WorldWideScience

Sample records for burn-up code system

  1. Quantification of the computational accuracy of code systems on the burn-up credit using experimental re-calculations; Quantifizierung der Rechengenauigkeit von Codesystemen zum Abbrandkredit durch Experimentnachrechnungen

    Energy Technology Data Exchange (ETDEWEB)

    Behler, Matthias; Hannstein, Volker; Kilger, Robert; Moser, Franz-Eberhard; Pfeiffer, Arndt; Stuke, Maik

    2014-06-15

    In order to account for the reactivity-reducing effect of burn-up in the criticality safety analysis for systems with irradiated nuclear fuel (''burnup credit''), numerical methods to determine the enrichment and burnup dependent nuclide inventory (''burnup code'') and its resulting multiplication factor k{sub eff} (''criticality code'') are applied. To allow for reliable conclusions, for both calculation systems the systematic deviations of the calculation results from the respective true values, the bias and its uncertainty, are being quantified by calculation and analysis of a sufficient number of suitable experiments. This quantification is specific for the application case under scope and is also called validation. GRS has developed a methodology to validate a calculation system for the application of burnup credit in the criticality safety analysis for irradiated fuel assemblies from pressurized water reactors. This methodology was demonstrated by applying the GRS home-built KENOREST burnup code and the criticality calculation sequence CSAS5 from SCALE code package. It comprises a bounding approach and alternatively a stochastic, which both have been exemplarily demonstrated by use of a generic spent fuel pool rack and a generic dry storage cask, respectively. Based on publicly available post irradiation examination and criticality experiments, currently the isotopes of uranium and plutonium elements can be regarded for.

  2. Calculation of isotope burn-up and change in efficiency of absorbing elements of WWER-1000 control and protection system during burn-up

    International Nuclear Information System (INIS)

    Timofeeva, O.A.; Kurakin, K.U.

    2006-01-01

    The report deals with fast and thermal neutron flows distribution in structural elements of WWER-1000 fuel assembly and absorbing rods, determination of absorbing isotope burn-up and worth variation in WWER reactor control and protection system rods. Simulation of absorber rod burn-up is provided using code package SAPPHIRE 9 5 end RC W WER allowing detailed description of the core segment spatial model. Maximum burn-up of absorbing rods and respective worth variation of control and protection system rods is determined on the basis of a number of calculations considering known characteristics of fuel cycles (Authors)

  3. A burn-up module coupling to an AMPX system

    International Nuclear Information System (INIS)

    Salvatore Duque, M.; Gomez, S.E.; Patino, N.E.; Abbate, M.J.; Sbaffoni, M.M.

    1990-01-01

    The Reactors and Neutrons Division of the Bariloche Atomic Center uses the AMPX system for the study of high conversion reactors (HCR). Such system allows to make neutronic calculations from the nuclear data library (ENDF/B-IV). The Nuclear Engineering career of the Balseiro Institute developed and implemented a burn-up module at a μ-cell level (BUM: Burn-up Module) which agrees with the requirement to be coupled to the AMPX system. (Author) [es

  4. Development of continuous energy Monte Carlo burn-up calculation code MVP-BURN

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Nakagawa, Masayuki; Sasaki, Makoto

    2001-01-01

    Burn-up calculations based on the continuous energy Monte Carlo method became possible by development of MVP-BURN. To confirm the reliably of MVP-BURN, it was applied to the two numerical benchmark problems; cell burn-up calculations for High Conversion LWR lattice and BWR lattice with burnable poison rods. Major burn-up parameters have shown good agreements with the results obtained by a deterministic code (SRAC95). Furthermore, spent fuel composition calculated by MVP-BURN was compared with measured one. Atomic number densities of major actinides at 34 GWd/t could be predicted within 10% accuracy. (author)

  5. Technical description of the burn-up software system MOP

    International Nuclear Information System (INIS)

    Schutte, C.K.

    1991-05-01

    The burn-up software system MOP is a research tool primary intended to study the behaviour of fission products in any reactor composition. Input data are multi-group cross-sections and data concerning the nuclide chains. An option is available to calculate a fundamental mode neutron spectrum for the specified reactor composition. A separate program can test the consistency of the specified nuclide chains. Options are available to calculate time-dependent cross-sections of lumped fission products and to take account of the leakage of gaseous fission products from the reactor core. The system is written in FORTRAN77 for a CYBER computer, using the operating system NOS/BE. The report gives a detailed technical description of the applied algorithms and the flow and storage of data. Information is provided for adapting the system to other computer configurations. (author). 5 refs.; 11 figs

  6. Burn-up function of fuel management code for aqueous homogeneous reactors and its validation

    International Nuclear Information System (INIS)

    Wang Liangzi; Yao Dong; Wang Kan

    2011-01-01

    Fuel Management Code for Aqueous Homogeneous Reactors (FMCAHR) is developed based on the Monte Carlo transport method, to analyze the physics characteristics of aqueous homogeneous reactors. FMCAHR has the ability of doing resonance treatment, searching for critical rod heights, thermal hydraulic parameters calculation, radiolytic-gas bubbles' calculation and bum-up calculation. This paper introduces the theory model and scheme of its burn-up function, and then compares its calculation results with benchmarks and with DRAGON's burn-up results, which confirms its bum-up computing precision and its applicability in the bum-up calculation and analysis for aqueous solution reactors. (authors)

  7. MODRIB - a zero dimensional code for criticality and burn-up of LWR's

    International Nuclear Information System (INIS)

    Gaafar, M.A.; El-Cherif, A.I.

    1980-01-01

    The computer program MODRIB is a zero-dimensional code for calculating criticality and burn-up of light water reactors (LWR's). It is a version of an Italian code RIBOT-2 with an updated cross-section data library. The nuclear constants of MODRIB-code are calculated with a two group scheme (fast and thermal), where the fast group is an average of three fast groups. The code requires as input data essential extensive reactor parameters such as fuel rod radius, clad thickness, fuel enrichment, lattice pitch, water density and temperature etc. A summary of the physical model description and the input-output procedures are given in this report. Selected results of two sample problems are also given for the purpose of checking the validity and reliability of the code. The first is BWR and the second is PWR. The calculation time for a criticality problem with burn-up is about 8 seconds for the first time step and about 3 seconds for each subsequent time step on the ICL-1906 computer facility. The requirements on the memory size is less than 32 K-word. (author)

  8. Development and validation of ALEPH Monte Carlo burn-up code

    International Nuclear Information System (INIS)

    Stankovskiy, A.; Van den Eynde, G.; Vidmar, T.

    2011-01-01

    The Monte-Carlo burn-up code ALEPH is being developed in SCK-CEN since 2004. Belonging to the category of shells coupling Monte Carlo transport (MCNP or MCNPX) and 'deterministic' depletion codes (ORIGEN-2.2), ALEPH possess some unique features that distinguish it from other codes. The most important feature is full data consistency between steady-state Monte Carlo and time-dependent depletion calculations. Recent improvements of ALEPH concern full implementation of general-purpose nuclear data libraries (JEFF-3.1.1, ENDF/B-VII, JENDL-3.3). The upgraded version of the code is capable to treat isomeric branching ratios, neutron induced fission product yields, spontaneous fission yields and energy release per fission recorded in ENDF-formatted data files. The alternative algorithm for time evolution of nuclide concentrations is added. A predictor-corrector mechanism and the calculation of nuclear heating are available as well. The validation of the code on REBUS experimental programme results has been performed. The upgraded version of ALEPH has shown better agreement with measured data than other codes, including previous version of ALEPH. (authors)

  9. Establishing the fuel burn-up measuring system for 106 irradiated assemblies of Dalat reactor by using gamma spectrometer method

    International Nuclear Information System (INIS)

    Nguyen Minh Tuan; Pham Quang Huy; Tran Tri Vien; Trang Cao Su; Tran Quoc Duong; Dang Tran Thai Nguyen

    2013-01-01

    The fuel burn-up is an important parameter needed to be monitored and determined during a reactor operation and fuel management. The fuel burn-up can be calculated using computer codes and experimentally measured. This work presents the theory and experimental method applied to determine the burn-up of the irradiated and 36% enriched VVR-M2 fuel type assemblies of Dalat reactor. The method is based on measurement of Cs-137 absolute specific activity using gamma spectrometer. Designed measuring system consists of a collimator tube, high purity Germanium detector (HPGe) and associated electronics modules and online computer data acquisition system. The obtained results of measurement are comparable with theoretically calculated results. (author)

  10. Core burn-up calculation method of JRR-3

    International Nuclear Information System (INIS)

    Kato, Tomoaki; Yamashita, Kiyonobu

    2007-01-01

    SRAC code system is utilized for core burn-up calculation of JRR-3. SRAC code system includes calculation modules such as PIJ, PIJBURN, ANISN and CITATION for making effective cross section and calculation modules such as COREBN and HIST for core burn-up calculation. As for calculation method for JRR-3, PIJBURN (Cell burn-up calculation module) is used for making effective cross section of fuel region at each burn-up step. PIJ, ANISN and CITATION are used for making effective cross section of non-fuel region. COREBN and HIST is used for core burn-up calculation and fuel management. This paper presents details of NRR-3 core burn-up calculation. FNCA Participating countries are expected to carry out core burn-up calculation of domestic research reactor by SRAC code system by utilizing the information of this paper. (author)

  11. Burn-up calculation of different thorium-based fuel matrixes in a thermal research reactor using MCNPX 2.6 code

    Directory of Open Access Journals (Sweden)

    Gholamzadeh Zohreh

    2014-12-01

    Full Text Available Decrease of the economically accessible uranium resources and the inherent proliferation resistance of thorium fuel motivate its application in nuclear power systems. Estimation of the nuclear reactor’s neutronic parameters during different operational situations is of key importance for the safe operation of nuclear reactors. In the present research, thorium oxide fuel burn-up calculations for a demonstrative model of a heavy water- -cooled reactor have been performed using MCNPX 2.6 code. Neutronic parameters for three different thorium fuel matrices loaded separately in the modelled thermal core have been investigated. 233U, 235U and 239Pu isotopes have been used as fissile element in the thorium oxide fuel, separately. Burn-up of three different fuels has been calculated at 1 MW constant power. 135X and 149Sm concentration variations have been studied in the modelled core during 165 days burn-up. Burn-up of thorium oxide enriched with 233U resulted in the least 149Sm and 135Xe productions and net fissile production of 233U after 165 days. The negative fuel, coolant and void reactivity of the used fuel assures safe operation of the modelled thermal core containing (233U-Th O2 matrix. Furthermore, utilisation of thorium breeder fuel demonstrates several advantages, such as good neutronic economy, 233U production and less production of long-lived α emitter high radiotoxic wastes in biological internal exposure point of view

  12. Effect of burn-up on the radioactivation behavior of cladding hull materials studied using the ORIGEN-S code

    International Nuclear Information System (INIS)

    Min Ku Jeon; Chang Hwa Lee; Jung Hoon Choi; In Hak Cho; Kweon Ho Kang; Hwan-Seo Park; Geun Il Park; Chang Je Park

    2013-01-01

    The effect of fuel burn-up on the radioactivation behavior of cladding hull materials was investigated using the ORIGEN-S code for various materials of Zircaloy-4, Zirlo, HANA-4, and HANA-6 and for various fuel burn-ups of 30, 45, 60, and 75 GWD/MTU. The Zircaloy-4 material is the only one that does not contain Nb as an alloy constituent, and it was revealed that 125 Sb, 125m Te, and 55 Fe are the major sources of radioactivity. On the other hand, 93m Nb was identified as the most radioactive nuclide for the other materials although minor radioactive nuclides varied owing to their different initial constituents. The radioactivity of 94 Nb was of particular focus owing to its acceptance limit against a Korean intermediate-/low-level waste repository. The radioactivation calculation results revealed that only Zircaloy-4 is acceptable for the Korean repository, while the other materials required at least 4,900 of Nb decontamination factor owing to the high radioactivity of 94 Nb regardless of the fuel burn-up. A discussion was also made on the feasibility of Zr recovery methods (chlorination and electrorefining) for selective recovery of Zr so that it can be disposed of in the Korean repository. (author)

  13. A comparison study of the 1MeV triton burn-up in JET using the HECTOR and SOCRATE codes

    International Nuclear Information System (INIS)

    Gorini, G.; Kovanen, M.A.

    1988-01-01

    The burn-up of the 1MeV tritons in deuterium plasmas has been measured in JET for various plasma conditions. To interpret these measurements the containment, slowing down and burn-up of fast tritons needs to be modelled with a reasonable accuracy. The numerical code SOCRATE has been written for this specific purpose and a second code, HECTOR, has been adapted to study the triton burn-up problem. In this paper we compare the results from the two codes in order to exclude possible errors in the numerical models, to assess their accuracy and to study the sensitivity of the calculation to various physical effects. (author)

  14. Development of a BWR core burn-up calculation code COREBN-BWR

    International Nuclear Information System (INIS)

    Morimoto, Yuichi; Okumura, Keisuke

    1992-05-01

    In order to evaluate core performances of BWR type reactors, the three dimensional core burnup calculation code COREBN-BWR and the fuel management code HIST-BWR have been developed. In analyses of BWR type reactors, thermal hydraulics calculations must be coupled with neutronics calculations to evaluate core performances, because steam void distribution changes according to the change of the power distribution. By installing new functions as follows to the three dimensional core burnup code COREBN2 developed in JAERI for PWR type reactor analyses, the code system becomes to be applicable to burnup analyses of BWR type reactors. (1) Macroscopic cross section calculation function taking into account of coolant void distribution. (2) Thermal hydraulics calculation function to evaluate core flow split, coolant void distribution and thermal margin. (3) Burnup calculation function under the Haling strategy. (4) Fuel management function to incorporate the thermal hydraulics information. This report consists of the general description, calculational models, input data requirements and their explanations, detailed information on usage and sample input. (author)

  15. Calculations of fuel burn up and radionuclide inventories in the Syrian miniature neutron source reactor using the WIMSD4 and CITATION codes

    International Nuclear Information System (INIS)

    Khattab, K.

    2005-01-01

    The WIMSD4 code is used to generate the fuel group constants and the infinite multiplication factor as a function of the reactor operating time for 10, 20, and 30 k W operating power levels. The uranium burn up rate and burn up percentage, the amounts of the plutonium isotopes, the concentrations and radioactivities of the fission products and actinide radionuclides accumulated in the reactor core, and the total radioactivity of the reactor core are calculated using the WIMSD4 code as well. The CITATION code is used to calculate the changes in the effective multiplication factor of the reactor.(author)

  16. Estimating NIRR-1 burn-up and core life time expectancy using the codes WIMS and CITATION

    Science.gov (United States)

    Yahaya, B.; Ahmed, Y. A.; Balogun, G. I.; Agbo, S. A.

    The Nigeria Research Reactor-1 (NIRR-1) is a low power miniature neutron source reactor (MNSR) located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria Nigeria. The reactor went critical with initial core excess reactivity of 3.77 mk. The NIRR-1 cold excess reactivity measured at the time of commissioning was determined to be 4.97 mk, which is more than the licensed range of 3.5-4 mk. Hence some cadmium poison worth -1.2 mk was inserted into one of the inner irradiation sites which act as reactivity regulating device in order to reduce the core excess reactivity to 3.77 mk, which is within recommended licensed range of 3.5 mk and 4.0 mk. In this present study, the burn-up calculations of the NIRR-1 fuel and the estimation of the core life time expectancy after 10 years (the reactor core expected cycle) have been conducted using the codes WIMS and CITATION. The burn-up analyses carried out indicated that the excess reactivity of NIRR-1 follows a linear decreasing trend having 216 Effective Full Power Days (EFPD) operations. The reactivity worth of top beryllium shim data plates was calculated to be 19.072 mk. The result of depletion analysis for NIRR-1 core shows that (7.9947 ± 0.0008) g of U-235 was consumed for the period of 12 years of operating time. The production of the build-up of Pu-239 was found to be (0.0347 ± 0.0043) g. The core life time estimated in this research was found to be 30.33 years. This is in good agreement with the literature

  17. Validation of a continuous-energy Monte Carlo burn-up code MVP-BURN and its application to analysis of post irradiation experiment

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Mori, Takamasa; Nakagawa, Masayuki; Kaneko, Kunio

    2000-01-01

    In order to confirm the reliability of a continuous-energy Monte Carlo burn-up calculation code MVP-BURN, it was applied to the burn-up benchmark problems for a high conversion LWR lattice and a BWR lattice with burnable poison rods. The results of MVP-BURN have shown good agreements with those of a deterministic code SRAC95 for burn-up changes of infinite neutron multiplication factor, conversion ratio, power distribution, and number densities of major fuel nuclides. Serious propagation of statistical errors along burn-up was not observed even in a highly heterogeneous lattice. MVP-BURN was applied to the analysis of a post irradiation experiment for a sample fuel irradiated up to 34.1 GWd/t, together with SRAC95 and SWAT. It was confirmed that the effect of statistical errors of MVP-BURN on a burned fuel composition was sufficiently small, and it could give a reference solution for other codes. In the analysis, the results of the three codes with JENDL-3.2 agreed with measured values within an error of 10% for most nuclides. However, large underestimation by about 20% was observed for 238 Pu, 242m Am and 244 Cm. It is probable that these discrepancies are a common problem for most current nuclear data files. (author)

  18. Burn-up measurements coupling gamma spectrometry and neutron measurement

    Energy Technology Data Exchange (ETDEWEB)

    Toubon, H.; Pin, P. [AREVA/CANBERRA, 1 rue des Herons, 78182 St Quentin-en-Yvelines Cedex (France); Lebrun, A. [IAEA, Wagramer Strasse 5, PO Box 100, Vienna (Austria); Oriol, L.; Saurel, N. [CEA Cadarache, 13108 Saint Paul Lez Durance Cedex (France); Gain, T. [AREVA/COGEMA Reprocessing Business Unit, La Hague, 50444 Beaumont Hague Cedex (France)

    2006-07-01

    The need to apply for burn-up credit arises with the increase of the initial enrichment of nuclear fuel. When burn-up credit is used in criticality safety studies, it is often necessary to confirm it by measurement. For the last 10 years, CANBERRA has manufactured the PYTHON system for such measurements. However, the method used in the PYTHON itself uses certain reactor data to arrive at burn-up estimates. Based on R and D led by CEA and COGEMA in the framework of burn-up measurement for burn-up credit and safeguards applications, CANBERRA is developing the next generation of burn-up measurement device. This new product, named SMOPY, is able to measure burn-up of any kind of irradiated fuel assembly with a combination of gamma spectrometry and passive neutron measurements. The measurement data is used as input to the CESAR depletion code, which has been developed and qualified by CEA and COGEMA for burn-up credit determinations. In this paper, we explain the complementary nature of the gamma and neutron measurements. In addition, we draw on our previous experience from PYTHON system and from COGEMA La Hague to show what types of evaluations are required to qualify the SMOPY system, to estimate its uncertainties, and to detect discrepancies in the fuel data given by the reactor plant to characterize the irradiated fuel assembly. (authors)

  19. Burn-up measurements coupling gamma spectrometry and neutron measurement

    International Nuclear Information System (INIS)

    Toubon, H.; Pin, P.; Lebrun, A.; Oriol, L.; Saurel, N.; Gain, T.

    2006-01-01

    The need to apply for burn-up credit arises with the increase of the initial enrichment of nuclear fuel. When burn-up credit is used in criticality safety studies, it is often necessary to confirm it by measurement. For the last 10 years, CANBERRA has manufactured the PYTHON system for such measurements. However, the method used in the PYTHON itself uses certain reactor data to arrive at burn-up estimates. Based on R and D led by CEA and COGEMA in the framework of burn-up measurement for burn-up credit and safeguards applications, CANBERRA is developing the next generation of burn-up measurement device. This new product, named SMOPY, is able to measure burn-up of any kind of irradiated fuel assembly with a combination of gamma spectrometry and passive neutron measurements. The measurement data is used as input to the CESAR depletion code, which has been developed and qualified by CEA and COGEMA for burn-up credit determinations. In this paper, we explain the complementary nature of the gamma and neutron measurements. In addition, we draw on our previous experience from PYTHON system and from COGEMA La Hague to show what types of evaluations are required to qualify the SMOPY system, to estimate its uncertainties, and to detect discrepancies in the fuel data given by the reactor plant to characterize the irradiated fuel assembly. (authors)

  20. Verification of spectral burn-up codes on 2D fuel assemblies of the GFR demonstrator ALLEGRO reactor

    International Nuclear Information System (INIS)

    Čerba, Štefan; Vrban, Branislav; Lüley, Jakub; Dařílek, Petr; Zajac, Radoslav; Nečas, Vladimír; Haščik, Ján

    2014-01-01

    Highlights: • Verification of the MCNPX, HELIOS and SCALE codes. • MOX and ceramic fuel assembly. • Gas-cooled fast reactor. • Burnup calculation. - Abstract: The gas-cooled fast reactor, which is one of the six GEN IV reactor concepts, is characterized by high operational temperatures and a hard neutron spectrum. The utilization of commonly used spectral codes, developed mainly for LWR reactors operated in the thermal/epithermal neutron spectrum, may be connected with systematic deviations since the main development effort of these codes has been focused on the thermal part of the neutron spectrum. To be able to carry out proper calculations for fast systems the used codes have to account for neutron resonances including the self-shielding effect. The presented study aims at verifying the spectral HELIOS, MCNPX and SCALE codes on the basis of depletion calculations of 2D MOX and ceramic fuel assemblies of the ALLEGRO gas-cooled fast reactor demonstrator in infinite lattice

  1. Development of methods for burn-up calculations for LWR's

    International Nuclear Information System (INIS)

    Jaschik, W.

    1978-01-01

    This method is based on all burn-up depending data, namely particle densities and neutron spectra, being available in a burn-up library. This one is created by means of a small number of cell burn-up calculations which can easily be carried out and in which the heterogeneous cell structure and self-shielding effects can explicitly be accounted for. Then the cluster burn-up is simulated by adequate correlation of the burn-up data. The advantage of this method is given by - an exact determination of the real spectrum distribution in the individual fuel element clusters; - an exact determination of the burn-up related spectrum variations for each fuel rod and for each burn-up value obtained; - accounting for heterogeneity of the fuel rod cells and the self-shielding in the fuel; high accuracy of the results of a comparably low effort and - simple handling by largely automating the process of computation. Programed realization was achieved by establishing the RSYST modules ABRAJA, MITHOM, and SIMABB and their implementation within the code system. (orig./HP) [de

  2. An extended version of the SERPENT-2 code to investigate fuel burn-up and core material evolution of the Molten Salt Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aufiero, M.; Cammi, A.; Fiorina, C. [Politecnico di Milano, Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via Ponzio, 34/3, I-20133 Milano (Italy); Leppänen, J. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland); Luzzi, L., E-mail: lelio.luzzi@polimi.it [Politecnico di Milano, Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via Ponzio, 34/3, I-20133 Milano (Italy); Ricotti, M.E. [Politecnico di Milano, Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via Ponzio, 34/3, I-20133 Milano (Italy)

    2013-10-15

    In this work, the Monte Carlo burn-up code SERPENT-2 has been extended and employed to study the material isotopic evolution of the Molten Salt Fast Reactor (MSFR). This promising GEN-IV nuclear reactor concept features peculiar characteristics such as the on-line fuel reprocessing, which prevents the use of commonly available burn-up codes. Besides, the presence of circulating nuclear fuel and radioactive streams from the core to the reprocessing plant requires a precise knowledge of the fuel isotopic composition during the plant operation. The developed extension of SERPENT-2 directly takes into account the effects of on-line fuel reprocessing on burn-up calculations and features a reactivity control algorithm. It is here assessed against a dedicated version of the deterministic ERANOS-based EQL3D procedure (PSI-Switzerland) and adopted to analyze the MSFR fuel salt isotopic evolution. Particular attention is devoted to study the effects of reprocessing time constants and efficiencies on the conversion ratio and the molar concentration of elements relevant for solubility issues (e.g., trivalent actinides and lanthanides). Quantities of interest for fuel handling and safety issues are investigated, including decay heat and activities of hazardous isotopes (neutron and high energy gamma emitters) in the core and in the reprocessing stream. The radiotoxicity generation is also analyzed for the MSFR nominal conditions. The production of helium and the depletion in tungsten content due to nuclear reactions are calculated for the nickel-based alloy selected as reactor structural material of the MSFR. These preliminary evaluations can be helpful in studying the radiation damage of both the primary salt container and the axial reflectors.

  3. Calculations of fuel burn-up and radionuclide inventory in the syrian miniature neutron source reactor using the WIMSD4 code

    International Nuclear Information System (INIS)

    Khattab, K.

    2005-01-01

    Calculations of the fuel burn up and radionuclide inventory in the Miniature Neutron Source Reactor after 10 years (the reactor core expected life) of the reactor operating time are presented in this paper. The WIMSD4 code is used to generate the fuel group constants and the infinite multiplication factor versus the reactor operating time for 10, 20, and 30 kW operating power levels. The amounts of uranium burnt up and plutonium produced in the reactor core, the concentrations and radioactivities of the most important fission product and actinide radionuclides accumulated in the reactor core, and the total radioactivity of the reactor core are calculated using the WIMSD4 code as well

  4. Effect of Core Configurations on Burn-Up Calculations For MTR Type Reactors

    International Nuclear Information System (INIS)

    Hussein, H.M.; Sakr, A.M.; Amin, E.H.

    2011-01-01

    Three-dimensional burn-up calculations of MTR-type research reactor were performed using different patterns of control rods , to examine their effect on power density and neutron flux distributions throughout the entire core and on the local burn-up distribution. Calculations were performed using the computer codes' package M TR P C system , using the cell calculation transport code WIMS-D4 and the core calculation diffusion code CITVAP. A depletion study was done and the effects on the reactor fuel were studied, then an empirical formula was generated for every fuel element type, to correlate irradiation to burn-up percentage. Keywords: Neutronic Calculations, Burn-Up, MTR-Type Research Reactors, MTR P C Package, Empirical Formula For Fuel Burn-Up.

  5. Development of a FBR fuel bundle-duct interaction analysis code-BAMBOO. Analysis model and verification by Phenix high burn-up fuel subassemblies

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ito, Masahiro; Ukai, Shigeharu

    2005-01-01

    The bundle-duct interaction analysis code ''BAMBOO'' has been developed for the purpose of predicting deformation of a wire-wrapped fuel pin bundle of a fast breeder reactor (FBR). The BAMBOO code calculates helical bowing and oval-distortion of all the fuel pins in a fuel subassembly. We developed deformation models in order to precisely analyze the irradiation induced deformation by the code: a model to analyze fuel pin self-bowing induced by circumferential gradient of void swelling as well as thermal expansion, and a model to analyze dispersion of the orderly arrangement of a fuel pin bundle. We made deformation analyses of high burn-up fuel subassemblies in Phenix reactor and compared the calculated results with the post irradiation examination data of these subassemblies for the verification of these models. From the comparison we confirmed that the calculated values of the oval-distortion and bowing reasonably agreed with the PIE results if these models were used in the analysis of the code. (author)

  6. Two dimensional burn-up calculation of TRIGA core

    International Nuclear Information System (INIS)

    Persic, A.; Ravnik, M.; Slavic, S.

    1996-01-01

    TRIGLAV is a new computer program for burn-up calculation of mixed core of research reactors. The code is based on diffusion model in two dimensions and iterative procedure is applied for its solution. The material data used in the model are calculated with the transport program WIMS. In regard to fission density distribution and energy produced by the reactor the burn-up increment of fuel elements is determined. In this paper the calculation model of diffusion constants and burn-up calculation are described and some results of calculations for TRIGA MARK II reactor are presented. (author)

  7. TRIGA criticality experiment for testing burn-up calculations

    International Nuclear Information System (INIS)

    Persic, Andreja; Ravnik, Matjaz; Zagar, Tomaz

    1999-01-01

    A criticality experiment with partly burned TRIGA fuel is described. 20 wt % enriched standard TRIGA fuel elements initially containing 12 wt % U are used. Their average burn-up is 1.4 MWd. Fuel element burn-up is calculated in 2-D four group diffusion approximation using TRIGLAV code. The burn-up of several fuel elements is also measured by reactivity method. The excess reactivity of several critical and subcritical core configurations is measured. Two core configurations contain the same fuel elements in the same arrangement as were used in the fresh TRIGA fuel criticality experiment performed in 1991. The results of the experiment may be applied for testing the computer codes used for fuel burn-up calculations. (author)

  8. Effect of high burn-up and MOX fuel on reprocessing, vitrification and disposal of PWR and BWR spent fuels based on accurate burn-up calculation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, T.; Iwasaki, T.; Wada, K. [Tohoku Univ., Graduate School of Engineering, Dept. of Quantum Science and Energy Engineering, Sendai 980-8579 (Japan); Suyama, K. [Japan Atomic Energy Agency, Shirakata-Shirane 2-4, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2006-07-01

    To examine the procedures of the reprocessing, the vitrification and the geologic disposal, precise burn-up calculation for high burn-up and MOX fuels has been performed for not only PWR but also BWR by using SWAT and SWAT2 codes which are the integrated bum-up calculation code systems combined with the bum-up calculation code, ORIGEN2, and the transport calculation code, SRAC (the collision probability method) or MVP (the continuous energy Monte Carlo method), respectively. The calculation results shows that all of the evaluated items (heat generation and concentrations of Mo and Pt) largely increase and those significantly effect to the current procedures of the vitrification and the geologic disposal. The calculation result by SWAT2 confirms that the bundle calculation is required for BWR to be discussed about those effects in details, especially for the MOX fuel. (authors)

  9. Verification of the burn-up of spent fuel assemblies by means of the Consulha containment/surveillance system

    International Nuclear Information System (INIS)

    Daniel, G.; Gourlez, P.

    1991-01-01

    CONSULHA is a containment/surveillance system which has been developed as part of the French Support Programme for the IAEA Safeguards in cooperation with EURATOM and was designed to meet the IAEA EURATOM requirements for the verification of nuclear materials. This system will make it possible to count movements and verify irradiation of spent fuel assemblies in industrial facilities such as reprocessing plants and nuclear reactors

  10. Estimation of the impact of manufacturing tolerances on burn-up calculations using Monte Carlo techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bock, M.; Wagner, M. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH, Garching (Germany). Forschungszentrum

    2012-11-01

    tool SUnCISTT (Sensitivities and Uncertainties in Criticality Inventory and Source Term Tool). The SUnCISTT defines an interface between the well established GRS tool for uncertainty and sensitivity analyses SUSA and codes used in the nuclear fuel cycle. In the context of the analysis presented here, the GRS burn-up system OREST is coupled. The coupling between these two tools will be outlined, the available features of this new application will be presented, and exemplary results will be shown. Finally, an outlook on future developments and future applications will be given. (orig.)

  11. Burn-up measurement in the HTR-module-reactor

    International Nuclear Information System (INIS)

    Gerhards, E.

    1993-05-01

    The burn-up status of spherical HTR-fuel elements is determined by a γ-spectrometric analysis of Cs-137 activity. The γ-spectrum recorded by a semiconductor detector up to now is analyzed by complex mathematical and time-consuming methods. For the operation of the HTR-Module-Reactor, however, a fast evaluation of the burn-up status is necessary. It is shown that this can be ensured by a comparison between the measured spectra and simulation results. Using the computer-program HTROGEN and the program system SPECCALC especially developed for this problem the γ-spectra are evaluated as a function of the burn-up status. The method is applied to results available from the operation of the AVR-reactor. The burn-up status determined with different methods corresponds very well within the limits of accuracy. (orig.)

  12. Analysis on burn-up behaviors for accelerator-driven sub-critical facility

    International Nuclear Information System (INIS)

    Liu Guisheng; Zhao Zhixiang; Zhang Baocheng; Shen Qinbiao; Ding Dazhao

    2000-01-01

    An analysis is performed on burn-up behaviors for accelerator-driven sub-critical reactor by means of the code PASC-1 for neutronics calculation, the code CBURN for burn-up calculation and 44 group constants is processed by CENDL-2 and ENDF/B-6 using NJOY-91.91

  13. Evaluation of Isotopic Measurements and Burn-up Value of Sample GU3 of ARIANE Project

    Energy Technology Data Exchange (ETDEWEB)

    Tore, C.; Rodriguez Rivada, A.

    2014-07-01

    Estimation of the burn-up value of irradiated fuel and its isotopic composition are important for criticality analysis, spent fuel management and source term estimation. The practical way to estimate the irradiated fuel composition and burn.up value is calculation with validated code and nuclear data. Such validation of the neutronic codes and nuclear data requires the benchmarking with measured values. (Author)

  14. Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations

    International Nuclear Information System (INIS)

    Garcia-Herranz, Nuria; Cabellos, Oscar; Sanz, Javier; Juan, Jesus; Kuijper, Jim C.

    2008-01-01

    Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files

  15. Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Herranz, Nuria [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain)], E-mail: nuria@din.upm.es; Cabellos, Oscar [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain); Sanz, Javier [Departamento de Ingenieria Energetica, Universidad Nacional de Educacion a Distancia, UNED (Spain); Juan, Jesus [Laboratorio de Estadistica, Universidad Politecnica de Madrid, UPM (Spain); Kuijper, Jim C. [NRG - Fuels, Actinides and Isotopes Group, Petten (Netherlands)

    2008-04-15

    Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files.

  16. Full MOX high burn-up PWR

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu; Kugo, Teruhiko; Shimada, Shoichiro; Araya, Fumimasa; Ochiai, Masaaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-12-01

    As a part of conceptual investigation on advanced light water reactors for the future, a light water reactor with the high burn-up of 100 GWd/t, the long cycle operation of 3 years and the full MOX core is being studied, aiming at the improvement on economical aspects, the reduction of the spent fuel production, the utilization of Plutonium and so forth. The present report summarizes investigation on PWR-type reactors. The core with the increased moderation of the moderator-to-fuel volume ratio of 2.6 {approx} 3.0 has been proposed be such a core that accomplishes requirements mentioned above. Through the neutronic and the thermo-hydrodynamic evaluation, the performances of the core have been evaluated. Also, the safety designing is underway considering the reactor system with the passive safety features. (author)

  17. A Study for Burn-up Calculation applied on 400MWth PBMR Core

    International Nuclear Information System (INIS)

    Luu, Nam Hai; Kim, Hong Chul; Kim, Soon Young; Kim, Jong Kyung; Noh, Jae Man

    2007-01-01

    The 400MWth Pebble-bed Modular Reactor (PBMR) is an advanced high temperature gas cooled-reactor (HTGR). It possesses a very high efficiency and attractive economics without compromising the high levels of passive safety expected of advanced nuclear designs. With this reason, PBMR is a target which researchers especially in nuclear engineering field study carefully and therefore it is regarded as the leader in the power generation field. There are many research results about benchmark problems but results of the burn-up process are still poor. Hence, in this study a burn-up calculation was performed with PBMR using MONTEBURNS code in which MCNP modeling linked a depletion systems is used

  18. Burn-up Credit Criticality Safety Benchmark Phase III-C. Nuclide Composition and Neutron Multiplication Factor of a Boiling Water Reactor Spent Fuel Assembly for Burn-up Credit and Criticality Control of Damaged Nuclear Fuel

    International Nuclear Information System (INIS)

    Suyama, K.; Uchida, Y.; Kashima, T.; Ito, T.; Miyaji, T.

    2016-01-01

    longer process time (CPU) is required. Treatment of the gadolinium rod is still a key issue. The difference of the neutron multiplication factor generated by the burn-up calculation results was confirmed by the analysis using the same criticality calculation code, MVP. It was less than 3% when the latest code system was used, including continuous-energy Monte Carlo codes and deterministic codes. This is the first time this kind of value has been shown by an extensive international benchmark problem. These results show that even if calculation codes are benchmarked using the well-qualified experimental data before being adopted in the safety review process, it should be understood that some uncertainty in the evaluation of the neutron multiplication factor arising from the uncertainty of the burn-up calculation methodology used still remains

  19. Nuclear fuel burn-up economy

    International Nuclear Information System (INIS)

    Matausek, M.

    1984-01-01

    In the period 1981-1985, for the needs of Utility Organization, Beograd, and with the support of the Scientific Council of SR Srbija, work has been performed on the study entitled 'Nuclear Fuel Burn-up Economy'. The forst [phase, completed during the year 1983 comprised: comparative analysis of commercial NPP from the standpoint of nuclear fuel requirements; development of methods for fuel burn-up analysis; specification of elements concerning the nuclear fuel for the tender documentation. The present paper gives the short description of the purpose, content and results achieved in the up-to-now work on the study. (author)

  20. Burn-up physics in a coupled Hammer-Technion/Cinder-2 system and ENDF/B-V aggregate fission product thermal cross section validation

    International Nuclear Information System (INIS)

    Santos, A. dos.

    1990-01-01

    The new methodology developed in this work has the following purposes: a) to implement a burnup capability into the HAMMER-TECHNION/9/computer code by using the CINDER-2/10/computer code to perform the transmutation analysis for the actinides and fission products; b) to implement a reduced version of the CINDER-2 fission product chain structure to treat explicity nearly 99% of all original CINDER-2 fission product absorption in a typical PWR unit cell; c) to treat the effect of the fission product neutron absorption in an unit cell in a multigroup basis; d) to develop a tentative validation procedure for the ENOF/C-V stable and long-lived fission product nuclear data based on the available experimental data/11-14/. The analysis will be performed by using the reduce chain in the coupled system CINDER-2 to generate the time dependent effective four group cross sections for actinides and fission products and CINDER-2 to perform the complete transmutation analysis with its built-in chain structure. (author)

  1. Nondestructive, fast methods for burn-up study

    International Nuclear Information System (INIS)

    Schaechter, L.; Hacman, D.; Mot, O.

    1977-01-01

    Nondestructive methods, based on high resolution-spectrometry successfully applied at Institute for Atomic Physics are presented. These methods are preferred to destructive chemical methods; the latter being costly and lengthy and not suitable for statistical prediction of nuclear fuel behaviour. The following methods are developed: methods for determining the burn up of fuel elements and fuel assemblies; a method for determining the U 235 and Pu 239 contributions to the burn up and a code written in FORTRAN IV for numerical calculation of Pu 239 fission vs. burn up; a high precision method for burnup determination by adding burnable poison; a method for prediction of specific power distribution in the fuel elements of a research or power reactors; a method for determining the power output of the fuel element in an operating power reactor; a method for determining the content of Pu 239 of the fuel element irradiated in a reactor. The results which were obtained by these methods improved the fuel management at the VVR-S reactor at Institute for Atomic Physics, Bucharest and may be applied to other reactor types [fr

  2. Ultrasonic measurement of high burn-up fuel elastic properties

    International Nuclear Information System (INIS)

    Laux, D.; Despaux, G.; Augereau, F.; Attal, J.; Gatt, J.; Basini, V.

    2006-01-01

    The ultrasonic method developed for the evaluation of high burn-up fuel elastic properties is presented hereafter. The objective of the method is to provide data for fuel thermo-mechanical calculation codes in order to improve industrial nuclear fuel and materials or to design new reactor components. The need for data is especially crucial for high burn-up fuel modelling for which the fuel mechanical properties are essential and for which a wide range of experiments in MTR reactors and high burn-up commercial reactor fuel examinations have been included in programmes worldwide. To contribute to the acquisition of this knowledge the LAIN activity is developing in two directions. First one is development of an ultrasonic focused technique adapted to active materials study. This technique was used few years ago in the EdF laboratory in Chinon to assess the ageing of materials under irradiation. It is now used in a hot cell at ITU Karlsruhe to determine the elastic moduli of high burnup fuels from 0 to 110 GWd/tU. Some of this work is presented here. The second on going programme is related to the qualification of acoustic sensors in nuclear environments, which is of a great interest for all the methods, which work, in a hostile nuclear environment

  3. Study of nuclear fuel burn-up

    International Nuclear Information System (INIS)

    Pavelescu, M.; Borza, M.

    1975-01-01

    The authors approach theoretical treatment of isotopic composition changement for nuclear fuel in nuclear reactors. They show the difficulty of exhaustive treatment of burn-up problems and introduce the principal simplifying principles. Due to these principles they write and solve analytically the evolution equations of the concentration for the principal nuclides both in the case of fast and thermal reactors. Finally, they expose and comment the results obtained in the case of a power fast reactor. (author)

  4. Three dimensional Burn-up program parallelization using socket programming

    International Nuclear Information System (INIS)

    Haliyati R, Evi; Su'ud, Zaki

    2002-01-01

    A computer parallelization process was built with a purpose to decrease execution time of a physics program. In this case, a multi computer system was built to be used to analyze burn-up process of a nuclear reactor. This multi computer system was design need using a protocol communication among sockets, i.e. TCP/IP. This system consists of computer as a server and the rest as clients. The server has a main control to all its clients. The server also divides the reactor core geometrically to in parts in accordance with the number of clients, each computer including the server has a task to conduct burn-up analysis of 1/n part of the total reactor core measure. This burn-up analysis was conducted simultaneously and in a parallel way by all computers, so a faster program execution time was achieved close to 1/n times that of one computer. Then an analysis was carried out and states that in order to calculate the density of atoms in a reactor of 91 cm x 91 cm x 116 cm, the usage of a parallel system of 2 computers has the highest efficiency

  5. Technical development on burn-up credit for spent LWR fuels

    International Nuclear Information System (INIS)

    Nakahara, Yoshinori; Suyama, Kenya; Suzaki, Takenori

    2000-10-01

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled 'Technical Development on Criticality Safety Management for Spent LWR Fuels'. Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burn-up and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report. (author)

  6. Technical development on burn-up credit for spent LWR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Yoshinori; Suyama, Kenya; Suzaki, Takenori [eds.] [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-10-01

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled 'Technical Development on Criticality Safety Management for Spent LWR Fuels'. Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burn-up and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report. (author)

  7. Burn-up TRIGA Mark II benchmark experiment

    International Nuclear Information System (INIS)

    Persic, A.; Ravnik, M.; Zagar, T.

    1998-01-01

    Different reactor codes are used for calculations of reactor parameters. The accuracy of the programs is tested through comparison of the calculated values with the experimental results. Well-defined and accurately measured benchmarks are required. The experimental results of reactivity measurements, fuel element reactivity worth distribution and fuel-up measurements are presented in this paper. The experiments were performed with partly burnt reactor core. The experimental conditions were well defined, so that the results can be used as a burn-up benchmark test case for a TRIGA Mark II reactor calculations.(author)

  8. Calculational prediction of fuel burn-up for the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Phuoc Lan; Do Quang Binh

    2016-01-01

    In this paper, the method of expanding operators and functions in the neutron diffusion equations as chains of time variable is used for calculation of fuel burn-up of the Dalat nuclear reactors. A computer code, named BURREF, programmed in language Fortran-77 running on IBM PC-AT, has been developed based on this method to predict the fuel burn-up of the Dalat reactor. Some results will be presented here. (author)

  9. Full Core Burn-up Calculation at JRR-3 with MVP-BURN

    International Nuclear Information System (INIS)

    Komeda, Masao; Yamamoto, Kazuyoshi; Kusunoki, Tsuyoshi

    2008-01-01

    Research reactors use a burnable poison to suppress an excess reactivity in the beginning of reactor lifetime. The JRR-3 (Japan Research Reactor No.3) has used cadmium wires of radius 0.02 cm as a burnable poison. This report describes burn-up calculations of plate fuel models and full core models with MVP-BURN, which is a burn-up calculation code using Monte Carlo method and has been developed in JAEA (Japan Atomic Energy Agency). As the results of calculations of plate models, between a model composed of one burn-up region along the radius direction and a model composed of a few burn-up regions along the radius direction, the effective absorption cross section of 113 Cd has had different tendency on reaching approximate 40. day (10000 MWd/t). And as results of calculations of full core model, it has been indicated that k eff is almost same till approximate 80. day (22000 MWd/t) between a model composed of one burn-up region along the vertical direction and a model composed of a few burn-up regions along the vertical direction. However difference of 113 Cd burn-up becomes pronounced and each k eff makes a difference after 80. day. (authors)

  10. Determination of nuclear fuel burn-up

    International Nuclear Information System (INIS)

    Kristak, J.; Vobecky, M.

    1973-01-01

    Samples containing a known content of 235 U were irradiated with several different neutron doses and activities were determined of radionuclides including 125 Sb, 144 Ce, 134 Cs, 154 Eu, 103 Ru, 95 Zr. The values thus obtained were divided by the 137 Cs activity value. The resulting neutron dose-dependent value is plotted into a calibration graph. The degree of nuclear fuel burn-up is obtained from the graph using an experimentally determined ratio of the activities of the above radionuclides. (B.S.)

  11. SRAC95; general purpose neutronics code system

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Tsuchihashi, Keichiro; Kaneko, Kunio.

    1996-03-01

    SRAC is a general purpose neutronics code system applicable to core analyses of various types of reactors. Since the publication of JAERI-1302 for the revised SRAC in 1986, a number of additions and modifications have been made for nuclear data libraries and programs. Thus, the new version SRAC95 has been completed. The system consists of six kinds of nuclear data libraries(ENDF/B-IV, -V, -VI, JENDL-2, -3.1, -3.2), five modular codes integrated into SRAC95; collision probability calculation module (PIJ) for 16 types of lattice geometries, Sn transport calculation modules(ANISN, TWOTRAN), diffusion calculation modules(TUD, CITATION) and two optional codes for fuel assembly and core burn-up calculations(newly developed ASMBURN, revised COREBN). In this version, many new functions and data are implemented to support nuclear design studies of advanced reactors, especially for burn-up calculations. SRAC95 is available not only on conventional IBM-compatible computers but also on scalar or vector computers with the UNIX operating system. This report is the SRAC95 users manual which contains general description, contents of revisions, input data requirements, detail information on usage, sample input data and list of available libraries. (author)

  12. SRAC95; general purpose neutronics code system

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Keisuke; Tsuchihashi, Keichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio

    1996-03-01

    SRAC is a general purpose neutronics code system applicable to core analyses of various types of reactors. Since the publication of JAERI-1302 for the revised SRAC in 1986, a number of additions and modifications have been made for nuclear data libraries and programs. Thus, the new version SRAC95 has been completed. The system consists of six kinds of nuclear data libraries(ENDF/B-IV, -V, -VI, JENDL-2, -3.1, -3.2), five modular codes integrated into SRAC95; collision probability calculation module (PIJ) for 16 types of lattice geometries, Sn transport calculation modules(ANISN, TWOTRAN), diffusion calculation modules(TUD, CITATION) and two optional codes for fuel assembly and core burn-up calculations(newly developed ASMBURN, revised COREBN). In this version, many new functions and data are implemented to support nuclear design studies of advanced reactors, especially for burn-up calculations. SRAC95 is available not only on conventional IBM-compatible computers but also on scalar or vector computers with the UNIX operating system. This report is the SRAC95 users manual which contains general description, contents of revisions, input data requirements, detail information on usage, sample input data and list of available libraries. (author).

  13. Analysis of some antecipated transients without scram for PWR type reactors by coupling of the CORAN code to the ALMOD code system

    International Nuclear Information System (INIS)

    Carvalho, F. de A.T. de.

    1985-01-01

    This study investigates some antecipated transients without scram for a pressurized water cooled reactor, using coupling of the containment CORAN code to the ALMOD code system, under severe random conditions. This coupling has the objective of including containment model as part of an unified code system. These severe conditions include failure of reactor scram, following a station black-out and emergency power initiation for the burn-up status at the beginning and end of the cycle. Furthermore, for the burn-up status at the end of the cycle, a failure in the closure of the pressurizer relief valve was also investigated. (Author) [pt

  14. Establishing a PWR burn-up library

    International Nuclear Information System (INIS)

    Lutz, D.C.

    1981-01-01

    Starting out from data file ENDF/B IV /1/, a cross-section library has been established for the calculation of operating conditions in pressurized water reactors of the type used in BIBLIS B. The library includes macroscopic, homogenized 2-group cross-sections for all types of fuel elements used in this reactor, including those equipped with boron glass rods. For their calculation the previous irradiation of the fuel has been taken into consideration by approximation. Information on fuel consumption from cell burn-up calculations has been stored in a separate data file. It was designed as a base for the determination of cross sections to be used in the calculation of the incident ''main-steam pipe fracture''. For this library the description of cross sections as a function of the moderator status chose the water densities at 300 0 C/155 bar, 190 0 C/140 bar and 100 0 C/100 bar as fixed values. The burn-up library has been tested by a three-dimensional calculation for the 1sup(st) cycle of the BIBLIS B-reactor using program QUABOX /2/. This showed variances with the anticipated course concerning critically, which can be explained almost quantitatively by known deficiencies of the ENDF/b-IV library. (orig.) [de

  15. Actinide-only and full burn-up credit in criticality assessment of RBMK-1500 spent nuclear fuel storage cask using axial burn-up profile

    Energy Technology Data Exchange (ETDEWEB)

    Barkauskas, V., E-mail: vytenis.barkauskas@ftmc.lt; Plukiene, R., E-mail: rita.plukiene@ftmc.lt; Plukis, A., E-mail: arturas.plukis@ftmc.lt

    2016-10-15

    Highlights: • RBMK-1500 fuel burn-up impact on k{sub eff} in the SNF cask was calculated using SCALE 6.1. • Positive end effect was noticed at certain burn-up for the RBMK-1500 spent nuclear fuel. • The non-uniform uranium depletion is responsible for the end effect in RBMK-1500 SNF. • k{sub eff} in the SNF cask does not exceed a value of 0.95 which is set in the safety requirements. - Abstract: Safe long-term storage of spent nuclear fuel (SNF) is one of the main issues in the field of nuclear safety. Burn-up credit application in criticality analysis of SNF reduces conservatism of usually used fresh fuel assumption and implies a positive economic impact for the SNF storage. Criticality calculations of spent nuclear fuel in the CONSTOR® RBMK-1500/M2 cask were performed using pre-generated ORIGEN-ARP spent nuclear fuel composition libraries, and the results of the RBMK-1500 burn-up credit impact on the effective neutron multiplication factor (k{sub eff}) have been obtained and are presented in the paper. SCALE 6.1 code package with the STARBUCKS burn-up credit evaluation tool was used for modeling. Pre-generated ARP (Automatic Rapid Processing) crosssection libraries based on ENDF/B-VII cross section library were used for fast burn-up inventory modeling. Different conditions in the SNF cask were modeled: 2.0% and 2.8% initial enrichment fuel of various burn-up and water density inside cavities of the SNF cask. The fuel composition for the criticality analysis was chosen taking into account main actinides and most important fission products used in burn-up calculations. A significant positive end effect is noticed from 15 GWd/tU burn-up for 2.8% enrichment fuel and from 9 GWd/tU for 2.0% enrichment fuel applying the actinide-only approach. The obtained results may be applied in further evaluations of the RBMK type reactor SNF storage as well as help to optimize the SNF storage volume inside the CONSTOR® RBMK-1500/M2 cask without compromising criticality

  16. Actinide-only and full burn-up credit in criticality assessment of RBMK-1500 spent nuclear fuel storage cask using axial burn-up profile

    International Nuclear Information System (INIS)

    Barkauskas, V.; Plukiene, R.; Plukis, A.

    2016-01-01

    Highlights: • RBMK-1500 fuel burn-up impact on k_e_f_f in the SNF cask was calculated using SCALE 6.1. • Positive end effect was noticed at certain burn-up for the RBMK-1500 spent nuclear fuel. • The non-uniform uranium depletion is responsible for the end effect in RBMK-1500 SNF. • k_e_f_f in the SNF cask does not exceed a value of 0.95 which is set in the safety requirements. - Abstract: Safe long-term storage of spent nuclear fuel (SNF) is one of the main issues in the field of nuclear safety. Burn-up credit application in criticality analysis of SNF reduces conservatism of usually used fresh fuel assumption and implies a positive economic impact for the SNF storage. Criticality calculations of spent nuclear fuel in the CONSTOR® RBMK-1500/M2 cask were performed using pre-generated ORIGEN-ARP spent nuclear fuel composition libraries, and the results of the RBMK-1500 burn-up credit impact on the effective neutron multiplication factor (k_e_f_f) have been obtained and are presented in the paper. SCALE 6.1 code package with the STARBUCKS burn-up credit evaluation tool was used for modeling. Pre-generated ARP (Automatic Rapid Processing) crosssection libraries based on ENDF/B-VII cross section library were used for fast burn-up inventory modeling. Different conditions in the SNF cask were modeled: 2.0% and 2.8% initial enrichment fuel of various burn-up and water density inside cavities of the SNF cask. The fuel composition for the criticality analysis was chosen taking into account main actinides and most important fission products used in burn-up calculations. A significant positive end effect is noticed from 15 GWd/tU burn-up for 2.8% enrichment fuel and from 9 GWd/tU for 2.0% enrichment fuel applying the actinide-only approach. The obtained results may be applied in further evaluations of the RBMK type reactor SNF storage as well as help to optimize the SNF storage volume inside the CONSTOR® RBMK-1500/M2 cask without compromising criticality safety.

  17. Parameterized representation of macroscopic cross section in the PWR fuel element considering burn-up cycles

    International Nuclear Information System (INIS)

    Belo, Thiago F.; Fiel, Joao Claudio B.

