particles and production of the neutron absorbing article in desired form

  10. Optimization of burnable poison disposition for in-core fuel assemblies

    International Nuclear Information System (INIS)

    Zhong Wenfa; Luo Rong; Zhou Quan

    1997-09-01

    The optimization of the burnable poison disposition in the initial core loading of the 200 MW nuclear heating reactor (NHR-200), is studied. The mass fraction of the burnable poison is used as the control variable with the objective to minimize the power peaking factor. The flexible tolerance method is used to solve the nonlinear programming optimal problem. The optimization method can be used in reactor physics design, and get a new pattern of initial core which is of reference value. (2 refs., 8 figs., 1 tab.)

  11. The manufacture process and properties of (U, Gd)O2 burnable poisonous fuel pellets

    International Nuclear Information System (INIS)

    Yi Wei; Tang Yueming; Dai Shengping; Yang Youqing; Zuo Guoping; Wu Shihong; Gu Xiaofei; Gu Mingfei

    2006-03-01

    The main properties of important raw powder materials used in the (U, Gd)O 2 burnable poisonous fuel pellets production line of NPIC are presented. The powders included UO 2 , Gd 2 O 3 , (U, Gd) 3 O 8 and necessary additives, such as ammonium oxalate and zinc stearate. And the main properties of (U, Gd)O 2 burnable poisonous fuel pellets and the manufacture processes, such as ball-milling blending, granulation, pressing, sintering and grinding are also described. Moreover, the main effect of the process parameters controlled in the manufacture process have been discussed. (authors)

  12. Methods of assembling and disassembling spider and burnable poison rod structures for nuclear reactors

    International Nuclear Information System (INIS)

    Edwards, G.T.; Schluderberg, D.C.

    1981-01-01

    A technique is provided for engaging and disengaging burnable poison rods from a spider in a nuclear reactor fuel assembly. A cap on the end of each of the burnable poison rods is provided with a shank or stem that is received in a respective bore formed in the spider. A frangible flange secures the shank and rod to the spider. Pressing the shank in the direction of the bore axis by means, e.g., of a plate ruptures the frangible flange to release the rod from the spider. (author)

  13. Absorbant materials

    International Nuclear Information System (INIS)

    Quetier, Monique.

    1978-11-01

    Absorbants play a very important part in the nuclear industry. They serve for the control, shut-down and neutron shielding of reactors and increase the capacity of spent fuel storage pools and of special transport containers. This paper surveys the usual absorbant materials, means of obtainment, their essential characteristics relating to their use and their behaviour under neutron irradiation [fr

  14. Absorber materials in CANDU PHWR's

    International Nuclear Information System (INIS)

    Price, E.G.; Boss, C.R.; Novak, W.Z.; Fong, R.W.L.

    1995-03-01

    In a CANDU reactor the fuel channels are arranged on a square lattice in a calandria filled with heavy water moderator. This arrangement allows five types of tubular neutron absorber devices to be located in a relatively benign environment of low pressure, low temperature heavy water between neighbouring rows of columns of fuel channels. This paper will describe the roles of the devices and outline the design requirements of the absorber component from a reactor physics viewpoint. Nuclear heating and activation problems associated with the different absorbers will be briefly discussed. The design and manufacture of the devices will be also discussed. The control rod absorbers and shut off materials are cadmium and stainless steel. In the tubular arrangement, the cadmium is sandwiched between stainless steel tubes. This type of device has functioned well, but there is now concern over the availability and expense of cadmium which is used in two types of CANDU control devices. There are also concerns about the toxicity of cadmium during the fabrication of the absorbers. These concerns are prompting AECL to study alternatives. To minimize design changes, pure boron-10 alloyed in stainless steel is a favoured option. Work is underway to confirm the suitability of the boron-loaded steel and identify other encapsulated absorber materials for practical application. Because the reactivity devices or their guide tubes span the calandria vessel, the long slender components must be sufficiently rigid to resist operational vibration and also be seismically stable. Some of these components are made of Zircaloy to minimize neutron absorption. Slow irradiation growth and creep can reduce the spring tension, and periodic adjustments to the springs are required. Experience with the control absorber devices has generally been good. In one instance liquid zone controllers had a problem of vibration induced fretting but a designed back-fit resolved the problem. (author). 3 refs., 1

  15. Safety aspects of the using Gd as burnable poison in PWR's

    International Nuclear Information System (INIS)

    Vandenberg, C.; Bonet, H.; Charlier, A.

    1978-01-01

    The experience of BELGONUCLEAIRE in using Gd in LWR's has indicated the safety related advantages of this burnable poison. The successfully operation of the BR3 PWR power plant with 5% of Gd rods is presented and extrapolated to large PWR's. (authro)

  16. Effects of limestone petrography and calcite microstructure on OPC clinker raw meals burnability

    Science.gov (United States)

    Galimberti, Matteo; Marinoni, Nicoletta; Della Porta, Giovanna; Marchi, Maurizio; Dapiaggi, Monica

    2017-10-01

    Limestone represents the main raw material for ordinary Portland cement clinker production. In this study eight natural limestones from different geological environments were chosen to prepare raw meals for clinker manufacturing, aiming to define a parameter controlling the burnability. First, limestones were characterized by X-Ray Fluorescence, X-Ray Powder Diffraction and Optical Microscopy to assess their suitability for clinker production and their petrographic features. The average domains size and the microstrain of calcite were also determined by X-Ray Powder Diffraction line profile analysis. Then, each limestone was admixed with clay minerals to achieve the adequate chemical composition for clinker production. Raw meals were thermally threated at seven different temperatures, from 1000 to 1450 °C, to evaluate their behaviour on heating by ex situ X-Ray Powder Diffraction and to observe the final clinker morphology by Scanning Electron Microscopy. Results indicate the calcite microstrain is a reliable parameter to predict the burnability of the raw meals, in terms of calcium silicates growth and lime consumption. In particular, mixtures prepared starting from high-strained calcite exhibit a better burnability. Later, when the melt appears this correlation vanishes; however differences in the early burnability still reflect on the final clinker composition and texture.

  17. Methods of assembling and disassembling spider and burnable poison rod structures for nuclear reactors

    International Nuclear Information System (INIS)

    Walton, L.A.

    1981-01-01

    A method is described of joining burnable poison rods to the spider arms of a pressurised water power reactor fuel assembly which is proof against the reactor core environment but permits these rods to be removed from the spider simply, swiftly and delicately. (U.K.)

  18. Study and optimization of the composite nuclear fuel with burnable poison UO2/Gd2O3

    International Nuclear Information System (INIS)

    Balestrieri, D.

    1995-09-01

    The studied composite ceramics is a nuclear fuel constituted of a uranium dioxide matrix UO 2 in which big grains (or 'macro-masses') of gadolinium oxide (Gd 2 O 3 ) of 300 ± 100 μm of diameter (mass fraction of 12%) are dispersed. Used as burnable poison (neutron absorbent whose action disappears progressively during the irradiation), gadolinium oxide is the object of a particular attention because some of its properties as the crystal structure, the aptitude to sintering and the thermomechanical behavior have been studied. The aim of this work is to perfect and optimize the process of manufacture of the composite in order to answer to accurate specifications for the density, the shape and the mass fraction of macro-masses. In this framework, it has been necessary to strengthen the Gd 2 O 3 macro-masses by a thermal treatment in order to avoid their deformation during the uniaxial pressing. The influence of this pre-consolidation on the ended microstructure, the aptitude to sintering and the thermal conductivity of the composite have been studied. (O.M.)

  19. The irradiation behaviour of boron carbide/graphite between 800 and 1,1000C

    International Nuclear Information System (INIS)

    Hattenbach, K.; Hilgendorff, W.; Weiler, K.; Zimmermann, H.U.

    1975-01-01

    64 samples of boron carbide/graphite, a material used as burnable poison in high temperature reactors, were irradiated at temperatures between 800 and 1,100 0 C up to a fluence of 1-2 x 10 20 nvt. The following post-investigations were extended to dimensional measurements to determime a possible swelling or shrinking of the pellet, corrosion tests in completely desalinated water at 300 0 C, preparation of metallographic microsections to check for crack formation, determination of the helium hold back power and the thus involved gas chromatic analysis, as well as burn-up determinations by determining the boron 10/boron 11 ratio and the lithium concentration. (orig./LN) [de

  20. Boron-Loaded Silicone Rubber Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  1. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  2. Shock absorber

    International Nuclear Information System (INIS)

    Nemeth, J.D.

    1981-01-01

    A shock absorber for the support of piping and components in a nuclear power plant is described. It combines a high degree of stiffness under sudden shocks, e.g. seismic disturbances, with the ability to allow for thermal expansion without resistance when so required. (JIW)

  3. Incineration of dry burnable waste from reprocessing plants with the Juelich incineration process

    International Nuclear Information System (INIS)

    Dietrich, H.; Gomoll, H.; Lins, H.

    1987-01-01

    The Juelich incineration process is a two stage controlled air incineration process which has been developed for efficient volume reduction of dry burnable waste of various kinds arising at nuclear facilities. It has also been applied to non nuclear industrial and hospital waste incineration and has recently been selected for the new German Fuel Reprocessing Plant under construction in Wackersdorf, Bavaria, in a modified design

  4. Irradiation and corrosion behaviour of cadmium aluminate, a burnable poison for light water reactors

    International Nuclear Information System (INIS)

    Hattenbach, K.; Ahlf, J.; Hilgendorff, W.; Zimmermann, H.U.

    1979-01-01

    In quest of a cadmium containing material for use as burnable poison cadmium aluminate seemed promising. Therefore irradiation and corrosion experiments on specimens of cadmium aluminate in a matrix of aluminia were performed. Irradiation at 575 K and fast fluences up to 10 25 m -2 showed the material to have good radiation resistance and low swelling rates. Cadmium pluminate was resistant to corrosion attack in demineralized water of 575K. (orig.) [de

  5. Comparison of fine particle colemanite and boron frit in concrete for time-strength relationship

    International Nuclear Information System (INIS)

    Volkman, D.E.; Bussolini, P.L.

    1992-01-01

    This paper reports that the element boron, when added to concrete, has proved effective in shielding neutron particles by absorbing the neutron and emitting a low-energy gamma ray. The various boron additives used with concrete can severely retard the set time and strength gain. An advantage to using small particle size boron is that the smaller grain size provides better boron disbursement within the concrete matrix to absorb neutrons. However, boron additives of powder consistency are usually not used due to the greater potential of forming chemical solutions that act as a retarder in the concrete. Research has shown that the amount of boron additives in concrete can be reduced significantly if fine grain particles can be successfully incorporated into the concrete matrix. The purpose of this study is to compare strength gain characteristics of concrete mixes containing various quantities of fine grain boron additive. The boron additive colemanite, a natural mineral, is compared with two brands of manufactured aggregate, boron frit. Concrete test cylinders are molded for testing the compressive strength of the mix after 4, 7, 28, and 56 days. Tested are five different quantities of colemanite as well as five comparable amounts of boron frit for each brand of the material. The test values are compared with a control concrete specimen containing no boron additive. Results of this study can be used to optimize the cost and effectiveness of boron additives in radiation shielding concrete

  6. Modification of Japanese first nuclear ship reactor for a regional energy supply system using gadolinia as a burnable poison

    International Nuclear Information System (INIS)

    Sato, Kotaro; Shimazu, Yoichiro; Narabayashi, Tadashi; Tsuji, Masashi

    2009-01-01

    In our laboratory, a small regional energy supply system which uses a small nuclear reactor has been studied for a long time. This system could supply not only heat but also electricity. Heat could be used for hot-water supply, a heating system of a house, melting snow and so on. In this point, this system seems to be useful for the places like northern part of Japan where it snows in winter. This reactor is based on Nuclear Ship Mutsu which was developed as the first nuclear ship of Japan about 40 years ago. It has several advantages for a small reactor. For example, its moderator temperature coefficient is always to be deeply negative because boric acid solution is not used in moderator and coolant. This can lead to a self-controlled operation without control rod maneuvering for load change. But some modifications have been performed in order to satisfy requirements such as (1) longer core life without refueling and reshuffling, (2) reactivity adjustment for load change without control rods or soluble boron, (3) simpler operations for load changes and (4) ultimate safety with sufficient passive capability. In our previous study, we confirmed the core based on Mutsu core had longer core life (about 10 years) using high uranium enrichment fuel (more than 5wt%) and current 17x17 fuel assemblies. We also confirmed excess reactivity during the cycle could be suppressed using combination of erbium oxide (Er 2 O 3 ) and gadolinium oxide (Gd 2 O 3 ) as burnable poisons. Er 2 O 3 has advantages such that criticality safety can be kept even if uranium enrichment is more than 5wt% and burnup characteristics of the core can be gradual. But at this time there are 2 problems to apply for the core using Er 2 O 3 in Japan. First problem is that more than 5wt% enrichment fuel is not yet accepted in Japan. Second problem is that there are no experiences of using Er 2 O 3 in commercial reactors in Japan. Considering these problems, we have to modify the design of the core, using

  7. Aspects of the chemistry of boron

    International Nuclear Information System (INIS)

    Moellinger, H.

    1976-01-01

    Crystal phases of elementary boron are reviewed as well as boron-sulphur, boron-selenum, boron-tellurium, and boron-nitrogen compounds, carboranes, and boron-carbohydrate complexes. A boron cadastre of rivers and lakes serves to illustrate the role of boron in environmental protection. Technically relevant boron compounds and their uses are mentioned. (orig.) 891 HK/orig. 892 MB [de

  8. Neutron absorbing article and method for manufacture of such article

    International Nuclear Information System (INIS)

    McMurty, C.H.; Naum, R.G.; Owens, D.P.; Hortman, M.T.

    1981-01-01

    A neutron absorbing article is described which comprises boron carbide particles and an irreversibly-cured phenol aldehyde condensation polymer cured to a continuous matrix about the boron carbide particles. Such an article may be used in spent fuel storage racks. It can be manufactured by mixing together a curable phenolic resin with boron carbide particles, compacting the mixture to an article of desired shape, curing the resin at an elevated temperature, impregnating the cured article with curable phenolic resin in liquid state, and curing the article again

  9. Structure and reactivity of boron-ate complexes derived from primary and secondary boronic esters.

    Science.gov (United States)

    Feeney, Kathryn; Berionni, Guillaume; Mayr, Herbert; Aggarwal, Varinder K

    2015-06-05

    Boron-ate complexes derived from primary and secondary boronic esters and aryllithiums have been isolated, and the kinetics of their reactions with carbenium ions studied. The second-order rate constants have been used to derive nucleophilicity parameters for the boron-ate complexes, revealing that nucleophilicity increased with (i) electron-donating aromatics on boron, (ii) neopentyl glycol over pinacol boronic esters, and (iii) 12-crown-4 ether.

  10. Review of the status of reactor physics predictive methods for burnable poisons in CAGRs

    International Nuclear Information System (INIS)

    Edens, D.J.; McEllin, M.

    1983-01-01

    An essential component of the design of Commercial Advanced Gas Cooled Reactor fuel necessary to achieve higher discharge irradiations is the incorporation of burnable poisons. The poisons enable the more highly enriched fuel required to reach higher irradiation to be loaded without increasing the peak channel power. The optimum choice of fuel enrichment and poison loading will be made using reactor physics predictive methods developed by Berkeley Nuclear Laboratories. These methods and the evidence available to support them from theoretical comparisons, zero energy experiments, WAGR irradiations, and measurements on operating CAGRs are described. (author)

  11. Review of the status of reactor physics predictive methods for burnable poisons in CAGRs

    International Nuclear Information System (INIS)

    Edens, D.J.; McEllin, M.

    1983-01-01

    An essential component of the design of Commercial Advanced Gas Cooled Reactor fuel necessary to achieve higher discharge irradiations is the incorporation of burnable poisons. The poisons enable the more highly enriched fuel required to reach higher irradiation to be loaded without increasing the peak channel power. The optimum choice of fuel enrichment and poison loading will be made using reactor physics predictive methods developed by Berkeley Nuclear Laboratories. The paper describes these methods and the evidence available to support them from theoretical comparisons, zero energy experiments, WAGR irradiations, and measurements on operating CAGR's. (author)

  12. Quantitative neutron radiography using neutron absorbing honeycomb

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi; Oda, Masahiro; Takahashi, Kenji; Ohkubo, Kohei; Tasaka, Kanji; Tsuruno, Akira; Matsubayashi, Masahito.

    1993-01-01

    This investigation concerns quantitative neutron radiography and computed tomography by using a neutron absorbing honeycomb collimator. By setting the neutron absorbing honeycomb collimator between object and imaging system, neutrons scattered in the object were absorbed by the honeycomb material and eliminated before coming to the imaging system, but the neutrons which were transmitted the object without interaction could reach the imaging system. The image by purely transmitted neutrons gives the quantitative information. Two honeycombs were prepared with coating of boron nitride and gadolinium oxide and evaluated for the quantitative application. The relation between the neutron total cross section and the attenuation coefficient confirmed that they were in a fairly good agreement. Application to quantitative computed tomography was also successfully conducted. The new neutron radiography method using the neutron-absorbing honeycomb collimator for the elimination of the scattered neutrons improved remarkably the quantitativeness of the neutron radiography and computed tomography. (author)

  13. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Moriwaki, Masanao; Aoyama, Motoo; Masumi, Ryoji; Ishibashi, Yoko.

    1995-01-01

    A fuel assembly comprises a plurality of fuel rods filled with nuclear fuels, a plurality of burnable poison-incorporated fuel rods and a spectral shift-type water rod. As the burnable poison for the burnable poison-incorporated fuel rod, a plurality of burnable poison elements each having a different neutron absorption cross section are used. A burnable poison element such as boron having a relatively small neutron absorbing cross section is disposed more in the upper half region than the lower half region of the burnable poison-incorporated fuel rods. In addition, a burnable poison element such as gadolinium having a relatively large neutron absorbing cross section is disposed more in the lower half-region than the upper half region thereof. This can flatten the power distribution in the vertical direction of the fuel assembly and the power distribution in the horizontal direction at the final stage of the operation cycle. (I.N.)

  14. Study of the Effect of Burnable Poison Particles Applying in a Pebble Bed HTR

    International Nuclear Information System (INIS)

    Wei Chunlin; Zhao Jing; Zhang Jian; Xia Bing

    2014-01-01

    In pebble bed high temperature gas cooled reactors (HTR), spherical fuel elements pass through the core several times to balance the burnup process in the fuel region, resulting in an acceptable shape and peak factor of power density in the simulation analysis. In contrast, when fuel elements pass through the core only once, the peak of power density occurs at the top of the core and its value is too high to be safe. These indicators/parameters can be improved by incorporating burnable poison in the fuel elements under certain conditions. In the current study, burnable poison particles (BPPs) in fuel elements are evaluated. In spite of the strong absorption capability of "1"0B, BPPs can decrease the depletion speed and increase the duration of "1"0B because of the self-shielding effect, resulting in improved shape and peak factor of power distribution. Several BPPs with different radius are discussed in power distribution, following the calculation for a full-scale reactor core with modified VSOP code. According the result, applying BPPs on fuel pebbles is an effective means to improve the distribution of the power density under one-through fuel load in HTR. (author)

  15. Sintering of beryllium oxide with 3-4 per cent elemental boron

    International Nuclear Information System (INIS)

    Pointud, R.; Rispal, Ch.; Le Garec, M.

    1958-01-01

    In order to manufacture a baffle absorbing neutrons of various energies, there was developed or mixture of a slower and an absorber. It is made by hot pressing impure beryllium containing boron carbide. The dense briquette has 100 x 100 x 50 mm and is machined on all her faces. She is of 2,85 density and about 3 to 4 per cent porosity, according to 5 per cent of boron. Difference of boron amount is lower than ten per cent between any two points of the briquette. (author) [fr

  16. Neutron absorbing article and method for manufacture of such article

    International Nuclear Information System (INIS)

    Hortman, M.T.; Mcmurtry, C.H.; Naum, R.G.; Owens, D.P.

    1980-01-01

    A neutron absorbing article, preferably in long, thin, flat form , suitable for but not necessarily limited to use in storage racks for spent nuclear fuel at locations between volumes of such stored fuel, to absorb neutrons from said spent fuel and prevent uncontrolled nuclear reaction of the spent fuel material, is composed of finely divided boron carbide particles and a solid, irreversibly cured phenolic polymer, forming a continuous matrix about the boron carbide particles, in such proportions that at least 6% of b10 from the boron carbide content is present therein. The described articles withstand thermal cycling from repeated spent fuel insertions and removals, withstand radiation from said spent nuclear fuel over long periods of time without losing desirable neutron absorbing and physical properties, are sufficiently chemically inert to water so as to retain neutron absorbing properties if brought into contact with it, are not galvanically corrodible and are sufficiently flexible so as to withstand operational basis earthquake and safe shutdown earthquake seismic events, without loss of neutron absorbing capability and other desirable properties, when installed in storage racks for spent nuclear fuel. The disclosure also relates to a plurality of such neutron absorbing articles in a storage rack for spent nuclear fuel and to a method for the manufacture of the articles

  17. Burnable poison calculations for Mk.III gas-cooled reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Gubbins, M E

    1971-02-15

    A method of calculating the reactivity and burn-up hisotry of a Mk.III GCR system containing burnable poisons has been described. The method allows for poison-fuel interaction. Using the method it has been shown that burn-up of the poison under a constant incident flux can give errors of the order of 1-2 niles. A calculation using the method described will take about 50% longer than a straightforward fuel burn-up calculation in the same number of groups. The multi-cell approach has a potential for handling greater geometrical complexity. It is intended to compare the method against experiment as soon as suitable experimental results become available.

  18. Study of low leakage reload schedulle without burnable posion for Angra-1

    International Nuclear Information System (INIS)

    Sakai, M.; Dias, A.

    1989-01-01

    At the moment, there is a world trend to design larger cycles for PWR. Then the reload batches are increased, the enrichment in 235 U is increased and/or advanced fuel management strategies with radial low neutron leakage are applied. For the low leakage reloads of Angra-1 calculations were performed for different number of fuel assemblies for reaload batch, 32,36,40,44 and 48, from the 4th cycle up to equilibrium cycle for two different enrichments 3,4 W/O and 3,9 W/O in 235 U. The results showed that for the enrichments used without burnable posion it is possible to reach an increase in cycle lenghts between 3% and 8% for the same conditions. (author) [pt

  19. Development of boronated aluminum alloy for basket of cask for nuclear spent fuel

    International Nuclear Information System (INIS)

    Sakaguchi, Y.; Saida, T.; Matsuoka, T.; Kuri, S.; Ohsono, K.; Hode, S.

    2001-01-01

    Since 1980's Mitsubishi Heavy Industries, Ltd. (MHI) has been contributing to develop metal cask technologies for utilities and competent authorities in Japan, and have established transport and storage cask design ''MSF series'' which realizes higher payload and reliability for long term storage. MSF series transport and storage cask uses new-developed boronated aluminum as basket material. This boronated aluminum has been developed to improve characteristics of material. To achieve this object, powder metallurgy method has been adopted for manufacturing boronated material. It is well known that this method provides excellent characteristics for the material and this boronated aluminum alloy has obtained excellent both mechanical and neutron absorbing characteristics. In addition, in order to maintain material properties for long-term use this boronated material is not strengthened by aging treatment. This paper summarizes an outline of the boronated aluminum alloy for basket assemblies by powder metallurgy. (author)

  20. The spectrophotometric determination of boron in tourmalines

    Directory of Open Access Journals (Sweden)

    LJILJANA JAKSIC

    2005-02-01

    Full Text Available A procedure for the spectrophotometric determination of macro amounts of boron in tourmaline with azomethine H is described. The used tourmaline concentrate was obtained by magnetic separation and heavy-liquids purification of the schorl zone of pegmatite or granite aplite. The samples of tourmaline were decomposed by fusion with anhydrous sodium carbonate and taken up in dilute hydrochloric acid. The interfering effects of iron and aluminium were eliminated by masking with an EDTA – NTA solution. After pH adjustment, the boron was reacted with azomethine H and the absorbance of the obtained coloured complex was measured at 415 nm. The results are compared with those obtained by other procedures. The relative error of the determination was less than 3 %.

  1. Pulverization of boron element and proportions of boron carbide in boron

    International Nuclear Information System (INIS)

    Lang, F.M.; Finck, C.

    1956-01-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 μ. Grain sizes smaller than 1μ are required for applying thin layers of such boron. (author) [fr

  2. Reactivity determination of the Al2O3-B4C burnable poison as a function of its concentration in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Giada, Marino Reis

    2005-01-01

    Burnable poison rods made of Al 2 O 3 -B 4 C pellets with different concentrations of 10 B have been manufactured for a set of experiments in the IPEN/MB-01 zero-power reactor. The experiments evaluated the reactivity of the burnable poison rods as a function of the 10 B concentration, and the shadowing effect on the control rod reactivity worth as a function of the distance between the burnable position rods and the control rod. The results showed that the burnable poison rods have a non-linear behavior as function of the 10 B concentration, starting to reach an asymptotic value for concentrations higher than 7 g/cm 3 of 10 B. The shadowing effect on the control rods was substantial. When the burnable poison rods were beside the control rod, its reactivity worth decreased as much as 30 %, and when they were 10,5 cm distant, the control rod worth decreased by 7 %. The MCNP results for the burnable poison reactivity effects agreed within experimental errors with the measured values. (author)

  3. Applying burnable poison particles to reduce the reactivity swing in high temperature reactors with batch-wise fuel loading

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Dam, H. van; Hagen, T.H.J.J. van der

    2003-01-01

    Burnup calculations have been performed on a standard HTR fuel pebble with a radius of 3 cm containing 9 g of 8% enriched uranium and burnable poison particles (BPP) made of B 4 C highly enriched in 10 B. The radius of the BPP and the number of particles per fuel pebble have been varied to find the flattest reactivity-to-time curve. It was found that for a k∞ of 1.1, a reactivity swing as low as 2% can be obtained when each fuel pebble contains about 1070 BPP with a radius of 75 μm. For coated BPP that consist of a graphite kernel with a radius of 300 μm covered with a B 4 C burnable poison layer, a similar value for the reactivity swing can be obtained. Cylindrical particles seem to perform worse. In general, the modification of the geometry of BPP is an effective means to tailor the reactivity curve of HTRs

  4. Shock absorbing structure

    International Nuclear Information System (INIS)

    Kojima, Naoki; Matsushita, Kazuo.

    1992-01-01

    Small pieces of shock absorbers are filled in a space of a shock absorbing vessel which is divided into a plurality of sections by partitioning members. These sections function to prevent excess deformation or replacement of the fillers upon occurrence of falling accident. Since the shock absorbing small pieces in the shock absorbing vessel are filled irregularly, shock absorbing characteristics such as compression strength is not varied depending on the direction, but they exhibit excellent shock absorbing performance. They surely absorb shocks exerted on a transportation vessel upon falling or the like. If existing artificial fillers such as pole rings made of metal or ceramic and cut pieces such as alumium extrusion molding products are used as the shock absorbing pieces, they have excellent fire-proofness and cold resistance since the small pieces are inflammable and do not contain water. (T.M.)

  5. Shock Response of Boron Carbide

    National Research Council Canada - National Science Library

    Dandekar, D. P. (Dattatraya Purushottam)

    2001-01-01

    .... The present work was undertaken to determine tensile/spall strength of boron carbide under plane shock wave loading and to analyze all available shock compression data on boron carbide materials...

  6. Optimization method of rod-type burnable poisons for nuclear designs of HTGRs

    International Nuclear Information System (INIS)

    Yamashita, Kiyonobu

    1994-01-01

    In block-type HTGRs, control rod insertion depths into cores had to be maintained as small as possible at full power operations, to avoid a fuel temperature rise. Thus, specifications (poison atom density (N BP ) and radius (r)) of rod-type burnable poisons (BPs) had to be optimized so that the effective multiplication factor (k eff ) would be constant at a minimum value throughout a planned burnup period. However, the optimization had been a time-consuming work until now since survey calculations had to be done for most possible combinations of N BP and r. To solve this problem, I have found a optimization method consisting of two steps. In the first step, approximation formulas describing a time-dependent relation among effective absorption cross sections (Σ aBP ), N BP and r are used to select promising combinations of N BP and r beforehand. In the second step, the best combination of N BP and r is determined by a comparison between Σ aBP of each promising combination and expected one. The number of survey calculations was reduced to about 1/10 by the optimization method. The change in k eff for 600 burnup days was reduced to 2%Δk by the method. Hence, it was made possible to operate reactors practically without inserting the control rods into cores. (author)

  7. Study of burnable poisons and gadolinium qualification in light water reactors

    International Nuclear Information System (INIS)

    Nasr, Mohamed.

    1981-09-01

    The aim of this work is to develop a calculation procedure for analyzing light water moderated reactors utilizing gadolinium as a burnable poison. The main points of this work can be summarized as follows: the available cross section data of gadolinium were analysed and corrected whenever it was necessary. The processes which include required precautions for obtaining multigroup cross sections were defined; an exhaustive study of the assumptions used in multicell calculation methods allowed the definition of option to be used for obtaining good results without excessive calculation cost. This study was followed by the interpretation of experimental results; when gadolinium is used in grain structure, a problem of double heterogeneity is encountered. A new calculation method was developed for such situations. Its validity was confirmed by a comparison with the Monte Carlo method; the problems encountered in performing a study of burn up of fuel elements containing gadolinium were analysed and the necessary precautions were established. The effect of the initial charge and geometrical form of the gadolinium and the behavior of lattices during the burn up were examined [fr

  8. Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Refeat, Riham Mahmoud [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Safety Engineering Dept.

    2015-12-15

    A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO{sub 2} fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.

  9. Boronated liposome development and evaluation

    International Nuclear Information System (INIS)

    Hawthorne, M.F.

    1995-01-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues

  10. Boron determination in U3O8

    International Nuclear Information System (INIS)

    Ogura, Nadia S.; Sarkis, Jorge E.S.; Rosa, Daniele S.; Ulrich, Joao C.

    2009-01-01

    There exist specifications of the concentration as far the limit of impurities in the used uranium compounds is concerned. Among those impurities the boron element is detached. that in the uranium compounds acts as neutron absorber in nuclear reactions. Therefore, the determination of this element in uranium compounds, it is fundamental for the quality and performance of the nuclear fuels. However, the determination of this element is many times prejudiced by the presence of the uranium. For solving this problem, it is performed a chemical separation of the uranium (matrix) out of the interest. The most used methods to accomplish that separation are the solvent extraction and the ion exchange. In this work, the boron concentration will be done through the ion exchange technique, using polypropylene columns and Dowex AG 50W - X8 100-200 mesh cation resin in chloricide medium 0.25 M. The boron concentration will be determined through high resolution inductive coupling plasma mass spectrometry (HRICP-MS)

  11. Implantation of boron in silicon

    International Nuclear Information System (INIS)

    Hofker, W.K.

    1975-01-01

    The distribution versus depth of boron implanted in silicon and the corresponding electrical activity obtained after annealing are studied. The boron distributions are measured by secondary-ion mass spectrometry. Boron distributions implanted at energies in the range from 30 keV to 800 keV in amorphous and polycrystalline silicon are analysed. Moments of these distributions are determined by a curve-fitting programme and compared with moments calculated by Winterbon. Boron distributions obtained by implantations along a dense crystallographic direction in monocrystalline silicon are found to have penetrating tails. After investigation of some possible mechanisms of tail formation it is concluded that the tails are due to channelling. It was found that the behaviour of boron during annealing is determined by the properties of three boron fractions consisting of precipitated boron, interstitial boron and substitutional boron. The electrical activity of the boron versus depth is found to be consistent with the three boron fractions. A peculiar redistribution of boron is found which is induced by the implantation of a high dose of heavy ions and subsequent annealing. Different mechanisms which may cause the observed effects, such as thermal diffusion which is influenced by lattice strain and damage, are discussed. (Auth.)

  12. Investigation into boron reaction with titanium at extreme temperature gradients

    International Nuclear Information System (INIS)

    Korchagin, M.A.; Gusenko, S.N.; Aleksandrov, V.V.; Neronov, V.A.

    1981-01-01

    The mechanism of self-propagation high-temperature synthesis of titanium boride is studied using the translucent electron microscopy. Titanium interaction with boron film (approximately 1000 A thick) starts with the metal partial melting. A twozone layer of the reaction products, separating the reagents, is formed. In the zone adjacent to B, Ti 3 B 4 and fusible liquid phases are present. The second zone consists of TiB. The subsequent interaction is realized by Means of the dissolving and absorption by titanium of the layer of products during its continuous increase in boron. TiB 2 formation takes place at subsequent stages of interaction inside Ti liquid particles during their saturation by boron from the products absorbed [ru

  13. Study and optimization of the carbothermic reduction process for obtaining boron carbide

    International Nuclear Information System (INIS)

    Castro, A.R.M. de.

    1989-01-01

    Boron carbide - B sub(4)C - is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Moreover, its high neutron capture cross section makes it suitable for application as neutron absorber in nuclear technology. The process for obtaining carbothermally derived boron carbide has been studied in two steps: firstly, the parameters of the boric acid → boron oxide dehydration reaction have been defined; secondly, the optimization of the carbothermal reduction reaction using boron oxide has been undertaken looking for boron carbide having low level of free carbon. The starting materials as well as the main products have been studied by chemical and spectrographic analyses, X-ray diffractometry, granulometric classification and scanning electron microscopy. The optimization of the carbothermic reduction process allowed for the development and set up of a fabrication procedure yielding high quality B sub(4) C powders, starting from low cost and easily available (in the Brazilian market) raw materials. (author)

  14. Spectrophotometric determination of boron by solvent extraction with 2-hydroxy-2-methylbutyric acid and malachite green

    International Nuclear Information System (INIS)

    Sato, Shigeya; Uchikawa, Sumio

    1984-01-01

    A very simple and sensitive method for the spectrophotometric determination of boron was developed. Boron was found to react with 2-hydroxy-2-methylbutyric acid in weak acidic aqueous solution at room temperature to form a complex anion which can be extracted into chlorobenzene with malachite green in a single extraction; boron is determined indirectly by measuring the absorbance of malachite green in the extract at 629 nm. The calibration graph is linear over the range (7.50 x 10 -7 - 2.00 x 10 -5 ) mol dm -3 boron; the apparent molar absorptivity is 6.50 x 10 4 dm 3 mol -1 cm -1 . The method is applied to the determination of micro amounts of boron in natural waters with satisfactory results. (author)

  15. Spectrophotometric determination of boron by solvent extraction with 2-hydroxy-2-methylbutyric acid and malachite green

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shigeya; Uchikawa, Sumio [Kumamoto Univ. (Japan). Faculty of Education

    1984-03-01

    A very simple and sensitive method for the spectrophotometric determination of boron was developed. Boron was found to react with 2-hydroxy-2-methylbutyric acid in weak acidic aqueous solution at room temperature to form a complex anion which can be extracted into chlorobenzene with malachite green in a single extraction; boron is determined indirectly by measuring the absorbance of malachite green in the extract at 629 nm. The calibration graph is linear over the range (7.50 x 10/sup -7/ - 2.00 x 10/sup -5/) mol dm/sup -3/ boron; the apparent molar absorptivity is 6.50 x 10/sup 4/ dm/sup 3/ mol/sup -1/ cm/sup -1/. The method is applied to the determination of micro amounts of boron in natural waters with satisfactory results.

  16. Analytical methods for the determination of boron in reactor materials programme

    International Nuclear Information System (INIS)

    Chitre, R.S.; Joshi, V.R.; Iyer, C.S.P.

    1983-01-01

    Spectrophotometric methods of determination of boron based on the complexation reaction between boric acid and protonated curcumin are briefly reviewed. Direct determination of boron in heavy water, plant leaves, copper and its alloys, and aluminium and its alloys using a modified method of Hayes and Metcalfe is described. A method for determination of boron, when its content is very low as in case of uranium metal, diuranate, uranium oxide and thorium nitrate, is also described. In this method, boron is first separated as methyl borate by distillation of the sample with methanol in acid media. The distilled ester is absorbed by hydroxide solution and boron is analysed after removal of methanol. The precision obtained is indicated. (M.G.B.)

  17. Thermoelectric properties of boron and boron phosphide CVD wafers

    Energy Technology Data Exchange (ETDEWEB)

    Kumashiro, Y.; Yokoyama, T.; Sato, A.; Ando, Y. [Yokohama National Univ. (Japan)

    1997-10-01

    Electrical and thermal conductivities and thermoelectric power of p-type boron and n-type boron phosphide wafers with amorphous and polycrystalline structures were measured up to high temperatures. The electrical conductivity of amorphous boron wafers is compatible to that of polycrystals at high temperatures and obeys Mott`s T{sup -{1/4}} rule. The thermoelectric power of polycrystalline boron decreases with increasing temperature, while that of amorphous boron is almost constant in a wide temperature range. The weak temperature dependence of the thermal conductivity of BP polycrystalline wafers reflects phonon scattering by grain boundaries. Thermal conductivity of an amorphous boron wafer is almost constant in a wide temperature range, showing a characteristic of a glass. The figure of merit of polycrystalline BP wafers is 10{sup -7}/K at high temperatures while that of amorphous boron is 10{sup -5}/K.

  18. Microdosimetry for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Maughan, R.L.; Kota, C.

    2000-01-01

    The specific aims of the research proposal were as follows: (1) To design and construct small volume tissue equivalent proportional counters for the dosimetry and microdosimetry of high intensity thermal and epithermal neutron beams used in BNCT, and of modified fast neutron beams designed for boron neutron capture enhanced fast neutron therapy (BNCEFNT). (2) To develop analytical methods for estimating the biological effectiveness of the absorbed dose in BNCT and BNCEFNT based on the measured microdosimetric spectra. (3) To develop an analytical framework for comparing the biological effectiveness of different epithermal neutron beams used in BNCT and BNCEFNT, based on correlated sets of measured microdosimetric spectra and radiobiological data. Specific aims (1) and (2) were achieved in their entirety and are comprehensively documented in Jay Burmeister's Ph.D. dissertation entitled ''Specification of physical and biologically effective absorbed dose in radiation therapies utilizing the boron neutron capture reaction'' (Wayne State University, 1999). Specific aim (3) proved difficult to accomplish because of a lack of sufficient radiobiological data

  19. Neutronic analysis of absorbing materials for the control rod system in reactor ALLEGRO

    Energy Technology Data Exchange (ETDEWEB)

    Cajko, Frantisek; Secansky, Michal; Chrebet, Tomas; Zajac, Radoslav; Darilek, Petr [VUJE, a.s., Trnava (Slovakia)

    2016-09-15

    Experimental reactor ALLEGRO is a gas cooled fast reactor in the design stage. The current design of its reactivity control system is based on control rods filled with boron carbide as the absorber. Because of disadvantages connected to high boron enrichment a possibility of using other absorbent materials was explored to lower the boron enrichment and increase the worth of the control rods. The results of neutronic Monte-Carlo analyses in a computational supercell are presented in this paper. Three absorbent materials most suitable for a use in reactor ALLEGRO (B{sub 4}C, EuB{sub 6} and ReB{sub 2}) have been analysed also in a full core model. A possible benefit of a neutron trap concept is explored as well but materials with satisfactory neutronic properties proved to be not suitable for expected high temperatures in the reactor.

  20. Methods for absorbing neutrons

    Science.gov (United States)

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  1. Neutron absorbing article and method for manufacture thereof

    International Nuclear Information System (INIS)

    Forsyth, P.F.; Mcmurtry, C.H.; Naum, R.G.

    1980-01-01

    A composite, neutron absorbing, coated article, suitable for installation in storage racks for spent nuclear fuel and for other neutron absorbing applications, includes a backing member, preferably of flexible material such as woven fiberglass cloth, a synthetic organic polymeric coating or a plurality of such coatings on the backing member, preferably of cured phenolic resin, such as phenol formaldehyde or trimethylolphenol formaldehyde and boron carbide particles held to the backing member by the cured coating or a plurality of such coatings. Also within the invention is a method for the manufacture of the neutron absorbing coated article and the use of such an article. In a preferred method the backing member is first coated on both sides thereof with a filling coating of thermosettable liquid phenolic resin, which is then partially cured to solid state, one side of the backing member is then coated with a mixture of thermosettable liquid resin and finely divided boron carbide particles and the resin is partially cured to solid state, the other side is coated with a similar mixture, larger boron carbide particles are applied to it and the resin is partially cured to solid state, such side of the article is coated with thermosettable liquid phenolic resin, the resin is partially cured to solid state and such resin, including previously applied partially cured resins, is cured to final cross-linked and permanently set form

  2. Hydraulic shock absorbers

    International Nuclear Information System (INIS)

    Thatcher, G.; Davidson, D. F.

    1984-01-01

    A hydraulic shock absorber of the dash pot kind for use with electrically conducting liquid such as sodium, has magnet means for electro magnetically braking a stream of liquid discharged from the cylinder. The shock absorber finds use in a liquid metal cooled nuclear reactor for arresting control rods

  3. A New Boron Analysis Method

    Energy Technology Data Exchange (ETDEWEB)

    Weitman, J; Daaverhoeg, N; Farvolden, S

    1970-07-01

    In connection with fast neutron (n, {alpha}) cross section measurements a novel boron analysis method has been developed. The boron concentration is inferred from the mass spectrometrically determined number of helium atoms produced in the thermal and epithermal B-10 (n, {alpha}) reaction. The relation between helium amount and boron concentration is given, including corrections for self shielding effects and background levels. Direct and diffusion losses of helium are calculated and losses due to gettering, adsorption and HF-ionization in the release stage are discussed. A series of boron determinations is described and the results are compared with those obtained by other methods, showing excellent agreement. The lower limit of boron concentration which can be measured varies with type of sample. In e.g. steel, concentrations below 10-5 % boron in samples of 0.1-1 gram may be determined.

  4. Application of a hybrid method based on the combination of genetic algorithm and Hopfield neural network for burnable poison placement

    International Nuclear Information System (INIS)

    Khoshahval, F.; Fadaei, A.

    2012-01-01

    Highlights: ► The performance of GA, HNN and combination of them in BPP optimization in PWR core are adequate. ► It seems HNN + GA arrives to better final parameter value in comparison with the two other methods. ► The computation time for HNN + GA is higher than GA and HNN. Thus a trade-off is necessary. - Abstract: In the last decades genetic algorithm (GA) and Hopfield Neural Network (HNN) have attracted considerable attention for the solution of optimization problems. In this paper, a hybrid optimization method based on the combination of the GA and HNN is introduced and applied to the burnable poison placement (BPP) problem to increase the quality of the results. BPP in a nuclear reactor core is a combinatorial and complicated problem. Arrangement and the worth of the burnable poisons (BPs) has an impressive effect on the main control parameters of a nuclear reactor. Improper design and arrangement of the BPs can be dangerous with respect to the nuclear reactor safety. In this paper, increasing BP worth along with minimizing the radial power peaking are considered as objective functions. Three optimization algorithms, genetic algorithm, Hopfield neural network optimization and a hybrid optimization method, are applied to the BPP problem and their efficiencies are compared. The hybrid optimization method gives better result in finding a better BP arrangement.

  5. Implementation of strength pareto evolutionary algorithm II in the multiobjective burnable poison placement optimization of KWU pressurized water reactor

    International Nuclear Information System (INIS)

    Gharari, Rahman; Poursalehi, Navid; Abbasi, Mohmmadreza; Aghale, Mahdi

    2016-01-01

    In this research, for the first time, a new optimization method, i.e., strength Pareto evolutionary algorithm II (SPEA-II), is developed for the burnable poison placement (BPP) optimization of a nuclear reactor core. In the BPP problem, an optimized placement map of fuel assemblies with burnable poison is searched for a given core loading pattern according to defined objectives. In this work, SPEA-II coupled with a nodal expansion code is used for solving the BPP problem of Kraftwerk Union AG (KWU) pressurized water reactor. Our optimization goal for the BPP is to achieve a greater multiplication factor (K-e-f-f) for gaining possible longer operation cycles along with more flattening of fuel assembly relative power distribution, considering a safety constraint on the radial power peaking factor. For appraising the proposed methodology, the basic approach, i.e., SPEA, is also developed in order to compare obtained results. In general, results reveal the acceptance performance and high strength of SPEA, particularly its new version, i.e., SPEA-II, in achieving a semioptimized loading pattern for the BPP optimization of KWU pressurized water reactor

  6. Implementation of strength pareto evolutionary algorithm II in the multiobjective burnable poison placement optimization of KWU pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gharari, Rahman [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Poursalehi, Navid; Abbasi, Mohmmadreza; Aghale, Mahdi [Nuclear Engineering Dept, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    In this research, for the first time, a new optimization method, i.e., strength Pareto evolutionary algorithm II (SPEA-II), is developed for the burnable poison placement (BPP) optimization of a nuclear reactor core. In the BPP problem, an optimized placement map of fuel assemblies with burnable poison is searched for a given core loading pattern according to defined objectives. In this work, SPEA-II coupled with a nodal expansion code is used for solving the BPP problem of Kraftwerk Union AG (KWU) pressurized water reactor. Our optimization goal for the BPP is to achieve a greater multiplication factor (K-e-f-f) for gaining possible longer operation cycles along with more flattening of fuel assembly relative power distribution, considering a safety constraint on the radial power peaking factor. For appraising the proposed methodology, the basic approach, i.e., SPEA, is also developed in order to compare obtained results. In general, results reveal the acceptance performance and high strength of SPEA, particularly its new version, i.e., SPEA-II, in achieving a semioptimized loading pattern for the BPP optimization of KWU pressurized water reactor.

  7. SU-F-T-140: Assessment of the Proton Boron Fusion Reaction for Practical Radiation Therapy Applications Using MCNP6

    Energy Technology Data Exchange (ETDEWEB)

    Adam, D; Bednarz, B [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: The proton boron fusion reaction is a reaction that describes the creation of three alpha particles as the result of the interaction of a proton incident upon a 11B target. Theoretically, the proton boron fusion reaction is a desirable reaction for radiation therapy applications in that, with the appropriate boron delivery agent, it could potentially combine the localized dose delivery protons exhibit (Bragg peak) and the local deposition of high LET alpha particles in cancerous sites. Previous efforts have shown significant dose enhancement using the proton boron fusion reaction; the overarching purpose of this work is an attempt to validate previous Monte Carlo results of the proton boron fusion reaction. Methods: The proton boron fusion reaction, 11B(p, 3α), is investigated using MCNP6 to assess the viability for potential use in radiation therapy. Simple simulations of a proton pencil beam incident upon both a water phantom and a water phantom with an axial region containing 100ppm boron were modeled using MCNP6 in order to determine the extent of the impact boron had upon the calculated energy deposition. Results: The maximum dose increase calculated was 0.026% for the incident 250 MeV proton beam scenario. The MCNP simulations performed demonstrated that the proton boron fusion reaction rate at clinically relevant boron concentrations was too small in order to have any measurable impact on the absorbed dose. Conclusion: For all MCNP6 simulations conducted, the increase of absorbed dose of a simple water phantom due to the 11B(p, 3α) reaction was found to be inconsequential. In addition, it was determined that there are no good evaluations of the 11B(p, 3α) reaction for use in MCNPX/6 and further work should be conducted in cross section evaluations in order to definitively evaluate the feasibility of the proton boron fusion reaction for use in radiation therapy applications.

  8. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  9. Boron supplementation in broiler diets

    Directory of Open Access Journals (Sweden)

    EJ Fassani

    2004-12-01

    Full Text Available Boron supplementation in broiler feed is not a routine practice. However, some reports suggest a positive effect of boron on performance. This study assessed the effects of boron supplementation on broiler performance. Diets were based on maize and soybean meal, using boric acid P.A. as boron source. Six supplementation levels (0, 30, 60, 90, 120 and 150 ppm were evaluated using 1,440 one-day old males housed at a density of 30 chickens in each of 48 experimental plots of 3m². A completely randomized block design was used with 8 replicates. Feed intake, weight gain and feed conversion were assessed in the periods from 1 to 7 days, 1 to 21 days and 1 to 42 days of age, and viability was evaluated for the total 42-day rearing period. No performance variable was affected by boron supplementation (p>0.05 in the period from 1 to 7 days. The regression analysis indicated an ideal level of 37.4 ppm of boron for weight gain from 1 to 21 days (p0.05, although feed intake was reduced linearly with increased boron levels (p0.05. Ash and calcium percentages in the tibias of broilers and viability in the total rearing period were not affected by boron supplementation (p>0.05.

  10. Boron isotope separation by ion exchange chromatography using weakly basic anion exchange resin

    International Nuclear Information System (INIS)

    Sakuma, Yoichi; Aida, Masao; Okamoto, Makoto; Kakihana, Hidetake

    1980-01-01

    Isotopic plateau displacement chromatography, a useful method for isotope separation is presented. The boric acid band formed in a column of weakly basic anion exchange resin Diaion WA21 can be eluted with pure water. In order to obtain good accumulation of the isotope effect, a series of experiments with different migration length were carried out. The boron-10 enriched part of the boric acid absorbed band was always preceded by the isotopic plateau part, in which the atomic fraction of boron-10 was maintained at its original value. The atomic fraction of boron-10 at the end of the chromatogram increased with migration length, and in the case of 256-m migration, boron-10 was enriched from its original atomic fraction of 19.84 to 91.00%, the separation factor S being constant irrespective of migration length: S = 1.0100 +- 0.0005. (author)

  11. Effect of the complementary anions on the balance of calcium and boron in soil and plant

    Energy Technology Data Exchange (ETDEWEB)

    El-Damaty, A; El-Hamid, W A; El-Sherbeni, A E; El-Mowelhi,; Hossein, M A

    1974-05-01

    Different calcium salts and varying levels of boron were used in pot experiments with broad beans. High solubility Ca salts produced relatively lower soil pH than very low solubility Ca salts. Low solubility Ca salts slightly promote B retention as long as they increased soil pH. High Ca content in beans and high Ca/B ratios in soil are produced by very soluble Ca salts. B content of the plants depends on the amount of Ca absorbed and the B level in the soil, irrespective of any other factors studied. The presence of some Ca salts masked Boron toxicity symptoms. CO/sub 3/ anions in calcareous soils may play a role in boron deficiency or toxicity. Application of nitrogenous fertilizers may reduce injurious effect of excessive B content in soil, unlike phosphate fertilizers which may accentuate the boron toxicity problem. 14 references, 1 table.

  12. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Louise G., E-mail: evanslg@ornl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Swinhoe, Martyn T.; Menlove, Howard O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Schwalbach, Peter; Baere, Paul De [European Commission, Euratom Safeguards Office (Luxembourg); Browne, Michael C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-11-21

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd{sub 2}O{sub 3}) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available {sup 241}AmLi (α,n) interrogation source strength of 5.7×10{sup 4} s{sup −1}. Furthermore, the calibration range of the new collar has been extended to verify {sup 235}U content in variable PWR fuel

  13. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    International Nuclear Information System (INIS)

    Evans, Louise G.; Swinhoe, Martyn T.; Menlove, Howard O.; Schwalbach, Peter; Baere, Paul De; Browne, Michael C.

    2013-01-01

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd 2 O 3 ) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available 241 AmLi (α,n) interrogation source strength of 5.7×10 4 s −1 . Furthermore, the calibration range of the new collar has been extended to verify 235 U content in variable PWR fuel designs in the presence of up to

  14. The incorporation of boron in fissile transport packages for the transport and interim storage of irradiated light water reactor fuels

    International Nuclear Information System (INIS)

    Hunter, I.J.

    1998-01-01

    Boron is widely used in the nuclear industry for capturing neutrons and it is particularly useful in the criticality control of packages for the transport and interim storage of irradiated light water reactor fuels. Such fuels are typically located in an internal frame of stainless steel or aluminium, referred to as a basket, which locates the fuel assemblies in channels. Transnucleaire has designed and supplied more than 100 baskets of varying types during the past 30 years. Boron has been incorporated in many forms. Early designs of baskets used boron in specific zones to contribute to the control of criticality. Later developments in new materials dispersed boron throughout the basket and gave designers more options for the basic forms which make up the channels. New basket concepts have been developed by Transnucleaire to meet the changing market needs for transport and interim storage and boron continues to play an important role as an efficient thermal neutron absorber. (author)

  15. A neutron-absorbing porcelain enamel for coating nuclear equipment

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1988-01-01

    In 1985, nuclear safety analyses showed that under upset conditions, strict administrative controls were necessary to limit access to a new processing vessel for enriched uranium service at the Savannah River Plant (SRP). In order to increase the level of nuclear safety associated with that vessel, the traditional methods of incorporating neutron absorbers (borated stainless steel, boral, cadmium foil, etc.) were reviewed, however, process conditions did not permit their use. A neutron-absorbing porcelain enamel containing large amounts of cadmium and boron was developed as a safe, cost-effective alternative to traditional neutron-absorbing methods. Several pieces of coated process equipment have been installed or are planned for installation at SRP

  16. Boron atom reactions

    International Nuclear Information System (INIS)

    Estes, R.; Tabacco, M.B.; Digiuseppe, T.G.; Davidovits, P.

    1982-01-01

    The reaction rates of atomic boron with various epoxides have been measured in a flow tube apparatus. The bimolecular rate constants, in units of cm 3 molecule -1 s -1 , are: 1,2-epoxypropane (8.6 x 10 -11 ), 1,2-epoxybutane (8.8 x 10 -11 ), 1,2,3,4-diepoxybutane (5.5 x 10 -11 ), 1-chloro-2,3-epoxypropane (5.7 x 10 -11 ), and 1,2-epoxy-3,3,3-trichloropropane (1.5 x 10 -11 ). (orig.)

  17. Effect of Burnable Absorbers on Inert Matrix Fuel Performance and Transuranic Burnup in a Low Power Density Light-Water Reactor

    Directory of Open Access Journals (Sweden)

    Geoff Recktenwald

    2013-04-01

    Full Text Available Zirconium dioxide has received particular attention as a fuel matrix because of its ability to form a solid solution with transuranic elements, natural radiation stability and desirable mechanical properties. However, zirconium dioxide has a lower coefficient of thermal conductivity than uranium dioxide and this presents an obstacle to the deployment of these fuels in commercial reactors. Here we show that axial doping of a zirconium dioxide based fuel with erbium reduces power peaking and fuel temperature. Full core simulations of a modified AP1000 core were done using MCNPX 2.7.0. The inert matrix fuel contained 15 w/o transuranics at its beginning of life and constituted 28% of the assemblies in the core. Axial doping reduced power peaking at startup by more than ~23% in the axial direction and reduced the peak to average power within the core from 1.80 to 1.44. The core was able to remain critical between refueling while running at a simulated 2000 MWth on an 18 month refueling cycle. The results show that the reactor would maintain negative core average reactivity and void coefficients during operation. This type of fuel cycle would reduce the overall production of transuranics in a pressurized water reactor by 86%.

  18. Mechanical shock absorber

    International Nuclear Information System (INIS)

    Vrillon, Bernard.

    1973-01-01

    The mechanical shock absorber described is made of a constant thickness plate pierced with circular holes regularly distributed in such a manner that for all the directions along which the strain is applied during the shock, the same section of the substance forming the plate is achieved. The shock absorber is made in a metal standing up to extensive deformation before breaking, selected from a group comprising mild steels and austenitic stainless steels. This apparatus is used for handling pots of fast neutron reactor fuel elements [fr

  19. Enriched boric acid as an optimized neutron absorber in the EPR primary coolant

    International Nuclear Information System (INIS)

    Cosse, Christelle; Jolivel, Fabienne; Berger, Martial

    2012-09-01

    This paper focuses on one of the most important EPR PWR reactor design optimizations, through primary coolant conditioning by enriched boric acid (EBA). On PWRs throughout the world, boric acid has already been implemented in primary coolant and associated auxiliary systems for criticality control, due to its high Boron 10 neutron absorption cross section. Boric acid also allows primary coolant pH 300C control in combination with lithium hydroxide in many PWRs. The boric acid employed in the majority of existing PWRs is the 'natural' one, with a typical isotopic atomic abundance in Boron 10 about 19.8 at.%. However, EPR requirements for neutron management are more important, due to its fully optimized design compared to older PWRs. From the boron point of view, it means that criticality could be controlled either by increased 'natural' Boron concentrations or by using EBA. Comparatively to 'natural' boric acid, EBA allows for: - the use of smaller storage volumes for an identical total Boron concentration, or lower total Boron concentration if the tank volumes are kept identical. The latter also reduces the risks of boric acid crystallization, in spite of increased neutron-absorbing properties - the application of an evolutionary chemistry operating regime called Advanced pH Control, making it possible to maintain a constant pH 300C value at 7.2 in the primary coolant at nominal conditions throughout entire cycles. This optimized stability of pH 300C will contribute to reduce the consequences of contamination of the reactor coolant system by corrosion products, and consequently, all related issues - the reduction of borated liquid wastes, thanks to maximal recycling resulting from EPR design. The increased design costs associated with EBA are consequently compensated by a reduced total consumption of this chemical. Therefore, the basic design choice for the EPR is the use of EBA. For the Flamanville 3 EPR, according to the above

  20. Separation process for boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, S D

    1975-06-12

    The method according to the invention is characterized by the steps of preparing a gaseous mixture of BCl/sub 3/ containing the isotopes of boron and oxygen as the extractor, irradiating that mixture in the tube of the separator device by means of P- or R-lines of a CO/sub 2/ laser for exciting the molecules containing a given isotope of boron, simultaneously irradiating the mixture with UV for photodissociating the excited BCl/sub 3/ molecules and separating BCl/sub 3/ from the reaction products of photodissociation and from oxygen. Such method is suitable for preparing boron used in nuclear reactors.

  1. Lattice dynamics of α boron and of boron carbide

    International Nuclear Information System (INIS)

    Vast, N.

    1999-01-01

    The atomic structure and the lattice dynamics of α boron and of B 4 C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In α boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B 4 C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  2. Nothing Boring About Boron

    Science.gov (United States)

    Pizzorno, Lara

    2015-01-01

    The trace mineral boron is a micronutrient with diverse and vitally important roles in metabolism that render it necessary for plant, animal, and human health, and as recent research suggests, possibly for the evolution of life on Earth. As the current article shows, boron has been proven to be an important trace mineral because it (1) is essential for the growth and maintenance of bone; (2) greatly improves wound healing; (3) beneficially impacts the body’s use of estrogen, testosterone, and vitamin D; (4) boosts magnesium absorption; (5) reduces levels of inflammatory biomarkers, such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor α (TNF-α); (6) raises levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase; (7) protects against pesticide-induced oxidative stress and heavy-metal toxicity; (8) improves the brains electrical activity, cognitive performance, and short-term memory for elders; (9) influences the formation and activity of key biomolecules, such as S-adenosyl methionine (SAM-e) and nicotinamide adenine dinucleotide (NAD+); (10) has demonstrated preventive and therapeutic effects in a number of cancers, such as prostate, cervical, and lung cancers, and multiple and non-Hodgkin’s lymphoma; and (11) may help ameliorate the adverse effects of traditional chemotherapeutic agents. In none of the numerous studies conducted to date, however, do boron’s beneficial effects appear at intakes > 3 mg/d. No estimated average requirements (EARs) or dietary reference intakes (DRIs) have been set for boron—only an upper intake level (UL) of 20 mg/d for individuals aged ≥ 18 y. The absence of studies showing harm in conjunction with the substantial number of articles showing benefits support the consideration of boron supplementation of 3 mg/d for any individual who is consuming a diet lacking in fruits and vegetables or who is at risk for or has osteopenia; osteoporosis

  3. Low Absorbance Measurements

    Science.gov (United States)

    Harris, T. D.; Williams, A. M.

    1983-10-01

    The application of low absorption measurements to dilute solute determination requires specific instrumental characteristics. The use of laser intracavity absorption and thermal lens calorimetry to measure concentration is shown. The specific operating parameters that determine sensitivity are delineated along with the limits different measurement strategies impose. Finally areas of improvement in components that would result in improve sensitivity, accuracy, and reliability are discussed. During the past decade, a large number of methods have been developed for measuring the light absorbed by transparent materials. These include measurements on gases, liquids, and solids. The activity has been prompted by a variety of applications and a similar variety of disciplines. In Table 1 some representative examples of these methods is shown along with their published detection limits.1 It is clear that extraordinarily small absorbances can be measured. Most of the methods can be conveniently divided into two groups. These groups are those that measure the transmission of the sample and those that measure the light absorbed by the sample. The light absorbed methods are calorimetric in character. The advantages and disadvantages of each method varies depending on the principal application for which they were developed. The most prevalent motivation has been to characterize the bulk optical properties of transparent materials. Two examples are the development of extremely transparent glasses for use as fiber optic materials and the development of substrates for high power laser operation.

  4. Boronization in TEXTOR

    International Nuclear Information System (INIS)

    Winter, J.; Esser, H.G.; Koenen, L.; Reimer, H.; Seggern, J. v.; Schlueter, J.; Waelbroeck, F.; Wienhold, P.; Veprek, S.

    1989-01-01

    The liner and limiters of TEXTOR have been coated in situ with a boron containing carbon film using a RG discharge in a throughflow of 0.8 He + 0.1 B 2 H 6 + 0.1 CH 4 . The average film thickness was 30-50 nm, the ratio of boron and carbon in the layer was about 1:1 according to Auger Electron Spectroscopy. Subsequent tokamak discharges are characterized by a small fraction of radiated power ( eff lower than 1.2 are derived from conductivity measurements. The most prominent change in the impurity concentration compared to good conditions in a carbonized surrounding is measured for oxygen. The value OVI/anti n e of the OVI intensity normalized to the averaged plasma density anti n e decreases by more than a factor of four. The decrease in the oxygen content manifests itself also as a reduction of the CO and CO 2 partial pressures measured during and after the discharge with a sniffer probe. The carbon levels are reduced by a factor of about two as measured by the normalized intensity CII/anti n e of the CII line and via the ratio of the C fluxes and deuterium fluxed measured at the limiter (CI/D α ). The wall shows a pronounced sorption of hydrogen from the plasma, easing the density control and the establishment of low recycling conditions. The beneficial conditions did not show a significant deterioration during more than 200 discharges, including numerous shots at ICRH power levels >2 MW. (orig.)

  5. Note on boron toxicity in oats

    Energy Technology Data Exchange (ETDEWEB)

    Langille, W M; Mahoney, J F

    1959-01-01

    Boron was applied at the rate of 35 pounds per acre of borax to a field of oats. With the first noticeable growth there appeared a definite chlorotic condition of the oat seedlings on plots receiving boron treatments. Analysis of chlorotic tissue at 3 weeks after seeding indicated 110 ppm boron, while apparently healthy tissue contained 6.1 ppm boron at the same stage of growth. There was a rapid decline in the boron content of the oat tissue as the crop grew older. At maturity the oat tissue from the boron-treated plots contained an average of 14.15 ppm boron as compared with 4.10 boron from untreated areas. Boron toxicity had no harmful effect so far as yields were concerned, under the conditions of this experiment. 3 references.

  6. Method for producing polycrystalline boron nitride

    International Nuclear Information System (INIS)

    Alexeevskii, V.P.; Bochko, A.V.; Dzhamarov, S.S.; Karpinos, D.M.; Karyuk, G.G.; Kolomiets, I.P.; Kurdyumov, A.V.; Pivovarov, M.S.; Frantsevich, I.N.; Yarosh, V.V.

    1975-01-01

    A mixture containing less than 50 percent of graphite-like boron nitride treated by a shock wave and highly defective wurtzite-like boron nitride obtained by a shock-wave method is compressed and heated at pressure and temperature values corresponding to the region of the phase diagram for boron nitride defined by the graphite-like compact modifications of boron nitride equilibrium line and the cubic wurtzite-like boron nitride equilibrium line. The resulting crystals of boron nitride exhibit a structure of wurtzite-like boron nitride or of both wurtzite-like and cubic boron nitride. The resulting material exhibits higher plasticity as compared with polycrystalline cubic boron nitride. Tools made of this compact polycrystalline material have a longer service life under impact loads in machining hardened steel and chilled iron. (U.S.)

  7. Metal interactions with boron clusters

    International Nuclear Information System (INIS)

    Grimes, R.N.

    1982-01-01

    This book presents information on the following topics: the structural and bonding features of metallaboranes and metallacarboranes; transition-metal derivatives of nido-boranes and some related species; interactions of metal groups with the octahydrotriborate (1-) anion, B 3 H 8 ; metallaboron cage compounds of the main group metals; closo-carborane-metal complexes containing metal-carbon and metal-boron omega-bonds; electrochemistry of metallaboron cage compounds; and boron clusters with transition metal-hydrogen bonds

  8. Characterization of plastic and boron carbide additive manufactured neutron collimators

    Science.gov (United States)

    Stone, M. B.; Siddel, D. H.; Elliott, A. M.; Anderson, D.; Abernathy, D. L.

    2017-12-01

    Additive manufacturing techniques allow for the production of materials with complicated geometries with reduced costs and production time over traditional methods. We have applied this technique to the production of neutron collimators for use in thermal and cold neutron scattering instrumentation directly out of boron carbide. We discuss the design and generation of these collimators. We also provide measurements at neutron scattering beamlines which serve to characterize the performance of these collimators. Additive manufacturing of parts using neutron absorbing material may also find applications in radiography and neutron moderation.

  9. Adjustable Shock Absorbers

    OpenAIRE

    Adamiec, Radek

    2012-01-01

    Bakalářská práce obsahuje přehled používaných tlumičů osobních automobilů, závodních automobilů a motocyklů. Jsou zde popsány systémy t lumením, konstrukce tlumičů a vidlic používaných u motocyklů. Dále je zde přehled prvků používaných u podvozků automobilů. This bachelor´s thesis contains the survey of the shock absorbers of passenger cars, racing cars and motorcycles. Are described damping systems, the design used shock absorbers and forks for motorcycles. Then there is the list of the e...

  10. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  11. Kinetic energy absorbing pad

    International Nuclear Information System (INIS)

    Bricmont, R.J.; Hamilton, P.A.; Ming Long Ting, R.

    1981-01-01

    Reactors, fuel processing plants etc incorporate pipes and conduits for fluids under high pressure. Fractures, particularly adjacent to conduit elbows, produce a jet of liquid which whips the broken conduit at an extremely high velocity. An enormous impact load would be applied to any stationary object in the conduit's path. The design of cellular, corrugated metal impact pads to absorb the kinetic energy of the high velocity conduits is given. (U.K.)

  12. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  13. PWR boron dilution transients. Thermal-hydraulic analyses of PKL-E experiments

    International Nuclear Information System (INIS)

    Pietro Alessandro Di Maio; Antonino Tomasello; Giuseppe Vella

    2005-01-01

    refilling. The reflux condenser phase could produce a different amount of un-borated water in the pump loop seals and a different boron concentration in the RPV according to the actual boron concentration in the primary coolant at incident start, that is a function of burnup. Moreover, since other parameters are directly correlated with core burnup (e.g.: the amount of burnable and permanent poisons) their effects have been investigated on a postulated SBLOCA starting from different initial core conditions. The analyses performed show that in the case of a SBLOCA, the break section area and the HPIS flow injection rate could affect the instant in which natural circulation stops, the reflux condenser time phase length and, consequently, the amount of low borated water that gathers in the pump loop seals. The analyses also show that during reflux condenser phase the condensate inside the loop seals is actual composed of low borated water and the boron concentration inside the reactor core can increase reaching very high values. Nevertheless the formation of un-borated water slugs is interfered by the injection of borated water which, partially, heads for the loop seal where it mixes with the un-borated water descending from the steam generator U tubes. The analyses show that after shut down of the system the core reactivity keep on going down because of the increase in core poisons, in particular Xe and Sm. When the primary system refilling allows natural circulation starting again an increase in the core reactivity is registered, due to the cold and low borated coolant that reaches the core from the pump seals. In all examined cases the total core reactivity never became positive and consequently it seems that boron dilution events during SBLOCA does not cause serious core damage. (authors)

  14. PWR boron dilution transients. Thermal-hydraulic analyses of PKL-E experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pietro Alessandro Di Maio; Antonino Tomasello; Giuseppe Vella [Dipartimento di Ingegneria Nucleare, Viale delle Scienze, 90128 Palermo (Italy)

    2005-07-01

    refilling. The reflux condenser phase could produce a different amount of un-borated water in the pump loop seals and a different boron concentration in the RPV according to the actual boron concentration in the primary coolant at incident start, that is a function of burnup. Moreover, since other parameters are directly correlated with core burnup (e.g.: the amount of burnable and permanent poisons) their effects have been investigated on a postulated SBLOCA starting from different initial core conditions. The analyses performed show that in the case of a SBLOCA, the break section area and the HPIS flow injection rate could affect the instant in which natural circulation stops, the reflux condenser time phase length and, consequently, the amount of low borated water that gathers in the pump loop seals. The analyses also show that during reflux condenser phase the condensate inside the loop seals is actual composed of low borated water and the boron concentration inside the reactor core can increase reaching very high values. Nevertheless the formation of un-borated water slugs is interfered by the injection of borated water which, partially, heads for the loop seal where it mixes with the un-borated water descending from the steam generator U tubes. The analyses show that after shut down of the system the core reactivity keep on going down because of the increase in core poisons, in particular Xe and Sm. When the primary system refilling allows natural circulation starting again an increase in the core reactivity is registered, due to the cold and low borated coolant that reaches the core from the pump seals. In all examined cases the total core reactivity never became positive and consequently it seems that boron dilution events during SBLOCA does not cause serious core damage. (authors)

  15. Indirect photometric detection of boron cluster anions electrophoretically separated in methanol.

    Science.gov (United States)

    Vítová, Lada; Fojt, Lukáš; Vespalec, Radim

    2014-04-18

    3,5-Dinitrobenzoate and picrate are light absorbing anions pertinent to indirect photometric detection of boron cluster anions in buffered methanolic background electrolytes (BGEs). Tris(hydroxymethyl)aminomethane and morpholine have been used as buffering bases, which eliminated baseline steps, and minimized the baseline noise. In methanolic BGEs, mobilities of boron cluster anions depend on both ionic constituents of the BGE buffer. This dependence can be explained by ion pair interaction of detected anions with BGE cations, which are not bonded into ion pairs with the BGE anions. The former ion pair interaction decreases sensitivity of the indirect photometric detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  17. Shock absorber in Ignalina NPP

    International Nuclear Information System (INIS)

    Bulavas, A.; Muralis, J.

    1996-09-01

    Theoretical calculation and experimental analysis of models of shock absorber in Ignalina NPP is presented. The results obtained from the investigation with model of shock absorber coincide with the theoretical calculation. (author). 2 figs., 3 refs

  18. Absorber for terahertz radiation management

    Science.gov (United States)

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  19. Discrimination of various contributions to the absorbed dose in BNCT: Fricke-gel imaging and intercomparison with other experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G. E-mail: grazia.gambarini@mi.infn.it; Agosteo, S.; Marchesi, P.; Nava, E.; Palazzi, P.; Pecci, A.; Rosi, G.; Tinti, R

    2000-11-15

    A method is described for the 3D measurements of absorbed dose in a ferrous sulphate gel phantom, exposed in the thermal column of a nuclear reactor. The method, studied for Boron Neutron Capture Therapy (BNCT) purposes, allows absorbed dose imaging and profiling, with the separation of different contributions coming from different secondary radiations, generated from thermal neutrons. In fact, the biological effectiveness of the different radiations is different. Tests with conventional dosimeters were performed too.

  20. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  1. Feynman Integrals with Absorbing Boundaries

    OpenAIRE

    Marchewka, A.; Schuss, Z.

    1997-01-01

    We propose a formulation of an absorbing boundary for a quantum particle. The formulation is based on a Feynman-type integral over trajectories that are confined to the non-absorbing region. Trajectories that reach the absorbing wall are discounted from the population of the surviving trajectories with a certain weighting factor. Under the assumption that absorbed trajectories do not interfere with the surviving trajectories, we obtain a time dependent absorption law. Two examples are worked ...