    2015-01-01

    Nuclear reactor core analysis involves neutronic modeling and the calculations require problem dependent nuclear data generated with few neutron energy groups, as for instance the neutron cross sections. The methods used to obtain these problem-dependent cross sections, in the reactor calculations, generally uses nuclear computer codes that require a large processing time and computational memory, making the process computationally very expensive. Presently, analysis of the macroscopic cross section, as a function of nuclear parameters, has shown a very distinct behavior that cannot be represented by simply using linear interpolation. Indeed, a polynomial representation is more adequate for the data parameterization. To provide the cross sections of rapidly and without the dependence of complex systems calculations, this work developed a set of parameterized cross sections, based on the Tchebychev polynomials, by fitting the cross sections as a function of nuclear parameters, which include fuel temperature, moderator temperature and density, soluble boron concentration, uranium enrichment, and the burn-up. In this study is evaluated the problem-dependent about fission, scattering, total, nu-fission, capture, transport and absorption cross sections for a typical PWR fuel element reactor, considering burn-up cycle. The analysis was carried out with the SCALE 6.1 code package. The results of comparison with direct calculations with the SCALE code system and also the test using project parameters, such as the temperature coefficient of reactivity and fast fission factor, show excellent agreements. The differences between the cross-section parameterization methodology and the direct calculations based on the SCALE code system are less than 0.03 percent. (author)

  18. Parameterized representation of macroscopic cross section in the PWR fuel element considering burn-up cycles

    Energy Technology Data Exchange (ETDEWEB)

    Belo, Thiago F.; Fiel, Joao Claudio B., E-mail: thiagofbelo@hotmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Nuclear reactor core analysis involves neutronic modeling and the calculations require problem dependent nuclear data generated with few neutron energy groups, as for instance the neutron cross sections. The methods used to obtain these problem-dependent cross sections, in the reactor calculations, generally uses nuclear computer codes that require a large processing time and computational memory, making the process computationally very expensive. Presently, analysis of the macroscopic cross section, as a function of nuclear parameters, has shown a very distinct behavior that cannot be represented by simply using linear interpolation. Indeed, a polynomial representation is more adequate for the data parameterization. To provide the cross sections of rapidly and without the dependence of complex systems calculations, this work developed a set of parameterized cross sections, based on the Tchebychev polynomials, by fitting the cross sections as a function of nuclear parameters, which include fuel temperature, moderator temperature and density, soluble boron concentration, uranium enrichment, and the burn-up. In this study is evaluated the problem-dependent about fission, scattering, total, nu-fission, capture, transport and absorption cross sections for a typical PWR fuel element reactor, considering burn-up cycle. The analysis was carried out with the SCALE 6.1 code package. The results of comparison with direct calculations with the SCALE code system and also the test using project parameters, such as the temperature coefficient of reactivity and fast fission factor, show excellent agreements. The differences between the cross-section parameterization methodology and the direct calculations based on the SCALE code system are less than 0.03 percent. (author)

  19. Simulation of triton burn-up in JET plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Loughlin, M J; Balet, B; Jarvis, O N; Stubberfield, P M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    This paper presents the first triton burn-up calculations for JET plasmas using the transport code TRANSP. Four hot ion H-mode deuterium plasmas are studied. For these discharges, the 2.5 MeV emission rises rapidly and then collapses abruptly. This phenomenon is not fully understood but in each case the collapse phase is associated with a large impurity influx known as the ``carbon bloom``. The peak 14 MeV emission occurs at this time, somewhat later than that of the 2.5 MeV neutron peak. The present results give a clear indication that there are no significant departures from classical slowing down and spatial diffusion for tritons in JET plasmas. (authors). 7 refs., 3 figs., 1 tab.

  20. Technical Development on Burn-up Credit for Spent LWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I.C.

    2001-12-26

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report.

  1. SRAC2006: A comprehensive neutronics calculation code system

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Kugo, Teruhiko; Kaneko, Kunio; Tsuchihashi, Keichiro

    2007-02-01

    The SRAC is a code system applicable to neutronics analysis of a variety of reactor types. Since the publication of the second version of the users manual (JAERI-1302) in 1986 for the SRAC system, a number of additions and modifications to the functions and the library data have been made to establish a comprehensive neutronics code system. The current system includes major neutron data libraries (JENDL-3.3, JENDL-3.2, ENDF/B-VII, ENDF/B-VI.8, JEFF-3.1, JEF-2.2, etc.), and integrates five elementary codes for neutron transport and diffusion calculation; PIJ based on the collision probability method applicable to 16 kind of lattice models, S N transport codes ANISN(1D) and TWOTRN(2D), diffusion codes TUD(1D) and CITATION(multi-D). The system also includes an auxiliary code COREBN for multi-dimensional core burn-up calculation. (author)

  2. Fission Gas Release in LWR Fuel Rods Exhibiting Very High Burn-Up

    DEFF Research Database (Denmark)

    Carlsen, H.

    1980-01-01

    Two UO2Zr BWR type test fuel rods were irradiated to a burn-up of about 38000 MWd/tUO2. After non-destructive characterization, the fission gas released to the internal free volume was extracted and analysed. The irradiation was simulated by means of the Danish fuel performance code WAFER-2, which...

  3. Modeling of WWER-440 Fuel Pin Behavior at Extended Burn-up

    International Nuclear Information System (INIS)

    El-Koliel, M.S.; Abou-Zaid, A.A.; El-Kafas, A.A.

    2004-01-01

    Currently, there is an ongoing effort to increase fuel discharge burn-up of all LWRs fuel including WWER's as much as possible in order to decrease power production cost. Therefore, burn-up is expected to be increased to 60 to 70 Mwd/kg U. The change in the fuel radial power distribution as a function of fuel burn up can affect the radial fuel temperature distribution as well as the fuel microstructure in the fuel pellet rim. In this paper, the radial burn-up and fissile products distributions of WWER-440 UO 2 fuel pin were evaluated using MCNP 4B and ORIGEN2 codes. The impact of the thermal conductivity on predicted fission gas release calculations is needed. For the analysis, a typical WWER-440 fuel pin and surrounding water moderator are considered in a hexagonal pin cell well. The thermal release and the athermal release from the pellet rim were modeled separately. The fraction of the rim structure and the excessive porosity in the rim structure in isothermal irradiation as a function of the fuel burn-up was predicted. a computer program; RIMSC-01, is developed to perform the required FGR calculations. Finally, the relevant phenomena and the corresponding models together with their validation are presented

  4. Burn-up determination of irradiated thoria samples by isotope dilution-thermal ionisation mass spectrometry

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Jaison, P.G.; Telmore, V.M.; Shah, R.V.; Sant, V.L.; Sasibhushan, K.; Parab, A.R.; Alamelu, D.

    2010-03-01

    Burn-up was determined experimentally using thermal ionization mass spectrometry for two samples from ThO 2 bundles irradiated in KAPS-2. This involved quantitative dissolution of the irradiated fuel samples followed by separation and determination of Th, U and a stable fission product burn-up monitor in the dissolved fuel solution. Stable fission product 148 Nd was used as a burn-up monitor for determining the number of fissions. Isotope Dilution-Thermal Ionisation Mass Spectrometry (ID-TIMS) using natural U, 229 Th and enriched 142 Nd as spikes was employed for the determination of U, Th and Nd, respectively. Atom % fission values of 1.25 ± 0.03 were obtained for both the samples. 232 U content in 233 U determined by alpha spectrometry was about 500 ppm and this was higher by a factor of 5 compared to the theoretically predicted value by ORIGEN-2 code. (author)

  5. Challenges in the application of burn-up credit to the criticality safety of the THORP reprocessing plant

    International Nuclear Information System (INIS)

    Mayson, R.T.H.; Gunston, K.J.

    1999-01-01

    Since 1991 BNFL has made a significant investment in the development of the burn-up credit method and the application to its operations. It has recently demonstrated that using this method for the THORP dissolvers, it is possible to justify operating safety with reduced neutron poison concentrations and this has now been submitted to the regulators. The continued challenges the criticality safety community is facing are to show that we are not reducing safety levels because we are using burn-up credit. The burn-up credit method that has been developed can be summarized as follows. It consists of performing reactivity calculations for irradiated fuel using compositions generated by and inventory prediction code, generally in order to determine the limiting burn-up required for that fuel in a particular environment. In addition, it has always been envisaged that a confirmatory measurement of burn-up would be required to be made prior to certain operations such as the sharing of fuel into a dissolver. The burn-up credit method therefore relies upon three key components of inventory prediction, reactivity calculation code and the quantification and verification of burn-up. (J.P.N.)

  6. Reactivity effect of spent fuel depending on burn-up history

    International Nuclear Information System (INIS)

    Hayashi, Takafumi; Suyama, Kenya; Nomura, Yasushi

    2001-06-01

    It is well known that a composition of spent fuel depends on various parameter changes throughout a burn-up period. In this study we aimed at the boron concentration and its change, the coolant temperature and its spatial distribution, the specific power, the operation mode, and the duration of inspection, because the effects due to these parameters have not been analyzed in detail. The composition changes of spent fuel were calculated by using the burn-up code SWAT, when the parameters mentioned above varied in the range of actual variations. Moreover, to estimate the reactivity effect caused by the composition changes, the criticality calculations for an infinite array of spent fuel were carried out with computer codes SRAC95 or MVP. In this report the reactivity effects were arranged from the viewpoint of what parameters gave more positive reactivity effect. The results obtained through this study are useful to choose the burn-up calculation model when we take account of the burn-up credit in the spent fuel management. (author)

  7. Burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1

    Directory of Open Access Journals (Sweden)

    Muhammad Atta

    2011-01-01

    Full Text Available The burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1, reference operating core, has been carried out utilizing standard computer codes WIMS/D4, CITATION, and RELAP5/MOD3.4. Reactor codes WIMS/D4 and CITATION have been used for the calculations of neutronic parameters including peaking factors and power profiles at different burn-up considering a xenon free core and also the equilibrium xenon values. RELAP5/MOD3.4 code was utilized for the determination of peak fuel centerline, clad and coolant temperatures to ensure the safety of the reactor throughout the cycle. The calculations reveal that the reactor is safe and no nucleate boiling will commence at any part of the core throughout the cycle and that the safety margin increases with burnup as peaking factors decrease.

  8. Burn-Up Calculation of the Fuel Element in RSG-GAS Reactor using Program Package BATAN-FUEL

    International Nuclear Information System (INIS)

    Mochamad Imron; Ariyawan Sunardi

    2012-01-01

    Calculation of burn lip distribution of 2.96 gr U/cc Silicide fuel element at the 78 th reactor cycle using computer code program of BATAN-FUEL has been done. This calculation uses inputs such as generated power, operation time and a core assumption model of 5/1. Using this calculation model burn up for the entire fuel elements at the reactor core are able to be calculated. From the calculation it is obtained that the minimum burn up of 6.82% is RI-50 at the position of A-9, while the maximum burn up of 57.57% is RI 467 at the position of 8-7. Based on the safety criteria as specified in the Safety Analysis Report (SAR) RSG-GAS reactor, the maximum fuel burn up allowed is 59.59%. It then can be concluded that pattern that elements placement at the reactor core are properly and optimally done. (author)

  9. JOYO MK-III performance test. Criticality test, excess reactivity measurement and burn-up coefficient measurement

    International Nuclear Information System (INIS)

    Maeda, Shigetaka; Sekine, Takashi; Kitano, Akihiro; Nagasaki, Hideaki

    2005-03-01

    The MK-III performance test began in June 2003 to fully characterize the upgraded core and heat transfer system of the experimental fast reactor JOYO. This paper describes the results of the approach to criticality, the excess reactivity evaluation and the burn-up coefficient measurement. In the approach to criticality test, the MK-III core achieved initial criticality at the control rod bank position of 412.8 mm on 14:03 July 2nd, 2003. Because the replacement of the outer two rows of reflector subassemblies with shielding subassemblies reduced the source range monitor signals by a factor of 3 at the same reactor power compared with those in the MK-II core, we measured the change of the monitor's response and determined the count rate 2x10 4 cps.' as an appropriate value judging the zero power criticality. In the excess reactivity evaluation, the zero power excess reactivity at 250degC was 2.99±0.10%Δk/kk' based on the measured critical rod bank position and the measured control rod worths. The predicted value by the JOYO core management code system HESTIA was 3.13±0.16%Δk/kk', showing good agreement with the measured value. The measured excess reactivity was within the safety requirement limit. In the burn-up coefficient measurement, the excess reactivity change versus the reactor burn-up was evaluated. The measurement method adopted was to measure the control rod positions during the rated power operation. A value of -2.12x10 -4 Δk/kk'/MWd was obtained as a measured burn-up coefficient. The value calculated by HESTIA was -2.12x10 -4 Δk/kk'/MWd, and it agreed well with the measured value. All technical safety requirements for MK-III core were satisfied and the calculation accuracy of the core management code system HESTIA was confirmed. (author)

  10. Enlarged Halden programme group meeting on high burn-up fuel performance, safety and reliability and degradation of in-core materials and water chemistry effects and man-machine systems research. Volume II

    International Nuclear Information System (INIS)

    1999-01-01

    Academy of Sciences, KFKI Atomic Energy Research Institute, the N.V. KEMA, the Netherlands, the Russian Research Centre 'Kurchatov Institute', the Slovakian VUJE - Nuclear Power Plant Research Institute, and from USA: the ABB Combustion Engineering Inc., the Electric Power Research Institute (EPRI), and the General Electric Co. The right to utilise information originating from the research work of the Halden Project is limited to persons and undertakings specifically given this right by one of these Project member organisations. The activities in the area of fuel and materials performance are based on extensive in-reactor measurements. The programmes are expanding in the areas of fuel performance at extended burn-ups, waterside corrosion and material testing in general. Development of in-core instruments is an important activity in support of the experimental programmes. The research programme at the Halden Project addresses the research needs of the nuclear industry in connection with introduction of digital I and C systems in NPPs. The programme provides information supporting design and licensing of upgraded, computer-based control room systems, and demonstrates the benefits of such systems through validation experiments in Halden's experimental research facility, HAMMLAB and pilot installations in NPPs. The Enlarged Halden Programme Group Meeting at Loen, Norway, was arranged to provide an opportunity to present results of work carried out at Halden and within participating organisations, and to encourage comments and impulses related to future Halden Project work. This HPR-351 relates to the fuel and materials part of the meeting and is divided in two volumes, HPR-351 Volume I and HPR-351 Volume II. The corresponding collection of papers in the man-machine area are given in one volume, HPR-352 Volume I. The overall programme of the Loen Enlarged Meeting covering the Fuel and Materials Research is given in the following pages. The papers with denomination HWR have

  11. Development of external coupling for calculation of the control rod worth in terms of burn-up for a WWER-1000 nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Noori-Kalkhoran, Omid, E-mail: o_noori@yahoo.com [Reactor Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Yarizadeh-Beneh, Mehdi [Faculty of Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Ahangari, Rohollah [Reactor Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of)

    2016-08-15

    Highlights: • Calculation of control rod worth in term of burn-up. • Calculation of differential and integral control rod worth. • Developing an external couple. • Modification of thermal-hydraulic profiles in calculations. - Abstract: One of the main problems relating to operation of a nuclear reactor is its safety and controlling system. The most widely used control systems for thermal reactors are neutron absorbent rods. In this study a code based method has been developed for calculation of integral and differential control rod worth in terms of burn-up for a WWER-1000 nuclear reactor. External coupling of WIMSD-5B, PARCS V2.7 and COBRA-EN has been used for this purpose. WIMSD-5B has been used for cell calculation and handling burn-up of the core in various days. PARCS V2.7 has been used for neutronic calculation of core and critical boron concentration search. Thermal-hydraulic calculation has been performed by COBRA-EN. An external coupling algorithm has been developed by MATLAB to couple and transfer suitable data between these codes in each step. Steady-State Power Picking Factors (PPFs) of the core and control rod worth for different control rod groups have been calculated from Beginning Of Cycle (BOC) to 289.7 Effective Full Power Days (EFPDs) in some steps. Results have been compared with the results of Bushehr Nuclear Power Plant (BNPP) Final Safety Analysis Report (FSAR). The results show a good agreement and confirm the ability of developed coupling in calculation of control rod worth in terms of burn-up.

  12. Tokamak Systems Code

    International Nuclear Information System (INIS)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged

  13. Monte Carlo sampling on technical parameters in criticality and burn-up-calculations

    International Nuclear Information System (INIS)

    Kirsch, M.; Hannstein, V.; Kilger, R.

    2011-01-01

    The increase in computing power over the recent years allows for the introduction of Monte Carlo sampling techniques for sensitivity and uncertainty analyses in criticality safety and burn-up calculations. With these techniques it is possible to assess the influence of a variation of the input parameters within their measured or estimated uncertainties on the final value of a calculation. The probabilistic result of a statistical analysis can thus complement the traditional method of figuring out both the nominal (best estimate) and the bounding case of the neutron multiplication factor (k eff ) in criticality safety analyses, e.g. by calculating the uncertainty of k eff or tolerance limits. Furthermore, the sampling method provides a possibility to derive sensitivity information, i.e. it allows figuring out which of the uncertain input parameters contribute the most to the uncertainty of the system. The application of Monte Carlo sampling methods has become a common practice in both industry and research institutes. Within this approach, two main paths are currently under investigation: the variation of nuclear data used in a calculation and the variation of technical parameters such as manufacturing tolerances. This contribution concentrates on the latter case. The newly developed SUnCISTT (Sensitivities and Uncertainties in Criticality Inventory and Source Term Tool) is introduced. It defines an interface to the well established GRS tool for sensitivity and uncertainty analyses SUSA, that provides the necessary statistical methods for sampling based analyses. The interfaced codes are programs that are used to simulate aspects of the nuclear fuel cycle, such as the criticality safety analysis sequence CSAS5 of the SCALE code system, developed by Oak Ridge National Laboratories, or the GRS burn-up system OREST. In the following, first the implementation of the SUnCISTT will be presented, then, results of its application in an exemplary evaluation of the neutron

  14. Increased fuel burn-up and fuel cycle equilibrium

    International Nuclear Information System (INIS)

    Debes, M.

    2001-01-01

    Improvement of nuclear competitiveness will rely mainly on increased fuel performance, with higher burn-up, and reactors sustained life. Regarding spent fuel management, the EDF current policy relies on UO 2 fuel reprocessing (around 850 MTHM/year at La Hague) and MOX recycling to ensure plutonium flux adequacy (around 100 MTHM/year, with an electricity production equivalent to 30 TWh). This policy enables to reuse fuel material, while maintaining global kWh economy with existing facilities. It goes along with current perspective to increase fuel burn-up up to 57 GWday/t mean in 2010. The following presentation describes the consequences of higher fuel burn-up on fuel cycle and waste management and implementation of a long term and global equilibrium for decades in spent fuel management resulting from this strategy. (author)

  15. Nuclear fuel burn-up economy; Ekonomija izgaranja nuklearnog goriva

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1984-07-01

    In the period 1981-1985, for the needs of Utility Organization, Beograd, and with the support of the Scientific Council of SR Srbija, work has been performed on the study entitled 'Nuclear Fuel Burn-up Economy'. The forst [phase, completed during the year 1983 comprised: comparative analysis of commercial NPP from the standpoint of nuclear fuel requirements; development of methods for fuel burn-up analysis; specification of elements concerning the nuclear fuel for the tender documentation. The present paper gives the short description of the purpose, content and results achieved in the up-to-now work on the study. (author)

  16. Technique for sensitivity analysis of space- and energy-dependent burn-up calculations

    International Nuclear Information System (INIS)

    Williams, M.L.; White, J.R.

    1979-01-01

    A practical method is presented for sensitivity analysis of the very complex, space-energy dependent burn-up equations, in which the neutron and nuclide fields are coupled nonlinearly. The adjoint burn-up equations that are given are in a form which can be directly implemented into multi-dimensional depletion codes, such as VENTURE/BURNER. The data sensitivity coefficients can be used to determine the effect of data uncertainties on time-dependent depletion responses. Initial condition sensitivity coefficients provide a very effective method for computing the change in end of cycle parameters (such as k/sub eff/, fissile inventory, etc.) due to changes in nuclide concentrations at beginning of cycle

  17. Burn-up credit in criticality safety of PWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Rowayda F., E-mail: Rowayda_mahmoud@yahoo.com [Metallurgy Department, Nuclear Research Center, Atomic Energy Authority (Egypt); Shaat, Mohamed K. [Nuclear Engineering, Reactors Department, Nuclear Research Center, Atomic Energy Authority (Egypt); Nagy, M.E.; Agamy, S.A. [Professor of Nuclear Engineering, Nuclear and Radiation Department, Alexandria University (Egypt); Abdelrahman, Adel A. [Metallurgy Department, Nuclear Research Center, Atomic Energy Authority (Egypt)

    2014-12-15

    Highlights: • Designing spent fuel wet storage using WIMS-5D and MCNP-5 code. • Studying fresh and burned fuel with/out absorber like “B{sub 4}C and Ag–In–Cd” in racks. • Sub-criticality was confirmed for fresh and burned fuel under specific cases. • Studies for BU credit recommend increasing fuel burn-up to 60.0 GWD/MTU. • Those studies require new core structure materials, fuel composition and cladding. - Abstract: The criticality safety calculations were performed for a proposed design of a wet spent fuel storage pool. This pool will be used for the storage of spent fuel discharged from a typical pressurized water reactor (PWR). The mathematical model based on the international validated codes, WIMS-5 and MCNP-5 were used for calculating the effective multiplication factor, k{sub eff}, for the spent fuel stored in the pool. The data library for the multi-group neutron microscopic cross-sections was used for the cell calculations. The k{sub eff} was calculated for several changes in water density, water level, assembly pitch and burn-up with different initial fuel enrichment and new types and amounts of fixed absorbers. Also, k{sub eff} was calculated for the conservative fresh fuel case. The results of the calculations confirmed that the effective multiplication factor for the spent fuel storage is sub-critical for all normal and abnormal states. The future strategy for the burn-up credit recommends increasing the fuel burn-up to a value >60.0 GWD/MTU, which requires new fuel composition and new fuel cladding material with the assessment of the effects of negative reactivity build up.

  18. SASSYS LMFBR systems code

    International Nuclear Information System (INIS)

    Dunn, F.E.; Prohammer, F.G.; Weber, D.P.

    1983-01-01

    The SASSYS LMFBR systems analysis code is being developed mainly to analyze the behavior of the shut-down heat-removal system and the consequences of failures in the system, although it is also capable of analyzing a wide range of transients, from mild operational transients through more severe transients leading to sodium boiling in the core and possible melting of clad and fuel. The code includes a detailed SAS4A multi-channel core treatment plus a general thermal-hydraulic treatment of the primary and intermediate heat-transport loops and the steam generators. The code can handle any LMFBR design, loop or pool, with an arbitrary arrangement of components. The code is fast running: usually faster than real time

  19. Optimalisation Of Oxide Burn-Up Enhanced For RSG-Gas Core

    International Nuclear Information System (INIS)

    Tukiran; Sembiring, Tagor Malem

    2000-01-01

    Strategy of fuel management of the RSG-Gas core has been changed from 6/1 to 5/1 pattern so the evaluation of fuel management is necessary to be done. The aim of evaluation is to look for the optimal fuel management so that the fuel can be stayed longer in the core and finally can save cost of operation. Using Batan-EQUIL-2D code did the evaluation of fuel management with 5/1 pattern. The result of evaluation is used to choose which one is more advantage without break the safety margin which is available in the Safety Analysis Report (SAR) firstly, the fuel management was calculated with core excess reactivity of 9,2% criteria. Secondly, fuel burn-up maximum of 56% criteria and the last, fuel burn-up maximum of 64% criteria. From the result of fuel management calculation of the RSG-Gas equilibrium core can be concluded that the optimal RSG-Gas equilibrium core with 5/1 pattern is if the fuel burn-up maximum 64% and the energy in a cycle of operation is 715 MWD. The fuel can be added one more step in the core without break any safety margin. It means that the RSG-Gas equilibrium core can save fuel and cost reduction

  20. Evaluation and Parameter Analysis of Burn up Calculations for the Assessment of Radioactive Waste - 13187

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Ivan; Aksyutina, Yuliya; Tietze-Jaensch, Holger [Product Quality Control Office for Radioactive Waste (PKS) at the Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety Research, IEK-6, Forschungszentrum Juelich (Germany)

    2013-07-01

    Burn up calculations facilitate a determination of the composition and nuclear inventory of spent nuclear fuel, if operational history is known. In case this information is not available, the total nuclear inventory can be determined by means of destructive or, even on industrial scale, nondestructive measurement methods. For non-destructive measurements however only a few easy-to-measure, so-called key nuclides, are determined due to their characteristic gamma lines or neutron emission. From these measured activities the fuel burn up and cooling time are derived to facilitate the numerical inventory determination of spent fuel elements. Most regulatory bodies require an independent assessment of nuclear waste properties and their documentation. Prominent part of this assessment is a consistency check of inventory declaration. The waste packages often contain wastes from different types of spent fuels of different history and information about the secondary reactor parameters may not be available. In this case the so-called characteristic fuel burn up and cooling time are determined. These values are obtained from a correlations involving key-nuclides with a certain bandwidth, thus with upper and lower limits. The bandwidth is strongly dependent on secondary reactor parameter such as initial enrichment, temperature and density of the fuel and moderator, hence the reactor type, fuel element geometry and plant operation history. The purpose of our investigation is to look into the scaling and correlation limitations, to define and verify the range of validity and to scrutinize the dependencies and propagation of uncertainties that affect the waste inventory declarations and their independent verification. This is accomplished by numerical assessment and simulation of waste production using well accepted codes SCALE 6.0 and 6.1 to simulate the cooling time and burn up of a spent fuel element. The simulations are benchmarked against spent fuel from the real reactor

  1. CRISTAL V1: Criticality package for burn up credit calculations

    International Nuclear Information System (INIS)

    Gomit, Jean-Michel; Cousinou, Patrick; Gantenbein, Francoise; Diop, Cheikh; Fernandez de Grado, Guy; Mijuin, Dominique; Grouiller, Jean-Paul; Marc, Andre; Toubon, Herve

    2003-01-01

    The first version of the CRISTAL package, created and validated as part of a joint project between IRSN, COGEMA and CEA, was delivered to users in November 1999. This fruitful cooperation between IRSN, COGEMA and CEA has been pursued until 2003 with the development and the validation of the package CRISTAL V1, whose main objectives are to improve the criticality safety studies including the Burn up Credit effect. (author)

  2. Calculation of triton confinement and burn-up in tokamaks

    International Nuclear Information System (INIS)

    Anderson, D.; Battistoni, P.

    1987-01-01

    An analytical investigation is made of the confinement and subsequent burn-up of fusion produced tritons in a deuterium Tokamak plasma. Explicit approximations are obtained for the triton confinement factor, clearly displaying the scaling with physical parameters. The importance of pitch angle scattering losses during the triton slowing down is also estimated. A comparison with experiments and numerical calculations on the FT Tokamak slows good qualitative agreement. (authors)

  3. Revised SRAC code system

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro; Ishiguro, Yukio; Kaneko, Kunio; Ido, Masaru.

    1986-09-01

    Since the publication of JAERI-1285 in 1983 for the preliminary version of the SRAC code system, a number of additions and modifications to the functions have been made to establish an overall neutronics code system. Major points are (1) addition of JENDL-2 version of data library, (2) a direct treatment of doubly heterogeneous effect on resonance absorption, (3) a generalized Dancoff factor, (4) a cell calculation based on the fixed boundary source problem, (5) the corresponding edit required for experimental analysis and reactor design, (6) a perturbation theory calculation for reactivity change, (7) an auxiliary code for core burnup and fuel management, etc. This report is a revision of the users manual which consists of the general description, input data requirements and their explanation, detailed information on usage, mathematics, contents of libraries and sample I/O. (author)

  4. Sensitivity change of rhodium self -powered detectors with burn-up

    International Nuclear Information System (INIS)

    Girgis, R.; Akimov, I.S.; Hamouda, I.

    1976-01-01

    The scope of the present paper is to obtain the calculation formulae to evaluate the rate of sensitivity change of the neutron self-powered detectors with burn-up. A code written in FORTRAN 4 was developed to be operational on the IBM-1130 computer. It has been established in the case of rhodium detectors that neglecting the β-particle absorption in the calculations leads to the underestimation of the detector sensitivity decrease up to 40%. The derived formulae can be used for other self-powered detectors. (author)

  5. Analysis of some antecipated transients without scram for a pressurized water cooled reactor (PWR) using coupling of the containment code CORAN to the system model code ALMOD

    International Nuclear Information System (INIS)

    Carvalho, F. de A.T. de.

    1985-01-01

    Some antecipated transients without scram (ATWS) for a pressurized water cooled reactor, model KWU 1300 MWe, are studied using coupling of the containment code CORAN to the system model code ALMOD, under severe random conditions. This coupling has the objective of including containment model as part of a unified code system. These severe conditions include failure of reactor scram, following a station black-out and emergency power initiation for the burn-up status at the beginning and end of the cycle. Furthermore, for the burn-up status at the end of the cycle a failure in the closure of the pressurizer relief valve was also investigated. For the beginning of the cycle, the containment participates actively during the transient. It is noted that the effect of the burn-up in the fuel is to reduce the seriousness of these transients. On the other hand, the failure in the closure of the pressurized relief valve makes this transients more severe. Moreover, the containment safety or radiological public safety is not affected in any of the cases. (Author) [pt

  6. Improvement of JRR-4 core management code system

    International Nuclear Information System (INIS)

    Izumo, H.; Watanabe, S.; Nagatomi, H.; Hori, N.

    2000-01-01

    In the modification of JRR-4, the fuel was changed from 93% high enrichment uranium aluminized fuel to 20% low enriched uranium silicide fuel in conformity with the framework of reduced enrichment program on JAERI research reactors. As changing of this, JRR-4 core management code system which estimates excess reactivity of core, fuel burn-up and so on, was improved too. It had been difficult for users to operate the former code system because its input-output form was text-form. But, in the new code system (COMMAS-JRR), users are able to operate the code system without using difficult text-form input. The estimation results of excess reactivity of JRR-4 LEU fuel core were showed very good agreements with the measured value. It is the strong points of this new code system to be operated simply by using the windows form pictures act on a personal workstation equip with the graphical-user-interface (GUI), and to estimate accurately the specific characteristics of the LEU core. (author)

  7. Observations on the CANDLE burn-up in various geometries

    International Nuclear Information System (INIS)

    Seifritz, W.

    2007-01-01

    We have looked at all geometrical conditions under which an auto catalytically propagating burnup wave (CANDLE burn-up) is possible. Thereby, the Sine Gordon equation finds a new place in the burn-up theory of nuclear fission reactors. For a practical reactor design the axially burning 'spaghetti' reactor and the azimuthally burning 'pancake' reactor, respectively, seem to be the most promising geometries for a practical reactor design. Radial and spherical burn-waves in cylindrical and spherical geometry, respectively, are principally impossible. Also, the possible applicability of such fission burn-waves on the OKLO-phenomenon and the GEOREACTOR in the center of Earth, postulated by Herndon, is discussed. A fast CANDLE-reactor can work with only depleted uranium. Therefore, uranium mining and uranium-enrichment are not necessary anymore. Furthermore, it is also possible to dispense with reprocessing because the uranium utilization factor is as high as about 40%. Thus, this completely new reactor type can open a new era of reactor technology

  8. Advanced video coding systems

    CERN Document Server

    Gao, Wen

    2015-01-01

    This comprehensive and accessible text/reference presents an overview of the state of the art in video coding technology. Specifically, the book introduces the tools of the AVS2 standard, describing how AVS2 can help to achieve a significant improvement in coding efficiency for future video networks and applications by incorporating smarter coding tools such as scene video coding. Topics and features: introduces the basic concepts in video coding, and presents a short history of video coding technology and standards; reviews the coding framework, main coding tools, and syntax structure of AV

  9. FUEL BURN-UP CALCULATION FOR WORKING CORE OF THE RSG-GAS RESEARCH REACTOR AT BATAN SERPONG

    Directory of Open Access Journals (Sweden)

    Tukiran Surbakti

    2017-12-01

    Full Text Available The neutronic parameters are required in the safety analysis of the RSG-GAS research reactor. The RSG-GAS research reactor, MTR (Material Testing Reactor type is used for research and also in radioisotope production. RSG-GAS has been operating for 30 years without experiencing significant obstacles. It is managed under strict requirements, especially fuel management and fuel burn-up calculations. The reactor is operated under the supervision of the Regulatory Body (BAPETEN and the IAEA (International Atomic Energy Agency. In this paper, the experience of managing RSG-GAS core fuels will be discussed, there are hundred possibilities of fuel placements on the reactor core and the strategy used to operate the reactor will be crucial. However, based on strict calculation and supervision, there is no incorrect placement of the fuels in the core. The calculations were performed on working core by using the WIMSD-5B computer code with ENDFVII.0 data file to generate the macroscopic cross-section of fuel and BATAN-FUEL code were used to obtain the neutronic parameter value such as fuel burn-up fractions. The calculation of the neutronic core parameters of the RSG-GAS research reactor was carried out for U3Si2-Al fuel, 250 grams of mass, with an equilibrium core strategy. The calculations show that on the last three operating cores (T90, T91, T92, all fuels meet the safety criteria and the fuel burn-up does not exceed the maximum discharge burn-up of 59%. Maximum fuel burn-up always exists in the fuel which is close to the position of control rod.

  10. Simulation of the neutron-physical properties of the classical UO2 fuel and of MOX fuel during the burn-up by Transuranus

    International Nuclear Information System (INIS)

    Breza, J. jr.; Necas, V.; Daoeilek, P.

    2005-01-01

    The classical nuclear fuel UO 2 is well known for VVER reactors. Nevertheless, in the near future it will be possible to replace this fuel by novel, advanced kinds of fuel, for instance MOX, inert matrices fuel, etc., that will allow to increase the level of burn-up and minimize the amount of hazardous waste. The code Transuranus [2], designed at ITU Karlsruhe, is intended for thermal and mechanical analyses of fuel elements in nuclear reactors. We have utilized the code Transuranus to simulate the neutron-physical properties of the classical UO 2 fuel and of MOX fuel during the burn-up to a level of 40 MWd/kgHM. We compare obtained results of uranium and plutonium nuclides concentrations, their changes during burn-up, with results obtained by code HELIOS [3], which is well-validated code for this kind of applications. We performed calculations of fission gasses concentrations, namely xenon and krypton. (author)

  11. Manufacturing Data Uncertainties Propagation Method in Burn-Up Problems

    Directory of Open Access Journals (Sweden)

    Thomas Frosio

    2017-01-01

    Full Text Available A nuclear data-based uncertainty propagation methodology is extended to enable propagation of manufacturing/technological data (TD uncertainties in a burn-up calculation problem, taking into account correlation terms between Boltzmann and Bateman terms. The methodology is applied to reactivity and power distributions in a Material Testing Reactor benchmark. Due to the inherent statistical behavior of manufacturing tolerances, Monte Carlo sampling method is used for determining output perturbations on integral quantities. A global sensitivity analysis (GSA is performed for each manufacturing parameter and allows identifying and ranking the influential parameters whose tolerances need to be better controlled. We show that the overall impact of some TD uncertainties, such as uranium enrichment, or fuel plate thickness, on the reactivity is negligible because the different core areas induce compensating effects on the global quantity. However, local quantities, such as power distributions, are strongly impacted by TD uncertainty propagations. For isotopic concentrations, no clear trends appear on the results.

  12. Approach to lithium burn-up effect in lithium ceramics

    International Nuclear Information System (INIS)

    Rasneur, B.

    1994-01-01

    The lithium burn-up in Li 2 ZrO 3 is simulated by removing lithium under Li 2 O form and trapping it in high specific surface area powder while heating during 15 days or 1 month at moderate temperature so that lithium mobility be large enough without causing any sintering neither of the specimens nor of the powder. In a first treatment at 775 deg C during 1 month. 30% of the lithium content could be removed inducing a lithium concentration gradient in the specimen and the formation of a lithium-free monoclinic ZrO 2 skin. Improvements led to similar results at 650 deg C and 600 deg C, the latter temperatures are closer to the operating temperature of the ceramic breeder blanket of a fusion reactor. (author) 4 refs.; 4 figs.; 1 tab

  13. Effect of error propagation of nuclide number densities on Monte Carlo burn-up calculations

    International Nuclear Information System (INIS)

    Tohjoh, Masayuki; Endo, Tomohiro; Watanabe, Masato; Yamamoto, Akio

    2006-01-01

    As a result of improvements in computer technology, the continuous energy Monte Carlo burn-up calculation has received attention as a good candidate for an assembly calculation method. However, the results of Monte Carlo calculations contain the statistical errors. The results of Monte Carlo burn-up calculations, in particular, include propagated statistical errors through the variance of the nuclide number densities. Therefore, if statistical error alone is evaluated, the errors in Monte Carlo burn-up calculations may be underestimated. To make clear this effect of error propagation on Monte Carlo burn-up calculations, we here proposed an equation that can predict the variance of nuclide number densities after burn-up calculations, and we verified this equation using enormous numbers of the Monte Carlo burn-up calculations by changing only the initial random numbers. We also verified the effect of the number of burn-up calculation points on Monte Carlo burn-up calculations. From these verifications, we estimated the errors in Monte Carlo burn-up calculations including both statistical and propagated errors. Finally, we made clear the effects of error propagation on Monte Carlo burn-up calculations by comparing statistical errors alone versus both statistical and propagated errors. The results revealed that the effects of error propagation on the Monte Carlo burn-up calculations of 8 x 8 BWR fuel assembly are low up to 60 GWd/t

  14. Fuel burn-up distribution and transuranic nuclide contents produced at the first cycle operation of AP1000

    International Nuclear Information System (INIS)

    Jati Susilo; Jupiter Sitorus Pane

    2016-01-01

    AP1000 reactor core was designed with nominal power of 1154 MWe (3415 MWth), operated within life time of 60 years and cycle length of 18 months. For the first cycle, the AP1000 core uses three kinds of UO 2 enrichment, they are 2.35 w/o, 3.40 w/o and 4.45 w/o. Absorber materials such as ZrB 2 , Pyrex and Boron solution are used to compensate the excess reactivity at the beginning of cycle. In the core, U-235 fuels are burned by fission reaction and produce energy, fission products and new neutron. Because of the U-238 neutron absorption reaction, the high level radioactive waste of heavy nuclide transuranic such as Pu, Am, Cm and Np are also generated. They have a very long half life. The purpose of this study is to evaluate the result of fuel burn-up distribution and heavy nuclide transuranic contents produced by AP1000 at the end of first cycle operation (EOFC). Calculation of ¼ part of the AP1000 core in the 2 dimensional model has been done using SRAC2006 code with the module of COREBN/HIST. The input data called the table of macroscopic cross section, is calculated using module of PIJ. The result shows that the maximum fuel assembly (FA) burn-up is 27.04 GWD/MTU, that is still lower than allowed maximum burn-up of 62 GWD/MTU. Fuel loading position at the center/middle of the core will produce bigger burn-up and transuranic nuclide than one at the edges the of the core. The use of IFBA fuel just give a small effect to lessen the fuel burn-up and transuranic nuclide production. (author)

  15. Current applications of actinide-only burn-up credit within the Cogema group and R and D programme to take fission products into account

    International Nuclear Information System (INIS)

    Toubon, H.; Guillou, E.; Cousinou, P.; Barbry, F.; Grouiller, J.P.; Bignan, G.

    2001-01-01

    Burn-up credit can be defined as making allowance for absorbent radioactive isotopes in criticality studies, in order to optimise safety margins and avoid over-engineering of nuclear facilities. As far as the COGEMA Group is concerned, the three fields in which burn-up credit proves to be an advantage are the transport of spent fuel assemblies, their interim storage in spent fuel pools and reprocessing. In the case of transport, burn-up credit means that cask size do not need to be altered, despite an increase in the initial enrichment of the fuel assemblies. Burn-up credit also makes it possible to offer new cask designs with higher capacity. Burn-up credit means that fuel assemblies with a higher initial enrichment can be put into interim storage in existing facilities and opens the way to the possibility of more compact ones. As far as reprocessing is concerned, burn-up credit makes it possible to keep up current production rates, despite an increase in the initial enrichment of the fuel assemblies being reprocessed. In collaboration with the French Atomic Energy Commission and the Institute for Nuclear Safety and Protection, the COGEMA Group is participating in an extensive experimental programme and working to qualify criticality and fuel depletion computer codes. The research programme currently underway should mean that by 2003, allowance will be made for fission products in criticality safety analysis

  16. Current applications of actinide-only burn-up credit within the Cogema group and R and D programme to take fission products into account

    Energy Technology Data Exchange (ETDEWEB)

    Toubon, H. [Cogema, 78 - Saint Quentin en Yvelines (France); Guillou, E. [Cogema Etablissement de la Hague, D/SQ/SMT, 50 - Beaumont Hague (France); Cousinou, P. [CEA Fontenay aux Roses, Inst. de Protection et de Surete Nucleaire, 92 (France); Barbry, F. [CEA Valduc, Inst. de Protection et de Surete Nucleaire, 21 - Is sur Tille (France); Grouiller, J.P.; Bignan, G. [CEA Cadarache, 13 - Saint Paul lez Durance (France)

    2001-07-01

    Burn-up credit can be defined as making allowance for absorbent radioactive isotopes in criticality studies, in order to optimise safety margins and avoid over-engineering of nuclear facilities. As far as the COGEMA Group is concerned, the three fields in which burn-up credit proves to be an advantage are the transport of spent fuel assemblies, their interim storage in spent fuel pools and reprocessing. In the case of transport, burn-up credit means that cask size do not need to be altered, despite an increase in the initial enrichment of the fuel assemblies. Burn-up credit also makes it possible to offer new cask designs with higher capacity. Burn-up credit means that fuel assemblies with a higher initial enrichment can be put into interim storage in existing facilities and opens the way to the possibility of more compact ones. As far as reprocessing is concerned, burn-up credit makes it possible to keep up current production rates, despite an increase in the initial enrichment of the fuel assemblies being reprocessed. In collaboration with the French Atomic Energy Commission and the Institute for Nuclear Safety and Protection, the COGEMA Group is participating in an extensive experimental programme and working to qualify criticality and fuel depletion computer codes. The research programme currently underway should mean that by 2003, allowance will be made for fission products in criticality safety analysis.

  17. Burn up Theoretical Analysis of A Thorium Fuel Rod in Light Water Reactor

    International Nuclear Information System (INIS)

    Gaber, F.A.; Aziz, M.; Elsheikh, B.

    2008-01-01

    A computer model was designed to analyze the burn up and irradiation of both Th-Pu and Th-U fuel rod in a typical light water reactors conditions. MCNP computer model was designed to simulate the fuel rod burnup and evaluate neutron flux and group constants . A system of ordinary differential equations were solved numerically to evaluate the isotopic concentrations for both the two types of fuel using the previous calculated data from MCNP model. The results are analyzed and compared with published data where satisfactory agreement was found

  18. The CORSYS neutronics code system

    International Nuclear Information System (INIS)

    Caner, M.; Krumbein, A.D.; Saphier, D.; Shapira, M.

    1994-01-01

    The purpose of this work is to assemble a code package for LWR core physics including coupled neutronics, burnup and thermal hydraulics. The CORSYS system is built around the cell code WIMS (for group microscopic cross section calculations) and 3-dimension diffusion code CITATION (for burnup and fuel management). We are implementing such a system on an IBM RS-6000 workstation. The code was rested with a simplified model of the Zion Unit 2 PWR. (authors). 6 refs., 8 figs., 1 tabs

  19. Fast-ion diffusion measurements from radial triton burn up studies

    International Nuclear Information System (INIS)

    McCauley, J.S.; Budny, R.; McCune, D.; Strachan, J.D.

    1993-08-01

    A fast-ion diffusion coefficient of 0.1 ± 0.1 m 2 s -1 has been deduced from the triton burnup neutron emission profile measured by a collimated array of helium-4 spectrometers. The experiment was performed with high-power deuterium discharges produced by Princeton University's Tokamak Fusion Test Reactor (TFTR). The fast ions monitored were the 1.0 MeV tritons produced from the d(d,t)p. These tritons ''burn up'' with deuterons and emit a 14 MeV neutron by the d(t,α)n reaction. The ratio of the measured to calculated DT yield is typically 70%. The measured DT profile width is comparable to that predicted by the TRANSP transport code during neutral beam heating and narrower after the beam heating ended

  20. Burn-up analysis of uranium silicide fuels 20% 235U, in the LFR facility

    International Nuclear Information System (INIS)

    Amor, Ricardo A.; Bouza, Edgardo; Cabrejas, Julian L.; Devida, Claudio A.; Gil, Daniel A.; Stankevicius, Alejandro; Gautier, Eduardo; Garavaglia, Ricardo N.; Lobo, Alfredo

    2003-01-01

    The LFR Facility is a laboratory designed and constructed with a Hot-Cells line, a Globe-Box and a Fume-Hood, all of them suited to work with radioactive materials such as samples of irradiated silicide MTR fuel elements. A series of dissolutions of this material was performed. From the resulting solutions, two fractions were separated by HPLC. One contained U + Pu, and other the fission product Nd. The concentrations of these elements were obtained by isotopic dilution and mass spectrometry (IDMS). It is concluded that this technique is very powerful and accurate when properly applied, and makes the validation of burn-up calculation codes possible. It is worth remarking the Lfr capacity to carry on different Research and Development (R + D) tasks in the Nuclear Fuel Cycle field. (author)

  1. The DACC system. Code burnup of cell for projection of the fuel elements in the power net work PWR and BWR

    International Nuclear Information System (INIS)

    Cepraga, D.; Boeriu, St.; Gheorghiu, E.; Cristian, I.; Patrulescu, I.; Cimporescu, D.; Ciuvica, P.; Velciu, E.

    1975-01-01

    The calculation system DACC-5 is a zero-dimensional reactor physics code used to calculate the criticality and burn-up of light-water reactors. The code requires as input essential extensive reactor parameters (fuel rod radius, water density, etc.). The nuclear constants (intensive parameters) are calculated with a five-group model (2 thermal and 3 fast groups). A fitting procedure is systematically employed to reduce the computation time of the code. Zero-dimensional burn-up calculations are made in an automatic way. Part one of the paper contains the code physical model and computer structure. Part two of the paper will contain tests of DACC-5 credibility for different light-water power lattices

  2. Test of calorimetry for high burn-up plutonium

    International Nuclear Information System (INIS)

    Beets, C.; Carchon, R.; Fettweis, P.

    1984-01-01

    In recent times, the interest of applying calorimetry for safeguards purpose is steadily increasing. Calorimetric measurements have been performed on a set of high burn-up (25000 MWd/t) Pu samples, ranging in mass between 60 g and 2.5 kg Pu, distributed as PuO 2 powder embedded in stainless steel containers. The powers produced by these containers ranged between 0.8 W and 36 W. The calorimeter used was the Mound 150 type, and the isotopics and the Am content have been determined earlier by mass spectroscopy, completed with α and γ counting, and were later verified by the same methods. Watts/gram measurements were made on twelve 60 g samples of the same plutonium lot to demonstrate the Pu elemental and isotopic homogeneity, and hence, its suitability for subsequent NDA experiments. These samples were also measured in a stacked way to fill up the mass and wattage gaps between 60 g (0.8W) and 1 kg (14W). Calorimetric assay values, obtained with both isotopic measurements are discussed

  3. Oxygen stoichiometry shift of irradiated LWR-fuels at high burn-ups: Review of data and alternative interpretation of recently published results

    International Nuclear Information System (INIS)

    Spino, J.; Peerani, P.

    2008-01-01

    The available oxygen potential data of LWR-fuels by the EFM-method have been reviewed and compared with thermodynamic data of equivalent simulated fuels and mixed oxide systems, combined with the analysis of lattice parameter data. Up to burn-ups of 70-80 GWd/tM the comparison confirmed traditional predictions anticipating the fuels to remain quasi stoichiometric along irradiation. However, recent predictions of a fuel with average burn-up around 100 GWd/tM becoming definitely hypostoichiometric were not confirmed. At average burn-ups around 80 GWd/tM and above, it is shown that the fuels tend to acquire progressively slightly hyperstoichiometric O/M ratios. The maximum derived O/M ratio for an average burn-up of 100 GWd/tM lies around 2.001 and 2.002. Though slight, the stoichiometry shift may have a measurable accelerating impact on fission gas diffusion and release

  4. Fundamental burn-up mode in a pebble-bed type reactor

    International Nuclear Information System (INIS)

    Chen, Xue-Nong; Kiefhaber, Edgar; Maschek, Werner

    2008-01-01

    This paper deals with a pebble-bed type reactor, in which the fuel is loaded from one side (top) and discharged from the other side (bottom). A boundary value problem of a single group diffusion equation coupled with simplified burn-up equations is studied, where the natural radioactive decay processes are neglected in the burn-up modelling. An asymptotic burning wave solution is found analytically in the one-dimensional case, which is called as fundamental burn-up mode. Among this solution family there are two particular cases, namely, a classic fundamental solution with a zero burn-up and a partial solitary burn-up wave solution with a highest burn-up. An example of Th-U conversion is considered and the solutions are presented in order to show the mechanism of the burning wave. (author)

  5. Burn-up calculation of fusion-fission hybrid reactor using thorium cycle

    International Nuclear Information System (INIS)

    Shido, S.; Matsunaka, M.; Kondo, K.; Murata, I.; Yamamoto, Y.

    2006-01-01

    A burn-up calculation system has been developed to estimate performance of blanket in a fusion-fission hybrid reactor which is a fusion reactor with a blanket region containing nuclear fuel. In this system, neutron flux is calculated by MCNP4B and then burn-up calculation is performed by ORIGEN2. The cross-section library for ORIGEN2 is made from the calculated neutron flux and evaluated nuclear data. The 3-dimensional ITER model was used as a base fusion reactor. The nuclear fuel (reprocessed plutonium as the fission materials mixed with thorium as the fertile materials), transmutation materials (minor actinides and long-lived fission products) and tritium breeder were loaded into the blanket. Performances of gas-cooled and water-cooled blankets were compared with each other. As a result, the proposed reactor can meet the requirement for TBP and power density. As far as nuclear waste incineration is concerned, the gas-cooled blanket has advantages. On the other hand, the water cooled-blanket is suited to energy production. (author)

  6. Comparison of measured and calculated burn-up of AVR-Fuel-Elements

    Energy Technology Data Exchange (ETDEWEB)

    Wagemann, R.

    1974-03-15

    Burn-up comparisons are made for small batches of three types of AVR fuel elements using a coupled EREBUS-MUPO neutronic analysis compared against test results from both nondestructive gamma-ray measurements of cesium-137 activity and destructive mass spectrometry measurements of the ratio of U-233 to U-235. The comparisons are relatively good for average burn-up and reasonably good for burn-up distributions.

  7. Effect of local burn-up variation on computed mean nuclide concentrations

    International Nuclear Information System (INIS)

    Moeller, W.

    1982-01-01

    Mean concentrations of U-235, U-236, U-238, Pu-239, Pu-240, Pu-241 and Pu-242 in some volume areas of WWER-440 fuel assemblies have been calculated from corresponding burn-up microdistribution data and compared with those calculated from burn-up mean values. Differences occurring were below 3% for the uranium nuclides but, at low burn-ups, considerable for Pu-241 and Pu-242. (author)

  8. Elements of algebraic coding systems

    CERN Document Server

    Cardoso da Rocha, Jr, Valdemar

    2014-01-01

    Elements of Algebraic Coding Systems is an introductory text to algebraic coding theory. In the first chapter, you'll gain inside knowledge of coding fundamentals, which is essential for a deeper understanding of state-of-the-art coding systems. This book is a quick reference for those who are unfamiliar with this topic, as well as for use with specific applications such as cryptography and communication. Linear error-correcting block codes through elementary principles span eleven chapters of the text. Cyclic codes, some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography are discussed, including problems and solutions at the end of each chapter. Three appendices cover the Gilbert bound and some related derivations, a derivation of the Mac- Williams' identities based on the probability of undetected error, and two important tools for algebraic decoding-namely, the finite field Fourier transform and the Euclidean algorithm f...

  9. Burn-up measurements of spent fuel using gamma spectrometry technique

    International Nuclear Information System (INIS)

    Pereda, C.; Henriquez, C.; Klein, J.; Medel, J.

    2005-01-01

    Burn-up results obtained for HEU (45% of 235 U) fuel assemblies of the RECH-1 Research Reactor using gamma spectrometry technique are presented. The spectra were got from an in-pool facility built in the reactor to be mainly used to measure the burnup of irradiated fuel assemblies with short cooling time, where 95 Zr is being evaluated as possible fission monitor. A program to measure all spent fuel assemblies of the RECH-1 reactor was initiated in the frame of the Regional Project RLA/4/018: 'Management of Spent Fuel from Research Reactors'. The results presented here were obtained from HEU spent fuel assemblies with cooling time greater than 100 days and 137 Cs was used as fission monitor. The efficiency of the in-pool system was determined using a slightly burnt experimental fuel assembly, which has one fuel plate (one of the outer plates) and the rest are dummy plates. An average burn-up of 2.8% of 235 U was previously measured for the experimental fuel assembly utilizing a facility installed in a hot cell and 137 Cs was used as monitor. (author)

  10. The estimation of the control rods absorber burn-up during the VVER-1000 operation

    Energy Technology Data Exchange (ETDEWEB)

    Bolshagin, Sergey N.; Gorodkov, Sergey S.; Sukhino-Khomenko, Evgeniya A. [National Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2013-09-15

    The isotopic composition of the control rods absorber changes under the neutron flux influence, so the control rods efficiency can decrease. In the VVER-1000 control rods boron carbide and dysprosium titanate are used as absorbing materials. In boric part the efficiency decreases due to the {sup 10}B isotope burn-up. Dysprosium isotopes turn into other absorbing isotopes, so the absorbing properties of dysprosium part decrease to a lesser degree. Also the control rod's shells may be deformed as a consequence of boron carbide radiation swelling. This fact should be considered in substantiation of control rods durability. For the estimation of the control rods absorber burn-up two models are developed: VVER-1000 3-D fuel assembly with control rods partially immersed (imitation of the control rods operation in the working group) and VVER-1000 3-D fuel assembly with control rods, located at the upper limit switch (imitation of the control rods operation in groups of the emergency shutdown system). (orig.)

  11. SCALE Code System

    Energy Technology Data Exchange (ETDEWEB)

    Jessee, Matthew Anderson [ORNL

    2016-04-01

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.SCALE 6.2 provides many new capabilities and significant improvements of existing features.New capabilities include:• ENDF/B-VII.1 nuclear data libraries CE and MG with enhanced group structures,• Neutron covariance data based on ENDF/B-VII.1 and supplemented with ORNL data,• Covariance data for fission product yields and decay constants,• Stochastic uncertainty and correlation quantification for any SCALE sequence with Sampler,• Parallel calculations with KENO,• Problem-dependent temperature corrections for CE calculations,• CE shielding and criticality accident alarm system analysis with MAVRIC,• CE

  12. System Based Code: Principal Concept

    International Nuclear Information System (INIS)

    Yasuhide Asada; Masanori Tashimo; Masahiro Ueta

    2002-01-01

    This paper introduces a concept of the 'System Based Code' which has initially been proposed by the authors intending to give nuclear industry a leap of progress in the system reliability, performance improvement, and cost reduction. The concept of the System Based Code intends to give a theoretical procedure to optimize the reliability of the system by administrating every related engineering requirement throughout the life of the system from design to decommissioning. (authors)

  13. Determination of the burn-up of TRIGA fuel elements by calculation with new TRIGLAV program

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.