  2. Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Yilmaz, M. Tolga; Kocakerim, M. Muhtar

    2005-01-01

    In this study, boron removal from boron-containing wastewaters prepared synthetically was investigated. The experiments in which Amberlite IRA 743, boron specific resin was used were carried out in a column reactor. The bed volume of resin, boron concentration, flow rate and temperature were selected as experimental parameters. The experimental results showed that percent of boron removal increased with increasing amount of resin and with decreasing boron concentration in the solution. Boron removal decreased with increasing of flow rate and the effect of temperature on the percent of total boron removal increased the boron removal rate. As a result, it was seen that about 99% of boron in the wastewater could be removed at optimum conditions

  3. 3M"T"M neutron quench. Compounds with substantial water solubility and boron content

    International Nuclear Information System (INIS)

    Cook, Kevin S.; Blake, Alex B.; Neef, C. Jody

    2014-01-01

    Of the two naturally occurring isotopes of boron ("1"1B 80%, "1"0B 20%), "1"0B is a good neutron absorber with a thermal neutron absorption cross section of ∼3800 barns. The ability to absorb thermal neutrons while producing benign reaction products makes boron an ideal atom to aid in the control and arrest of the fission reaction in nuclear power reactors. In current practice, boric acid and sodium pentaborate are commonly used as neutron absorbers in the water regime of active and passive safety systems. 3M"T"M Neutron Quench compounds have been developed to be applied in situations where criticality control needs exceed normal control methods. In this type of situation these compounds have several advantages over commonly used neutron absorbers like boric acid: Boron Content; compounds contain up to 80 wt% boron compared to 16 wt% for boric acid and sodium pentaborate. Solubility; >16 g B/100 g solution compared to 0.6 g B/100 g solution for boric acid at 25°C. pH neutrality; compounds demonstrate pH neutrality even in concentrated solutions. Thermal Stability; Compounds are stable as solids at temperatures greater than 500°C. Corrosiveness; Electrochemical corrosion rate studies have indicated that these compounds are significantly less corrosive than boric acid. Use of 3M"T"M Neutron Quench can lead to reduction in emergency shutdown pool size, reduce or remove the necessity for pool heating and heat tracing of lines, allow for more rapid introduction of the absorber in emergency situations or be used in other applications where significant neutron control is necessary. (author)

  4. Solar radiation absorbing material

    Science.gov (United States)

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  5. Thermal Evaluation of Storage Rack with an Advanced Neutron Absorber during Normal Operation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee-Jae; Kim, Mi-Jin; Sohn, Dong-Seong [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    The storage capacity of the domestic wet storage site is expected to reach saturation from Hanbit in 2024 to Sin-wolseong in 2038 and accordingly management alternatives are urgently taken. Since installation of the dense rack is considered in the short term, it is necessary to urgently develop an advanced neutron absorber which can be applied to a spent nuclear fuel storage facility. Neutron absorber is the material for controlling the reactivity. A material which has excellent thermal neutron absorption ability, high strength and corrosion resistance must be selected as the neutron absorber. Existing neutron absorbers are made of boron which has a good thermal absorption ability such as BORAL and METAMIC. However, possible problems have been reported in using the boron-based neutron absorber for wet storage facility. Gadolinium is known to have higher neutron absorption cross-section than that of boron. And the strength of duplex stainless steel is about 1.5 times higher than stainless steel 304 which has been frequently used as a structural material. Therefore, duplex stainless steel which contains gadolinium is in consideration as an advanced neutron absorber. Temperature distribution is shown in figure 4. In pool bottom region near the inlet shows a relatively low tendency and heat generated from the fuel assemblies is transmitted to the pool upper region by the vertical flow. Also, temperature gradient appear in rack structures for the axial direction and temperature is uniformly distributed in the pool upper region. Table 1 presents the calculated results. The maximum temperature is 306.63K and does not exceed the 333.15K (60℃). The maximum temperature of the neutron absorber is 306.48K.

  6. Lattice vibrations in α-boron

    International Nuclear Information System (INIS)

    Richter, W.

    1976-01-01

    α-rhombohedral boron is the simplest boron modification, with only 12 atoms per unit cell. The boron atoms are arranged in B 12 icosahedra, which are centered at the lattice points of a primitive rhombohedral lattice. The icosahedra are slightly deformed, as the five-fold symmetry of the ideal icosahedron is incompatible with any crystal structure. The lattice dynamics of α-boron are discussed in terms of the model developed by Weber and Thorpe. (Auth.)

  7. Spectrophotometric determination of microamounts of boron in water

    International Nuclear Information System (INIS)

    Weber de D'Alessio, Ana; Guido, O.O.; Bandin, N.A.

    1980-01-01

    A fast method of boron in water determination has been studied for the 0.5 .- 2 μg ml -1 concentration range. The procedure is based on the formation of a coloured complex of the tetrafluoroborate of a thionine derivate cation, its extraction by an organic solvent and the further absorptiometric measurement in such media. Methylene blue and azur C were comparatively tested as organic reagents, with 1.2-dichloroethane as the extractant. The absorbance was measured at the maximum (658 nm). The tetrafluoroboric acid formation was reached in 20 min on a water-bath kept at 60 deg C. The sensitivity with methylene blue was higher than with azur C. The molar absorptivities were 65,000 and 38,000 (l mol -1 cm -1 ) respectively. For a boron concentration of 0.1 μg ml -1 the relative standard deviation was 9% for methylene blue and 7% for azur C. The procedure is applicable to the control of boron traces in heavy water of nuclear reactors refrigerating loops. (author) [es

  8. New approaches to novel boronated porphyrins for neutron capture therapy

    International Nuclear Information System (INIS)

    Kahl, S.B.

    1986-01-01

    The use of boon compounds in the treatment of human cancer is based on the unique ability of nonradioactive 10 B nuclei to absorb thermal neutrons. The prompt nuclear reactions, which occur in neutron absorption, deliver a dose of nearly 2.8 MeV only in the vicinity of boron-containing cells, since the nuclear garments produced (alpha particles and recoil lithium atoms) travel only 10 to 15 μm. The practical, clinical use of this technique to date has been limited by the authors inability to target boron-containing compounds specifically to tumor cells in amounts sufficient for therapy and in a chemical form that has an acceptable level of toxicity. Porphyrins are one important and large class of compounds that are known to accumulate in practically all tumor systems yet examined. Such site-specific accumulation is not known to be based on any currently identifiable selective transport mechanism and yet is observed for both natural and synthetic porphyrins. Tetraphenylporphine sulfonate (TPPS) has been shown by Fairchild et al. to be an ideal model compound for assessing porphyrin uptake, and suitably boronated tetraphenyl porphine might be expected to behave similarly. This report describes the synthesis, properties, and preliminary biodistribution of such compounds

  9. Neutron absorber qualification and acceptance testing from the designer's perspective

    International Nuclear Information System (INIS)

    Bracey, W.; Chiocca, R.

    2004-01-01

    Starting in the mid 1990's, the USNRC began to require less than 100% credit for the 10B present in fixed neutron absorbers spent fuel transport packages. The current practice in the US is to use only 75% of the specified 10B in criticality safety calculations unless extensive acceptance testing demonstrates both the presence of the 10B and uniformity of its distribution. In practice, the NRC has accepted no more than 90% credit for 10B in recent years, while other national competent authorities continue to accept 100%. More recently, with the introduction of new neutron absorber materials, particularly aluminum / boron carbide metal matrix composites, the NRC has also expressed expectations for qualification testing, based in large part on Transnuclear's successful application to use a new composite material in the TN-68 storage / transport cask. The difficulty is that adding more boron than is really necessary to a metal has some negative effects on the material, reducing the ductility and the thermal conductivity, and increasing the cost. Excessive testing requirements can have the undesired effect of keeping superior materials out of spent fuel package designs, without a corresponding justification based on public safety. In European countries and especially in France, 100% credit has been accepted up to now with materials controls specified in the Safety Analysis Report (SAR): Manufacturing process approved by qualification testing Materials manufacturing controlled under a Quality Assurance system. During fabrication, acceptance testing directly on products or on representative samples. Acceptance criteria taking into account a statistical uncertainty corresponding to 3σ. The original and current bases for the reduced 10 B credit, the design requirements for neutron absorber materials, and the experience of Transnuclear and Cogema Logistics with neutron absorber testing are examined. Guidelines for qualification and acceptance testing and process controls

  10. Application of the boron neutron capture therapy to undifferentiated thyroid cancer using two boron compounds (BPA and BOPP)

    International Nuclear Information System (INIS)

    Viaggi, Mabel; Dagrosa, Maria A.; Juvenal, Guillermo J.; Pisarev, Mario A.; Longhino, Juan M.; Blaumann, Hernan R.; Calzetta Larrieu, Osvaldo A.; Kahl, Stephen B.

    2004-01-01

    We have shown the selective uptake of boronophenylalanine (BPA) by undifferentiated thyroid cancer (UTC) human cell line ARO, both in vitro and in vivo. Moreover, a 50% histologic cure of mice bearing the tumor was observed when the complete boron neutron capture therapy was applied. More recently we have analyzed the biodistribution of BOPP (tetrakis-carborane carboxylate ester of 2,4-bis-(ba-dihydroxyethyl)-deutero-porphyrin IX) and showed that when BOPP was injected 5 days before BPA, and the animals were sacrificed 60 min after the ip injection of BPA, a significant increase in boron uptake by the tumor was found (38-45ppm with both compounds Vs. 20 ppm with BPA alone). Five days post the ip BOPP injection and 1 hr after BPA, the ratios were: tumor/blood 3,75; tumor /distal skin 2. Other important ratios were tumor/thyroid 6,65 and tumor/lung 3,8. The present studies were performed in mice transplanted with ARO cells and injected with BOPP and BPA. Only in mice treated with the neutron beam and injected with the boronated compounds we observed a 100% control of tumor growth. Two groups of mice received different total absorbed doses: 3.00 and 6.01 Gy, but no further improvement in the outcome was found compared to the previous results using BPA alone (4.3 Gy). (author)

  11. Chamber with punches made from polycrystal cubic boron nitrides for Moessbauer study at high hydrostatic pressure

    International Nuclear Information System (INIS)

    Kapitanov, E.V.; Yakovlev, E.N.

    1978-01-01

    The design of a high hydrostatic pressure chamber with polycrystallic boron nitride dies weakly absorbing gamma radiation with energies of more than 14 keV is described. The use of this material permits to investigate single- and polycrystal bodies using the Moessbauer effect when the geometry of the experiment remains unchanged and the hydrostatic pressure is up to 70 kbar. The basic units of the chamber are a teflon capsule placed in a container made of a pressed boron and epoxide resin mixture, electric inputs and a die of polycrystal cubic boron nitride. The pressure is transferred to the sample tested through a liquid (petrol or the 4 to 1 mixture of methanole and ethanole) which does not become solid at a pressure below 37 kbar. Basic dimensions of the chamber are given and the dependence of the pressure in the capsule on the force applied to the chamber is also presented

  12. Recombination methods for boron neutron capture therapy dosimetry

    International Nuclear Information System (INIS)

    Golnik, N.; Tulik, P.; Zielczynski, M.

    2003-01-01

    The radiation effects of boron neutron capture therapy (BNCT) are associated with four-dose-compartment radiation field - boron dose (from 10 B(n,α) 7 Li) reaction), proton dose from 14 N(n,p) 14 C reaction, neutron dose (mainly fast and epithermal neutrons) and gamma-ray dose (external and from capture reaction 1 H(n,γ) 2 D). Because of this the relation between the absorbed dose and the biological effects is very complex and all the above mentioned absorbed dose components should be determined. From this point of view, the recombination chambers can be very useful instruments for characterization of the BNCT beams. They can be used for determination of gamma and high-LET dose components for the characterization of radiation quality of mixed radiation fields by recombination microdosimetric method (RMM). In present work, a graphite high-pressure recombination chamber filled with nitrogen, 10 BF 3 and tissue equivalent gas was used for studies on application of RMM for BNCT dosimetry. The use of these gases or their mixtures opens a possibility to design a recombination chamber for determination of the dose fractions due to gamma radiation, fast neutrons, neutron capture on nitrogen and high LET particles from (n, 10 B) reaction in simulated tissue with different content of 10 B. (author)

  13. New Icosahedral Boron Carbide Semiconductors

    Science.gov (United States)

    Echeverria Mora, Elena Maria

    Novel semiconductor boron carbide films and boron carbide films doped with aromatic compounds have been investigated and characterized. Most of these semiconductors were formed by plasma enhanced chemical vapor deposition. The aromatic compound additives used, in this thesis, were pyridine (Py), aniline, and diaminobenzene (DAB). As one of the key parameters for semiconducting device functionality is the metal contact and, therefore, the chemical interactions or band bending that may occur at the metal/semiconductor interface, X-ray photoemission spectroscopy has been used to investigate the interaction of gold (Au) with these novel boron carbide-based semiconductors. Both n- and p-type films have been tested and pure boron carbide devices are compared to those containing aromatic compounds. The results show that boron carbide seems to behave differently from other semiconductors, opening a way for new analysis and approaches in device's functionality. By studying the electrical and optical properties of these films, it has been found that samples containing the aromatic compound exhibit an improvement in the electron-hole separation and charge extraction, as well as a decrease in the band gap. The hole carrier lifetimes for each sample were extracted from the capacitance-voltage, C(V), and current-voltage, I(V), curves. Additionally, devices, with boron carbide with the addition of pyridine, exhibited better collection of neutron capture generated pulses at ZERO applied bias, compared to the pure boron carbide samples. This is consistent with the longer carrier lifetimes estimated for these films. The I-V curves, as a function of external magnetic field, of the pure boron carbide films and films containing DAB demonstrate that significant room temperature negative magneto-resistance (> 100% for pure samples, and > 50% for samples containing DAB) is possible in the resulting dielectric thin films. Inclusion of DAB is not essential for significant negative magneto

  14. Boron steel. I Part. Preparation

    International Nuclear Information System (INIS)

    Jaraiz Franco, E.; Esteban Hernandez, J. A.

    1960-01-01

    With the advent of the first nuclear reactors arise the need for control rods and shielding duties for some types of radiations. One of the materials used for this purpose has been the high boron steel. This paper describes the melting and casting procedures employed for the production, at laboratory scale, of steels with Boron content ranging from 1 to 4 per cent, as well as the metallographic and X-Ray techniques used for the identification of the present phases. The electrolytic technique employed for the isolation of the Fe 2 B phase and its subsequent X-Ray identification has proved to be satisfactory. (Author) 11 refs

  15. Chemical separation of boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF/sub 3/ gas and the liquid molecular addition compounds of BF/sub 3/. Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF/sub 3/ solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references.

  16. Chemical separation of boron isotopes

    International Nuclear Information System (INIS)

    Palko, A.A.

    1978-06-01

    This is the final report of the research performed at ORNL on the chemical fractionation of boron isotopes between BF 3 gas and the liquid molecular addition compounds of BF 3 . Thirty compounds were studied, ten of them in detail. Graphs and equations are given for variation of isotopic equilibrium constant, vapor pressure, and BF 3 solubility as a function of temperature. Rate of isotopic exchange and melting points were determined. Several of the compounds are likely candidates for use in a gas-liquid countercurrent exchange system for large-scale separation of boron isotopes. 23 figs, 53 tables, 39 references

  17. Compatibility of heat resistant alloys with boron carbide, 5

    International Nuclear Information System (INIS)

    Baba, Shinichi; Kurasawa, Toshimasa; Endow, Taichi; Someya, Hiroyuki; Tanaka, Isao.

    1986-08-01

    This paper includes an experimental result of out-of-pile compatibility and capsule design for irradiation test in Japan Materials Testing Reactor (JMTR). The compatibility between sheath material and neutron absorber materials for control rod devices (CRD) was examined for potential use in a very high temperature reactor (VHTR) which is under development at JAERI. The purpose of the compatibility tests are preliminary evaluation of safety prior to irradiation tests. Preliminary compatibility evaluation was concerned with three items as follows : 1) Lithium effects on the penetrating reaction of Incoloy 800H alloy in contact with a mixture of boronated graphite and lithium hydroxide powders, 2) Short term tensile properties of Incoloy 800H and Hastelloy XR alloy reacted with boronated graphite and fracture mode analysis, 3) Reaction behavior of both alloys under transient power conditions of a VHTR. It was clear that the reaction rate constant of the Incoloy 800H alloy was accelerated by doping lithium hydroxide into the boron carbide and graphite powder. The mechanical properties of Incoloy 800H and Hastelloy XR alloy reacted with boronated graphite were decreased. Ultimate tensile strength and tensile ductilities at temperatures over 850 deg C were reduced, but there was no change in the proof (yield) stress. Both alloys exhibited a brittle intergranular fracture mode during transient power conditions of a VHTR and also exhibited severe penetration. Irradiation capsules for compatibility test were designed to simulate three irradiation conditions of VHTR: 1) steady state for VHTR, 2) Transient power condition, 3) Service limited life of CRD. Capsule irradiation experiments have been carried out satisfactorily and thus confirm the validity of the capsule design procedure. (author)

  18. Spectrophotometric determination of boron by solvent extraction with hydrobenzoin and crystal violet

    International Nuclear Information System (INIS)

    Sato, Shigeya; Uchikawa, Sumio

    1982-01-01

    A highly sensitive and simple method for the spectrophotometric determination of boron was developed. Boron was found to react with hydrobenzoin in weak alkaline medium to form a complex anion extractable into benzene with crystal violet, and the measurement of the absorbance of crystal violet in the extract at 600 nm enabled the determination of boron indirectly. The recommended procedure is as follows: Take an aliquot of the boron solution (2.0 x 10 - 4 mol l - 1 ) into a 10-ml test tube. Add 1 ml of carbonate buffer solution (pH 9.4) and 0.25 ml of crystal violet solution (1.0 x 10 - 2 mol l - 1 ), and dilute the mixed solution to 4 ml with deionized water. Shake the solution with 4 ml of benzene solution containing hydrobenzoin (2.0 x 10 - 2 mol l - 1 ) for 2 min. Measure the absorbance of the organic phase at 600 nm using a 10-mm glass cell against benzene. The calibration curve obeyed Beer's law on the concentration range from 2.5 x 10 - 6 mol l - 1 to 2.5 x 10 - 5 mol l - 1 of boron, and the apparent molar absorptivity was 3.0 x 10 4 l mol - 1 cm - 1 at 20 0 C. It was found that many kinds of co-existing ions interfered with the determination. However, this method was applicable to the determination of boron in sea water when chloride ion and cations such as Ca(II) and Mg(II) were previously eliminated by treating the sample solution with Ag 2 O and cation exchanger resin. The proposed method is a very simple and rapid one, because this method does not require apparatus other than common laboratories and the evaporation to dryness of sample or removal of the excess of reagent. (author)

  19. Two-channel neutron boron meter

    International Nuclear Information System (INIS)

    Chen Yongqing; Yin Guowei; Chai Songshan; Deng Zhaoping; Zhou Bin

    1993-09-01

    The two-channel neutron boron meter is a continuous on-line measuring device to measure boron concentration of primary cooling liquid of reactors. The neutron-leakage-compensation method is taken in the measuring mechanism. In the primary measuring configuration, the mini-boron-water annulus and two-channel and central calibration loop are adopted. The calibration ring and constant-temperature of boron-water can be remotely controlled by secondary instruments. With the microcomputer data processing system the boron concentration is automatically measured and calibrated in on-line mode. The meter has many advantages such as high accuracy, fast response, multi-applications, high reliability and convenience

  20. Metamaterial electromagnetic wave absorbers.

    Science.gov (United States)

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J

    2012-06-19

    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Boron-enhanced diffusion of boron from ultralow-energy boron implantation

    International Nuclear Information System (INIS)

    Agarwal, A.; Eaglesham, D.J.; Gossmann, H.J.; Pelaz, L.; Herner, S.B.; Jacobson, D.C.

    1998-01-01

    The authors have investigated the diffusion enhancement mechanism of BED (boron enhanced diffusion), wherein the boron diffusivity is enhanced three to four times over the equilibrium diffusivity at 1,050 C in the proximity of a silicon layer containing a high boron concentration. It is shown that BED is associated with the formation of a fine-grain polycrystalline silicon boride phase within an initially amorphous Si layer having a high B concentration. For 0.5 keV B + , the threshold implantation dose which leads to BED lies between 3 x 10 14 and of 1 x 10 15 /cm -2 . Formation of the shallowest possible junctions by 0.5 keV B + requires that the implant dose be kept lower than this threshold

  2. The Effect of Nitrogen Application on Boron Toxicity Reduction in Pistachio (Pistacia vera cv. Badami-Zarand Saplings

    Directory of Open Access Journals (Sweden)

    babak motesharezadeh

    2017-02-01

    was used because it is one of the most important pistachio cultivars. The seeds were soaked in water for 24 hours and disinfected by benomyl fungicide. When the seeds germinated, they were planted in the pots containing 4.5 kg soil and without drainage, so nutrients balance was kept during growing period. After 7 months, the seedlings were harvested and B was measured. Results and Discussion: The results showed that increasing the boron levels from 0 to 30 mg kg-1 led to decrease shoot dry weight from 3.72 to 2.45 gram and root DM from 2.28 to 1.50 gram. Increasing 30 mg kg-1 boron led to 2.8 times increase of shoot boron concentration. The averages of shoot boron concentration in the levels of 15 and 30 mg kg-1 boron were 87.6 and 122 mg kg-1DM, respectively. The boron toxicity level in Badami-Zarand cultivar is 8.9 mg kg-1 DM (Sepaskhahet al, 1994, so these levels were the cause of boron toxicity and boron toxicity symptoms were seen as leaf burn, often at the margins and the tips of older leaves. The results showed that increasing nitrogen levels led to decrease shoot boron concentration and increase their weight. The results also showed a significant negative correlation between the nitrogen levels and boron uptake. Boron uptake in the shoots of seedlings about 13.5 and 30.2 percent decreased when nitrogen levels increased. Shoot dry weight decreased when boron application increased, but it increased when nitrogen was used (Koohkan and Maftoun, 2009. Conclusion: The reduction of dry weight and increasing boron concentration occurred when increased boron application. The Maximum of boron uptake was seen by leaves, and boron toxicity symptoms were appeared as leaf burn especially at the tips and margins of older leaves. Since, boron is immobile in pistachio; it is absorbed by mass flow, so the accumulation of boron at older leaves is persuaded. Nitrogen reduced the bad effects of boron on dry weight and the bad effects of increasing boron concentration by the

  3. A reactivity hold-down strategy for soluble boron free operation by introducing Pu-238 added fuel

    International Nuclear Information System (INIS)

    Kim, Soon Young; Kim, Jong Kyung

    2000-01-01

    A new concept of Pu-238 added fuel is introduced to control the reactivity and power distribution in soluble boron free (SBF) pressurized water reactor (PWR) core. Though extensive use of burnable poison and control rods is inevitable for reactivity suppression in SBF core, it causes the core power distribution control to be so difficult that a practical SBF operation is far distant. In this work, it is confirmed that the excess reactivity can be greatly suppressed by introducing the Pu-238 added fuel. As a result of the conceptual core design of the 600 MWe SBF PWR using Pu-238 added fuel, the core reactivity is well controlled in comparison with the results obtained from the earlier 600 MWe SBF core design works. Especially, the axial power shape control is performed successfully with the aid of simple axial zoning scheme, developed in this study, by using Pu-238 enrichment zoning. The Pu-238 added fuel is also tested for 1300 MWe SBF PWR core design, in which the power distribution control can be more difficult than that of smaller plants if soluble boron control is not available. The results show that the core excess reactivity and the power distribution can be well controlled without using soluble boron even in a large-sized PWR. Hence, one of the difficult control problems arising in SBF core design can be greatly mitigated by introducing the new fuel concept. It is further expected that the Pu-238 added fuel, the simple axial zoning scheme, and the control bank operation strategy introduced in this study are directly applicable to practical SBF core design

  4. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction ...

  5. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.

    1997-01-01

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO 2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  6. Structural characterization of electrodeposited boron

    Indian Academy of Sciences (India)

    high temperature reaction between elemental boron and car- bon to form B4C is .... cible was used as the container for the electrolyte and also acted as an anode. ... chosen as cathode due to its availability, low cost, ease of fabrication and ...

  7. Reflection measurements of microwave absorbers

    Science.gov (United States)

    Baker, Dirk E.; van der Neut, Cornelis A.

    1988-12-01

    A swept-frequency interferometer is described for making rapid, real-time assessments of localized inhomogeneities in planar microwave absorber panels. An aperture-matched exponential horn is used to reduce residual reflections in the system to about -37 dB. This residual reflection is adequate for making comparative measurements on planar absorber panels whose reflectivities usually fall in the -15 to -25 dB range. Reflectivity measurements on a variety of planar absorber panels show that multilayer Jaumann absorbers have the greatest inhomogeneity, while honeycomb absorbers generally have excellent homogeneity within a sheet and from sheet to sheet. The test setup is also used to measure the center frequencies of resonant absorbers. With directional couplers and aperture-matched exponential horns, the technique can be easily applied in the standard 2 to 40 GHz waveguide bands.

  8. Aperiodic-metamaterial-based absorber

    Directory of Open Access Journals (Sweden)

    Quanlong Yang

    2017-09-01

    Full Text Available The periodic-metamaterial-based perfect absorber has been studied broadly. Conversely, if the unit cell in the metamaterial-based absorber is arranged aperiodically (aperiodic-metamaterial-based absorber, how does it perform? Inspired by this, here we present a systematic study of the aperiodic-metamaterial-based absorber. By investigating the response of metamaterial absorbers based on periodic, Fibonacci, Thue-Morse, and quasicrystal lattices, we found that aperiodic-metamaterial-based absorbers could display similar absorption behaviors as the periodic one in one hand. However, their absorption behaviors show different tendency depending on the thicknesses of the spacer. Further studies on the angle and polarization dependence of the absorption behavior are also presented.

  9. Boron-11 MRI and MRS of intact animals infused with a boron neutron capture agent

    International Nuclear Information System (INIS)

    Kabalka, G.W.; Davis, M.; Bendel, P.

    1988-01-01

    Boron neutron capture therapy (BNCT) depends on the delivery of boron-containing drugs to a targeted lesion. Currently, the verification and quantification of in vivo boron content is a difficult problem. Boron-11 spectroscopy was utilized to confirm the presence of a dimeric sulfhydryl dodecaborane BNCT agent contained in an intact animal. Spectroscopy experiments revealed that the decay time of transverse magnetization of the boron-11 spins was less than 1 ms which precluded the use of a 2DFT imaging protocol. A back-projection protocol was developed and utilized to generate the first boron-11 image of a BNCT agent in the liver of an intact Fisher 344 rat

  10. Thermal expansion measurements on boron carbide and europium sesquioxide by laser interferometry

    International Nuclear Information System (INIS)

    Preston, S.D.

    1980-01-01

    A laser interferometer technique for measuring the absolute linear thermal expansion of small annular specimens is described. Results are presented for unirradiated boron carbide (B 4 C) and europia (Eu 2 O 3 ) up to 1000 0 C. Both compounds are neutron-absorbing materials of potential use in fast-reactor control rods and data on their thermophysical properties, in particular linear thermal expansion, are essential to the control rod designers. (author)

  11. Boron carbide nanostructures: A prospective material as an additive in concrete

    Science.gov (United States)

    Singh, Paviter; Kaur, Gurpreet; Kumar, Rohit; Kumar, Umesh; Singh, Kulwinder; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Kumar, Akshay

    2018-05-01

    In recent decades, manufacture and ingestion of concrete have increased particularly in developing countries. Due to its low cost, safety and strength, concrete have become an economical choice for protection of radiation shielding material in nuclear reactors. As boron carbide has been known as a neutron absorber material makes it a great candidate as an additive in concrete for shielding radiation. This paper presents the synthesis of boron carbide nanostructures by using ball milling method. The X-ray diffraction pattern, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope analysis confirms the formation of boron carbide nanostructures. The effect of boron carbide nanostructures on the strength of concrete samples was demonstrated. The compressive strength tests of concrete cube B4C powder additives for 0 % and 5 % of total weight of cement was compared for different curing time period such as 7, 14, 21 and 28 days. The high compressive strength was observed when 5 wt % boron carbide nanostructures were used as an additive in concrete samples after 28 days curing time and showed significant improvement in strength.

  12. Recycling behaviour during long pulse discharges after ICRF boronization in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Huang, J.; Wan, B.N.; Li, J.G.; Gong, X.Z.; Zhang, X.D.; Wu, Z.W.; Zhou, Q.

    2006-01-01

    The evolution of recycling behaviour has been investigated during long pulse discharges in the HT-7 tokamak after ICRF boronization (C 2 B 10 H 12 ) using the H/(H+D) ratio and the edge recycling coefficient R. After boronization, impurity reduction is observed, attributed to the fresh boron film, but the recycling coefficient can exceed unity due to a large amount of hydrogen absorbed in the film, leading to an uncontrollable density rise and discharge termination. When the H/(H+D) ratio was reduced to less than 25%, the electron density was easily controlled. The longest discharge, up to 240 s with central electron temperature T e (0) of about 1.0 keV and central electron density n e (0) of 0.8 x 10 19 m -3 , was achieved following boronization. After many discharges the effectiveness of boron film was weakened, and the density rise was correlated with an increase in both carbon and oxygen radiation which limited the duration of long pulse discharges

  13. Addition of soluble and insoluble neutron absorbers to the reactor coolant system of TMI-2

    International Nuclear Information System (INIS)

    Hansen, R.F.; Silverman, J.; Queen, S.P.; Ryan, R.F.; Austin, W.E.

    1984-07-01

    The physical and chemical properties of six elements were studied and combined with cost estimates to determine the feasibility of adding them to the TMI-2 reactor coolant to depress k/sub eff/ to less than or equal to 0.95. Both soluble and insoluble forms of the elements B, Cd, Gd, Li, Sm, and Eu were examined. Criticality calculations were performed by Oak Ridge National Laboratory to determine the absorber concentration required to meet the 0.95 k/sub eff/ criterion. The conclusion reached is that all elements with the exception of boron have overriding disadvantages which preclude their use in this reactor. Solubility experiments in the reactor coolant show that boron solubility is the same as that of boron in pure aqueous solutions of sodium hydroxide and boric acid; consequently, solubility is not a limiting factor in reaching the k/sub eff/ criterion. Examination of the effect of pH on sodium requirements and costs for processing to remove radionuclides revealed a sharp dependence; small decreases in pH lead to a large decrease in both sodium requirements and processing costs. Boron addition to meet any contemplated reactor safety requirements can be accomplished with existing equipment; however, this addition must be made with the reactor coolant system filled and pressurized to ensure uniform boron concentration

  14. Study of extraction-spectrophotometric micro-determination of boron with methylene blue and its application

    International Nuclear Information System (INIS)

    Zhu Daohong

    1990-08-01

    A sensitive extraction-spectrophotometric method for microdetermination of boron with methylene blue was investigated. The method was based on the extraction of a BF 4 - -methylene blue complex into dichloroethane. Boron was determined directly by measuring the absorbance at 658 nm. The calibration graph was linear over the range of 2.5 x 10 -9 to 8 x 10 -8 g/mL. The blank, mechanism of the reactions, interference of other ions and some optimum conditions of the method were studied in detail. The main source of the blank resulted from methylene blue and the complex of F - -methylene blue. In order to reduce the blank, the amounts of methylene blue, H 2 SO 4 and HF were used as less as possible. Only one to one complex BF 4 - -methylene blue was formed in the medium of H 2 SO 4 . About 90% of methylene blue and F - -methylene blue complex was removre with 5 ml of water and only a little amount of BF 4 -methylene blue complex was decomposed. The extraction-spectrophotometric method with methylene blue was first applied to the microdetermination of boron in sodium metal and UF 6 . The sample of sodium metal was taken and weighed in the glovebox filled with argon. Then sodium metal was oxidized, hydrolyzed, netralized and fluorizated with H 2 O, H 2 SO 4 and HF, respectively. The 0.5 ppm of boron in sodium metal was determined with a relative error about ±4%. This method can be applied to the determination of boron in sodium metal, sodium sulfate and sodium hydroxide at diffeent grades. The species of boron in the hydrolysate of UF 6 is BF 4 - anion, so the sample can be directly analyzed. Boron contents in the range of 0.1 to 0.5 ppm was determined with a relative error about ±3%. Six samples could be analysed in 2h

  15. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Kumar, N.; Radhika, R.; Kozakov, A.T.; Pandian, R.; Chakravarty, S.; Ravindran, T.R.; Dash, S.; Tyagi, A.K.

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  16. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  17. The estimation of the control rods absorber burn-up during the VVER-1000 operation

    Energy Technology Data Exchange (ETDEWEB)

    Bolshagin, Sergey N.; Gorodkov, Sergey S.; Sukhino-Khomenko, Evgeniya A. [National Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2013-09-15

    The isotopic composition of the control rods absorber changes under the neutron flux influence, so the control rods efficiency can decrease. In the VVER-1000 control rods boron carbide and dysprosium titanate are used as absorbing materials. In boric part the efficiency decreases due to the {sup 10}B isotope burn-up. Dysprosium isotopes turn into other absorbing isotopes, so the absorbing properties of dysprosium part decrease to a lesser degree. Also the control rod's shells may be deformed as a consequence of boron carbide radiation swelling. This fact should be considered in substantiation of control rods durability. For the estimation of the control rods absorber burn-up two models are developed: VVER-1000 3-D fuel assembly with control rods partially immersed (imitation of the control rods operation in the working group) and VVER-1000 3-D fuel assembly with control rods, located at the upper limit switch (imitation of the control rods operation in groups of the emergency shutdown system). (orig.)

  18. Neutron absorbing element

    International Nuclear Information System (INIS)

    Kasai, Shigeo.

    1991-01-01

    The present invention concerns a neutron absorbing element of a neutron shielding member used for an LMFBR type reactor. The inside of a fuel can sealed at both of the upper and the lower ends thereof with plugs is partitioned into an upper and a lower chambers by an intermediate plug. A discharging hole is disposed at the upper end plug, which is in communication with the outside. A communication tube is disposed at the intermediate end plug and it is in communication with the lower chamber containing B 4 C pellets. A cylindrical support member having three porous plugs connected in series is disposed at the lower surface of the discharging hole provided at the upper end plug. Further, the end of the discharging hole is sealed with high temperature solder and He atmosphere is present at the inside of the fuel can. With such a constitution, the supporting differential pressure of the porous plugs can be made greater while discharging He gases generated from B 4 C to the outside. Further, the porous plugs can be surely wetted by coolants. Accordingly, it is possible to increase life time and shorten the size. (I.N.)

  19. The influence of petrography, mineralogy and chemistry on burnability and reactivity of quicklime produced in Twin Shaft Regenerative (TSR) kilns from Neoarchean limestone (Transvaal Supergroup, South Africa)

    Science.gov (United States)

    Vola, Gabriele; Sarandrea, Luca; Della Porta, Giovanna; Cavallo, Alessandro; Jadoul, Flavio; Cruciani, Giuseppe

    2017-12-01

    This study evaluates the influence of chemical, mineralogical and petrographic features of the Neoarchean limestone from the Ouplaas Mine (Griqualand West, South Africa) on its burnability and quicklime reactivity, considering the main use as raw material for high-grade lime production in twin shaft regenerative (TSR) kilns. This limestone consists of laminated clotted peloidal micrite and fenestrate microbial boundstone with herringbone calcite and organic carbon (kerogen) within stylolites. Diagenetic modifications include hypidiotopic dolomite, micrite to microsparite recrystallization, stylolites, poikilotopic calcite, chert and saddle dolomite replacements. Burning and technical tests widely attest that the Neoarchean limestone is sensitive to high temperature, showing an unusual and drastically pronounced sintering or overburning tendency. The slaking reactivity, according to EN 459-2 is high for lime burnt at 1050 °C, but rapidly decreases for lime burnt at 1150 °C. The predominant micritic microbial textures, coupled with the organic carbon, are key-factors influencing the low burnability and the high sintering tendency. The presence of burial cementation, especially poikilotopic calcite, seems to promote higher burnability, either in terms of starting calcination temperature, or in terms of higher carbonate dissociation rate. In fact, the highest calcination velocity determined by thermal analysis is consistent with the highest slaking reactivity of the lower stratum of the quarry, enriched in poikilotopic calcite. Secondly, locally concentered dolomitic marly limestones, and sporadic back shales negatively affects the quicklime reactivity, as well. This study confirms that a multidisciplinary analytical approach is essential for selecting the best raw mix for achieving the highest lime reactivity in TSR kilns.

  20. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  1. Visible light broadband perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O., E-mail: wxo@hit.edu.cn [School of Science, Harbin Institute of Technology, Harbin 150001 (China)

    2016-03-15

    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.

  2. Primary system boron dilution analysis

    International Nuclear Information System (INIS)

    Crump, R.J.; Naretto, C.J.; Borgen, R.A.; Rockhold, H.C.

    1978-01-01

    The results are presented for an analysis conducted to determine the potential paths through which nonborated water or water with insufficient boron concentration might enter the LOFT primary coolant piping system or reactor vessel to cause dilution of the borated primary coolant water. No attempt was made in the course of this analysis to identify possible design modifications nor to suggest changes in administrative procedures or controls

  3. Boron removal from geothermal waters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey); Yilmaz, M. Tolga; Paluluoglu, Cihan [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm{sup 2}, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  4. Boron removal from geothermal waters by electrocoagulation

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar; Yilmaz, M. Tolga; Paluluoglu, Cihan

    2008-01-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm 2 , but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%

  5. Removal of boron (B) from waste liquors.

    Science.gov (United States)

    Jiang, J Q; Xu, Y; Simon, J; Quill, K; Shettle, K

    2006-01-01

    This paper explores the use of electrocoagulation to remove boron from waste effluent in comparison with alum coagulation. In treating model test wastes, greater boron removals were achieved with electrocoagulation at low doses than conventional alum coagulation when reaction was undertaken for the same conditions (pH 8.5, and initial boron concentration was 500 mg/L). Al electrocoagulation can achieve good boron removal performance (68.3%) at a dose of 2.1 (as molar ratio of Al:B, and for current density of 62.1 A/m2), while alum coagulation can only achieve the maximum boron removal of 56% at a dose of 2.4. Also, Al electrocoagulation can remove 15-20% more boron than alum coagulation for the same dose compared in the treatment of both model test wastes and industry effluent. The estimation of running costs shows that to achieve 75% boron removal from industry waste effluent, i.e. removing 150 g of boron from 1 m3 of effluent, electrocoagulation was 6.2 times cheaper than alum coagulation. The economic advantage of electrocoagulation in the treatment of boron-containing waste effluent is thus significant.

  6. A new neutron absorber material for criticality control

    International Nuclear Information System (INIS)

    Wells, Alan H.

    2007-01-01

    A new neutron absorber material based on a nickel metal matrix composite has been developed for applications such as the Transport, Aging, and Disposal (TAD) canister for the Yucca Mountain Project. This new material offers superior corrosion resistance to withstand the more demanding geochemical environments found in a 300,000 year to a million year repository. The lifetime of the TAD canister is currently limited to 10,000 years, reflecting the focus of current regulations embodied in 10 CFR 63. The use of DOE-owned nickel stocks from decommissioned enrichment facilities could reduce the cost compared to stainless steel/boron alloy. The metal matrix composite allows the inclusion of more than one neutron absorber compound, so that the exact composition may be adjusted as needed. The new neutron absorber material may also be used for supplementary criticality control of stored or transported PWR spent fuel by forming it into cylindrical pellets that can be inserted into a surrogate control rod. (authors)

  7. Evaluation of accuracy of Monte Carlo code MVP with VHTRC experiments. Multiplication factor at criticality, burnable poison worth and void worth

    International Nuclear Information System (INIS)

    Nojiri, Naoki; Yamashita, Kiyonobu; Fiujimoto, Nozomu; Nakano, Masaaki , Yamane, Tsuyoshi; Akino, Fujiyoshi.

    1997-11-01

    Experimental data of VHTRC (Very High Temperature Reactor Critical Assembly) were analyzed using Monte Carlo code MVP (general purpose Monte Carlo code of neutron and photon transport calculations based on the continuous energy method). The calculation accuracy of the code was evaluated by the analysis for nuclear characteristics of a HTGR (high temperature gas-cooled reactor). The MVP code can analyze with a detailed three-dimensional core model with a few approximations. The HTGRs have following characteristics from view point of nuclear design : they have burnable poisons, many void holes, namely, the control insertion holes and so on. Taking account of these characteristics, multiplication factor at criticality, burnable poison worth, and void worth were evaluated. The maximum calculation errors were 0.8%Δk, 7%, and 25% respectively, From these results, it can be concluded that the MVP code is able to be applied to the nuclear characteristics analysis of the HTGR like the High Temperature Engineering Test Reactor (HTTR). (author)

  8. Photoelectron antibunching and absorber theory

    International Nuclear Information System (INIS)

    Pegg, D.T.

    1980-01-01

    The recently detected photoelectron antibunching effect is considered to be evidence for the quantised electromagnetic field, i.e. for the existence of photons. Direct-action quantum absorber theory, on the other hand, has been developed on the basis that the quantised field is illusory, with quantisation being required only for atoms. In this paper it is shown that photoelectron antibunching is readily explicable in terms of absorber theory and in fact is directly attributable to the quantum nature of the emitting and detecting atoms alone. The physical nature of the reduction of the wavepacket associated with the detection process is briefly discussed in terms of absorber theory. (author)

  9. Compatibility of heat resistant alloys with boron carbide, (4)

    International Nuclear Information System (INIS)

    Baba, Sinichi; Saruta, Toru; Ooka, Kiichi; Tanaka, Isao; Aoyama, Isao

    1985-07-01

    This paper relates to the compatibility test of control rod sheath (Hastelloy XR alloy) and neutron absorber (boronated graphite) for the VHTR, which has been researched and developed by JAERI. The irradiation was conducted by using the OGL-1 irradiation facility in the JMTR in order to study reaction behaviour between Hastelloy XR alloy and boronated graphite as well as to determine a reaction barrier performance of refractory metal foils Nb, Mo, W and Re. Irradiation conditions were as follows. Neutron dose : 4.05 x 10 22 m -2 (E 18 m -2 (E > 0.16 pJ, 1 Mev). Helium coolant : Average temperature 855 0 C, Pressure 2.94 MPa, Total impurity concentration 400 kBq/m 3 . Irradiation time : 5.0 Ms (1390 hours). Post-irradiation examinations i.e. visual inspection, dimensional inspection, weight measurement, metallography, hardness test, morphological observations by SEM and analysis of element distributions by EPMA were carried out. In the result, reaction products of Hastelloy XR alloy were observed in the ellipsoidal form locally. These results were same as those of the out-of-pile tests. Obvious irradiation effects were not detectable but a little accelarated increase in reaction depth of Hastelloy XR alloy by heat effect of specimens was observed. The refractory metal foils had a good performance of reaction barrier between Hastelloy XR alloy and boronated graphite. Furthermore, movement of Ni, Fe and Cr in the reaction area of Hastelloy XR alloy, difference in the reaction depth of B and C, irradiation effects on diffusion coefficient, lithium production and heat effect are discussed. (author)

  10. A technique to prepare boronated B72.3 monoclonal antibody for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Ranadive, G.N.; Rosenzweig, H.S.; Epperly, M.W.

    1993-01-01

    B72.3 monoclonal antibody has been successfully boronated using mercaptoundecahydro-closo-dodecaborate (boron cage compound). The reagent was incorporated by first reacting the lysine residues of the antibody with m-maleimidobenzoyl succinimide ester (MBS), followed by Michael addition to the maleimido group by the mercapto boron cage compound to form a physiologically stable thioether linkage. Boron content of the antibody was determined by atomic absorption spectroscopy. For biodistribution studies, boronated antibody was radioiodinated with iodogen. 125 I-labeled and boronated B72.3 monoclonal antibody demonstrated clear tumor localization when administered via tail vein injections to athymic nude mice bearing LS174-T tumor xenografts. Boronated antibody was calculated to deliver 10 6 boron atoms per tumor cell. Although this falls short of the specific boron content originally proposed as necessary for boron neutron capture therapy (BNCT), recent calculations suggest that far fewer atoms of 10 B per tumor cell would be necessary to effect successful BNCT when the boron is targeted to the tumor cell membrane. (author)

  11. Automatic chemical analysis of traces of boron in steel

    International Nuclear Information System (INIS)

    Ono, Akihiro; Yamaguchi, Naoharu; Matsumoto, Ryutaro

    1976-01-01

    The analyzer is composed of a sample changer, reagent addition devices, a distillation vessel, a color reaction vessel, a spectrophotometer, a controller, etc. The automatic procedure is performed according to the predetermined distillation and color reaction programs after dissolving 0.5 g of steel sample in aqua regia and fuming with sulfuric acid-phosphoric acid. The sample solution on the sample changer is transferred into the distillation vessel, where boron is distilled with methyl alcohol by heating and aeration. The distillate is collected in the distillate vessel, and a 1/2 aliquot is transferred into the color reaction vessel with small amounts of water. After the addition of glacial acetic acid and propionic anhydride, the distillate is circulated through the circulating pipe which is composed of an air blowing tube, a bubble remover, a flow cell and a drain valve. Oxalyl chloride (to eliminate water), sulfuric acid, the curcumin reagent (to form the boron complex) and an acetate buffer are added, and the absorbance of the solution is measured at 545 nm. The analytical results of steel samples were in good agreement with those obtained by the conventional method and with certified values. (auth.)

  12. Electron microscopy study of radiation effects in boron carbide

    International Nuclear Information System (INIS)

    Stoto, T.

    1987-03-01

    Boron carbide is a disordered non-stoechiometric material with a strongly microtwinned polycristallyne microstructure. This ceramic is among the candidate materials for the first wall coating in fusion reactor and is used as a neutron absorber in the control rods of fast breeder reactors. The present work deals with the nature of radiation damage in this solid. Because of helium internal production, neutron irradiated boron carbide is affected by swelling and by a strong microcracking which can break up a pellet in fine powder. These processes are rather intensitive to the irradiation parameters (temperature, flux and even neutron spectrum). Transmission electron microscopy of samples irradiated by the fast neutrons of a reactor, the electrons of a high voltage electron microscope and of samples implanted with helium ions was used to understand the respective roles of helium and point defects in the processes of swelling and microcracking. The design of an irradiation chamber for helium implantation at controlled temperature from 600 to 1700 0 C was an important technical part of this work [fr

  13. Boron carbide synthesis by carbothermic reduction of boron oxide

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Paschoal, J.O.A.

    1988-01-01

    Boron carbide (B 4 C) is a ceramic material of technological applications due to its extreme hardness and high chemical as well as thermal stability. Some parameters of the process for obtaining B 4 C by carbothermic reduction of B 2 O 3 have been determined. The starting powders and the final products have been analysed by chemical, spectrographic and X-ray diffraction methods. The results show that the B 4 C obtained by the carbothermic reduction process is suitable for applications with a definite determination of the free carbon content. (author) [pt

  14. Characterization of weak, fair and strong neutron absorbing materials by means of neutron transmission: Beam hardening effect

    Science.gov (United States)

    Kharfi, F.; Bastuerk, M.; Boucenna, A.

    2006-09-01

    The characterization of neutron absorbing materials as well as quantification of neutron attenuation through matter is very essential in various fields, namely in shielding calculation. The objective of this work is to describe an experimental procedure to be used for the determination of neutron transmission through different materials. The proposed method is based on the relation between the gray value measured on neutron radiography image and the corresponding inducing neutron beam. For such a purpose, three kinds of materials (in shape of plate) were investigated using thermal neutrons: (1) boron-alloyed stainless steel as strong absorber; (2) copper and steel as fair absorbers and (3) aluminum as weak absorber. This work is not limited to the determination of neutron transmission through matters; it is also spread out to the measure of the surface density of the neutron absorbing elements (ρs) as a function of thickness of neutron absorbing material such as boron-alloyed stainless steel. The beam hardening effect depending on material thickness was also studied using the neutron transmission measurements. A theoretical approach was used to interpret the experimental results. The neutron transmission measurements were performed at the Neutron Radiography and Tomography facility of the Atomic Institute of the Austrian Universities in Vienna. Finally, a Maxwellian neutron distribution of incident neutron beam was used in the theoretical calculations of neutron energy shift in order to compare with experiments results. The obtained experimental results are in a good agreement with the developed theoretical approach.

  15. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Fitzsimmons, M.; Pynn, R.

    1997-01-01

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  16. New techniques for producing thin boron films

    International Nuclear Information System (INIS)

    Thomas, G.E.

    1988-01-01

    A review will be presented of methods for producing thin boron films using an electron gun. Previous papers have had the problem of spattering of the boron source during the evaporation. Methods for reducing this problem will also be presented. 12 refs., 4 figs

  17. Boron rates for triticale and wheat crops

    Directory of Open Access Journals (Sweden)

    Corrêa Juliano Corulli

    2005-01-01

    Full Text Available No reports are registered on responses to boron fertilization nutrient deficiency and toxicity in triticale crops. The aim of this study was to evaluate triticale response to different rates of boron in comparison to wheat in an hapludox with initial boron level at 0.08 mg dm-3 4 4 factorial design trial completely randomized blocks design (n = 4. Boron rates were 0; 0.62; 1.24 and 1.86 mg dm-3; triticale cultivars were IAC 3, BR 4 and BR 53 and IAPAR 38 wheat crop was used for comparison. The wheat (IAPAR 38 crop presented the highest boron absorption level of all. Among triticale cultivars, the most responsive was IAC 53, presenting similar characteristics to wheat, followed by BR 4; these two crops are considered tolerant to higher boron rates in soil. Regarding to BR 53, no absorption effect was observed, and the cultivars was sensitive to boron toxicity. Absorption responses differed for each genotype. That makes it possible to choose and use the best-adapted plants to soils with different boron rates.

  18. Hot flow behavior of boron microalloyed steels

    International Nuclear Information System (INIS)

    Lopez-Chipres, E.; Mejia, I.; Maldonado, C.; Bedolla-Jacuinde, A.; El-Wahabi, M.; Cabrera, J.M.

    2008-01-01

    This research work studies the effect of boron contents on the hot flow behavior of boron microalloyed steels. For this purpose, uniaxial hot-compression tests were carried out in a low carbon steel microalloyed with four different amounts of boron over a wide range of temperatures (950, 1000, 1050 and 1100 deg. C) and constant true strain rates (10 -3 , 10 -2 and 10 -1 s -1 ). Experimental results revealed that both peak stress and peak strain tend to decrease as boron content increases, which indicates that boron additions have a solid solution softening effect. Likewise, the flow curves show a delaying effect on the kinetics of dynamic recrystallization (DRX) when increasing boron content. Deformed microstructures show a finer austenitic grain size in the steel with higher boron content (grain refinement effect). Results are discussed in terms of boron segregation towards austenitic grain boundaries during plastic deformation, which increases the movement of dislocations, enhances the grain boundary cohesion and modificates the grain boundary structure

  19. Elastic modulus and fracture of boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Walther, G.

    1978-12-01

    The elastic modulus of hot-pressed boron carbide with 1 to 15% porosity was measured at room temperature. K/sub IC/ values were determined for the same porosity range at 500 0 C by the double torsion technique. The critical stress intensity factor of boron carbide with 8% porosity was evaluated from 25 to 1200 0 C

  20. Boron isotopic enrichment by displacement chromatography

    International Nuclear Information System (INIS)

    Mohapatra, K.K.; Bose, Arun

    2014-01-01

    10 B enriched boron is used in applications requiring high volumetric neutron absorption (absorption cross section- 3837 barn for thermal and 1 barn for 1 MeV fast neutron). It is used in fast breeder reactor (as control rod material), in neutron counter, in Boron Neutron Capture Therapy etc. Owing to very small separation factor, boron isotopic enrichment is a complex process requiring large number of separation stages. Heavy Water Board has ventured in industrial scale production of 10 B enriched boron using Exchange Distillation Process as well as Ion Displacement Chromatography Process. Ion Displacement Chromatography process is used in Boron Enrichment Plant at HWP, Manuguru. It is based on isotopic exchange between borate ions (B(OH) 4 - ) on anion exchange resin and boric acid passing through resin. The isotopic exchange takes place due to difference in zero point energy of 10 B and 11 B

  1. XPS analysis of boron doped heterofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, B; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muhr, H J; Nesper, R [ETH Zurich, Zurich (Switzerland)

    1997-06-01

    Boron heterofullerenes were generated through arc-evaporation of doped graphite rods in a helium atmosphere. According to mass spectrometric analysis only mono-substituted fullerenes like C{sub 59}B, C{sub 69}B and higher homologues together with a large fraction of higher undoped fullerenes were extracted and enriched when pyridine was used as the solvent. XPS analysis of the extracts indicated the presence of two boron species with significantly different binding energies. One peak was assigned to borid acid. The second one corresponds to boron in the fullerene cage, which is mainly C{sub 59}B, according to the mass spectrum. This boron is in a somewhat higher oxidation state than that of ordinary boron-carbon compounds. The reported synthesis and extraction procedure opens a viable route for production of macroscopic amounts of these compounds. (author) 2 figs., 1 tab., 7 refs.

  2. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zajtsev, A.M.

    1985-01-01

    Three optically active defects are detected in mono- and polycrystal cubic boron nitride (β-BN). Analysis of intensity of temperature dependences, halfwidth and energy shift of 1.76 eV narrow phononless line (center GC-1) makes it possible to interprete the observed cathodoluminescence spectra an optical analog of the Moessbaner effect. Comparison of the obtained results with the known data for diamond monocrystals makes it possible to suggest that the detected center GC-1 is a nitrogen vacancy . The conclusion, concerning the Moessbauer optical spectra application, is made to analyze structural perfection of β-BN crystal lattice

  3. Boron enrichment in martian clay.

    Directory of Open Access Journals (Sweden)

    James D Stephenson

    Full Text Available We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  4. Evidence of amorphisation of B{sub 4}C boron carbide under slow, heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gosset, D., E-mail: dominique.gosset@cea.fr [CEA, DEN, DMN-SRMA-LA2M, F-91191 Gif/Yvette (France); Miro, S. [CEA, DEN, DMN-SRMP-JANNUS, F-91191 Gif/Yvette (France); Doriot, S. [CEA, DEN, DMN-SRMA-LA2M, F-91191 Gif/Yvette (France); Victor, G. [CNRS-IN2P3-IPNL, F-69622 Villeurbanne (France); Motte, V. [CEA, DEN, DMN-SRMA-LA2M, F-91191 Gif/Yvette (France)

    2015-12-15

    Boron carbide is widely used either as armor-plate or neutron absorber. In both cases, a good structural stability is required. However, a few studies have shown amorphisation may occur in severe conditions. Hard impacts lead to the formation of amorphous bands. Some irradiations in electronic regime with H or He ions have also shown amorphisation of the material. Most authors however consider the structure is not drastically affected by irradiations in the ballistic regime. Here, we have irradiated at room temperature dense boron carbide pellets with Au 4 MeV ions, for which most of the damage is in the ballistic regime. This study is part of a program devoted to the behavior of boron carbide under irradiation. Raman observations have been performed after the irradiations together with transmission electron microscopy (TEM). Raman observations show a strong structural damage at moderate fluences (10{sup 14}/cm{sup 2}, about 0.1 dpa), in agreement with previous studies. On the other hand, TEM shows the structure remains crystalline up to 10{sup 15}/cm{sup 2} then partially amorphises. The amorphisation is heterogeneous, with the formation of nanometric amorphous zones with increasing density. It then appears short range and long range disorder occurs at quite different damage levels. Further experiments are in progress aiming at studying the structural stability of boron carbide and isostructural materials (α-B, B{sub 6}Si,…).

  5. Determination of boron in graphite by a wet oxidation decomposition/curcumin photometric method

    International Nuclear Information System (INIS)

    Watanabe, Kazuo; Toida, Yukio

    1995-01-01

    The wet oxidation decomposition of graphite materials has been studied for the accurate determination of boron using a curcumin photometric method. A graphite sample of 0.5 g was completely decomposed with a mixture of 5 ml of sulfuric acid, 3 ml of perchloric acid, 0.5 ml of nitric acid and 5 ml of phosphoric acid in a silica 100 ml Erlenmeyer flask fitted with an air condenser at 200degC. Any excess of perchloric and nitric acids in the solution was removed by heating on a hot plate at 150degC. Boron was distilled with methanol, and then recovered in 10 ml of 0.2 M sodium hydroxide. The solution was evaporated to dryness. To the residue were added curcumin-acetic acid and sulfuric-acetic acid. The mixture was diluted with ethanol, and the absorbance at 555 nm was measured. The addition of 5 ml of phosphoric acid proved to be effective to prevent any volatilization loss of boron during decomposition of the graphite sample and evaporation of the resulting solution. The relative standard deviation was 4-8% for samples with 2 μg g -1 levels of boron. The results on CRMs JAERI-G5 and G6 were in good agreement with the certified values. (author)

  6. Chemistry and technology of boron and its compounds

    International Nuclear Information System (INIS)

    Zhigach, A.F.; Parfenov, B.P.; Svitsyn, R.A.

    1995-01-01

    The results of research dealing with development of technologies of boron trichloride, boron hydride, aminoderivative boron hydrides, metal borohydrides, carboranes, carborane-containing polymers, carried out at the institute of organoelemental compounds, are presented. Physicochemical properties of the compounds have been studied and analytical methods have been developed. Data on toxicity and fire hazard of boron compounds are provided

  7. Analysis of boron nitride by flame spectrometry methods

    International Nuclear Information System (INIS)

    Telegin, G.F.; Chapysheva, G.Ya.; Shilkina, N.N.

    1989-01-01

    A rapid method has been developed for determination of free and total boron contents as well as trace impurities in boron nitride by using autoclave sample decomposition followed by atomic emission and atomic absorption determination. The relative standard deviation is not greater than 0.03 in the determination of free boron 0.012 in the determination of total boron content

  8. Critical experiments on an enriched uranium solution system containing periodically distributed strong thermal neutron absorbers

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1996-01-01

    A series of 62 critical and critical approach experiments were performed to evaluate a possible novel means of storing large volumes of fissile solution in a critically safe configuration. This study is intended to increase safety and economy through use of such a system in commercial plants which handle fissionable materials in liquid form. The fissile solution's concentration may equal or slightly exceed the minimum-critical-volume concentration; and experiments were performed for high-enriched uranium solution. Results should be generally applicable in a wide variety of plant situations. The method is called the 'Poisoned Tube Tank' because strong neutron absorbers (neutron poisons) are placed inside periodically spaced stainless steel tubes which separate absorber material from solution, keeping the former free of contamination. Eight absorbers are investigated. Both square and triangular pitched lattice patterns are studied. Ancillary topics which closely model typical plant situations are also reported. They include the effect of removing small bundles of absorbers as might occur during inspections in a production plant. Not taking the tank out of service for these inspections would be an economic advantage. Another ancillary topic studies the effect of the presence of a significant volume of unpoisoned solution close to the Poisoned Tube Tank on the critical height. A summary of the experimental findings is that boron compounds were excellent absorbers, as expected. This was true for granular materials such as Gerstley Borate and Borax; but it was also true for the flexible solid composed of boron carbide and rubber, even though only thin sheets were used. Experiments with small bundles of absorbers intentionally removed reveal that quite reasonable tanks could be constructed that would allow a few tubes at a time to be removed from the tank for inspection without removing the tank from production service

  9. Three dimensional measurements of absorbed dose in BNCT by Fricke-gel imaging

    International Nuclear Information System (INIS)

    Gambarini, G.; Agosteo, S.; Marchesi, P.; Nava, E.; Palazzi, P.; Pecci, A.; Rosa, R.; Rosi, G.; Tinti, R.

    2001-01-01

    A method has been studied for absorbed dose imaging and profiling in a phantom exposed to thermal or epithermal neutron fields, also discriminating between various contributions to the absorbed dose. The proposed technique is based on optical imaging of FriXy-gel phantoms, which are proper tissue-equivalent phantoms acting as continuous dosimeters. Convenient modifications in phantom composition allow, from differential measurements, the discrimination of various contributions to the absorbed dose. The dosimetry technique is based on a chemical dosimeter incorporated in a tissue-equivalent gel (Agarose). The chemical dosimeter is a ferrous sulphate solution (which is the main component of the standard Fricke dosimeter) added with a metal ion indicator (Xylenol Orange). The absorbed dose is measured by analysing the variation of gel optical absorption in the visible spectrum, imaged by means of a CCD camera provided with a suitable filter. The technique validity has been tested by irradiating and analysing phantoms in the thermal facility of the fast research reactor TAPIRO (ENEA, Casaccia, Italy). In a cylindrical phantom simulating a head, we have imaged the therapy dose from thermal neutron reactions with 10 B and the dose in healthy tissue not containing boron. In tissue without boron, we have discriminated between the two main contributions to the absorbed dose, which comes from the 1 H(n,γ) 2 H and 14 N(n,p) 14 C reactions. The comparison with the results of other experimental techniques and of simulations reveals that the technique is very promising. A method for the discrimination of fast neutron contribution to the absorbed dose, still in an experimental stage, is proposed too. (author)

  10. Additive manufacturing of RF absorbers

    Science.gov (United States)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  11. Density separation of boron particles. Final report

    International Nuclear Information System (INIS)

    Smith, R.M.

    1980-04-01

    A density distribution much broader than expected was observed in lots of natural boron powder supplied by two different sources. The material in both lots was found to have a rhombohedral crystal structure, and the only other parameters which seemed to account for such a distribution were impurities within the crystal structure and varying isotopic ratios. A separation technique was established to isolate boron particles in narrow densty ranges. The isolated fractions were subsequently analyzed for B 10 and total boron content in an effort to determine whether selective isotopic enrichment and nonhomogeneous impurity distribution were the causes for the broad density distribution of the boron powders. It was found that although the B 10 content remained nearly constant around 18%, the total boron content varied from 37.5 to 98.7%. One of the lots also was found to contain an apparently high level of alpha rhombohedral boron which broadened the density distribution considerably. During this work, a capability for removing boron particles containing gross amounts of impurities and, thereby, improving the overall purity of the remaining material was developed. In addition, the separation technique used in this study apparently isolated particles with alpha and beta rhombohedral crystal structures, although the only supporting evidence is density data

  12. Performance evaluation of METAMIC neutron absorber in spent fuel storage rack

    Directory of Open Access Journals (Sweden)

    Kiyoung Kim

    2018-06-01

    Full Text Available High-density spent fuel (SF storage racks have been installed to increase SF pool capacity. In these SF racks, neutron absorber materials were placed between fuel assemblies allowing the storage of fuel assemblies in close proximity to one another. The purpose of the neutron absorber materials is to preclude neutronic coupling between adjacent fuel assemblies and to maintain the fuel in a subcritical storage condition. METAMIC neutron absorber has been used in high-density storage racks. But, neutron absorber materials can be subject to severe conditions including long-term exposure to gamma radiation and neutron radiation. Recently, some of them have experienced degradation, such as white spots on the surface. Under these conditions, the material must continue to serve its intended function of absorbing neutrons. For the first time in Korea, this article uses a neutron attenuation test to examine the performance of METAMIC surveillance coupons. Also, scanning electron microscope analysis was carried out to verify the white spots that were detected on the surface of METAMIC. In the neutron attenuation test, there was no significant sign of boron loss in most of the METAMIC coupons, but the coupon with white spots had relatively less B-10 content than the others. In the scanning electron microscope analysis, corrosion material was detected in all METAMIC coupons. Especially, it was confirmed that the coupon with white spots contains much more corrosion material than the others. Keywords: Blister, Criticality, METAMIC, Neutron Absorber, Neutron Attenuation Test, Scanning Electron Microscope

  13. Adaptive inertial shock-absorber

    International Nuclear Information System (INIS)

    Faraj, Rami; Holnicki-Szulc, Jan; Knap, Lech; Seńko, Jarosław

    2016-01-01

    This paper introduces and discusses a new concept of impact absorption by means of impact energy management and storage in dedicated rotating inertial discs. The effectiveness of the concept is demonstrated in a selected case-study involving spinning management, a recently developed novel impact-absorber. A specific control technique performed on this device is demonstrated to be the main source of significant improvement in the overall efficiency of impact damping process. The influence of various parameters on the performance of the shock-absorber is investigated. Design and manufacturing challenges and directions of further research are formulated. (paper)

  14. Cell cycle dependence of boron uptake in various boron compounds used for neutron capture therapy

    International Nuclear Information System (INIS)

    Yoshida, F.; Matsumura, A.; Shibata, Y.; Yamamoto, T.; Nose, T.; Okumura, M.

    2000-01-01

    In neutron capture therapy, it is important that the tumor take boron in selectively. Furthermore, it is ideal when the uptake is equal in each tumor cell. Some indirect proof of differences in boron uptake among neoplastic cell cycles has been documented. However, no investigation has yet measured boron uptake directly. Using flow cytometry, in the present study cells were sorted by G0/G1 phase and G2/M phase, and the boron concentration of each fraction was measured with inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The results were that BSH (sodiumborocaptate) and BPA (p-boronophenylalanine) had higher rates of boron uptake in the G2/M group than in the G0/G1 group. However, in BPA the difference was more prominent, which revealed a 2.2-3.3 times higher uptake of boron in the G2/M group than in the G0/G1 group. (author)

  15. The determination of boron and carbon in reactor grade boron carbide

    International Nuclear Information System (INIS)

    Crossley, D.; Wood, A.J.; McInnes, C.A.J.; Jones, I.G.

    1978-09-01

    The sealed tube method of dissolution at high temperature and pressure has been successfully applied in the analysis of reactor grade boron carbide for the determination of boron. A 50 mg sample of boron carbide is completely dissolved by heating with concentrated nitric acid in a sealed tube at 300 0 C. The boron content of the resultant sample solution is determined by the mannitol potentiometric titration method. The precision of the method for the determination of 2.5 mg of boron using the Harwell automatic potentiometric titrator is 0.2% (coefficient of variation). The carbon content of a boron carbide sample is determined by combustion of the sample at 1050 0 C in a stream of oxygen using vanadium pentoxide to ensure the complete oxidation of the sample. The carbon dioxide produced from the sample is measured manometrically and the precision of the method for the determination of 4 mg of carbon is 0.4% (coefficient of variation). (author)

  16. Developments in boron magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Schweizer, M.

    1995-01-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain

  17. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    Science.gov (United States)

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  18. Investigation of boron extraction process with aid magnesium hydroxide from mother liquor of boron production

    International Nuclear Information System (INIS)

    Balapanova, B.S.; Zhajmina, R.E.; Serazetdinov, D.Z.

    1988-01-01

    Conditions of boron - magnesium concentrate preparation from mother liquor by coprecipitation of borate - ions by magnesium hydroxide are investigated. It is shown that boron - magnesium concentrate and products of its heat treatment at 100 - 500 deg C in water are dissolved partially, and in ammonium citrate - practically completely. Suppositions are made on the composition of the product prepared, on the the structure of its crystal lattice and the processes taking place in it during heat treatment. The conclusion is made on the perspectiveness of processing of mother liquor of boron industry for boron - magnesium concentrate

  19. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zaitsev, A.M.

    1985-01-01

    Three types of optically active defect were observed in single-crystal and polycrystalline cubic boron nitride (β-BN). An analysis of the temperature dependences of the intensity, half-width, and energy shift of a narrow zero-phonon line at 1.76 eV (GC-1 center) made it possible to interpret the observed cathodoluminescence spectra as an optical analog of the Moessbauer effect. A comparison of the results obtained in the present study with the available data on diamond single crystals made it possible to identify the observed GC-1 center as a nitrogen vacancy. It was concluded that optical Moessbauer-type spectra can be used to analyze structure defects in the crystal lattice of β-BN

  20. Behaviour of boron in Mandovi estuary (Goa)

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Anand, S.P.

    and alkalinity gave positive correlations with a linear variation. Though the overall behavioural pattern of boron indicated non-conservative nature, it showed a quasi-conservative character during premonsoon and a non-conservative during rest of the seasons...

  1. Internal stress control of boron thin film

    International Nuclear Information System (INIS)

    Satomi, N.; Kitamura, M.; Sasaki, T.; Nishikawa, M.

    1998-01-01

    The occurrence of stress in thin films has led to serious stability problems in practical use. We have investigated the stress in the boron films to find the deposition condition of the boron films with less stress. It was found that the stress in the boron film varies sufficiently from compressive to tensile stress, that is from -1.0 to 1.4 GPa, depending on the evaporation conditions, such as deposition rate and the substrate temperature. Hydrogen ion bombardment resulted in the enhancement of the compressive stress, possibly due to ion peening effect, while under helium ion bombardment, stress relief was observed. The boron film with nearly zero stress was obtained by the evaporation at a deposition rate of 0.5 nm s -1 and substrate temperature of 300 C. (orig.)

  2. Internal stress control of boron thin film

    Energy Technology Data Exchange (ETDEWEB)

    Satomi, N.; Kitamura, M.; Sasaki, T.; Nishikawa, M. [Osaka Univ., Suita (Japan). Graduate Sch. of Eng.

    1998-09-01

    The occurrence of stress in thin films has led to serious stability problems in practical use. We have investigated the stress in the boron films to find the deposition condition of the boron films with less stress. It was found that the stress in the boron film varies sufficiently from compressive to tensile stress, that is from -1.0 to 1.4 GPa, depending on the evaporation conditions, such as deposition rate and the substrate temperature. Hydrogen ion bombardment resulted in the enhancement of the compressive stress, possibly due to ion peening effect, while under helium ion bombardment, stress relief was observed. The boron film with nearly zero stress was obtained by the evaporation at a deposition rate of 0.5 nm s{sup -1} and substrate temperature of 300 C. (orig.) 12 refs.

  3. Determination of boron in amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grazhulene, S.S.; Grossman, O.V.; Kuntscher, K.K.; Malygina, L.I.; Muller, E.N.; Telegin, G.F.

    1985-10-01

    In the determination of boron in amorphous alloys containingFe, Co, B, Si, Ni, and P having unusal magnetic and electrical properties, precise analysis and rapid analysis are necessary. To improve the metrological properties of the existing procedure, to find a rapid determination of boron in amorphous alloys, and to verify the accuracy of the results, in the present work the optimization of the photometric determination after extraction of the BF/sup -//sub 4/ ion pair with methylene blue has been studied, and a boron determination by flame photometry using selective methylation has been developed. The determination of boron by the flame photometric and spectrophotometric methods is shown. When a highly precise determination is needed, the spectrophotometric procedure can be used. This procedure is distinguished by its labor intensity and duration. When the need for reproducibility is less severe, the rapid flame photometric procedure is best.

  4. Boron adsorption on hematite and clinoptilolite

    International Nuclear Information System (INIS)

    Gainer, G.M.

    1993-01-01

    This thesis describes experiments performed to determine the suitability of boron as a potential reactive tracer for use in saturated-zone C-well reactive tracer studies for the Yucca Mountain Project (YMP). Experiments were performed to identify the prevalent sorption mechanism of boron and to determine adsorption of boron on hematite and clinoptilolite as a function of pH. These minerals are present in the Yucca Mountain tuff in which the C-well studies will be conducted. Evaluation of this sorption mechanism was done by determining the equilibration time of boron-mineral suspensions, by measuring changes in equilibrium to titrations, and by measuring electrophoretic mobility. Experiments were performed with the minerals suspended in NaCl electrolytes of concentrations ranging from 0.1 N NaCl to 0.001 N NaCl. Experimentalconditions included pH values between 3 and 12 and temperature of about 38 degrees C

  5. Boron-isotope fractionation in plants

    Energy Technology Data Exchange (ETDEWEB)

    Marentes, E [Univ. of Guelph, Dept. of Horticultural Science, Guelph, Ontario (Canada); Vanderpool, R A [USDA/ARS Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota (United States); Shelp, B J [Univ. of Guelph, Dept. of Horticultural Science, Guelph, Ontario (Canada)

    1997-10-15

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, {sup 11}B and {sup 10}B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in {sup 11}B relative to the nutrient solution, and the leaves were enriched in {sup 10}B and the stem in {sup 11}B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  6. Boron-isotope fractionation in plants

    International Nuclear Information System (INIS)

    Marentes, E.; Vanderpool, R.A.; Shelp, B.J.

    1997-01-01

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, 11 B and 10 B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in 11 B relative to the nutrient solution, and the leaves were enriched in 10 B and the stem in 11 B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  7. Radiation sterilization of absorbent cotton and of absorbent gauze

    International Nuclear Information System (INIS)

    Hosobuchi, Kazunari; Oka, Mitsuru; Kaneko, Akira; Ishiwata, Hiroshi.

    1986-01-01

    The bioburden of absorbent cotton and of absorbent gauze and their physical and chemical characteristics after irradiation are investigated. The survey conducted on contaminants of 1890 cotton samples from 53 lots and 805 gauze samples from 56 lots showed maximum numbers of microbes per g of the cotton and gauze were 859 (an average of 21.4) and 777 (an average of 42.2), respectively. Isolation and microbiological and biochemical tests of representative microbes indicated that all of them, except one, were bacilli. The sterilization dose at 10 -6 of sterlity assurance level was found to be 2.0 Mrad when irradiated the spores loaded on paper strips and examined populations having graded D values from 0.10 to 0.28 Mrad. The sterilization dose would be about 1.5 Mrad if subjected the average numbers of contaminants observed in this study to irradiation. No significant differences were found between the irradiated samples and control up to 2 Mrad in tensile strength, change of color, absorbency, sedimentation rate, soluble substances, and pH of solutions used for immersion and other tests conventionally used. These results indicate that these products can be sterilized by irradiation. (author)

  8. Superplastic boronizing of duplex stainless steel under dual compression method

    International Nuclear Information System (INIS)

    Jauhari, I.; Yusof, H.A.M.; Saidan, R.