    1996-01-01

    The results of fuel element burn-up calculations with new TRIGLAV program are presented. TRIGLAV program uses two dimensional model. Results of calculation are compared to results calculated with program, which uses one dimensional model. The results of fuel element burn-up measurements with reactivity method are presented and compared with the calculated results. (author)

  14. Determination of nuclear fuel burn-up using mass spectrometric techniques

    International Nuclear Information System (INIS)

    Saha, B.; Bagyalakshmi, R.; Periaswami, G.; Kavimandan, V.D.; Chitambar, S.A.; Jain, H.C.; Mathews, C.K.

    1977-01-01

    Determination of burn-up using a stable fission product monitor such as 148 Nd and heavy elements, determined by isotope dilution mass spectrometry gives the most accurate data. This report describes the work carried out to standardise the conditions for burn-up determination. Some typical results are given. (author)

  15. Determination of burn-up of irradiated nuclear fuels using mass spectrometry

    International Nuclear Information System (INIS)

    Jagadish Kumar, S.; Telmore, V.M.; Shah, R.V.; Sasi Bhushan, K.; Paul, Sumana; Kumar, Pranaw; Rao, Radhika M.; Jaison, P.G.

    2017-01-01

    Burn-up defined as the atom percent fission, is a vital parameter used for assessing the performance of nuclear fuel during its irradiation in the reactor. Accurate data on the actinide isotopes are also essential for the reliable accountability of nuclear materials and for nuclear safeguards. Both destructive and non-destructive methods are employed in the post-irradiation analysis for the burn-up measurements. Though non-destructive methods are preferred from the point view of remote handling of irradiated fuels with high radioactivity, they do not provide the high accuracy as achieved by the chemical analysis methods. Thus destructive radiochemical and chemical analyses are still the established reference methods for accurate and reliable burn-up determination of irradiated nuclear fuels. In the destructive method, burn-up of irradiated nuclear fuel is determined by correlating the amount of a fission product formed during irradiation with that of heavy elements. Thus the destructive experimental determination of burn-up involves the dissolution of irradiated fuel samples followed by the separation and determination of heavy elements and fission product(s) to be used as burn-up monitor(s). Another approach for the experimental determination of burn-up is based on the changes in the abundances of the heavy element isotopes. A widely accepted method for burn-up determination is based on stable "1"4"8Nd and "1"3"9La as burn-up monitors. Several properties such as non-volatility, nearly same yields for thermal fissions of "2"3"5U and "2"3"9Pu etc justifies the selection of "1"4"8Nd as a burn-up monitor

  16. LWR high burn-up operation and MOX introduction. Fuel cycle performance from the viewpoint of waste management

    International Nuclear Information System (INIS)

    Inagaki, Yaohiro; Iwasaki, Tomohiko; Niibori, Yuichi; Sato, Seichi; Ohe, Toshiaki; Kato, Kazuyuki; Torikai, Seishi; Nagasaki, Shinya; Kitayama, Kazumi

    2009-01-01

    From the viewpoint of waste management, a quantitative evaluation of LWR nuclear fuel cycle system performance was carried out, considering both higher burn-up operation of UO 2 fuel coupled with the introduction of MOX fuel. A major parameter to quantify this performance is the number of high-level waste (HLW) glass units generated per GWd (gigawatt-day based on reactor thermal power generation before electrical conversion). This parameter was evaluated for each system up to a maximum burn-up of 70GWd/THM (gigawatt-day per ton of heavy metal) assuming current conventional reprocessing and vitrification conditions where the waste loading of glass is restricted by the heat generation rate, the MoO 3 content, or the noble metal content. The results showed that higher burn-up operation has no significant influence on the number of glass units generated per GWd for UO 2 fuel, though the number of glass units per THM increases linearly with burn-up and is restricted by the heat generation rate. On the other hand, the introduction of MOX fuel causes the number of glass units per GWd to double owing to the increase in the heat generation rate. An extended cooling period of the spent fuel prior to reprocessing effectively reduces the heat generation rate for UO 2 fuel, while a separation of minor actinides (Np, Am, and Cm) from the high-level waste provides additional reduction for MOX fuel. However, neither of these leads to a substantial reduction in the number of glass units, since the MoO 3 content or the noble metal content restricts the number of glass units rather than the heat generation rate. These results suggest that both the MoO 3 content and the noble metal content provide the key to reducing the amount of waste glass that is generated, leading to an overall improvement in fuel cycle system performance. (author)

  17. ESCADRE and ICARE code systems

    International Nuclear Information System (INIS)

    Reocreux, M.; Gauvain, J.

    1992-01-01

    The French sever accident code development program is following two parallel approaches: the first one is dealing with ''integral codes'' which are designed for giving immediate engineer answers, the second one is following a more mechanistic way in order to have the capability of detailed analysis of experiments, in order to get a better understanding of the scaling problem and reach a better confidence in plant calculations. In the first approach a complete system has been developed and is being used for practical cases: this is the ESCADRE system. In the second approach, a set of codes dealing first with primary circuit is being developed: a mechanistic core degradation code, ICARE, has been issued and is being coupled with the advanced thermalhydraulic code CATHARE. Fission product codes have been also coupled to CATHARE. The ''integral'' ESCADRE system and the mechanistic ICARE and associated codes are described. Their main characteristics are reviewed and the status of their development and assessment given. Future studies are finally discussed. 36 refs, 4 figs, 1 tab

  18. SPECTRAL AMPLITUDE CODING OCDMA SYSTEMS USING ENHANCED DOUBLE WEIGHT CODE

    Directory of Open Access Journals (Sweden)

    F.N. HASOON

    2006-12-01

    Full Text Available A new code structure for spectral amplitude coding optical code division multiple access systems based on double weight (DW code families is proposed. The DW has a fixed weight of two. Enhanced double-weight (EDW code is another variation of a DW code family that can has a variable weight greater than one. The EDW code possesses ideal cross-correlation properties and exists for every natural number n. A much better performance can be provided by using the EDW code compared to the existing code such as Hadamard and Modified Frequency-Hopping (MFH codes. It has been observed that theoretical analysis and simulation for EDW is much better performance compared to Hadamard and Modified Frequency-Hopping (MFH codes.

  19. Application of reactivity method to MTR fuel burn-up measurement

    International Nuclear Information System (INIS)

    Zuniga, A.; Ravnik, M.; Cuya, R.

    2001-01-01

    Fuel element burn-up has been measured for the first time by reactivity method in a MTR reactor. The measurement was performed in RP-10 reactor of Peruvian Institute for Nuclear Energy (IPEN) in Lima. It is a pool type 10MW material testing reactor using standard 20% enriched uranium plate type fuel elements. A fresh element and an element with well defined burn-up were selected as reference elements. Several elements in the core were selected for burn-up measurement. Each of them was replaced in its original position by both reference elements. Change in excess reactivity was measured using control rod calibration curve. The burn-up reactivity worth of fuel elements was plotted as a function of their calculated burnup. Corrected burn-up values of the measured fuel elements were calculated using the fitting function at experimental reactivity for all elements. Good agreement between measured and calculated burn-up values was observed indicating that the reactivity method can be successfully applied also to MTR fuel element burn-up determination.(author)

  20. ETR/ITER systems code

    Energy Technology Data Exchange (ETDEWEB)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L. (ed.)

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  1. ETR/ITER systems code

    International Nuclear Information System (INIS)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs

  2. Criterion for burn-up conditions in gas-cooled cryogenic current leads

    International Nuclear Information System (INIS)

    Bejan, A.; Cluss, E.M. Jr.

    1976-01-01

    Superconducting magnets are energized through helium vapour-cooled cryogenic current leads operating at high ratios of current to mass flow. The high current operation where lead temperature, runaway, and eventual burn-up are likely to occur is investigated. A simple criterion for estimating the burn-up operation conditions (current, mass flow) for a given lead geometry (cross-sectional area, length, heat exchanger area) is presented. This article stresses the role played by the available heat exchanger area in avoiding burn-up at high ratios of current to mass flow. (author)

  3. SASSYS LMFBR systems analysis code

    International Nuclear Information System (INIS)

    Dunn, F.E.; Prohammer, F.G.

    1982-01-01

    The SASSYS code provides detailed steady-state and transient thermal-hydraulic analyses of the reactor core, inlet and outlet coolant plenums, primary and intermediate heat-removal systems, steam generators, and emergency shut-down heat removal systems in liquid-metal-cooled fast-breeder reactors (LMFBRs). The main purpose of the code is to analyze the consequences of failures in the shut-down heat-removal system and to determine whether this system can perform its mission adequately even with some of its components inoperable. The code is not plant-specific. It is intended for use with any LMFBR, using either a loop or a pool design, a once-through steam generator or an evaporator-superheater combination, and either a homogeneous core or a heterogeneous core with internal-blanket assemblies

  4. Calculation of heat rating and burn-up for test fuel pins irradiated in DR 3

    International Nuclear Information System (INIS)

    Bagger, C.; Carlsen, H.; Hansen, K.

    1980-01-01

    A summary of the DR 3 reactor and HP1 rig design is given followed by a detailed description of the calculation procedure for obtaining linear heat rating and burn-up values of fuel pins irradiated in HP1 rigs. The calculations are carried out rather detailed, especially regarding features like end pellet contribution to power as a function of burn-up, gamma heat contributions, and evaluation of local values of heat rating and burn-up. Included in the report is also a description of the fast flux- and cladding temperature calculation techniques currently used. A good agreement between measured and calculated local burn-up values is found. This gives confidence to the detailed treatment of the data. (author)

  5. Experimental studies of spent fuel burn-up in WWR-SM reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alikulov, Sh. A.; Baytelesov, S.A.; Boltaboev, A.F.; Kungurov, F.R. [Institute of Nuclear Physics, Ulughbek township, 100214, Tashkent (Uzbekistan); Menlove, H.O.; O’Connor, W. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Osmanov, B.S., E-mail: bari_osmanov@yahoo.com [Research Institute of Applied Physics, Vuzgorodok, 100174 Tashkent (Uzbekistan); Salikhbaev, U.S. [Institute of Nuclear Physics, Ulughbek township, 100214, Tashkent (Uzbekistan)

    2014-10-01

    Highlights: • Uranium burn-up measurement from {sup 137}Cs activity in spent reactor fuel. • Comparison to reference sample with known burn-up value (ratio method). • Cross-check of the approach with neutron-based measurement technique. - Abstract: The article reports the results of {sup 235}U burn-up measurements using {sup 137}Cs activity technique for 12 nuclear fuel assemblies of WWR-SM research reactor after 3-year cooling time. The discrepancy between the measured and the calculated burn-up values was about 3%. To increase the reliability of the data and for cross-check purposes, neutron measurement approach was also used. Average discrepancy between two methods was around 12%.

  6. The build-up and characterization of nuclear burn-up wave in a fast ...

    Indian Academy of Sciences (India)

    K V Anoop

    2018-02-07

    Feb 7, 2018 ... evaluating the quality of the wave by the researchers working in the field of nuclear burn-up wave build-up and propagation. Keywords. ... However, there are concerns relating to the nuclear safety, ... Simulation studies have.

  7. The cluster burn up programme CCC and a comparison of its results with NPD experiments

    International Nuclear Information System (INIS)

    Hoejerup, C.F.

    1976-10-01

    A brief description is given of the computer programme CCC, which can be used for rod/rod cluster burn up calculations. A comparison of CCC results with some Canadian measurements on NPD fuel is also included. (author)

  8. Review of high burn-up RIA and LOCA database and criteria

    International Nuclear Information System (INIS)

    Vitanza, C.; Hrehor, M.

    2006-01-01

    This document is intended to provide regulators, their technical support organizations and industry with a concise review of existing fuel experimental data at RIA and LOCA conditions and considerations on how these data affect fuel safety criteria at increasing burn-up. It mostly addresses experimental results relevant to BWR and PWR fuel and it encompasses several contributions from the various experts that participated in the CSNI SEGFSM activities. It also covers the information presented at the joint CSNI/CNRA Topical Discussion on high burn-up fuel issues that took place on this subject in December 2004. The report is organized in the following way: the CABRI RIA database (14 tests), the NSRR database (26 tests) and other databases, RIA failure thresholds, comparison of failure thresholds for the HZP case, LOCA database ductility tests and quench tests, LOCA safety limit, provisional burn-up dependent criterion for Zr-4. The conclusions are as follows. On RIA, there is a well-established testing method and a significant and relatively consistent database from NSRR and Cabri tests, especially on high burn-up Zr-2 and Zr-4 cladding. It is encouraging that several correlations have been proposed for the RIA fuel failure threshold. Their predictions are compared and discussed in this paper for a representative PWR case. On LOCA, there are two different test methods, one based on ductility determinations and the other based on 'integral' quench tests. The LOCA database at high burn-up is limited to both testing methods. Ductility tests carried out with pre-hydrided non-irradiated cladding show a pronounced hydrogen effect. Data for actual high burn-up specimens are being gathered in various laboratories and will form the basis for a burn-up dependent LOCA limit. A provisional burn-up dependent criterion is discussed in the paper

  9. Interrelations of codes in human semiotic systems.

    OpenAIRE

    Somov, Georgij

    2016-01-01

    Codes can be viewed as mechanisms that enable relations of signs and their components, i.e., semiosis is actualized. The combinations of these relations produce new relations as new codes are building over other codes. Structures appear in the mechanisms of codes. Hence, codes can be described as transformations of structures from some material systems into others. Structures belong to different carriers, but exist in codes in their "pure" form. Building of codes over other codes fosters t...

  10. Numerical solution of matrix exponential in burn-up equation using mini-max polynomial approximation

    International Nuclear Information System (INIS)

    Kawamoto, Yosuke; Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi

    2015-01-01

    Highlights: • We propose a new numerical solution of matrix exponential in burn-up depletion calculations. • The depletion calculation with extremely short half-lived nuclides can be done numerically stable with this method. • The computational time is shorter than the other conventional methods. - Abstract: Nuclear fuel burn-up depletion calculations are essential to compute the nuclear fuel composition transition. In the burn-up calculations, the matrix exponential method has been widely used. In the present paper, we propose a new numerical solution of the matrix exponential, a Mini-Max Polynomial Approximation (MMPA) method. This method is numerically stable for burn-up matrices with extremely short half-lived nuclides as the Chebyshev Rational Approximation Method (CRAM), and it has several advantages over CRAM. We also propose a multi-step calculation, a computational time reduction scheme of the MMPA method, which can perform simultaneously burn-up calculations with several time periods. The applicability of these methods has been theoretically and numerically proved for general burn-up matrices. The numerical verification has been performed, and it has been shown that these methods have high precision equivalent to CRAM

  11. MTR fuel element burn-up measurements by the reactivity method

    International Nuclear Information System (INIS)

    Zuniga, A.; Cuya, T.R.; Ravnik, M.

    2003-01-01

    Fuel element burn-up was measured by the reactivity method in the 10 MW Peruvian MTR reactor RP-10. The main purpose of the experiment was testing the reactivity method for an MTR reactor as the reactivity method was originally developed for TRIGA reactors. The reactivity worth of each measured fuel element was measured in its original core position in order to measure the burn-up of the fuel elements that were part of the experimental core. The burn-up of each measured fuel element was derived by interpolating its reactivity worth from the reactivity worth of two reference fuel elements of known burn-up, whose reactivity worth was measured in the position of the measured fuel element. The accuracy of the method was improved by separating the reactivity effect of burn-up from the effect of the position in the core. The results of the experiment showed that the modified reactivity method for fuel element burn-up determination could be applied also to MTR reactors. (orig.)

  12. System Design Description for the TMAD Code

    International Nuclear Information System (INIS)

    Finfrock, S.H.

    1995-01-01

    This document serves as the System Design Description (SDD) for the TMAD Code System, which includes the TMAD code and the LIBMAKR code. The SDD provides a detailed description of the theory behind the code, and the implementation of that theory. It is essential for anyone who is attempting to review or modify the code or who otherwise needs to understand the internal workings of the code. In addition, this document includes, in Appendix A, the System Requirements Specification for the TMAD System

  13. Verification to the RSG-GAS fuel discharge burn-up using SRAC2006 module of COREBN/HIST

    International Nuclear Information System (INIS)

    J-Susilo; T-M-Sembiring; G-R-Sunaryo; M-Imron

    2018-01-01

    For 30 years operation, some of the modifications to the RSG GAS core has been done, that are changes included the type of fuel from U 3 O 8 -Al to U 3 Si 2 -Al with the same density 2.96 gU/cc, the loading pattern of standard fuel elements/fuel control elements from 6/1 & 6/2 to 5/1 pattern, and in core fuel management calculation tool has been change from IAFUEL to BATAN-FUEL. To obtain an extension of the operating license for the next 10 years, the RSG-GAS Periodic Safety Assessment Document is need to prepared. According to the Regulatory Body Chairman Regulation No. 2 2015, RSG-GAS safety assessment should be done independently. As part of this assessment the fuel discharge burn-up must be estimated. In this research, to ensure that the misposition of fuel element in the core has not occurred, the investigation to the document operating report related the fuel placement has been done. Therefore, by using 78 th to 93 rd operation data, verify of the fuel discharge burn-up of the RSG-GAS has been performed by using SRAC2006 module of COREBN/HIST. In addition, the results of these calculations are also made comparative with the operating report data that is calculated by using BATAN-FUEL. Maximum fuel discharge burn-up (57.73 % of U-235) was verified still under permissible value determined by the regulatory body (<60 % of U-235). Maximum differences value between two computer codes was about 2.12 % of U-235 (3.80 %) that is fuel at the B-7 position. Fuel discharge burn-up of RSG-GAS showed almost the same value for each the operation cycle, range of 1.52 % of U-235. So it can be concluded that the RSG-GAS core operation over the last ten years was in good fuel management performance, in accordance with the design. BATAN-FUEL has been conformed well enough with COREBN/HIST. (author)

  14. The burn-up credit physics and the 40. Minerve anniversary; La physique du credit Burn-Up et le 40. anniversaire de Minerve

    Energy Technology Data Exchange (ETDEWEB)

    Santamarina, A [CEA/Cadarache, Departement d' Etudes des Reacteurs, DER/SPRC, 13 - Saint-Paul-lez-Durance (France); Toubon, H [Cogema, 78 - Velizy Villacoublay (France); Trakas, C [FRAMATOME, 92 - Paris La Defense (France); and others

    2000-03-21

    The technical meeting organized by the SFEN on the burn-up credit (CBU) physics, took place the 23 november 1999 at Cadarache. the first presentation dealt with the economic interest and the neutronic problems of the CBU. Then two papers presented how taking into account the CBU in the industry in matter of transport, storage in pool, reprocessing and criticality calculation (MCNP4/Apollo2-F benchmark). An experimental method for the reactivity measurement through oscillations in the Minerve reactor, has been presented with an analysis of the possible errors. The future research program OSMOSE, taking into account the minor actinides in the CBU, was also developed. The last paper presented the national and international research programs in the CBU domain, in particular experiments realized in CEA/Valduc and the OECD Burn-up Criticality Benchmark Group activities. (A.L.B.)

  15. High-burn-up fuels for fast reactors. Past experience and novel applications

    International Nuclear Information System (INIS)

    Weaver, Kevan D.; Gilleland, John; Whitmer, Charles; Zimmerman, George

    2009-01-01

    Fast reactors in the U.S. routinely achieved fuel burn-ups of 10%, with some fuel able to reach peak burn-ups of 20%, notably in the Experimental Breeder Reactor II and the Fast Flux Test Facility. Maximum burn-up has historically been constrained by chemical and mechanical interactions between the fuel and its cladding, and to some extent by radiation damage and thermal effects (e.g., radiation-induced creep, thermal creep, and radiation embrittlement) that cause the cladding to weaken. Although fast reactors have used several kinds of fuel - including oxide, metal alloy, carbide, and nitride - the vast majority of experience with fast reactors has been using oxide (including mixed oxide) and metal-alloy fuels based on uranium. Our understanding of high-burn-up operation is also limited by the fact that breeder reactor programs have historically assumed that their fuel would eventually undergo reprocessing; the programs thus have not made high burn-up a top priority. Recently a set of novel designs have emerged for fast reactors that require little initial enrichment and no reprocessing. These reactors exploit a concept known as a traveling wave (sometimes referred to as a breed-and-burn wave, fission wave, or nuclear-burning wave). By breeding and using its own fuel in place as it operates, a traveling-wave reactor can obtain burn-ups that approach 50%, well beyond the current base of knowledge and experience. Our computational work on the physics of traveling-wave reactors shows that they require metal-alloy fuel to provide the margins of reactivity necessary to sustain a breed-and-burn wave. This paper reviews operating experience with high-burn-up fuels and the technical feasibility of moving to a qualitatively new burn-up regime. We discuss our calculations on traveling-wave reactors, including those concerning the possible use of thorium. The challenges associated with high burn-up and fluence in fuels and materials are also discussed. (author)

  16. Use of system code to estimate equilibrium tritium inventory in fusion DT machines, such as ARIES-AT and components testing facilities

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Merrill, B.

    2014-01-01

    Highlights: • With the use of a system code, tritium burn-up fraction (f burn ) can be determined. • Initial tritium inventory for steady state DT machines can be estimated. • f burn of ARIES-AT, CFETR and FNSF-AT are in the range of 1–2.8%. • Respective total tritium inventories of are 7.6 kg, 6.1 kg, and 5.2 kg. - Abstract: ITER is under construction and will begin operation in 2020. This is the first 500 MW fusion class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a system code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1–2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively

  17. Use of system code to estimate equilibrium tritium inventory in fusion DT machines, such as ARIES-AT and components testing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C., E-mail: wongc@fusion.gat.com [General Atomics, San Diego, CA (United States); Merrill, B. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2014-10-15

    Highlights: • With the use of a system code, tritium burn-up fraction (f{sub burn}) can be determined. • Initial tritium inventory for steady state DT machines can be estimated. • f{sub burn} of ARIES-AT, CFETR and FNSF-AT are in the range of 1–2.8%. • Respective total tritium inventories of are 7.6 kg, 6.1 kg, and 5.2 kg. - Abstract: ITER is under construction and will begin operation in 2020. This is the first 500 MW{sub fusion} class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a system code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1–2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively.

  18. Computer access security code system

    Science.gov (United States)

    Collins, Earl R., Jr. (Inventor)

    1990-01-01

    A security code system for controlling access to computer and computer-controlled entry situations comprises a plurality of subsets of alpha-numeric characters disposed in random order in matrices of at least two dimensions forming theoretical rectangles, cubes, etc., such that when access is desired, at least one pair of previously unused character subsets not found in the same row or column of the matrix is chosen at random and transmitted by the computer. The proper response to gain access is transmittal of subsets which complete the rectangle, and/or a parallelepiped whose opposite corners were defined by first groups of code. Once used, subsets are not used again to absolutely defeat unauthorized access by eavesdropping, and the like.

  19. Burn-Up Determination by High Resolution Gamma Spectrometry: Fission Product Migration Studies

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R S; Blackadder, W H; Ronqvist, N

    1967-04-15

    The migration of solid fission products, in particular caesium and ruthenium, in high temperature oxide fuel can create a severe problem during the application of non-destructive burn-up methods employing gamma spectrometry, since caesium-137 is otherwise the most convenient long-lived burn-up monitor and ruthenium-106 can be used to distinguish between fissions in U-235 and Pu-239. As part of an experimental programme to develop burn-up methods, gamma scanning experiments have been performed on slices of irradiated UO{sub 2} pellets using a lithium-drifted germanium detector. The usefulness of the technique for migration studies has been demonstrated by comparing the fission product distribution curves across the specimen diameters with the microstructure of the specimens after polishing and etching.

  20. Development of high performance liquid chromatography for rapid determination of burn-up of nuclear fuels

    International Nuclear Information System (INIS)

    Joseph, M.; Karunasagar, D.; Saha, B.

    1996-01-01

    Burn-up an important parameter during evaluation of the performance of any nuclear fuel. Among the various techniques available, the preferred one for its determination is based on accurate measurement of a suitable fission product monitor and the residual heavy elements. Since isotopes of rare earth elements are generally used as burn-up monitors, conditions were standardized for rapid separation (within 15 minutes) of light rare earths using high performance liquid chromatography based on either anion exchange (Partisil 10 SAX) in methanol-nitric acid medium or by cation exchange on a reverse phase column (Spherisorb 5-ODS-2 or Supelcosil LC-18) dynamically modified with 1-octane sulfonate or camphor-10-sulfonic acid (β). Both these methods were assessed for separation of individual fission product rare earths from their mixtures. A new approach has been examined in detail for rapid assay of neodymium, which appears promising for faster and accurate measurement of burn-up. (author)

  1. Burn-up credit applications for UO2 and MOX fuel assemblies in AREVA/COGEMA

    International Nuclear Information System (INIS)

    Toubon, H.; Riffard, C.; Batifol, M.; Pelletier, S.

    2003-01-01

    For the last seven years, AREVA/COGEMA has been implementing the second phase of its burn-up credit program (the incorporation of fission products). Since the early nineties, major actinides have been taken into account in criticality analyses first for reprocessing applications, then for transport and storage of fuel assemblies Next year (2004) COGEMA will take into account the six main fission products (Rh103, Cs133, Nd143, Sm149, Sm152 and Gd155) that make up 50% of the anti-reactivity of all fission products. The experimental program will soon be finished. The new burn-up credit methodology is in progress. After a brief overview of BUC R and D program and COGEMA's application of the BUC, this paper will focus on the new burn-up measurement for UO2 and MOX fuel assemblies. It details the measurement instrumentation and the measurement experiments on MOX fuels performed at La Hague in January 2003. (author)

  2. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    International Nuclear Information System (INIS)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L.; Saito, M.

    2003-01-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, 237 Np, 238 Pu, 231 Pa, 232 U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations

  3. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L. [Moscow Engineering Physics Institute (State University) (Russian Federation); Saito, M. [Tokyo Institute of Technology (Japan)

    2003-07-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, {sup 237}Np, {sup 238}Pu, {sup 231}Pa, {sup 232}U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations.

  4. Fission gas release from UO2 pellet fuel at high burn-up

    International Nuclear Information System (INIS)

    Vitanza, C.; Kolstad, E.; Graziani, U.

    1979-01-01

    Analysis of in-reactor measurements of fuel center temperature and rod internal pressure at the OECD Halden Reactor Project has led to the development of an empirical fission gas release model, which is described. The model originally derived from data obtained in the low and intermediate burn-up range, appears to give good predictions for rods irradiated to high exposures as well. PIE puncturing data from seven fuel rods, operated at relatively constant powers and peak center temperatures between 1900 and 2000 0 C up to approx. 40,000 MWd/t UO 2 , did not exhibit any burn-up enhancement on the fission gas release rate

  5. Development of a parallel processing couple for calculations of control rod worth in terms of burn-up in a WWER-1000 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Noori-Kalkhoran, Omid; Ahangari, R. [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Reactor Research school; Shirani, A.S. [Shahid Beheshti Univ., Tehran (Iran, Islamic Republic of). Faculty of Engineering

    2017-03-15

    In this study a code based method has been developed for calculation of integral and differential control rod worth in terms of burn-up for a WWER-1000 reactor. Parallel processing of WIMSD-5B, PARCS V2.7 and COBRA-EN has been used for this purpose. WIMSD-5B has been used for cell calculation and handling burn-up of core at different days. PARCS V2.7?has been used for neutronic calculation of core and critical boron concentration search. Thermal-hydraulic calculation has been performed by COBRA-EN. A Parallel processing algorithm has been developed by MATLAB to couple and transfer suitable data between these codes in each step. Steady-State Power Picking Factors (PPFs) of the core and Control rod worth have been calculated from Beginning Of Cycle (BOC) to 289.7 Effective full Power Days (EFPDs) in some steps. Results have been compared with Bushehr Nuclear Power Plant (BNPP) Final Safety Analysis Report (FSAR) results. The results show great similarity and confirm the ability of developed coupling in calculation of control rod worth in terms of burn-up.

  6. Changes of the inventory of radioactive materials in reactor fuel from uranium in changing to higher burn-up and determining the important effects of this

    International Nuclear Information System (INIS)

    Kirchner, G.; Schaefer, R.

    1985-01-01

    The knowledge of the nuclide composition during and after use in the reactor is an essential, in order to be able to determine the effects associated with the operation of nuclear plants. The missing reliable data on the inventory of radioactive materials resulting from the expected change to higher burn-ups of uranium fuels in West Germany are calculated. The reliability of the program system used for this, which permits a one-dimensional account taken of the fuel rod cell and measurement of the changes of specific sets of nuclear data depending on burn-up, is confirmed by the comparison with experimentally found concentrations of important nuclides in fuel samples at Obrigheim nuclear power station. Realistic conditions of use are defined for a range of burn-up of 33 GWd/t to 55 GWd/t and the effects of changes of the number of cycles and the use of types of fuel elements being developed on the composition of the inventory are determined. The plutonium compositions during use in the reactor are given and are tabulated with the inventory for decay times up to 30 years. Effects during change to higher burn-ups are examined and discussed for the maximum inventories during use of fuel and for heat generation during final storage. (orig./HP) [de

  7. SRAC: JAERI thermal reactor standard code system for reactor design and analysis

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro; Takano, Hideki; Horikami, Kunihiko; Ishiguro, Yukio; Kaneko, Kunio; Hara, Toshiharu.

    1983-01-01

    The SRAC (Standard Reactor Analysis Code) is a code system for nuclear reactor analysis and design. It is composed of neutron cross section libraries and auxiliary processing codes, neutron spectrum routines, a variety of transport, 1-, 2- and 3-D diffusion routines, dynamic parameters and cell burn-up routines. By making the best use of the individual code function in the SRAC system, the user can select either the exact method for an accurate estimate of reactor characteristics or the economical method aiming at a shorter computer time, depending on the purpose of study. The user can select cell or core calculation; fixed source or eigenvalue problem; transport (collision probability or Sn) theory or diffusion theory. Moreover, smearing and collapsing of macroscopic cross sections are separately done by the user's selection. And a special attention is paid for double heterogeneity. Various techniques are employed to access the data storage and to optimize the internal data transfer. Benchmark calculations using the SRAC system have been made extensively for the Keff values of various types of critical assemblies (light water, heavy water and graphite moderated systems, and fast reactor systems). The calculated results show good prediction for the experimental Keff values. (author)

  8. Reactivity management and burn-up management on JRR-3 silicide-fuel-core

    International Nuclear Information System (INIS)

    Kato, Tomoaki; Araki, Masaaki; Izumo, Hironobu; Kinase, Masami; Torii, Yoshiya; Murayama, Yoji

    2007-08-01

    On the conversion from uranium-aluminum-dispersion-type fuel (aluminide fuel) to uranium-silicon-aluminum-dispersion-type fuel (silicide fuel), uranium density was increased from 2.2 to 4.8 g/cm 3 with keeping uranium-235 enrichment of 20%. So, burnable absorbers (cadmium wire) were introduced for decreasing excess reactivity caused by the increasing of uranium density. The burnable absorbers influence reactivity during reactor operation. So, the burning of the burnable absorbers was studied and the influence on reactor operation was made cleared. Furthermore, necessary excess reactivity on beginning of operation cycle and the time limit for restart after unplanned reactor shutdown was calculated. On the conversion, limit of fuel burn-up was increased from 50% to 60%. And the fuel exchange procedure was changed from the six-batch dispersion procedure to the fuel burn-up management procedure. The previous estimation of fuel burn-up was required for the planning of fuel exchange, so that the estimation was carried out by means of past operation data. Finally, a new fuel exchange procedure was proposed for effective use of fuel elements. On the procedure, burn-up of spent fuel was defined for each loading position. The average length of fuel's staying in the core can be increased by two percent on the procedure. (author)

  9. Study on the thermal-hydraulic stability of high burn up STEP III fuel in Japan

    International Nuclear Information System (INIS)

    Ishikawa, M.; Kitamura, H.; Toba, A.; Omoto, A.

    2004-01-01

    Japanese BWR utilities have performed a joint study of the Thermal Hydraulic Stability of High Burn up STEP III Fuel. In this study, the parametric dependency of thermal hydraulic stability threshold was obtained. It was confirmed through experiments that the STEP III Fuel has sufficient stability characteristics. (author)

  10. Experimental methods for burn-up determination in nuclear fuels, 1

    International Nuclear Information System (INIS)

    Taddei, J.F. de A.C.; Rodrigues, C.

    1977-01-01

    A method is presented that allows the calculation of the total percentage of atoms having undergone fission ('burn up') in nuclear fuels, from the measurement of absolute amounts of fission product neodymium-148 and of uranium and plutoniun present in the spent fuel, the fission yield of neodymium-148 being known. These measurements are performed through the mass spectrometry- isotope dilution technique [pt

  11. MOSRA-SRAC. Lattice calculation module of the modular code system for nuclear reactor analyses MOSRA

    International Nuclear Information System (INIS)

    Okumura, Keisuke

    2015-10-01

    MOSRA-SRAC is a lattice calculation module of the Modular code System for nuclear Reactor Analyses (MOSRA). This module performs the neutron transport calculation for various types of fuel elements including existing light water reactors, research reactors, etc. based on the collision probability method with a set of the 200-group cross-sections generated from the Japanese Evaluated Nuclear Data Library JENDL-4.0. It has also a function of the isotope generation and depletion calculation for up to 234 nuclides in each fuel material in the lattice. In these ways, MOSRA-SRAC prepares the burn-up dependent effective microscopic and macroscopic cross-section data to be used in core calculations. A CD-ROM is attached as an appendix. (J.P.N.)

  12. High burn-up structure in nuclear fuel: impact on fuel behavior - 4005

    International Nuclear Information System (INIS)

    Noirot, J.; Pontillon, Y.; Zacharie-Aubrun, I.; Hanifi, K.; Bienvenu, P.; Lamontagne, J.; Desgranges, L.

    2016-01-01

    When UO 2 and (U,Pu)O 2 fuels locally reach high burn-up, a major change in the microstructure takes place. The initial grains are replaced by thousands of much smaller grains, fission gases form micrometric bubbles and metallic fission products form precipitates. This occurs typically at the rim of the pellets and in heterogeneous MOX fuel Pu rich agglomerates. The high burn-up at the rim of the pellets is due to a high capture of epithermal neutrons by 238 U leading locally to a higher concentration of fissile Pu than in the rest of the pellet. In the heterogeneous MOX fuels, this rim effect is also active, but most of the high burn-up structure (HBS) formation is linked to the high local concentration of fissile Pu in the Pu agglomerates. This Pu distribution leads to sharp borders between HBS and non-HBS areas. It has been shown that the size of the new grains, of the bubbles and of the precipitates increase with the irradiation local temperatures. Other parameters have been shown to have an influence on the HBS initiation threshold, such as the irradiation density rate, the fuel composition with an effect of the Pu presence, but also of the Gd concentration in poisoned fuels, some of the studied additives, like Cr, and, maybe some of the impurities. It has been shown by indirect and direct approaches that HBS formation is not the main contributor to the increase of fission gas release at high burn-up and that the HBS areas are not the main source of the released gases. The impact of HBS on the fuel behavior during ramp on high burn-up fuels is still unclear. This short paper is followed by the slides of the presentation

  13. Status of the development of a fully integrated code system for the simulation of high temperature reactor cores

    Energy Technology Data Exchange (ETDEWEB)

    Kasselmann, Stefan, E-mail: s.kasselmann@fz-juelich.de [Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Druska, Claudia [Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Herber, Stefan [Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Lehrstuhl für Reaktorsicherheit und -technik, RWTH Aachen, 52062 Aachen (Germany); Jühe, Stephan [Lehrstuhl für Reaktorsicherheit und -technik, RWTH Aachen, 52062 Aachen (Germany); Keller, Florian; Lambertz, Daniela; Li, Jingjing; Scholthaus, Sarah; Shi, Dunfu [Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Xhonneux, Andre; Allelein, Hans-Josef [Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Lehrstuhl für Reaktorsicherheit und -technik, RWTH Aachen, 52062 Aachen (Germany)

    2014-05-01

    The HTR code package (HCP) is a new code system, which couples a variety of stand-alone codes for the simulation of different aspects of HTR. HCP will allow the steady-state and transient operating conditions of a 3D reactor core to be simulated including new features such as spatially resolved fission product release calculations or production and transport of graphite dust. For this code the latest programming techniques and standards are applied. As a first step an object-oriented data model was developed which features a high level of readability because it is based on problem-specific data types like Nuclide, Reaction, ReactionHandler, CrossSectionSet, etc. Those classes help to encapsulate and therefore hide specific implementations, which are not relevant with respect to physics. HCP will make use of one consistent data library for which an automatic generation tool was developed. The new data library consists of decay information, cross sections, fission yields, scattering matrices etc. for all available nuclides (e.g. ENDF/B-VII.1). The data can be stored in different formats such as binary, ASCII or XML. The new burn up code TNT (Topological Nuclide Transmutation) applies graph theory to represent nuclide chains and to minimize the calculation effort when solving the burn up equations. New features are the use of energy-dependent fission yields or the calculation of thermal power for decay, fission and capture reactions. With STACY (source term analysis code system) the fission product release for steady state as well as accident scenarios can be simulated for each fuel batch. For a full-core release calculation several thousand fuel elements are tracked while passing through the core. This models the stochastic behavior of a pebble bed in a realistic manner. In this paper we report on the current status of the HCP and present first results, which prove the applicability of the selected approach.

  14. Expansion of the CHR bone code system

    International Nuclear Information System (INIS)

    Farnham, J.E.; Schlenker, R.A.

    1976-01-01

    This report describes the coding system used in the Center for Human Radiobiology (CHR) to identify individual bones and portions of bones of a complete skeletal system. It includes illustrations of various bones and bone segments with their respective code numbers. Codes are also presented for bone groups and for nonbone materials

  15. Development of a coupled code system based on system transient code, RETRAN, and 3-D neutronics code, MASTER

    International Nuclear Information System (INIS)

    Kim, K. D.; Jung, J. J.; Lee, S. W.; Cho, B. O.; Ji, S. K.; Kim, Y. H.; Seong, C. K.

    2002-01-01

    A coupled code system of RETRAN/MASTER has been developed for best-estimate simulations of interactions between reactor core neutron kinetics and plant thermal-hydraulics by incorporation of a 3-D reactor core kinetics analysis code, MASTER into system transient code, RETRAN. The soundness of the consolidated code system is confirmed by simulating the MSLB benchmark problem developed to verify the performance of a coupled kinetics and system transient codes by OECD/NEA

  16. Coding-Spreading Tradeoff in CDMA Systems

    National Research Council Canada - National Science Library

    Bolas, Eduardo

    2002-01-01

    .... Comparing different combinations of coding and spreading with a traditional DS-CDMA, as defined in the IS-95 standard, allows the criteria to be defined for the best coding-spreading tradeoff in CDMA systems...

  17. The octopus burnup and criticality code system

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L.; Kuijper, J.C. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Leege, P.F.A. de

    1996-09-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional geometries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (author)

  18. The OCTOPUS burnup and criticality code system

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Kuijper, J.C. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Leege, P.F.A. de [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.

    1996-06-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional goemetries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (orig.).

  19. The octopus burnup and criticality code system

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Kuijper, J.C.; Leege, P.F.A. de.

    1996-01-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional geometries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (author)

  20. The OCTOPUS burnup and criticality code system

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Kuijper, J.C.; Leege, P.F.A. de

    1996-06-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional goemetries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (orig.)

  1. ERANOS 2.0, Modular code and data system for fast reactor neutronics analyses

    International Nuclear Information System (INIS)

    2008-01-01

    1 - Description of program or function: The European Reactor Analysis Optimized calculation System, ERANOS, has been developed and validated with the aim of providing a suitable basis for reliable neutronic calculations of current as well as advanced fast reactor cores. It consists of data libraries, deterministic codes and calculation procedures which have been developed within the European Collaboration on Fast Reactors over the past 20 years or so, in order to answer the needs of both industrial and R and D organisations. The whole system counts roughly 250 functions and 3000 subroutines totalling 450000 lines of FORTRAN-77 and ESOPE instructions. ERANOS is written using the ALOS software which requires only standard FORTRAN compilers and includes advanced programming features. A modular structure was adopted for easier evolution and incorporation of new functionalities. Blocks of data (SETs) can be created or used by the modules themselves or by the user via the LU control language. Programming, and dynamic memory allocation, are performed by means of the ESOPE language. External temporary storage and permanent storage capabilities are provided by the GEMAT and ARCHIVE functions, respectively. ESOPE, LU, GEMAT and ARCHIVE are all part of the ALOS software. This modular structure allows different modules to be linked together in procedures corresponding to recommended calculation routes ranging from fast-running and moderately-accurate 'routine' procedures to slow-running but highly-accurate 'reference' procedures. The main contents of the ERANOS-2.0 package are: nuclear data libraries (multigroup cross-sections from the JEF-2.2 evaluated nuclear data file, and other specific data files), a cell and lattice code (ECCO), reactor flux solvers (diffusion, Sn transport, nodal variational transport), a burn-up module, various processing modules (material and neutron balance, breeding gains,...), tools related to perturbation theory and sensitivity analysis, core

  2. Tandem Mirror Reactor Systems Code (Version I)

    International Nuclear Information System (INIS)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost

  3. Cellular automata approach to investigation of high burn-up structures in nuclear reactor fuel

    International Nuclear Information System (INIS)

    Akishina, E.P.; Ivanov, V.V.; Kostenko, B.F.

    2005-01-01

    Micrographs of uranium dioxide (UO 2 ) corresponding to exposure times in reactor during 323, 953, 971, 1266 and 1642 full power days were investigated. The micrographs were converted into digital files isomorphous to cellular automata (CA) checkerboards. Such a representation of the fuel structure provides efficient tools for its dynamics simulation in terms of primary 'entities' imprinted in the micrographs. Besides, it also ensures a possibility of very effective micrograph processing by CA means. Interconnection between the description of fuel burn-up development and some exactly soluble models is ascertained. Evidences for existence of self-organization in the fuel at high burn-ups were established. The fractal dimension of microstructures is found to be an important characteristic describing the degree of radiation destructions

  4. The burn-up credit physics and the 40. Minerve anniversary

    International Nuclear Information System (INIS)

    Santamarina, A.; Toubon, H.; Trakas, C.

    2000-01-01

    The technical meeting organized by the SFEN on the burn-up credit (CBU) physics, took place the 23 november 1999 at Cadarache. the first presentation dealt with the economic interest and the neutronic problems of the CBU. Then two papers presented how taking into account the CBU in the industry in matter of transport, storage in pool, reprocessing and criticality calculation (MCNP4/Apollo2-F benchmark). An experimental method for the reactivity measurement through oscillations in the Minerve reactor, has been presented with an analysis of the possible errors. The future research program OSMOSE, taking into account the minor actinides in the CBU, was also developed. The last paper presented the national and international research programs in the CBU domain, in particular experiments realized in CEA/Valduc and the OECD Burn-up Criticality Benchmark Group activities. (A.L.B.)

  5. Deuterides of light elements: low-temperature thermonuclear burn-up and applications to thermonuclear fusion problems

    International Nuclear Information System (INIS)

    Frolov, A.M.; Smith, V.H.; Smith, G.T.

    2002-01-01

    Thermonuclear burn-up and thermonuclear applications are discussed for a number of deuterides and DT hydrides of light elements. These deuterides and corresponding DT hydrides are often used as thermonuclear fuels or components of such fuels. In fact, only for these substances thermonuclear energy gain exceeds (at some densities and temperatures) the bremsstrahlung loss and other high-temperature losses, i.e., thermonuclear burn-up is possible. Herein, thermonuclear burn-up in these deuterides and DT hydrides is considered in detail. In particular, a simple method is proposed to determine the critical values of the burn-up parameter x c for these substances and their mixtures at different temperatures and densities. The results for equimolar DT mixtures coincide quite well with the results of previous calculations. Also, the natural or Z limit is determined for low-temperature thermonuclear burn-up in the deuterides of light elements. (author)

  6. Burn up determination of IEAR-1 fuel elements by non destructive gamma ray spectrometry method

    International Nuclear Information System (INIS)

    Soares, A.J.

    1977-01-01

    Measurement of nuclear fuel burn up by non destructive gamma ray spectrometry is discussed, and results of such measurements, made at the Instituto de Energia Atomica (IEA), are given. Specifically, the burn up of an MTR (Material Testing Reactor) fuel element removed from the IEAR-1 swimming pool reactor in 1958 is evaluated from the measured Cs-137 activity, which gives a single 661,6 keV gamma ray. Due to the long decay time of the test element, no other fission decay product activity could be detected. Analysis of measurements, made with a 3'' x 3'' NaI(Tl) detector at 330 distinct points of the element, showed the total burn up to 3.3 +- -+ 0.8 mg. This is in agreement with a calculated value. As the maximum temperature of IEAR-1 fuel elements is of the order of 40 0 C, migration effects of Cs-137 was not considered, this being significant only at fuel temperature in excess of 1000 0 C [pt

  7. High dynamic range coding imaging system

    Science.gov (United States)

    Wu, Renfan; Huang, Yifan; Hou, Guangqi

    2014-10-01

    We present a high dynamic range (HDR) imaging system design scheme based on coded aperture technique. This scheme can help us obtain HDR images which have extended depth of field. We adopt Sparse coding algorithm to design coded patterns. Then we utilize the sensor unit to acquire coded images under different exposure settings. With the guide of the multiple exposure parameters, a series of low dynamic range (LDR) coded images are reconstructed. We use some existing algorithms to fuse and display a HDR image by those LDR images. We build an optical simulation model and get some simulation images to verify the novel system.

  8. A study of the effects of changing burn-up and gap gaseous compound on the gap convection coefficient (in a hot fuel pin) in VVER-1000 reactor

    International Nuclear Information System (INIS)

    Rahgoshay, M.; Rahmani, Y.

    2007-01-01

    In this article we worked on the result and process of calculation of the gap heat transfer coefficient for a hot fuel pin in accordance with burn-up changes in the VVER-1000 reactor at the Bushehr nuclear power plant (Iran). With regard to the fact that in calculating the fuel gap heat transfer coefficient, various parameters are effective and the need for designing a model is being felt, therefore, in this article we used Ross and Stoute gap model to study impacts of different effective parameters such as thermal expansion and gaseous fission products on the h gap change rate. Over time and with changes in fuel burn-up some gaseous fission products such as xenon, argon and krypton gases are released to the gas mixture in the gap, which originally contained helium. In this study, the composition of gaseous elements in the gap volume during different times of reactor operation was found using ORIGEN code. Considering that the thermal conduction of these gases is lower than that of helium, and by using the Ross and Stoute gap model, we find first that the changes in gaseous compounds in the gap reduce the values of gap thermal conductivity coefficient, but considering thermal expansion (due to burn-up alterations) of fuel and clad resulting in the reduction of gap thickness we find that the gap heat transfer coefficient will augment in a broad range of burn-up changes. These changes result in a higher rate of gap thickness reduction than the low rate of decrease of heat conduction coefficient of the gas in the gap during burn-up. Once these changes have been defined, we can proceed with the analysis of the results of calculations based on the Ross and Stoute model and compare the results obtained with the experimental results for a hot fuel pin as presented in the final safety analysis report of the VVER-1000 reactor at Bushehr. It is noteworthy that the results of accomplished calculations based on the Ross and Stoute model correspond well with the existing

  9. The EGS5 Code System

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Hideo; Namito, Yoshihito; /KEK, Tsukuba; Bielajew, Alex F.; Wilderman, Scott J.; U., Michigan; Nelson, Walter R.; /SLAC

    2005-12-20

    In the nineteen years since EGS4 was released, it has been used in a wide variety of applications, particularly in medical physics, radiation measurement studies, and industrial development. Every new user and every new application bring new challenges for Monte Carlo code designers, and code refinements and bug fixes eventually result in a code that becomes difficult to maintain. Several of the code modifications represented significant advances in electron and photon transport physics, and required a more substantial invocation than code patching. Moreover, the arcane MORTRAN3[48] computer language of EGS4, was highest on the complaint list of the users of EGS4. The size of the EGS4 user base is difficult to measure, as there never existed a formal user registration process. However, some idea of the numbers may be gleaned from the number of EGS4 manuals that were produced and distributed at SLAC: almost three thousand. Consequently, the EGS5 project was undertaken. It was decided to employ the FORTRAN 77 compiler, yet include as much as possible, the structural beauty and power of MORTRAN3. This report consists of four chapters and several appendices. Chapter 1 is an introduction to EGS5 and to this report in general. We suggest that you read it. Chapter 2 is a major update of similar chapters in the old EGS4 report[126] (SLAC-265) and the old EGS3 report[61] (SLAC-210), in which all the details of the old physics (i.e., models which were carried over from EGS4) and the new physics are gathered together. The descriptions of the new physics are extensive, and not for the faint of heart. Detailed knowledge of the contents of Chapter 2 is not essential in order to use EGS, but sophisticated users should be aware of its contents. In particular, details of the restrictions on the range of applicability of EGS are dispersed throughout the chapter. First-time users of EGS should skip Chapter 2 and come back to it later if necessary. With the release of the EGS4 version

  10. Fission gas release at high burn-up: beyond the standard diffusion model

    International Nuclear Information System (INIS)

    Landskron, H.; Sontheimer, F.; Billaux, M.R.

    2002-01-01

    At high burn-up standard diffusion models describing the release of fission gases from nuclear fuel must be extended to describe the experimental loss of xenon observed in the fuel matrix of the rim zone. Marked improvements of the prediction of integral fission gas release of fuel rods as well as of radial fission gas profiles in fuel pellets are achieved by using a saturation concept to describe fission gas behaviour not only in the pellet rim but also as an additional fission gas path in the whole pellet. (author)

  11. Numerical solution of the point reactor kinetics equations with fuel burn-up and temperature feedback

    International Nuclear Information System (INIS)

    Tashakor, S.; Jahanfarnia, G.; Hashemi-Tilehnoee, M.

    2010-01-01

    Point reactor kinetics equations are solved numerically using one group of delayed neutrons and with fuel burn-up and temperature feedback included. To calculate the fraction of one-group delayed neutrons, a group of differential equations are solved by an implicit time method. Using point reactor kinetics equations, changes in mean neutrons density, temperature, and reactivity are calculated in different times during the reactor operation. The variation of reactivity, temperature, and maximum power with time are compared with the predictions by other methods.

  12. Study on small long-life LBE cooled fast reactor with CANDLE burn-up. Part 1. Steady state research

    International Nuclear Information System (INIS)

    Yan, Mingyu; Sekimoto, Hiroshi

    2008-01-01

    Small long-life reactor is required for some local areas. CANDLE small long-life fast reactor which does not require control rods, mining, enrichment and reprocessing plants can satisfy this demand. In a CANDLE reactor, the shapes of neutron flux, nuclide number densities and power density distributions remain constant and only shift in axial direction. The core with 1.0 m radius, 2.0 m length can realize CANDLE burn-up with nitride (enriched N-15) natural uranium as fresh fuel. Lead-Bismuth is used as coolant. From steady state analysis, we obtained the burn-up velocity, output power distribution, core temperature distribution, etc. The burn-up velocity is less than 1.0 cm/year that enables a long-life design easily. The core averaged discharged fuel burn-up is about 40%. (author)

  13. Windows user-friendly code package development for operation of research reactors

    International Nuclear Information System (INIS)

    Hoang Anh Tuan

    1998-01-01

    The content of the project was to developed: 1. MS Windows interface to spectral codes like THERMOS, PEACO-COLLIS, GRACE and burn-up code. 2. MS Windows C-language burn-up diffusion hexagonal lattice code. The overall scope of the project was to develop a PC-based MS Windows code package for operation of Dalat research reactor. Various problems relating to neutronic physics like thermalization, resonance treatment, fast spectral treatment, change of isotopic concentration during burn-up time as well as burn-up distribution in the reactor core are considered in parallel to application of informatics technique. The developing process is a subject of the concept of user-friendly interface between end-users and the code package. High level input features through system of icon, menu, dialog box with regard to Common User Access (CUA) convention and sophisticated graphical output in MS Windows environment was used. The user-computer interface is also enhanced by using both keyboard and mouse, which creates a very natural manner for end-user. (author)

  14. Extended fuel swelling models and ultra high burn-up fuel behavior of U–Pu–Zr metallic fuel using FEAST-METAL

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydın, E-mail: karahan@alum.mit.edu [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 24-215, Cambridge, MA 02139 (United States); Andrews, Nathan C., E-mail: nandrews@mit.edu [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 24-215, Cambridge, MA 02139 (United States)

    2013-05-15

    Highlights: ► Improved fuel swelling models in phase structure dependent form. ► A probabilistic verification exercise for the open porosity formation threshold. ► Satisfactory validation effort for available EBR-II database. ► Ultra high burn-up behavior of U–6Zr fuel with 60% smear density fuel. -- Abstract: Computational models in FEAST-METAL U–Pu–Zr metallic fuel behavior code have been upgraded to improve fission gas, solid fission product swelling, and pore sintering behavior in a microstructure dependent form. First, fission gas bubble growth is modeled by selecting small and large bubble groups according to a fixed number of gas atoms per bubble group. Small bubbles nucleated at phase boundaries grow via gas migration and turn into large bubbles. Furthermore, bubble morphology for each phase structure is captured by selecting the number of atoms per bubble and the shape of the bubbles in a phase dependent form. The gas diffusion coefficients for the single gamma phase and effective dual (α + δ) and (β + γ) phase structures are modeled separately, using the activation energy of the corresponding phase structure. In this study, it is found that pressure sintering of the interconnected porosity in dual phases should be less effective than the reference model in order to match clad strain and fission gas release behavior. In addition to these improvements, a probabilistic approach is taken to verify the fission gas-swelling threshold at which interconnected porosity begins. This fracture problem is treated as a function of critical crack length formed via bubble coalescence. It was found that a 10% gas-swelling threshold is appropriate for a wide range of gas bubble sizes. The new version of FEAST-METAL predicts the burn-up, smear density, and axial variation of the clad hoop strain and fission gas release behavior satisfactorily for selected test pins under EBR-II conditions. The code is used to predict ultra-high burn-up U–Pu–6Zr vented

  15. Extended fuel swelling models and ultra high burn-up fuel behavior of U–Pu–Zr metallic fuel using FEAST-METAL

    International Nuclear Information System (INIS)

    Karahan, Aydın; Andrews, Nathan C.