    2011-01-01

    Highlights: → Superplastic boronizing. → Dual compression method has been developed. → Hard boride layer. → Bulk deformation was significantly thicker the boronized layer. → New data on boronizing could be expanded the application of DSS in industries. - Abstract: In this work, SPB of duplex stainless steel (DSS) under compression method is studied with the objective to produce ultra hard and thick boronized layer using minimal amount of boron powder and at a much faster boronizing time as compared to the conventional process. SPB is conducted under dual compression methods. In the first method DSS is boronized using a minimal amount of boron powder under a fix pre-strained compression condition throughout the process. The compression strain is controlled in such a way that plastic deformation is restricted at the surface asperities of the substrate in contact with the boron powder. In the second method, the boronized specimen taken from the first mode is compressed superplastically up to a certain compressive strain under a certain strain rate condition. The process in the second method is conducted without the present of boron powder. As compared with the conventional boronizing process, through this SPB under dual compression methods, a much harder and thicker boronized layer thickness is able to be produced using a minimal amount of boron powder.

  9. Superplastic boronizing of duplex stainless steel under dual compression method

    Energy Technology Data Exchange (ETDEWEB)

    Jauhari, I., E-mail: iswadi@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Yusof, H.A.M.; Saidan, R. [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2011-10-25

    Highlights: {yields} Superplastic boronizing. {yields} Dual compression method has been developed. {yields} Hard boride layer. {yields} Bulk deformation was significantly thicker the boronized layer. {yields} New data on boronizing could be expanded the application of DSS in industries. - Abstract: In this work, SPB of duplex stainless steel (DSS) under compression method is studied with the objective to produce ultra hard and thick boronized layer using minimal amount of boron powder and at a much faster boronizing time as compared to the conventional process. SPB is conducted under dual compression methods. In the first method DSS is boronized using a minimal amount of boron powder under a fix pre-strained compression condition throughout the process. The compression strain is controlled in such a way that plastic deformation is restricted at the surface asperities of the substrate in contact with the boron powder. In the second method, the boronized specimen taken from the first mode is compressed superplastically up to a certain compressive strain under a certain strain rate condition. The process in the second method is conducted without the present of boron powder. As compared with the conventional boronizing process, through this SPB under dual compression methods, a much harder and thicker boronized layer thickness is able to be produced using a minimal amount of boron powder.

  10. Boron dose determination for BNCT using Fricke and EPR dosimetry

    International Nuclear Information System (INIS)

    Wielopolski, L.; Ciesielski, B.

    1995-01-01

    In Boron Neutron Capture Therapy (BNCT) the dominant dose delivered to the tumor is due to α and 7 Li charged particles resulting from a neutron capture by 10 B and is referred to herein as the boron dose. Boron dose is directly attributable to the following two independent factors, one boron concentration and the neutron capture energy dependent cross section of boron, and two the energy spectrum of the neutrons that interact with boron. The neutron energy distribution at a given point is dictated by the incident neutron energy distribution, the depth in tissue, geometrical factors such as beam size and patient's dimensions. To account for these factors can be accommodated by using Monte Carlo theoretical simulations. However, in conventional experimental BNCT dosimetry, e.g., using TLDs or ionization chambers, it is only possible to estimate the boron dose. To overcome some of the limitations in the conventional dosimetry, modifications in ferrous sulfate dosimetry (Fricke) and Electron Paramagnetic Resonance (EPR) dosimetry in alanine, enable to measure specifically boron dose in a mixed gamma neutron radiation fields. The boron dose, in either of the dosimeters, is obtained as a difference between measurements with boronated and unboronated dosimeters. Since boron participates directly in the measurements, the boron dosimetry reflects the true contribution, integral of the neutron energy spectrum with boron cross section, of the boron dose to the total dose. Both methods are well established and used extensively in dosimetry, they are presented briefly here

  11. Boron-rich oligomers for BNCT

    International Nuclear Information System (INIS)

    Gula, M.; Perleberg, O.; Gabel, D.

    2000-01-01

    The synthesis of two BSH derivatives is described, which can be used for oligomerization in DNA-synthesizers. Synthesis pathways lead to final products in five and six steps, respectively. Because of chirality interesting results were expected. NMR-measurements confirm this expectation. Possible oligomers with high concentrations of boron can be attached to biomolecules. These oligomers can be explored with several imaging methods (EELS, PEM) to determine the lower detection limit of boron with these methods. (author)

  12. Rare earth-iron-boron premanent magnets

    International Nuclear Information System (INIS)

    Ghendehari, M.H.

    1988-01-01

    This patent describes a method for producing rare earth-iron-boron permanent magnets containing added rare earth oxide, comprising the steps of: (a) mixing a particulate alloy containing at least one rare earth metal, iron, and boron with at least one particulate rare earth oxide; (b) aligning magnetic domains of the mixture in a magnetic field; (c) compacting the aligned mixture to form a shape; and (d) sintering the compacted shape

  13. Quantitative analysis of boron by neutron radiography

    International Nuclear Information System (INIS)

    Bayuelken, A.; Boeck, H.; Schachner, H.; Buchberger, T.

    1990-01-01

    The quantitative determination of boron in ores is a long process with chemical analysis techniques. As nuclear techniques like X-ray fluorescence and activation analysis are not applicable for boron, only the neutron radiography technique, using the high neutron absorption cross section of this element, can be applied for quantitative determinations. This paper describes preliminary tests and calibration experiments carried out at a 250 kW TRIGA reactor. (orig.) [de

  14. Fuel assembly

    International Nuclear Information System (INIS)

    Sano, Hiroki; Fushimi, Atsushi; Tominaga, Kenji; Aoyama, Motoo; Ishii, Kazuya.

    1997-01-01

    In burnable poison-incorporated uranium fuels of a BWR type reactor, the compositional ratio of isotopes of the burnable poisons is changed so as to increase the amount of those having a large neutron absorbing cross sectional area. For example, if the ratio of Gd-157 at the same burnable poison enrichment degree is made greater than the natural ratio, this gives the same effect as the increase of the enrichment degree per one fuel rod, thereby providing an effect of reducing a surplus reactivity. Gadolinium, hafnium and europium as burnable poisons have an absorbing cross sectional area being greater in odd numbered nuclei than in even numbered nuclei, on the contrary, boron has a cross section being greater in even numbered nucleus than odd numbered nuclei. Accordingly, if the ratio of isotopes having greater cross section at the same burnable poison enrichment degree is made greater than the natural ratio, surplus reactivity at the initial stage of the burning can be reduced without greatly increasing the amount of burnable poison-incorporated uranium fuels, fuel loading amount is not reduced and the fuel economy is not worsened. (N.H.)

  15. Radiation Transport Simulation for Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Ziegner, M.; Blaickner, M. [AIT Austrian Institute of Technology GmbH, Health and Environment Department, Molecular Medicine, Muthgasse 11, 1190 Wien (Austria); Ziegner, M.; Khan, R.; Boeck, H. [Vienna University of Technology, Institute of Atomic and Subatomic Physics, Stadionallee 2, 1020 Wien (Austria); Bortolussi, S.; Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, National Institute of Nuclear Physics (INFN) Pavia Section, Pavia (Italy); Schmitz, T.; Hampel, G. [Nuclear Chemistry, University of Mainz, Fritz Strassmann Weg 2, 55099 Mainz (Germany)

    2011-07-01

    This work is part of a larger project initiated by the University of Mainz and aiming to use the university's TRIGA reactor to develop a treatment for liver metastases based on Boron Neutron Capture Therapy (BNCT). Diffuse distribution of cancerous cells within the organ makes complete resection difficult and the vicinity to radiosensitive organs impedes external irradiation. Therefore the method of 'autotransplantation', first established at the University of Pavia, is used. The liver is taken out of the body, irradiated in the thermal column of the reactor, therewith purged of metastases and then reimplanted. A highly precise dosimetry system is to be developed by means of measurements at the University of Mainz and computational calculations at the AIT. The stochastic MCNP-5 Monte Carlo-Code, developed by Los Alamos Laboratories, is applied. To verify the calculations of the flux and the absorbed dose in matter a number of measurements are performed irradiating different phantoms and liver sections in a 20cm x 20cm beam tube, which was created by removing graphite blocks from the thermal column of the reactor. The detector material consists of L- {alpha} -alanine pellets which are thought to be the most suitable because of their good tissue equivalence, small size and their wide response range. Another experiment focuses on the determination of the relative biological effectiveness (RBE-factor) of the neutron and photon dose for liver cells. Therefore cell culture plates with the cell medium enriched with {sup 157}Gd and {sup 10}B at different concentrations are irradiated. With regard to the alanine pellets MCNP-5 calculations give stable results. Nevertheless the absorbed dose is underestimated compared to the measurements, a phenomenon already observed in previous works. The cell culture calculations showed the enormous impact of the added isotopes with high thermal neutron cross sections, especially {sup 157}Gd, on the absorbed dose

  16. Discharge cleaning on TFTR after boronization

    International Nuclear Information System (INIS)

    Mueller, D.; Dylla, H.F.; LaMarche, P.H.; Bell, M.G.; Blanchard, W.; Bush, C.E.; Gentile, C.; Hawryluk, R.J.; HIll, K.W.; Janos, A.C.; Jobes, F.C; Owens, D.K.; Pearson, G.; Schivell, J.; Ulrickson, M.A.; Vannoy, C.; Wong, K.L.

    1991-05-01

    At the beginning of the 1990 TFTR experimental run, after replacement of POCO-AXF-5Q graphite tiles on the midplane of the bumper limiter by carbon fiber composite (CFC) tiles and prior to any Pulse Discharge Cleaning (PDC), boronization was performed. Boronization is the deposition of a layer of boron and carbon on the vacuum vessel inner surface by a glow discharge in a diborane, methane and helium mixture. The amount of discharge cleaning required after boronization was substantially reduced compared to that which was needed after previous openings when boronization was not done. Previously, after a major shutdown, about 10 5 low current (∼20 kA) Taylor Discharge Cleaning (TDC) pulses were required before high current (∼400 kA) aggressive Pulse Discharge Cleaning (PDC) pulses could be performed successfully. Aggressive PDC is used to heat the limiters from the vessel bakeout temperature of 150 degrees C to 250 degrees C for a period of several hours. Heating the limiters is important to increase the rate at which water is removed from the carbon limiter tiles. After boronization, the number of required TDC pulses was reduced to <5000. The number of aggressive PDC pulses required was approximately unchanged. 14 refs., 1 tab

  17. Boronization on NSTX using Deuterated Trimethylboron

    International Nuclear Information System (INIS)

    Blanchard, W.R.; Gernhardt, R.C.; Kugel, H.W.; LaMarche, P.H.

    2002-01-01

    Boronization on the National Spherical Torus Experiment (NSTX) has proved to be quite beneficial with increases in confinement and density, and decreases in impurities observed in the plasma. The boron has been applied to the interior surfaces of NSTX, about every 2 to 3 weeks of plasma operation, by producing a glow discharge in the vacuum vessel using deuterated trimethylboron (TMB) in a 10% mixture with helium. Special NSTX requirements restricted the selection of the candidate boronization method to the use of deuterated boron compounds. Deuterated TMB met these requirements, but is a hazardous gas and special care in the execution of the boronization process is required. This paper describes the existing GDC, Gas Injection, and Torus Vacuum Pumping System hardware used for this process, the glow discharge process, and the automated control system that allows for remote operation to maximize both the safety and efficacy of applying the boron coating. The administrative requirements and the detailed procedure for the setup, operation and shutdown of the process are also described

  18. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  19. Digital Alloy Absorber for Photodetectors

    Science.gov (United States)

    Hill, Cory J. (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2016-01-01

    In order to increase the spectral response range and improve the mobility of the photo-generated carriers (e.g. in an nBn photodetector), a digital alloy absorber may be employed by embedding one (or fraction thereof) to several monolayers of a semiconductor material (insert layers) periodically into a different host semiconductor material of the absorber layer. The semiconductor material of the insert layer and the host semiconductor materials may have lattice constants that are substantially mismatched. For example, this may performed by periodically embedding monolayers of InSb into an InAsSb host as the absorption region to extend the cutoff wavelength of InAsSb photodetectors, such as InAsSb based nBn devices. The described technique allows for simultaneous control of alloy composition and net strain, which are both key parameters for the photodetector operation.

  20. Insight into magnetorheological shock absorbers

    CERN Document Server

    Gołdasz, Janusz

    2015-01-01

    This book deals with magnetorheological fluid theory, modeling and applications of automotive magnetorheological dampers. On the theoretical side a review of MR fluid compositions and key factors affecting the characteristics of these fluids is followed by a description of existing applications in the area of vibration isolation and flow-mode shock absorbers in particular. As a majority of existing magnetorheological devices operates in a so-called flow mode a critical review is carried out in that regard. Specifically, the authors highlight common configurations of flow-mode magnetorheological shock absorbers, or so-called MR dampers that have been considered by the automotive industry for controlled chassis applications. The authors focus on single-tube dampers utilizing a piston assembly with one coil or multiple coils and at least one annular flow channel in the piston.

  1. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Mannix, A. J.; Zhou, X. -F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P.

    2015-12-17

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

  2. Development of magnetic resonance technology for noninvasive boron quantification

    International Nuclear Information System (INIS)

    Bradshaw, K.M.

    1990-11-01

    Boron magnetic resonance imaging (MRI) and spectroscopy (MRS) were developed in support of the noninvasive boron quantification task of the Idaho National Engineering Laboratory (INEL) Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) program. The hardware and software described in this report are modifications specific to a GE Signa trademark MRI system, release 3.X and are necessary for boron magnetic resonance operation. The technology developed in this task has been applied to obtaining animal pharmacokinetic data of boron compounds (drug time response) and the in-vivo localization of boron in animal tissue noninvasively. 9 refs., 21 figs

  3. Acoustic Properties of Absorbent Asphalts

    Science.gov (United States)

    Trematerra, Amelia; Lombardi, Ilaria

    2017-08-01

    Road traffic is one of the greater cause of noise pollution in urban centers; a prolonged exposure to this source of noise disturbs populations subjected to it. In this paper is reported a study on the absorbent coefficients of asphalt. The acoustic measurements are carried out with a impedance tube (tube of Kundt). The sample are measured in three conditions: with dry material (traditional), “wet” asphalt and “dirty” asphalt.

  4. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  5. The effect of boron deficiency on gene expression and boron compartmentalization in sugarbeet

    Science.gov (United States)

    NIP5, BOR1, NIP6, and WRKY6 genes were investigated for their role in boron deficiency in sugar beet, each with a proposed role in boron use in model plant species. All genes showed evidence of polymorphism in fragment size and gene expression in the target genomic DNA and cDNA libraries, with no co...

  6. Research of boron conversion coating in neutron detector with boron deposited GEM

    International Nuclear Information System (INIS)

    Ye Di; Sun Zhijia; Zhou Jianrong; Wang Yanfeng; Yang Guian; Xu Hong; Chen Yuanbai; Xiao Yu; Diao Xungang

    2014-01-01

    GEM is a flourishing new gas detector and nowadays its technology become more mature. It has outstanding properties, such as excellent position resolution, high counting rate, radiation resistance, simple and flexible signal readout, can be large-area detector, wide application range. Detector with boron deposited GEM uses multilayer GEM with deposited boron film as neutron conversion carrier which reads out the information of neutron shot from the readout electrode with gas amplification from every GEM layer. The detector is high performance which can meet the demands of neutron detector of a new generation. Boron deposited neutron conversion electrode with boron deposited cathode and GEM included is the core part of the detector. As boron is a high-melting-point metalloid (> 2 000 ℃), electroplating and thermal evaporation are inappropriate ways. So finding a way to deposit boron on electrode which can meet the demands become a key technology in the development of neutron detector with boron deposited GEM. Compared with evaporation, sputtering has features such as low deposition temperature, high film purity, nice adhesive, thus is appropriate for our research. Magnetron sputtering is a improved way of sputtering which can get lower sputtering air pressure and higher target voltage, so that we can get better films. Through deposit process, the research uses magnetron sputtering to deposit pure boron film on copper electrode and GEM film. This method can get high quality, nice adhere, high purity, controllable uniformity, low cost film with high speed film formation. (authors)

  7. The study of high-boron steel and high-boron cast iron used for shield

    International Nuclear Information System (INIS)

    Pan Xuerong; Lu Jixin; Wen Yaozeng; Wang Zhaishu; Cheng Jiantin; Cheng Wen; Shun Danqi; Yu Jinmu

    1996-12-01

    The smelting, forging, heat-treatment technology and the mechanical properties of three kinds of high-boron steels (type 1: 0.5% boron; type 2: 0.5% boron and 4% or 2% nickel; type 3: 0.5% boron, 0.5% nickel and 0.5% molybdenum) were studied. The test results show that the technology for smelting, forging and heat-treatment (1050 degree C/0.5 h water cooled + 810 degree C/1 h oil cooled) in laboratory is feasible. Being sensitive to notch, the impact toughness of high-boron steel type 1 is not steady and can not meet the technology requirements on mechanical properties. The mechanical properties of both high-boron steel type 2 and type 3 can meet the technological requirements. The smelting technology of high-boron casting iron containing 0.5% boron was researched. The tests show that this casting iron can be smelted in laboratory and its properties can basically satisfy the technology requirements. (10 refs., 6 figs., 11 tab.)

  8. Real-time boronization in PBX-M using erosion of solid boronized targets

    International Nuclear Information System (INIS)

    Kugel, H.W.; Timberlake, J.; Bell, R.; LeBlanc, B.; Okabayashi, M.; Paul, S.; Tighe, W.; Hirooka, Y.

    1994-11-01

    Thirty one real-time boronizations were applied to PBX-M using the plasma erosion of solid target probes. More than 17 g of boron were deposited in PBX-M using this technique. The probes were positioned at the edge plasma to optimize vaporization and minimize spallation. Auger depth profile analysis of poloidal and toroidal deposition sample coupon arrays indicate that boron was transported by the plasma around the torus and deep into the divertors. During discharges with continuous real-time boronization, low-Z and high-Z impurities decreased rapidly as plasma surfaces were covered during the first 20-30 discharges. After boronization, a short-term improvement in plasma conditions persisted prior to significant boron erosion from plasma surfaces, and a longer term, but less significant improvement persisted as boron farther from the edge continued gettering. Real-time solid target boronization has been found to be very effective for accelerating conditioning to new regimes and maintaining high performance plasma conditions

  9. Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Krstic, D.; Markovic, V.M.; Jovanovic, Z.; Milenkovic, B.; Nikezic, D.; Atanackovic, J.

    2014-01-01

    Monte Carlo simulations were performed to evaluate dose for possible treatment of cancers by boron neutron capture therapy (BNCT). The computational model of male Oak Ridge National Laboratory (ORNL) phantom was used to simulate tumours in the lung. Calculations have been performed by means of the MCNP5/X code. In this simulation, two opposite neutron beams were considered, in order to obtain uniform neutron flux distribution inside the lung. The obtained results indicate that the lung cancer could be treated by BNCT under the assumptions of calculations. The difference in evaluated dose in cancer and normal lung tissue suggests that BNCT could be applied for the treatment of cancers. The difference in exposure of cancer and healthy tissue can be observed, so the healthy tissue can be spared from damage. An absorbed dose ratio of metastatic tissue-to-the healthy tissue was ∼5. Absorbed dose to all other organs was low when compared with the lung dose. Absorbed dose depth distribution shows that BNC therapy can be very useful in the treatments for tumour. The ratio of the tumour absorbed dose and irradiated healthy tissue absorbed dose was also ∼5. It was seen that an elliptical neutron field was better irradiation choice. (authors)

  10. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  11. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar

    2007-01-01

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively

  12. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-10-22

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively.

  13. Biodistribution, toxicity and efficacy of a boronated porphyrin for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Miura, Michiko; Micca, P.; Fairchild, R.; Slatkin, D.; Gabel, D.

    1992-01-01

    Boron-containing porphyrins may be useful for boron neutron capture therapy (BNCT) in the treatment of brain tumors. Porphyrins have been shown to accumulate in tumor tissue and to be essentially excluded from normal brain. However, problems of toxicity may prevent some boron-containing porphyrins from being considered for BNCT. The authors have synthesized the boronated porphyrin 2,4-bis-vinyl-o-nidocarboranyl-deuteroporphyrin IX (VCDP). Preliminary studies in tumor-bearing mice showed considerable uptake of boron at a total dose of 150 μg/gbw with low mortality. They now report that a total dose to mice of ∼ 275 μg VCDP/gbw administered in multiple intraperitoneal (ip) injections can provide 40-50μg B per gram of tumor with acceptable toxicity. Toxicity experiments and a preliminary trial of BNCT in mice given such doses are also reported

  14. Redistribution of boron in leaves reduces boron toxicity.

    Science.gov (United States)

    Reid, Robert J; Fitzpatrick, Kate L

    2009-11-01

    High soil boron (B) concentrations lead to the accumulation of B in leaves, causing the development of necrotic regions in leaf tips and margins, gradually extending back along the leaf. Plants vary considerably in their tolerance to B toxicity, and it was recently discovered that one of the tolerance mechanisms involved extrusion of B from the root. Expression of a gene encoding a root B efflux transporter was shown to be much higher in tolerant cultivars. In our current research we have shown that the same gene is also upregulated in leaves. However, unlike in the root, the increased activity of the B efflux transporter in the leaves cannot reduce the tissue B concentration. Instead, we have shown that in tolerant cultivars, these transporters redistribute B from the intracellular phase where it is toxic, into the apoplast which is much less sensitive to B. These results provide an explanation of why different cultivars with the same leaf B concentrations can show markedly different toxicity symptoms. We have also shown that rain can remove a large proportion of leaf B, leading to significant improvements of growth of both leaves and roots.

  15. Boron-containing thioureas for neutron capture therapy

    International Nuclear Information System (INIS)

    Ketz, H.

    1993-01-01

    Melanin is produced in large amounts in malignant melanotic melanomas. Because thiourea compounds are covalently incorporated into melanin during its biosynthesis, the preparation of boronated thiourea-derivatives is of particular interest for the BNCT (Boron Neutron Capture Therapy). Accumulation of boron in tumors by means of boronated thiourea-derivatives may therefore provide levels of 10 B which are useful for BNCT. In BNCT the tumor containing the boron compound is irradiated with epithermal neutrons to generate He- and Li-nuclei from the 10 B which can then destroy the tumor cells. Because of the short ranges of these particles (approximately one cell diameter) the damage will be almost exclusively confined to the tumor leaving normal tissue unharmed. High accumulation of 2-mercapto-1-methylimidazole (methimazole) in melanotic melanomas has been described in the literature. Boronated derivatives of methimazole were therefore synthesized. Boron was in the form of a boronic acid, a nido-carbonate and a mercaptoundeca hydro-closo-dodecaborate (BSH). The synthesis of the boron cluster derivatives of methimazole (nido-carborate- and BSH-derivatives) with 9 resp. 12 boron atoms in the molecule were expected to achieve higher concentrations of boron in the tumor than in the case of the boronic acid compound with its single boron atom. (orig.) [de

  16. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan

    2013-01-01

    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon

  17. Boron removal in radioactive liquid waste by forward osmosis membrane

    Energy Technology Data Exchange (ETDEWEB)

    Doo Seong Hwang; Hei Min Choi; Kune Woo Lee; Jei Kwon Moon [KAERI, Daejeon (Korea, Republic of)

    2013-07-01

    This study investigated the treatment of boric acid contained in liquid radioactive waste using a forward osmosis membrane. The boron permeation through the membrane depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7 and increases with an increase of the osmotic driving force. The boron flux decreases slightly with the salt concentration, but is not heavily influenced by a low salt concentration. The boron flux increases linearly with the concentration of boron. No element except for boron was permeated through the FO membrane in the multi-component system. The maximum boron flux is obtained in an active layer facing a draw solution orientation of the CTA-ES membrane under conditions of less than pH 7 and high osmotic pressure. (authors)

  18. 15th International Conference on Boron Chemistry (IMEBORON XV)

    Czech Academy of Sciences Publication Activity Database

    Grüner, Bohumír; Štíbr, Bohumil

    2015-01-01

    Roč. 87, č. 2 (2015), s. 121 ISSN 0033-4545 Institutional support: RVO:61388980 Keywords : boranes * boron * boron materials * carboranes * IMEBORON XV * medicinal chemistry Subject RIV: CA - Inorganic Chemistry

  19. Structure prediction of boron-doped graphene by machine learning

    Science.gov (United States)

    M. Dieb, Thaer; Hou, Zhufeng; Tsuda, Koji

    2018-06-01

    Heteroatom doping has endowed graphene with manifold aspects of material properties and boosted its applications. The atomic structure determination of doped graphene is vital to understand its material properties. Motivated by the recently synthesized boron-doped graphene with relatively high concentration, here we employ machine learning methods to search the most stable structures of doped boron atoms in graphene, in conjunction with the atomistic simulations. From the determined stable structures, we find that in the free-standing pristine graphene, the doped boron atoms energetically prefer to substitute for the carbon atoms at different sublattice sites and that the para configuration of boron-boron pair is dominant in the cases of high boron concentrations. The boron doping can increase the work function of graphene by 0.7 eV for a boron content higher than 3.1%.

  20. Boron: out of the sky and onto the ground

    International Nuclear Information System (INIS)

    Kuehl, D.K.

    1975-01-01

    Now an accepted, engineered material for aerospace applications, boron is taking its place on the ground. Both current production applications, prototype (development) applications, and speculative applications abound. In the leisure product market, boron epoxy or boron aluminum has been used or tried in golf clubs (in combination with graphite epoxy or to reinforce aluminum or steel), in tennis racquets, in bicycles, racing shells, skis and skipoles, bows and arrows, and others. In the industrial area, boron has been used to reduce fatigue, increase stiffness, or for its abrasive properties. Textile machinery, honing tools, and cut off wheels or saws are among the applications. In the medical field, prosthetics and orthotic braces, wheel chairs, canes, and crutches are all good applications for boron. Applications for boron in transportation, construction, and heavy industry are also possible. The volume of boron used in these applications could have a major impact on prices, making boron composite parts cost competitive with conventional materials. (U.S.)

  1. The Influence of Parameters Affecting Boron Removal by Electrocoagulation Process

    KAUST Repository

    Zeboudji, B.; Drouiche, Nadjib; Lounici, Hakim; Mameri, Nabil; Ghaffour, NorEddine

    2013-01-01

    , this process requires chemical addition and important additional investment, operation and maintenance, and energy costs. Electrocoagulation (EC) process can be used to achieve such low boron concentration. In this work, the removal of boron from aqueous

  2. Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jipeng; Wang, Hengliang; Wen, Shuangchun [Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Jiang, Leyong; Guo, Jun; Dai, Xiaoyu [SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Xiang, Yuanjiang, E-mail: xiangyuanjiang@126.com [Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082 (China); SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China)

    2016-05-28

    We theoretically demonstrate the perfect absorption phenomena in the hexagonal boron nitride (hBN) crystals in the mid-infrared wavelength ranges by means of critical coupling with a one-dimensional photonic crystal spaced by the air. Different from the polymer absorbing layer composed by a metal-dielectric composite film, the hyperbolic dispersion characteristics of hBN can meet the condition of critical coupling and achieve the total absorption in the mid-infrared wavelength ranges. However, the critical coupling phenomenon can only appear in the hBN crystals with the type II dispersion. Moreover, we discuss the influence of the thickness of hBN, the incident angle, and the thickness and permittivity of the space dielectric on the total absorption. Ultimately, the conditions for absorption enhancement and the optimization methods of perfect absorption are proposed, and the design rules for a totally absorbing system under the different conditions are achieved.

  3. Boron Removal in Seawater Reverse Osmosis System

    KAUST Repository

    Rahmawati, Karina

    2011-07-01

    Reverse osmosis successfully proves to remove more than 99% of solute in seawater, providing fresh water supply with satisfied quality. Due to some operational constraints, however, some trace contaminants removal, such as boron, cannot be achieved in one pass system. The stringent criterion for boron from World Health Organization (WHO) and Saudi Arabia local standard (0.5 mg/l) is hardly fulfilled by single pass sea water reverse osmosis (SWRO) plants. Some design processes have been proposed to deal with boron removal, but they are not economically efficient due to high energy and chemical consumption. The objective of this study was to study boron removal by different reverse osmosis membranes in two pH conditions, with and without antiscalant addition. Thus, it was expected to observe the possibility of operating single pass system and necessity to operate two pass system using low energy membrane. Five membrane samples were obtained from two different manufacturers. Three types of feed water pH were used, pH 8, pH 10, and pH 10 with antiscalant addition. Experiment was conducted in parallel to compare membrane performance from two manufacturers. Filtration was run with fully recycle mode for three days. Sample of permeate and feed were taken every 12 hours, and analyzed for their boron and TDS concentration. Membrane samples were also tested for their surface charge. The results showed that boron rejection increases as the feed pH increases. This was caused by dissociation of boric acid to negatively charged borate ion and more negatively charged membrane surface at elevated pH which enhance boron rejection. This study found that single pass reverse osmosis system, with and without elevating the pH, may not be possible to be applied because of two reasons. First, permeate quality in term of boron, does not fulfill WHO and local Saudi Arabia regulations. Second, severe scaling occurs due to operation in alkaline condition, since Ca and Mg concentration are

  4. Piezooptic effect of absorbing environment

    Directory of Open Access Journals (Sweden)

    Ю. А. Рудяк

    2013-07-01

    Full Text Available Application of piezooptic effect of absorbing environment for the definition of the parameter of stress deformation state was examined. The analysis of dielectric permeability tensor of imaginary parts was done. It is shown that changes in the real part dielectric permeability tensor mainly the indicator of fracture was fixed by means of mechanics interference methods and the changes in the imaginary part (α – real rate of absorption can be measured by means of analysis of light absorption and thus stress deformation state can be determined

  5. Energy absorbers as pipe supports

    International Nuclear Information System (INIS)

    Khlafallah, M.Z.; Lee, H.M.

    1985-01-01

    With the exception of springs, pipe supports currently in use are designed with the intent of maintaining their rigidity under load. Energy dissipation mechanisms in these pipe supports result in system damping on the order presented by Code Case N-411 of ASME Section III code. Examples of these energy dissipation mechanisms are fluids and gaps in snubbers, gaps in frame supports, and friction in springs and frame supports. If energy absorbing supports designed in accordance with Code Case N-420 are used, higher additional damping will result

  6. Boron tolerance in NS wheat lines

    Directory of Open Access Journals (Sweden)

    Brdar Milka

    2006-01-01

    Full Text Available Boron is an essential micronutrient for higher plants. Present in excessive amounts boron becomes toxic and can limit plant growth and yield. Suppression of root growth is one of the symptoms of boron toxicity in wheat. This study was undertaken to investigate the response of 10 perspective NS lines of wheat to high concentrations of boron. Analysis of root growth was done on young plants, germinated and grown in the presence of different concentrations of boric acid (0, 50,100 and 150 mg/1. Significant differences occurred between analyzed genotypes and treatments regarding root length. Average suppression of root growth was between 11,6 and 34,2%, for line NS 252/02 are even noted 61,4% longer roots at treatments in relation to the control. Lines with mean suppression of root growth less than 20% (NS 101/02, NS 138/01, NS 53/03 and NS 73/02 may be considered as boron tolerant. Spearmans coefficients showed high level of agreement regarding rang of root length for genotypes treated with 100 and 150 mg H3BO3/l.

  7. Hot ductility behavior of boron microalloyed steels

    International Nuclear Information System (INIS)

    Lopez-Chipres, E.; Mejia, I.; Maldonado, C.; Bedolla-Jacuinde, A.; Cabrera, J.M.

    2007-01-01

    The current study analyses the influence of boron contents (between 29 and 105 ppm) on the hot ductility of boron microalloyed steels. For this purpose, hot tensile tests were carried out at different temperatures (700, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s -1 . In general, results revealed an improvement of the hot ductility of steels at increasing boron content. At 700, 900 and 1000 deg. C the ductility is higher than at 800 deg. C, where boron microalloyed steels exhibit a region of ductility loss (trough region). Likewise, dynamic recrystallization only occurred at 900 and 1000 deg. C. The fracture surfaces of the tested steels at temperatures giving the high temperature ductility regime show that the fracture mode is a result of ductile failure, whereas it is ductile-brittle failure in the trough region. Results are discussed in terms of dynamic recrystallization and boron segregation towards austenite grain boundaries, which may retard the formation of pro-eutectoid ferrite and increase grain boundary cohesion

  8. Technology of boron-containing polyphosphate fertilizer 'Phosphobor'

    International Nuclear Information System (INIS)

    Aldabergenov, M.K.; Balakaeva, T.G.

    1995-01-01

    A technology is developed for producing 'Phosphobor' fertilizer based on the rock phosphate weal (17-18% P 2 O 5 ) with additions of boron-magnesium compound. Boron is part of polyphosphate fertilizer in the form of polymeric compounds of phosphorus and boron. Phosphorus and boron copolymers -boratophosphates - are easily formed in the process of polyphosphate fertilizers production, since borates undergo a mutual polycondensation reaction with phosphates. 8 refs., 1 fig

  9. Determination of free carbon content in boron carbide ceramic powders

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Lima, N.B. de; Paschoal, J.O.A.

    1990-01-01

    Boron carbide is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Free carbon is always found as a process dependent impurity in boron carbide. The development of procedures for its detection is required because its presence leads to a degradation of the boron carbide properties. In this work, several procedures for determining free carbon content in boron carbide specimens are reported and discussed for comparison purposes. (author) [pt

  10. Structural modifications induced by ion irradiation and temperature in boron carbide B{sub 4}C

    Energy Technology Data Exchange (ETDEWEB)

    Victor, G., E-mail: g.victor@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Pipon, Y.; Bérerd, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Institut Universitaire de Technologie (IUT) Lyon-1, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); CEA-DEN, Saclay, 91191 Gif-sur-Yvette (France); Moncoffre, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Djourelov, N. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigradsko chaussee blvd, BG-1784 Sofia (Bulgaria); ELI-NP, IFIN-HH, 30 Reactorului Str, MG-6 Bucharest-Magurele (Romania); Miro, S. [CEA-DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Baillet, J. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69622 Villeurbanne Cedex (France); Pradeilles, N.; Rapaud, O.; Maître, A. [SPCTS, UMR CNRS 7315, Centre Européen de la céramique, University of Limoges (France); Gosset, D. [CEA, Saclay, DMN-SRMA-LA2M, 91191 Gif-sur-Yvette (France)

    2015-12-15

    Already used as neutron absorber in the current French nuclear reactors, boron carbide (B{sub 4}C) is also considered in the future Sodium Fast Reactors of the next generation (Gen IV). Due to severe irradiation conditions occurring in these reactors, it is of primary importance that this material presents a high structural resistance under irradiation, both in the ballistic and electronic damage regimes. Previous works have shown an important structural resistance of boron carbide even at high neutron fluences. Nevertheless, the structural modification mechanisms due to irradiation are not well understood. Therefore the aim of this paper is to study structural modifications induced in B{sub 4}C samples in different damage regimes. The boron carbide pellets were shaped and sintered by using spark plasma sintering method. They were then irradiated in several conditions at room temperature or 800 °C, either by favoring the creation of ballistic damage (between 1 and 3 dpa), or by favoring the electronic excitations using 100 MeV swift iodine ions (S{sub e} ≈ 15 keV/nm). Ex situ micro-Raman spectroscopy and Doppler broadening of annihilation radiation technique with variable energy slow positrons were coupled to follow the evolution of the B{sub 4}C structure under irradiation.

  11. Structural modifications induced by ion irradiation and temperature in boron carbide B4C

    Science.gov (United States)

    Victor, G.; Pipon, Y.; Bérerd, N.; Toulhoat, N.; Moncoffre, N.; Djourelov, N.; Miro, S.; Baillet, J.; Pradeilles, N.; Rapaud, O.; Maître, A.; Gosset, D.