    2013-01-01

    Highlights: ► Improved fuel swelling models in phase structure dependent form. ► A probabilistic verification exercise for the open porosity formation threshold. ► Satisfactory validation effort for available EBR-II database. ► Ultra high burn-up behavior of U–6Zr fuel with 60% smear density fuel. -- Abstract: Computational models in FEAST-METAL U–Pu–Zr metallic fuel behavior code have been upgraded to improve fission gas, solid fission product swelling, and pore sintering behavior in a microstructure dependent form. First, fission gas bubble growth is modeled by selecting small and large bubble groups according to a fixed number of gas atoms per bubble group. Small bubbles nucleated at phase boundaries grow via gas migration and turn into large bubbles. Furthermore, bubble morphology for each phase structure is captured by selecting the number of atoms per bubble and the shape of the bubbles in a phase dependent form. The gas diffusion coefficients for the single gamma phase and effective dual (α + δ) and (β + γ) phase structures are modeled separately, using the activation energy of the corresponding phase structure. In this study, it is found that pressure sintering of the interconnected porosity in dual phases should be less effective than the reference model in order to match clad strain and fission gas release behavior. In addition to these improvements, a probabilistic approach is taken to verify the fission gas-swelling threshold at which interconnected porosity begins. This fracture problem is treated as a function of critical crack length formed via bubble coalescence. It was found that a 10% gas-swelling threshold is appropriate for a wide range of gas bubble sizes. The new version of FEAST-METAL predicts the burn-up, smear density, and axial variation of the clad hoop strain and fission gas release behavior satisfactorily for selected test pins under EBR-II conditions. The code is used to predict ultra-high burn-up U–Pu–6Zr vented

  16. Advanced thermionic reactor systems design code

    International Nuclear Information System (INIS)

    Lewis, B.R.; Pawlowski, R.A.; Greek, K.J.; Klein, A.C.

    1991-01-01

    An overall systems design code is under development to model an advanced in-core thermionic nuclear reactor system for space applications at power levels of 10 to 50 kWe. The design code is written in an object-oriented programming environment that allows the use of a series of design modules, each of which is responsible for the determination of specific system parameters. The code modules include a neutronics and core criticality module, a core thermal hydraulics module, a thermionic fuel element performance module, a radiation shielding module, a module for waste heat transfer and rejection, and modules for power conditioning and control. The neutronics and core criticality module determines critical core size, core lifetime, and shutdown margins using the criticality calculation capability of the Monte Carlo Neutron and Photon Transport Code System (MCNP). The remaining modules utilize results of the MCNP analysis along with FORTRAN programming to predict the overall system performance

  17. EBSD and TEM Characterization of High Burn-up Mixed Oxide Fuel

    International Nuclear Information System (INIS)

    Teague, Melissa C; Gorman, Brian P.; Miller, Brandon D; King, Jeffrey

    2014-01-01

    Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to approximately 1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken from the cooler rim region of the fuel pellet had approximately 2.5x higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice approximately 25 um cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel

  18. Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up

    Energy Technology Data Exchange (ETDEWEB)

    Venkiteswaran, C.N., E-mail: cnv@igcar.gov.in; Jayaraj, V.V.; Ojha, B.K.; Anandaraj, V.; Padalakshmi, M.; Vinodkumar, S.; Karthik, V.; Vijaykumar, Ran; Vijayaraghavan, A.; Divakar, R.; Johny, T.; Joseph, Jojo; Thirunavakkarasu, S.; Saravanan, T.; Philip, John; Rao, B.P.C.; Kasiviswanathan, K.V.; Jayakumar, T.

    2014-06-01

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India, will use mixed oxide (MOX) fuel with a target burnup of 100 GWd/t. The fuel pellet is of annular design to enable operation at a peak linear power of 450 W/cm with the requirement of minimum duration of pre-conditioning. The performance of the MOX fuel and the D9 clad and wrapper material was assessed through Post Irradiation Examinations (PIE) after test irradiation of 37 fuel pin subassembly in Fast Breeder Test Reactor (FBTR) to a burn-up of 112 GWd/t. Fission product distribution, swelling and fuel–clad gap evolution, central hole diameter variation, restructuring, fission gas release and clad wastage due to fuel–clad chemical interaction were evaluated through non-destructive and destructive examinations. The examinations have indicated that the MOX fuel can safely attain the desired target burn-up in PFBR.

  19. An investigation into fuel pulverization with specific reference to high burn-up LOCA

    International Nuclear Information System (INIS)

    Yagnik, Suresh; Turnbull, James; Noirot, Jean; Walker, Clive; Hallstadius, Lars; Waeckel, N.; Blanpain, P.

    2014-01-01

    To investigate the phenomenon of high burn-up fuel pellet material potentially disintegrating into powder under a rapid temperature transient, such as in a LOCA-type accident scenario, two independent scoping studies were commissioned. The first was to investigate the effect of hydrostatic restraint pressure on Fission Gas Release (FGR) from small samples of highly irradiated fuel (71 MWd/kgU) during a series of rapid temperature ramps. Experimentally, when the FGR increased rapidly during the temperature transients, the fuel was assumed to be 'pulverized', i.e., fragmented into powder. In the second series of experiments, laser heating of small samples was used to investigate the temperature at which fuel pulverization was initiated. Subsequent to fuel disintegration, there was always a spectrum of particle sizes present. The significance of this observation was recognized in the context of extended burn-up operation in commercial reactors. Based on the observation from these investigations, a fuel fragmentation threshold has been discussed and developed. We conclude that fuel disintegration could be of potential importance in limiting the performance and productive lifetime of nuclear fuel. However, since only fuel closely adjacent to ballooned or ruptured cladding would be released in a LOCA-type transient, expulsion of pulverized fuel from the ruptured fuel rod is not considered a safety issue; cooling of the defected assembly remains possible and there is no issue with respect to local criticality. (author)

  20. A validated methodology for evaluating burn-up credit in spent fuel casks

    International Nuclear Information System (INIS)

    Brady, M.C.; Sanders, T.L.

    1992-01-01

    The concept of allowing reactivity credit for the transmuted state of spent fuel offers both economic and risk incentives. This paper presents a general overview of the technical work being performed in support of the US Department of Energy (USDOE) programme to resolve issues related to the implementation of burn-up credit in spent fuel cask design. An analysis methodology is presented along with information representing the validation of the method against available experimental data. The experimental data that are applicable to burn-up credit include chemical assay data for the validation of the isotopic prediction models, fresh fuel critical experiments for the validation of criticality calculations for various cask geometries, and reactor re-start critical data to validate criticality calculations with spent fuel. The methodology has been specifically developed to be simple and generally applicable, therefore giving rise to uncertainties or sensitivities which are identified and quantified in terms of a percent bias effective multiplication (k eff ). Implementation issues affecting licensing requirements and operational procedures are discussed briefly. (Author)

  1. ETF system code: composition and applications

    International Nuclear Information System (INIS)

    Reid, R.L.; Wu, K.F.

    1980-01-01

    A computer code has been developed for application to ETF tokamak system and conceptual design studies. The code determines cost, performance, configuration, and technology requirements as a function of tokamak parameters. The ETF code is structured in a modular fashion in order to allow independent modeling of each major tokamak component. The primary benefit of modularization is that it allows updating of a component module, such as the TF coil module, without disturbing the remainder of the system code as long as the input/output to the modules remains unchanged. The modules may be run independently to perform specific design studies, such as determining the effect of allowable strain on TF coil structural requirements, or the modules may be executed together as a system to determine global effects, such as defining the impact of aspect ratio on the entire tokamak system

  2. A bar coding system for environmental projects

    International Nuclear Information System (INIS)

    Barber, R.B.; Hunt, B.J.; Burgess, G.M.

    1988-01-01

    This paper presents BeCode systems, a bar coding system which provides both nuclear and commercial clients with a data capture and custody management program that is accurate, timely, and beneficial to all levels of project operations. Using bar code identifiers is an essentially paperless and error-free method which provides more efficient delivery of data through its menu card-driven structure, which speeds collection of essential data for uploading to a compatible device. The effects of this sequence include real-time information for operator analysis, management review, audits, planning, scheduling, and cost control

  3. Establishment of THERPRO Database and Estimation of the Effect of Fuel Burn-up on the Thermal Conductivity of Uranium Dioxide

    International Nuclear Information System (INIS)

    Lee, Hyun Seon

    2005-02-01

    Materials property data are an essential part of major disciplines in many engineering fields. To nuclear engineering, fundamental understanding of thermo-physical chemical mechanical properties of nuclear materials is very important. THERPRO data base that is re-designed and re-constructed through this study is a web-based on-line nuclear materials properties data base. For the future upgrade of the data base contemporary information technologies have been incorporated during the construction. Basically THERPRO data base has a hierarchical structure consisting of several levels: home page, element, compound, property, author, report, and bibliography level. All of data sets in each level are interconnected using network structure and thus every data can be easily retrieved including the bibliographical information by an appropriate query action. As a part of THERPRO DB utilization, the effect of fuel burn-up on the thermal conductivity of irradiated uranium dioxide is analyzed with the data contained in the data base as well as recent data published in the relevant journals. Their data are comparatively studied and the effect is estimated using FRAPCON-3 code with two in-pile data sets, BR-3 111i5 and Oconee rod 15309. The results show that the fuel center line temperature can differ 200 .deg. C∼400 .deg. C from thermal conductivity models depending on burn-up, which can significantly influence high burn-up fuel performance. In conclusion, it is demonstrated through this study that THERPRO data base can be a great utility for nuclear engineers and researchers, if appropriately utilized

  4. Arabic Natural Language Processing System Code Library

    Science.gov (United States)

    2014-06-01

    Adelphi, MD 20783-1197 This technical note provides a brief description of a Java library for Arabic natural language processing ( NLP ) containing code...for training and applying the Arabic NLP system described in the paper "A Cross-Task Flexible Transition Model for Arabic Tokenization, Affix...and also English) natural language processing ( NLP ), containing code for training and applying the Arabic NLP system described in Stephen Tratz’s

  5. Total surface area change of Uranium dioxide fuel in function of burn-up and its impact on fission gas release during neutron irradiation for small, intermediate and high burn-up

    International Nuclear Information System (INIS)

    Szuta, M.

    2011-01-01

    In the early published papers it was observed that the fractional fission gas release from the specimen have a tendency to increase with the total surface area of the specimen - a fairy linear relationship was indicated. Moreover it was observed that the increase of total surface area during irradiation occurs in the result of connection the closed porosity with the open porosity what in turn causes the increase of fission gas release. These observations let us surmise that the process of knock-out release is the most significant process of fission gas release since its quantity is proportional to the total surface area. Review of the experiments related to the increase of total surface area in function of burn-up is presented in the paper. For very high burn-up the process of grain sub-division (polygonization) occurs under condition that the temperature of irradiated fuel lies below the temperature of grain re-crystallization. Simultaneously with the process of polygonization, the increase in local porosity and the decrease in local density in function of burn-up occurs, which leads to the increase of total surface area. It is suggested that the same processes take place in the transformed fuel as in the original fuel, with the difference that the total surface area is so big that the whole fuel can be treated as that affected by the knock-out process. This leads to explanation of the experimental data that for very high burn-up (>120 MWd/kgU) the concentration of xenon is constant. An explanation of the grain subdivision process in function of burn-up in the 'athermal' rim region in terms of total surface area, initial grain size and knock-out release is undertaken. Correlation of the threshold burn-up, the local fission gas concentration, local total surface area, initial and local grain size and burn-up in the rim region is expected. (author)

  6. Burn-Up Determination by High Resolution Gamma Spectrometry: Axial and Diametral Scanning Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R S; Blackadder, W H; Ronqvist, N

    1967-02-15

    In the gamma spectrometric determination of burn-up the use of a single fission product as a monitor of the specimen fission rate is subject to errors caused by activity saturation or, in certain cases, fission product migration. Results are presented of experiments in which all the resolvable gamma peaks in the fission product spectrum have been used to calculate the fission rate; these results form a pattern which reflect errors in the literature values of the gamma branching ratios, fission yields etc., and also represent a series of empirical correction factors. Axial and diametral scanning experiments on a long-irradiated low-enrichment fuel element are also described and demonstrate that it is possible to differentiate between fissions in U-235 and in Pu-239 respectively by means of the ratios of the Ru-106 activity to the activities of the other fission products.

  7. IFPE/HBEP REV.1, Battelle's High Burn-Up Effects Programme for Fuel Performance

    International Nuclear Information System (INIS)

    Turnbull, J.A.

    2002-01-01

    Description: It contains data from phase 2 and 3 on fabrication, dimensions, fuel and cladding properties and composition, reactor conditions and Post Irradiation Examination (PIE) data of the High Burn-up Effects Programme (HBEP) carried out at the Battelle North-west Laboratories. Each data set contains a full irradiation history with clad temperature and local power listed for each rod at 5, 10 or 12 axial zones as a function of cumulative time to the end of the given time interval over which the power has been constant. Data is provided for 45 rods from phase 2 and 36 rods from phase 3. The different rods have been manufactured by: ASEA/TVO, BN, BNFL, FBFC, FRA/CEA, GE, KWU/CE, WEC

  8. Burn-up measurements on nuclear reactor fuels using high performance liquid chromatography

    International Nuclear Information System (INIS)

    Sivaraman, N.; Subramaniam, S.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2002-01-01

    Burn-up measurements on thermal as well as fast reactor fuels were carried out using high performance liquid chromatography (HPLC). A column chromatographic technique using di-(2-ethylhexyl) phosphoric acid (HDEHP) coated column was employed for the isolation of lanthanides from uranium, plutonium and other fission products. Ion-pair HPLC was used for the separation of individual lanthanides. The atom percent fissions were calculated from the concentrations of the lanthanide (neodymium in the case of thermal reactor and lanthanum for the fast reactor fuels) and from uranium and plutonium contents of the dissolver solutions. The HPLC method was also used for determining the fractional fissions from uranium and plutonium for the thermal reactor fuel. (author)

  9. Microstructure Changes in a high burn up Spent Fuel (57,900 MWd/tU)

    International Nuclear Information System (INIS)

    Park, Yang Soon; Kwon, Hyoung Mun; Seo, Hang Seok; Ha, Yeong Keong; Song, Kyuseok

    2009-01-01

    In the nuclear industry, an increase in the burn up and the residence time of fuels is being considered because of the advantages in the fuel cycle cost and the spent fuel management. But, it leads to structural changes in an outer zone (rim) of a UO 2 pellet within a few hundreds of micrometers in thickness. Despite its thin layer, this rim would determine the thermal behavior of a fuel. Therefore, to identify a rim zone effect, the microstructures such as the pores, the grains and the UO 2 lattice size have been investigated by many researchers. In this study, the microstructure changes in the rim of a UO 2 spent fuel, the corrosion layer of a Zry-4 cladding and the interface between a fuel and a cladding were investigated by a micro-XRD and a SEM

  10. Calculation of fuel burn-up and fuel reloading for the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Nguyen Phuoc; Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Binh, Do Quang [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    Calculation of fuel burnup and fuel reloading for the Dalat Nuclear Research Reactor was carried out by using a new programme named HEXA-BURNUP, realized in a PC. The programme is used to calculate the following parameters of the Dalat reactor: a/Critical configurations of the core loaded with 69, 72, 74, 86, 88, 89 and 92 fuel elements. The effective multiplication coefficients equal 1 within the error ranges of less than 0.38%. b/ The thermal neutron flux distribution in the reactor. The calculated results agree with the experimental data measured at 11 typical positions. c/The average fuel burn-up for the period from Feb. 1984 to Sep. 1992. The difference between calculation and experiment is only about 1.9%. 10 fuel reloading versions are calculated, from which an optimal version is proposed. (author). 9 refs., 4 figs., 5 tabs.

  11. Micrographic study on distribution of fission products in high burn-up metallic alloy fuel

    International Nuclear Information System (INIS)

    Kolay, S.; Basu, M.; Das, D.

    2012-01-01

    One of the important mandates in the three-stage nuclear power generation programme of India is to utilize uranium-plutonium based alloy fuels in enabling shorter doubling time for breeding of the fissile isotopes ( 239 Pu and 233 U ) to be used in thorium based driver fuel in the third stage. Reported information shows the successful performance of alloy fuel with somewhat porous matrix in achieving 10-15 atom% burnup. The porosity and microstructure of these alloys are strongly dependent on their composition and phases present. Porosity also influences the extent of fuel swelling and gas release. So to assess fuel performance and fuel integrity under high burn-up condition it is essential to have knowledge about the new phases formed and their redistribution that occurs as a result of inter-diffusion and temperature gradient. This study addresses these issues taking the base alloy U-10 wt %Zr

  12. Development of high-strength aluminum alloys for basket in transport and storage cask for high burn-up spent fuel

    International Nuclear Information System (INIS)

    Maeguchi, T.; Sakaguchi, Y.; Kamiwaki, Y.; Ishii, M.; Yamamoto, T.

    2004-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has developed high-strength borated aluminum alloys (high-strength B-Al alloys), suitable for application to baskets in transport and storage casks for high burn-up spent fuels. Aluminum is a suitable base material for the baskets due to its low density and high thermal conductivity. The aluminum basket would reduce weight of the cask, and effectively release heat generated by spent fuels. MHI had already developed borated aluminum alloys (high-toughness B-Al alloy), and registered them as ASME Code Case ''N-673''. However, there has been a strong demand for basket materials with higher strength in the case of MSF (Mitsubishi Spent Fuel) casks for high-burn up spent fuels, since the basket is required to stand up to higher stress at higher temperature. The high-strength basket material enables the design of a compact cask under a limitation of total size and weight. MHI has developed novel high-strength B-Al alloys which meet these requirements, based on a new manufacturing process. The outline of mechanical and metallurgical characteristics of the high-strength B-Al alloys is described in this paper

  13. Behaviour of fission gas in the rim region of high burn-up UO2 fuel pellets with particular reference to results from an XRF investigation

    International Nuclear Information System (INIS)

    Mogensen, M.; Walker, C.T.

    1999-01-01

    XRF and EPMA results for retained xenon from Battelle's high burn-up effects program are re-evaluated. The data reviewed are from commercial low enriched BWR fuel with burn-ups of 44.8-54.9 GWd/tU and high enriched PWR fuel with burn-ups from 62.5 to 83.1 GWd/tU. It is found that the high burn-up structure penetrated much deeper than initially reported. The local burn-up threshold for the formation of the high burn-up structure in those fuels with grain sizes in the normal range lay between 60 and 75 GWd/tU. The high burn-up structure was not detected by EPMA in a fuel that had a grain size of 78 μm although the local burn-up at the pellet rim had exceeded 80 GWd/tU. It is concluded that fission gas had been released from the high burn-up structure in three PWR fuel sections with burn-ups of 70.4, 72.2 and 83.1 GWd/tU. In the rim region of the last two sections at the locations where XRF indicated gas release the local burn-up was higher than 75 GWd/tU. (orig.)

  14. Fast decoding algorithms for coded aperture systems

    International Nuclear Information System (INIS)

    Byard, Kevin

    2014-01-01

    Fast decoding algorithms are described for a number of established coded aperture systems. The fast decoding algorithms for all these systems offer significant reductions in the number of calculations required when reconstructing images formed by a coded aperture system and hence require less computation time to produce the images. The algorithms may therefore be of use in applications that require fast image reconstruction, such as near real-time nuclear medicine and location of hazardous radioactive spillage. Experimental tests confirm the efficacy of the fast decoding techniques

  15. Code system for fast reactor neutronics analysis

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki; Abe, Junji; Sato, Wakaei.

    1983-04-01

    A code system for analysis of fast reactor neutronics has been developed for the purpose of handy use and error reduction. The JOINT code produces the input data file to be used in the neutronics calculation code and also prepares the cross section library file with an assigned format. The effective cross sections are saved in the PDS file with an unified format. At the present stage, this code system includes the following codes; SLAROM, ESELEM5, EXPANDA-G for the production of effective cross sections and CITATION-FBR, ANISN-JR, TWOTRAN2, PHENIX, 3DB, MORSE, CIPER and SNPERT. In the course of the development, some utility programs and service programs have been additionaly developed. These are used for access of PDS file, edit of the cross sections and graphic display. Included in this report are a description of input data format of the JOINT and other programs, and of the function of each subroutine and utility programs. The usage of PDS file is also explained. In Appendix A, the input formats are described for the revised version of the CIPER code. (author)

  16. Implementing a modular system of computer codes

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.

    1983-07-01

    A modular computation system has been developed for nuclear reactor core analysis. The codes can be applied repeatedly in blocks without extensive user input data, as needed for reactor history calculations. The primary control options over the calculational paths and task assignments within the codes are blocked separately from other instructions, admitting ready access by user input instruction or directions from automated procedures and promoting flexible and diverse applications at minimum application cost. Data interfacing is done under formal specifications with data files manipulated by an informed manager. This report emphasizes the system aspects and the development of useful capability, hopefully informative and useful to anyone developing a modular code system of much sophistication. Overall, this report in a general way summarizes the many factors and difficulties that are faced in making reactor core calculations, based on the experience of the authors. It provides the background on which work on HTGR reactor physics is being carried out

  17. Plotting system for the MINCS code

    International Nuclear Information System (INIS)

    Watanabe, Tadashi

    1990-08-01

    The plotting system for the MINCS code is described. The transient two-phase flow analysis code MINCS has been developed to provide a computational tool for analysing various two-phase flow phenomena in one-dimensional ducts. Two plotting systems, namely the SPLPLOT system and the SDPLOT system, can be used as the plotting functions. The SPLPLOT system is used for plotting time transients of variables, while the SDPLOT system is for spatial distributions. The SPLPLOT system is based on the SPLPACK system, which is used as a general tool for plotting results of transient analysis codes or experiments. The SDPLOT is based on the GPLP program, which is also regarded as one of the general plotting programs. In the SPLPLOT and the SDPLOT systems, the standardized data format called the SPL format is used in reading data to be plotted. The output data format of MINCS is translated into the SPL format by using the conversion system called the MINTOSPL system. In this report, how to use the plotting functions is described. (author)

  18. Development of destructive methods of burn-up determination and their application on WWER type nuclear fuels

    International Nuclear Information System (INIS)

    Hermann, A.; Stephan, H.; Nebel, D.

    1984-03-01

    Results are described of a cooperation between the Central Institute of Nuclear Research Rossendorf and the Radium Institute 'V.G. Chlopin' Leningrad in the field of destructive burn-up determination. Laboratory methods of burn-up determination using the classical monitors 137 Cs, 106 Ru, 148 Nd and isotopes of heavy metals (U, Pu) as well as the usefulness of 90 Sr, stable isotopes of Ru and Mo as monitors are dealt with. The analysis of the fuel components uranium (spectrophotometry, potentiometric titration, mass-spectrometric isotope dilution) and plutonium (spectrophotometry, coulometric titration, mass- and alpha-spectrometric isotope dilution) is fully described. Possibilities of increasing the reproducibility (automatic adjusting of measurement conditions) and the sensibility (ion impuls counting) of mass-spectrometric measurements are proposed and applied to a precise determination of Am and Cm isotopic composition. The methods have been used for burn-up analysis of spent WWER (especially WWER-440) fuel. (author)

  19. Non-instrumented capsule design of HANARO irradiation test for the high burn-up large grain UO2 pellets

    International Nuclear Information System (INIS)

    Kim, D. H.; Lee, C. B.; Oh, D. S.

    2001-01-01

    Non-instrumented capsule was designed to irradiate the large grain UO 2 pellet developed for the high burn-up LWR fuel in the HANARO in-pile capsule. UO 2 pelletes will be irradiated up to the burn-up higher than 70 MWD/kgU in HANARO. To irradiate the UO 2 pellets up to the burn-up 70 MWD/kgU, need the time about 60 months and ensure the integrity of non-instrumented capsule for 30 months until replace the new capsule. In addition, to satisfy the safety criteria of HANARO such as prevention of ONB(Onset of Nucleate Boiling), fuel melting and wear damage of the capsule during the long term irradiation, design of the non-instrumented capsule was optimized

  20. Improved decoding for a concatenated coding system

    DEFF Research Database (Denmark)

    Paaske, Erik

    1990-01-01

    The concatenated coding system recommended by CCSDS (Consultative Committee for Space Data Systems) uses an outer (255,233) Reed-Solomon (RS) code based on 8-b symbols, followed by the block interleaver and an inner rate 1/2 convolutional code with memory 6. Viterbi decoding is assumed. Two new...... decoding procedures based on repeated decoding trials and exchange of information between the two decoders and the deinterleaver are proposed. In the first one, where the improvement is 0.3-0.4 dB, only the RS decoder performs repeated trials. In the second one, where the improvement is 0.5-0.6 dB, both...... decoders perform repeated decoding trials and decoding information is exchanged between them...

  1. NALAP: an LMFBR system transient code

    International Nuclear Information System (INIS)

    Martin, B.A.; Agrawal, A.K.; Albright, D.C.; Epel, L.G.; Maise, G.

    1975-07-01

    NALAP is a LMFBR system transient code. This code, adapted from the light water reactor transient code RELAP 3B, simulates thermal-hydraulic response of sodium cooled fast breeder reactors when subjected to postulated accidents such as a massive pipe break as well as a variety of other upset conditions that do not disrupt the system geometry. Various components of the plant are represented by control volumes. These control volumes are connected by junctions some of which may be leak or fill junctions. The fluid flow equations are modeled as compressible, single-stream flow with momentum flux in one dimension. The transient response is computed by integrating the thermal-hydraulic conservation equations from user-initialized operating conditions by an implicit numerical scheme. Point kinetics approximation is used to represent the time dependent heat generation in the reactor core

  2. Symbol synchronization in convolutionally coded systems

    Science.gov (United States)

    Baumert, L. D.; Mceliece, R. J.; Van Tilborg, H. C. A.

    1979-01-01

    Alternate symbol inversion is sometimes applied to the output of convolutional encoders to guarantee sufficient richness of symbol transition for the receiver symbol synchronizer. A bound is given for the length of the transition-free symbol stream in such systems, and those convolutional codes are characterized in which arbitrarily long transition free runs occur.

  3. Coding and decoding for code division multiple user communication systems

    Science.gov (United States)

    Healy, T. J.

    1985-01-01

    A new algorithm is introduced which decodes code division multiple user communication signals. The algorithm makes use of the distinctive form or pattern of each signal to separate it from the composite signal created by the multiple users. Although the algorithm is presented in terms of frequency-hopped signals, the actual transmitter modulator can use any of the existing digital modulation techniques. The algorithm is applicable to error-free codes or to codes where controlled interference is permitted. It can be used when block synchronization is assumed, and in some cases when it is not. The paper also discusses briefly some of the codes which can be used in connection with the algorithm, and relates the algorithm to past studies which use other approaches to the same problem.

  4. UO2 fuel behaviour at rod burn-ups up to 105 MWd/kgHM. A review of 10 years of high burn-up examinations commissioned by AREVA NP

    International Nuclear Information System (INIS)

    Goll, W.; Hoffmann, P.B.; Hellwig, C.; Sauser, W.; Spino, J.; Walker, C.T.

    2007-01-01

    Irradiation experience gained on fuel rods with burn-ups greater than 60 MWd/kgHM irradiated in the Nuclear Power Plant Goesgen, Switzerland, is described. Emphasis is placed on the fuel behaviour, which has been analysed by hot cell examinations at the Institute for Transuranium Elements and the Paul-Scherrer-Institute. Above 60 MWd/kgHM, the so-called high burn-up structure (HBS) forms and the fission gas release increases with burn-up and rod power. Examinations performed in the outer region of the fuel revealed that most if not all of the fission gas created was retained in the HBS, even at 25% porosity. Furthermore, the HBS has a relatively low swelling rate, greatly increased plasticity, and its thermal conductivity is higher than expected from the porosity. The post-irradiation examinations showed that the HBS has no detrimental effects on the performance of stationary irradiated PWR fuel irradiated to the high burn-ups that can be achieved with 5 wt% U-235 enrichment. On the contrary, the HBS results in fuel performance that is generally better than it would have been if the HBS had not formed. (orig.)

  5. Burn-up credit criticality safety benchmark phase VII - UO2 fuel: study of spent fuel compositions for long-term disposal

    International Nuclear Information System (INIS)

    2012-01-01

    After spent nuclear fuel (SNF) is discharged from a nuclear reactor, fuel composition and reactivity continue to vary as a function of time due to the decay of unstable nuclides. Accurate predictions of the concentrations of long-lived radionuclides in SNF, which represent a significant potential hazard to human beings and to the environment over a very long period, are particularly necessary for radiological dose assessments. This report assesses the ability of existing computer codes and associated nuclear data to predict isotopic compositions and their corresponding neutron multiplication factor (k eff ) values for pressurised-water-reactor (PWR) UO 2 fuel at 50 GWd/MTU burn-up in a generic spent fuel cask configuration. Fuel decay compositions and k eff values have been calculated for 30 post-irradiation time steps out to one million years

  6. Bar-code automated waste tracking system

    International Nuclear Information System (INIS)

    Hull, T.E.

    1994-10-01

    The Bar-Code Automated Waste Tracking System was designed to be a site-Specific program with a general purpose application for transportability to other facilities. The system is user-friendly, totally automated, and incorporates the use of a drive-up window that is close to the areas dealing in container preparation, delivery, pickup, and disposal. The system features ''stop-and-go'' operation rather than a long, tedious, error-prone manual entry. The system is designed for automation but allows operators to concentrate on proper handling of waste while maintaining manual entry of data as a backup. A large wall plaque filled with bar-code labels is used to input specific details about any movement of waste

  7. Simulated LOCA Test and Characterization Study Related to High Burn-Up Issue

    International Nuclear Information System (INIS)

    Park, D. J.; Jung, Y. I.; Choi, B. K.; Park, S. Y.; Kim, H. G.; Park, J. Y.

    2012-01-01

    For the safety evaluation of fuel cladding during the injection of emergency core coolant, simulated Loss-of-coolant accident (LOCA) test was performed by using Zircaloy-4 fuel cladding samples. Zircaloy-4 tube samples with and without prehydring were oxidized in a steam environment with the test temperature of 1200 .deg. C. Prehydrided cladding was prepared from as-fabricated Zircaloy-4 to study the effects of hydrogen on mechanical properties of cladding during high temperature oxidation and quench conditions. In order to measure the ductility of the tube samples embrittled by quenching water, ring compression test was carried out by using 8 mm ring sample sectioned from oxidized tube sample and microstructural analysis was also performed after simulated LOCA test. The results showed that hydrogen increases oxygen solubility and pickup rate in the beta layer. This reduces ductility of prehydrided fuel cladding compared with as-fabricated cladding. Trend in ductility decrease for prehydrided sample under simulated LOCA condition was very similar with data obtained from tests conducted using irradiated high burn-up fuel claddings

  8. Experimental modeling of high burn-up structure in SIMFUEL with ion irradiation

    International Nuclear Information System (INIS)

    Baranov, V.; Isaenkova, M.; Lunev, A.; Tenishev, A.; Khlunov, A.

    2013-01-01

    Experiments are conducted to simulate high burn-up structure in accelerator conditions. Three ion irradiation schemes are used: 1. Xe 27+ 160 MeV up to 5x10 15 cm -2 (thermal spikes). 2. Xe 16+ 320 keV up to 1x10 17 cm -2 (collision cascades). 3. He + 20 keV up to 5,5x10 17 cm -2 (implantation stage). Structural characterization performed by scanning electron microscopy, X-ray analysis and atomic force microscopy revealed prominent grain refinement in case of Xe 27+ irradiation. Artificial energy variation for incident ions showed varying size of subgrains. At maximum energy of incident ions, subgrain size amounts ∼ 320 nm. Moving to the edge of irradiated region changes the size to ∼ 170 nm. Typical size of coherent scattering regions matches subgrain size for high-energy irradiation. Low-energy irradiation results in less significant structural changes: flaky structure at random sites for samples irradiated with low-energy xenon ions and bubble nucleation for helium irradiation. Dislocation density increases significantly, and it is shown that a single fluence dependence exists for low- and high-energy irradiation. (authors)

  9. TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jian Gan; Brandon Miller; Dennis Keiser; Adam Robinson; James Madden; Pavel Medvedev; Daniel Wachs

    2014-04-01

    As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists of fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.

  10. A contribution to the understanding of the high burn-up structure formation in nuclear fuels

    International Nuclear Information System (INIS)

    Jonnet, J.

    2007-01-01

    An increase of the discharge burn-up of UO 2 nuclear fuels in the light water reactors results in the appearance of a change of microscopic structure, called HBS. Although well characterised experimentally, important points on the mechanisms of its formation remain to be cleared up. In order to answer these questions, a study of the contribution of the dislocation-type defects was conducted. In a first part, a calculation method of the stress field associated with periodic configurations of dislocations was developed. The method was applied to the cases of edge dislocation pile-up and wall, for which an explicit expression of the internal stress potential was obtained. Through the study of other examples of dislocation configurations, it was highlighted that this method also allows the calculation of any periodic dislocation configuration. In a second part, the evolution of interstitial-type dislocation loops was studied in UO 2 fuel samples doped with 10% in mass of alpha emitters. The experimental loop size distributions were obtained for these samples stored during 4 and 7 years at room temperature. Kinetic equations are proposed in order to study the influence of the resolution process of interstitials from a loop back to the matrix due to an impact with the recoil atom 234 U, as well as the coalescence of two interstitial loops that can diffuse by a volume mechanism. The application of the model shows that the two processes must be considered in the study of the evolution of radiation damage. (author)

  11. LWR FA burn up: A challenge to optimize the entire fuel cycle to assure the envisaged benefit

    International Nuclear Information System (INIS)

    Peehs, M.

    1997-01-01

    Commercial LWR fuel will be limited to a maximum of U-235 content of 5% since the front end of the fuel cycle is licensed and prepared for that maximal enrichment. BWR- and PWR-reloads can be designed achieving batch average burn up over 60 GWd/tHM. In Germany the batch average burn up will presumably increase to this level, since the reload market is requesting further reductions in the fuel cycle inventories. However, it must be noted that the envisaged benefit can only be assured if the entire fuel cycle is optimized. Not all steps in the fuel cycle will bring a positive contribution bu the balance of all individual contributions must realize the envisaged integral benefit. In order to increase the burn up of the nuclear fuel beneficially further R and D both in the front end as well as in the back end of the fuel cycle is needed. An underestimation of the front end/back end interfaces may consume all benefits gained from isolated front optimizations. Back end R and D must be at once concentrated to avoid conservative enveloping licensing for the subsequent steps in the back end of the fuel cycle. Increasing burn up in the front end means making more and more use of the structural materials reserves

  12. Effect of burn-up on the thermal conductivity of uranium dioxide up to 100.000 MWd t-1

    International Nuclear Information System (INIS)

    Ronchi, C.; Sheindlin, M.; Staicu, D.; Kinoshita, M.

    2004-01-01

    The thermal diffusivity and specific heat of reactor-irradiated UO 2 fuel have been measured. Starting from end-of-life conditions at various burn-ups, measurements under thermal annealing cycles were performed in order to investigate the recovery of the thermal conductivity as a function of temperature. The separate effects of soluble fission products, of fission gas frozen in dynamical solution and of radiation damage were determined. In this context, particular emphasis was given to the behaviour of samples displaying the high burn-up rim structure. Recovery stages could be thoroughly investigated in samples that were irradiated at low burn-ups and/or at high irradiation temperatures. Other samples, in particular those exhibiting the characteristic rim structure, disintegrated at temperatures slightly higher than the irradiation temperature. Finally, from a database of several thousand measurements, an accurate formula for the in-pile thermal conductivity of UO 2 up to 100 GWd t -1 was developed, taking into account all the relevant effects and structural changes induced by reactor burn-up

  13. LWR FA burn up: A challenge to optimize the entire fuel cycle to assure the envisaged benefit

    Energy Technology Data Exchange (ETDEWEB)

    Peehs, M [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)

    1997-12-01

    Commercial LWR fuel will be limited to a maximum of U-235 content of 5% since the front end of the fuel cycle is licensed and prepared for that maximal enrichment. BWR- and PWR-reloads can be designed achieving batch average burn up over 60 GWd/tHM. In Germany the batch average burn up will presumably increase to this level, since the reload market is requesting further reductions in the fuel cycle inventories. However, it must be noted that the envisaged benefit can only be assured if the entire fuel cycle is optimized. Not all steps in the fuel cycle will bring a positive contribution bu the balance of all individual contributions must realize the envisaged integral benefit. In order to increase the burn up of the nuclear fuel beneficially further R and D both in the front end as well as in the back end of the fuel cycle is needed. An underestimation of the front end/back end interfaces may consume all benefits gained from isolated front optimizations. Back end R and D must be at once concentrated to avoid conservative enveloping licensing for the subsequent steps in the back end of the fuel cycle. Increasing burn up in the front end means making more and more use of the structural materials reserves.

  14. Study on the sensitivity of Self-Powered Neutron Detectors (SPND) and its change due to burn-up

    International Nuclear Information System (INIS)

    Cho, Gyuseong; Lee, Wanno; Yoon, Jeong-Hyoun.

    1996-01-01

    Self-Powered Neutron Detectors (SPND) are currently used to estimate the power generation distribution and fuel burn-up in several nuclear power reactors in Korea. While they have several advantages such as small size, low cost, and relatively simple electronics required in conjunction with its usage, it has some intrinsic problems of the low level of output current, a slow response time, the rapid change of sensitivity which makes it difficult to use for a long term. In this paper, Monte Carlo simulation was accomplished to calculate the escape probability as a function of the birth position for the typical geometry of rhodium-based SPNDs. Using the simulation result, the burn-up profile of rhodium number density and the neutron sensitivity is calculated as a function of burn-up time in the reactor. The sensitivity of the SPND decreases non-linearly due to the high absorption cross-section and the non-uniform burn-up of rhodium in the emitter rod. The method used here can be applied to the analysis of other types of SPNDs and will be useful in the optimum design of new SPNDs for long-term usage. (author)

  15. Direct measurement of burn up monitor by Pulsed Laser Deposition (PLD) followed by Isotopic Dilution Mass Spectrometry

    International Nuclear Information System (INIS)

    Sajimol, R.; Manoravi, P.; NaIini, S.; Balasubramanian, R.; Joseph, M.

    2012-01-01

    Burn-up measurement is an important aspect in the assessment of fuel performance especially for experimental nuclear fuels. Conventional mass spectrometric technique offer the best accuracy for determination of burn-up but they suffer from the labour intensive and time consuming chemical separation procedures followed by mass spectrometric analysis. Our laboratory has reported a potential laser mass spectrometric technique with advantages of (i) direct and fast measurement of ion intensities of selected rare earth element and residual heavy element atoms to deduce burn up and (ii) adaptability to remote handling of radioactive samples. Direct quantification of burn up monitor element in fuel in the form of pellet as well as liquid was probed by pulsed laser deposition followed by Isotopic Dilution Mass Spectrometric technique (IDMS). The procedure involving laser ablation of heavy element (namely U and Pu) and fission product (Nd, La etc) from a simulated spent fuel matrix followed by isotopic dilution mass spectrometry using thermal ionization mass spectrometry (TIMS) has been presently attempted to arrive at the rare earth element to heavy element ratio to deduce burn up using the methodology described in our earlier work. The details of IDMS technique has been reviewed by Heumann et al. Accurately weighed amounts of major rare earth fission products such as Nd, La, Ce and Sm in solution form were mixed with known quantity of uranium solution (all the weights are corresponding to their fission yields and the residual heavy element atoms after a given burn up) and mixed together to attain uniformity. The solution is then dried and resulting powder was pelletized and sintered. Subsequently, the pellet was ablated with pulsed laser (8 ns, 532 nm, Nd-YAG) and the plume was deposited on a glass plate. This deposit was dissolved in minimum amount of nitric acid. A known volume of the solution was mixed with spike (for e.g., 150 Nd/ 142 Nd, 233 U/ 238 U in this study

  16. HELIAS module development for systems codes

    Energy Technology Data Exchange (ETDEWEB)

    Warmer, F., E-mail: Felix.Warmer@ipp.mpg.de; Beidler, C.D.; Dinklage, A.; Egorov, K.; Feng, Y.; Geiger, J.; Schauer, F.; Turkin, Y.; Wolf, R.; Xanthopoulos, P.

    2015-02-15

    In order to study and design next-step fusion devices such as DEMO, comprehensive systems codes are commonly employed. In this work HELIAS-specific models are proposed which are designed to be compatible with systems codes. The subsequently developed models include: a geometry model based on Fourier coefficients which can represent the complex 3-D plasma shape, a basic island divertor model which assumes diffusive cross-field transport and high radiation at the X-point, and a coil model which combines scaling aspects based on the HELIAS 5-B reactor design in combination with analytic inductance and field calculations. In addition, stellarator-specific plasma transport is discussed. A strategy is proposed which employs a predictive confinement time scaling derived from 1-D neoclassical and 3-D turbulence simulations. This paper reports on the progress of the development of the stellarator-specific models while an implementation and verification study within an existing systems code will be presented in a separate work. This approach is investigated to ultimately allow one to conduct stellarator system studies, develop design points of HELIAS burning plasma devices, and to facilitate a direct comparison between tokamak and stellarator DEMO and power plant designs.

  17. Analog system for computing sparse codes

    Science.gov (United States)

    Rozell, Christopher John; Johnson, Don Herrick; Baraniuk, Richard Gordon; Olshausen, Bruno A.; Ortman, Robert Lowell

    2010-08-24

    A parallel dynamical system for computing sparse representations of data, i.e., where the data can be fully represented in terms of a small number of non-zero code elements, and for reconstructing compressively sensed images. The system is based on the principles of thresholding and local competition that solves a family of sparse approximation problems corresponding to various sparsity metrics. The system utilizes Locally Competitive Algorithms (LCAs), nodes in a population continually compete with neighboring units using (usually one-way) lateral inhibition to calculate coefficients representing an input in an over complete dictionary.

  18. A Consistent System for Coding Laboratory Samples

    Science.gov (United States)

    Sih, John C.

    1996-07-01

    A formal laboratory coding system is presented to keep track of laboratory samples. Preliminary useful information regarding the sample (origin and history) is gained without consulting a research notebook. Since this system uses and retains the same research notebook page number for each new experiment (reaction), finding and distinguishing products (samples) of the same or different reactions becomes an easy task. Using this system multiple products generated from a single reaction can be identified and classified in a uniform fashion. Samples can be stored and filed according to stage and degree of purification, e.g. crude reaction mixtures, recrystallized samples, chromatographed or distilled products.

  19. Burnup calculation code system COMRAD96

    International Nuclear Information System (INIS)

    Suyama, Kenya; Masukawa, Fumihiro; Ido, Masaru; Enomoto, Masaki; Takyu, Shuiti; Hara, Toshiharu.

    1997-06-01

    COMRAD was one of the burnup code system developed by JAERI. COMRAD96 is a transfered version of COMRAD to Engineering Work Station. It is divided to several functional modules, 'Cross Section Treatment', 'Generation and Depletion Calculation', and 'Post Process'. It enables us to analyze a burnup problem considering a change of neutron spectrum using UNITBURN. Also it can display the γ Spectrum on a terminal. This report is the general description and user's manual of COMRAD96. (author)

  20. Burnup calculation code system COMRAD96

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Masukawa, Fumihiro; Ido, Masaru; Enomoto, Masaki; Takyu, Shuiti; Hara, Toshiharu

    1997-06-01

    COMRAD was one of the burnup code system developed by JAERI. COMRAD96 is a transfered version of COMRAD to Engineering Work Station. It is divided to several functional modules, `Cross Section Treatment`, `Generation and Depletion Calculation`, and `Post Process`. It enables us to analyze a burnup problem considering a change of neutron spectrum using UNITBURN. Also it can display the {gamma} Spectrum on a terminal. This report is the general description and user`s manual of COMRAD96. (author)

  1. A mean field theory of coded CDMA systems

    International Nuclear Information System (INIS)

    Yano, Toru; Tanaka, Toshiyuki; Saad, David

    2008-01-01

    We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems

  2. A mean field theory of coded CDMA systems

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Toru [Graduate School of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa 223-8522 (Japan); Tanaka, Toshiyuki [Graduate School of Informatics, Kyoto University, Yoshida Hon-machi, Sakyo-ku, Kyoto-shi, Kyoto 606-8501 (Japan); Saad, David [Neural Computing Research Group, Aston University, Birmingham B4 7ET (United Kingdom)], E-mail: yano@thx.appi.keio.ac.jp

    2008-08-15

    We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems.

  3. Integrated burnup calculation code system SWAT

    International Nuclear Information System (INIS)

    Suyama, Kenya; Hirakawa, Naohiro; Iwasaki, Tomohiko.

    1997-11-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. It enables us to analyze the burnup problem using neutron spectrum depending on environment of irradiation, combining SRAC which is Japanese standard thermal reactor analysis code system and ORIGEN2 which is burnup code widely used all over the world. SWAT makes effective cross section library based on results by SRAC, and performs the burnup analysis with ORIGEN2 using that library. SRAC and ORIGEN2 can be called as external module. SWAT has original cross section library on based JENDL-3.2 and libraries of fission yield and decay data prepared from JNDC FP Library second version. Using these libraries, user can use latest data in the calculation of SWAT besides the effective cross section prepared by SRAC. Also, User can make original ORIGEN2 library using the output file of SWAT. This report presents concept and user's manual of SWAT. (author)

  4. Coupling the severe accident code SCDAP with the system thermal hydraulic code MARS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Jin; Chung, Bub Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    MARS is a best-estimate system thermal hydraulics code with multi-dimensional modeling capability. One of the aims in MARS code development is to make it a multi-functional code system with the analysis capability to cover the entire accident spectrum. For this purpose, MARS code has been coupled with a number of other specialized codes such as CONTEMPT for containment analysis, and MASTER for 3-dimensional kinetics. And in this study, the SCDAP code has been coupled with MARS to endow the MARS code system with severe accident analysis capability. With the SCDAP, MARS code system now has acquired the capability to simulate such severe accident related phenomena as cladding oxidation, melting and slumping of fuel and reactor structures.

  5. Coupling the severe accident code SCDAP with the system thermal hydraulic code MARS

    International Nuclear Information System (INIS)

    Lee, Young Jin; Chung, Bub Dong

    2004-01-01

    MARS is a best-estimate system thermal hydraulics code with multi-dimensional modeling capability. One of the aims in MARS code development is to make it a multi-functional code system with the analysis capability to cover the entire accident spectrum. For this purpose, MARS code has been coupled with a number of other specialized codes such as CONTEMPT for containment analysis, and MASTER for 3-dimensional kinetics. And in this study, the SCDAP code has been coupled with MARS to endow the MARS code system with severe accident analysis capability. With the SCDAP, MARS code system now has acquired the capability to simulate such severe accident related phenomena as cladding oxidation, melting and slumping of fuel and reactor structures

  6. Calculation of burn-up data for spent LWR-fuels with respect to the design of spent fuel reprocessing plants

    International Nuclear Information System (INIS)

    Gasteiger, R.

    1976-11-01

    The design of spent fuel reprocessing plants makes necessary a detailed knowledge of the composition of the incoming fuels as a function of burn-up. This report gives a broad review on the composition of radionuclides in fuels (fission products, actinides) and structural materials for different burn-up data. (orig.) [de

  7. Systemization of burnup sensitivity analysis code

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Hyoudou, Hideaki

    2004-02-01

    To practical use of fact reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoints of improvements on plant efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by development of adjusted nuclear library using the cross-section adjustment method, in which the results of critical experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor core 'JOYO'. The analysis of burnup characteristics is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, development of a analysis code for burnup sensitivity, SAGEP-BURN, has been done and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to user due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functionalities in the existing large system. It is not sufficient to unify each computational component for some reasons; computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion. For this

  8. The role of grain boundary fission gases in high burn-up fuel under reactivity initiated accident conditions

    International Nuclear Information System (INIS)

    Lemoine, F.; Papin, J.; Frizonnet, J.M.; Cazalis, B.; Rigat, H.

    2002-01-01

    In the frame of reactivity-initiated accidents (RIA) studies, the CABRI REP-Na programme is currently performed, focused on high burn-up UO 2 and MOX fuel behaviour. From 1993 to 1998, seven tests were performed with UO 2 fuel and three with MOX fuel. In all these tests, particular attention has been devoted to the role of fission gases in transient fuel behaviour and in clad loading mechanisms. From the analysis of experimental results, some basic phenomena were identified and a better understanding of the transient fission gas behaviour was obtained in relation to the fuel and clad thermo-mechanical evolution in RIA, but also to the initial state of the fuel before the transient. A high burn-up effect linked to the increasing part of grain boundary gases is clearly evidenced in the final gas release, which would also significantly contribute to the clad loading mechanisms. (authors)

  9. Modelling of pore coarsening in the high burn-up structure of UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    Veshchunov, M.S.; Tarasov, V.I., E-mail: tarasov@ibrae.ac.ru

    2017-05-15

    The model for coalescence of randomly distributed immobile pores owing to their growth and impingement, applied by the authors earlier to consideration of the porosity evolution in the high burn-up structure (HBS) at the UO{sub 2} fuel pellet periphery (rim zone), was further developed and validated. Predictions of the original model, taking into consideration only binary impingements of growing immobile pores, qualitatively correctly describe the decrease of the pore number density with the increase of the fractional porosity, however notably underestimate the coalescence rate at high burn-ups attained in the outmost region of the rim zone. In order to overcome this discrepancy, the next approximation of the model taking into consideration triple impingements of growing pores was developed. The advanced model provides a reasonable consent with experimental data, thus demonstrating the validity of the proposed pore coarsening mechanism in the HBS.

  10. Systemization of burnup sensitivity analysis code. 2

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Hyoudou, Hideaki

    2005-02-01

    Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of criticality experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristics is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons; the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion. For

  11. On the thermal conductivity of UO2 nuclear fuel at a high burn-up of around 100 MWd/kgHM

    International Nuclear Information System (INIS)

    Walker, C.T.; Staicu, D.; Sheindlin, M.; Papaioannou, D.; Goll, W.; Sontheimer, F.

    2006-01-01

    A study of the thermal conductivity of a commercial PWR fuel with an average pellet burn-up of 102 MWd/kgHM is described. The thermal conductivity data reported were derived from the thermal diffusivity measured by the laser flash method. The factors determining the fuel thermal conductivity at high burn-up were elucidated by investigating the recovery that occurred during thermal annealing. It was found that the thermal conductivity in the outer region of the fuel was much higher than it would have been if the high burn-up structure were not present. The increase in thermal conductivity is a consequence of the removal of fission products and radiation defects from the fuel lattice during recrystallisation of the fuel grains (an integral part of the formation process of the high burn-up structure). The gas porosity in the high burn-up structure lowers the increase in thermal conductivity caused by recrystallisation

  12. Burn-up determination of irradiated uranium oxide by means of direct gama spectrometry and by radiochemical method

    International Nuclear Information System (INIS)

    Cunha, I.I.L.; Nastasi, M.J.C.; Lima, F.W.

    1981-09-01

    The burn-up of thermal neutrons irradiated U 3 O 8 (natural uranium) samples has been determined by using both direct gamma spectrometry and radiochemical methods and the results obtained were compared. The fission products 144 Ce, 103 Ru, 106 Ru, 137 Cs and 95 Zr were chosen as burn-up monitors. In order to isolate the radioisotopes chosen as monitors, a radiochemical separation procedure has been established, in which the solvent extraction technique was used to separate cerium, cesium and ruthenium one from the other and all of them from uranium. The separation between zirconium and niobium and of both elements from the other radioisotopes and uranium was accomplished by means of adsorption on a silica-gel column, followed by selective elution of zirconium and of niobium. When use was made of the direct gamma-ray spectrometry method, the radioactivity of each nuclide of interest was measured in presence of all others. For this purpose use was made of gamma-ray spectrometry and of a Ge-Li detector. Comparison of burn-up values obtained by both methods was made by means of Student's 't' test, and this showed that results obtained in each case are statistically equal. (Author) [pt

  13. Code system BCG for gamma-ray skyshine calculation

    International Nuclear Information System (INIS)

    Ryufuku, Hiroshi; Numakunai, Takao; Miyasaka, Shun-ichi; Minami, Kazuyoshi.

    1979-03-01

    A code system BCG has been developed for calculating conveniently and efficiently gamma-ray skyshine doses using the transport calculation codes ANISN and DOT and the point-kernel calculation codes G-33 and SPAN. To simplify the input forms to the system, the forms for these codes are unified, twelve geometric patterns are introduced to give material regions, and standard data are available as a library. To treat complex arrangements of source and shield, it is further possible to use successively the code such that the results from one code may be used as input data to the same or other code. (author)

  14. Concatenated coding system with iterated sequential inner decoding

    DEFF Research Database (Denmark)

    Jensen, Ole Riis; Paaske, Erik

    1995-01-01

    We describe a concatenated coding system with iterated sequential inner decoding. The system uses convolutional codes of very long constraint length and operates on iterations between an inner Fano decoder and an outer Reed-Solomon decoder......We describe a concatenated coding system with iterated sequential inner decoding. The system uses convolutional codes of very long constraint length and operates on iterations between an inner Fano decoder and an outer Reed-Solomon decoder...

  15. Use of computer codes for system reliability analysis

    International Nuclear Information System (INIS)

    Sabek, M.; Gaafar, M.; Poucet, A.

    1988-01-01

    This paper gives a collective summary of the studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRANTIC, FTAP, computer code package RALLY, and BOUNDS codes. Two reference study cases were executed by each code. The results obtained logic/probabilistic analysis as well as computation time are compared

  16. Neutron cross section library production code system for continuous energy Monte Carlo code MVP. LICEM

    International Nuclear Information System (INIS)

    Mori, Takamasa; Nakagawa, Masayuki; Kaneko, Kunio.

    1996-05-01

    A code system has been developed to produce neutron cross section libraries for the MVP continuous energy Monte Carlo code from an evaluated nuclear data library in the ENDF format. The code system consists of 9 computer codes, and can process nuclear data in the latest ENDF-6 format. By using the present system, MVP neutron cross section libraries for important nuclides in reactor core analyses, shielding and fusion neutronics calculations have been prepared from JENDL-3.1, JENDL-3.2, JENDL-FUSION file and ENDF/B-VI data bases. This report describes the format of MVP neutron cross section library, the details of each code in the code system and how to use them. (author)

  17. Neutron cross section library production code system for continuous energy Monte Carlo code MVP. LICEM

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Takamasa; Nakagawa, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio

    1996-05-01

    A code system has been developed to produce neutron cross section libraries for the MVP continuous energy Monte Carlo code from an evaluated nuclear data library in the ENDF format. The code system consists of 9 computer codes, and can process nuclear data in the latest ENDF-6 format. By using the present system, MVP neutron cross section libraries for important nuclides in reactor core analyses, shielding and fusion neutronics calculations have been prepared from JENDL-3.1, JENDL-3.2, JENDL-FUSION file and ENDF/B-VI data bases. This report describes the format of MVP neutron cross section library, the details of each code in the code system and how to use them. (author).

  18. Optical code division multiple access secure communications systems with rapid reconfigurable polarization shift key user code

    Science.gov (United States)

    Gao, Kaiqiang; Wu, Chongqing; Sheng, Xinzhi; Shang, Chao; Liu, Lanlan; Wang, Jian

    2015-09-01

    An optical code division multiple access (OCDMA) secure communications system scheme with rapid reconfigurable polarization shift key (Pol-SK) bipolar user code is proposed and demonstrated. Compared to fix code OCDMA, by constantly changing the user code, the performance of anti-eavesdropping is greatly improved. The Pol-SK OCDMA experiment with a 10 Gchip/s user code and a 1.25 Gb/s user data of payload has been realized, which means this scheme has better tolerance and could be easily realized.

  19. On-line extraction of the variance caused by burn-up in in-core three-dimensional power distribution

    International Nuclear Information System (INIS)

    Wang Yaqi; Luo Zhengpei; Li Fu; Liu Wenfeng

    2001-01-01

    In most of PWRs, the ex-core ion-chambers are the sole real-time sensors to respond to in-core power and its axial offset. However, the calibration coefficient of the ion-chambers depends on the (3D) power distribution and varies with the burn-up. People expect to know the variance in distribution caused by burn-up directly from the signals of ion-chambers. This expectation is not realized as yet, because an ion-chamber almost only responds to its nearest fuel assemblies. The authors then developed a two-step method for burn-up characteristic extraction: the harmonics synthesis method and harmonics' burn-up grouping. Using the extracted burn-up characteristics, the relationship between the readings of the ex-core ion-chambers and the in-core 3D power distribution is set up. Through the simulation on the heating reactor, the method of burn-up characteristic extraction is verified under engineering conditions. It is possible to on-line extract the variance caused by burn-up in 3D power distribution

  20. Development of a numerical experimentation method for thermal hydraulics design and evaluation of high burn-up and innovative fuel pins

    International Nuclear Information System (INIS)

    Ninokata, Hisashi; Misawa, Takeharu; Baglietto, Emilio; Sorokin, A.P.; Maekawa, Isamu; Ohshima, Hiroyuki; Yamaguchi, Akira

    2003-03-01

    A method of large scale direct numerical simulation of turbulent flows in a high burn-up fuel pin bundle is proposed to evaluate wall shear stress and temperature distributions on the pin surfaces as well as detailed coolant velocity and temperature distributions inside subchannels under various thermal hydraulic conditions. This simulation is aimed at providing a tool to confirm margins to thermal hydraulics design limits of the nuclear fuels and at the same time to be used in design-by-analysis approaches. The method will facilitate thermal hydraulic design of high performance LMFR core fuels characterized by high burn-up, ultra long life, high reliable and safe performances, easiness of operation and maintenance, minimization of radio active wastes, without much relying on such empirical approach as hot spot factor and sub-factors, and above all the high cost mock up experiments. A pseudo direct numerical simulation of turbulence (DNS) code is developed, first on the Cartesian coordinates and then on the curvilinear boundary fit coordinates that enables us to reproduce thermal hydraulics phenomena in such a complicated flow channel as subchannels in a nuclear fuel pin assembly. The coordinate transformation is evaluated and demonstrated to yield correct physical quantities by carrying out computations and comparisons with experimental data with respect to the distributions of various physical quantities and turbulence statistics for fluid flow and heat transfers in various kinds of simple flow channel geometry. Then the boundary fitted pseudo DNS for flows inside an infinite pin array configuration is carried out and compared with available detailed experimental data. In parallel similar calculations are carried out using a commercial code STAR-CD to cross-check the DNS performances. As a results, the pseudo DNS showed reasonable comparisons with experiments as well as the STAR-CD results. Importance of the secondary flow influences is emphasized on the momentum

  1. Status of reactor core design code system in COSINE code package

    International Nuclear Information System (INIS)

    Chen, Y.; Yu, H.; Liu, Z.

    2014-01-01

    For self-reliance, COre and System INtegrated Engine for design and analysis (COSINE) code package is under development in China. In this paper, recent development status of the reactor core design code system (including the lattice physics code and the core simulator) is presented. The well-established theoretical models have been implemented. The preliminary verification results are illustrated. And some special efforts, such as updated theory models and direct data access application, are also made to achieve better software product. (author)

  2. Status of reactor core design code system in COSINE code package

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Yu, H.; Liu, Z., E-mail: yuhui@snptc.com.cn [State Nuclear Power Software Development Center, SNPTC, National Energy Key Laboratory of Nuclear Power Software (NEKLS), Beijiing (China)

    2014-07-01

    For self-reliance, COre and System INtegrated Engine for design and analysis (COSINE) code package is under development in China. In this paper, recent development status of the reactor core design code system (including the lattice physics code and the core simulator) is presented. The well-established theoretical models have been implemented. The preliminary verification results are illustrated. And some special efforts, such as updated theory models and direct data access application, are also made to achieve better software product. (author)

  3. On Analyzing LDPC Codes over Multiantenna MC-CDMA System

    Directory of Open Access Journals (Sweden)

    S. Suresh Kumar

    2014-01-01

    Full Text Available Multiantenna multicarrier code-division multiple access (MC-CDMA technique has been attracting much attention for designing future broadband wireless systems. In addition, low-density parity-check (LDPC code, a promising near-optimal error correction code, is also being widely considered in next generation communication systems. In this paper, we propose a simple method to construct a regular quasicyclic low-density parity-check (QC-LDPC code to improve the transmission performance over the precoded MC-CDMA system with limited feedback. Simulation results show that the coding gain of the proposed QC-LDPC codes is larger than that of the Reed-Solomon codes, and the performance of the multiantenna MC-CDMA system can be greatly improved by these QC-LDPC codes when the data rate is high.

  4. Joint design of QC-LDPC codes for coded cooperation system with joint iterative decoding

    Science.gov (United States)

    Zhang, Shunwai; Yang, Fengfan; Tang, Lei; Ejaz, Saqib; Luo, Lin; Maharaj, B. T.

    2016-03-01

    In this paper, we investigate joint design of quasi-cyclic low-density-parity-check (QC-LDPC) codes for coded cooperation system with joint iterative decoding in the destination. First, QC-LDPC codes based on the base matrix and exponent matrix are introduced, and then we describe two types of girth-4 cycles in QC-LDPC codes employed by the source and relay. In the equivalent parity-check matrix corresponding to the jointly designed QC-LDPC codes employed by the source and relay, all girth-4 cycles including both type I and type II are cancelled. Theoretical analysis and numerical simulations show that the jointly designed QC-LDPC coded cooperation well combines cooperation gain and channel coding gain, and outperforms the coded non-cooperation under the same conditions. Furthermore, the bit error rate performance of the coded cooperation employing jointly designed QC-LDPC codes is better than those of random LDPC codes and separately designed QC-LDPC codes over AWGN channels.

  5. SCALE Code System 6.2.1

    Energy Technology Data Exchange (ETDEWEB)

    Rearden, Bradley T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jessee, Matthew Anderson [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.

  6. SCALE Code System 6.2.2

    Energy Technology Data Exchange (ETDEWEB)

    Rearden, Bradley T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jessee, Matthew Anderson [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    The SCALE Code System is a widely used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor physics, radiation shielding, radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including 3 deterministic and 3 Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results. SCALE 6.2 represents one of the most comprehensive revisions in the history of SCALE, providing several new capabilities and significant improvements in many existing features.

  7. SCALE Code System 6.2.1

    International Nuclear Information System (INIS)

    Rearden, Bradley T.; Jessee, Matthew Anderson

    2016-01-01

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE's graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.

  8. UK regulatory perspective on the application of burn-up credit to the BNFL thorp head end plant

    International Nuclear Information System (INIS)

    Simister, D.N.; Clemson, P.D.

    2003-01-01

    In the UK the Health and Safety Executive, which incorporates the Nuclear Installations Inspectorate (NII), is responsible for regulation of safety on nuclear sites. This paper reports progress made in the application and development of a UK regulatory position for assessing licensee's plant safety caes which invoke the use of Burn-up Credit for criticality applications. The NII's principles and strategy for the assessment of this technical area have been developed over a period of time following expressions of interest from UK industry and subsequent involvement in the international collaborations and debate in this area. This experience has now been applied to the first main plant safety case application claiming Burn-up Credit. This case covers the BNFL Thermal Oxide Reprocessing Plant (THORP) dissolver at Sellafield, where dissolved gadolinium neutron poison is used as a criticality control. The case argues for a reduction in gadolinium content by taking credit for the burn-up of input fuel. The UK regulatory process, assessment principles and criteria are briefly outlined, showing the regulatory framework used to review the case. These issues include the fundamental requirement in UK Health and Safety law to demonstrate that risks have been reduced to as low as reasonably practicable (ALARP), the impact on safety margins, compliance and operability procedures, and the need for continuing review. Novel features of methodology, using a ''Residual Enrichment'' and ''Domain Boundary'' approach, were considered and accepted. The underlying validation, both of criticality methodology and isotopic determination, was also reviewed. Compliance was seen to rely heavily on local in-situ measurements of spent fuel used to determine ''Residual Enrichment'' and other parameters, requiring review of the development and basis of the correlations used to underpin the measurement process. Overall, it was concluded that the case as presented was adequate. Gadolinium reduction

  9. Reactivity loss validation of high burn-up PWR fuels with pile-oscillation experiments in MINERVE

    Energy Technology Data Exchange (ETDEWEB)

    Leconte, P.; Vaglio-Gaudard, C.; Eschbach, R.; Di-Salvo, J.; Antony, M.; Pepino, A. [CEA, DEN, DER, Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

    2012-07-01

    The ALIX experimental program relies on the experimental validation of the spent fuel inventory, by chemical analysis of samples irradiated in a PWR between 5 and 7 cycles, and also on the experimental validation of the spent fuel reactivity loss with bum-up, obtained by pile-oscillation measurements in the MINERVE reactor. These latter experiments provide an overall validation of both the fuel inventory and of the nuclear data responsible for the reactivity loss. This program offers also unique experimental data for fuels with a burn-up reaching 85 GWd/t, as spent fuels in French PWRs never exceeds 70 GWd/t up to now. The analysis of these experiments is done in two steps with the APOLLO2/SHEM-MOC/CEA2005v4 package. In the first one, the fuel inventory of each sample is obtained by assembly calculations. The calculation route consists in the self-shielding of cross sections on the 281 energy group SHEM mesh, followed by the flux calculation by the Method Of Characteristics in a 2D-exact heterogeneous geometry of the assembly, and finally a depletion calculation by an iterative resolution of the Bateman equations. In the second step, the fuel inventory is used in the analysis of pile-oscillation experiments in which the reactivity of the ALIX spent fuel samples is compared to the reactivity of fresh fuel samples. The comparison between Experiment and Calculation shows satisfactory results with the JEFF3.1.1 library which predicts the reactivity loss within 2% for burn-up of {approx}75 GWd/t and within 4% for burn-up of {approx}85 GWd/t. (authors)

  10. Nuclear fuel and/or fertile material element suitable for non-destructive determination of burn-up

    International Nuclear Information System (INIS)

    Muench, E.

    1976-01-01

    The invention refers to a nuclear fuel and/or fertile material element suitable for non-destructive burn-up analysis, where an isotope or a mixture of isotopes capable of being activated is provided for measuring the intensity of radiation emitted from radioactive nuclides, especially the intensity of gamma rays. The half-life of radioactive decay of the isotope or the mixture mentioned above after being activated is sufficiently large compared with the irradiation of the fuel and/or fertile material element in the nuclear reactor. (orig.) [de

  11. Burn-up calculations for a thorium HTR with one and with two types of fuel particle

    Energy Technology Data Exchange (ETDEWEB)

    Griggs, C. F.

    1975-06-15

    Cell burn-up calculations have been made on a thorium pin-cell operating with one or with two types of particle. With one particle, the input thorium and uranium are mixed prior to irradiation and all discharged uranium is recycled. With two particles, the fuel is kept in two streams and only the uranium generated from thorium is recycled. The two models are found to give similar power generations from a given initial U-235 input. The choice between the two types of particle is probably not determined by reactor physics considerations but by the value of the fuel credits and by the cost of fuel fabrication and reprocessing.

  12. Next generation Zero-Code control system UI

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Developing ergonomic user interfaces for control systems is challenging, especially during machine upgrade and commissioning where several small changes may suddenly be required. Zero-code systems, such as *Inspector*, provide agile features for creating and maintaining control system interfaces. More so, these next generation Zero-code systems bring simplicity and uniformity and brake the boundaries between Users and Developers. In this talk we present *Inspector*, a CERN made Zero-code application development system, and we introduce the major differences and advantages of using Zero-code control systems to develop operational UI.

  13. Variable-length code construction for incoherent optical CDMA systems

    Science.gov (United States)

    Lin, Jen-Yung; Jhou, Jhih-Syue; Wen, Jyh-Horng

    2007-04-01

    The purpose of this study is to investigate the multirate transmission in fiber-optic code-division multiple-access (CDMA) networks. In this article, we propose a variable-length code construction for any existing optical orthogonal code to implement a multirate optical CDMA system (called as the multirate code system). For comparison, a multirate system where the lower-rate user sends each symbol twice is implemented and is called as the repeat code system. The repetition as an error-detection code in an ARQ scheme in the repeat code system is also investigated. Moreover, a parallel approach for the optical CDMA systems, which is proposed by Marić et al., is also compared with other systems proposed in this study. Theoretical analysis shows that the bit error probability of the proposed multirate code system is smaller than other systems, especially when the number of lower-rate users is large. Moreover, if there is at least one lower-rate user in the system, the multirate code system accommodates more users than other systems when the error probability of system is set below 10 -9.

  14. A Robust Cross Coding Scheme for OFDM Systems

    NARCIS (Netherlands)

    Shao, X.; Slump, Cornelis H.

    2010-01-01

    In wireless OFDM-based systems, coding jointly over all the sub-carriers simultaneously performs better than coding separately per sub-carrier. However, the joint coding is not always optimal because its achievable channel capacity (i.e. the maximum data rate) is inversely proportional to the

  15. MELCOR Accident Consequence Code System (MACCS)

    International Nuclear Information System (INIS)

    Jow, H.N.; Sprung, J.L.; Ritchie, L.T.; Rollstin, J.A.; Chanin, D.I.

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management. 59 refs., 14 figs., 15 tabs

  16. MELCOR Accident Consequence Code System (MACCS)

    International Nuclear Information System (INIS)

    Rollstin, J.A.; Chanin, D.I.; Jow, H.N.

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projections, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management

  17. MELCOR Accident Consequence Code System (MACCS)

    Energy Technology Data Exchange (ETDEWEB)

    Jow, H.N.; Sprung, J.L.; Ritchie, L.T. (Sandia National Labs., Albuquerque, NM (USA)); Rollstin, J.A. (GRAM, Inc., Albuquerque, NM (USA)); Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA))

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management. 59 refs., 14 figs., 15 tabs.

  18. Numerical analysis and simulation of behavior of high burn-up PWR fuel pulse-irradiated in reactivity-initiated accident conditions

    International Nuclear Information System (INIS)

    Suzuki, M.; Sugiyama, T.; Udagawa, Y.; Nagase, F.; Fuketa, T.

    2010-01-01

    The four cases of the NSRR experiments, consisting of two room temperature tests and two high temperature tests, using high burn-up PWR fuel rods are analyzed by using the RANNS code to discuss the fuel behavior in hypothetical pulse-irradiation conditions, and the results are compared with metallography observations of ruptured claddings. The cladding rupture occurred by a shear sliding which starts from the tip of incipient crack generated in the hydride dense layer. The analyses reveal that the onset of shear sliding leading to cladding rupture can be closely associated with the stress intensity factor KI at the crack tip and local plastic strain evolution around the tip as well, and that these two factors depend also on the temperature of cladding. Simulation calculations on the basis of experimental conditions reveals that the cladding stress is dependent on the height and half-width of pulse power, and for the same integral enthalpy of pulse a larger half-width mitigates the severity of transient and decreases KI to allow plastic strain by temperature rise, thus failure possibility would be markedly decreased

  19. Variable code gamma ray imaging system

    International Nuclear Information System (INIS)

    Macovski, A.; Rosenfeld, D.

    1979-01-01

    A gamma-ray source distribution in the body is imaged onto a detector using an array of apertures. The transmission of each aperture is modulated using a code such that the individual views of the source through each aperture can be decoded and separated. The codes are chosen to maximize the signal to noise ratio for each source distribution. These codes determine the photon collection efficiency of the aperture array. Planar arrays are used for volumetric reconstructions and circular arrays for cross-sectional reconstructions. 14 claims

  20. Channel coding in the space station data system network

    Science.gov (United States)

    Healy, T.

    1982-01-01

    A detailed discussion of the use of channel coding for error correction, privacy/secrecy, channel separation, and synchronization is presented. Channel coding, in one form or another, is an established and common element in data systems. No analysis and design of a major new system would fail to consider ways in which channel coding could make the system more effective. The presence of channel coding on TDRS, Shuttle, the Advanced Communication Technology Satellite Program system, the JSC-proposed Space Operations Center, and the proposed 30/20 GHz Satellite Communication System strongly support the requirement for the utilization of coding for the communications channel. The designers of the space station data system have to consider the use of channel coding.

  1. Recent developments in the Los Alamos radiation transport code system

    International Nuclear Information System (INIS)

    Forster, R.A.; Parsons, K.

    1997-01-01

    A brief progress report on updates to the Los Alamos Radiation Transport Code System (LARTCS) for solving criticality and fixed-source problems is provided. LARTCS integrates the Diffusion Accelerated Neutral Transport (DANT) discrete ordinates codes with the Monte Carlo N-Particle (MCNP) code. The LARCTS code is being developed with a graphical user interface for problem setup and analysis. Progress in the DANT system for criticality applications include a two-dimensional module which can be linked to a mesh-generation code and a faster iteration scheme. Updates to MCNP Version 4A allow statistical checks of calculated Monte Carlo results

  2. Design and burn-up analyses of new type holder for silicon neutron transmutation doping.

    Science.gov (United States)

    Komeda, Masao; Arai, Masaji; Tamai, Kazuo; Kawasaki, Kozo

    2016-07-01

    We have developed a new silicon irradiation holder with a neutron filter to increase the irradiation efficiency. The neutron filter is made of an alloy of aluminum and B4C particles. We fabricated a new holder based on the results of design analyses. This filter has limited use in applications requiring prolonged use due to a decrease in the amount of (10)B in B4C particles. We investigated the influence of (10)B reduction on doping distribution in a silicon ingot by using the Monte Carlo Code MVP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Burn-up determinations and dimensional measurements of TRIGA-HEU fuel elements from the 14 MW steady-state core

    International Nuclear Information System (INIS)

    Toma, C.; Alexa, Al.; Craciunescu, T.; Pirvan, M.; Dobrin, R.

    2008-01-01

    In this paper there are presented the results of nondestructive examination in Post Irradiation Examination Laboratory for twenty five fuel rods selected from 14 MW steady state core. Gamma scanning and dimensional measurements were carried out in order to determine burn-up and diametric deflection of the fuel rods. Also, some comparisons with SSR Safety Report estimations for the maximum burn-up pin were made. (authors)

  4. Module type plant system dynamics analysis code (MSG-COPD). Code manual

    International Nuclear Information System (INIS)

    Sakai, Takaaki

    2002-11-01

    MSG-COPD is a module type plant system dynamics analysis code which involves a multi-dimensional thermal-hydraulics calculation module to analyze pool type of fast breeder reactors. Explanations of each module and the methods for the input data are described in this code manual. (author)

  5. Measuring device for the distribution of burn-up degree in fuel assembly irradiated in nuclear reactor

    International Nuclear Information System (INIS)

    Kumanomido, Hironori

    1989-01-01

    The object of the invention is to measure the distribution of burn-up degree, of fuel assemblies irradiated in a nuclear reactor in a short time and exactly. That is, the device comprises a device main body having substantially the same length as that for the axial length of a fuel assembly and a detector container disposed axially slidably to the main body. A plurality of radiation detectors are arranged at an equi-axial pitch and contained in the container. The container is caused to slide at a pitch equal to the equi-axial distance of the detectors. In the device having thus been constituted, measurement is conducted at least for twice at an axial position on the side of a fuel assembly irradiated in the nuclear reactor and a position caused to slide therefrom by one pitch. Based on the result, the sensitivities between each of the detectors are compared and the relative sensitivity of the radiation detectors is calibrated. Accordingly, the sensitivity between each of the detectors can be calibrated rapidly and easily. As a result, the distribution of the burn-up degree, etc of irradiated fuel assembly can be measured exactly. (K.M.)

  6. The application of LDPC code in MIMO-OFDM system

    Science.gov (United States)

    Liu, Ruian; Zeng, Beibei; Chen, Tingting; Liu, Nan; Yin, Ninghao

    2018-03-01

    The combination of MIMO and OFDM technology has become one of the key technologies of the fourth generation mobile communication., which can overcome the frequency selective fading of wireless channel, increase the system capacity and improve the frequency utilization. Error correcting coding introduced into the system can further improve its performance. LDPC (low density parity check) code is a kind of error correcting code which can improve system reliability and anti-interference ability, and the decoding is simple and easy to operate. This paper mainly discusses the application of LDPC code in MIMO-OFDM system.

  7. MISER-I: a computer code for JOYO fuel management

    International Nuclear Information System (INIS)

    Yamashita, Yoshioki

    1976-06-01

    A computer code ''MISER-I'' is for a nuclear fuel management of Japan Experimental Fast Breeder Reactor JOYO. The nuclear fuel management in JOYO can be regarded as a fuel assembly management because a handling unit of fuel in JOYO plant is a fuel subassembly (core and blanket subassembly), and so the recording of material balance in computer code is made with each subassembly. The input information into computer code is given with each subassembly for a transfer operation, or with one reactor cycle and every one month for a burn-up in reactor core. The output information of MISER-I code is the fuel assembly storage record, fuel storage weight record in each material balance subarea at any specified day, and fuel subassembly transfer history record. Change of nuclear fuel composition and weight due to a burn-up is calculated with JOYO-Monitoring Code by off-line computation system. MISER-I code is written in FORTRAN-IV language for FACOM 230-48 computer. (auth.)

  8. MARS code manual volume I: code structure, system models, and solution methods

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Kim, Kyung Doo; Bae, Sung Won; Jeong, Jae Jun; Lee, Seung Wook; Hwang, Moon Kyu; Yoon, Churl

    2010-02-01

    Korea Advanced Energy Research Institute (KAERI) conceived and started the development of MARS code with the main objective of producing a state-of-the-art realistic thermal hydraulic systems analysis code with multi-dimensional analysis capability. MARS achieves this objective by very tightly integrating the one dimensional RELAP5/MOD3 with the multi-dimensional COBRA-TF codes. The method of integration of the two codes is based on the dynamic link library techniques, and the system pressure equation matrices of both codes are implicitly integrated and solved simultaneously. In addition, the Equation-Of-State (EOS) for the light water was unified by replacing the EOS of COBRA-TF by that of the RELAP5. This theory manual provides a complete list of overall information of code structure and major function of MARS including code architecture, hydrodynamic model, heat structure, trip / control system and point reactor kinetics model. Therefore, this report would be very useful for the code users. The overall structure of the manual is modeled on the structure of the RELAP5 and as such the layout of the manual is very similar to that of the RELAP. This similitude to RELAP5 input is intentional as this input scheme will allow minimum modification between the inputs of RELAP5 and MARS3.1. MARS3.1 development team would like to express its appreciation to the RELAP5 Development Team and the USNRC for making this manual possible

  9. Basic concept of common reactor physics code systems. Final report of working party on common reactor physics code systems (CCS)

    International Nuclear Information System (INIS)

    2004-03-01

    A working party was organized for two years (2001-2002) on common reactor physics code systems under the Research Committee on Reactor Physics of JAERI. This final report is compilation of activity of the working party on common reactor physics code systems during two years. Objectives of the working party is to clarify basic concept of common reactor physics code systems to improve convenience of reactor physics code systems for reactor physics researchers in Japan on their various field of research and development activities. We have held four meetings during 2 years, investigated status of reactor physics code systems and innovative software technologies, and discussed basic concept of common reactor physics code systems. (author)

  10. Burn-up measurements of LEU fuel for short cooling times

    International Nuclear Information System (INIS)

    Pereda B, C.; Henriquez A, C.; Klein D, J.; Medel R, J.

    2005-01-01

    The measurements presented in this work were made essentially at in-pool gamma-spectrometric facility, installed inside of the secondary pool of the RECH-1 research reactor, where the measured fuel elements are under 2 meters of water. The main reason for using the in-pool facility was because of its capability to measure the burning of fuel elements without having to wait so long, that is with only 5 cooling days, which are the usual times between reactor operations. Regarding these short cooling times, this work confirms again the possibility of using the 95 Zr as a promising burnup monitor, in spite of the rough approximations used to do it. These results are statistically reasonable within the range calculated using codes. The work corroborates previous results, presented in Santiago de Chile, and it suggests future improvements in that way. (author)

  11. 3D pin-by-pin power density profiles with high spatial resolution in the vicinity of a BWR control blade tip simulated with coupled neutronics/burn-up calculations

    International Nuclear Information System (INIS)

    Li, J.; Nünighoff, K.; Allelein, H.-J.

    2011-01-01

    Highlights: ► High spatial resolution neutronic and burn-up calculations of quarter BWR fuel element section. ► Coupled MCNP(X)–ORIGEN2.2 simulation using VESTA. ► Control blade history effect was taken into account. ► Determining local power excursion after instantaneous control rod movement. ► Correlation between control blade geometry and occurrence of local power excursions. - Abstract: Pellet cladding interaction (PCI) as well as pellet cladding mechanical interaction (PCMI) are well-known fuel failures in light water reactors, especially in boiling water reactors (BWR). Whereas the thermo-mechanical processes of PCI effects have been intensively investigated in the last decades, only rare information is available on the role of neutron physics. However, each power transient is primary due to neutron physics effects and thus knowledge of the neutron physical background is mandatory to better understand the occurrence of PCI effects in BWRs. This paper will focus on a study of local power excursions in a typical BWR fuel assembly during control rod movements. Burn-up and energy deposition were simulated with high spatial granularity, especially in the vicinity of the control blade tip. It could be shown, that the design of the control blade plays a dominant role for the occurrence of local power peaks while instantaneously moving down the control rod. The main result is, that the largest power peak occurs at the interface between steel handle and absorber rods. A full width half maximum (FWHM) of ±2.5 cm was observed. This means, the local power excursion due to neutron physics phenomena involve approximately five pellets. With the VESTA code coupled MCNP(X)/ORIGEN2.2 calculations were performed with more than 3400 burn-up zones in order to take history effects into account.

  12. Los Alamos radiation transport code system on desktop computing platforms

    International Nuclear Information System (INIS)

    Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.; West, J.T.

    1990-01-01

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. The current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines

  13. MELCOR Accident Consequence Code System (MACCS)

    International Nuclear Information System (INIS)

    Chanin, D.I.; Sprung, J.L.; Ritchie, L.T.; Jow, Hong-Nian

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previous CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. This document, Volume 1, the Users's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems

  14. MELCOR Accident Consequence Code System (MACCS)

    Energy Technology Data Exchange (ETDEWEB)

    Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA)); Sprung, J.L.; Ritchie, L.T.; Jow, Hong-Nian (Sandia National Labs., Albuquerque, NM (USA))

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previous CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. This document, Volume 1, the Users's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems.

  15. Performance enhancement of optical code-division multiple-access systems using transposed modified Walsh code

    Science.gov (United States)

    Sikder, Somali; Ghosh, Shila

    2018-02-01

    This paper presents the construction of unipolar transposed modified Walsh code (TMWC) and analysis of its performance in optical code-division multiple-access (OCDMA) systems. Specifically, the signal-to-noise ratio, bit error rate (BER), cardinality, and spectral efficiency were investigated. The theoretical analysis demonstrated that the wavelength-hopping time-spreading system using TMWC was robust against multiple-access interference and more spectrally efficient than systems using other existing OCDMA codes. In particular, the spectral efficiency was calculated to be 1.0370 when TMWC of weight 3 was employed. The BER and eye pattern for the designed TMWC were also successfully obtained using OptiSystem simulation software. The results indicate that the proposed code design is promising for enhancing network capacity.

  16. Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation

    Science.gov (United States)

    Pinilla, Samuel; Poveda, Juan; Arguello, Henry

    2018-03-01

    Phase retrieval is a problem present in many applications such as optics, astronomical imaging, computational biology and X-ray crystallography. Recent work has shown that the phase can be better recovered when the acquisition architecture includes a coded aperture, which modulates the signal before diffraction, such that the underlying signal is recovered from coded diffraction patterns. Moreover, this type of modulation effect, before the diffraction operation, can be obtained using a phase coded aperture, just after the sample under study. However, a practical implementation of a phase coded aperture in an X-ray application is not feasible, because it is computationally modeled as a matrix with complex entries which requires changing the phase of the diffracted beams. In fact, changing the phase implies finding a material that allows to deviate the direction of an X-ray beam, which can considerably increase the implementation costs. Hence, this paper describes a low cost coded X-ray diffraction system based on block-unblock coded apertures that enables phase reconstruction. The proposed system approximates the phase coded aperture with a block-unblock coded aperture by using the detour-phase method. Moreover, the SAXS/WAXS X-ray crystallography software was used to simulate the diffraction patterns of a real crystal structure called Rhombic Dodecahedron. Additionally, several simulations were carried out to analyze the performance of block-unblock approximations in recovering the phase, using the simulated diffraction patterns. Furthermore, the quality of the reconstructions was measured in terms of the Peak Signal to Noise Ratio (PSNR). Results show that the performance of the block-unblock phase coded apertures approximation decreases at most 12.5% compared with the phase coded apertures. Moreover, the quality of the reconstructions using the boolean approximations is up to 2.5 dB of PSNR less with respect to the phase coded aperture reconstructions.

  17. Noncoherent Spectral Optical CDMA System Using 1D Active Weight Two-Code Keying Codes

    Directory of Open Access Journals (Sweden)

    Bih-Chyun Yeh

    2016-01-01

    Full Text Available We propose a new family of one-dimensional (1D active weight two-code keying (TCK in spectral amplitude coding (SAC optical code division multiple access (OCDMA networks. We use encoding and decoding transfer functions to operate the 1D active weight TCK. The proposed structure includes an optical line terminal (OLT and optical network units (ONUs to produce the encoding and decoding codes of the proposed OLT and ONUs, respectively. The proposed ONU uses the modified cross-correlation to remove interferences from other simultaneous users, that is, the multiuser interference (MUI. When the phase-induced intensity noise (PIIN is the most important noise, the modified cross-correlation suppresses the PIIN. In the numerical results, we find that the bit error rate (BER for the proposed system using the 1D active weight TCK codes outperforms that for two other systems using the 1D M-Seq codes and 1D balanced incomplete block design (BIBD codes. The effective source power for the proposed system can achieve −10 dBm, which has less power than that for the other systems.

  18. Use of computer codes for system reliability analysis

    International Nuclear Information System (INIS)

    Sabek, M.; Gaafar, M.; Poucet, A.

    1989-01-01

    This paper gives a summary of studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRACTIC, FTAP, computer code package RALLY, and BOUNDS. Two reference case studies were executed by each code. The probabilistic results obtained, as well as the computation times are compared. The two cases studied are the auxiliary feedwater system of a 1300 MW PWR reactor and the emergency electrical power supply system. (author)

  19. Use of computer codes for system reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sabek, M.; Gaafar, M. (Nuclear Regulatory and Safety Centre, Atomic Energy Authority, Cairo (Egypt)); Poucet, A. (Commission of the European Communities, Ispra (Italy). Joint Research Centre)

    1989-01-01

    This paper gives a summary of studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRACTIC, FTAP, computer code package RALLY, and BOUNDS. Two reference case studies were executed by each code. The probabilistic results obtained, as well as the computation times are compared. The two cases studied are the auxiliary feedwater system of a 1300 MW PWR reactor and the emergency electrical power supply system. (author).

  20. Generalized optical code construction for enhanced and Modified Double Weight like codes without mapping for SAC-OCDMA systems

    Science.gov (United States)

    Kumawat, Soma; Ravi Kumar, M.

    2016-07-01

    Double Weight (DW) code family is one of the coding schemes proposed for Spectral Amplitude Coding-Optical Code Division Multiple Access (SAC-OCDMA) systems. Modified Double Weight (MDW) code for even weights and Enhanced Double Weight (EDW) code for odd weights are two algorithms extending the use of DW code for SAC-OCDMA systems. The above mentioned codes use mapping technique to provide codes for higher number of users. A new generalized algorithm to construct EDW and MDW like codes without mapping for any weight greater than 2 is proposed. A single code construction algorithm gives same length increment, Bit Error Rate (BER) calculation and other properties for all weights greater than 2. Algorithm first constructs a generalized basic matrix which is repeated in a different way to produce the codes for all users (different from mapping). The generalized code is analysed for BER using balanced detection and direct detection techniques.

  1. Development of a method for xenon determination in the microstructure of high burn-up nuclear fuel[Dissertation 17527

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, M. I

    2008-07-01

    In nuclear fuel, in approximately one quarter of the fissions, one of the two formed fission products is gaseous. These are mainly the noble gases xenon and krypton with isotopes of xenon contributing up to 90% of the product gases. These noble fission gases do not combine with other species, and have a low solubility in the normally used uranium oxide matrix. They can be dissolved in the fuel matrix or precipitate in nanometer-sized bubbles within the fuel grain, in micrometer-sized bubbles at the grain boundaries, and a fraction also precipitates in fuel pores, coming from fuel fabrication. A fraction of the gas can also be released into the plenum of the fuel rod. With increasing fission, and therefore burn-up, the ceramic fuel material experiences a transformation of its structure in the 'cooler' rim region of the fuel. A subdivision occurs of the original fuel grains of few microns size into thousands of small grains of sub-micron sizes. Additionally, larger pores are formed, which also leads into an increasing porosity in the fuel rim, called high burn-up structure. In this structure, only a small fraction of the fission gas remains in the matrix, the major quantity is said to accumulate in these pores. Because of this accumulation, the knowledge of the quantities of gas within these pores is of major interest in consideration to burn-up, fuel performance and especially for safety issues. In case of design based accidents, i.e. rapidly increasing temperature transients, the behavior of the fuel has to be estimated. Various analytical techniques have been used to determine the Xe concentration in nuclear fuel samples. The capabilities of EPMA (Electron Probe Micro-Analyser) and SIMS (Secondary Ion Mass Spectrometry) have been studied and provided some qualitative information, which has been used for determining Xe-matrix concentrations. First approaches combining these two techniques to estimate pore pressures have been recently reported. However

  2. Development of a method for xenon determination in the microstructure of high burn-up nuclear fuel

    International Nuclear Information System (INIS)

    Horvath, M. I.

    2008-01-01

    In nuclear fuel, in approximately one quarter of the fissions, one of the two formed fission products is gaseous. These are mainly the noble gases xenon and krypton with isotopes of xenon contributing up to 90% of the product gases. These noble fission gases do not combine with other species, and have a low solubility in the normally used uranium oxide matrix. They can be dissolved in the fuel matrix or precipitate in nanometer-sized bubbles within the fuel grain, in micrometer-sized bubbles at the grain boundaries, and a fraction also precipitates in fuel pores, coming from fuel fabrication. A fraction of the gas can also be released into the plenum of the fuel rod. With increasing fission, and therefore burn-up, the ceramic fuel material experiences a transformation of its structure in the 'cooler' rim region of the fuel. A subdivision occurs of the original fuel grains of few microns size into thousands of small grains of sub-micron sizes. Additionally, larger pores are formed, which also leads into an increasing porosity in the fuel rim, called high burn-up structure. In this structure, only a small fraction of the fission gas remains in the matrix, the major quantity is said to accumulate in these pores. Because of this accumulation, the knowledge of the quantities of gas within these pores is of major interest in consideration to burn-up, fuel performance and especially for safety issues. In case of design based accidents, i.e. rapidly increasing temperature transients, the behavior of the fuel has to be estimated. Various analytical techniques have been used to determine the Xe concentration in nuclear fuel samples. The capabilities of EPMA (Electron Probe Micro-Analyser) and SIMS (Secondary Ion Mass Spectrometry) have been studied and provided some qualitative information, which has been used for determining Xe-matrix concentrations. First approaches combining these two techniques to estimate pore pressures have been recently reported. However, relevant Xe

  3. Burn up calculations for the Iranian miniature reactor: A reliable and safe research reactor

    International Nuclear Information System (INIS)

    Faghihi, F.; Mirvakili, S.M.

    2009-01-01

    Presenting neutronic calculations pertaining to the Iranian miniature research reactor is the main goal of this article. This is a key to maintaining safe and reliable core operation. The following reactor core neutronic parameters were calculated: clean cold core excess reactivity (ρ ex ), control rod and shim worth, shut down margin (SDM), neutron flux distribution of the reactor core components, and reactivity feedback coefficients. Calculations for the fuel burnup and radionuclide inventory of the Iranian miniature neutron source reactor (MNSR), after 13 years of operational time, are carried out. Moreover, the amount of uranium burnup and produced plutonium, the concentrations and activities of the most important fission products, the actinide radionuclides accumulated, and the total radioactivity of the core are estimated. Flux distribution for both water and fuel temperature increases are calculated and changes of the central control rod position are investigated as well. Standard neutronic simulation codes WIMS-D4 and CITATION are employed for these studies. The input model was validated by the experimental data according to the final safety analysis report (FSAR) of the reactor. The total activity of the MNSR core is calculated including all radionuclides at the end of the core life and it is found to be equal to 1.3 x 10 3 Ci. Our investigation shows that the reactor is operating under safe and reliable conditions.

  4. Burn up calculations for the Iranian miniature reactor: A reliable and safe research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, F. [Department of Nuclear Engineering, School of Engineering, Shiraz University, Shiraz 71345 (Iran, Islamic Republic of); Research Center for Radiation Protection, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: faghihif@shirazu.ac.ir; Mirvakili, S.M. [Department of Nuclear Engineering, School of Engineering, Shiraz University, Shiraz 71345 (Iran, Islamic Republic of)

    2009-06-15

    Presenting neutronic calculations pertaining to the Iranian miniature research reactor is the main goal of this article. This is a key to maintaining safe and reliable core operation. The following reactor core neutronic parameters were calculated: clean cold core excess reactivity ({rho}{sub ex}), control rod and shim worth, shut down margin (SDM), neutron flux distribution of the reactor core components, and reactivity feedback coefficients. Calculations for the fuel burnup and radionuclide inventory of the Iranian miniature neutron source reactor (MNSR), after 13 years of operational time, are carried out. Moreover, the amount of uranium burnup and produced plutonium, the concentrations and activities of the most important fission products, the actinide radionuclides accumulated, and the total radioactivity of the core are estimated. Flux distribution for both water and fuel temperature increases are calculated and changes of the central control rod position are investigated as well. Standard neutronic simulation codes WIMS-D4 and CITATION are employed for these studies. The input model was validated by the experimental data according to the final safety analysis report (FSAR) of the reactor. The total activity of the MNSR core is calculated including all radionuclides at the end of the core life and it is found to be equal to 1.3 x 10{sup 3}Ci. Our investigation shows that the reactor is operating under safe and reliable conditions.

  5. Using Coupled Mesoscale Experiments and Simulations to Investigate High Burn-Up Oxide Fuel Thermal Conductivity

    Science.gov (United States)

    Teague, Melissa C.; Fromm, Bradley S.; Tonks, Michael R.; Field, David P.

    2014-12-01

    Nuclear energy is a mature technology with a small carbon footprint. However, work is needed to make current reactor technology more accident tolerant and to allow reactor fuel to be burned in a reactor for longer periods of time. Optimizing the reactor fuel performance is essentially a materials science problem. The current understanding of fuel microstructure have been limited by the difficulty in studying the structure and chemistry of irradiated fuel samples at the mesoscale. Here, we take advantage of recent advances in experimental capabilities to characterize the microstructure in 3D of irradiated mixed oxide (MOX) fuel taken from two radial positions in the fuel pellet. We also reconstruct these microstructures using Idaho National Laboratory's MARMOT code and calculate the impact of microstructure heterogeneities on the effective thermal conductivity using mesoscale heat conduction simulations. The thermal conductivities of both samples are higher than the bulk MOX thermal conductivity because of the formation of metallic precipitates and because we do not currently consider phonon scattering due to defects smaller than the experimental resolution. We also used the results to investigate the accuracy of simple thermal conductivity approximations and equations to convert 2D thermal conductivities to 3D. It was found that these approximations struggle to predict the complex thermal transport interactions between metal precipitates and voids.

  6. Uncertainty and sensitivity analysis using probabilistic system assessment code. 1

    International Nuclear Information System (INIS)

    Honma, Toshimitsu; Sasahara, Takashi.

    1993-10-01

    This report presents the results obtained when applying the probabilistic system assessment code under development to the PSACOIN Level 0 intercomparison exercise organized by the Probabilistic System Assessment Code User Group in the Nuclear Energy Agency (NEA) of OECD. This exercise is one of a series designed to compare and verify probabilistic codes in the performance assessment of geological radioactive waste disposal facilities. The computations were performed using the Monte Carlo sampling code PREP and post-processor code USAMO. The submodels in the waste disposal system were described and coded with the specification of the exercise. Besides the results required for the exercise, further additional uncertainty and sensitivity analyses were performed and the details of these are also included. (author)

  7. 14 CFR Sec. 1-4 - System of accounts coding.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false System of accounts coding. Sec. 1-4 Section... General Accounting Provisions Sec. 1-4 System of accounts coding. (a) A four digit control number is assigned for each balance sheet and profit and loss account. Each balance sheet account is numbered...

  8. Performance Analysis of Optical Code Division Multiplex System

    Science.gov (United States)

    Kaur, Sandeep; Bhatia, Kamaljit Singh

    2013-12-01

    This paper presents the Pseudo-Orthogonal Code generator for Optical Code Division Multiple Access (OCDMA) system which helps to reduce the need of bandwidth expansion and improve spectral efficiency. In this paper we investigate the performance of multi-user OCDMA system to achieve data rate more than 1 Tbit/s.

  9. Data exchange between zero dimensional code and physics platform in the CFETR integrated system code

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Guoliang [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Shi, Nan [Institute of Plasma Physics, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei (China); Zhou, Yifu; Mao, Shifeng [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Jian, Xiang [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronics Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Jiale [Institute of Plasma Physics, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei (China); Liu, Li; Chan, Vincent [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Ye, Minyou, E-mail: yemy@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China)

    2016-11-01

    Highlights: • The workflow of the zero dimensional code and the multi-dimension physics platform of CFETR integrated system codeis introduced. • The iteration process among the codes in the physics platform. • The data transfer between the zero dimensionalcode and the physical platform, including data iteration and validation, and justification for performance parameters.. - Abstract: The China Fusion Engineering Test Reactor (CFETR) integrated system code contains three parts: a zero dimensional code, a physics platform and an engineering platform. We use the zero dimensional code to identify a set of preliminary physics and engineering parameters for CFETR, which is used as input to initiate multi-dimension studies using the physics and engineering platform for design, verification and validation. Effective data exchange between the zero dimensional code and the physical platform is critical for the optimization of CFETR design. For example, in evaluating the impact of impurity radiation on core performance, an open field line code is used to calculate the impurity transport from the first-wall boundary to the pedestal. The impurity particle in the pedestal are used as boundary conditions in a transport code for calculating impurity transport in the core plasma and the impact of core radiation on core performance. Comparison of the results from the multi-dimensional study to those from the zero dimensional code is used to further refine the controlled radiation model. The data transfer between the zero dimensional code and the physical platform, including data iteration and validation, and justification for performance parameters will be presented in this paper.

  10. RELAP5/MOD3 code manual: Code structure, system models, and solution methods. Volume 1

    International Nuclear Information System (INIS)

    1995-08-01

    The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling, approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I provides modeling theory and associated numerical schemes

  11. Accelerator-driven transmutation reactor analysis code system (ATRAS)

    Energy Technology Data Exchange (ETDEWEB)

    Sasa, Toshinobu; Tsujimoto, Kazufumi; Takizuka, Takakazu; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    JAERI is proceeding a design study of the hybrid type minor actinide transmutation system which mainly consist of an intense proton accelerator and a fast subcritical core. Neutronics and burnup characteristics of the accelerator-driven system is important from a view point of the maintenance of subcriticality and energy balance during the system operation. To determine those characteristics accurately, it is necessary to involve reactions at high-energy region, which are not treated on ordinary reactor analysis codes. The authors developed a code system named ATRAS to analyze the neutronics and burnup characteristics of accelerator-driven subcritical reactor systems. ATRAS has a function of burnup analysis taking account of the effect of spallation neutron source. ATRAS consists of a spallation analysis code, a neutron transport codes and a burnup analysis code. Utility programs for fuel exchange, pre-processing and post-processing are also incorporated. (author)

  12. On the rate determining step in fission gas release from high burn-up water reactor fuel during power transients

    International Nuclear Information System (INIS)

    Walker, C.T.; Mogensen, M.

    1987-01-01

    The radial distribution of grain boundary gas in a PWR and a BWR fuel is reported. The measurements were made using a new approach involving X-ray fluorescence analysis and electron probe microanalysis. In both fuels the concentration of grain boundary gas was much higher than hitherto suspected. The gas was mainly contained in the bubble/pore structure. The factors that determined the fraction of gas released from the grains and the level of gas retention on the grain boundaries are identified and discussed. The variables involved are the local fuel stoichiometry, the amount of open porosity, the magnitude of the local compressive hydrostatic stress and the interaction of metallic precipitates with gas bubbles on the grain faces. It is concluded that under transient conditions the interlinkage of gas bubbles on the grain faces and the subsequent formation of grain edge tunnels is the rate determining step for gas release; at least when high burn-up fuel is involved. (orig.)

  13. Nuclear data needs for the analysis of generation and burn-up of actinide isotopes in nuclear reactors

    International Nuclear Information System (INIS)

    Kuesters, H.

    1980-04-01

    A reliable prediction of the in-pile and out-of-pile physics characteristics of nuclear fuel is one of the objectives of present-day reactor physics. The paper describes the main production paths of important actinides for light water and fast breeder reactors. The accuracy of recent nuclear data is examined by comparisons of theoretical predictions with the results from post-irradiation analysis of nuclear fuel from power reactors, and partly with results obtained in zero-power facilities. A world-wide comparison of nuclear data to be used in large fast power reactor burn-up and long term considerations is presented. The needs for further improvement of nuclear data are discussed. (orig.) [de

  14. Peculiarities of highly burned-up NPP SNF reprocessing and new approach to simulation of solvent extraction processes

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, Y.S.; Zilberman, B.Y.; Goletskiy, N.D.; Puzikov, E.A.; Ryabkov, D.V.; Rodionov, S.A.; Beznosyuk, V.I.; Petrov, Y.Y.; Saprykin, V.F.; Murzin, A.A.; Bibichev, B.A.; Aloy, A.S.; Kudinov, A.S.; Blazheva, I.V. [RPA ' V.G.Khlopin Radium Institute' , 28, 2 Murinsky av., St-Petersburg, 194 021 (Russian Federation); Kurenkov, N.V. [Institute of Industrial Nuclear Technology NRNU MEPHI, 31, Kashirskoye shosse, Moscow, 115409 (Russian Federation)

    2013-07-01

    Substantiation, general description and performance characteristics of a reprocessing flowsheet for WWER-1000 spent fuel with burn-up >60 GW*day/t U is given. Pu and U losses were <0.1%, separation factor > 10{sup 4}; their decontamination factor from γ-emitting fission products was 4*10{sup 4} and 3*10{sup 7}, respectively. Zr, Tc, Np removal was >98% at U and Pu losses <0.05%. A new approach to simulation of extraction equilibrium has been developed. It is based on a set of simultaneous chemical reactions characterized by apparent concentration constants. A software package was created for simulation of spent fuel component distribution in multistage countercurrent extraction processes in the presence of salting out agents. (authors)

  15. Thermomechanical behavior and modeling of zircaloy cladding tubes from an unirradiated state to high burn-up

    International Nuclear Information System (INIS)

    Schaeffler-Le Pichon, I.; Geyer, P.; Bouffioux, P.

    1997-01-01

    Creep laws are nowadays commonly used to simulate the fuel rod response to the solicitations it faces during its life. These laws are sufficient for describing the base operating conditions (where only creep appears), but they have to be improved for power ramp conditions (where hardening and relaxation appear). The modification due to a neutronic irradiation of the thermomechanical behavior of stress-relieved Zircaloy 4 fuel tubes that have been analysed for five different fluences ranging from a non-irradiated material to a material for which the combustion rate was very high is presented. In the second part, a viscoplastic model able to simulate, for different isotherms, out-of-flux anisotropic mechanical behavior of the cladding tubes irradiated until high burn-up is proposed. Finally, results of numerical simulations show the ability of the model to reproduce the totality of the thermomechanical experiments. (author)

  16. LOLA SYSTEM: A code block for nodal PWR simulation. Part. I - Simula-3 Code

    Energy Technology Data Exchange (ETDEWEB)

    Aragones, J M; Ahnert, C; Gomez Santamaria, J; Rodriguez Olabarria, I

    1985-07-01

    Description of the theory and users manual of the SIMULA-3 code, which is part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. SIMULA-3 is the main module of the system, it uses a modified nodal theory, with interface leakages equivalent to the diffusion theory. (Author) 4 refs.

  17. LOLA SYSTEM: A code block for nodal PWR simulation. Part. I - Simula-3 Code

    International Nuclear Information System (INIS)

    Aragones, J. M.; Ahnert, C.; Gomez Santamaria, J.; Rodriguez Olabarria, I.

    1985-01-01

    Description of the theory and users manual of the SIMULA-3 code, which is part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. SIMULA-3 is the main module of the system, it uses a modified nodal theory, with interface leakages equivalent to the diffusion theory. (Author) 4 refs

  18. SWAT2: The improved SWAT code system by incorporating the continuous energy Monte Carlo code MVP

    International Nuclear Information System (INIS)

    Mochizuki, Hiroki; Suyama, Kenya; Okuno, Hiroshi

    2003-01-01

    SWAT is a code system, which performs the burnup calculation by the combination of the neutronics calculation code, SRAC95 and the one group burnup calculation code, ORIGEN2.1. The SWAT code system can deal with the cell geometry in SRAC95. However, a precise treatment of resonance absorptions by the SRAC95 code using the ultra-fine group cross section library is not directly applicable to two- or three-dimensional geometry models, because of restrictions in SRAC95. To overcome this problem, SWAT2 which newly introduced the continuous energy Monte Carlo code, MVP into SWAT was developed. Thereby, the burnup calculation by the continuous energy in any geometry became possible. Moreover, using the 147 group cross section library called SWAT library, the reactions which are not dealt with by SRAC95 and MVP can be treated. OECD/NEA burnup credit criticality safety benchmark problems Phase-IB (PWR, a single pin cell model) and Phase-IIIB (BWR, fuel assembly model) were calculated as a verification of SWAT2, and the results were compared with the average values of calculation results of burnup calculation code of each organization. Through two benchmark problems, it was confirmed that SWAT2 was applicable to the burnup calculation of the complicated geometry. (author)

  19. Performance optimization of spectral amplitude coding OCDMA system using new enhanced multi diagonal code

    Science.gov (United States)

    Imtiaz, Waqas A.; Ilyas, M.; Khan, Yousaf

    2016-11-01

    This paper propose a new code to optimize the performance of spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system. The unique two-matrix structure of the proposed enhanced multi diagonal (EMD) code and effective correlation properties, between intended and interfering subscribers, significantly elevates the performance of SAC-OCDMA system by negating multiple access interference (MAI) and associated phase induce intensity noise (PIIN). Performance of SAC-OCDMA system based on the proposed code is thoroughly analyzed for two detection techniques through analytic and simulation analysis by referring to bit error rate (BER), signal to noise ratio (SNR) and eye patterns at the receiving end. It is shown that EMD code while using SDD technique provides high transmission capacity, reduces the receiver complexity, and provides better performance as compared to complementary subtraction detection (CSD) technique. Furthermore, analysis shows that, for a minimum acceptable BER of 10-9 , the proposed system supports 64 subscribers at data rates of up to 2 Gbps for both up-down link transmission.

  20. Development of the next generation reactor analysis code system, MARBLE

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Hazama, Taira; Nagaya, Yasunobu; Chiba, Go; Kugo, Teruhiko; Ishikawa, Makoto; Tatsumi, Masahiro; Hirai, Yasushi; Hyoudou, Hideaki; Numata, Kazuyuki; Iwai, Takehiko; Jin, Tomoyuki

    2011-03-01

    A next generation reactor analysis code system, MARBLE, has been developed. MARBLE is a successor of the fast reactor neutronics analysis code systems, JOINT-FR and SAGEP-FR (conventional systems), which were developed for so-called JUPITER standard analysis methods. MARBLE has the equivalent analysis capability to the conventional system because MARBLE can utilize sub-codes included in the conventional system without any change. On the other hand, burnup analysis functionality for power reactors is improved compared with the conventional system by introducing models on fuel exchange treatment and control rod operation and so on. In addition, MARBLE has newly developed solvers and some new features of burnup calculation by the Krylov sub-space method and nuclear design accuracy evaluation by the extended bias factor method. In the development of MARBLE, the object oriented technology was adopted from the view-point of improvement of the software quality such as flexibility, expansibility, facilitation of the verification by the modularization and assistance of co-development. And, software structure called the two-layer system consisting of scripting language and system development language was applied. As a result, MARBLE is not an independent analysis code system which simply receives input and returns output, but an assembly of components for building an analysis code system (i.e. framework). Furthermore, MARBLE provides some pre-built analysis code systems such as the fast reactor neutronics analysis code system. SCHEME, which corresponds to the conventional code and the fast reactor burnup analysis code system, ORPHEUS. (author)

  1. Modelling of thermal mechanical behaviour of high burn-Up VVER fuel at power transients with special emphasis on the impact of fission gas induced swelling of fuel pellets

    International Nuclear Information System (INIS)

    Novikov, V.; Medvedev, A.; Khvostov, G.; Bogatyr, S.; Kuzetsov, V.; Korystin, L.