    2015-12-01

    Already used as neutron absorber in the current French nuclear reactors, boron carbide (B4C) is also considered in the future Sodium Fast Reactors of the next generation (Gen IV). Due to severe irradiation conditions occurring in these reactors, it is of primary importance that this material presents a high structural resistance under irradiation, both in the ballistic and electronic damage regimes. Previous works have shown an important structural resistance of boron carbide even at high neutron fluences. Nevertheless, the structural modification mechanisms due to irradiation are not well understood. Therefore the aim of this paper is to study structural modifications induced in B4C samples in different damage regimes. The boron carbide pellets were shaped and sintered by using spark plasma sintering method. They were then irradiated in several conditions at room temperature or 800 °C, either by favoring the creation of ballistic damage (between 1 and 3 dpa), or by favoring the electronic excitations using 100 MeV swift iodine ions (Se ≈ 15 keV/nm). Ex situ micro-Raman spectroscopy and Doppler broadening of annihilation radiation technique with variable energy slow positrons were coupled to follow the evolution of the B4C structure under irradiation.

  12. Manufacturing method for boron carbide/carbon composite neutron shielding material

    International Nuclear Information System (INIS)

    Inoue, Takenori; Ukai, Shigeharu; Maruyama, Tadashi; Suya, Kiyoshi; Sunami, Yoshihiko.

    1994-01-01

    A less volatile binder pitch which is melted upon heating is used as a binder. Raw materials mainly comprising 60 to 85% by volume of a boron carbide powder and 15 to 40% by volume of a binder pitch are mixed, molded under pressure and heating at 480 to 600degC, then baked under non-pressurization, further impregnated with pitch under a reduced pressure and then baked again. The volume percentage of each of the materials is calculated based on the volume obtained by dividing the blending weight for each of raw materials with the intrinsic density respectively. The binding property relative to the boron carbide powder is improved by using a pitch having satisfactory melting performance and reduction of strength is decreased. Moreover, if the binder pitch is baked at about 2,000degC, it is easily converted into a graphitized tissues to have excellent slidability and fabricability. With such procedures, high bending strength and high heat conductivity can be ensured while keeping high boron content and neutron absorbing performance. (T.M.)

  13. Use of calcium and boron in the production of grain and sunflower silage

    Directory of Open Access Journals (Sweden)

    Thomas Newton Martin

    2014-09-01

    Full Text Available Boron and calcium are related to many physiological processes of the plant, which are affected by its deficiency, such as sugar transport, synthesis and cell wall structure, carbohydrate metabolism and plasma membrane integrity. The objective of this study was to evaluate the efficiency of boron and calcium application via leaf and soil on the yield components in silage quality and content of macronutrients in leaves of sunflower. The experiment was conducted at Universidade Tecnológica Federal do Paraná – UTFPR, Campus Dois Vizinhos, from September 2008 to April 2009, in a randomized block design with four replications, using the genotype Agrobel - La Tijereta. Morphological characteristics of the plants, the yield components (grain yield and weight of hundred grains, silage quality and content of nutrient uptake were evaluated. The sunflower crop did not respond to application of boron and calcium, to effects on yield components in silage quality and content of nutrients absorbed by plants. However, it was found increases in the partition dry grain and plant height.

  14. Spectrophotometric determination of boron in complex matrices by isothermal distillation of borate ester into curcumin

    International Nuclear Information System (INIS)

    Thangavel, S.; Dhavile, S.M.; Dash, K.; Chaurasia, S.C.

    2004-01-01

    In situ distillation of borate ester into the curcumin solution has been developed for the spectrophotometric determination of boron in a variety of complex matrixes. A polypropylene vessel containing the sample solution was placed inside a vessel (PP) containing 10 ml of curcumin solution and the distillation was carried out at room temperature/on a water bath. The borate ester collected in to the curcumin solution was evaporated to dryness on the water bath, taken in acetone and the absorbance was measured at 550 nm. In situ distillation of borate ester directly into the chromogenic reagent eliminates tedious sample treatment (before and/or after borate separation), use of methanol, complicated quartz set up, possible loss of boron and reduces the analysis time significantly. In situ dehydration of sample solution by ethanolic vapour in the absence of dehydrating acid prevents the formation of fluoborate and co-distillation of potential anionic interferents (nitrate and fluoride). This developed method has been applied for the determination of traces of boric acid in boron powder by the distillation of methyl borate at room temperature. For other matrixes (water, uranium oxide, uranyl nitrate, fluoride salt, etc.) distillation of ethyl borate was carried out on the water bath. LOD (3σ) was 5 ng g -1 for water and 30 ng g -1 for solid samples

  15. Analysis of mean lifetime for capture of neutrons in boron-loaded plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Kamykowski, E.A. (Grumman Corp., Bethpage, NY (USA). Research Center)

    1990-12-20

    The commercial availabiltiy of boron-loaded organic scintillators has led to the development of neutron detectors that operate as ''electronically'' black, totally absorbing spectrometers. The key to the enhanced spectroscopy is the delayed capture of nearly thermalized neutrons by {sup 10}B that can occur within a few microseconds after the energy pulse from prompt proton recoils. Accurate information regarding the mean lifetime is important for correct setting of the timing logic of the detection system to obtain good neutron detection efficiency with a low chance coincidence rate. In this paper we present an analysis of the mean lifetime for neutron capture for the boron-loaded plastic BC454. Measurements of the capture time constant obtained with a 7.62 cm diameter, 10.16 cm long detector are compared with values computed with the time-dependent Monte Carlo neutron transport code MCNP. Additional analyses using MCNP examine the dependence of the mean lifetime on the boron concentration, the detector's dimensions and the incident neutron energy. (orig.).

  16. Neutron absorber qualification and acceptance testing from the designer's perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bracey, W. [Transnuclear, Inc, Hawthorne, NY (United States); Chiocca, R. [Cogema Logistics, St. Quentin en Yvelines (France)

    2004-07-01

    Starting in the mid 1990's, the USNRC began to require less than 100% credit for the 10B present in fixed neutron absorbers spent fuel transport packages. The current practice in the US is to use only 75% of the specified 10B in criticality safety calculations unless extensive acceptance testing demonstrates both the presence of the 10B and uniformity of its distribution. In practice, the NRC has accepted no more than 90% credit for 10B in recent years, while other national competent authorities continue to accept 100%. More recently, with the introduction of new neutron absorber materials, particularly aluminum / boron carbide metal matrix composites, the NRC has also expressed expectations for qualification testing, based in large part on Transnuclear's successful application to use a new composite material in the TN-68 storage / transport cask. The difficulty is that adding more boron than is really necessary to a metal has some negative effects on the material, reducing the ductility and the thermal conductivity, and increasing the cost. Excessive testing requirements can have the undesired effect of keeping superior materials out of spent fuel package designs, without a corresponding justification based on public safety. In European countries and especially in France, 100% credit has been accepted up to now with materials controls specified in the Safety Analysis Report (SAR): Manufacturing process approved by qualification testing Materials manufacturing controlled under a Quality Assurance system. During fabrication, acceptance testing directly on products or on representative samples. Acceptance criteria taking into account a statistical uncertainty corresponding to 3{sigma}. The original and current bases for the reduced {sup 10}B credit, the design requirements for neutron absorber materials, and the experience of Transnuclear and Cogema Logistics with neutron absorber testing are examined. Guidelines for qualification and acceptance testing and

  17. Screening of Wheat Genotypes for Boron Efficiency in Bangladesh

    Science.gov (United States)

    A number of Bangladeshi wheat genotypes (varieties and advanced lines) have been tested for boron efficiency through sand culture experiments over two years (2007-08 & 2008-09) against two Thai check varieties ‘Fang 60’ (boron efficient) and ‘SW41’ (boron inefficient). Performances of the genotypes ...

  18. The effects of boron management on soil microbial population and ...

    African Journals Online (AJOL)

    Soil microorganisms directly influence boron content of soil as maximum boron release corresponds with the highest microbial activity. The objective of this study is to determine the effects of different levels of boron fertilizer on microbial population, microbial respiration and soil enzyme activities in different soil depths in ...

  19. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  20. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping; Wu, Ying; Lai, Yun

    2016-01-01

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  1. Oxidation of boron carbide at high temperatures

    International Nuclear Information System (INIS)

    Steinbrueck, Martin

    2005-01-01

    The oxidation kinetics of various types of boron carbides (pellets, powder) were investigated in the temperature range between 1073 and 1873 K. Oxidation rates were measured in transient and isothermal tests by means of mass spectrometric gas analysis. Oxidation of boron carbide is controlled by the formation of superficial liquid boron oxide and its loss due to the reaction with surplus steam to volatile boric acids and/or direct evaporation at temperatures above 1770 K. The overall reaction kinetics is paralinear. Linear oxidation kinetics established soon after the initiation of oxidation under the test conditions described in this report. Oxidation is strongly influenced by the thermohydraulic boundary conditions and in particular by the steam partial pressure and flow rate. On the other hand, the microstructure of the B 4 C samples has a limited influence on oxidation. Very low amounts of methane were produced in these tests

  2. The ternary system nickel-boron-silicon

    International Nuclear Information System (INIS)

    Lugscheider, E.; Reimann, H.; Knotek, O.

    1975-01-01

    The ternary system Nickel-Boron-Silicon was established at 850 0 C by means of X-ray diffraction, metallographic and micro-hardness examinations. The well known binary nickel borides and silicides resp. were confirmed. In the boron-silicon system two binary phases, SiBsub(4-x) with x approximately 0.7 and SiB 6 were found the latter in equilibrium with the β-rhombohedral boron. Confirming the two ternary silicon borides a greater homogeneity range was found for Ni 6 Si 2 B, the phase Nisub(4,6)Si 2 B published by Uraz and Rundqvist can better be described by the formula Nisub(4.29)Si 2 Bsub(1.43). In relation to further investigations we measured melting temperatures in ternary Ni-10 B-Si alloys by differential thermoanalysis. (author)

  3. Depth resolved investigations of boron implanted silicon

    Science.gov (United States)

    Sztucki, M.; Metzger, T. H.; Milita, S.; Berberich, F.; Schell, N.; Rouvière, J. L.; Patel, J.

    2003-01-01

    We have studied the depth distribution and structure of defects in boron implanted silicon (0 0 1). Silicon wafers were implanted with a boron dose of 6×10 15 ions/cm -2 at 32 keV and went through different annealing treatments. Using diffuse X-ray scattering at grazing incidence and exit angles we are able to distinguish between different kinds of defects (point defect clusters and extrinsic stacking faults on {1 1 1} planes) and to determine their depth distribution as a function of the thermal budget. Cross-section transmission electron microscopy was used to gain complementary information. In addition we have determined the strain distribution caused by the boron implantation as a function of depth from rocking curve measurements.

  4. Radiation hardening of MOS devices by boron

    International Nuclear Information System (INIS)

    Danchenko, V.

    1975-01-01

    A novel technique is disclosed for radiation hardening of MOS devices and specifically for stabilizing the gate threshold potential at room temperature of a radiation subjected MOS field-effect device of the type having a semiconductor substrate, an insulating layer of oxide on the substrate, and a gate electrode disposed on the insulating layer. In the preferred embodiment, the novel inventive technique contemplates the introduction of boron into the insulating oxide, the boron being introduced within a layer of the oxide of about 100A to 300A thickness immediately adjacent the semiconductor-insulator interface. The concentration of boron in the oxide layer is preferably maintained on the order of 10 atoms/ cm 3 . The novel technique serves to reduce and substantially annihilate radiation induced positive gate charge accumulations, which accumulations, if not eliminated, would cause shifting of the gate threshold potential of a radiation subjected MOS device, and thus render the device unstable and/or inoperative. (auth)

  5. BC-454 boron-loaded plastic scintillator

    International Nuclear Information System (INIS)

    Bellian, J.G.

    1984-01-01

    Prototype samples of plastic scintillators containing up to 10% by weight of natural boron have been produced. The maximum size scintillators made to date are 28 mm dia. x 100 mm long. Rods containing up to 2% boron are now made routinely and work is progressing on higher concentrations. The plastics are clear and emit the same blue fluorescence as other common plastic scintillators. It is expected that rods up to 3'' dia. containing 5% boron will be produced during the next few months. BC-454 is particularly useful in neutron research, materials studies, some types of neutron dosimetry, and monitoring of medium to high energy neutrons in the presence of other types radiation. It combines attractive features that enhance its usefulness to the physics community

  6. On the Mechanism of Boron Ignition

    Science.gov (United States)

    Keil, D. G.; Dreizin, E. L.; Felder, W.; Vicenzi, E. P.

    1997-01-01

    Boron filaments were electrically heated in air and argon/oxygen mixtures while their resistance, temperature, and radiation at the wavelengths of BO and BO2 bands were monitored. The filaments 'burned' in two distinct stages. Samples of the filaments were quenched at different times before and during the burning and analyzed using electron microscopy. The beginning of the first stage combustion characterized by a local resistance minimum, a sharp spike in boron oxide radiation emission, and a rapid rise in temperature, occurred at 1500 +/- 70 deg. C, independent of pre-heating history and oxygen content (540%) in the gas environment. The data suggest that a phase transition occurs in the filaments at this temperature that triggers stage one combustion. Significant amounts of oxygen were found inside quenched filaments. Large spherical voids formed in the boron filaments during their second stage combustion which is interpreted to indicate a crucial role for the gas dissolution processes in the combustion scenario.

  7. A system to deposit boron films (boronization) in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Hodapp, T.R.; Jackson, G.L.; Phillips, J.; Holtrop, K.L.; Peterson, P.L.; Winters, J.

    1992-01-01

    A system has been added to the DIII-D tokamak to coat its plasma facing surfaces with a film of boron using diborane gas. The system includes special health and safety equipment for handling the diborane gas which is toxic and inflammable. The purpose f the boron film is to reduce the levels of impurity atoms in the DIII-D plasmas. Experiments following the application of the boron film in DIII-D have led to significant reductions in plasma impurity levels and the observation of a new, very high confinement regime

  8. A system to deposit boron films (boronization) in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Hodapp, T.R.; Jackson, G.L.; Phillips, J.; Holtrop, K.L.; Petersen, P.I.; Winter, J.

    1991-09-01

    A system has been added to the D3-D tokamak to coat its plasma facing surfaces with a film of boron using diborane gas. The system includes special health and safety equipment for handling the diborane gas which is toxic and inflammable. The purpose of the boron film is to reduce the levels of impurity atoms in the D3-D plasmas. Experiments following the application of the boron film in D3-D have led to significant reductions in plasma impurity levels and the observation of a new, very high confinement regime. 9 refs., 1 fig

  9. Boron removal by electrocoagulation and recovery.

    Science.gov (United States)

    Isa, Mohamed Hasnain; Ezechi, Ezerie Henry; Ahmed, Zubair; Magram, Saleh Faraj; Kutty, Shamsul Rahman Mohamed

    2014-03-15

    This work investigated the removal of boron from wastewater and its recovery by electrocoagulation and hydrothermal mineralization methods respectively. The experimental design was developed using Box-Behnken Model. An initial study was performed based on four preselected variables (pH, current density, concentration and time) using synthetic wastewater. Response surface methodology (RSM) was used to evaluate the effect of process variables and their interaction on boron removal. The optimum conditions were obtained as pH 6.3, current density 17.4 mA/cm(2), and time 89 min. At these applied optimum conditions, 99.7% boron removal from an initial concentration of 10.4 mg/L was achieved. The process was effectively optimized by RSM with a desirability value of 1.0. The results showed that boron removal efficiency enhanced with increase in current density and treatment time. Removal efficiency also increased when pH was increased from 4 to 7 and subsequently decreased at pH 10. Adsorption kinetics study revealed that the reaction followed pseudo second order kinetic model; evidenced by high correlation and goodness of fit. Thermodynamics study showed that mechanism of boron adsorption was chemisorption and the reaction was endothermic in nature. Furthermore, the adsorption process was spontaneous as indicated by negative values of the adsorption free energy. Treatment of real produced water using electrocoagulation resulted in 98% boron removal. The hydrothermal mineralization study showed that borate minerals (Inyoite, Takadaite and Nifontovite) can be recovered as recyclable precipitate from electrocoagulation flocs of produced water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Effect of heat absorbing powder addition on cell morphology of porous titanium composite manufactured by reactive precursor method

    International Nuclear Information System (INIS)

    Kobashi, Makoto; Kamiya, Yoshinori; Kanetake, Naoyuki

    2012-01-01

    Open-cell structured porous titanium/ceramics composite was synthesized by a reactive precursor method using titanium and boron carbide (B 4 C) as reactant powders. Pore morphology was controlled by adding heat absorbing powder (titanium diboride: TiB 2 ) in the Ti+B 4 C blended powder. The effects of molar blending ratio of titanium and B 4 C and the amount of heat absorbing powder addition on the cell morphology (either open or closed) were investigated. Fine and homogeneous open-cell structure was achieved by adding appropriate amount of heat absorbing agent powder (>15 vol%), and the relative density of the specimen after the reaction became closer to that of the precursor by increasing TiB 2 volume fraction. When the volume fraction of TiB 2 addition was 20%, the open-cell fraction was maintained as 1.0 regardless of the relative density of the precursor.

  11. Boron nitride nanotubes for spintronics.

    Science.gov (United States)

    Dhungana, Kamal B; Pati, Ranjit

    2014-09-22

    With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  12. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  13. Reactive sputter deposition of boron nitride

    International Nuclear Information System (INIS)

    Jankowski, A.F.; Hayes, J.P.; McKernan, M.A.; Makowiecki, D.M.

    1995-10-01

    The preparation of fully dense, boron targets for use in planar magnetron sources has lead to the synthesis of Boron Nitride (BN) films by reactive rf sputtering. The deposition parameters of gas pressure, flow and composition are varied along with substrate temperature and applied bias. The films are characterized for composition using Auger electron spectroscopy, for chemical bonding using Raman spectroscopy and for crystalline structure using transmission electron microscopy. The deposition conditions are established which lead to the growth of crystalline BN phases. In particular, the growth of an adherent cubic BN coating requires 400--500 C substrate heating and an applied -300 V dc bias

  14. Proton linacs for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Lennox, A.J.

    1993-08-01

    Recent advances in the ability to deliver boron-containing drugs to brain tumors have generated interest in ∼4 MeV linacs as sources of epithermal neutrons for radiation therapy. In addition, fast neutron therapy facilities have been studying methods to moderate their beams to take advantage of the high cross section for epithermal neutrons on boron-10. This paper describes the technical issues involved in each approach and presents the motivation for undertaking such studies using the Fermilab linac. the problems which must be solved before therapy can begin are outlined. Status of preparatory work and results of preliminary measurements are presented

  15. Titanium reinforced boron-polyimide composite

    Science.gov (United States)

    Clark, G. A.; Clayton, K. I.

    1969-01-01

    Processing techniques for boron polyimide prepreg were developed whereby composites could be molded under vacuum bag pressure only. A post-cure cycle was developed which resulted in no loss in room temperature mechanical properties of the composite at any time during up to 16 hours at 650 F. A design utilizing laminated titanium foil was developed to achieve a smooth transition of load from the titanium attachment points into the boron-reinforced body of the structure. The box beam test article was subjected to combined bending and torsional loads while exposed to 650 F. Loads were applied incrementally until failure occurred at 83% design limit load.

  16. Designing your boron-charging system

    International Nuclear Information System (INIS)

    Miller, J.

    1979-01-01

    High-pressure positive-displacement pumps used in the boron-charging setups of pressurized-water (PWR) nuclear plants because of their inherently high efficiencies over a wide range of pressures and speeds are described. Hydrogen-saturated water containing 4-12% boric acid is fed to the pump from a volume-control tank under a gas blanket. Complicated piping and the pulsation difficulties associated with reciprocating pumps make hydrogen-saturated boron-charging systems a challenge to the designer. The article describes the unusual hydraulics of the systems to help assure a trouble-free design

  17. High temperature solar energy absorbing surfaces

    Science.gov (United States)

    Schreyer, J.M.; Schmitt, C.R.; Abbatiello, L.A.

    A solar collector having an improved coating is provided. The coating is a plasma-sprayed coating comprising a material having a melting point above 500/sup 0/C at which it is stable and selected from the group of boron carbide, boron nitride, metals and metal oxides, nitrides, carbides, borides, and silicates. The coatings preferably have a porosity of about 15 to 25% and a thickness of less than 200 micrometers. The coatings can be provided by plasma-spraying particles having a mean diameter of about 10 to 200 micrometers.

  18. Application of generalized perturbation theory to sensitivity analysis in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Vanessa S. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Programa de Pos-Graduacao em Modelagem Computacional em Ciencia e Tecnologia; Silva, Fernando C.; Silva, Ademir X., E-mail: fernando@con.ufrj.b, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Alvarez, Gustavo B. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Dept. de Ciencias Exatas

    2011-07-01

    Boron neutron capture therapy - BNCT - is a binary cancer treatment used in brain tumors. The tumor is loaded with a boron compound and subsequently irradiated by thermal neutrons. The therapy is based on the {sup 10}B (n, {alpha}) {sup 7}Li nuclear reaction, which emits two types of high-energy particles, {alpha} particle and the {sup 7}Li nuclei. The total kinetic energy released in this nuclear reaction, when deposited in the tumor region, destroys the cancer cells. Since the success of the BNCT is linked to the different selectivity between the tumor and healthy tissue, it is necessary to carry out a sensitivity analysis to determinate the boron concentration. Computational simulations are very important in this context because they help in the treatment planning by calculating the lowest effective absorbed dose rate to reduce the damage to healthy tissue. The objective of this paper is to present a deterministic method based on generalized perturbation theory (GPT) to perform sensitivity analysis with respect to the {sup 10}B concentration and to estimate the absorbed dose rate by patients undergoing this therapy. The advantage of the method is a significant reduction in computational time required to perform these calculations. To simulate the neutron flux in all brain regions, the method relies on a two-dimensional neutron transport equation whose spatial, angular and energy variables are discretized by the diamond difference method, the discrete ordinate method and multigroup formulation, respectively. The results obtained through GPT are consistent with those obtained using other methods, demonstrating the efficacy of the proposed method. (author)

  19. Application of generalized perturbation theory to sensitivity analysis in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Garcia, Vanessa S.; Silva, Fernando C.; Silva, Ademir X.; Alvarez, Gustavo B.

    2011-01-01

    Boron neutron capture therapy - BNCT - is a binary cancer treatment used in brain tumors. The tumor is loaded with a boron compound and subsequently irradiated by thermal neutrons. The therapy is based on the 10 B (n, α) 7 Li nuclear reaction, which emits two types of high-energy particles, α particle and the 7 Li nuclei. The total kinetic energy released in this nuclear reaction, when deposited in the tumor region, destroys the cancer cells. Since the success of the BNCT is linked to the different selectivity between the tumor and healthy tissue, it is necessary to carry out a sensitivity analysis to determinate the boron concentration. Computational simulations are very important in this context because they help in the treatment planning by calculating the lowest effective absorbed dose rate to reduce the damage to healthy tissue. The objective of this paper is to present a deterministic method based on generalized perturbation theory (GPT) to perform sensitivity analysis with respect to the 10 B concentration and to estimate the absorbed dose rate by patients undergoing this therapy. The advantage of the method is a significant reduction in computational time required to perform these calculations. To simulate the neutron flux in all brain regions, the method relies on a two-dimensional neutron transport equation whose spatial, angular and energy variables are discretized by the diamond difference method, the discrete ordinate method and multigroup formulation, respectively. The results obtained through GPT are consistent with those obtained using other methods, demonstrating the efficacy of the proposed method. (author)

  20. Model for calculating the boron concentration in PWR type reactors

    International Nuclear Information System (INIS)

    Reis Martins Junior, L.L. dos; Vanni, E.A.

    1986-01-01

    A PWR boron concentration model has been developed for use with RETRAN code. The concentration model calculates the boron mass balance in the primary circuit as the injected boron mixes and is transported through the same circuit. RETRAN control blocks are used to calculate the boron concentration in fluid volumes during steady-state and transient conditions. The boron reactivity worth is obtained from the core concentration and used in RETRAN point kinetics model. A FSAR type analysis of a Steam Line Break Accident in Angra I plant was selected to test the model and the results obtained indicate a sucessfull performance. (Author) [pt

  1. Oxalate: Effect on calcium absorbability

    International Nuclear Information System (INIS)

    Heaney, R.P.; Weaver, C.M.

    1989-01-01

    Absorption of calcium from intrinsically labeled Ca oxalate was measured in 18 normal women and compared with absorption of Ca from milk in these same subjects, both when the test substances were ingested in separate meals and when ingested together. Fractional Ca absorption from oxalate averaged 0.100 +/- 0.043 when ingested alone and 0.140 +/- 0.063 when ingested together with milk. Absorption was, as expected, substantially lower than absorption from milk (0.358 +/- 0.113). Nevertheless Ca oxalate absorbability in these women was higher than we had previously found for spinach Ca. When milk and Ca oxalate were ingested together, there was no interference of oxalate in milk Ca absorption and no evidence of tracer exchange between the two labeled Ca species

  2. Insights into the Mechanisms Underlying Boron Homeostasis in Plants

    Directory of Open Access Journals (Sweden)

    Akira Yoshinari

    2017-11-01

    Full Text Available Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under boron -limiting conditions, boric acid channels and borate exporters function in the uptake and translocation of boron to support growth of various plant species. In Arabidopsis thaliana, NIP5;1 and BOR1 are located in the plasma membrane and polarized toward soil and stele, respectively, in various root cells, for efficient transport of boron from the soil to the stele. Importantly, sufficient levels of boron induce downregulation of NIP5;1 and BOR1 through mRNA degradation and proteolysis through endocytosis, respectively. In addition, borate exporters, such as Arabidopsis BOR4 and barley Bot1, function in boron exclusion from tissues and cells under conditions of excess boron. Thus, plants actively regulate intracellular localization and abundance of transport proteins to maintain boron homeostasis. In this review, the physiological roles and regulatory mechanisms of intracellular localization and abundance of boron transport proteins are discussed.

  3. A colorimetric determination of boron in biological sample for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Camillo, M.A.P.; Tomac Junior, U.

    1990-01-01

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of glyemas and gluoblastomas grade III and IV than other therapies. During the treatment the levels of Na 2 10 B 12 H 11 SH must be known in several compartiments of the organism and with this purpose the method of colorimetric determination of boron using curcumine was established. This method is simple, reprodutible and adequate sensitivity for this control. (author) [pt

  4. A colorimetric determination of boron in biological sample for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Camilo, M.A.P.; Tomac Junior, U.

    1989-01-01

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of gliomas and glioblastomas grade III and IV than other therapies. During the treatment of levels of Na 2 10 B 12 H 11 S H must be known in several compartments of the organism and with this purpose the method of colorimetric determination of boron using curcumin was established. This method is simples, reproducible and has adequate sensitivity for this control. (author). 7 refs, 3 figs, 1 tab

  5. Boron uptake measurements in a rat model for Boron Neutron Capture Therapy of lung tumours

    Energy Technology Data Exchange (ETDEWEB)

    Bortolussi, S., E-mail: silva.bortolussi@pv.infn.i [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); National Institute of Nuclear Physics (INFN), Section of Pavia, via Bassi 6, 27100 Pavia (Italy); Bakeine, J.G. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); Ballarini, F. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); National Institute of Nuclear Physics (INFN), Section of Pavia, via Bassi 6, 27100 Pavia (Italy); Bruschi, P. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); Gadan, M.A. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Protti, N.; Stella, S. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); National Institute of Nuclear Physics (INFN), Section of Pavia, via Bassi 6, 27100 Pavia (Italy); Clerici, A.; Ferrari, C.; Cansolino, L.; Zonta, C.; Zonta, A. [Department of Surgery, University of Pavia, via Ferrata 27100 Pavia (Italy); Nano, R. [Department of Animal Biology, University of Pavia, via Ferrata 27100 Pavia (Italy); Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, via Bassi 6, 27100 Pavia (Italy); National Institute of Nuclear Physics (INFN), Section of Pavia, via Bassi 6, 27100 Pavia (Italy)

    2011-02-15

    Lung carcinoma is the leading cause of cancer mortality in the Western countries. Despite the introduction over the last few years of new therapeutic agents, survival from lung cancer has shown no discernible improvement in the last 20 years. For these reasons any efforts to find and validate new effective therapeutic procedures for lung cancer are very timely. The selective boron uptake in the tumour with respect to healthy tissues makes Boron Neutron Capture Therapy a potentially advantageous option in the treatment of tumours that affect whole vital organs, and that are surgically inoperable. To study the possibility of applying BNCT to the treatment of diffuse pulmonary tumours, an animal model for boron uptake measurements in lung metastases was developed. Both healthy and tumour-bearing rats were infused with Boronophenylalanine (BPA) and sacrificed at different time intervals after drug administration. The lungs were extracted, and prepared for boron analysis by neutron autoradiography and {alpha}-spectroscopy. The boron concentrations in tumour and normal lung were plotted as a function of the time elapsed after BPA administration. The concentration in tumour is almost constant within the error bars for all the time intervals of the experiment (1-8 h), while the curve in normal lung decreases after 4 h from BPA infusion. At 4 h, the ratio of boron concentration in tumour to boron concentration in healthy lung is higher than 3, and it stays above this level up to 8 h. Also the images of boron distribution in the samples, obtained by neutron autoradiography, show a selective absorption in the metastases.

  6. Nuclear magnetic resonance spectroscopy of boron compounds containing two-, three- and four-coordinate boron

    International Nuclear Information System (INIS)

    Wrackmeyer, B.

    1988-01-01

    The influence of boron chemistry on various areas of research in inorganic, organic and theoretical chemistry is well documented. In fact, many models presently employed to describe chemical bonding in general can be traced to attempts to understand bonding in boranes. The confirmation of many theoretical predictions in boron chemistry relies on direct and indirect structural information provided by various physical methods that - fortunately - became available almost at the same rate as that with which the interest in boron compounds was growing. Clearly, there has always been a strong link between the interest in synthesis and the application of physical methods. As in many other areas of chemistry, developments in boron chemistry have been greatly accelerated by NMR. 11 B NMR has been at the center of interest from the beginning, accompanied by routine 1 H NMR measurements, and occasional 14 N, 19 F and 31 P NMR work. In the last 12 years, we have seen an increasing number of 13 C NMR studies of boron compounds. The availability of multinuclear facilities for PFT NMR spectrometers stimulates the measurement of the NMR spectra of other nuclei, like 29 Si, 119 Sn or other metals, in order to obtain additional information. This paper is intended to serve several purposes: to update previous reviews on 11 B NMR of boron compounds, to demonstrate some applications of multinuclear NMR to boron chemistry; to attempt to incorporate new NMR parameters into the known data set; and to summarize the experimental facts required for obtaining the maximum information from NMR studies on boron compounds

  7. Manufacturing of porous boron steels potentially useful as nuclear materials

    International Nuclear Information System (INIS)

    Abenojar, Juana; Velasco, Francisco; Martinez, Miguel Angel

    2006-01-01

    B 4 C is a good neutron absorber, commonly used together with light materials in panels. The objective of this work is to manufacture high boron steels, using B 4 C additions, through mechanical alloying and sintering, to get a material potentially useful for nuclear waste management. The porosity of the material can help to the removal of helium bubbles. Iron and B 4 C powders were mechanically alloyed for different times, following the process studying apparent density, morphology (SEM) and structure (XRD). Powder was uniaxially compacted and sintered at different conditions. Specimens were analysed by SEM and physical and mechanical properties were evaluated (density, dimensional change and bending strength). Microstructures are very different and therefore, they have different properties depending on sintering temperature. Although boride formation always takes place, only ferritic areas were found at 600degC, meanwhile ferritic and perlitic areas appeared at 900degC, and both of them disappeared at 1,200degC. (author)

  8. Amorphisation of boron carbide under slow heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gosset, D., E-mail: Dominique.gosset@cea.fr [CEA Saclay, DEN, DANS, DMN, SRMA, LA2M, Université Paris-Saclay, 91191, Gif/Yvette (France); Miro, S. [CEA Saclay, DEN, DANS, DMN, SRMP, Laboratoire JANNUS, Université Paris-Saclay, 91191, Gif/Yvette (France); Doriot, S. [CEA Saclay, DEN, DANS, DMN, SRMA, LA2M, Université Paris-Saclay, 91191, Gif/Yvette (France); Moncoffre, N. [CNRS/IN2P3/IPNL, 69622, Villeurbanne (France)

    2016-08-01

    Boron carbide B{sub 4}C is widely used as a neutron absorber in nuclear plants. Most of the post-irradiation examinations have shown that the structure of the material remains crystalline, in spite of very high atomic displacement rates. Here, we have irradiated B{sub 4}C samples with 4 MeV Au ions with different fluences at room temperature. Transmission electron microscopy (TEM) and Raman spectroscopy have been performed. The Raman analyses show a high structural disorder at low fluence, around 10{sup −2} displacements per atoms (dpa). However, the TEM observations show that the material remains crystalline up to a few dpa. At high fluence, small amorphous areas a few nanometers large appear in the damaged zone but the long range order is preserved. Moreover, the size and density of the amorphous zones do not significantly grow when the damage increases. On the other hand, full amorphisation is observed in the implanted zone at a Au concentration of about 0.0005. It can be inferred from those results that short range and long range damages arise at highly different fluences, that heavy ions implantation has drastic effects on the structure stability and that in this material self-healing mechanisms are active in the damaged zone.

  9. ICP-MS determination of boron: method optimization during preparation of graphite reference material for boron

    International Nuclear Information System (INIS)

    Granthali, S.K.; Shailaja, P.P.; Mainsha, V.; Venkatesh, K.; Kallola, K.S.; Sanjukta, A.K.

    2017-01-01

    Graphite finds widespread use in nuclear reactors as moderator, reflector, and fuel fabricating components because of its thermal stability and integrity. The manufacturing process consists of various mixing, moulding and baking operations followed by heat-treatment between 2500 °C and 3000 °C. The high temperature treatment is required to drive the amorphous carbon-to-graphite phase transformation. Since synthetic graphite is processed at high temperature, impurity concentrations in the precursor carbon get significantly reduced due to volatilization. However boron may might partly gets converted into boron carbide at high temperatures in the carbon environment of graphite and remains stable (B_4C: boiling point 3500 °C) in the matrix. Literature survey reveals the use of various methods for determination of boron. Previously we have developed a method for determination of boron in graphite electrodes using inductively coupled plasma mass spectrometry (ICP-MS). The method involves removal of graphite matrix by ignition of the sample at 800°C in presence of saturated barium hydroxide solution to prevent the loss of boron. Here we are reporting a modification in the method by using calcium carbonate in place of barium hydroxide and using beryllium (Be) as an internal standard, which resulted in a better precession. The method was validated by spike recovery experiments as well as using another technique viz. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The modified method was applied in evaluation of boron concentration in the graphite reference material prepared

  10. Boron exposure through drinking water during pregnancy and birth size.

    Science.gov (United States)

    Igra, Annachiara Malin; Harari, Florencia; Lu, Ying; Casimiro, Esperanza; Vahter, Marie

    2016-10-01

    Boron is a metalloid found at highly varying concentrations in soil and water. Experimental data indicate that boron is a developmental toxicant, but the few human toxicity data available concern mostly male reproduction. To evaluate potential effects of boron exposure through drinking water on pregnancy outcomes. In a mother-child cohort in northern Argentina (n=194), 1-3 samples of serum, whole blood and urine were collected per woman during pregnancy and analyzed for boron and other elements to which exposure occurred, using inductively coupled plasma mass spectrometry. Infant weight, length and head circumference were measured at birth. Drinking water boron ranged 377-10,929μg/L. The serum boron concentrations during pregnancy ranged 0.73-605μg/L (median 133μg/L) and correlated strongly with whole-blood and urinary boron, and, to a lesser extent, with water boron. In multivariable-adjusted linear spline regression analysis (non-linear association), we found that serum boron concentrations above 80μg/L were inversely associated with birth length (B-0.69cm, 95% CI -1.4; -0.024, p=0.043, per 100μg/L increase in serum boron). The impact of boron appeared stronger when we restricted the exposure to the third trimester, when the serum boron concentrations were the highest (0.73-447μg/L). An increase in serum boron of 100μg/L in the third trimester corresponded to 0.9cm shorter and 120g lighter newborns (p=0.001 and 0.021, respectively). Considering that elevated boron concentrations in drinking water are common in many areas of the world, although more screening is warranted, our novel findings warrant additional research on early-life exposure in other populations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Boron nitride nanosheets reinforced glass matrix composites

    Czech Academy of Sciences Publication Activity Database

    Saggar, Richa; Porwal, H.; Tatarko, P.; Dlouhý, Ivo; Reece, M. J.