    2005-01-01

    This paper is devoted to the modelling of unsteady state mechanical and thermo-physical behaviour of high burn-up VVER fuel at a power ramp. The contribution of the processes related to the kinetics of fission gas to the consequences of pellet-clad mechanical interaction is analysed by the example of integral VVER-440 rod 9 from the R7 experimental series, with a pellet burn-up in the active part at around 60 MWd/kgU. This fuel rod incurred ramp testing with a ramp value ΔW 1 ∼ 250 W/cm in the MIR research reactor. The experimentally revealed residual deformation of the clad by 30-40 microns in the 'hottest' portion of the rod, reaching a maximum linear power of up to 430 W/cm, is numerically justified on the basis of accounting for the unsteady state swelling and additional degradation of fuel thermal conductivity due to temperature-induced formation and development of gaseous porosity within the grains and on the grain boundaries. The good prediction capability of the START-3 code, coupled with the advanced model of fission gas related processes, with regard to the important mechanical (residual deformation of clad, pellet-clad gap size, central hole filling), thermal physical (fission gas release) and micro-structural (profiles of intra-granular concentration of the retained fission gas and fuel porosity across a pellet) consequences of the R7 test is shown. (authors)

  2. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    International Nuclear Information System (INIS)

    Baratta, A.J.

    1997-01-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together

  3. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    Energy Technology Data Exchange (ETDEWEB)

    Baratta, A.J.

    1997-07-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.

  4. Locally Minimum Storage Regenerating Codes in Distributed Cloud Storage Systems

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Wei Luo; Wei Liang; Xiangyang Liu; Xiaodai Dong

    2017-01-01

    In distributed cloud storage sys-tems, inevitably there exist multiple node fail-ures at the same time. The existing methods of regenerating codes, including minimum storage regenerating (MSR) codes and mini-mum bandwidth regenerating (MBR) codes, are mainly to repair one single or several failed nodes, unable to meet the repair need of distributed cloud storage systems. In this paper, we present locally minimum storage re-generating (LMSR) codes to recover multiple failed nodes at the same time. Specifically, the nodes in distributed cloud storage systems are divided into multiple local groups, and in each local group (4, 2) or (5, 3) MSR codes are constructed. Moreover, the grouping method of storage nodes and the repairing process of failed nodes in local groups are studied. The-oretical analysis shows that LMSR codes can achieve the same storage overhead as MSR codes. Furthermore, we verify by means of simulation that, compared with MSR codes, LMSR codes can reduce the repair bandwidth and disk I/O overhead effectively.

  5. Study of nuclear computer code maintenance and management system

    International Nuclear Information System (INIS)

    Ryu, Chang Mo; Kim, Yeon Seung; Eom, Heung Seop; Lee, Jong Bok; Kim, Ho Joon; Choi, Young Gil; Kim, Ko Ryeo

    1989-01-01

    Software maintenance is one of the most important problems since late 1970's.We wish to develop a nuclear computer code system to maintenance and manage KAERI's nuclear software. As a part of this system, we have developed three code management programs for use on CYBER and PC systems. They are used in systematic management of computer code in KAERI. The first program is embodied on the CYBER system to rapidly provide information on nuclear codes to the users. The second and the third programs were embodied on the PC system for the code manager and for the management of data in korean language, respectively. In the requirement analysis, we defined each code, magnetic tape, manual and abstract information data. In the conceptual design, we designed retrieval, update, and output functions. In the implementation design, we described the technical considerations of database programs, utilities, and directions for the use of databases. As a result of this research, we compiled the status of nuclear computer codes which belonged KAERI until September, 1988. Thus, by using these three database programs, we could provide the nuclear computer code information to the users more rapidly. (Author)

  6. SURE: a system of computer codes for performing sensitivity/uncertainty analyses with the RELAP code

    International Nuclear Information System (INIS)

    Bjerke, M.A.

    1983-02-01

    A package of computer codes has been developed to perform a nonlinear uncertainty analysis on transient thermal-hydraulic systems which are modeled with the RELAP computer code. Using an uncertainty around the analyses of experiments in the PWR-BDHT Separate Effects Program at Oak Ridge National Laboratory. The use of FORTRAN programs running interactively on the PDP-10 computer has made the system very easy to use and provided great flexibility in the choice of processing paths. Several experiments simulating a loss-of-coolant accident in a nuclear reactor have been successfully analyzed. It has been shown that the system can be automated easily to further simplify its use and that the conversion of the entire system to a base code other than RELAP is possible

  7. Code system to compute radiation dose in human phantoms

    International Nuclear Information System (INIS)

    Ryman, J.C.; Cristy, M.; Eckerman, K.F.; Davis, J.L.; Tang, J.S.; Kerr, G.D.

    1986-01-01

    Monte Carlo photon transport code and a code using Monte Carlo integration of a point kernel have been revised to incorporate human phantom models for an adult female, juveniles of various ages, and a pregnant female at the end of the first trimester of pregnancy, in addition to the adult male used earlier. An analysis code has been developed for deriving recommended values of specific absorbed fractions of photon energy. The computer code system and calculational method are described, emphasizing recent improvements in methods

  8. Development of the integrated system reliability analysis code MODULE

    International Nuclear Information System (INIS)

    Han, S.H.; Yoo, K.J.; Kim, T.W.

    1987-01-01

    The major components in a system reliability analysis are the determination of cut sets, importance measure, and uncertainty analysis. Various computer codes have been used for these purposes. For example, SETS and FTAP are used to determine cut sets; Importance for importance calculations; and Sample, CONINT, and MOCUP for uncertainty analysis. There have been problems when the codes run each other and the input and output are not linked, which could result in errors when preparing input for each code. The code MODULE was developed to carry out the above calculations simultaneously without linking input and outputs to other codes. MODULE can also prepare input for SETS for the case of a large fault tree that cannot be handled by MODULE. The flow diagram of the MODULE code is shown. To verify the MODULE code, two examples are selected and the results and computation times are compared with those of SETS, FTAP, CONINT, and MOCUP on both Cyber 170-875 and IBM PC/AT. Two examples are fault trees of the auxiliary feedwater system (AFWS) of Korea Nuclear Units (KNU)-1 and -2, which have 54 gates and 115 events, 39 gates and 92 events, respectively. The MODULE code has the advantage that it can calculate the cut sets, importances, and uncertainties in a single run with little increase in computing time over other codes and that it can be used in personal computers

  9. Instant release fraction and matrix release of high burn-up UO{sub 2} spent nuclear fuel: Effect of high burn-up structure and leaching solution composition

    Energy Technology Data Exchange (ETDEWEB)

    Serrano-Purroy, D., E-mail: Daniel.serrano-purroy@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany); Clarens, F.; Gonzalez-Robles, E. [CTM Centre Tecnologic, Avda. Bases de Manresa 1, 08240 Barcelona (Spain); Glatz, J.P.; Wegen, D.H. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany); Pablo, J. de [CTM Centre Tecnologic, Avda. Bases de Manresa 1, 08240 Barcelona (Spain); Department of Chemical Engineering, Universitat Politecnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); Casas, I.; Gimenez, J. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); Martinez-Esparza, A. [ENRESA, C/Emilio Vargas 7, 28043 Madrid (Spain)

    2012-08-15

    Two weak points in Performance Assessment (PA) exercises regarding the alteration of Spent Nuclear Fuel (SNF) are the contribution of the so-called Instant Release Fraction (IRF) and the effect of High Burn-Up Structure (HBS). This manuscript focuses on the effect of HBS in matrix (long term) and instant release of a Pressurised Water Reactor (PWR) SNF irradiated in a commercial reactor with a mean Burn-Up (BU) of 60 GWd/tU. In order to study the HBS contribution, two samples from different radial positions have been prepared. One from the centre of the SNF, labelled CORE, and one from the periphery, enriched with HBS and labelled OUT. Static leaching experiments have been carried out with two synthetic leaching solutions: bicarbonate (BIC) and Bentonitic Granitic Groundwater (BGW), and in all cases under oxidising conditions. IRF values have been calculated from the determined Fraction of Inventory in Aqueous Phase (FIAP). In all studied cases, some radionuclides (RN): Rb, Sr and Cs, have shown higher release rates than uranium, especially at the beginning of the experiment, and have been considered as IRF. Redox sensitive RN like Mo and Tc have been found to dissolve slightly faster than uranium and further studies might be needed to confirm if they can also be considered part of the IRF. Most of the remaining studied RN, mainly actinides and lanthanides, have been found to dissolve congruently with the uranium matrix. Finally, Zr, Ru and Rh presented lower release rates than the matrix. Higher matrix release has been determined for CORE than for OUT samples showing that the formation of HBS might have a protective effect against the oxidative corrosion of the SNF. On the contrary, no significant differences have been observed between the two studied leaching solutions (BIC and BGW). Two different IRF contributions have been determined. One corresponding to the fraction of inventory segregated in the external open grain boundaries, directly available to water and

  10. The JAERI code system for evaluation of BWR ECCS performance

    International Nuclear Information System (INIS)

    Kohsaka, Atsuo; Akimoto, Masayuki; Asahi, Yoshiro; Abe, Kiyoharu; Muramatsu, Ken; Araya, Fumimasa; Sato, Kazuo

    1982-12-01

    Development of respective computer code system of BWR and PWR for evaluation of ECCS has been conducted since 1973 considering the differences of the reactor cooling system, core structure and ECCS. The first version of the BWR code system, of which developmental work started earlier than that of the PWR, has been completed. The BWR code system is designed to provide computational tools to analyze all phases of LOCAs and to evaluate the performance of the ECCS including an ''Evaluation Model (EM)'' feature in compliance with the requirements of the current Japanese Evaluation Guideline of ECCS. The BWR code system could be used for licensing purpose, i.e. for ECCS performance evaluation or audit calculations to cross-examine the methods and results of applicants or vendors. The BWR code system presented in this report comprises several computer codes, each of which analyzes a particular phase of a LOCA or a system blowdown depending on a range of LOCAs, i.e. large and small breaks in a variety of locations in the reactor system. The system includes ALARM-B1, HYDY-B1 and THYDE-B1 for analysis of the system blowdown for various break sizes, THYDE-B-REFLOOD for analysis of the reflood phase and SCORCH-B2 for the calculation of the fuel assembl hot plane temperature. When the multiple codes are used to analyze a broad range of LOCA as stated above, it is very important to evaluate the adequacy and consistency between the codes used to cover an entire break spectrum. The system consistency together with the system performance are discussed for a large commercial BWR. (author)

  11. Moderator poison design and burn-up calculations at the SNS

    International Nuclear Information System (INIS)

    Lu, W.; Ferguson, P.D.; Iverson, E.B.; Gallmeier, F.X.; Popova, I.

    2008-01-01

    The spallation neutron source (SNS) at Oak Ridge National Laboratory was commissioned in April 2006. At the nominal operating power (1.4 MW), it will have thermal neutron fluxes approximately an order of magnitude greater than any existing pulsed spallation source. It thus brings a serious challenge to the lifetime of the moderator poison sheets. The SNS moderators are integrated with the inner reflector plug (IRP) at a cost of ∼$2 million a piece. A replacement of the inner reflector plug presents a significant drawback to the facility due to the activation and the operation cost. Although there are a lot of factors limiting the lifetime of the inner reflector plug, like radiation damage to the structural material and helium production of beryllium, the bottle-neck is the lifetime of the moderator poison sheets. Increasing the thickness of the poison sheet extends the lifetime but would sacrifice the neutronic performance of the moderators. A compromise is accepted at the current SNS target system which uses thick Gd poison sheets at a projected lifetime of 6 MW-years of operation. The calculations in this paper reveal that Cd may be a better poison material from the perspective of lifetime and neutronic performance. In replacing Gd, the inner reflector plug could reach a lifetime of 8 MW-years with ∼5% higher peak neutron fluxes at almost no loss of energy resolution

  12. Criticality calculations of various spent fuel casks - possibilities for burn up credit implementation

    International Nuclear Information System (INIS)

    Apostolov, T; Manolova, M.; Prodanova, R.

    2001-01-01

    A methodology for criticality safety analysis of spent fuel casks with possibilities for burnup credit implementation is presented. This methodology includes the world well-known and applied program systems: NESSEL-NUKO for depletion and SCALE-4.4 for criticality calculations. The abilities of this methodology to analyze storage and transportation casks with different type of spent fuel are demonstrated on the base of various tests. The depletion calculations have been carried out for the power reactors (WWER-440 and WWER-1000) and the research reactor IRT-2000 (C-36) fuel assemblies. The criticality calculation models have been developed on the basis of real fuel casks, designed by the leading international companies (for WWER-440 and WWER-1000 spent fuel assemblies), as well as for real a WWER-440 storage cask, applied at the 'Kozloduy' NPP. The results obtained show that the criticality safety criterion K eff less than 0.95 is satisfied for both: fresh and spent fuel. Besides the implementation of burnup credit allows to account for the reduced reactivity of spent fuel and to evaluate the conservatism of the fresh fuel assumption. (author)

  13. A computerized energy systems code and information library at Soreq

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, I; Shapira, M; Caner, D; Sapier, D [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1996-12-01

    In the framework of the contractual agreement between the Ministry of Energy and Infrastructure and the Division of Nuclear Engineering of the Israel Atomic Energy Commission, both Soreq-NRC and Ben-Gurion University have agreed to establish, in 1991, a code center. This code center contains a library of computer codes and relevant data, with particular emphasis on nuclear power plant research and development support. The code center maintains existing computer codes and adapts them to the ever changing computing environment, keeps track of new code developments in the field of nuclear engineering, and acquires the most recent revisions of computer codes of interest. An attempt is made to collect relevant codes developed in Israel and to assure that proper documentation and application instructions are available. En addition to computer programs, the code center collects sample problems and international benchmarks to verify the codes and their applications to various areas of interest to nuclear power plant engineering and safety evaluation. Recently, the reactor simulation group at Soreq acquired, using funds provided by the Ministry of Energy and Infrastructure, a PC work station operating under a Linux operating system to give users of the library an easy on-line way to access resources available at the library. These resources include the computer codes and their documentation, reports published by the reactor simulation group, and other information databases available at Soreq. Registered users set a communication line, through a modem, between their computer and the new workstation at Soreq and use it to download codes and/or information or to solve their problems, using codes from the library, on the computer at Soreq (authors).

  14. A computerized energy systems code and information library at Soreq

    International Nuclear Information System (INIS)

    Silverman, I.; Shapira, M.; Caner, D.; Sapier, D.

    1996-01-01

    In the framework of the contractual agreement between the Ministry of Energy and Infrastructure and the Division of Nuclear Engineering of the Israel Atomic Energy Commission, both Soreq-NRC and Ben-Gurion University have agreed to establish, in 1991, a code center. This code center contains a library of computer codes and relevant data, with particular emphasis on nuclear power plant research and development support. The code center maintains existing computer codes and adapts them to the ever changing computing environment, keeps track of new code developments in the field of nuclear engineering, and acquires the most recent revisions of computer codes of interest. An attempt is made to collect relevant codes developed in Israel and to assure that proper documentation and application instructions are available. En addition to computer programs, the code center collects sample problems and international benchmarks to verify the codes and their applications to various areas of interest to nuclear power plant engineering and safety evaluation. Recently, the reactor simulation group at Soreq acquired, using funds provided by the Ministry of Energy and Infrastructure, a PC work station operating under a Linux operating system to give users of the library an easy on-line way to access resources available at the library. These resources include the computer codes and their documentation, reports published by the reactor simulation group, and other information databases available at Soreq. Registered users set a communication line, through a modem, between their computer and the new workstation at Soreq and use it to download codes and/or information or to solve their problems, using codes from the library, on the computer at Soreq (authors)

  15. Development of LWR fuel performance code FEMAXI-6

    International Nuclear Information System (INIS)

    Suzuki, Motoe

    2006-01-01

    LWR fuel performance code: FEMAXI-6 (Finite Element Method in AXIs-symmetric system) is a representative fuel analysis code in Japan. Development history, background, design idea, features of model, and future are stated. Characteristic performance of LWR fuel and analysis code, what is model, development history of FEMAXI, use of FEMAXI code, fuel model, and a special feature of FEMAXI model is described. As examples of analysis, PCMI (Pellet-Clad Mechanical Interaction), fission gas release, gap bonding, and fission gas bubble swelling are reported. Thermal analysis and dynamic analysis system of FEMAXI-6, function block at one time step of FEMAXI-6, analytical example of PCMI in the output increase test by FEMAXI-III, analysis of fission gas release in Halden reactor by FEMAXI-V, comparison of the center temperature of fuel in Halden reactor, and analysis of change of diameter of fuel rod in high burn up BWR fuel are shown. (S.Y.)

  16. Concatenated coding systems employing a unit-memory convolutional code and a byte-oriented decoding algorithm

    Science.gov (United States)

    Lee, L.-N.

    1977-01-01

    Concatenated coding systems utilizing a convolutional code as the inner code and a Reed-Solomon code as the outer code are considered. In order to obtain very reliable communications over a very noisy channel with relatively modest coding complexity, it is proposed to concatenate a byte-oriented unit-memory convolutional code with an RS outer code whose symbol size is one byte. It is further proposed to utilize a real-time minimal-byte-error probability decoding algorithm, together with feedback from the outer decoder, in the decoder for the inner convolutional code. The performance of the proposed concatenated coding system is studied, and the improvement over conventional concatenated systems due to each additional feature is isolated.

  17. Long-Term Dry Storage of High Burn-Up Spent Pressurized Water Reactor (PWR) Fuel in TAD (Transportation, Aging, and Disposal) Containers

    International Nuclear Information System (INIS)

    Hwang, Yong Soo

    2008-12-01

    A TAD canister, in conjunction with specially-designed over-packs can accomplish the functions of transportation, aging, and disposal (TAD) in the management of spent nuclear fuel (SNF). Industrial dry cask systems currently available for SNF are licensed for storage-only or for dual-purpose (i.e., storage and transportation). By extending the function to include the indefinite storage and perhaps, eventual geologic disposal, the TAD canister would have to be designed to enhance, among others, corrosion resistance, thermal stability, and criticality-safety control. This investigative paper introduces the use of these advanced iron-based, corrosion-resistant materials for SNF transportation, aging, and disposal.The objective of this investigative project is to explore the interest that KAERI would research and develop its specific SAM coating materials for the TAD canisters to satisfy the requirements of corrosion-resistance, thermal stability, and criticality-controls for long-term dry storage of high burn-up spent PWR fuel

  18. Influence of fuel element burn-up on the power peaking factor in PWR; Vpliv zgorelosti gorivnega elementa na konicne faktorje moci v tlacnovodnem reaktorju

    Energy Technology Data Exchange (ETDEWEB)

    Ravnik, M; Mele, I [Institut ' Jozef Stefan' , Ljubljana (Yugoslavia); Falkowski, J [Institut energii atomowel, Swierk (Poland)

    1988-07-01

    Influence of fuel element burn-up distribution on radial power peaking factors is presented for Krsko NPP. The effect is strong for elements loaded in the periphery of the core with large power gradients. Neglecting the burn-up distributions inside fuel elements leads to {+-} 5% error on power peaking factor of the same element and {+-} 2% at other locations in the core. Influence on k is observed due to perturbed leakage from the core and due to redistribution of the importance function of the core. (author)

  19. ARC Code TI: Optimal Alarm System Design and Implementation

    Data.gov (United States)

    National Aeronautics and Space Administration — An optimal alarm system can robustly predict a level-crossing event that is specified over a fixed prediction horizon. The code contained in this packages provides...

  20. Recent improvements to TRIGLAV code

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Persic, A.

    1998-01-01

    TRIGLAV code was developed for TRIGA research reactor calculations and is based on two-dimensional diffusion equation. The main purpose of the program is calculation of the fuel elements burn-up. Calculated core burn-up and excess reactivity results are compared with experimental values. New control rod model is introduced and tested in this paper. Calculated integral control rod worth and calculated integral reactivity curves are presented and compared with measured values. Comparison with measured fuel element worth values is presented as a test for two-dimensional flux distribution calculations.(author)

  1. The PASC-3 code system and the UNIPASC environment

    International Nuclear Information System (INIS)

    Pijlgroms, B.J.; Oppe, J.; Oudshoorn, H.

    1991-08-01

    A brief description is given of the PASC-3 (Petten-AMPX-SCALE) Reactor Physics code system and its associated UNIPASC work environment. The PASC-3 code system is used for criticality and reactor calculations and consists of a selection from the Oak Ridge National Laboratory AMPX-SCALE-3 code collection complemented with a number of additional codes and nuclear data bases. The original codes have been adapted to run under the UNIX operating system. The recommended nuclear data base is a complete 219 group cross section library derived from JEF-1 of which some benchmark results are presented. By the addition of the UNIPASC work environment the usage of the code system is greatly simplified, Complex chains of programs can easily be coupled together to form a single job. In addition, the model parameters can be represented by variables instead of literal values which enhances the readability and may improve the integrity of the code inputs. (author). 8 refs.; 6 figs.; 1 tab

  2. Sequence Coding and Search System Backfit Quality Assurance Program Plan

    International Nuclear Information System (INIS)

    Lovell, C.J.; Stepina, P.L.

    1985-03-01

    The Sequence Coding and Search System is a computer-based encoding system for events described in Licensee Event Reports. This data system contains LERs from 1981 to present. Backfit of the data system to include LERs prior to 1981 is required. This report documents the Quality Assurance Program Plan that EG and G Idaho, Inc. will follow while encoding 1980 LERs

  3. Burn up physics

    International Nuclear Information System (INIS)

    Tretiakoff, O.

    1964-01-01

    The present communication is devoted to a body of theoretical and experimental work carried out at the C.E.A. with the aim of adding to the current knowledge on the evolution of the reactivity (during fuel irradiation) in natural or slightly enriched Uranium reactors. The difficulties of performing direct experiments on large amounts of irradiated fuels are reviewed - especially in operating power reactors - and the necessity is underlined for fundamental research in two directions: on one hand, the change in the composition of the fuels (chains of heavy nuclei, fission products), and on the other hand the effect of changes in composition on the neutron balance. Before presenting three types of experiments which have been carried out, the importance of the problems associated with the neutron spectra is stressed and the practical methods used for the calculations are briefly described. The systematic irradiation of several types of fuel, followed by their chemical and isotopic analysis has been going on for several years. An outline of the experimental programme is given with a description of the methods employed: α, β, γ chain for the preparation of samples determination of the plutonium content by coulometry and double isotopic dilution, separation of Boron used in some cases for the measurement of integrated neutron densities. The interpretation of the measurements is discussed with some examples. A second and more recent series of experiments deals with the investigation of lattices, using synthetic fuels (Uranium-Plutonium alloys) as compared to slightly depleted or enriched Uranium Various experiments are considered on heavy water and on cold graphite, then on graphite heated up to 500 C Some results already obtained are listed. These experiments, requiring nearly a metric ton of each type of fuel cannot be pursued in a systematic manner. This is why is developed since several years a method of differential measurement by oscillation, which requires samples of the order of several kilograms only. The relationships between these measurements and the investigations of lattices are discussed, and an outline is given of the way of carrying out the systematic study of fuels of various compositions. The method has been successfully applied to the systematic study of irradiated fuels (analysed independently by the methods mentioned above) thus giving the possibility of measuring in situ the absorption of fission products. (author) [fr

  4. Code-modulated interferometric imaging system using phased arrays

    Science.gov (United States)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  5. Development of a nuclear power plant system analysis code

    International Nuclear Information System (INIS)

    Sim, Suk K.; Jeong, J. J.; Ha, K. S.; Moon, S. K.; Park, J. W.; Yang, S. K.; Song, C. H.; Chun, S. Y.; Kim, H. C.; Chung, B. D.; Lee, W. J.; Kwon, T. S.

    1997-07-01

    During the period of this study, TASS 1.0 code has been prepared for the non-LOCA licensing and reload safety analyses of the Westinghouse and the Korean Standard Nuclear Power Plants (KSNPP) type reactors operating in Korea. TASS-NPA also has been developed for a real time simulation of the Kori-3/4 transients using on-line graphical interactions. TASS 2.0 code has been further developed to timely apply the TASS 2.0 code for the design certification of the KNGR. The COBRA/RELAP5 code, a multi-dimensional best estimate system code, has been developed by integrating the realistic three-dimensional reactor vessel model with the RELAP5 /MOD3.2 code, a one-dimensional system code. Also, a 3D turbulent two-phase flow analysis code, FEMOTH-TF, has been developed using finite element technique to analyze local thermal hydraulic phenomena in support of the detailed design analysis for the development of the advanced reactors. (author). 84 refs., 27 tabs., 83 figs

  6. Dynamic detection technology of malicious code for Android system

    Directory of Open Access Journals (Sweden)

    Li Boya

    2017-02-01

    Full Text Available With the increasing popularization of mobile phones,people's dependence on them is rising,the security problems become more and more prominent.According to the calling of the APK file permission and the API function in Android system,this paper proposes a dynamic detecting method based on API interception technology to detect the malicious code.The experimental results show that this method can effectively detect the malicious code in Android system.

  7. Introduction of thermal-hydraulic analysis code and system analysis code for HTGR

    International Nuclear Information System (INIS)

    Tanaka, Mitsuhiro; Izaki, Makoto; Koike, Hiroyuki; Tokumitsu, Masashi

    1984-01-01

    Kawasaki Heavy Industries Ltd. has advanced the development and systematization of analysis codes, aiming at lining up the analysis codes for heat transferring flow and control characteristics, taking up HTGR plants as the main object. In order to make the model of flow when shock waves propagate to heating tubes, SALE-3D which can analyze a complex system was developed, therefore, it is reported in this paper. Concerning the analysis code for control characteristics, the method of sensitivity analysis in a topological space including an example of application is reported. The flow analysis code SALE-3D is that for analyzing the flow of compressible viscous fluid in a three-dimensional system over the velocity range from incompressibility limit to supersonic velocity. The fundamental equations and fundamental algorithm of the SALE-3D, the calculation of cell volume, the plotting of perspective drawings and the analysis of the three-dimensional behavior of shock waves propagating in heating tubes after their rupture accident are described. The method of sensitivity analysis was added to the analysis code for control characteristics in a topological space, and blow-down phenomena was analyzed by its application. (Kako, I.)

  8. Modeling approach for annular-fuel elements using the ASSERT-PV subchannel code

    International Nuclear Information System (INIS)

    Dominguez, A.N.; Rao, Y.

    2012-01-01

    The internally and externally cooled annular fuel (hereafter called annular fuel) is under consideration for a new high burn-up fuel bundle design in Atomic Energy of Canada Limited (AECL) for its current, and its Generation IV reactor. An assessment of different options to model a bundle fuelled with annular fuel elements is presented. Two options are discussed: 1) Modify the subchannel code ASSERT-PV to handle multiple types of elements in the same bundle, and 2) coupling ASSERT-PV with an external application. Based on this assessment, the selected option is to couple ASSERT-PV with the thermalhydraulic system code CATHENA. (author)

  9. Nonterminals and codings in defining variations of OL-systems

    DEFF Research Database (Denmark)

    Skyum, Sven

    1974-01-01

    The use of nonterminals versus the use of codings in variations of OL-systems is studied. It is shown that the use of nonterminals produces a comparatively low generative capacity in deterministic systems while it produces a comparatively high generative capacity in nondeterministic systems. Fina....... Finally it is proved that the family of context-free languages is contained in the family generated by codings on propagating OL-systems with a finite set of axioms, which was one of the open problems in [10]. All the results in this paper can be found in [71] and [72].......The use of nonterminals versus the use of codings in variations of OL-systems is studied. It is shown that the use of nonterminals produces a comparatively low generative capacity in deterministic systems while it produces a comparatively high generative capacity in nondeterministic systems...

  10. ATHENA code manual. Volume 1. Code structure, system models, and solution methods

    International Nuclear Information System (INIS)

    Carlson, K.E.; Roth, P.A.; Ransom, V.H.

    1986-09-01

    The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code has been developed to perform transient simulation of the thermal hydraulic systems which may be found in fusion reactors, space reactors, and other advanced systems. A generic modeling approach is utilized which permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of a complete facility. Several working fluids are available to be used in one or more interacting loops. Different loops may have different fluids with thermal connections between loops. The modeling theory and associated numerical schemes are documented in Volume I in order to acquaint the user with the modeling base and thus aid effective use of the code. The second volume contains detailed instructions for input data preparation

  11. Lossless Coding Standards for Space Data Systems

    Science.gov (United States)

    Rice, R. F.

    1996-01-01

    The International Consultative Committee for Space Data Systems (CCSDS) is preparing to issue its first recommendation for a digital data compression standard. Because the space data systems of primary interest are employed to support scientific investigations requiring accurate representation, this initial standard will be restricted to lossless compression.

  12. A code system for ADS transmutation studies

    International Nuclear Information System (INIS)

    Brolly, A.; Vertes, P.

    2001-01-01

    An accelerator driven reactor physical system can be divided into two different subsystems. One is the neutron source the other is the subcritical reactor. Similarly, the modelling of such system is also split into two parts. The first step is the determination of the spatial distribution and angle-energy spectrum of neutron source in the target region; the second one is the calculation of neutron flux which is responsible for the transmutation process in the subcritical system. Accelerators can make neutrons from high energy protons by spallation or photoneutrons from accelerated electrons by Bremsstrahlung (e-n converter). The Monte Carlo approach is the only way of modelling such processes and it might be extended to the whole subcritical system as well. However, a subcritical reactor may be large, it may contain thermal regions and the lifetime of neutrons may be long. Therefore a comprehensive Monte Carlo modelling of such system is a very time consuming computational process. It is unprofitable as well when applied to system optimization that requires a comparative study of large number of system variants. An appropriate method of deterministic transport calculation may adequately satisfy these requirements. Thus, we have built up a coupled calculational model for ADS to be used for transmutation of nuclear waste which we refer further as M-c-T system. Flow chart is shown in Figure. (author)

  13. Development of realistic thermal hydraulic system analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, B. D; Kim, K. D. [and others

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others.

  14. Development of realistic thermal hydraulic system analysis code

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, B. D; Kim, K. D.

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others

  15. Sequence Coding and Search System for licensee event reports: code listings. Volume 2

    International Nuclear Information System (INIS)

    Gallaher, R.B.; Guymon, R.H.; Mays, G.T.; Poore, W.P.; Cagle, R.J.; Harrington, K.H.; Johnson, M.P.

    1985-04-01

    Operating experience data from nuclear power plants are essential for safety and reliability analyses, especially analyses of trends and patterns. The licensee event reports (LERs) that are submitted to the Nuclear Regulatory Commission (NRC) by the nuclear power plant utilities contain much of this data. The NRC's Office for Analysis and Evaluation of Operational Data (AEOD) has developed, under contract with NSIC, a system for codifying the events reported in the LERs. The primary objective of the Sequence Coding and Search System (SCSS) is to reduce the descriptive text of the LERs to coded sequences that are both computer-readable and computer-searchable. This system provides a structured format for detailed coding of component, system, and unit effects as well as personnel errors. The database contains all current LERs submitted by nuclear power plant utilities for events occurring since 1981 and is updated on a continual basis. Volume 2 contains all valid and acceptable codes used for searching and encoding the LER data. This volume contains updated material through amendment 1 to revision 1 of the working version of ORNL/NSIC-223, Vol. 2

  16. A practical approach to burn-up credit use in package design approval for PWR uranium oxide spent fuel assemblies

    International Nuclear Information System (INIS)

    Kroger, H.; Reiche, I.

    2009-01-01

    TN International has applied for a license for the TN 24 E transport and storage cask with the German competent authority using a new Burn-up Credit (BUC) approach for PWR uranium oxide fuel assemblies based on actinides and six selected fission products. In order to enable the use of BUC for fission products, various experimental data have to be provided for the two important aspects of the criticality calculation. Firstly, post-irradiation examination (PIE) experiments for the verification of the calculated fission product concentrations have to be provided for each selected fission product. These data are then used to validate the depletion calculations. Secondly, experimental data for the criticality calculations in the form of critical benchmark experiments have to be provided. The submitted data will be investigated for their applicability to the TN 24 E transport and storage cask. Since the application is limited to six fission products only, the conservatism of the BUC approach can be further justified, as the reduction in reactivity from the remaining fission products (about 190) is not taken credit for. (authors)

  17. Automatic code generation for distributed robotic systems

    International Nuclear Information System (INIS)

    Jones, J.P.

    1993-01-01

    Hetero Helix is a software environment which supports relatively large robotic system development projects. The environment supports a heterogeneous set of message-passing LAN-connected common-bus multiprocessors, but the programming model seen by software developers is a simple shared memory. The conceptual simplicity of shared memory makes it an extremely attractive programming model, especially in large projects where coordinating a large number of people can itself become a significant source of complexity. We present results from three system development efforts conducted at Oak Ridge National Laboratory over the past several years. Each of these efforts used automatic software generation to create 10 to 20 percent of the system

  18. Hydrogen detection systems leak response codes

    International Nuclear Information System (INIS)

    Desmas, T.; Kong, N.; Maupre, J.P.; Schindler, P.; Blanc, D.

    1990-01-01

    A loss in tightness of a water tube inside a Steam Generator Unit of a Fast Reactor is usually monitored by hydrogen detection systems. Such systems have demonstrated in the past their ability to detect a leak in a SGU. However, the increase in size of the SGU or the choice of ferritic material entails improvement of these systems in order to avoid secondary leak or to limit damages to the tube bundle. The R and D undertaken in France on this subject is presented. (author). 11 refs, 10 figs

  19. Source Code Vulnerabilities in IoT Software Systems

    Directory of Open Access Journals (Sweden)

    Saleh Mohamed Alnaeli

    2017-08-01

    Full Text Available An empirical study that examines the usage of known vulnerable statements in software systems developed in C/C++ and used for IoT is presented. The study is conducted on 18 open source systems comprised of millions of lines of code and containing thousands of files. Static analysis methods are applied to each system to determine the number of unsafe commands (e.g., strcpy, strcmp, and strlen that are well-known among research communities to cause potential risks and security concerns, thereby decreasing a system’s robustness and quality. These unsafe statements are banned by many companies (e.g., Microsoft. The use of these commands should be avoided from the start when writing code and should be removed from legacy code over time as recommended by new C/C++ language standards. Each system is analyzed and the distribution of the known unsafe commands is presented. Historical trends in the usage of the unsafe commands of 7 of the systems are presented to show how the studied systems evolved over time with respect to the vulnerable code. The results show that the most prevalent unsafe command used for most systems is memcpy, followed by strlen. These results can be used to help train software developers on secure coding practices so that they can write higher quality software systems.

  20. JEMs and incompatible occupational coding systems: Effect of manual and automatic recoding of job codes on exposure assignment

    NARCIS (Netherlands)

    Koeman, T.; Offermans, N.S.M.; Christopher-De Vries, Y.; Slottje, P.; Brandt, P.A. van den; Goldbohm, R.A.; Kromhout, H.; Vermeulen, R.

    2013-01-01

    Background: In epidemiological studies, occupational exposure estimates are often assigned through linkage of job histories to job-exposure matrices (JEMs). However, available JEMs may have a coding system incompatible with the coding system used to code the job histories, necessitating a

  1. The computer code system for reactor radiation shielding in design of nuclear power plant

    International Nuclear Information System (INIS)

    Li Chunhuai; Fu Shouxin; Liu Guilian

    1995-01-01

    The computer code system used in reactor radiation shielding design of nuclear power plant includes the source term codes, discrete ordinate transport codes, Monte Carlo and Albedo Monte Carlo codes, kernel integration codes, optimization code, temperature field code, skyshine code, coupling calculation codes and some processing codes for data libraries. This computer code system has more satisfactory variety of codes and complete sets of data library. It is widely used in reactor radiation shielding design and safety analysis of nuclear power plant and other nuclear facilities

  2. Monte-Carlo code calculation of 3D reactor core model with usage of burnt fuel isotopic compositions, obtained by engineering codes

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, Sergey S.; Gorodkov, Sergey S.; Shcherenko, Anna I. [National Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2016-09-15

    A burn-up calculation of large systems by Monte-Carlo code (MCU) is complex process and it requires large computational costs. Previously prepared isotopic compositions are proposed to be used for the Monte-Carlo code calculations of different system states with burnt fuel. Isotopic compositions are calculated by an approximation method. The approximation method is based on usage of a spectral functionality and reference isotopic compositions, that are calculated by the engineering codes (TVS-M, BIPR-7A and PERMAK-A). The multiplication factors and power distributions of FAs from a 3-D reactor core are calculated in this work by the Monte-Carlo code MCU using earlier prepared isotopic compositions. The separate conditions of the burnt core are observed. The results of MCU calculations were compared with those that were obtained by engineering codes.

  3. User effects on the transient system code calculations. Final report

    International Nuclear Information System (INIS)

    Aksan, S.N.; D'Auria, F.

    1995-01-01

    Large thermal-hydraulic system codes are widely used to perform safety and licensing analyses of nuclear power plants to optimize operational procedures and the plant design itself. Evaluation of the capabilities of these codes are accomplished by comparing the code predictions with the measured experimental data obtained from various types of separate effects and integral test facilities. In recent years, some attempts have been made to establish methodologies to evaluate the accuracy and the uncertainty of the code predictions and consequently judgement on the acceptability of the codes. In none of the methodologies has the influence of the code user on the calculated results been directly addressed. In this paper, the results of the investigations on the user effects for the thermal-hydraulic transient system codes is presented and discussed on the basis of some case studies. The general findings of the investigations show that in addition to user effects, there are other reasons that affect the results of the calculations and which are hidden under user effects. Both the hidden factors and the direct user effects are discussed in detail and general recommendations and conclusions are presented to control and limit them

  4. System verification and validation report for the TMAD code

    International Nuclear Information System (INIS)

    Finfrock, S.H.

    1995-01-01

    This document serves as the Verification and Validation Report for the TMAD code system, which includes the TMAD code and the LIBMAKR Code. The TMAD code was commissioned to facilitate the interpretation of moisture probe measurements in the Hanford Site waste tanks. In principle, the code is an interpolation routine that acts over a library of benchmark data based on two independent variables, typically anomaly size and moisture content. Two additional variables, anomaly type and detector type, can also be considered independent variables, but no interpolation is done over them. The dependent variable is detector response. The intent is to provide the code with measured detector responses from two or more detectors. The code will then interrogate (and interpolate upon) the benchmark data library and find the anomaly-type/anomaly-size/moisture-content combination that provides the closest match to the measured data. The primary purpose of this document is to provide the results of the system testing and the conclusions based thereon. The results of the testing process are documented in the body of the report. Appendix A gives the test plan, including test procedures, used in conducting the tests. Appendix B lists the input data required to conduct the tests, and Appendices C and 0 list the numerical results of the tests

  5. Integrated Validation System for a Thermal-hydraulic System Code, TASS/SMR-S

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee-Kyung; Kim, Hyungjun; Kim, Soo Hyoung; Hwang, Young-Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Hyeon-Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2015-10-15

    Development including enhancement and modification of thermal-hydraulic system computer code is indispensable to a new reactor, SMART. Usually, a thermal-hydraulic system code validation is achieved by a comparison with the results of corresponding physical effect tests. In the reactor safety field, a similar concept, referred to as separate effect tests has been used for a long time. But there are so many test data for comparison because a lot of separate effect tests and integral effect tests are required for a code validation. It is not easy to a code developer to validate a computer code whenever a code modification is occurred. IVS produces graphs which shown the comparison the code calculation results with the corresponding test results automatically. IVS was developed for a validation of TASS/SMR-S code. The code validation could be achieved by a comparison code calculation results with corresponding test results. This comparison was represented as a graph for convenience. IVS is useful before release a new code version. The code developer can validate code result easily using IVS. Even during code development, IVS could be used for validation of code modification. The code developer could gain a confidence about his code modification easily and fast and could be free from tedious and long validation work. The popular software introduced in IVS supplies better usability and portability.

  6. JPEG2000 COMPRESSION CODING USING HUMAN VISUAL SYSTEM MODEL

    Institute of Scientific and Technical Information of China (English)

    Xiao Jiang; Wu Chengke

    2005-01-01

    In order to apply the Human Visual System (HVS) model to JPEG2000 standard,several implementation alternatives are discussed and a new scheme of visual optimization isintroduced with modifying the slope of rate-distortion. The novelty is that the method of visual weighting is not lifting the coefficients in wavelet domain, but is complemented by code stream organization. It remains all the features of Embedded Block Coding with Optimized Truncation (EBCOT) such as resolution progressive, good robust for error bit spread and compatibility of lossless compression. Well performed than other methods, it keeps the shortest standard codestream and decompression time and owns the ability of VIsual Progressive (VIP) coding.

  7. Establishment of computer code system for nuclear reactor design - analysis

    International Nuclear Information System (INIS)

    Subki, I.R.; Santoso, B.; Syaukat, A.; Lee, S.M.

    1996-01-01

    Establishment of computer code system for nuclear reactor design analysis is given in this paper. This establishment is an effort to provide the capability in running various codes from nuclear data to reactor design and promote the capability for nuclear reactor design analysis particularly from neutronics and safety points. This establishment is also an effort to enhance the coordination of nuclear codes application and development existing in various research centre in Indonesia. Very prospective results have been obtained with the help of IAEA technical assistance. (author). 6 refs, 1 fig., 1 tab

  8. Grid-code of Croatian power system

    International Nuclear Information System (INIS)

    Toljan, I.; Mesic, M.; Kalea, M.; Koscak, Z.

    2003-01-01

    Grid Rules by the Croatian Electricity Utility deal with the control and usage of the Croatian power system's transmission and distribution grid. Furthermore, these rules include obligations and permissions of power grid users and owners, with the aim of a reliable electricity supply.(author)

  9. Application of Integral Ex-Core and Differential In-Core Neutron Measurements for Adjustment of Fuel Burn-Up Distributions in VVER-1000

    Science.gov (United States)

    Borodkin, Pavel G.; Borodkin, Gennady I.; Khrennikov, Nikolay N.

    2010-10-01

    The paper deals with calculational and semi-analytical evaluations of VVER-1000 reactor core neutron source distributions and their influence on measurements and calculations of the integral through-vessel neutron leakage. Time-integrated neutron source distributions used for DORT calculations were prepared by two different approaches based on a) calculated fuel burn-up (standard routine procedure) and b) in-core measurements by means of SPD & TC (new approach). Taking into account that fuel burn-up distributions in operating VVER may be evaluated now by analytical methods (calculations) only it is needed to develop new approaches for testing and correction of calculational evaluations. Results presented in this paper allow to consider a reverse task of alternative estimation of fuel burn-up distributions. The approach proposed is based on adjustment (fitting) of time-integrated neutron source distributions, and hence fuel burn-up patterns in some part of reactor core, on the base of ex-core neutron leakage measurement, neutron-physical calculation and in-core SPD & TC measurement data.

  10. On the condition of UO{sub 2} nuclear fuel irradiated in a PWR to a burn-up in excess of 110 MWd/kgHM

    Energy Technology Data Exchange (ETDEWEB)

    Restani, R.; Horvath, M. [Paul Scherrer Institut, CH-5232, Villigen PSI (Switzerland); Goll, W. [AREVA GmbH, P.O. Box 1109, DE-91001 Erlangen (Germany); Bertsch, J.; Gavillet, D.; Hermann, A. [Paul Scherrer Institut, CH-5232, Villigen PSI (Switzerland); Martin, M., E-mail: matthias.martin@psi.ch [Paul Scherrer Institut, CH-5232, Villigen PSI (Switzerland); Walker, C.T. [The Grange, 66 High Street, Swinderby, Lincoln LN6 9LU (United Kingdom)

    2016-12-01

    Post-irradiation examination results are presented for UO{sub 2} fuel from a PWR fuel rod that had been irradiated to an average burn-up of 105 MWd/kgHM and showed high fission gas release of 42%. The radial distribution of xenon and the partitioning of fission gas between bubbles and the fuel matrix was investigated using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and electron probe microanalysis. It is concluded that release from the fuel at intermediate radial positions was mainly responsible for the high fission gas release. In this region thermal release had occurred from the high burn-up structure (HBS) at some point after the sixth irradiation cycle. The LA-ICP-MS results indicate that gas release had also occurred from the HBS in the vicinity of the pellet periphery. It is shown that the gas pressure in the HBS pores is well below the pressure that the fuel can sustain. - Highlights: • Gas retention measured by laser ablation induction coupled plasma mass spectrometry. • Thermal release from the high burn structure responsible for high gas release. • At a pellet burn-up of 115 MWd/kgHM the high burn-up structure is still evolving. • The gas pressure in HBS pores is well below the pressure that the fuel can sustain.

  11. Summary description of the scale modular code system

    International Nuclear Information System (INIS)

    Parks, C.V.

    1987-12-01

    SCALE - a modular code system for Standardized Computer Analyses for Licensing Evaluation - has been developed at Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission staff. The SCALE system utilizes well-established computer codes and methods within standard analytic sequences that allow simplified free-form input, automate the data processing and coupling between codes, and provide accurate and reliable results. System development has been directed at criticality safety, shielding, and heat transfer analysis of spent fuel transport and/or storage casks. However, only a few of the sequences (and none of the individual functional modules) are restricted to cask applications. This report will provide a background on the history of the SCALE development and review the components and their function within the system. The available data libraries are also discussed, together with the automated features that standardize the data processing and systems analysis. 83 refs., 32 figs., 11 tabs

  12. On the automated assessment of nuclear reactor systems code accuracy

    International Nuclear Information System (INIS)

    Kunz, Robert F.; Kasmala, Gerald F.; Mahaffy, John H.; Murray, Christopher J.

    2002-01-01

    An automated code assessment program (ACAP) has been developed to provide quantitative comparisons between nuclear reactor systems (NRS) code results and experimental measurements. The tool provides a suite of metrics for quality of fit to specific data sets, and the means to produce one or more figures of merit (FOM) for a code, based on weighted averages of results from the batch execution of a large number of code-experiment and code-code data comparisons. Accordingly, this tool has the potential to significantly streamline the verification and validation (V and V) processes in NRS code development environments which are characterized by rapidly evolving software, many contributing developers and a large and growing body of validation data. In this paper, a survey of data conditioning and analysis techniques is summarized which focuses on their relevance to NRS code accuracy assessment. A number of methods are considered for their applicability to the automated assessment of the accuracy of NRS code simulations. A variety of data types and computational modeling methods are considered from a spectrum of mathematical and engineering disciplines. The goal of the survey was to identify needs, issues and techniques to be considered in the development of an automated code assessment procedure, to be used in United States Nuclear Regulatory Commission (NRC) advanced thermal-hydraulic T/H code consolidation efforts. The ACAP software was designed based in large measure on the findings of this survey. An overview of this tool is summarized and several NRS data applications are provided. The paper is organized as follows: The motivation for this work is first provided by background discussion that summarizes the relevance of this subject matter to the nuclear reactor industry. Next, the spectrum of NRS data types are classified into categories, in order to provide a basis for assessing individual comparison methods. Then, a summary of the survey is provided, where each

  13. Analytical considerations in the code qualification of piping systems

    International Nuclear Information System (INIS)

    Antaki, G.A.

    1995-01-01

    The paper addresses several analytical topics in the design and qualification of piping systems which have a direct bearing on the prediction of stresses in the pipe and hence on the application of the equations of NB, NC and ND-3600 of the ASME Boiler and Pressure Vessel Code. For each of the analytical topics, the paper summarizes the current code requirements, if any, and the industry practice

  14. Modular ORIGEN-S for multi-physics code systems

    International Nuclear Information System (INIS)

    Yesilyurt, Gokhan; Clarno, Kevin T.; Gauld, Ian C.; Galloway, Jack

    2011-01-01

    The ORIGEN-S code in the SCALE 6.0 nuclear analysis code suite is a well-validated tool to calculate the time-dependent concentrations of nuclides due to isotopic depletion, decay, and transmutation for many systems in a wide range of time scales. Application areas include nuclear reactor and spent fuel storage analyses, burnup credit evaluations, decay heat calculations, and environmental assessments. Although simple to use within the SCALE 6.0 code system, especially with the ORIGEN-ARP graphical user interface, it is generally complex to use as a component within an externally developed code suite because of its tight coupling within the infrastructure of the larger SCALE 6.0 system. The ORIGEN2 code, which has been widely integrated within other simulation suites, is no longer maintained by Oak Ridge National Laboratory (ORNL), has obsolete data, and has a relatively small validation database. Therefore, a modular version of the SCALE/ORIGEN-S code was developed to simplify its integration with other software packages to allow multi-physics nuclear code systems to easily incorporate the well-validated isotopic depletion, decay, and transmutation capability to perform realistic nuclear reactor and fuel simulations. SCALE/ORIGEN-S was extensively restructured to develop a modular version that allows direct access to the matrix solvers embedded in the code. Problem initialization and the solver were segregated to provide a simple application program interface and fewer input/output operations for the multi-physics nuclear code systems. Furthermore, new interfaces were implemented to access and modify the ORIGEN-S input variables and nuclear cross-section data through external drivers. Three example drivers were implemented, in the C, C++, and Fortran 90 programming languages, to demonstrate the modular use of the new capability. This modular version of SCALE/ORIGEN-S has been embedded within several multi-physics software development projects at ORNL, including

  15. Modular ORIGEN-S for multi-physics code systems

    Energy Technology Data Exchange (ETDEWEB)

    Yesilyurt, Gokhan; Clarno, Kevin T.; Gauld, Ian C., E-mail: yesilyurtg@ornl.gov, E-mail: clarnokt@ornl.gov, E-mail: gauldi@ornl.gov [Oak Ridge National Laboratory, TN (United States); Galloway, Jack, E-mail: jack@galloways.net [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2011-07-01

    The ORIGEN-S code in the SCALE 6.0 nuclear analysis code suite is a well-validated tool to calculate the time-dependent concentrations of nuclides due to isotopic depletion, decay, and transmutation for many systems in a wide range of time scales. Application areas include nuclear reactor and spent fuel storage analyses, burnup credit evaluations, decay heat calculations, and environmental assessments. Although simple to use within the SCALE 6.0 code system, especially with the ORIGEN-ARP graphical user interface, it is generally complex to use as a component within an externally developed code suite because of its tight coupling within the infrastructure of the larger SCALE 6.0 system. The ORIGEN2 code, which has been widely integrated within other simulation suites, is no longer maintained by Oak Ridge National Laboratory (ORNL), has obsolete data, and has a relatively small validation database. Therefore, a modular version of the SCALE/ORIGEN-S code was developed to simplify its integration with other software packages to allow multi-physics nuclear code systems to easily incorporate the well-validated isotopic depletion, decay, and transmutation capability to perform realistic nuclear reactor and fuel simulations. SCALE/ORIGEN-S was extensively restructured to develop a modular version that allows direct access to the matrix solvers embedded in the code. Problem initialization and the solver were segregated to provide a simple application program interface and fewer input/output operations for the multi-physics nuclear code systems. Furthermore, new interfaces were implemented to access and modify the ORIGEN-S input variables and nuclear cross-section data through external drivers. Three example drivers were implemented, in the C, C++, and Fortran 90 programming languages, to demonstrate the modular use of the new capability. This modular version of SCALE/ORIGEN-S has been embedded within several multi-physics software development projects at ORNL, including

  16. Transient and fuel performance analysis with VTT's coupled code system

    International Nuclear Information System (INIS)

    Daavittila, A.; Hamalainen, A.; Raty, H.

    2005-01-01

    VTT (technical research center of Finland) maintains and further develops a comprehensive safety analysis code system ranging from the basic neutronic libraries to 3-dimensional transient analysis and fuel behaviour analysis codes. The code system is based on various types of couplings between the relevant physical phenomena. The main tools for analyses of reactor transients are presently the 3-dimensional reactor dynamics code HEXTRAN for cores with a hexagonal fuel assembly geometry and TRAB-3D for cores with a quadratic fuel assembly geometry. HEXTRAN has been applied to safety analyses of VVER type reactors since early 1990's. TRAB-3D is the latest addition to the code system, and has been applied to BWR and PWR analyses in recent years. In this paper it is shown that TRAB-3D has calculated accurately the power distribution during the Olkiluoto-1 load rejection test. The results from the 3-dimensional analysis can be used as boundary conditions for more detailed fuel rod analysis. For this purpose a general flow model GENFLO, developed at VTT, has been coupled with USNRC's FRAPTRAN fuel accident behaviour model. The example case for FRAPTRAN-GENFLO is for an ATWS at a BWR plant. The basis for the analysis is an oscillation incident in the Olkiluoto-1 BWR during reactor startup on February 22, 1987. It is shown that the new coupled code FRAPTRAN/GENFLO is quite a promising tool that can handle flow situations and give a detailed analysis of reactor transients

  17. The relevance of axial burn-up profiles for the criticality safety analysis of spent nuclear fuel in a final repository

    International Nuclear Information System (INIS)

    Kilger, R.; Gmal, B.; Moser, E.F.

    2008-01-01

    Due to inhomogeneous neutron flux and moderator density distributions in the reactor core, the burn-up of a nuclear fuel assembly is not homogeneous but shows an axial distribution, typically with lower partial burn-up and thus higher remaining reactivity at the fuel ends in particular at the assembly top end. Beyond a burn-up of about 15 to 20 GWd/tHM, the multiplication factor K of the whole assembly is dominated by this lower-burnt end regions, and is usually higher than for assuming a homogeneous uniform distribution of the averaged burn-up. This behaviour commonly referred to as positive ''end effect'' is well known in burn-up credit considerations for transportation and storage casks and is being investigated also in the context of criticality analyses for final disposition of spent nuclear fuel. Sign and value of the end effect depend on several parameters. Based on a generic model one may not conclude that criticality in a final repository is a likely or expected event, but nevertheless it draws the attention to the fact that criticality is not excluded per se but has to be considered in the analysis and probably has to be encountered by certain appropriate measures, maybe e.g. by limitation of the amount of fissile material inside one single cask, or a rigorous prove for prevention of water ingress. The authors also conclude that the higher partial reactivity of the fuel ends has to be accounted for carefully in more realistic analyses of post-closure scenarios with respect to criticality safety.

  18. Instant release of fission products in leaching experiments with high burn-up nuclear fuels in the framework of the Euratom project FIRST- Nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Lemmens, K., E-mail: klemmens@sckcen.be [Waste and Disposal Expert Group, Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, 2400 Mol (Belgium); González-Robles, E.; Kienzler, B. [Karlsruhe Institute of Technology Institute for Nuclear Waste Disposal (KIT-INE), PO Box 3640, D-76021 Karlsruhe (Germany); Curti, E. [Laboratory for Waste Management, Nuclear Energy and Safety Dept., Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Serrano-Purroy, D. [European Commission, DG Joint Research Centre - JRC, Directorate G - Nuclear Safety & Security, Department G.III, PO Box 2340, D-76125 Karlsruhe (Germany); Sureda, R.; Martínez-Torrents, A. [CTM Centre Tecnològic, Plaça de la Ciència 2, 08243 Manresa (Spain); Roth, O. [Studsvik, Nuclear AB, 611 82 Nyköping (Sweden); Slonszki, E. [Magyar Tudományos Akadémia Energiatudományi Kutatóközpont (MTA EK), PO Box 49, H-1525 Budapest (Hungary); Mennecart, T. [Waste and Disposal Expert Group, Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, 2400 Mol (Belgium); Günther-Leopold, I. [Laboratory for Waste Management, Nuclear Energy and Safety Dept., Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Hózer, Z. [Magyar Tudományos Akadémia Energiatudományi Kutatóközpont (MTA EK), PO Box 49, H-1525 Budapest (Hungary)

    2017-02-15

    The instant release of fission products from high burn-up UO{sub 2} fuels and one MOX fuel was investigated by means of leach tests. The samples covered PWR and BWR fuels at average rod burn-up in the range of 45–63 GWd/t{sub HM} and included clad fuel segments, fuel segments with opened cladding, fuel fragments and fuel powder. The tests were performed with sodium chloride – bicarbonate solutions under oxidizing conditions and, for one test, in reducing Ar/H{sub 2} atmosphere. The iodine and cesium release could be partially explained by the differences in sample preparation, leading to different sizes and properties of the exposed surface areas. Iodine and cesium releases tend to correlate with FGR and linear power rating, but the scatter of the data is significant. Although the gap between the fuel and the cladding was closed in some high burn-up samples, fissures still provide possible preferential transport pathways. - Highlights: • Leach tests were performed to study the instant release of fission products from high burn-up UO{sub 2} fuels and one MOX fuel. • In these tests, the fission gas release given by the operator was a pessimistic estimator of the iodine and cesium release. • Iodine and cesium release is proportional to linear power rating beyond 200 W cm{sup −1}. • Closure of the fuel-cladding gap at high burn-up slows down the release. • The release rate decreases following an exponential equation.

  19. FAST: An advanced code system for fast reactor transient analysis

    International Nuclear Information System (INIS)

    Mikityuk, Konstantin; Pelloni, Sandro; Coddington, Paul; Bubelis, Evaldas; Chawla, Rakesh

    2005-01-01

    One of the main goals of the FAST project at PSI is to establish a unique analytical code capability for the core and safety analysis of advanced critical (and sub-critical) fast-spectrum systems for a wide range of different coolants. Both static and transient core physics, as well as the behaviour and safety of the power plant as a whole, are studied. The paper discusses the structure of the code system, including the organisation of the interfaces and data exchange. Examples of validation and application of the individual programs, as well as of the complete code system, are provided using studies carried out within the context of designs for experimental accelerator-driven, fast-spectrum systems

  20. Application bar-code system for solid radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Kim, T. K.; Kang, I. S.; Cho, H. S.; Son, J. S. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Solid radioactive wastes are generated from the post-irradiated fuel examination facility, the irradiated material examination facility, the research reactor, and the laboratories at KAERI. A bar-code system for a solid radioactive waste management of a research organization became necessary while developing the RAWMIS(Radioactive Waste Management Integration System) which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by bar-code system.

  1. Development of the vacuum system pressure responce analysis code PRAC

    International Nuclear Information System (INIS)

    Horie, Tomoyoshi; Kawasaki, Kouzou; Noshiroya, Shyoji; Koizumi, Jun-ichi.

    1985-03-01

    In this report, we show the method and numerical results of the vacuum system pressure responce analysis code. Since fusion apparatus is made up of many vacuum components, it is required to analyze pressure responce at any points of the system when vacuum system is designed or evaluated. For that purpose evaluating by theoretical solution is insufficient. Numerical analysis procedure such as finite difference method is usefull. In the PRAC code (Pressure Responce Analysis Code), pressure responce is obtained solving derivative equations which is obtained from the equilibrium relation of throughputs and contain the time derivative of pressure. As it considers both molecular and viscous flows, the coefficients of the equation depend on the pressure and the equations become non-linear. This non-linearity is treated as piece-wise linear within each time step. Verification of the code is performed for the simple problems. The agreement between numerical and theoretical solutions is good. To compare with the measured results, complicated model of gas puffing system is analyzed. The agreement is well for practical use. This code will be a useful analytical tool for designing and evaluating vacuum systems such as fusion apparatus. (author)

  2. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    Energy Technology Data Exchange (ETDEWEB)

    Langenbuch, S.; Velkov, K. [GRS, Garching (Germany); Lizorkin, M. [Kurchatov-Institute, Moscow (Russian Federation)] [and others

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  3. A Coding System for Analysing a Spoken Text Database.

    Science.gov (United States)

    Cutting, Joan

    1994-01-01

    This paper describes a coding system devised to analyze conversations of graduate students in applied linguistics at Edinburgh University. The system was devised to test the hypothesis that as shared knowledge among conversation participants grows, the textual density of in-group members has more cues than that of strangers. The informal…

  4. Physical-layer network coding in coherent optical OFDM systems.

    Science.gov (United States)

    Guan, Xun; Chan, Chun-Kit

    2015-04-20

    We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.

  5. Tritium module for ITER/Tiber system code

    International Nuclear Information System (INIS)

    Finn, P.A.; Willms, S.; Busigin, A.; Kalyanam, K.M.

    1988-01-01

    A tritium module was developed for the ITER/Tiber system code to provide information on capital costs, tritium inventory, power requirements and building volumes for these systems. In the tritium module, the main tritium subsystems/emdash/plasma processing, atmospheric cleanup, water cleanup, blanket processing/emdash/are each represented by simple scaleable algorithms. 6 refs., 2 tabs

  6. Progress on China nuclear data processing code system

    Science.gov (United States)

    Liu, Ping; Wu, Xiaofei; Ge, Zhigang; Li, Songyang; Wu, Haicheng; Wen, Lili; Wang, Wenming; Zhang, Huanyu

    2017-09-01

    China is developing the nuclear data processing code Ruler, which can be used for producing multi-group cross sections and related quantities from evaluated nuclear data in the ENDF format [1]. The Ruler includes modules for reconstructing cross sections in all energy range, generating Doppler-broadened cross sections for given temperature, producing effective self-shielded cross sections in unresolved energy range, calculating scattering cross sections in thermal energy range, generating group cross sections and matrices, preparing WIMS-D format data files for the reactor physics code WIMS-D [2]. Programming language of the Ruler is Fortran-90. The Ruler is tested for 32-bit computers with Windows-XP and Linux operating systems. The verification of Ruler has been performed by comparison with calculation results obtained by the NJOY99 [3] processing code. The validation of Ruler has been performed by using WIMSD5B code.

  7. Code conversion for system design and safety analysis of NSSS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae Cho; Kim, Young Tae; Choi, Young Gil; Kim, Hee Kyung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-01-01

    This report describes overall project works related to conversion, installation and validation of computer codes which are used in NSSS design and safety analysis of nuclear power plants. Domain/os computer codes for system safety analysis are installed and validated on Apollo DN10000, and then Apollo version are converted and installed again on HP9000/700 series with appropriate validation. Also, COOLII and COAST which are cyber version computer codes are converted into versions of Apollo DN10000 and HP9000/700, and installed with validation. This report details whole processes of work involved in the computer code conversion and installation, as well as software verification and validation results which are attached to this report. 12 refs., 8 figs. (author)

  8. Validation of the VTT's reactor physics code system

    International Nuclear Information System (INIS)

    Tanskanen, A.

    1998-01-01

    At VTT Energy several international reactor physics codes and nuclear data libraries are used in a variety of applications. The codes and libraries are under constant development and every now and then new updated versions are released, which are taken in use as soon as they have been validated at VTT Energy. The primary aim of the validation is to ensure that the code works properly, and that it can be used correctly. Moreover, the applicability of the codes and libraries are studied in order to establish their advantages and weak points. The capability of generating program-specific nuclear data for different reactor physics codes starting from the same evaluated data is sometimes of great benefit. VTT Energy has acquired a nuclear data processing system based on the NJOY-94.105 and TRANSX-2.15 processing codes. The validity of the processing system has been demonstrated by generating pointwise (MCNP) and groupwise (ANISN) temperature-dependent cross section sets for the benchmark calculations of the Doppler coefficient of reactivity. At VTT Energy the KENO-VI three-dimensional Monte Carlo code is used in criticality safety analyses. The KENO-VI code and the 44GROUPNDF5 data library have been validated at VTT Energy against the ZR-6 and LR-0 critical experiments. Burnup Credit refers to the reduction in reactivity of burned nuclear fuel due to the change in composition during irradiation. VTT Energy has participated in the calculational VVER-440 burnup credit benchmark in order to validate criticality safety calculation tools. (orig.)

  9. Simulation of water hammer phenomena using the system code ATHLET

    Energy Technology Data Exchange (ETDEWEB)

    Bratfisch, Christoph; Koch, Marco K. [Bochum Univ. (Germany). Reactor Simulation and Safety Group

    2017-07-15

    Water Hammer Phenomena can endanger the integrity of structures leading to a possible failure of pipes in nuclear power plants as well as in many industrial applications. These phenomena can arise in nuclear power plants in the course of transients and accidents induced by the start-up of auxiliary feed water systems or emergency core cooling systems in combination with rapid acting valves and pumps. To contribute to further development and validation of the code ATHLET (Analysis of Thermalhydraulics of Leaks and Transients), an experiment performed in the test facility Pilot Plant Pipework (PPP) at Fraunhofer UMSICHT is simulated using the code version ATHLET 3.0A.

  10. Simulation of water hammer phenomena using the system code ATHLET

    International Nuclear Information System (INIS)

    Bratfisch, Christoph; Koch, Marco K.

    2017-01-01

    Water Hammer Phenomena can endanger the integrity of structures leading to a possible failure of pipes in nuclear power plants as well as in many industrial applications. These phenomena can arise in nuclear power plants in the course of transients and accidents induced by the start-up of auxiliary feed water systems or emergency core cooling systems in combination with rapid acting valves and pumps. To contribute to further development and validation of the code ATHLET (Analysis of Thermalhydraulics of Leaks and Transients), an experiment performed in the test facility Pilot Plant Pipework (PPP) at Fraunhofer UMSICHT is simulated using the code version ATHLET 3.0A.

  11. Development of the versatile reactor analysis code system, MARBLE2

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Jin, Tomoyuki; Hazama, Taira; Hirai, Yasushi

    2015-07-01

    The second version of the versatile reactor analysis code system, MARBLE2, has been developed. A lot of new functions have been added in MARBLE2 by using the base technology developed in the first version (MARBLE1). Introducing the remaining functions of the conventional code system (JOINT-FR and SAGEP-FR), MARBLE2 enables one to execute almost all analysis functions of the conventional code system with the unified user interfaces of its subsystem, SCHEME. In particular, the sensitivity analysis functionality is available in MARBLE2. On the other hand, new built-in solvers have been developed, and existing ones have been upgraded. Furthermore, some other analysis codes and libraries developed in JAEA have been consolidated and prepared in SCHEME. In addition, several analysis codes developed in the other institutes have been additionally introduced as plug-in solvers. Consequently, gamma-ray transport calculation and heating evaluation become available. As for another subsystem, ORPHEUS, various functionality updates and speed-up techniques have been applied based on user experience of MARBLE1 to enhance its usability. (author)

  12. OSCAR-4 Code System Application to the SAFARI-1 Reactor

    International Nuclear Information System (INIS)

    Stander, Gerhardt; Prinsloo, Rian H.; Tomasevic, Djordje I.; Mueller, Erwin

    2008-01-01

    The OSCAR reactor calculation code system consists of a two-dimensional lattice code, the three-dimensional nodal core simulator code MGRAC and related service codes. The major difference between the new version of the OSCAR system, OSCAR-4, and its predecessor, OSCAR-3, is the new version of MGRAC which contains many new features and model enhancements. In this work some of the major improvements in the nodal diffusion solution method, history tracking, nuclide transmutation and cross section models are described. As part of the validation process of the OSCAR-4 code system (specifically the new MGRAC version), some of the new models are tested by comparing computational results to SAFARI-1 reactor plant data for a number of operational cycles and for varying applications. A specific application of the new features allows correct modeling of, amongst others, the movement of fuel-follower type control rods and dynamic in-core irradiation schedules. It is found that the effect of the improved control rod model, applied over multiple cycles of the SAFARI-1 reactor operation history, has a significant effect on in-cycle reactivity prediction and fuel depletion. (authors)

  13. Development of FBR integrity system code. Basic concept

    International Nuclear Information System (INIS)

    Asayama, Tai

    2001-05-01

    For fast breeder reactors to be commercialized, they must be more reliable, safer, and at the same, economically competitive with future light water reactors. Innovation of elevated temperature structural design standard is necessary to achieve this goal. The most powerful way is to enlarge the scope of structural integrity code to cover items other than design evaluation that has been addressed in existing codes. Items that must be newly covered are prerequisites of design, fabrication, examination, operation and maintenance, etc. This allows designers to choose the most economical combination of design variations to achieve specific reliability that is needed for a particular component. Designing components by this concept, a cost-minimum design of a whole plant can be realized. By determining the reliability that must be achieved for a component by risk technologies, further economical improvement can be expected by avoiding excessive quality. Recognizing the necessity for the codes based on the new concept, the development of 'FBR integrity system code' began in 2000. Research and development will last 10 years. For this development, the basic logistics and system as well as technologies that materialize the concept are necessary. Original logistics and system must be developed, because no existing researches are available in and out of Japan. This reports presents the results of the work done in the first year regarding the basic idea, methodology, and structure of the code. (author)

  14. Java Source Code Analysis for API Migration to Embedded Systems

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Victor [Univ. of Nebraska, Omaha, NE (United States); McCoy, James A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Guerrero, Jonathan [Univ. of Nebraska, Omaha, NE (United States); Reinke, Carl Werner [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Perry, James Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    Embedded systems form an integral part of our technological infrastructure and oftentimes play a complex and critical role within larger systems. From the perspective of reliability, security, and safety, strong arguments can be made favoring the use of Java over C in such systems. In part, this argument is based on the assumption that suitable subsets of Java’s APIs and extension libraries are available to embedded software developers. In practice, a number of Java-based embedded processors do not support the full features of the JVM. For such processors, source code migration is a mechanism by which key abstractions offered by APIs and extension libraries can made available to embedded software developers. The analysis required for Java source code-level library migration is based on the ability to correctly resolve element references to their corresponding element declarations. A key challenge in this setting is how to perform analysis for incomplete source-code bases (e.g., subsets of libraries) from which types and packages have been omitted. This article formalizes an approach that can be used to extend code bases targeted for migration in such a manner that the threats associated the analysis of incomplete code bases are eliminated.

  15. Opacity calculations for extreme physical systems: code RACHEL

    Science.gov (United States)

    Drska, Ladislav; Sinor, Milan

    1996-08-01

    Computer simulations of physical systems under extreme conditions (high density, temperature, etc.) require the availability of extensive sets of atomic data. This paper presents basic information on a self-consistent approach to calculations of radiative opacity, one of the key characteristics of such systems. After a short explanation of general concepts of the atomic physics of extreme systems, the structure of the opacity code RACHEL is discussed and some of its applications are presented.

  16. Analysis of an XADS Target with the System Code TRACE

    International Nuclear Information System (INIS)

    Jaeger, Wadim; Sanchez Espinoza, Victor H.; Feng, Bo

    2008-01-01

    Accelerator-driven systems (ADS) present an option to reduce the radioactive waste of the nuclear industry. The experimental Accelerator-Driven System (XADS) has been designed to investigate the feasibility of using ADS on an industrial scale to burn minor actinides. The target section lies in the middle of the subcritical core and is bombarded by a proton beam to produce spallation neutrons. The thermal energy produced from this reaction requires a heat removal system for the target section. The target is cooled by liquid lead-bismuth-eutectics (LBE) in the primary system which in turn transfers the heat via a heat exchanger (HX) to the secondary coolant, Diphyl THT (DTHT), a synthetic diathermic fluid. Since this design is still in development, a detailed investigation of the system is necessary to evaluate the behavior during normal and transient operations. Due to the lack of experimental facilities and data for ADS, the analyses are mostly done using thermal hydraulic codes. In addition to evaluating the thermal hydraulics of the XADS, this paper also benchmarks a new code developed by the NRC, TRACE, against other established codes. The events used in this study are beam power switch-on/off transients and a loss of heat sink accident. The obtained results from TRACE were in good agreement with the results of various other codes. (authors)

  17. Revised SWAT. The integrated burnup calculation code system

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya; Mochizuki, Hiroki [Department of Fuel Cycle Safety Research, Nuclear Safety Research Center, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Kiyosumi, Takehide [The Japan Research Institute, Ltd., Tokyo (Japan)

    2000-07-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. This report shows an outline and a user's manual of revised SWAT. This revised SWAT includes expansion of functions, increasing supported machines, and correction of several bugs reported from users of previous SWAT. (author)

  18. Revised SWAT. The integrated burnup calculation code system

    International Nuclear Information System (INIS)

    Suyama, Kenya; Mochizuki, Hiroki; Kiyosumi, Takehide

    2000-07-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. This report shows an outline and a user's manual of revised SWAT. This revised SWAT includes expansion of functions, increasing supported machines, and correction of several bugs reported from users of previous SWAT. (author)

  19. Coded aperture imaging system for nuclear fuel motion detection

    International Nuclear Information System (INIS)

    Stalker, K.T.; Kelly, J.G.

    1980-01-01

    A Coded Aperature Imaging System (CAIS) has been developed at Sandia National Laboratories to image the motion of nuclear fuel rods undergoing tests simulating accident conditions within a liquid metal fast breeder reactor. The tests require that the motion of the test fuel be monitored while it is immersed in a liquid sodium coolant precluding the use of normal optical means of imaging. However, using the fission gamma rays emitted by the fuel itself and coded aperture techniques, images with 1.5 mm radial and 5 mm axial resolution have been attained. Using an electro-optical detection system coupled to a high speed motion picture camera a time resolution of one millisecond can be achieved. This paper will discuss the application of coded aperture imaging to the problem, including the design of the one-dimensional Fresnel zone plate apertures used and the special problems arising from the reactor environment and use of high energy gamma ray photons to form the coded image. Also to be discussed will be the reconstruction techniques employed and the effect of various noise sources on system performance. Finally, some experimental results obtained using the system will be presented

  20. Adaptive Wavelet Coding Applied in a Wireless Control System.

    Science.gov (United States)

    Gama, Felipe O S; Silveira, Luiz F Q; Salazar, Andrés O

    2017-12-13

    Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER) versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.

  1. Adaptive Wavelet Coding Applied in a Wireless Control System

    Directory of Open Access Journals (Sweden)

    Felipe O. S. Gama

    2017-12-01

    Full Text Available Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.

  2. Network coding and its applications to satellite systems

    DEFF Research Database (Denmark)

    Vieira, Fausto; Roetter, Daniel Enrique Lucani

    2015-01-01

    Network coding has its roots in information theory where it was initially proposed as a way to improve a two-node communication using a (broadcasting) relay. For this theoretical construct, a satellite communications system was proposed as an illustrative example, where the relay node would be a ...

  3. PCS a code system for generating production cross section libraries

    International Nuclear Information System (INIS)

    Cox, L.J.

    1997-01-01

    This document outlines the use of the PCS Code System. It summarizes the execution process for generating FORMAT2000 production cross section files from FORMAT2000 reaction cross section files. It also describes the process of assembling the ASCII versions of the high energy production files made from ENDL and Mark Chadwick's calculations. Descriptions of the function of each code along with its input and output and use are given. This document is under construction. Please submit entries, suggestions, questions, and corrections to (ljc at sign llnl.gov) 3 tabs

  4. PHITS-a particle and heavy ion transport code system

    International Nuclear Information System (INIS)

    Niita, Koji; Sato, Tatsuhiko; Iwase, Hiroshi; Nose, Hiroyuki; Nakashima, Hiroshi; Sihver, Lembit

    2006-01-01

    The paper presents a summary of the recent development of the multi-purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS. In particular, we discuss in detail the development of two new models, JAM and JQMD, for high energy particle interactions, incorporated in PHITS, and show comparisons between model calculations and experiments for the validations of these models. The paper presents three applications of the code including spallation neutron source, heavy ion therapy and space radiation. The results and examples shown indicate PHITS has great ability of carrying out the radiation transport analysis of almost all particles including heavy ions within a wide energy range

  5. ERRORJ. Covariance processing code system for JENDL. Version 2

    International Nuclear Information System (INIS)

    Chiba, Gou

    2003-09-01

    ERRORJ is the covariance processing code system for Japanese Evaluated Nuclear Data Library (JENDL) that can produce group-averaged covariance data to apply it to the uncertainty analysis of nuclear characteristics. ERRORJ can treat the covariance data for cross sections including resonance parameters as well as angular distributions and energy distributions of secondary neutrons which could not be dealt with by former covariance processing codes. In addition, ERRORJ can treat various forms of multi-group cross section and produce multi-group covariance file with various formats. This document describes an outline of ERRORJ and how to use it. (author)

  6. Determination of uranium concentration and burn-up of irradiated reactor fuel in contaminated areas in Belarus using uranium isotopic ratios in soil samples

    International Nuclear Information System (INIS)

    Mironov, V.P.; Matusevich, J.L.; Kudrjashov, V.P.; Ananich, P.I.; Zhuravkov, V.V.; Boulyga, S.F.; Becker, J.S.

    2005-01-01

    An analytical method is described for the estimation of uranium concentrations, of 235 U/ 238 U and 236 U/ 238 U isotope ratios and burn-up of irradiated reactor uranium in contaminated soil samples by inductively coupled plasma mass spectrometry. Experimental results obtained at 12 sampling sites situated on northern and western radioactive fallout tails 4 to 53 km distant from Chernobyl nuclear power plant (NPP) are presented. Concentrations of irradiated uranium in the upper 0-10 cm soil layers at the investigated sampling sites varied from 2.1 x 10 -9 g/g to 2.0 x 10 -6 g/g depending mainly on the distance from Chernobyl NPP. A slight variation of the degree of burn-up of spent reactor uranium was revealed by analyzing 235 U/ 238 U and 236 U/ 238 U isotope ratios and the average value amounted to 9.4±0.3 MWd/(kg U). (orig.)

  7. Preferential removal of Sm by evaporation from Nd-Sm mixture and its application in direct burn-up determination of spent nuclear fuel

    International Nuclear Information System (INIS)

    Sajimol, R.; Bera, S.; Nalini, S.; Sivaraman, N.; Joseph, M.; Kumar, T.

    2016-01-01

    Rate of evaporation of Sm and Nd from their mixture was studied based on their ion intensities using thermal ionization mass spectrometry. Because of the comparatively larger evaporation rate of Sm, it was found possible to get the isotopic composition of Nd (fission product monitor) free from isobaric interference of Sm isotopes. The decrease in ion intensity of Sm was studied as a function of time and filament temperature. Based on this study, an easy and time effective method for the determination of burn-up of spent nuclear fuel was examined and the results are compared with that obtained by the conventional method. Typical burn-up value obtained for a pressurized heavy water reactor fuel dissolver solution using the direct method by preferential evaporation of Sm is: 0.84 at.%, whereas the one obtained by the use of conventional method is 0.82 at.%. In both the cases, Nd was employed as the fission product monitor. (author)

  8. Modification of UO2 grain re-crystallization temperature in function of burn-up as a base for Vitanza experimental curve reconstruction

    International Nuclear Information System (INIS)

    Szuta, M.; Dąbrowski, L.

    2013-01-01

    Crossing the experimental critical fuel temperature dependent on burn-up, an onset of fission gas burst release is observed. This observed phenomena can be explained by assumption that the fission gas immobilization in the uranium dioxide irradiated to a fluency of greater than 10 19 fissions/cm 3 is mainly due to radiation induced chemical activity. Application of the “ab initio” method show that the bond energy of Xenon and Krypton is equal to –1.23 eV, and –3.42 eV respectively. Assuming further that the gas chemically bound can be released mainly in the process of re-crystallization and modifying the differential equation of Ainscough of grain growth by including the burn-up dependence and the experimental data of limiting grain size in function of the fuel temperature for the un-irradiated and irradiated fuel we can re-construct the experimental curve of Vitanza. (authors)

  9. Energy saving options by means of addition of burned-up biomass materials in the ceramics industry; Energiebesparingsmogelijkheden door toevoeging van biomassa-uitbrandstoffen in de keramische industrie

    Energy Technology Data Exchange (ETDEWEB)

    Walda, E.

    2013-06-01

    In 2011/2012 is an exploratory study has been executed on the availability of biomass and the potential applicability in the building ceramics industry. The study consisted of (1) a literature and desk study, in which an overview is made of available and ceramic applicable (renewable) burned-up materials, and (2), laboratory tests in which ultimately potentially applicable burned-up material (sawdust) is examined for its coarse ceramic applicability. In this article the results of the two-pronged research are presented [Dutch] In 2011/2012 is een orienterend onderzoek uitgevoerd naar de beschikbaarheid van biomassa en de mogelijke toepasbaarheid in de bouwkeramische industrie. Het onderzoek bestond uit (1) een literatuur- en deskstudie, waarbij een overzicht is gemaakt van verkrijgbare en keramisch toe te passen (hernieuwbare) uitbrandstoffen, en (2) een laboratoriumonderzoek, waarbij uiteindelijk een potentieel toepasbare uitbrandstof (zaagsel) is onderzocht op zijn grofkeramische toepasbaarheid. In dit artikel worden de resultaten van het tweeledige onderzoek gepresenteerd.

  10. Investigation of the burn-up behavior of boron poison rods, placed in a fuel assembly of a pressurized water reactor

    International Nuclear Information System (INIS)

    Arnold, C.; Lutz, D.C.

    1979-09-01

    The excess reactivity of a pressurized water reactor is compensated by boron, disolved in the moderator. In addition during the first cycle boron poison rods are placed in fuel assemblies without control rods. The burn-up behavior of a poison rod in a Biblis B fuel assembly is analysed in the present paper. Multigroup spectrum calculations were performed. The influence of critical boron concentration depending from burn-up, the changes of fuel concentration and the concentration of burnable poison were taken into consideration. Furthermore the built-up of rapidly saturating fisson products 135 Xe and 149 Sm was considered. The interaction of these effects are discussed. Spatial influences are emphasized most. Finally two group cross sections were calculated. The results are compared with calculations for a fuel assembly of the same type without burnable poison rods. (orig.) [de

  11. Results from the Coded Aperture Neutron Imaging System (CANIS)

    International Nuclear Information System (INIS)

    Brubaker, Erik; Steele, John T.; Brennan, James S.; Hilton, Nathan R.; Marleau, Peter

    2010-01-01

    Because of their penetrating power, energetic neutrons and gamma rays (∼1 MeV) offer the best possibility of detecting highly shielded or distant special nuclear material (SNM). Of these, fast neutrons offer the greatest advantage due to their very low and well understood natural background. We are investigating a new approach to fast-neutron imaging- a coded aperture neutron imaging system (CANIS). Coded aperture neutron imaging should offer a highly efficient solution for improved detection speed, range, and sensitivity. We have demonstrated fast neutron and gamma ray imaging with several different configurations of coded masks patterns and detectors including an 'active' mask that is composed of neutron detectors. Here we describe our prototype detector and present some initial results from laboratory tests and demonstrations.

  12. Results from the coded aperture neutron imaging system

    International Nuclear Information System (INIS)

    Brubaker, Erik; Steele, John T.; Brennan, James S.; Marleau, Peter

    2010-01-01

    Because of their penetrating power, energetic neutrons and gamma rays (∼1 MeV) offer the best possibility of detecting highly shielded or distant special nuclear material (SNM). Of these, fast neutrons offer the greatest advantage due to their very low and well understood natural background. We are investigating a new approach to fast-neutron imaging - a coded aperture neutron imaging system (CANIS). Coded aperture neutron imaging should offer a highly efficient solution for improved detection speed, range, and sensitivity. We have demonstrated fast neutron and gamma ray imaging with several different configurations of coded masks patterns and detectors including an 'active' mask that is composed of neutron detectors. Here we describe our prototype detector and present some initial results from laboratory tests and demonstrations.

  13. Fusion PIC code performance analysis on the Cori KNL system

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, Tuomas S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Deslippe, Jack [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Friesen, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Raman, Karthic [INTEL Corp. (United States)

    2017-05-25

    We study the attainable performance of Particle-In-Cell codes on the Cori KNL system by analyzing a miniature particle push application based on the fusion PIC code XGC1. We start from the most basic building blocks of a PIC code and build up the complexity to identify the kernels that cost the most in performance and focus optimization efforts there. Particle push kernels operate at high AI and are not likely to be memory bandwidth or even cache bandwidth bound on KNL. Therefore, we see only minor benefits from the high bandwidth memory available on KNL, and achieving good vectorization is shown to be the most beneficial optimization path with theoretical yield of up to 8x speedup on KNL. In practice we are able to obtain up to a 4x gain from vectorization due to limitations set by the data layout and memory latency.

  14. Development of particle and heavy ion transport code system

    International Nuclear Information System (INIS)

    Niita, Koji

    2004-01-01

    Particle and heavy ion transport code system (PHITS) is 3 dimension general purpose Monte Carlo simulation codes for description of transport and reaction of particle and heavy ion in materials. It is developed on the basis of NMTC/JAM for design and safety of J-PARC. What is PHITS, it's physical process, physical models and development process of PHITC code are described. For examples of application, evaluation of neutron optics, cancer treatment by heavy particle ray and cosmic radiation are stated. JAM and JQMD model are used as the physical model. Neutron motion in six polar magnetic field and gravitational field, PHITC simulation of trace of C 12 beam and secondary neutron track of small model of cancer treatment device in HIMAC and neutron flux in Space Shuttle are explained. (S.Y.)

  15. Non destructive burn up determination of IEA-R1 reactor fuel elements by gamma-ray spectrometry using a Ge(Li) detector

    International Nuclear Information System (INIS)

    Madi Filho, T.

    1982-01-01

    A non destructive determination of burn up of low (IEA-14) and high (IEA-80) activity fuel elements used in the IEA-R1 pool reactor was made from the measured distribution of the Cs-137 gamma-ray activity in these elements. For both series of measurements a 73,7 c.c. Ge(Li) detector was used in 'well collimated' geometry. Where as IEA-14, removed from the reactor some 20 years, showed a gamma-ray spectrum essentially due to Cs-137, IEA-80, with a cooling time of 5 years, showed a more complex spectrum due to the greater number of fission products remaining. The S.I out-of-pool assembly was calibrated using Cs-137 and Co-60 point and Ag-110m plane sources. These measurements provided the necessary constants used to calculate fuel burn-up from measured relative activity distributions of fuel elements. Detailed fuel plate transmission measurements made with the Cs-137 source showed the plates to be highly homogeneous. High activity fuel elements were measured in the S.II in-pool assembly in which the detector was locate on the moveable pool bridge and the test element was positioned immediately below the detector 2.17m below the pool surface. Measurements made in the S.II assembly were normalised with respect to the measured activity of the IEA-14 element. The measured burn up of the IEA-14 and IEA-80 elements obtained in this work is 3.22.10 - 3 gms and 24.44gms. These values may be compared with respective values of 2.63.10 - 3 gms and 61.11gms given by 'total reactor energy/flux distribution' calculations. Calculated errors for the U-235 burn up are 7.4% (IEA-14) and 10.1% (IEA-80). A detailed evaluation of the errors associated with both sets of measurements is given. (Author) [pt

  16. Direct Measurement of Initial Enrichment, Burn-up and Cooling Time of Spent Fuel Assembly with a Differential Die-Away Technique Based Instrument

    International Nuclear Information System (INIS)

    Henzl, Vladimir; Swinhoe, Martyn T.; Tobin, Stephen J.

    2012-01-01

    An outline of this presentation of what a Differential Die-Away (DDA) instrument can do are: (1) Principle of operation of DDA instrument; (2) Determination of initial enrichment (IE) (σ DDA response increases (die-away time is longer) with increasing fissile content; and (2) Spent fuel => DDA response decreases (die-away time is shorter) with higher burn-up (i.e. more neutron absorbers present).

  17. Reduction on high level radioactive waste volume and geological repository footprint with high burn-up and high thermal efficiency of HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Fukaya, Yuji, E-mail: fukaya.yuji@jaea.go.jp; Nishihara, Tetsuo

    2016-10-15

    Highlights: • We evaluate the number of canisters and its footprint for HTGR. • We proposed new waste loading method for direct disposal of HTGR. • HTGR can significantly reduce HLW volume compared with LWR. - Abstract: Reduction on volume of High Level radioactive Waste (HLW) and footprint in a geological repository due to high burn-up and high thermal efficiency of High Temperature Gas-cooled Reactor (HTGR) has been investigated. A helium-cooled and graphite-moderated commercial HTGR was designed as a Gas Turbine High Temperature Reactor (GTHTR300), and that has particular features such as significantly high burn-up of approximately 120 GWd/t, high thermal efficiency around 50%, and pin-in-block type fuel. The pin-in-block type fuel was employed to reduce processed graphite volume in reprocessing. By applying the feature, effective waste loading method for direct disposal is proposed in this study. By taking into account these feature, the number of HLW canister generations and its repository footprint are evaluated by burn-up fuel composition, thermal calculation and criticality calculation in repository. As a result, it is found that the number of canisters and its repository footprint per electricity generation can be reduced by 60% compared with Light Water Reactor (LWR) representative case for direct disposal because of the higher burn-up, higher thermal efficiency, less TRU generation, and effective waste loading proposed in this study for HTGR. But, the reduced ratios change to 20% and 50% if the long term durability of LWR canister is guaranteed. For disposal with reprocessing, the number of canisters and its repository footprint per electricity generation can be reduced by 30% compared with LWR because of the 30% higher thermal efficiency of HTGR.

  18. The Vulnerability Assessment Code for Physical Protection System

    International Nuclear Information System (INIS)

    Jang, Sung Soon; Yoo, Ho Sik

    2007-01-01

    To neutralize the increasing terror threats, nuclear facilities have strong physical protection system (PPS). PPS includes detectors, door locks, fences, regular guard patrols, and a hot line to a nearest military force. To design an efficient PPS and to fully operate it, vulnerability assessment process is required. Evaluating PPS of a nuclear facility is complicate process and, hence, several assessment codes have been developed. The estimation of adversary sequence interruption (EASI) code analyzes vulnerability along a single intrusion path. To evaluate many paths to a valuable asset in an actual facility, the systematic analysis of vulnerability to intrusion (SAVI) code was developed. KAERI improved SAVI and made the Korean analysis of vulnerability to intrusion (KAVI) code. Existing codes (SAVI and KAVI) have limitations in representing the distance of a facility because they use the simplified model of a PPS called adversary sequence diagram. In adversary sequence diagram the position of doors, sensors and fences is described just as the locating area. Thus, the distance between elements is inaccurate and we cannot reflect the range effect of sensors. In this abstract, we suggest accurate and intuitive vulnerability assessment based on raster map modeling of PPS. The raster map of PPS accurately represents the relative position of elements and, thus, the range effect of sensor can be easily incorporable. Most importantly, the raster map is easy to understand

  19. Scaling of Thermal-Hydraulic Phenomena and System Code Assessment

    International Nuclear Information System (INIS)

    Wolfert, K.

    2008-01-01

    In the last five decades large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Many separate effects tests and integral system tests were carried out to establish a data base for code development and code validation. In this context the question has to be answered, to what extent the results of down-scaled test facilities represent the thermal-hydraulic behaviour expected in a full-scale nuclear reactor under accidental conditions. Scaling principles, developed by many scientists and engineers, present a scientific technical basis and give a valuable orientation for the design of test facilities. However, it is impossible for a down-scaled facility to reproduce all physical phenomena in the correct temporal sequence and in the kind and strength of their occurrence. The designer needs to optimize a down-scaled facility for the processes of primary interest. This leads compulsorily to scaling distortions of other processes with less importance. Taking into account these weak points, a goal oriented code validation strategy is required, based on the analyses of separate effects tests and integral system tests as well as transients occurred in full-scale nuclear reactors. The CSNI validation matrices are an excellent basis for the fulfilling of this task. Separate effects tests in full scale play here an important role.

  20. Source Code Analysis Laboratory (SCALe) for Energy Delivery Systems

    Science.gov (United States)

    2010-12-01

    technical competence for the type of tests and calibrations SCALe undertakes. Testing and calibration laboratories that comply with ISO / IEC 17025 ...and exec t [ ISO / IEC 2005]. f a software system indicates that the SCALe analysis di by a CERT secure coding standard. Successful conforma antees that...to be more secure than non- systems. However, no study has yet been performed to p t ssment in accordance with ISO / IEC 17000: “a demonstr g to a

  1. Particle and heavy ion transport code system; PHITS

    International Nuclear Information System (INIS)

    Niita, Koji

    2004-01-01

    Intermediate and high energy nuclear data are strongly required in design study of many facilities such as accelerator-driven systems, intense pulse spallation neutron sources, and also in medical and space technology. There is, however, few evaluated nuclear data of intermediate and high energy nuclear reactions. Therefore, we have to use some models or systematics for the cross sections, which are essential ingredients of high energy particle and heavy ion transport code to estimate neutron yield, heat deposition and many other quantities of the transport phenomena in materials. We have developed general purpose particle and heavy ion transport Monte Carlo code system, PHITS (Particle and Heavy Ion Transport code System), based on the NMTC/JAM code by the collaboration of Tohoku University, JAERI and RIST. The PHITS has three important ingredients which enable us to calculate (1) high energy nuclear reactions up to 200 GeV, (2) heavy ion collision and its transport in material, (3) low energy neutron transport based on the evaluated nuclear data. In the PHITS, the cross sections of high energy nuclear reactions are obtained by JAM model. JAM (Jet AA Microscopic Transport Model) is a hadronic cascade model, which explicitly treats all established hadronic states including resonances and all hadron-hadron cross sections parametrized based on the resonance model and string model by fitting the available experimental data. The PHITS can describe the transport of heavy ions and their collisions by making use of JQMD and SPAR code. The JQMD (JAERI Quantum Molecular Dynamics) is a simulation code for nucleus nucleus collisions based on the molecular dynamics. The SPAR code is widely used to calculate the stopping powers and ranges for charged particles and heavy ions. The PHITS has included some part of MCNP4C code, by which the transport of low energy neutron, photon and electron based on the evaluated nuclear data can be described. Furthermore, the high energy nuclear

  2. Development of new two-dimensional spectral/spatial code based on dynamic cyclic shift code for OCDMA system

    Science.gov (United States)

    Jellali, Nabiha; Najjar, Monia; Ferchichi, Moez; Rezig, Houria

    2017-07-01

    In this paper, a new two-dimensional spectral/spatial codes family, named two dimensional dynamic cyclic shift codes (2D-DCS) is introduced. The 2D-DCS codes are derived from the dynamic cyclic shift code for the spectral and spatial coding. The proposed system can fully eliminate the multiple access interference (MAI) by using the MAI cancellation property. The effect of shot noise, phase-induced intensity noise and thermal noise are used to analyze the code performance. In comparison with existing two dimensional (2D) codes, such as 2D perfect difference (2D-PD), 2D Extended Enhanced Double Weight (2D-Extended-EDW) and 2D hybrid (2D-FCC/MDW) codes, the numerical results show that our proposed codes have the best performance. By keeping the same code length and increasing the spatial code, the performance of our 2D-DCS system is enhanced: it provides higher data rates while using lower transmitted power and a smaller spectral width.

  3. Isotopic analyses and calculation by use of JENDL-3.2 for high burn-up UO2 and MOX spent fuels

    International Nuclear Information System (INIS)

    Sasahara, Akihiro; Matsumura, Tetsuo; Nicolaou, G.; Betti, M.; Walker, C.T.

    1997-01-01

    The post irradiation examinations (PIE) were carried out for high burn-up UO 2 spent fuel (3.8%U235, average burn-up:60GWd/t) and mixed oxide (MOX) spent fuel (5.07%Pu, average burn-up:45GWd/t). The PIE includes, a) isotopic analysis, b) electron probe microanalysis (EPMA) in pellet cross section and so on. The results of isotopic analyses and EPMA were compared with ORIGEN2/82 and VIM-BURN calculation results. In VIM-BURN calculation, the nuclear data of actinides were proceeded from new data file, JENDL-3.2. The sensitivities of power history and moderator density to nuclides composition were investigated by VIM-BURN calculation and consequently power history mainly effected on Am241 and Am242m and moderator density effected on fissile nuclides. From EPMA results of U and Pu distribution in pellet, VIM-BURN calculation showed reasonable distribution in pellet cross section. (author)

  4. Determination of the burn-up in fuels of the MTR type by means of gamma spectroscopy with crystal of INa(Tl)

    International Nuclear Information System (INIS)

    Kestelman, A.J.

    1988-01-01

    One of the responsibilities of the Laboratory of Analysis by Neutronic Activation of the RA-6 reactor is to determine the burn-up in fuels of the MTR type. In order to gain experience, up to the arrival of the hyperpure Germanium detector (HPGe) to be used in normal operation, preliminary measurements with a crystal of INa(Tl) were made. The fuel elements used are originated in the RA-3 reactor, with a decay superior to the thirteen years. For this reason, the unique visible photoelectric peak is the one of Cs-137, owing to the low resolution of the INa(Tl). After preliminary measurements, the profiles of burn-up, rectified by attenuation, were measured. Once the efficiency of the detector was determined, the calculation of the burn-up was made; for the element No. 144, a value of 21.6 ± 2.9 g was obtained to be compared with the value 21.9 g which was the evaluation made by the operators. (Author) [es

  5. Isotopic analyses and calculation by use of JENDL-3.2 for high burn-up UO{sub 2} and MOX spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Sasahara, Akihiro; Matsumura, Tetsuo [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.; Nicolaou, G.; Betti, M.; Walker, C.T.

    1997-03-01

    The post irradiation examinations (PIE) were carried out for high burn-up UO{sub 2} spent fuel (3.8%U235, average burn-up:60GWd/t) and mixed oxide (MOX) spent fuel (5.07%Pu, average burn-up:45GWd/t). The PIE includes, (a) isotopic analysis, (b) electron probe microanalysis (EPMA) in pellet cross section and so on. The results of isotopic analyses and EPMA were compared with ORIGEN2/82 and VIM-BURN calculation results. In VIM-BURN calculation, the nuclear data of actinides were proceeded from new data file, JENDL-3.2. The sensitivities of power history and moderator density to nuclides composition were investigated by VIM-BURN calculation and consequently power history mainly effected on Am241 and Am242m and moderator density effected on fissile nuclides. From EPMA results of U and Pu distribution in pellet, VIM-BURN calculation showed reasonable distribution in pellet cross section. (author)

  6. Assessment of systems codes and their coupling with CFD codes in thermal–hydraulic applications to innovative reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bandini, G., E-mail: giacomino.bandini@enea.it [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) (Italy); Polidori, M. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) (Italy); Gerschenfeld, A.; Pialla, D.; Li, S. [Commissariat à l’Energie Atomique (CEA) (France); Ma, W.M.; Kudinov, P.; Jeltsov, M.; Kööp, K. [Royal Institute of Technology (KTH) (Sweden); Huber, K.; Cheng, X.; Bruzzese, C.; Class, A.G.; Prill, D.P. [Karlsruhe Institute of Technology (KIT) (Germany); Papukchiev, A. [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) (Germany); Geffray, C.; Macian-Juan, R. [Technische Universität München (TUM) (Germany); Maas, L. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) (France)

    2015-01-15

    Highlights: • The assessment of RELAP5, TRACE and CATHARE system codes on integral experiments is presented. • Code benchmark of CATHARE, DYN2B, and ATHLET on PHENIX natural circulation experiment. • Grid-free pool modelling based on proper orthogonal decomposition for system codes is explained. • The code coupling methodologies are explained. • The coupling of several CFD/system codes is tested against integral experiments. - Abstract: The THINS project of the 7th Framework EU Program on nuclear fission safety is devoted to the investigation of crosscutting thermal–hydraulic issues for innovative nuclear systems. A significant effort in the project has been dedicated to the qualification and validation of system codes currently employed in thermal–hydraulic transient analysis for nuclear reactors. This assessment is based either on already available experimental data, or on the data provided by test campaigns carried out in the frame of THINS project activities. Data provided by TALL and CIRCE facilities were used in the assessment of system codes for HLM reactors, while the PHENIX ultimate natural circulation test was used as reference for a benchmark exercise among system codes for sodium-cooled reactor applications. In addition, a promising grid-free pool model based on proper orthogonal decomposition is proposed to overcome the limits shown by the thermal–hydraulic system codes in the simulation of pool-type systems. Furthermore, multi-scale system-CFD solutions have been developed and validated for innovative nuclear system applications. For this purpose, data from the PHENIX experiments have been used, and data are provided by the tests conducted with new configuration of the TALL-3D facility, which accommodates a 3D test section within the primary circuit. The TALL-3D measurements are currently used for the validation of the coupling between system and CFD codes.

  7. LOLA SYSTEM: A code block for nodal PWR simulation. Part. II - MELON-3, CONCON and CONAXI Codes

    Energy Technology Data Exchange (ETDEWEB)

    Aragones, J M; Ahnert, C; Gomez Santamaria, J; Rodriguez Olabarria, I

    1985-07-01

    Description of the theory and users manual of the MELON-3, CONCON and CONAXI codes, which are part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. These auxiliary codes, provide some of the input data for the main module SIMULA-3; these are, the reactivity correlations constants, the albe does and the transport factors. (Author) 7 refs.

  8. LOLA SYSTEM: A code block for nodal PWR simulation. Part. II - MELON-3, CONCON and CONAXI Codes

    International Nuclear Information System (INIS)

    Aragones, J. M.; Ahnert, C.; Gomez Santamaria, J.; Rodriguez Olabarria, I.

    1985-01-01

    Description of the theory and users manual of the MELON-3, CONCON and CONAXI codes, which are part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. These auxiliary codes, provide some of the input data for the main module SIMULA-3; these are, the reactivity correlations constants, the albe does and the transport factors. (Author) 7 refs

  9. The NJOY nuclear data processing system: The MICROR module

    International Nuclear Information System (INIS)

    Mathews, D.R.; Stepanek, J.; Pelloni, S.; Higgs, C.E.

    1984-12-01

    The NJOY nuclear data processing system is a comprehensive computer code package for producing pointwise and multigroup neutron and photon cross sections and related nuclear parameters from ENDF/B-IV and V evaluated nuclear data. The MICROR overlay is a reformatting module that produces cross sections library files for the MICROX, MICROX-2 and MICROBURN postprocessor codes. Using the data on the pointwise and groupwise NJOY tapes, MICROR produces the tapes containing basic nuclear data, FDTAPE, GAR and GGTAPE used by two-region spectrum codes MICROX and MICROX-2 and by two-region spectrum burn-up code MICROBURN. (author)

  10. An Expert System for the Development of Efficient Parallel Code

    Science.gov (United States)

    Jost, Gabriele; Chun, Robert; Jin, Hao-Qiang; Labarta, Jesus; Gimenez, Judit

    2004-01-01

    We have built the prototype of an expert system to assist the user in the development of efficient parallel code. The system was integrated into the parallel programming environment that is currently being developed at NASA Ames. The expert system interfaces to tools for automatic parallelization and performance analysis. It uses static program structure information and performance data in order to automatically determine causes of poor performance and to make suggestions for improvements. In this paper we give an overview of our programming environment, describe the prototype implementation of our expert system, and demonstrate its usefulness with several case studies.

  11. A guide to the AUS modular neutronics code system

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1987-04-01

    A general description is given of the AUS modular neutronics code system, which may be used for calculations of a very wide range of fission reactors, fusion blankets and other neutron applications. The present system has cross-section libraries derived from ENDF/B-IV and includes modules which provide for lattice calculations, one-dimensional transport calculations, and one, two, and three-dimensional diffusion calculations, burnup calculations and the flexible editing of results. Details of all system aspects of AUS are provided but the major individual modules are only outlined. Sufficient information is given to enable other modules to be added to the system

  12. Distributed magnetic field positioning system using code division multiple access

    Science.gov (United States)

    Prigge, Eric A. (Inventor)

    2003-01-01

    An apparatus and methods for a magnetic field positioning system use a fundamentally different, and advantageous, signal structure and multiple access method, known as Code Division Multiple Access (CDMA). This signal architecture, when combined with processing methods, leads to advantages over the existing technologies, especially when applied to a system with a large number of magnetic field generators (beacons). Beacons at known positions generate coded magnetic fields, and a magnetic sensor measures a sum field and decomposes it into component fields to determine the sensor position and orientation. The apparatus and methods can have a large `building-sized` coverage area. The system allows for numerous beacons to be distributed throughout an area at a number of different locations. A method to estimate position and attitude, with no prior knowledge, uses dipole fields produced by these beacons in different locations.

  13. Improving system modeling accuracy with Monte Carlo codes

    International Nuclear Information System (INIS)

    Johnson, A.S.

    1996-01-01

    The use of computer codes based on Monte Carlo methods to perform criticality calculations has become common-place. Although results frequently published in the literature report calculated k eff values to four decimal places, people who use the codes in their everyday work say that they only believe the first two decimal places of any result. The lack of confidence in the computed k eff values may be due to the tendency of the reported standard deviation to underestimate errors associated with the Monte Carlo process. The standard deviation as reported by the codes is the standard deviation of the mean of the k eff values for individual generations in the computer simulation, not the standard deviation of the computed k eff value compared with the physical system. A more subtle problem with the standard deviation of the mean as reported by the codes is that all the k eff values from the separate generations are not statistically independent since the k eff of a given generation is a function of k eff of the previous generation, which is ultimately based on the starting source. To produce a standard deviation that is more representative of the physical system, statistically independent values of k eff are needed

  14. Coded aperture material motion detection system for the ACPR

    International Nuclear Information System (INIS)

    McArthur, D.A.; Kelly, J.G.

    1975-01-01

    Single LMFBR fuel pins are being irradiated in Sandia's Annular Core Pulsed Reactor (ACPR). In these experiments single fuel pins have been driven well into the melt and vaporization regions in transients with pulse widths of about 5 ms. The ACPR is being upgraded so that it can be used to irradiate bundles of seven LMFBR fuel pins. The coded aperture material motion detection system described is being developed for this upgraded ACPR, and has for its design goals 1 mm transverse resolution (i.e., in the axial and radial directions), depth resolution of a few cm, and time resolution of 0.1 ms. The target date for development of this system is fall 1977. The paper briefly reviews the properties of coded aperture imaging, describes one possible system for the ACPR upgrade, discusses experiments which have been performed to investigate the feasibility of such a system, and describes briefly the further work required to develop such a system. The type of coded aperture to be used has not yet been fixed, but a one-dimensional section of a Fresnel zone plate appears at this time to have significant advantages

  15. Impact of neutron thermal scattering laws on the burn-up analysis of supercritical LWR's fuel assemblies

    International Nuclear Information System (INIS)

    Conti, Andrea

    2011-10-01

    is called the ''free gas approximation''. It is the goal of this work to make an estimate of the criticality calculations' inaccuracy due to the inadequate employed physical model and to determine which one of the available models can be the best replacement. The accuracy of criticality calculations referring to the HPLWR is a problem that had already been raised by Waata in 2006. In her Ph.D. thesis Waata reports having carried out MCNP runs referring to an HPLWR fuel element employing the free gas approximation. In her thesis Waata explicitly sifts through the factors that can affect her MCNP runs' accuracy, but leaves the inappropriate thermal treatment completely out. In this work, the inaccuracy of the criticality calculations has been investigated carrying out sets of similar burn-up calculations differing from each other only in the applied thermal cross section sets. The widest discrepancies were detected between the results obtained applying the free gas model and those obtained applying the molecular models. This, in conjunction with the fact that the free gas model does not even keep in count the molecular structure of H 2 O suggest to discard it and to focus the investigation on the vapour and liquid models. Dr. J. Marti, from the Universitat Politecnica de Catalunya, Barcelona, Spain registered the generalized frequency distributions obtained from the molecular dynamics simulations of 216 molecules of H 2 O in 10 simulated supercritical states and published in an article (1999) the frequencies of the three characteristic distribution peaks for each simulated state, in numerical format. A confrontation with the corresponding peaks from Bernnat's available frequency distributions for liquid water and vapour revealed the peaks of the latter to be closest to the supercritical water ones in nearly all cases. Hence the inference that thermal cross section sets for vapour are for the time being the best replacement for the missing thermal cross section sets for

  16. A new two dimensional spectral/spatial multi-diagonal code for noncoherent optical code division multiple access (OCDMA) systems

    Science.gov (United States)

    Kadhim, Rasim Azeez; Fadhil, Hilal Adnan; Aljunid, S. A.; Razalli, Mohamad Shahrazel

    2014-10-01

    A new two dimensional codes family, namely two dimensional multi-diagonal (2D-MD) codes, is proposed for spectral/spatial non-coherent OCDMA systems based on the one dimensional MD code. Since the MD code has the property of zero cross correlation, the proposed 2D-MD code also has this property. So that, the multi-access interference (MAI) is fully eliminated and the phase induced intensity noise (PIIN) is suppressed with the proposed code. Code performance is analyzed in terms of bit error rate (BER) while considering the effect of shot noise, PIIN, and thermal noise. The performance of the proposed code is compared with the related MD, modified quadratic congruence (MQC), two dimensional perfect difference (2D-PD) and two dimensional diluted perfect difference (2D-DPD) codes. The analytical and the simulation results reveal that the proposed 2D-MD code outperforms the other codes. Moreover, a large number of simultaneous users can be accommodated at low BER and high data rate.