    2015-01-01

    Roč. 114, SEP (2015), S26-S32 ISSN 1743-6753 R&D Projects: GA MŠk(CZ) 7AMB14SK155 EU Projects: European Commission(XE) 264526 Institutional support: RVO:68081723 Keywords : Boron nitride nanosheets * Borosilicate glass * Mechanical properties Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.162, year: 2015

  12. Boron-doped manganese dioxide for supercapacitors.

    Science.gov (United States)

    Chi, Hong Zhong; Li, Yuwei; Xin, Yingxu; Qin, Haiying

    2014-11-11

    The addition of boron as a dopant during the reaction between carbon fiber and permanganate led to significant enhancement of the growth-rate and formation of the porous framework. The doped MnO2 was superior to the pristine sample as electrode materials for supercapacitors in terms of the specific capacitance and rate capability.

  13. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Liu, Yushen [Jiangsu Laboratory of Advanced Functional Materials and College of Physics and Engineering, Changshu Institute of Technology, Changshu 215500 (China); Deng, Xiaohui [Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421008 (China); Zhang, G. P. [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States)

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  14. Anomalous Seebeck coefficient in boron carbides

    International Nuclear Information System (INIS)

    Aselage, T.L.; Emin, D.; Wood, C.; Mackinnon, I.D.R.; Howard, I.A.

    1987-01-01

    Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder

  15. NEW ADVANCES IN BORON SOIL CHEMISTRY - Paper

    Science.gov (United States)

    Boron is an essential plant micronutrient for which the range between deficiency and toxicity is narrower than for any other nutrient element. Plants respond directly to the amount of B in soil solution and only indirectly to the amount of B adsorbed on soil particle surfaces. ...

  16. NEW ADVANCES IN BORON SOIL CHEMISTRY

    Science.gov (United States)

    Boron is an essential plant micronutrient for which the range between deficiency and toxicity is narrower than for any other nutrient element. Plants respond directly to the amount of B in soil solution and only indirectly to the amount of B adsorbed on soil particle surfaces. ...

  17. New insight into pecan boron nutrition

    Science.gov (United States)

    Alternate bearing by individual pecan [Carya illinoinensis (Wangenh.) K. Koch] trees is problematic for nut producers and processors. There are many unknowns regarding alternate bearing physiology, such as the relationship between boron and fruit set, nutmeat quality, and kernel maladies. Evidence...

  18. Joining of boron carbide using nickel interlayer

    International Nuclear Information System (INIS)

    Vosughi, A.; Hadian, A. M.

    2008-01-01

    Carbide ceramics such as boron carbide due to their unique properties such as low density, high refractoriness, and high strength to weight ratio have many applications in different industries. This study focuses on direct bonding of boron carbide for high temperature applications using nickel interlayer. The process variables such as bonding time, temperature, and pressure have been investigated. The microstructure of the joint area was studied using electron scanning microscope technique. At all the bonding temperatures ranging from 1150 to 1300 d eg C a reaction layer formed across the ceramic/metal interface. The thickness of the reaction layer increased by increasing temperature. The strength of the bonded samples was measured using shear testing method. The highest strength value obtained was about 100 MPa and belonged to the samples bonded at 1250 for 75 min bonding time. The strength of the joints decreased by increasing the bonding temperature above 1250 d eg C . The results of this study showed that direct bonding technique along with nickel interlayer can be successfully utilized for bonding boron carbide ceramic to itself. This method may be used for bonding boron carbide to metals as well.

  19. Influence of pollution of boron chlorinity ratio

    Digital Repository Service at National Institute of Oceanography (India)

    Narvekar, P.V.; Zingde, M.D.

    Presence of boron in domestic wastewater has resulted in high B/CI ratio at some locations in the coastal water around Bombay. A widest range (0.215-0.281) of B/CI was observed at a location with high influence of wastewater release. The mean B...

  20. Bandgap engineered graphene and hexagonal boron nitride

    Indian Academy of Sciences (India)

    In this article a double-barrier resonant tunnelling diode (DBRTD) has been modelled by taking advantage of single-layer hexagonal lattice of graphene and hexagonal boron nitride (h-BN). The DBRTD performance and operation are explored by means of a self-consistent solution inside the non-equilibrium Green's ...

  1. Reaction of boron carbide with molybdenum disilicide

    International Nuclear Information System (INIS)

    Novikov, A.V.; Melekhin, V.F.; Pegov, V.S.

    1989-01-01

    The investigation results of interaction in the B 4 C-MoSi 2 system during sintering in vacuum are presented. Sintering of boron carbide with molybdenum disilicide is shown to lead to the formation of MoB 2 , SiC, Mo 5 Si 3 compounds, the presence of carbon-containing covering plays an important role in sintering

  2. Crystal structure of isomeric boron difluoride acetylnaphtholates

    International Nuclear Information System (INIS)

    Bukvetskij, B.V.; Fedorenko, E.V.; Mirochnik, A.G.; Karasev, V.E.

    2006-01-01

    Crystal structures of luminescent isomeric acetylnaphtholates of boron difluoride are investigated. Full X-ray structural analysis is done at 293 K. Coordinated of atoms, bond angles, bond lengths, interatomic distances are determined. Results of comparative evaluations of the isomers are represented [ru

  3. Radiobiology of boron neutron capture therapy

    International Nuclear Information System (INIS)

    Bond, V.P.

    1986-01-01

    The author addresses the question of single session versus protracted therapy in the application of boron neutron therapy to tumors. As background he discusses the reasoning behind the current use of fractionated therapy with conventional low-LET radiations and difference which may obtain for neutron therapy. Several aspects of dose rates and dose levels are then addressed

  4. An omnidirectional electromagnetic absorber made of metamaterials

    International Nuclear Information System (INIS)

    Cheng Qiang; Cui Tiejun; Jiang Weixiang; Cai Bengeng

    2010-01-01

    In a recent theoretical work by Narimanov and Kildishev (2009 Appl. Phys. Lett. 95 041106) an optical omnidirectional light absorber based on metamaterials was proposed, in which theoretical analysis and numerical simulations showed that all optical waves hitting the absorber are trapped and absorbed. Here we report the first experimental demonstration of an omnidirectional electromagnetic absorber in the microwave frequency. The proposed device is composed of non-resonant and resonant metamaterial structures, which can trap and absorb electromagnetic waves coming from all directions spirally inwards without any reflections due to the local control of electromagnetic fields. It is shown that the absorption rate can reach 99 per cent in the microwave frequency. The all-directional full absorption property makes the device behave like an 'electromagnetic black body', and the wave trapping and absorbing properties simulate, to some extent, an 'electromagnetic black hole.' We expect that such a device could be used as a thermal emitting source and to harvest electromagnetic waves.

  5. BCM6: New Generation of Boron Meter

    International Nuclear Information System (INIS)

    Pirat, P.

    2010-01-01

    Full text of publication follows: Rolls-Royce has developed a new generation of boron meter, based on more than 30 years of experience. The Rolls-Royce BCM6 boron meter provides Nuclear Power Plant (NPP) operators with the boron concentration of the primary circuit. The meter provides continuous and safe measurements with no manual sampling and no human contact. In this paper, technical features, advantages and customer benefits of the use of the new generation of Rolls-Royce BCM6 boron meter will be detailed. Values and associated alarms are provides over different media: 4-20 mA outputs, relays, displays in the main control room and in the chemical lab, and digital links. A special alarm avoids unexpected homogeneous dilution of the primary circuit, which is a critical operational parameter. The Rolls-Royce BCM6 boron meter is fully configurable over a set of parameters allowing adaptation to customer needs. It has a differential capability, thus eliminating neutronic noise and keeping measurements accurate, even in the case of fuel clad rupture. Measurements are accurate, reliable, and have a quick response time. Equipment meets state-of-the-art qualification requests. Designed in 2008, the BCM6 boron meter is the newest equipment of Rolls-Royce boron meters product line. It has been chosen to equip the French EPR NPP and complies with the state-of-the-art of the technology. Rolls-Royce has more than 30 years of experience in Instrumentation and Controls with more than 75 NPP units operating worldwide. All of this experience return has been put in this new generation of equipment to provide the customer with the best operation. About Rolls-Royce Rolls-Royce is a global business providing integrated power systems for use on land, at sea and in the air. The Group has a balanced business portfolio with leading market positions. Rolls-Royce has a broad range of civil nuclear expertise, including work related to licensing and safety reviews, engineering design

  6. Comments on liquid hydrogen absorbers for MICE

    International Nuclear Information System (INIS)

    Green, Michael A.

    2003-01-01

    This report describes the heat transfer problems associated with a liquid hydrogen absorber for the MICE experiment. This report describes a technique for modeling heat transfer from the outside world, to the absorber case and in its vacuum vessel, to the hydrogen and then into helium gas at 14 K. Also presented are the equation for free convection cooling of the liquid hydrogen in the absorber

  7. Absorbed dose by a CMOS in radiotherapy

    International Nuclear Information System (INIS)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R.; Paredes G, L. C.

    2011-10-01

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  8. Multiband Negative Permittivity Metamaterials and Absorbers

    Directory of Open Access Journals (Sweden)

    Yiran Tian

    2013-01-01

    Full Text Available Design and characteristics of multiband negative permittivity metamaterial and its absorber configuration are presented in this paper. The proposed multiband metamaterial is composed of a novel multibranch resonator which can possess four electric resonance frequencies. It is shown that, by controlling the length of the main branches of such resonator, the resonant frequencies and corresponding absorbing bands of metamaterial absorber can be shifted in a large frequency band.

  9. Preparation of super absorbent by irradiation polymerization

    International Nuclear Information System (INIS)

    Hua Fengjun; Tan Chunhong; Qian Mengping

    1995-01-01

    A kind of absorbent is prepared by gamma-rays irradiated by reversed-phase suspension polymerization. Drying particles have 1400 (g/g) absorbency in de-ionic water. Effects of reactive conditions, e.g.: dose-rate, dose, monomer concentration, degree of monomer neutralization and crosslinking agents on absorbency in de-ionic water are discussed. The cause of absorbing de-ionic water by polymer is related to its network structure and ionic equilibrium in particle. Accordingly, a suit reactive condition is chosen for preparation of hydro gel spheres

  10. Absorber rod drive for nuclear reactors

    International Nuclear Information System (INIS)

    Acher, H.

    1985-01-01

    The invention concerns a further addition to the invention of DE 33 42 830 A1. The free contact of the hollow piston with the nut due to hydraulic pressure is replaced by a hydraulic or spring attachment. The pressure system required to produce the hydraulic pressure is therefore omitted, and the electrical power required for driving the pump or the mass flow is also omitted. The absorber rod slotted along its longitudinal axis is replaced by an absorber rod, in the longitudinal axis of which a hollow piston is connected together with the absorber rod. This makes the absorber rod more stable, and assembly is simplified. (orig./HP) [de

  11. TPX/TFTR Neutral Beam energy absorbers

    International Nuclear Information System (INIS)

    Dahlgren, F.; Wright, K.; Kamperschroer, J.; Grisham, L.; Lontai, L.; Peters, C.; VonHalle, A.

    1993-01-01

    The present beam energy absorbing surfaces on the TFTR Neutral Beams such as Ion Dumps, Calorimeters, beam defining apertures, and scrapers, are simple water cooled copper plates which wee designed to absorb (via their thermal inertia) the incident beam power for two seconds with a five minute coal down interval between pulses. These components are not capable of absorbing the anticipated beam power loading for 1000 second TPX pulses and will have to be replaced with an actively cooled design. While several actively cooled energy absorbing designs were considered,, the hypervapotron elements currently being used on the JET beamlines were chosen due to their lower cooling water demands and reliable performance on JET

  12. THE INFLUENCE OF CaO AND P2O5 OF BONE ASH UPON THE REACTIVITY AND THE BURNABILITY OF CEMENT RAW MIXTURES

    Directory of Open Access Journals (Sweden)

    TOMÁŠ IFKA

    2012-03-01

    Full Text Available The influence of CaO and P2O5 upon the reactivity of cement raw meal was investigated in this paper. Ash of bone meal containing Ca3(PO42 - 3CaO·P2O5 was used as the source of P2O5. Two series of samples with different content of the ash of bone meal were prepared. In the first series, the ash of bone was added into cement raw meal. The second series of samples were prepared by considering ash as one of CaO sources. Therefore, the total content of CaO in cement raw meal was kept constant, while the amount of P2O5 increased. These different series of samples were investigated by analyzing free lime content in the clinkers. The XRD analysis and Electron Micro Probe Analyzer analysis of the clinkers were also carried out. Two parameters were used to characterize the reactivity of cement raw meal: content of free lime and Burnability Index (BI calculated from free lime content in both series of samples burnt at 1350 ºC, 1400 ºC, 1450 ºC and 1500 ºC. According to the first parameter, P2O5 content that drastically makes worse the reactivity of cement raw meal was found at 1.11 wt.% in the first series, while this limit has reached 1.52 wt.% in the second one. According to the BI, the limit of P2O5 was found at 1.42 wt. % in the first series and 1, 61 wt.% in the second one. Furthermore, EPMA has demonstrated the presence of P2O5 in both calcium silicate phases forming thus solid solutions.

  13. Sintering of beryllium oxide with 3-4 per cent elemental boron; Frittage de l'oxyde de beryllium a 3 et 5 pour cent de bore element

    Energy Technology Data Exchange (ETDEWEB)

    Pointud, R; Rispal, Ch; Le Garec, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    In order to manufacture a baffle absorbing neutrons of various energies, there was developed or mixture of a slower and an absorber. It is made by hot pressing impure beryllium containing boron carbide. The dense briquette has 100 x 100 x 50 mm and is machined on all her faces. She is of 2,85 density and about 3 to 4 per cent porosity, according to 5 per cent of boron. Difference of boron amount is lower than ten per cent between any two points of the briquette. (author) [French] Pour fabriquer un ecran absorbeur des neutrons d'energies diverses, on a realise l'association d'un element ralentisseur, Ie beryllium, et d'un element absorbant, le bore, par frittage sous charge d'une poudre mixte contenant de l'oxyde de beryllium technique et du carbure de bore technique. Le comprime obtenu est une brique de 100 x 100 x 50 mm, usinee sur toutes sur toutes surfaces, d'une densite de 2,85, porosite d'environ 3 a 4 pour cent pour une teneur en bore de 5 pour cent. L'heterogeneite en bore entre les differents points de cette brique est inferieure a 10 pour cent. (auteur)

  14. Gaseous carbon dioxide absorbing column

    International Nuclear Information System (INIS)

    Harashina, Heihachi.

    1994-01-01

    The absorbing column of the present invention comprises a cyclone to which CO 2 gas and Ca(OH) 2 are blown to form CaCO 3 , a water supply means connected to an upper portion of the cyclone for forming a thin water membrane on the inner wall thereof, and a water processing means connected to a lower portion of the cyclone for draining water incorporating CaCO 3 . If a mixed fluid of CO 2 gas and Ca(OH) 2 is blown in a state where a flowing water membrane is formed on the inner wall of the cyclone, formation of CaCO 3 is promoted also in the inside of the cyclone in addition to the formation of CaCO 3 in the course of blowing. Then, formed CaCO 3 is discharged from the lower portion of the cyclone together with downwardly flowing water. With such procedures, solid contents such as CaCO 3 separated at the inner circumferential wall are sent into the thin water membrane, adsorbed and captured, and the solid contents are successively washed out, so that a phenomenon that the solid contents deposit and grow on the inner wall of the cyclone can be prevented effectively. (T.M.)

  15. Radiation absorbed doses in cephalography

    International Nuclear Information System (INIS)

    Eliasson, S.; Julin, P.; Richter, S.; Stenstroem, B.

    1984-01-01

    Radiation absorbed doses to different organs in the head and neck region in lateral (LAT) and postero-anterior (PA) cephalography were investigated. The doses were measured by thermoluminescence dosimeters (TLD) on a tissue equivalent phantom head. Lanthanide screens in speed group 4 were used at 90 and 85 k Vp. A near-focus aluminium dodger was used and the radiation beam was collimated strictly to the face. The maximum entrance dose from LAT was 0.25 mGy and 0.42 mGy from a PA exposure. The doses to the salivary glands ranged between 0.2 and 0.02 mGy at LAT and between 0.15 and 0.04 mGy at PA exposures. The average thyroid gland dose without any shielding was 0.11 mGy (LAT) and 0.06 mGy (PA). When a dodger was used the dose was reduced to 0.07 mGy (LAT). If the thyroid gland was sheilded off, the dose was further reduced to 0.01 mGy and if the thyroid region was collimated out of the primary radiation field the dose was reduced to only 0.005 mGy. (authors)

  16. Development Research of new boron-compounds for boron neutron capture therapy. Biological activity evaluation of amino group in p-boronophenylalanine and p-boronophenylalaninol

    International Nuclear Information System (INIS)

    Kumanisi, A.; Uehara, K.; Takikawa, S.; Kirihata, M.; Takagaki, M.; Ono, K.; Sakurai, Y.; Kobayashi, T.

    2001-01-01

    Para-boronophenylalanine (BPA) is used as a leading compound for development and research of some of new boron carriers for boron neutron capture therapy. Para-boronophenylalaninol (BPA-ol) is designed molecularly by converting carboxyl group of the BPA to hydroxyl group. The BPA-ol gets a good result in biological test in-vitro and in-vivo. N-methyl-BPA and N-methyl-BPA-ol are synthesized for biological activity evaluation of amino group in the BPA. Two pathways for methylation of amino group in the BPA are investigated. These synthesized compounds of N-methyl-BPA, N-methyl-BPA-ol, and the BPA-ol are tested by colony formation method using gliosarcoma C6 cultured cells of rats. Absorbed doses (thermal neutron fluences) corresponding to the 10% surviving fraction are 1.69 x 10 13 for N-methyl-BPA, 1.13 x 10 13 for N-methyl-BPA-ol, and 6.87 x 10 12 for BPA-ol, respectively. Toxicity of N-methyl-BPA or N-Methyl-BPA-ol to the cultured cells is below that of the BPA. The toxicity of N-methyl-BPA-ol, particularly, is less than 1/100 of that of the BPA. (M. Suetake)

  17. Raman spectroscopy of boron-doped single-layer graphene.

    Science.gov (United States)

    Kim, Yoong Ahm; Fujisawa, Kazunori; Muramatsu, Hiroyuki; Hayashi, Takuya; Endo, Morinobu; Fujimori, Toshihiko; Kaneko, Katsumi; Terrones, Mauricio; Behrends, Jan; Eckmann, Axel; Casiraghi, Cinzia; Novoselov, Kostya S; Saito, Riichiro; Dresselhaus, Mildred S

    2012-07-24

    The introduction of foreign atoms, such as nitrogen, into the hexagonal network of an sp(2)-hybridized carbon atom monolayer has been demonstrated and constitutes an effective tool for tailoring the intrinsic properties of graphene. Here, we report that boron atoms can be efficiently substituted for carbon in graphene. Single-layer graphene substitutionally doped with boron was prepared by the mechanical exfoliation of boron-doped graphite. X-ray photoelectron spectroscopy demonstrated that the amount of substitutional boron in graphite was ~0.22 atom %. Raman spectroscopy demonstrated that the boron atoms were spaced 4.76 nm apart in single-layer graphene. The 7-fold higher intensity of the D-band when compared to the G-band was explained by the elastically scattered photoexcited electrons by boron atoms before emitting a phonon. The frequency of the G-band in single-layer substitutionally boron-doped graphene was unchanged, which could be explained by the p-type boron doping (stiffening) counteracting the tensile strain effect of the larger carbon-boron bond length (softening). Boron-doped graphene appears to be a useful tool for engineering the physical and chemical properties of graphene.

  18. Laser-induced photochemical enrichment of boron isotopes

    International Nuclear Information System (INIS)

    Freund, S.M.; Ritter, J.J.

    1976-01-01

    A boron trichloride starting material containing both boron-10 isotopes and boron-11 isotopes is selectively enriched in one or the other of these isotopes by a laser-induced photochemical method involving the reaction of laser-excited boron trichloride with either H 2 S or D 2 S. The method is carried out by subjecting a low pressure gaseous mixture of boron trichloride starting material and the sulfide to infrared radiation from a carbon dioxide TE laser. The wave length of the radiation is selected so as to selectively excite one or the other of boron-10 BCl 3 molecules or boron-11 BCl 3 molecules, thereby making them preferentially more reactive with the sulfide. The laser-induced reaction produces both a boron-containing solid phase reaction product and a gaseous phase containing mostly unreacted BCl 3 and small amounts of sulfhydroboranes. Pure boron trichloride selectively enriched in one of the isotopes is recovered as the primary product of the method from the gaseous phase by a multi-step recovery procedure. Pure boron trichloride enriched in the other isotope is recovered as a secondary product of the method by the subsequent chlorination of the solid phase reaction product followed by separation of BCl 3 from the mixture of gaseous products resulting from the chlorination

  19. Higher boron rejection with a new TFC forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo; Li, Zhenyu; Sarp, Sarper; Park, Y. G.; Amy, Gary L.; Vrouwenvelder, Johannes S.

    2014-01-01

    Due to the stringent limits for boron in drinking and irrigation water, water treatment facilities have to incur additional treatment to remove boron down to a safe concentration. Forward osmosis (FO) is a membrane technology that may reduce the energy required to remove boron present in seawater. In direct FO desalination hybrid systems, fresh water is recovered from seawater using a recoverable draw solution, FO membranes are expected to show high boron rejection. This study focuses on determining the boron rejection capabilities of a new generation thin-film composite (TFC) FO membrane compared to a first generation cellulose triacetate (CTA) FO membrane. The effects of water permeate flux, membrane structure, draw solute charge, and reverse solute flux on boron rejection were determined. For TFC and CTA FO membranes, experiments showed that when similar operating conditions are applied (e.g. membrane type and draw solute type) boron rejection decreases with increase in permeate flux. Reverse draw solute flux and membrane fouling have no significant impact on boron rejection. Compared to the first generation CTA FO membrane operated at the same conditions, the TFC FO membrane showed a 40% higher boron rejection capability and a 20% higher water flux. This demonstrates the potential for boron removal for new generation TFC FO membranes. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  20. ISOBORDAT: An Online Data Base on Boron Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Pennisi, M.; Adorni-Braccesi, A.; Andreani, D.; Gori, L.; Gonfiantini, R. [Istituto di Geoscienze e Georisorse, CNR, Pisa (Italy); Sciuto, P. F. [Servizio Geologico, Sismico e dei Suoli, D.G. Ambiente e Difesa del Suolo e della Costa, Regione Emilia Romagna, Bologna (Italy)

    2013-07-15

    From 1986, boron isotope data in natural substances increased sharply in scientific publications. Analytical difficulties derived from complex geochemical matrices have been faced and interlaboratory calibrations reported in the boron literature. Boron isotopes are nowdays applied to investigate boron origin and migration in natural waters, sources of boron contamination, water-rock interactions and also contribute to water resource management. This is especially important in those areas where boron content exceeds the local regulations for drinking water supply and boron sources need to be identified. ISOBORDAT, an interactive database on boron isotope composition and content in natural waters is presented to the wider community of boron isotope users. The database's structure, scope and applications are reported, along with a discussion on {delta}{sup 11}B values obtained in Italian waters. In the database boron data are structured in the following categories: rainwater, rivers, lakes, groundwater and potential contaminants. New categories (medium and high enthalpy fluids from volcanic and geothermal areas) are anticipated. ISOBORDAT aims to be as interactive as possible and will be developed taking into account information and suggestions received. The database is continually undergoing revision to keep pace with continuous data publication. Indications of data that are missing at present are greatly appreciated. (author)

  1. Synthesis and characterization of ammonium phosphate fertilizers with boron

    Directory of Open Access Journals (Sweden)

    ANGELA MAGDA

    2010-07-01

    Full Text Available The concentration of boron, an essential micronutrient for plants, presents a narrow range between deficiency and toxicity. In order to provide the boron requirement for plants, and to avoid toxicity problems, boron compounds are mixed with basic fertilizers. Sodium borate pentahydrate was used as a boron source. Ammonium orthophosphates fertilizers with boron were prepared by neutralizing phosphoric acid with ammonia and addition of variable amounts of sodium tetraborate pentahydrate to the reaction mixture at a NH3:H3PO4 molar ratio of 1.5. The fertilizers obtained with boron contents ranging from 0.05 to 1 % (w/w were fully characterized by chemical analysis, thermal analysis, X-ray diffraction and infrared spectrophotometry. The studies showed that up to 500 °C, regardless of the boron content, no significant changes concerning thermal stability and nutritional properties occurred. Above 500 °C, an increase of thermal stability with an increase of the boron content was observed. X-Ray diffraction of a heat-treated sample containing 5 % (w/w boron indicated the appearance of boron orthophosphate, BPO4, as a new crystalline phase, and the disappearance of the previous structures above 500 °C, which explains the increase in thermal stability.

  2. Higher boron rejection with a new TFC forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo

    2014-07-17

    Due to the stringent limits for boron in drinking and irrigation water, water treatment facilities have to incur additional treatment to remove boron down to a safe concentration. Forward osmosis (FO) is a membrane technology that may reduce the energy required to remove boron present in seawater. In direct FO desalination hybrid systems, fresh water is recovered from seawater using a recoverable draw solution, FO membranes are expected to show high boron rejection. This study focuses on determining the boron rejection capabilities of a new generation thin-film composite (TFC) FO membrane compared to a first generation cellulose triacetate (CTA) FO membrane. The effects of water permeate flux, membrane structure, draw solute charge, and reverse solute flux on boron rejection were determined. For TFC and CTA FO membranes, experiments showed that when similar operating conditions are applied (e.g. membrane type and draw solute type) boron rejection decreases with increase in permeate flux. Reverse draw solute flux and membrane fouling have no significant impact on boron rejection. Compared to the first generation CTA FO membrane operated at the same conditions, the TFC FO membrane showed a 40% higher boron rejection capability and a 20% higher water flux. This demonstrates the potential for boron removal for new generation TFC FO membranes. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  3. The analytic method for calculating the control rod worth

    International Nuclear Information System (INIS)

    Kim, Han Gon; Lee, Byeong Ho; Chang, Soon Heung

    1989-01-01

    We calculated the control rod worth in this paper. To avoid complexity, we did not consider burnable poisons and soluble boron. The system was localized within one assembly. The control rod was treated as not an absorber but an another boundary. Thus all of the group constants were unchanged before and after control rod insertion. And we discussed the method for calculation of the reactivity of the whole core

  4. Absorbing Property of Multi-layered Short Carbon Fiber Absorbing Coating

    OpenAIRE

    Liu, Zhaohui; Tao, Rui; Ban, Guodong; Luo, Ping

    2018-01-01

    The radar absorbing coating was prepared with short carbon fiber asabsorbent and waterborne polyurethane (WPU) as matrix resin. The coating’s absorbing property was tested with vectornetwork analyzer, using aramid honeycomb as air layer which was matched withcarbon fiber coating. The results demonstrate that the single-layered carbonfiber absorbing coating presented relatively poor absorbing property when thelayer was thin, and the performance was slightly improved after the matched airlayer ...

  5. Absorber element for fast breeder reactor

    International Nuclear Information System (INIS)

    Verset, L.

    1987-01-01

    This absorber element is characterized by a new head which avoids an accident disconnection of the mobil absorber. This head is made by a superior piece which can take shore up an adjusting ring on an adjusting bearing on the inferior piece. The intermediate piece is catched at the superior piece by a link of chain [fr

  6. Analysis of absorbing times of quantum walks

    International Nuclear Information System (INIS)

    Yamasaki, Tomohiro; Kobayashi, Hirotada; Imai, Hiroshi

    2003-01-01

    Quantum walks are expected to provide useful algorithmic tools for quantum computation. This paper introduces absorbing probability and time of quantum walks and gives both numerical simulation results and theoretical analyses on Hadamard walks on the line and symmetric walks on the hypercube from the viewpoint of absorbing probability and time

  7. Absorber transmissivities in 57Fe Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Ballet, O.

    1985-01-01

    Some useful relations are derived for the polarization dependent optical index of 57 Fe Moessbauer absorbers. Real rotation matrices are extensively used and, besides wave-direction dependence, their properties simplify also the treatment of texture and f-anisotropy. The derivation of absorber transmissivities from the optical index is discussed with a special emphasis on line overlapping. (Auth.)

  8. Boron autoradiography method applied to the study of steels

    International Nuclear Information System (INIS)

    Gugelmeier, R.; Barcelo, G.N.; Boado, J.H.; Fernandez, C.

    1986-01-01

    The boron state, contained in the steel microestructure, is determined. The autoradiography by neutrons is used, permiting to obtain boron distribution images by means of additional information which is difficult to acquire by other methods. The application of the method is described, based on the neutronic irradiation of a polished steel sample, over which a celulose nitrate sheet or other appropriate material is fixed to constitute the detector. The particles generated by the neutron-boron interaction affect the detector sheet, which is subsequently revealed with a chemical treatment and can be observed at the optical microscope. In the case of materials used for the construction of nuclear reactors, special attention must be given to the presence of boron, since owing to the exceptionaly high capacity of neutron absorption, lowest quantities of boron acquire importance. The adaption of the method to metallurgical problems allows the obtainment of a correlation between the boron distribution images and the material's microstructure. (M.E.L.) [es

  9. Evolution of anisotropy in bcc Fe distorted by interstitial boron

    Science.gov (United States)

    Gölden, Dominik; Zhang, Hongbin; Radulov, Iliya; Dirba, Imants; Komissinskiy, Philipp; Hildebrandt, Erwin; Alff, Lambert

    2018-01-01

    The evolution of magnetic anisotropy in bcc Fe as a function of interstitial boron atoms was investigated in thin films grown by molecular beam epitaxy. The thermodynamic nonequilibrium conditions during film growth allowed one to stabilize an interstitial boron content of about 14 at .% accompanied by lattice tetragonalization. The c /a ratio scaled linearly with the boron content up to a maximum value of 1.05 at 300 °C substrate growth temperature, with a room-temperature magnetization of. In contrast to nitrogen interstitials, the magnetic easy axis remained in-plane with an anisotropy of approximately -5.1 ×106erg /cm3 . Density functional theory calculations using the measured lattice parameters confirm this value and show that boron local ordering indeed favors in-plane magnetization. Given the increased temperature stability of boron interstitials as compared to nitrogen interstitials, this study will help to find possible ways to manipulate boron interstitials into a more favorable local order.

  10. Synthesis of Boron Nano wires, Nano tubes, and Nano sheets

    International Nuclear Information System (INIS)

    Patel, R.B.; Chou, T.; Iqbal, Z.

    2014-01-01

    The synthesis of boron nano wires, nano tubes, and nano sheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nano materials. The materials were made by using various combinations of MgB 2 , Mg(BH 4 ) 2 , MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nano wires, boron nano tubes, and boron nano sheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  11. Influence of dopants, particularly carbon, on β-rhombohedral boron

    Science.gov (United States)

    Werheit, H.; Flachbart, K.; Pristáš, G.; Lotnyk, D.; Filipov, V.; Kuhlmann, U.; Shitsevalova, N.; Lundström, T.

    2017-09-01

    Due to the high affinity of carbon to boron, the preparation of carbon-free boron is problematic. Even high-purity (6 N) β-rhombohedral boron contains 30-60 ppm of C. Hence, carbon affects the boron physical properties published so far more or less significantly. We studied well-defined carbon-doped boron samples based on pure starting material carefully annealed with up to about 1% C, thus assuring homogeneity. We present and discuss their electrical conductivity, optical absorption, luminescence and phonon spectra. Earlier attempts of other authors to determine the conductivity of C-doped boron are revised. Our results allow estimating the effects of oxygen and iron doping on the electrical conductivity using results taken from literature. Discontinuities at low T impair the electronic properties.

  12. Study on an innovative fast reactor utilizing hydride neutron absorber - Final report of phase I study

    International Nuclear Information System (INIS)

    Konashi, K.; Iwasaki, T.; Itoh, K.; Hirai, M.; Sato, J.; Kurosaki, K.; Suzuki, A.; Matsumura, Y.; Abe, S.

    2010-01-01

    These days, the demand to use nuclear resources efficiently is growing for long-term energy supply and also for solving the green house problem. It is indispensable to develop technologies to reduce environmental load with the nuclear energy supply for sustainable development of human beings. In this regard, the development of the fast breeder reactor (FBR) is preferable to utilize nuclear resources effectively and also to burn minor actinides which possess very long toxicity for more than thousands years if they are not extinguished. As one of the FBR developing works in Japan this phase I study started in 2006 to introduce hafnium (Hf) hydride and Gadolinium-Zirconium (Gd-Zr) hydride as new control materials in FBR. By adopting them, the FBR core control technology is improved by two ways. One is extension of control rod life time by using long life Hf hydride which leads to reduce the fabrication and disposal cost and the other is reduction of the excess reactivity by adopting Gd-Zr hydride which leads to reduce the number of control rods and simplifies the core upper structure. This three year study was successfully completed and the following results were obtained. The core design was performed to examine the applicability of the Hf hydride absorber to Japanese Sodium Fast Reactor (JSFR) and it is clarified that the control rod life time can be prolonged to 6 years by adopting Hf hydride and the excess reactivity of the beginning of the core cycle can be reduced to half and the number of the control rods is also reduced to half by using the Gd-Zr hydride burnable poison. The safety analyses also certified that the core safety can be maintained with the same reliability of JSFR Hf hydride and Gd-Zr hydride pellets were fabricated in good manner and their basic features for design use were measured by using the latest devices such as SEM-EDX. In order to reduce the hydrogen transfer through the stainless steel cladding a new technique which shares calorizing

  13. Pulverization of boron element and proportions of boron carbide in boron; Broyage de bore element et dosage de carbure de bore dans le bore

    Energy Technology Data Exchange (ETDEWEB)

    Lang, F M; Finck, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 {mu}. Grain sizes smaller than 1{mu} are required for applying thin layers of such boron. (author) [French] Il est possible de pulveriser finement du bore element au moyen de mortier et pilon en carbure de bore fritte, le taux de carbure de bore introduit etant inferieur a 1 pour cent. Le bore element dont nous disposons est constitue de petits grains brun fonce, a aretes vives, de dimension moyenne superieure a 5 {mu}. L'application de ce bore en couches minces demande des grains de dimensions inferieures a 1 {mu}. (aute0008.

  14. Characterization of boron doped nanocrystalline diamonds

    International Nuclear Information System (INIS)

    Peterlevitz, A C; Manne, G M; Sampaio, M A; Quispe, J C R; Pasquetto, M P; Iannini, R F; Ceragioli, H J; Baranauskas, V

    2008-01-01

    Nanostructured diamond doped with boron was prepared using a hot-filament assisted chemical vapour deposition system fed with an ethyl alcohol, hydrogen and argon mixture. The reduction of the diamond grains to the nanoscale was produced by secondary nucleation and defects induced by argon and boron atoms via surface reactions during chemical vapour deposition. Raman measurements show that the samples are nanodiamonds embedded in a matrix of graphite and disordered carbon grains, while morphological investigations using field electron scanning microscopy show that the size of the grains ranges from 20 to 100 nm. The lowest threshold fields achieved were in the 1.6 to 2.4 V/μm range

  15. Boron Nitride Nanotube: Synthesis and Applications

    Science.gov (United States)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; hide

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  16. CVD mechanism of pyrolytic boron nitride

    International Nuclear Information System (INIS)

    Tanji, H.; Monden, K.; Ide, M.

    1987-01-01

    Pyrolytic boron nitride (P-BN) has become a essential material for III-V compound semiconductor manufacturing process. As the demand from electronics industry for larger single crystals increases, the demand for larger and more economical P-BN components is growing rapidly. P-BN is manufactured by low pressure CVD using boron-trihalides and ammonia as the reactants. In spite that P-BN has been in the market for quite a long time, limited number of fundamental studies regarding the kinetics and the formation mechanism of P-BN have been reported. As it has been demonstrated in CVD of Si, knowledge and both theoretical and empirical modeling of CVD process can be applied to improve the deposition technology and to give more uniform deposition with higher efficiency, and it should also apply to the deposition of P-BN

  17. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie

    2009-01-01

    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  18. Microadditions of boron and vanadium in ADI

    Directory of Open Access Journals (Sweden)

    Rzychoń T.

    2007-01-01

    Full Text Available In the second part of the study, describing the role of vanadium and boron microadditions in the process of structure formation in heavy-walled castings made from ADI, the results of own investigations were presented. Within this study two series of melts of the ductile iron were made, introducing microadditions of the above mentioned elements to both unalloyed ductile iron and the ductile iron containing high levels of nickel and copper (the composition typical of ADI. Melts were conducted with iron-nickel-magnesium master alloy. Thermal analysis of the solidification process of the cast keel blocks was conducted, the heat treatment of the alloys was carried out, and then the effect of the introduced additions of boron and vanadium on the hardenability of the investigated cast iron was examined and evaluated.

  19. Boron nitride encapsulated graphene infrared emitters

    International Nuclear Information System (INIS)

    Barnard, H. R.; Zossimova, E.; Mahlmeister, N. H.; Lawton, L. M.; Luxmoore, I. J.; Nash, G. R.

    2016-01-01

    The spatial and spectral characteristics of mid-infrared thermal emission from devices containing a large area multilayer graphene layer, encapsulated using hexagonal boron nitride, have been investigated. The devices were run continuously in air for over 1000 h, with the emission spectrum covering the absorption bands of many important gases. An approximate solution to the heat equation was used to simulate the measured emission profile across the devices yielding an estimated value of the characteristic length, which defines the exponential rise/fall of the temperature profile across the device, of 40 μm. This is much larger than values obtained in smaller exfoliated graphene devices and reflects the device geometry, and the increase in lateral heat conduction within the devices due to the multilayer graphene and boron nitride layers.

  20. Boron nitride encapsulated graphene infrared emitters

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, H. R.; Zossimova, E.; Mahlmeister, N. H.; Lawton, L. M.; Luxmoore, I. J.; Nash, G. R., E-mail: g.r.nash@exeter.ac.uk [College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom)

    2016-03-28

    The spatial and spectral characteristics of mid-infrared thermal emission from devices containing a large area multilayer graphene layer, encapsulated using hexagonal boron nitride, have been investigated. The devices were run continuously in air for over 1000 h, with the emission spectrum covering the absorption bands of many important gases. An approximate solution to the heat equation was used to simulate the measured emission profile across the devices yielding an estimated value of the characteristic length, which defines the exponential rise/fall of the temperature profile across the device, of 40 μm. This is much larger than values obtained in smaller exfoliated graphene devices and reflects the device geometry, and the increase in lateral heat conduction within the devices due to the multilayer graphene and boron nitride layers.

  1. Determination of microdistribution of boron in metals

    Energy Technology Data Exchange (ETDEWEB)

    Illic, R; Najzer, M; Rant, J [J. Stefan Institute, Ljubljana (Yugoslavia)

    1976-07-01

    A neutron induced autoradiographic technique was used for the determination of the boron microdistribution in metals. The specimens, which were in close contact with a LR 115 SSTD, were irradiated in the exposure room of the TRIGA Mark II reactor in Ljubljana. The spatial resolution of the autoradiographic image recorded by the LR 115 detector was found to be influenced mainly by the size of the reaction product tracks. The track diameter of a normally etched detector was about 7 {mu}m. An appreciable reduction of track size was achieved by pre-etching the detector foil before neutron irradiation. By this procedure it was possible to obtain a track diameter as small as 1 {mu}m and correspondingly to improve the spatial resolution of the autoradiographs of type EC 80 steel and Al Mg 3 alloy which contain 30 and 2 ppm of boron respectively. (author)

  2. Synthesis and characterization of boron nitrides nanotubes

    International Nuclear Information System (INIS)

    Ferreira, T.H.; Sousa, E.M.B.

    2010-01-01

    This paper presents a new synthesis for the production of boron nitride nanotubes (BNNT) from boron powder, ammonium nitrate and hematite tube furnace CVD method. The samples were subjected to some characterization techniques as infrared spectroscopy, thermal analysis, X-ray diffraction and scanning electron microscopy and transmission. By analyzing the results can explain the chemical reactions involved in the process and confirm the formation of BNNT with several layers and about 30 nanometers in diameter. Due to excellent mechanical properties and its chemical and thermal stability this material is promising for various applications. However, BNNT has received much less attention than carbon nanotubes, it is because of great difficulty to synthesize appreciable quantities from the techniques currently known, and this is one of the main reasons this work.(author)

  3. Grain refinement of cast titanium alloys via trace boron addition

    International Nuclear Information System (INIS)

    Tamirisakandala, S.; Bhat, R.B.; Tiley, J.S.; Miracle, D.B.

    2005-01-01

    The grain size of as-cast Ti-6Al-4V is reduced by about an order of magnitude from 1700 to 200 μm with an addition of 0.1 wt.% boron. A much weaker dependence of reduction in grain size is obtained for boron additions from >0.1% to 1.0%. Similar trends were observed in boron-modified as-cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si

  4. Design of a nonlinear torsional vibration absorber

    Science.gov (United States)

    Tahir, Ammaar Bin

    Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is

  5. On melting of boron phosphide under pressure

    OpenAIRE

    Solozhenko, Vladimir; Mukhanov, V. A.

    2015-01-01

    Melting of cubic boron phosphide, BP, has been studied at pressures to 9 GPa using synchrotron X-ray diffraction and electrical resistivity measurements. It has been found that above 2.6 GPa BP melts congruently, and the melting curve exhibits negative slope (–60 ± 7 K/GPa), which is indicative of a higher density of the melt as compared to the solid phase.

  6. High resolution imaging of boron carbide microstructures

    International Nuclear Information System (INIS)

    MacKinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1986-01-01

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B 13 C 2 sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B 4 C powder showed little evidence of stacking disorder in crystalline regions

  7. Contributions to the chemistry of Boron, 112

    International Nuclear Information System (INIS)

    Goetze, R.; Noeth, H.

    1980-01-01

    Several methods were used to prepare a series of boron substituted 1, 3, 2-dithiaborols. The NMR data of this new class of compounds indicate in comparison to 1, 3, 2-dithiaborolanes, that the heterocycle can be looked at as a 6 π-electron system. A high degree of analogy in the mass spectrometric fragmentation of dithiaborolanes and dithiaborols exists, however, the parent ion of 2-methyl dithiaborol is more stable than that of the saturated analogon. (orig.)

  8. Method of absorbing UF6 from gaseous mixtures in alkamine absorbents

    International Nuclear Information System (INIS)

    Lafferty, R.H.; Smiley, S.H.; Radimer, K.J.

    1976-01-01

    A method is described for recovering UF 6 from gaseous mixtures by absorption in a liquid. The liquid absorbent must have a relatively low viscosity and at least one component of the absorbent is an alkamine having less than 3 carbon atoms bonded to the amino nitrogen, less than 2 of the carbon atoms other than those bonded to the amino nitrogen are free of the hydroxy radical and precipitate the absorbed uranium from the absorbent. At least one component of the absorbent is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2

  9. Molecular Dynamics Modeling of Piezoelectric Boron Nirtride Nanotubes

    Data.gov (United States)

    National Aeronautics and Space Administration — Conduct a systematic computational study on the physical and electro-mechanical properties of Boron Nitride Nanotubes (BNNTs) to evaluate their functional...

  10. Combustion Performance of a Staged Hybrid Rocket with Boron addition

    Science.gov (United States)

    Lee, D.; Lee, C.

    2018-04-01

    In this paper, the effect of boron on overall system specific impulse was investigated. Additionally, a series of combustion tests was carried out to analyze and evaluate the effect of boron addition on O/F variation and radial temperature profiles. To maintain the hybrid rocket engine advantages, upper limit of boron contents in solid fuel was set to be 10 wt%. The results also suggested that, when adding boron to solid fuel, it helped to provide more uniform radial temperature distribution and also to increase specific impulse by 3.2%.

  11. Deuterated-decaborane using boronization on JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Yagyu, Jun-ichi; Arai, Takashi; Kaminaga, Atsushi; Miyata, Katsuyuki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Arai, Masaru [Kaihatsu Denki Co., Ltd., Tokyo (Japan)

    2001-03-01

    In JT-60U, boronization using hydride-decaborane (B{sub 10}H{sub 14}) vaporization has been conducted for the first wall conditioning. Compared to other discharge cleaning (DC), boronization is claimed to be efficient in reduction of oxygen impurities and hydrogen recycling in plasma. However, there are some problems in reduction of hydrogen included in boron film and stabilization of DC glow discharge during the boronization. To solve these problems, a new boronization method using deuterated-decaborane (B{sub 10}D{sub 14}) was adopted instead of the conventional hydride-decaborane. As a result, hydrogen content in the boron film decreased clearly and discharge conditioning shots, for decreasing hydrogen content in plasmas, after the boronization were reduced to 1/10 in comparison to the conventional process. Furthermore, DC glow discharge became stable, with only helium carrier gas, and it was possible to save 30 hours in maximum of the time necessary to boronization. It is shown that the boronization using deuterated-decaborane is very efficient and effective method for the first wall conditioning. (author)

  12. Graphite and boron carbide composites made by hot-pressing

    International Nuclear Information System (INIS)

    Miyazaki, K.; Hagio, T.; Kobayashi, K.

    1981-01-01

    Composites consisting of graphite and boron carbide were made by hot-pressing mixed powders of coke carbon and boron carbide. The change of relative density, mechanical strength and electrical resistivity of the composites and the X-ray parameters of coke carbon were investigated with increase of boron carbide content and hot-pressing temperature. From these experiments, it was found that boron carbide powder has a remarkable effect on sintering and graphitization of coke carbon powder above the hot-pressing temperature of 2000 0 C. At 2200 0 C, electrical resistivity of the composite and d(002) spacing of coke carbon once showed minimum values at about 5 to 10 wt% boron carbide and then increased. The strength of the composite increased with increase of boron carbide content. It was considered that some boron from boron carbide began to diffuse substitutionally into the graphite structure above 2000 0 C and densification and graphitization were promoted with the diffusion of boron. Improvements could be made to the mechanical strength, density, oxidation resistance and manufacturing methods by comparing with the properties and processes of conventional graphites. (author)

  13. Dependence of boron cluster dissolution on the annealing ambient

    International Nuclear Information System (INIS)

    Radic, Ljubo; Lilak, Aaron D.; Law, Mark E.

    2002-01-01

    Boron is introduced into silicon via implantation to form p-type layers. This process creates damage in the crystal that upon annealing causes enhanced diffusion and clustering of the boron layer. Reactivation of the boron is not a well-understood process. In this letter we experimentally investigate the effect of the annealing ambient on boron reactivation kinetics. An oxidizing ambient which injects silicon interstitials is compared to an inert ambient. Contrary to published theory, an excess of interstitials does not accelerate the reactivation process

  14. Ion implantation of boron in germanium

    International Nuclear Information System (INIS)

    Jones, K.S.

    1985-05-01

    Ion implantation of 11 B + into room temperature Ge samples leads to a p-type layer prior to any post implant annealing steps. Variable temperature Hall measurements and deep level transient spectroscopy experiments indicate that room temperature implantation of 11 B + into Ge results in 100% of the boron ions being electrically active as shallow acceptor, over the entire dose range (5 x 10 11 /cm 2 to 1 x 10 14 /cm 2 ) and energy range (25 keV to 100 keV) investigated, without any post implant annealing. The concentration of damage related acceptor centers is only 10% of the boron related, shallow acceptor center concentration for low energy implants (25 keV), but becomes dominant at high energies (100 keV) and low doses ( 12 /cm 2 ). Three damage related hole traps are produced by ion implantation of 11 B + . Two of these hole traps have also been observed in γ-irradiated Ge and may be oxygen-vacancy related defects, while the third trap may be divacancy related. All three traps anneal out at low temperatures ( 0 C). Boron, from room temperature implantation of BF 2 + into Ge, is not substitutionally active prior to a post implant annealing step of 250 0 C for 30 minutes. After annealing additional shallow acceptors are observed in BF 2 + implanted samples which may be due to fluorine or flourine related complexes which are electrically active

  15. Considerations for boron neutron capture therapy studies

    International Nuclear Information System (INIS)

    Faria Gaspar, P. de.

    1994-01-01

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps

  16. Advances in boronization on NSTX-Upgrade

    Directory of Open Access Journals (Sweden)

    C. H Skinner

    2017-08-01

    Full Text Available Boronization has been effective in reducing plasma impurities and enabling access to higher density, higher confinement plasmas in many magnetic fusion devices. The National Spherical Torus eXperiment, NSTX, has recently undergone a major upgrade to NSTX-U in order to develop the physics basis for a ST-based Fusion Nuclear Science Facility (FNSF with capability for double the toroidal field, plasma current, and NBI heating power and increased pulse duration from 1–1.5s to 5–8s. A new deuterated tri-methyl boron conditioning system was implemented together with a novel surface analysis diagnostic. We report on the spatial distribution of the boron deposition versus discharge pressure, gas injection and electrode location. The oxygen concentration of the plasma facing surface was measured by in-vacuo XPS and increased both with plasma exposure and with exposure to trace residual gases. This increase correlated with the rise of oxygen emission from the plasma.

  17. Stable boron nitride diamondoids as nanoscale materials

    International Nuclear Information System (INIS)

    Fyta, Maria

    2014-01-01

    We predict the stability of diamondoids made up of boron and nitrogen instead of carbon atoms. The results are based on quantum-mechanical calculations within density functional theory (DFT) and show some very distinct features compared to the regular carbon-based diamondoids. These features are evaluated with respect to the energetics and electronic properties of the boron nitride diamondoids as compared to the respective properties of the carbon-based diamondoids. We find that BN-diamondoids are overall more stable than their respective C-diamondoid counterparts. The electronic band-gaps (E g ) of the former are overall lower than those for the latter nanostructures but do not show a very distinct trend with their size. Contrary to the lower C-diamondoids, the BN-diamondoids are semiconducting and show a depletion of charge on the nitrogen site. Their differences in the distribution of the molecular orbitals, compared to their carbon-based counterparts, offer additional bonding and functionalization possibilities. These tiny BN-based nanostructures could potentially be used as nanobuilding blocks complementing or substituting the C-diamondoids, based on the desired properties. An experimental realization of boron nitride diamondoids remains to show their feasibility. (paper)

  18. Experimental investigation of control absorber blade effects in a modern 10x10 BWR assembly

    Energy Technology Data Exchange (ETDEWEB)

    Jatuff, F.; Grimm, P.; Murphy, M.; Luethi, A.; Seiler, R.; Joneja, O.; Meister, A.; Geemert, R. van; Brogli, R.; Chawla, R. [Paul Scherrer Inst., CH-5232 Villigen PSI (Switzerland); Williams, T. [EGL Laufenburg (Switzerland); Helmersson, S. [Westinghouse Atom (Sweden)

    2001-03-01

    The accurate estimation of reactor physics parameters related to the presence of cruciform absorber blades. In Boiling Water Reactors (BWR) is important for safety assessment, and for achieving a flexible operation during the cycle. Characteristics which are affected strongly include the power distribution for controlled core regions and its impact on linear heat generation rate margins, as well as the build-up of plutonium, and its influence on core excess reactivity and the reactivity worth of the shutdown system. PSI and the Swiss Nuclear Utilities (UAK) are conducting an experimental reactor physics programme related to modern Light Water Reactor (LWR) fuel assemblies, as employed in the Swiss nuclear power plants: the so-called. LWR-PROTEUS Phase I project. A significant part of this project has been devoted to the characterization of highly heterogeneous BWR fuel elements in the presence of absorber blades. The paper presents typical results for the performance of modern lattice codes in the estimation of controlled assembly reaction rate distributions, the sensitivity to the geometrical and material characterization, and a preliminary comparison of reflected-test-zone calculations with experimental reaction rate distributions measured in a Westinghouse SVEA-96+ assembly under full-density water moderation conditions in the presence of Westinghouse boron-carbide absorber blades. (author)

  19. Experimental investigation of control absorber blade effects in a modern 10x10 BWR assembly

    International Nuclear Information System (INIS)

    Jatuff, F.; Grimm, P.; Murphy, M.; Luethi, A.; Seiler, R.; Joneja, O.; Meister, A.; Geemert, R. van; Brogli, R.; Chawla, R.; Williams, T.; Helmersson, S.

    2001-01-01

    The accurate estimation of reactor physics parameters related to the presence of cruciform absorber blades. In Boiling Water Reactors (BWR) is important for safety assessment, and for achieving a flexible operation during the cycle. Characteristics which are affected strongly include the power distribution for controlled core regions and its impact on linear heat generation rate margins, as well as the build-up of plutonium, and its influence on core excess reactivity and the reactivity worth of the shutdown system. PSI and the Swiss Nuclear Utilities (UAK) are conducting an experimental reactor physics programme related to modern Light Water Reactor (LWR) fuel assemblies, as employed in the Swiss nuclear power plants: the so-called. LWR-PROTEUS Phase I project. A significant part of this project has been devoted to the characterization of highly heterogeneous BWR fuel elements in the presence of absorber blades. The paper presents typical results for the performance of modern lattice codes in the estimation of controlled assembly reaction rate distributions, the sensitivity to the geometrical and material characterization, and a preliminary comparison of reflected-test-zone calculations with experimental reaction rate distributions measured in a Westinghouse SVEA-96+ assembly under full-density water moderation conditions in the presence of Westinghouse boron-carbide absorber blades. (author)

  20. A critical assessment of boron target compounds for boron neutron capture therapy.

    Science.gov (United States)

    Hawthorne, M Frederick; Lee, Mark W

    2003-01-01

    Boron neutron capture therapy (BNCT) has undergone dramatic developments since its inception by Locher in 1936 and the development of nuclear energy during World War II. The ensuing Cold War spawned the entirely new field of polyhedral borane chemistry, rapid advances in nuclear reactor technology and a corresponding increase in the number to reactors potentially available for BNCT. This effort has been largely oriented toward the eradication of glioblastoma multiforme (GBM) and melanoma with reduced interest in other types of malignancies. The design and synthesis of boron-10 target compounds needed for BNCT was not channeled to those types of compounds specifically required for GBM or melanoma. Consequently, a number of potentially useful boron agents are known which have not been biologically evaluated beyond a cursory examination and only three boron-10 enriched target species are approved for human use following their Investigational New Drug classification by the US Food and Drug Administration; BSH, BPA and GB-10. All ongoing clinical trials with GBM and melanoma are necessarily conducted with one of these three species and most often with BPA. The further development of BNCT is presently stalled by the absence of strong support for advanced compound evaluation and compound discovery driven by recent advances in biology and chemistry. A rigorous demonstration of BNCT efficacy surpassing that of currently available protocols has yet to be achieved. This article discusses the past history of compound development, contemporary problems such as compound classification and those problems which impede future advances. The latter include means for biological evaluation of new (and existing) boron target candidates at all stages of their development and the large-scale synthesis of boron target species for clinical trials and beyond. The future of BNCT is bright if latitude is given to the choice of clinical disease to be treated and if a recognized study

  1. Determination of isotopic composition of boron in boron carbide by TIMS and PIGE: an inter-comparison study

    International Nuclear Information System (INIS)

    Sasibhushan, K.; Rao, R.M.; Parab, A.R.; Alamelu, D.; Aggarwal, S.K.; Acharya, R.; Chhillar, S.; Pujari, P.K.

    2015-01-01

    The paper reports a comparison of results on the determination of isotopic composition of boron in boron carbide (B 4 C) samples by Thermal Ionisation Mass Spectrometry (TIMS) and Particle Induced Gamma ray Spectrometry (PIGE). B 4 C samples having varying boron isotopic composition (natural, enriched with respect to 10 B) and their synthetic mixtures) have been analysed by both the techniques. The 10 B atom% was found to be in the range of 20-67%. (author)

  2. Boron neutron capture therapy. Synthesis of boronated amines- and DNA intercalating agents for potential use in cancer therapy

    International Nuclear Information System (INIS)

    Ghaneolhosseini, H.

    1998-01-01

    Boron Neutron Capture Therapy is a binary cancer treatment modality, involving the delivery of a suitable boron compound to tumour cells followed by irradiation of the tumour by thermal neutrons. Boronated agents can selectively be delivered to tumour cells either directly with tumour-specific boron compounds, or by use of targeting strategies. However, the efficacy of this method would increase if the boron agents are localised in the cell nucleus rather than in the cell cytoplasm when neutron irradiation takes place. With these considerations in mind, some boronated DNA intercalating/interacting agents such as phenanthridine- acridine- spermidine- and naphthalimide derivatives were synthesised. Aminoalkyl-o-carboranes were synthesised in order to be used both for coupling to macromolecules and also for halogenation of their corresponding nido-derivatives. The amino groups were introduced using the Gabriel reagent N, N-dibenzyl iminodicarboxylate to provide 1-(aminomethyl)- and 1-(2-aminoethyl)-o-carboranes. The first attempt to achieve the possibility to accumulate a higher concentration of boron atoms in the cell nucleus was to synthesize carboranyl phenanthridinium analogues by reacting a p- or o-carboranyl moiety with phenanthridine, a chromophore with a planar aromatic ring system as DNA intercalator. Boronated acridine-spermidine, boronated diacridine, and boronated dispermidine were obtained in order to increase water solubility to avoid the interaction of these agents with non-DNA sides of the cell, especially membranes; and to enhance the feasibility of a higher DNA-binding constant and also decrease the DNA-drug dissociation rate. Finally, the synthesis of a boronated naphthalimide derivative was carried out by nucleophilic reaction of a primary aminoalkyl-p-carborane with naphthalic anhydride. Biological evaluations on DNA-binding, toxicity, and cellular binding with carboranyl phenanthridinium analogues, boronated acridine- and spermidine are described

  3. On the definition of absorbed dose

    International Nuclear Information System (INIS)

    Grusell, Erik

    2015-01-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before. - Highlights: • A stringent definition of absorbed dose is given. • This requires the definition of an irradiation and a suitable probability space. • A stringent definition is important for an understanding of the concept absorbed dose

  4. Radioactive iodine absorbing properties of tetrathiafulvalene

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Tomiyasu; Nakamura, Asao (Ajinomoto Co. Inc., Kawasaki, Kanagawa (Japan). Central Research Labs.); Nogawa, Norio; Oohashi, Kunio; Morikawa, Naotake

    1989-05-01

    For the purpose of searching some effective absorbents of gaseous radioactive iodine, 16 substances considered as having an affinity for iodine were investigated with regular iodine and /sup 125/I. In a preliminary survey, only tetrathiafulvalene (TTF) was found to have satisfactory absorbing properties comparable to activated charcoal. A further detailed comparison of the properties between TTF and activated charcoal led us to the conclusion that the former has more preferable properties as absorbent of radioactive iodine than the latter in all points studied. The results are summarized as follows: (1) The absorption of iodine on TTF in atmosphere was about twice as much as that on activated charcoal. Desorption of iodine from saturatedly absorbed iodine on TTF was practically negligible except trace amount of initial desorption, while that on activated charcoal was considerable (3%/50h) even in the air at room temperature. (2) Absorbed amount of iodine on activated charcoal decreased with increasing gaseous iodine concentration, air flow rate, on humidity of flowing-air. On the other hand, those factors scarcely affected that on TTF. Under an air flow rate of 1m/s, activated charcoal absorbs only 80% of iodine, while TTF absorbs more than 99%. (3) In flowing-air saturated with water vapor, iodine absorbed on activated charcoal was gradually liberated although by small amount (0.08%/100h), while that on TTF was much more stable for a long period (0.004%/100h). As a conclusion, TTF is considered to be useful as a quite effective radioactive iodine absorbent, especially in the case where protection from radioactive iodine should be serious, though it is expensive now. (author).

  5. Estimation of Absorbed Dose in Occlusal Radiography

    International Nuclear Information System (INIS)

    Yoo, Young Ah; Choi, Karp Shick; Lee, Sang Han

    1990-01-01

    The purpose of this study was to estimate absorbed dose of each important anatomic site of phantom (RT-210 Head and Neck Section R, Humanoid Systems Co., U.S.A.) head in occlusal radiography. X-radiation dosimetry at 12 anatomic sites in maxillary anterior topography, maxillary posterior topography, mandibular anterior cross-section, mandibular posterior cross-section, mandibular anterior topographic, mandibular posterior topographic occlusal projection was performed with calcium sulfate thermoluminescent dosimeters under 70 Kvp and 15 mA, 1/4 second (8 inch cone ) and 1 second (16 inch cone) exposure time. The results obtained were as follows: Skin surface produced highest absorbed dose ranged between 3264 mrad and 4073 mrad but there was little difference between projections. In maxillary anterior topographic occlusal radiography, eyeballs, maxillary sinuses, and pituitary gland sites produced higher absorbed doses than those of other sites. In maxillary posterior topographic occlusal radiography, exposed eyeball site and exposed maxillary sinus site produced high absorbed doses. In mandibular anterior cross-sectional occlusal radiography, all sites were produced relatively low absorbed dose except eyeball sites. In Mandibular posterior cross-sectional occlusal radiography, exposed eyeball site and exposed maxillary sinus site were produced relatively higher absorbed doses than other sites. In mandibular anterior topographic occlusal radiography, maxillary sinuses, submandibular glands, and thyroid gland sites produced high absorbed doses than other sites. In mandibular posterior topographic occlusal radiography, submandibular gland site of the exposed side produced high absorbed dose than other sites and eyeball site of the opposite side produced relatively high absorbed dose.

  6. Radioactive iodine absorbing properties of tetrathiafulvalene

    International Nuclear Information System (INIS)

    Ito, Tomiyasu; Nakamura, Asao; Nogawa, Norio; Oohashi, Kunio; Morikawa, Naotake.

    1989-01-01

    For the purpose of searching some effective absorbents of gaseous radioactive iodine, 16 substances considered as having an affinity for iodine were investigated with regular iodine and 125 I. In a preliminary survey, only tetrathiafulvalene (TTF) was found to have satisfactory absorbing properties comparable to activated charcoal. A further detailed comparison of the properties between TTF and activated charcoal led us to the conclusion that the former has more preferable properties as absorbent of radioactive iodine than the latter in all points studied. The results are summarized as follows: (1) The absorption of iodine on TTF in atmosphere was about twice as much as that on activated charcoal. Desorption of iodine from saturatedly absorbed iodine on TTF was practically negligible except trace amount of initial desorption, while that on activated charcoal was considerable (3%/50h) even in the air at room temperature. (2) Absorbed amount of iodine on activated charcoal decreased with increasing gaseous iodine concentration, air flow rate, on humidity of flowing-air. On the other hand, those factors scarcely affected that on TTF. Under an air flow rate of 1m/s, activated charcoal absorbs only 80% of iodine, while TTF absorbs more than 99%. (3) In flowing-air saturated with water vapor, iodine absorbed on activated charcoal was gradually liberated although by small amount (0.08%/100h), while that on TTF was much more stable for a long period (0.004%/100h). As a conclusion, TTF is considered to be useful as a quite effective radioactive iodine absorbent, especially in the case where protection from radioactive iodine should be serious, though it is expensive now. (author)

  7. Determination of boron in graphite, boron carbide and glass by ICP-MS, ICP-OES and conventional wet chemical methods

    International Nuclear Information System (INIS)

    Venkatesh, K.; Kamble, Granthali S.; Venkatesh, Manisha; Kumar, Sanjukta A.; Reddy, A.V.R.

    2014-01-01

    Boron is an important element of interest in nuclear reactor materials due to its high neutron absorption cross section (σ 0 =3837 barns for 10 B). In the present paper, R and D work and routinely used methods have been described for the analysis of case samples (1) Graphite where boron is present at trace levels, (2) Boron Carbide having boron concentration of about 80% and (3) Glass containing 4-6 % boron. (author)

  8. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluence, are extracted by fits to a classic saturable absorber model. Further, we observe THz pulse......We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  9. Absorbed dose by a CMOS in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L. C., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-10-15

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  10. Energy Absorbing Effectiveness – Different Approaches

    Directory of Open Access Journals (Sweden)

    Kotełko Maria

    2018-03-01

    Full Text Available In the paper the study of different crashworthiness indicators used to evaluate energy absorbing effectiveness of thin-walled energy absorbers is presented. Several different indicators are used to assess an effectiveness of two types of absorbing structures, namely thin-walled prismatic column with flaws and thin-walled prismatic frustum (hollow or foam filled in both cases subjected to axial compressive impact load. The indicators are calculated for different materials and different geometrical parameters. The problem of selection of the most appropriate and general indicators is discussed.

  11. Graphene and Graphene Metamaterials for Terahertz Absorbers

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim

    2013-01-01

    Graphene, due to the possibility to tune its conductivity, is the promising material for a range of the terahertz (THz) applications, such as tunable reflectors, absorbers, modulators, filters and polarization converters. Subwavelength structuring of graphene in order to form metamaterials allows...... for even more control over the THz waves. In this poster presentation I will show an elegant way to describe the graphene metamaterials and the design of graphene based absorbers. I will also present our recent experimental results on the graphene absorbers characterization....

  12. Synovectomy by neutron capture in boron

    International Nuclear Information System (INIS)

    Vega C, H.R.

    2002-01-01

    The rheumatoid arthritis is an illness which affect approximately at 3% of the World population. This illness is characterized by the inflammation of the joints which reduces the quality of life and the productivity of the patients. Since, it is an autoimmune illness, the inflammation is due to the overproduction of synovial liquid by the increase in the quantity of synoviocytes. The rheumatoid arthritis does not have a definitive recovery and the patients have three options of treatment: the use of drugs, the surgery and the radio synovectomy. The synovectomy by neutron capture in Boron is a novel proposal of treatment of the rheumatoid arthritis that consists in using a charged compound with Boron 10 that is preferently incorporated in the synoviocytes and to a less extent in the rest of surrounding tissues of the joint. Then, the joint is exposed to a thermal neutron field that induces the reaction (n, α) in the 10 B. the products of this reaction place their energy inside synoviocytes producing their reduction and therefore the reduction of the joint inflammation. Since it is a novel procedure, the synovectomy by neutron capture in boron has two problems: the source design and the design of the adequate drug. In this work it has been realized a Monte Carlo study with the purpose to design a moderating medium that with a 239 Pu Be source in its center, produces a thermal neutron field. With the produced neutron spectra, the neutrons spectra and neutron doses were calculated in different sites inside a model of knee joint. In Monte Carlo studies it is necessary to know the elemental composition of all the joint components, for the case of synovia and the synovial liquid this information does not exist in such way that it is supposed that its composition is equal than the water. In this work also it has been calculated the kerma factors by neutrons of synovia and the synovial liquid supposing that their elemental composition are similar to the blood tissue

  13. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation.

    Science.gov (United States)

    Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar

    2007-06-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0 mA/cm(2), initial boron concentration 100mg/L and solution temperature 293 K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following; [formula in text]. Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  14. Boron Removal in Radioactive Liquid Waste by Forward Osmosis Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dooseong; Choi, Hei Min; Lee, Kune Woo; Moon Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    These wastes contain about 0.3-0.8 wt% boric acid and have been concentrated through an evaporation treatment. Boric acid tends to crystallize owing to its solubility, and to plug the evaporator. The volume reduction obtained through evaporation is limited by the amount of boric acid in the waste. As an emerging technology, forward osmosis (FO) has attracted growing interest in wastewater treatment and desalination. FO is a membrane process in which water flows across a semi-permeable membrane from a feed solution of lower osmotic pressure to a draw solution of higher osmotic pressure. However, very few studies on the removal of boron by FO have been performed. The objective of this study is to evaluate the possibility of boron separation in radioactive liquid waste by FO. In this study, the performance of FO was investigated to separate boron in the simulated liquid waste under the factors such as pH, osmotic pressure, ionic strength of the solution, and membrane characteristic. The boron separation in radioactive borate liquid waste was investigated with an FO membrane. When the feed solution containing boron is treated by the FO membrane, the boron permeation depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7, and increases with an increase in the osmotic driving force. The boron flux of the CTA-ES and ALFD membrane orientation is higher than those of the CTA-NW and ALFF orientation, respectively. The boron permeation rate is constant regardless of the osmotic pressure and membrane orientation. The boron flux decreases slightly with the salt concentration, but it is not heavily influenced at a low salt concentration.

  15. Boron Removal in Radioactive Liquid Waste by Forward Osmosis Membrane

    International Nuclear Information System (INIS)

    Hwang, Dooseong; Choi, Hei Min; Lee, Kune Woo; Moon Jeikwon

    2014-01-01

    These wastes contain about 0.3-0.8 wt% boric acid and have been concentrated through an evaporation treatment. Boric acid tends to crystallize owing to its solubility, and to plug the evaporator. The volume reduction obtained through evaporation is limited by the amount of boric acid in the waste. As an emerging technology, forward osmosis (FO) has attracted growing interest in wastewater treatment and desalination. FO is a membrane process in which water flows across a semi-permeable membrane from a feed solution of lower osmotic pressure to a draw solution of higher osmotic pressure. However, very few studies on the removal of boron by FO have been performed. The objective of this study is to evaluate the possibility of boron separation in radioactive liquid waste by FO. In this study, the performance of FO was investigated to separate boron in the simulated liquid waste under the factors such as pH, osmotic pressure, ionic strength of the solution, and membrane characteristic. The boron separation in radioactive borate liquid waste was investigated with an FO membrane. When the feed solution containing boron is treated by the FO membrane, the boron permeation depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7, and increases with an increase in the osmotic driving force. The boron flux of the CTA-ES and ALFD membrane orientation is higher than those of the CTA-NW and ALFF orientation, respectively. The boron permeation rate is constant regardless of the osmotic pressure and membrane orientation. The boron flux decreases slightly with the salt concentration, but it is not heavily influenced at a low salt concentration

  16. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary goal is to build and test a rigid Lithium Chloride Absorber Radiator (LCAR) coupon based on honeycomb geometry that would be applicable for EVA and...

  17. Full-flow absorbers. Every centimetre counts

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Joachim

    2012-07-01

    New absorbers with a maximised area for heat exchange with the thermal medium are significantly more efficient than the presently typical designs. Both the industry and researchers are working to revive an old idea. (orig.)

  18. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad

    2013-01-01

    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon modes that destructively interfere with the dipolar mode and generate electromagnetically induced absorption. (ii) The patterned graphene layers biased at different gate voltages backedup with dielectric substrates are stacked on top of each other. The resulting absorber is polarization dependent but has an ultra-broadband of operation. (iii) Graphene\\'s damping factor is increased by lowering its electron mobility to 1000cm 2=Vs. Indeed, numerical experiments demonstrate that with only three layers, bandwidth of 90% absorption can be extended upto 7THz, which is drastically larger than only few THz of bandwidth that can be achieved with existing metallic/graphene absorbers. © 2013 Optical Society of America.

  19. Study of boron carbide evolution under neutron irradiation

    International Nuclear Information System (INIS)

    Simeone, D.

    1999-01-01

    Owing to its high neutron efficiency, boron carbide (B 4 C) is used as a neutron absorber in control rods of nuclear plants. Its behaviour under irradiation has been extensively studied for many years. It now seems clear that brittleness of the material induced by the 10 B(n,α) 7 Li capture reaction is due to penny shaped helium bubbles associated to a high strain field around them. However, no model explains the behaviour of the material under neutron irradiation. In order to build such a model, this work uses different techniques: nuclear microprobe X-ray diffraction profile analysis and Raman and Nuclear Magnetic Resonance Spectroscopy to present an evolution model of B 4 C under neutron irradiation. The use of nuclear reactions produced by a nuclear microprobe such as the 7 Li(p,p'γ) 7 Li reaction, allows to measure lithium profile in B 4 C pellets irradiated either in Pressurised Water Reactors or in Fast Breeder Reactors. Examining such profiles enables us to describe the migration of lithium atoms out of B 4 C materials under neutron irradiation. The analysis of X-ray diffraction profiles of irradiated B 4 C samples allows us to quantify the concentrations of helium bubbles as well as the strain fields around such bubbles.Furthermore Raman spectroscopy studies of different B 4 C samples lead us to propose that under neutron irradiation. the CBC linear chain disappears. Such a vanishing of this CBC chain. validated by NMR analysis, may explain the penny shaped of helium bubbles inside irradiated B 4 C. (author)

  20. Phase Space Exchange in Thick Wedge Absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-01-01

    The problem of phase space exchange in wedge absorbers with ionization cooling is discussed. The wedge absorber exchanges transverse and longitudinal phase space by introducing a position-dependent energy loss. In this paper we note that the wedges used with ionization cooling are relatively thick, so that single wedges cause relatively large changes in beam phase space. Calculation methods adapted to such “thick wedge” cases are presented, and beam phase-space transformations through such wedges are discussed.