  17. Computer codes and methods for simulating accelerator driven systems

    International Nuclear Information System (INIS)

    Sartori, E.; Byung Chan Na

    2003-01-01

    A large set of computer codes and associated data libraries have been developed by nuclear research and industry over the past half century. A large number of them are in the public domain and can be obtained under agreed conditions from different Information Centres. The areas covered comprise: basic nuclear data and models, reactor spectra and cell calculations, static and dynamic reactor analysis, criticality, radiation shielding, dosimetry and material damage, fuel behaviour, safety and hazard analysis, heat conduction and fluid flow in reactor systems, spent fuel and waste management (handling, transportation, and storage), economics of fuel cycles, impact on the environment of nuclear activities etc. These codes and models have been developed mostly for critical systems used for research or power generation and other technological applications. Many of them have not been designed for accelerator driven systems (ADS), but with competent use, they can be used for studying such systems or can form the basis for adapting existing methods to the specific needs of ADS's. The present paper describes the types of methods, codes and associated data available and their role in the applications. It provides Web addresses for facilitating searches for such tools. Some indications are given on the effect of non appropriate or 'blind' use of existing tools to ADS. Reference is made to available experimental data that can be used for validating the methods use. Finally, some international activities linked to the different computational aspects are described briefly. (author)

  18. Channel estimation for physical layer network coding systems

    CERN Document Server

    Gao, Feifei; Wang, Gongpu

    2014-01-01

    This SpringerBrief presents channel estimation strategies for the physical later network coding (PLNC) systems. Along with a review of PLNC architectures, this brief examines new challenges brought by the special structure of bi-directional two-hop transmissions that are different from the traditional point-to-point systems and unidirectional relay systems. The authors discuss the channel estimation strategies over typical fading scenarios, including frequency flat fading, frequency selective fading and time selective fading, as well as future research directions. Chapters explore the performa

  19. Photovoltaic power systems and the National Electrical Code: Suggested practices

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, J. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1996-12-01

    This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently. Application of this information and results obtained are the responsibility of the user.

  20. Photovoltaic Power Systems and the National Electrical Code: Suggested Practices

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-02-01

    This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently.

  1. Impact of Different Spreading Codes Using FEC on DWT Based MC-CDMA System

    OpenAIRE

    Masum, Saleh; Kabir, M. Hasnat; Islam, Md. Matiqul; Shams, Rifat Ara; Ullah, Shaikh Enayet

    2012-01-01

    The effect of different spreading codes in DWT based MC-CDMA wireless communication system is investigated. In this paper, we present the Bit Error Rate (BER) performance of different spreading codes (Walsh-Hadamard code, Orthogonal gold code and Golay complementary sequences) using Forward Error Correction (FEC) of the proposed system. The data is analyzed and is compared among different spreading codes in both coded and uncoded cases. It is found via computer simulation that the performance...

  2. Structure and operation of the ITS code system

    International Nuclear Information System (INIS)

    Halbleib, J.

    1988-01-01

    The TIGER series of time-independent coupled electron-photon Monte Carlo transport codes is a group of multimaterial and multidimensional codes designed to provide a state-of-the-art description of the production and transport of the electron-photon cascade by combining microscopic photon transport with a macroscopic random walk for electron transport. Major contributors to its evolution are listed. The author and his associates are primarily code users rather than code developers, and have borrowed freely from existing work wherever possible. Nevertheless, their efforts have resulted in various software packages for describing the production and transport of the electron-photon cascade that they found sufficiently useful to warrant dissemination through the Radiation Shielding Information Center (RSIC) at Oak Ridge National Laboratory. The ITS system (Integrated TIGER Series) represents the organization and integration of this combined software, along with much additional capability from previously unreleased work, into a single convenient package of exceptional user friendliness and portability. Emphasis is on simplicity and flexibility of application without sacrificing the rigor or sophistication of the physical model

  3. A seismic data compression system using subband coding

    Science.gov (United States)

    Kiely, A. B.; Pollara, F.

    1995-01-01

    This article presents a study of seismic data compression techniques and a compression algorithm based on subband coding. The algorithm includes three stages: a decorrelation stage, a quantization stage that introduces a controlled amount of distortion to allow for high compression ratios, and a lossless entropy coding stage based on a simple but efficient arithmetic coding method. Subband coding methods are particularly suited to the decorrelation of nonstationary processes such as seismic events. Adaptivity to the nonstationary behavior of the waveform is achieved by dividing the data into separate blocks that are encoded separately with an adaptive arithmetic encoder. This is done with high efficiency due to the low overhead introduced by the arithmetic encoder in specifying its parameters. The technique could be used as a progressive transmission system, where successive refinements of the data can be requested by the user. This allows seismologists to first examine a coarse version of waveforms with minimal usage of the channel and then decide where refinements are required. Rate-distortion performance results are presented and comparisons are made with two block transform methods.

  4. A core management system for JRR-3

    International Nuclear Information System (INIS)

    Soyama, Kazuhiko; Tsuruta, Harumichi; Ichikawa, Hiroki; Nemoto, Hiroyuki.

    1991-05-01

    Japan Research Reactor No.3 (JRR-3) was upgraded to the thermal output with 20 MW by replacing the core, cooling system and utilization facilities. It is a water moderated and cooled, pool type reactor using 20% enriched U · Alx fuel. A core management system for JRR-3 has been made. This code system can manage of reactivity, power distribution and burn up in consideration of the position of control rod, fuel arrangement and operation pattern. This report is the user's manual of this code system. (author)

  5. SWAT3.1 - the integrated burnup code system driving continuous energy Monte Carlo codes MVP and MCNP

    International Nuclear Information System (INIS)

    Suyama, Kenya; Mochizuki, Hiroki; Takada, Tomoyuki; Ryufuku, Susumu; Okuno, Hiroshi; Murazaki, Minoru; Ohkubo, Kiyoshi

    2009-05-01

    Integrated burnup calculation code system SWAT is a system that combines neutronics calculation code SRAC,which is widely used in Japan, and point burnup calculation code ORIGEN2. It has been used to evaluate the composition of the uranium, plutonium, minor actinides and the fission products in the spent nuclear fuel. Based on this idea, the integrated burnup calculation code system SWAT3.1 was developed by combining the continuous energy Monte Carlo code MVP and MCNP, and ORIGEN2. This enables us to treat the arbitrary fuel geometry and to generate the effective cross section data to be used in the burnup calculation with few approximations. This report describes the outline, input data instruction and several examples of the calculation. (author)

  6. Multiple Description Coding for Closed Loop Systems over Erasure Channels

    DEFF Research Database (Denmark)

    Østergaard, Jan; Quevedo, Daniel

    2013-01-01

    In this paper, we consider robust source coding in closed-loop systems. In particular, we consider a (possibly) unstable LTI system, which is to be stabilized via a network. The network has random delays and erasures on the data-rate limited (digital) forward channel between the encoder (controller......) and the decoder (plant). The feedback channel from the decoder to the encoder is assumed noiseless. Since the forward channel is digital, we need to employ quantization.We combine two techniques to enhance the reliability of the system. First, in order to guarantee that the system remains stable during packet...... by showing that the system can be cast as a Markov jump linear system....

  7. BER performance comparison of optical CDMA systems with/without turbo codes

    Science.gov (United States)

    Kulkarni, Muralidhar; Chauhan, Vijender S.; Dutta, Yashpal; Sinha, Ravindra K.

    2002-08-01

    In this paper, we have analyzed and simulated the BER performance of a turbo coded optical code-division multiple-access (TC-OCDMA) system. A performance comparison has been made between uncoded OCDMA and TC-OCDMA systems employing various OCDMA address codes (optical orthogonal codes (OOCs), Generalized Multiwavelength Prime codes (GMWPC's), and Generalized Multiwavelength Reed Solomon code (GMWRSC's)). The BER performance of TC-OCDMA systems has been analyzed and simulated by varying the code weight of address code employed by the system. From the simulation results, it is observed that lower weight address codes can be employed for TC-OCDMA systems that can have the equivalent BER performance of uncoded systems employing higher weight address codes for a fixed number of active users.

  8. Method of laser beam coding for control systems

    Science.gov (United States)

    Pałys, Tomasz; Arciuch, Artur; Walczak, Andrzej; Murawski, Krzysztof

    2017-08-01

    The article presents the method of encoding a laser beam for control systems. The experiments were performed using a red laser emitting source with a wavelength of λ = 650 nm and a power of P ≍ 3 mW. The aim of the study was to develop methods of modulation and demodulation of the laser beam. Results of research, in which we determined the effect of selected camera parameters, such as image resolution, number of frames per second on the result of demodulation of optical signal, is also shown in the paper. The experiments showed that the adopted coding method provides sufficient information encoded in a single laser beam (36 codes with the effectiveness of decoding at 99.9%).

  9. Security Concerns and Countermeasures in Network Coding Based Communications Systems

    DEFF Research Database (Denmark)

    Talooki, Vahid; Bassoli, Riccardo; Roetter, Daniel Enrique Lucani

    2015-01-01

    key protocol types, namely, state-aware and stateless protocols, specifying the benefits and disadvantages of each one of them. We also present the key security assumptions of network coding (NC) systems as well as a detailed analysis of the security goals and threats, both passive and active......This survey paper shows the state of the art in security mechanisms, where a deep review of the current research and the status of this topic is carried out. We start by introducing network coding and its variety applications in enhancing current traditional networks. In particular, we analyze two....... This paper also presents a detailed taxonomy and a timeline of the different NC security mechanisms and schemes reported in the literature. Current proposed security mechanisms and schemes for NC in the literature are classified later. Finally a timeline of these mechanism and schemes is presented....

  10. VACOSS - variable coding seal system for nuclear material control

    International Nuclear Information System (INIS)

    Kennepohl, K.; Stein, G.

    1977-12-01

    VACOSS - Variable Coding Seal System - is intended to seal: rooms and containers with nuclear material, nuclear instrumentation and equipment of the operator, instrumentation and equipment at the supervisory authority. It is easy to handle, reusable, transportable and consists of three components: 1. Seal. The light guide in fibre optics with infrared light emitter and receiver serves as lead. The statistical treatment of coded data given in the seal via adapter box guarantees an extremely high degree of access reliability. It is possible to store the data of two undue seal openings together with data concerning time and duration of the opening. 2. The adapter box can be used for input or input and output of data indicating the seal integrity. 3. The simulation programme is located in the computing center of the supervisory authority and permits to determine date and time of opening by decoding the seal memory data. (orig./WB) [de

  11. Alignment effects on a neutron imaging system using coded apertures

    International Nuclear Information System (INIS)

    Thfoin, Isabelle; Landoas, Olivier; Caillaud, Tony; Vincent, Maxime; Bourgade, Jean-Luc; Rosse, Bertrand; Disdier, Laurent; Sangster, Thomas C.; Glebov, Vladimir Yu.; Pien, Greg; Armstrong, William

    2010-01-01

    A high resolution neutron imaging system is being developed and tested on the OMEGA laser facility for inertial confinement fusion experiments. This diagnostic uses a coded imaging technique with a penumbral or an annular aperture. The sensitiveness of these techniques to misalignment was pointed out with both experiments and simulations. Results obtained during OMEGA shots are in good agreement with calculations performed with the Monte Carlo code GEANT4. Both techniques are sensitive to the relative position of the source in the field of view. The penumbral imaging technique then demonstrates to be less sensitive to misalignment compared to the ring. These results show the necessity to develop a neutron imaging diagnostic for megajoule class lasers taking into account our alignment capabilities on such facilities.

  12. Nexus: A modular workflow management system for quantum simulation codes

    Science.gov (United States)

    Krogel, Jaron T.

    2016-01-01

    The management of simulation workflows represents a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.

  13. Transmission over UWB channels with OFDM system using LDPC coding

    Science.gov (United States)

    Dziwoki, Grzegorz; Kucharczyk, Marcin; Sulek, Wojciech

    2009-06-01

    Hostile wireless environment requires use of sophisticated signal processing methods. The paper concerns on Ultra Wideband (UWB) transmission over Personal Area Networks (PAN) including MB-OFDM specification of physical layer. In presented work the transmission system with OFDM modulation was connected with LDPC encoder/decoder. Additionally the frame and bit error rate (FER and BER) of the system was decreased using results from the LDPC decoder in a kind of turbo equalization algorithm for better channel estimation. Computational block using evolutionary strategy, from genetic algorithms family, was also used in presented system. It was placed after SPA (Sum-Product Algorithm) decoder and is conditionally turned on in the decoding process. The result is increased effectiveness of the whole system, especially lower FER. The system was tested with two types of LDPC codes, depending on type of parity check matrices: randomly generated and constructed deterministically, optimized for practical decoder architecture implemented in the FPGA device.

  14. Development of a domestically-made system code

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    According to lessons learned from the Fukushima-Daiichi NPP accidents, a new safety standard based on state-of-the-art findings has been established by the Japanese Nuclear Regulation Authority (NRA) and will soon come into force in Japan. In order to ensure a precise response to this movement from a technological point of view, it should be required for safety regulation to develop a new system code with much smaller uncertainty and reinforced simulation capability even in application to beyond-DBAs (BDBAs), as well as with the capability of close coupling to a newly developing severe accident code. Accordingly, development of a new domestically-made system code that incorporates 3-dimensional and 3 or more fluid thermal-hydraulics in tandem with a 3-dimensional neutronics has been started in 2012. In 2012, two branches of development activities, the development of 'main body' and advanced features have been started in parallel for development efficiency. The main body has been started from scratch and the following activities have therefore been performed: 1) development and determination of key principles and methodologies to realize a flexible, extensible and robust platform, 2) determination of requirements definition, 3) start of basic program design and coding and 4) start of a development of prototypical GUI-based pre-post processor. As for the advanced features, the following activities have been performed: 1) development of Phenomena Identification and Ranking Tables (PIRTs) and model capability matrix from normal operations to BDBAs in order to address requirements definition for advanced modeling, 2) development of detailed action plan for modification of field equations, numerical schemes and solvers and 3) start of the program development of field equations with an interfacial area concentration transport equation, a robust solver for condensation induced water hammer phenomena and a versatile Newton-Raphson solver. (author)

  15. Performance enhancement of successive interference cancellation scheme based on spectral amplitude coding for optical code-division multiple-access systems using Hadamard codes

    Science.gov (United States)

    Eltaif, Tawfig; Shalaby, Hossam M. H.; Shaari, Sahbudin; Hamarsheh, Mohammad M. N.

    2009-04-01

    A successive interference cancellation scheme is applied to optical code-division multiple-access (OCDMA) systems with spectral amplitude coding (SAC). A detailed analysis of this system, with Hadamard codes used as signature sequences, is presented. The system can easily remove the effect of the strongest signal at each stage of the cancellation process. In addition, simulation of the prose system is performed in order to validate the theoretical results. The system shows a small bit error rate at a large number of active users compared to the SAC OCDMA system. Our results reveal that the proposed system is efficient in eliminating the effect of the multiple-user interference and in the enhancement of the overall performance.

  16. A study on the nuclear computer code maintenance and management system

    International Nuclear Information System (INIS)

    Kim, Yeon Seung; Huh, Young Hwan; Lee, Jong Bok; Choi, Young Gil; Suh, Soong Hyok; Kang, Byong Heon; Kim, Hee Kyung; Kim, Ko Ryeo; Park, Soo Jin

    1990-12-01

    According to current software development and quality assurance trends. It is necessary to develop computer code management system for nuclear programs. For this reason, the project started in 1987. Main objectives of the project are to establish a nuclear computer code management system, to secure software reliability, and to develop nuclear computer code packages. Contents of performing the project in this year were to operate and maintain computer code information system of KAERI computer codes, to develop application tool, AUTO-i, for solving the 1st and 2nd moments of inertia on polygon or circle, and to research nuclear computer code conversion between different machines. For better supporting the nuclear code availability and reliability, assistance from users who are using codes is required. Lastly, for easy reference about the codes information, we presented list of code names and information on the codes which were introduced or developed during this year. (Author)

  17. System code improvements for modelling passive safety systems and their validation

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Sebastian; Cron, Daniel von der; Schaffrath, Andreas [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany)

    2016-11-15

    GRS has been developing the system code ATHLET over many years. Because ATHLET, among other codes, is widely used in nuclear licensing and supervisory procedures, it has to represent the current state of science and technology. New reactor concepts such as Generation III+ and IV reactors and SMR are using passive safety systems intensively. The simulation of passive safety systems with the GRS system code ATHLET is still a big challenge, because of non-defined operation points and self-setting operation conditions. Additionally, the driving forces of passive safety systems are smaller and uncertainties of parameters have a larger impact than for active systems. This paper addresses the code validation and qualification work of ATHLET on the example of slightly inclined horizontal heat exchangers, which are e. g. used as emergency condensers (e. g. in the KERENA and the CAREM) or as heat exchanger in the passive auxiliary feed water systems (PAFS) of the APR+.

  18. Development of a depletion program for the calculation of the 3D-burn-up dependent power distributions in light water reactors

    International Nuclear Information System (INIS)

    Bennewitz, F.; Mueller, A.; Wagner, M.R.

    1977-11-01

    Based on the nodal collision probability method a multi-dimensional reactor burn-up program MEDIUM has been developed, which is written for 2 neutron energy groups. It is characterized by high computing speed, considerable generality and flexibility, a number of useful program options and good accuracy. The three-dimensional flux calculation model is described, the formulation and method of solution of the nuclear depletion equations and further details of the program structure. The results of a number of comparisons with experimental data and with independent computer programs are presented. (orig.) [de

  19. IFPE/IFA-597.3, centre-line temperature, fission gas release and clad elongation at high burn-up (60-62 MWd/kg)

    International Nuclear Information System (INIS)

    Turnbull, J.A.

    2003-01-01

    Description: The fuel segments for the high burn-up integral rod behaviour test IFA-597 were taken from fuel rod 33-25065, which was irradiated in the Ringhals 1 BWR for approximately 12 years. The irradiation of this rod and its sibling rod 33-25046 was performed in two stages. During the first irradiation, 1980 to 1986, the rods were part of Ringhals assembly 6477 and an approximate rod averaged burn-up of 31 MWd/kg UO 2 was reached. The rods were then placed into fuel assembly 9902 for a second period of irradiation from 1986 to 1992. The location of the fuel rods 33-25065 and 33-25046 in this assembly were in positions 9902/D and 9902/E4 respectively. A final rod averaged burn-up of 52 MWd/kg UO 2 was achieved. The burn-up at the location of the Halden segments was estimated as 59 MWd/kg UO 2 , well beyond the formation of High Burn-up Structure (Hobs) formation at the pellet rim. At the rim, the burn-up was estimated as 130 MWd/kg UO 2 . After commercial irradiation, PIE was performed at Studsvik. Inner and outer clad oxide thickness measurements were 42 and 5 microns respectively. The measured cold rod diameter varied between 12.20 and 12.25 mm, thus only a small amount of creep-down had occurred from the original diameter of 12.25 mm. Cold gap measurements were taken by diametral compression of the clad onto the fuel. The stiffness changes twice during these measurements, the first (relocated gap) associated with the onset of pellet fragment movement, the second (compressed gap) when the fragments are together and the pellet is compressed. For these rods, the compressed diametral gap was measured as 30 microns. This is in agreement with the pellet and cladding being in contact during the final irradiation cycle, i.e., at ∼12 kW/m. FGR measurements were made after puncturing and values of 2.5%-3.3% were calculated from the extracted gas. The uncertainty is due to different methods of calculation. Ceramography showed a normal crack pattern and no evidence of

  20. An engineering code to analyze hypersonic thermal management systems

    Science.gov (United States)

    Vangriethuysen, Valerie J.; Wallace, Clark E.

    1993-01-01

    Thermal loads on current and future aircraft are increasing and as a result are stressing the energy collection, control, and dissipation capabilities of current thermal management systems and technology. The thermal loads for hypersonic vehicles will be no exception. In fact, with their projected high heat loads and fluxes, hypersonic vehicles are a prime example of systems that will require thermal management systems (TMS) that have been optimized and integrated with the entire vehicle to the maximum extent possible during the initial design stages. This will not only be to meet operational requirements, but also to fulfill weight and performance constraints in order for the vehicle to takeoff and complete its mission successfully. To meet this challenge, the TMS can no longer be two or more entirely independent systems, nor can thermal management be an after thought in the design process, the typical pervasive approach in the past. Instead, a TMS that was integrated throughout the entire vehicle and subsequently optimized will be required. To accomplish this, a method that iteratively optimizes the TMS throughout the vehicle will not only be highly desirable, but advantageous in order to reduce the manhours normally required to conduct the necessary tradeoff studies and comparisons. A thermal management engineering computer code that is under development and being managed at Wright Laboratory, Wright-Patterson AFB, is discussed. The primary goal of the code is to aid in the development of a hypersonic vehicle TMS that has been optimized and integrated on a total vehicle basis.

  1. THYDE-NEU: Nuclear reactor system analysis code

    International Nuclear Information System (INIS)

    Asahi, Yoshiro

    2002-03-01

    THYDE-NEU is applicable not only to transient analyses, but also to steady state analyses of nuclear reactor systems (NRSs). In a steady state analysis, the code generates a solution satisfying the transient equations without external disturbances. In a transient analysis, the code calculates temporal NRS behaviors in response to various external disturbances in such a way that mass and energy of the coolant as well as the number of neutrons conserve. The first half of the report is the description of the methods and models for use in the THYDE-NEU code, i.e., (1) the thermal-hydraulic network model, (2) the spatial kinetics model, (3) the heat sources in fuel, (4) the heat transfer correlations, (5) the mechanical behavior of clad and fuel, and (6) the steady state adjustment. The second half of the report is the users' mannual containing the items; (1) the program control, (2) the input requirements, (3) the execution of THYDE-NEU jobs, (4) the output specifications and (5) the sample calculation. (author)

  2. Simplified modeling and code usage in the PASC-3 code system by the introduction of a programming environment

    International Nuclear Information System (INIS)

    Pijlgroms, B.J.; Oppe, J.; Oudshoorn, H.L.; Slobben, J.

    1991-06-01

    A brief description is given of the PASC-3 (Petten-AMPX-SCALE) Reactor Physics code system and associated UNIPASC work environment. The PASC-3 code system is used for criticality and reactor calculations and consists of a selection from the Oak Ridge National Laboratory AMPX-SCALE-3 code collection complemented with a number of additional codes and nuclear data bases. The original codes have been adapted to run under the UNIX operating system. The recommended nuclear data base is a complete 219 group cross section library derived from JEF-1 of which some benchmark results are presented. By the addition of the UNIPASC work environment the usage of the code system is greatly simplified. Complex chains of programs can easily be coupled together to form a single job. In addition, the model parameters can be represented by variables instead of literal values which enhances the readability and may improve the integrity of the code inputs. (author). 8 refs.; 6 figs.; 1 tab

  3. SALT [System Analysis Language Translater]: A steady state and dynamic systems code

    International Nuclear Information System (INIS)

    Berry, G.; Geyer, H.

    1983-01-01

    SALT (System Analysis Language Translater) is a lumped parameter approach to system analysis which is totally modular. The modules are all precompiled and only the main program, which is generated by SALT, needs to be compiled for each unique system configuration. This is a departure from other lumped parameter codes where all models are written by MACROS and then compiled for each unique configuration, usually after all of the models are lumped together and sorted to eliminate undetermined variables. The SALT code contains a robust and sophisticated steady-sate finder (non-linear equation solver), optimization capability and enhanced GEAR integration scheme which makes use of sparsity and algebraic constraints. The SALT systems code has been used for various technologies. The code was originally developed for open-cycle magnetohydrodynamic (MHD) systems. It was easily extended to liquid metal MHD systems by simply adding the appropriate models and property libraries. Similarly, the model and property libraries were expanded to handle fuel cell systems, flue gas desulfurization systems, combined cycle gasification systems, fluidized bed combustion systems, ocean thermal energy conversion systems, geothermal systems, nuclear systems, and conventional coal-fired power plants. Obviously, the SALT systems code is extremely flexible to be able to handle all of these diverse systems. At present, the dynamic option has only been used for LMFBR nuclear power plants and geothermal power plants. However, it can easily be extended to other systems and can be used for analyzing control problems. 12 refs

  4. EquiFACS: The Equine Facial Action Coding System.

    Directory of Open Access Journals (Sweden)

    Jen Wathan

    Full Text Available Although previous studies of horses have investigated their facial expressions in specific contexts, e.g. pain, until now there has been no methodology available that documents all the possible facial movements of the horse and provides a way to record all potential facial configurations. This is essential for an objective description of horse facial expressions across a range of contexts that reflect different emotional states. Facial Action Coding Systems (FACS provide a systematic methodology of identifying and coding facial expressions on the basis of underlying facial musculature and muscle movement. FACS are anatomically based and document all possible facial movements rather than a configuration of movements associated with a particular situation. Consequently, FACS can be applied as a tool for a wide range of research questions. We developed FACS for the domestic horse (Equus caballus through anatomical investigation of the underlying musculature and subsequent analysis of naturally occurring behaviour captured on high quality video. Discrete facial movements were identified and described in terms of the underlying muscle contractions, in correspondence with previous FACS systems. The reliability of others to be able to learn this system (EquiFACS and consistently code behavioural sequences was high--and this included people with no previous experience of horses. A wide range of facial movements were identified, including many that are also seen in primates and other domestic animals (dogs and cats. EquiFACS provides a method that can now be used to document the facial movements associated with different social contexts and thus to address questions relevant to understanding social cognition and comparative psychology, as well as informing current veterinary and animal welfare practices.

  5. Electronic health record standards, coding systems, frameworks, and infrastructures

    CERN Document Server

    Sinha, Pradeep K; Bendale, Prashant; Mantri, Manisha; Dande, Atreya

    2013-01-01

    Discover How Electronic Health Records Are Built to Drive the Next Generation of Healthcare Delivery The increased role of IT in the healthcare sector has led to the coining of a new phrase ""health informatics,"" which deals with the use of IT for better healthcare services. Health informatics applications often involve maintaining the health records of individuals, in digital form, which is referred to as an Electronic Health Record (EHR). Building and implementing an EHR infrastructure requires an understanding of healthcare standards, coding systems, and frameworks. This book provides an

  6. PWR core follow calculations using the ELCOS code system

    International Nuclear Information System (INIS)

    Grimm, P.; Paratte, J.M.

    1990-01-01

    The ELCOS code system developed at PSI is used to simulate a cycle of a PWR in which one fifth of the assemblies are MOX fuel. The reactor and the calculational methods are briefly described. The calculated critical boron concentrations and power distributions are compared with the measurements at the plant. Although the critical boron concentration is somewhat overpredicted and the computed power distributions are slightly flatter than the measured ones the results of the calculations agree generally well with the measured data. (author) 1 tab., 8 figs., 6 refs

  7. Nonterminals, homomorphisms and codings in different variations of OL-systems. II. Nondeterministic systems

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Rozenberg, Grzegorz; Salomaa, Arto

    1974-01-01

    Continuing the work begun in Part I of this paper, we consider now variations of nondeterministic OL-systems. The present Part II of the paper contains a systematic classification of the effect of nonterminals, codings, weak codings, nonerasing homomorphisms and homomorphisms for all basic variat...

  8. Geographic Information Systems using CODES linked data (Crash outcome data evaluation system)

    Science.gov (United States)

    2001-04-01

    This report presents information about geographic information systems (GIS) and CODES linked data. Section one provides an overview of a GIS and the benefits of linking to CODES. Section two outlines the basic issues relative to the types of map data...

  9. Burn-up Credit Criticality Safety Benchmark-Phase II-E. Impact of Isotopic Inventory Changes due to Control Rod Insertions on Reactivity and the End Effect in PWR UO2 Fuel Assemblies

    International Nuclear Information System (INIS)

    Neuber, Jens Christian; Tippl, Wolfgang; Hemptinne, Gwendoline de; Maes, Philippe; Ranta-aho, Anssu; Peneliau, Yannick; Jutier, Ludyvine; Tardy, Marcel; Reiche, Ingo; Kroeger, Helge; Nakata, Tetsuo; Armishaw, Malcom; Miller, Thomas M.

    2015-01-01

    The report describes the final results of the Phase II-E Burn-up Credit Criticality Benchmark conducted by the Expert Group on Burn-up Credit Criticality Safety. The objective of Phase II of the Burn-up Credit Criticality Safety programme is to study the impact of axial burn-up profiles of PWR UO 2 spent fuel assemblies on the reactivity of PWR UO 2 spent fuel assembly configurations. The objective of the Phase II-E benchmark was to study the impact of changes on the spent nuclear fuel isotopic composition due to control rod insertion during depletion on the reactivity and the end effect of spent fuel assemblies with realistic axial burn-up profiles for different control rod insertion depths ranging from 0 cm (no insertion) to full insertion (i.e. to the case that the fuel assemblies were exposed to control rod insertion over their full active length). For this purpose two axial burn-up profiles have been extracted from an AREVA-NP-GmbH-owned 17x17-(24+1) PWR UO 2 spent fuel assembly burn-up profile database. One profile has an average burn-up of 30 MWd/kg U, the other profile is related to an average burn-up of 50 MWd/kg U. Two profiles with different average burn-up values were selected because the shape of the burn-up profile is affected by the average burn-up and the end effect depends on the average burn-up of the fuel. The Phase II-E benchmark exercise complements the Phase II-C and Phase II-D benchmark exercises. In Phase II-D different irradiation histories were analysed using different control rod insertion histories during depletion as well as irradiation histories without control rod insertion. But in all the histories analysed a uniform distribution of the burn-up and hence a uniform distribution of the isotopic composition were assumed; and in all the histories including any usage of control rods full insertion of the control rods was assumed. In Phase II-C the impact of the asymmetry of axial burn-up profiles on the reactivity and the end effect of

  10. [Data coding in the Israeli healthcare system - do choices provide the answers to our system's needs?].

    Science.gov (United States)

    Zelingher, Julian; Ash, Nachman

    2013-05-01

    The IsraeLi healthcare system has undergone major processes for the adoption of health information technologies (HIT), and enjoys high Levels of utilization in hospital and ambulatory care. Coding is an essential infrastructure component of HIT, and ts purpose is to represent data in a simplified and common format, enhancing its manipulation by digital systems. Proper coding of data enables efficient identification, storage, retrieval and communication of data. UtiLization of uniform coding systems by different organizations enables data interoperability between them, facilitating communication and integrating data elements originating in different information systems from various organizations. Current needs in Israel for heaLth data coding include recording and reporting of diagnoses for hospitalized patients, outpatients and visitors of the Emergency Department, coding of procedures and operations, coding of pathology findings, reporting of discharge diagnoses and causes of death, billing codes, organizational data warehouses and national registries. New national projects for cLinicaL data integration, obligatory reporting of quality indicators and new Ministry of Health (MOH) requirements for HIT necessitate a high Level of interoperability that can be achieved only through the adoption of uniform coding. Additional pressures were introduced by the USA decision to stop the maintenance of the ICD-9-CM codes that are also used by Israeli healthcare, and the adoption of ICD-10-C and ICD-10-PCS as the main coding system for billing purpose. The USA has also mandated utilization of SNOMED-CT as the coding terminology for the ELectronic Health Record problem list, and for reporting quality indicators to the CMS. Hence, the Israeli MOH has recently decided that discharge diagnoses will be reported using ICD-10-CM codes, and SNOMED-CT will be used to code the cLinical information in the EHR. We reviewed the characteristics, strengths and weaknesses of these two coding

  11. Systemization of burnup sensitivity analysis code (2) (Contract research)

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Hyoudou, Hideaki

    2008-08-01

    Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant economic efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of critical experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristic is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons: the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion

  12. Evaluation of system codes for analyzing naturally circulating gas loop

    International Nuclear Information System (INIS)

    Lee, Jeong Ik; No, Hee Cheon; Hejzlar, Pavel

    2009-01-01

    Steady-state natural circulation data obtained in a 7 m-tall experimental loop with carbon dioxide and nitrogen are presented in this paper. The loop was originally designed to encompass operating range of a prototype gas-cooled fast reactor passive decay heat removal system, but the results and conclusions are applicable to any natural circulation loop operating in regimes having buoyancy and acceleration parameters within the ranges validated in this loop. Natural circulation steady-state data are compared to numerical predictions by two system analysis codes: GAMMA and RELAP5-3D. GAMMA is a computational tool for predicting various transients which can potentially occur in a gas-cooled reactor. The code has a capability of analyzing multi-dimensional multi-component mixtures and includes models for friction, heat transfer, chemical reaction, and multi-component molecular diffusion. Natural circulation data with two gases show that the loop operates in the deteriorated turbulent heat transfer (DTHT) regime which exhibits substantially reduced heat transfer coefficients compared to the forced turbulent flow. The GAMMA code with an original heat transfer package predicted conservative results in terms of peak wall temperature. However, the estimated peak location did not successfully match the data. Even though GAMMA's original heat transfer package included mixed-convection regime, which is a part of the DTHT regime, the results showed that the original heat transfer package could not reproduce the data with sufficient accuracy. After implementing a recently developed correlation and corresponding heat transfer regime map into GAMMA to cover the whole range of the DTHT regime, we obtained better agreement with the data. RELAP5-3D results are discussed in parallel.

  13. Quality assurance and verification of the MACCS [MELCOR Accident Consequence Code System] code, Version 1.5

    International Nuclear Information System (INIS)

    Dobbe, C.A.; Carlson, E.R.; Marshall, N.H.; Marwil, E.S.; Tolli, J.E.

    1990-02-01

    An independent quality assurance (QA) and verification of Version 1.5 of the MELCOR Accident Consequence Code System (MACCS) was performed. The QA and verification involved examination of the code and associated documentation for consistent and correct implementation of the models in an error-free FORTRAN computer code. The QA and verification was not intended to determine either the adequacy or appropriateness of the models that are used MACCS 1.5. The reviews uncovered errors which were fixed by the SNL MACCS code development staff prior to the release of MACCS 1.5. Some difficulties related to documentation improvement and code restructuring are also presented. The QA and verification process concluded that Version 1.5 of the MACCS code, within the scope and limitations process concluded that Version 1.5 of the MACCS code, within the scope and limitations of the models implemented in the code is essentially error free and ready for widespread use. 15 refs., 11 tabs

  14. Determination of uranium concentration and burn-up of irradiated reactor fuel in contaminated areas in Belarus using uranium isotopic ratios in soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, V.P.; Matusevich, J.L.; Kudrjashov, V.P.; Ananich, P.I.; Zhuravkov, V.V. [Inst. of Radiobiology, Minsk Univ. (Belarus); Boulyga, S.F. [Inst. of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-Univ. Mainz, Mainz (Germany); Becker, J.S. [Central Div. of Analytical Chemistry, Research Centre Juelich, Juelich (Germany)

    2005-07-01

    An analytical method is described for the estimation of uranium concentrations, of {sup 235}U/{sup 238}U and {sup 236}U/{sup 238}U isotope ratios and burn-up of irradiated reactor uranium in contaminated soil samples by inductively coupled plasma mass spectrometry. Experimental results obtained at 12 sampling sites situated on northern and western radioactive fallout tails 4 to 53 km distant from Chernobyl nuclear power plant (NPP) are presented. Concentrations of irradiated uranium in the upper 0-10 cm soil layers at the investigated sampling sites varied from 2.1 x 10{sup -9}g/g to 2.0 x 10{sup -6}g/g depending mainly on the distance from Chernobyl NPP. A slight variation of the degree of burn-up of spent reactor uranium was revealed by analyzing {sup 235}U/{sup 238}U and {sup 236}U/{sup 238}U isotope ratios and the average value amounted to 9.4{+-}0.3 MWd/(kg U). (orig.)

  15. Electron probe microanalysis of a METAPHIX UPuZr metallic alloy fuel irradiated to 7.0 at.% burn-up

    Energy Technology Data Exchange (ETDEWEB)

    Brémier, S., E-mail: stephan.bremier@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany); Inagaki, K. [Central Research Institute of Electric Power Industry, Nuclear Technology Research Laboratory, 2-11-1 Iwado-kita, Komae-shi, Tokyo 201-8511 (Japan); Capriotti, L.; Poeml, P. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany); Ogata, T.; Ohta, H. [Central Research Institute of Electric Power Industry, Nuclear Technology Research Laboratory, 2-11-1 Iwado-kita, Komae-shi, Tokyo 201-8511 (Japan); Rondinella, V.V. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany)

    2016-11-15

    The METAPHIX project is a collaboration between CRIEPI and JRC-ITU investigating safety and performance of a closed fuel cycle option based on fast reactor metal alloy fuels containing Minor Actinides (MA). The aim of the project is to investigate the behaviour of this type of fuel and demonstrate the transmutation of MA under irradiation. A UPuZr metallic fuel sample irradiated to a burn-up of 7 at.% was examined by electron probe microanalysis. The fuel sample was extensively characterised qualitatively and quantitatively using elemental X-ray imaging and point analysis techniques. The analyses reveal a significant redistribution of the fuel components along the fuel radius highlighting a nearly complete depletion of Zr in the central part of the fuel. Numerous rare earth and fission products secondary phases are present in various compositions. Fuel cladding chemical interaction was observed with creation of a number of intermediary layers affecting a cladding depth of 15–20 μm and migration of cladding elements to the fuel. - Highlights: • Electron Probe MicroAnalysis of a UPuZr metallic fuel alloy irradiated to 7.0 at.% burn-up. • Significant redistribution of the fuel components along the fuel radius, nearly complete depletion of Zr in the central part of the fuel. • Interactions between the fuel and the cladding with occurrence of a number of intermediary layers and migration of cladding elements to the fuel. • Safe irradiation behaviour of the base alloy fuel.

  16. Neutronics performances study of silicon carbide as an inert matrix to achieve very high burn-up for light water reactor fuels

    International Nuclear Information System (INIS)

    Chabert, C.; Coulon-Picard, E.; Pelletier, M.

    2007-01-01

    In order to extend the actual limits of light water reactors, the Cea has put emphasis on the exploration of major fuel innovations that would allow us to increase the competitiveness, the safety and flexibility, while keeping the standard PWR environment. Different fuel concepts have been chosen and are actually studied to evaluate their advantages and drawbacks. The objectives of these new fuels are to increase the safety performances and to achieve a very high burn-up. One concept is a CERCER fuel with silicon carbide (SiC) as an inert matrix devoted to reduce the fuel temperature at nominal conditions. Besides the investigation of the neutronic performance, analyses on the thermomechanical performances, the fuel fabrication, the fuel reprocessing and economic aspects have been performed. This paper presents particularly neutronic results obtained for the CERCER fuel. The results show that a very high burn-up, a high safety performance and a better competitiveness cannot be achieved with this fuel concept. (authors)

  17. Criticality qualification of a new Monte Carlo code for reactor core analysis

    International Nuclear Information System (INIS)

    Catsaros, N.; Gaveau, B.; Jaekel, M.; Maillard, J.; Maurel, G.; Savva, P.; Silva, J.; Varvayanni, M.; Zisis, Th.

    2009-01-01

    In order to accurately simulate Accelerator Driven Systems (ADS), the utilization of at least two computational tools is necessary (the thermal-hydraulic problem is not considered in the frame of this work), namely: (a) A High Energy Physics (HEP) code system dealing with the 'Accelerator part' of the installation, i.e. the computation of the spectrum, intensity and spatial distribution of the neutrons source created by (p, n) reactions of a proton beam on a target and (b) a neutronics code system, handling the 'Reactor part' of the installation, i.e. criticality calculations, neutron transport, fuel burn-up and fission products evolution. In the present work, a single computational tool, aiming to analyze an ADS in its integrity and also able to perform core analysis for a conventional fission reactor, is proposed. The code is based on the well qualified HEP code GEANT (version 3), transformed to perform criticality calculations. The performance of the code is tested against two qualified neutronics code systems, the diffusion/transport SCALE-CITATION code system and the Monte Carlo TRIPOLI code, in the case of a research reactor core analysis. A satisfactory agreement was exhibited by the three codes.

  18. Development of GUI systems for the MIDAS code

    International Nuclear Information System (INIS)

    Kim, K.R.; Park, S.H.; Kim, D.H.

    2004-01-01

    MIDAS is being developed at KAERI based on MELCOR as an integrated severe accident analysis code with existing model modification and new model addition. MIDAS was restructured to avoid the pointer based variable referencing style of MELCOR, and enhanced the memory effectiveness using the dynamic allocation method of Fortran 90. This paper describes recent activities of developing the GUI environments for MIDAS code at KAERI. Up to now, we have developed the four PC-based subsystems, which are IEDIT, IPLOT, SATS and HyperKAMG. IEDIT is an input management system that can read MELCOR input files and display its information in the Window panels. Users can modify each item in the panel and the input file will be modified according to that changes. IPLOT is a simple plotting system that can draw MIDAS plot variables trend graphs. SATS is developed as a severe accident training simulator that can display nuclear plant behavior graphically. Moreover SATS provides several controllable pumps and valves which appeared in the severe accidence. Together with SATS and the online severe accident guidance HyperKAMG, combined properly, severe accident mitigation scenarios could be presented graphically and dramatically without any change of MELCOR inputs. GUI development as a part of a severe accident management program package, MIDAS. (author)

  19. Source Code Verification for Embedded Systems using Prolog

    Directory of Open Access Journals (Sweden)

    Frank Flederer

    2017-01-01

    Full Text Available System relevant embedded software needs to be reliable and, therefore, well tested, especially for aerospace systems. A common technique to verify programs is the analysis of their abstract syntax tree (AST. Tree structures can be elegantly analyzed with the logic programming language Prolog. Moreover, Prolog offers further advantages for a thorough analysis: On the one hand, it natively provides versatile options to efficiently process tree or graph data structures. On the other hand, Prolog's non-determinism and backtracking eases tests of different variations of the program flow without big effort. A rule-based approach with Prolog allows to characterize the verification goals in a concise and declarative way. In this paper, we describe our approach to verify the source code of a flash file system with the help of Prolog. The flash file system is written in C++ and has been developed particularly for the use in satellites. We transform a given abstract syntax tree of C++ source code into Prolog facts and derive the call graph and the execution sequence (tree, which then are further tested against verification goals. The different program flow branching due to control structures is derived by backtracking as subtrees of the full execution sequence. Finally, these subtrees are verified in Prolog. We illustrate our approach with a case study, where we search for incorrect applications of semaphores in embedded software using the real-time operating system RODOS. We rely on computation tree logic (CTL and have designed an embedded domain specific language (DSL in Prolog to express the verification goals.

  20. Interval Coded Scoring: a toolbox for interpretable scoring systems

    Directory of Open Access Journals (Sweden)

    Lieven Billiet

    2018-04-01

    Full Text Available Over the last decades, clinical decision support systems have been gaining importance. They help clinicians to make effective use of the overload of available information to obtain correct diagnoses and appropriate treatments. However, their power often comes at the cost of a black box model which cannot be interpreted easily. This interpretability is of paramount importance in a medical setting with regard to trust and (legal responsibility. In contrast, existing medical scoring systems are easy to understand and use, but they are often a simplified rule-of-thumb summary of previous medical experience rather than a well-founded system based on available data. Interval Coded Scoring (ICS connects these two approaches, exploiting the power of sparse optimization to derive scoring systems from training data. The presented toolbox interface makes this theory easily applicable to both small and large datasets. It contains two possible problem formulations based on linear programming or elastic net. Both allow to construct a model for a binary classification problem and establish risk profiles that can be used for future diagnosis. All of this requires only a few lines of code. ICS differs from standard machine learning through its model consisting of interpretable main effects and interactions. Furthermore, insertion of expert knowledge is possible because the training can be semi-automatic. This allows end users to make a trade-off between complexity and performance based on cross-validation results and expert knowledge. Additionally, the toolbox offers an accessible way to assess classification performance via accuracy and the ROC curve, whereas the calibration of the risk profile can be evaluated via a calibration curve. Finally, the colour-coded model visualization has particular appeal if one wants to apply ICS manually on new observations, as well as for validation by experts in the specific application domains. The validity and applicability

  1. 42 CFR 405.512 - Carriers' procedural terminology and coding systems.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Carriers' procedural terminology and coding systems... Determining Reasonable Charges § 405.512 Carriers' procedural terminology and coding systems. (a) General. Procedural terminology and coding systems are designed to provide physicians and third party payers with a...

  2. Development of EASYQAD version β: A Visualization Code System for QAD-CGGP-A Gamma and Neutron Shielding Calculation Code

    International Nuclear Information System (INIS)

    Kim, Jae Cheon; Lee, Hwan Soo; Ha, Pham Nhu Viet; Kim, Soon Young; Shin, Chang Ho; Kim, Jong Kyung

    2007-01-01

    EASYQAD had been previously developed by using MATLAB GUI (Graphical User Interface) in order to perform conveniently gamma and neutron shielding calculations at Hanyang University. It had been completed as version α of radiation shielding analysis code. In this study, EASYQAD was upgraded to version β with many additional functions and more user-friendly graphical interfaces. For general users to run it on Windows XP environment without any MATLAB installation, this version was developed into a standalone code system

  3. Aqueous Transport Code Revisions Using Geographic Information Systems

    International Nuclear Information System (INIS)

    Chen, K.F.

    2003-01-01

    STREAM II, developed at the Savannah River Site (SRS) for execution on a personal computer, is an emergency response code that predicts downstream pollutant concentrations for releases from the SRS area to the Savannah River for emergency response management decision making. The STREAM II code consists of pre-processor, calculation, and post-processor modules. The pre-processor module provides a graphical user interface (GUI) for inputting the initial release data. The GUI passes the user specified data to the calculation module that calculates the pollutant concentrations at downstream locations and the transport times. The calculation module of the STREAM II adopts the transport module of the WASP5 code. WASP5 is a US Environmental Protection Agency water quality analysis program that simulates pollutant transport and fate through surface water using a finite difference method to solve the transport equation. The calculated downstream pollutant concentrations and travel times a re passed to the post-processor for display on the computer screen in graphical and tabular forms. To minimize the user's effort in the emergency situation, the required input parameters are limited to the time and date of release, type of release, location of release, amount and duration of release, and the calculation units. The user, however, could only select one of the seventeen predetermined locations. Hence, STREAM II could not be used for situations in which release locations differ from the seventeen predetermined locations. To eliminate this limitation, STREAM II has been revised to allow users to select the release location anywhere along the specified SRS main streams or the Savannah River by mouse-selection from a map displayed on the computer monitor. The required modifications to STREAM II using geographic information systems (GIS) software is discussed in this paper

  4. Modern Nuclear Data Evaluation with the TALYS Code System

    Science.gov (United States)

    Koning, A. J.; Rochman, D.

    2012-12-01

    This paper presents a general overview of nuclear data evaluation and its applications as developed at NRG, Petten. Based on concepts such as robustness, reproducibility and automation, modern calculation tools are exploited to produce original nuclear data libraries that meet the current demands on quality and completeness. This requires a system which comprises differential measurements, theory development, nuclear model codes, resonance analysis, evaluation, ENDF formatting, data processing and integral validation in one integrated approach. Software, built around the TALYS code, will be presented in which all these essential nuclear data components are seamlessly integrated. Besides the quality of the basic data and its extensive format testing, a second goal lies in the diversity of processing for different type of users. The implications of this scheme are unprecedented. The most important are: 1. Complete ENDF-6 nuclear data files, in the form of the TENDL library, including covariance matrices, for many isotopes, particles, energies, reaction channels and derived quantities. All isotopic data files are mutually consistent and are supposed to rival those of the major world libraries. 2. More exact uncertainty propagation from basic nuclear physics to applied (reactor) calculations based on a Monte Carlo approach: "Total" Monte Carlo (TMC), using random nuclear data libraries. 3. Automatic optimization in the form of systematic feedback from integral measurements back to the basic data. This method of work also opens a new way of approaching the analysis of nuclear applications, with consequences in both applied nuclear physics and safety of nuclear installations, and several examples are given here. This applied experience and feedback is integrated in a final step to improve the quality of the nuclear data, to change the users vision and finally to orchestrate their integration into simulation codes.

  5. Modern Nuclear Data Evaluation with the TALYS Code System

    International Nuclear Information System (INIS)

    Koning, A.J.; Rochman, D.

    2012-01-01

    This paper presents a general overview of nuclear data evaluation and its applications as developed at NRG, Petten. Based on concepts such as robustness, reproducibility and automation, modern calculation tools are exploited to produce original nuclear data libraries that meet the current demands on quality and completeness. This requires a system which comprises differential measurements, theory development, nuclear model codes, resonance analysis, evaluation, ENDF formatting, data processing and integral validation in one integrated approach. Software, built around the TALYS code, will be presented in which all these essential nuclear data components are seamlessly integrated. Besides the quality of the basic data and its extensive format testing, a second goal lies in the diversity of processing for different type of users. The implications of this scheme are unprecedented. The most important are: 1. Complete ENDF-6 nuclear data files, in the form of the TENDL library, including covariance matrices, for many isotopes, particles, energies, reaction channels and derived quantities. All isotopic data files are mutually consistent and are supposed to rival those of the major world libraries. 2. More exact uncertainty propagation from basic nuclear physics to applied (reactor) calculations based on a Monte Carlo approach: “Total” Monte Carlo (TMC), using random nuclear data libraries. 3. Automatic optimization in the form of systematic feedback from integral measurements back to the basic data. This method of work also opens a new way of approaching the analysis of nuclear applications, with consequences in both applied nuclear physics and safety of nuclear installations, and several examples are given here. This applied experience and feedback is integrated in a final step to improve the quality of the nuclear data, to change the users vision and finally to orchestrate their integration into simulation codes.

  6. COMRAD96, Nuclear Fuel Burnup and Depletion Calculation System

    International Nuclear Information System (INIS)

    Suyama, K.; Masukawa, F.; Ido, M.; Enomoto, M.; Takyu, S.; Hara, T.

    2002-01-01

    1 - Description of program or function: Burn-up calculation of nuclear fuel. 2 - Methods: Matrix exponential method, Bateman Equation. 3 - Restrictions on the complexity of the problem: a) One-grouped cross section library should be prepared for the fuel system to be analyzed using UNITBURN. However, UNITBURN is not available now for UNIX systems. b) Gamma ray spectrometry calculation will fail using the attached piflib routine. This problem has already been rectified in the internal version. 4 - Typical running time: Two minutes for standard burn-up calculation on Sun ULTRA 30. 5 - Unusual features - a) Selection of Matrix exponential method, or Bateman Equation. b) JDDL, a detailed decay chain data based on ENSDF. 6 - Related or auxiliary programs: UNITBURN: Burnup calculation code unit cell system

  7. Design of ACM system based on non-greedy punctured LDPC codes

    Science.gov (United States)

    Lu, Zijun; Jiang, Zihong; Zhou, Lin; He, Yucheng

    2017-08-01

    In this paper, an adaptive coded modulation (ACM) scheme based on rate-compatible LDPC (RC-LDPC) codes was designed. The RC-LDPC codes were constructed by a non-greedy puncturing method which showed good performance in high code rate region. Moreover, the incremental redundancy scheme of LDPC-based ACM system over AWGN channel was proposed. By this scheme, code rates vary from 2/3 to 5/6 and the complication of the ACM system is lowered. Simulations show that more and more obvious coding gain can be obtained by the proposed ACM system with higher throughput.

  8. Interface of RETRAN/MASTER Code System for APR1400

    International Nuclear Information System (INIS)

    Ku, Keuk Jong; Kang, Sang Hee; Kim, Han Gon

    2008-01-01

    MASTER(Multi-purpose Analyzer for Static and Transient Effects of Reactors), which was developed by KAERI, is a nuclear analysis and design code which can simulate the pressurized water reactor core or boiling water reactor core in 3-dimensional geometry. RETRAN is a best-estimate code for transient analysis of Non-LOCA. RETRAN code generates neutron number density in core using point kinetics model which includes feedback reactivities and converts the neutron number density into reactor power. It is conventional that RETRAN code for power generation is roughly to extrapolate feedback reactivities which are provided by MASTER code only one time before transient analysis. The purpose of this paper is to interface RETRAN code with MASTER code by real-time processing and to supply adequate feedback reactivities to RETRAN code. So, we develop interface code called MATRAN for real-time feedback reactivity processing. And for the application of MATRAN code, we compare the results of real-time MATRAN code with those of conventional RETRAN/MASTER code

  9. Implications of Sepedi/English code switching for ASR systems

    CSIR Research Space (South Africa)

    Modipa, TI

    2013-12-01

    Full Text Available . We also perform an initial acoustic analysis to determine the impact of such code switching on speech recognition performance. We nd that the frequency of code switching is unexpectedly high, and that the continuum of code switching (from unmodi ed...

  10. Simulation realization of 2-D wavelength/time system utilizing MDW code for OCDMA system

    Science.gov (United States)

    Azura, M. S. A.; Rashidi, C. B. M.; Aljunid, S. A.; Endut, R.; Ali, N.

    2017-11-01

    This paper presents a realization of Wavelength/Time (W/T) Two-Dimensional Modified Double Weight (2-D MDW) code for Optical Code Division Multiple Access (OCDMA) system based on Spectral Amplitude Coding (SAC) approach. The MDW code has the capability to suppress Phase-Induce Intensity Noise (PIIN) and minimizing the Multiple Access Interference (MAI) noises. At the permissible BER 10-9, the 2-D MDW (APD) had shown minimum effective received power (Psr) = -71 dBm that can be obtained at the receiver side as compared to 2-D MDW (PIN) only received -61 dBm. The results show that 2-D MDW (APD) has better performance in achieving same BER with longer optical fiber length and with less received power (Psr). Also, the BER from the result shows that MDW code has the capability to suppress PIIN ad MAI.

  11. Simulation realization of 2-D wavelength/time system utilizing MDW code for OCDMA system

    Directory of Open Access Journals (Sweden)

    Azura M. S. A.

    2017-01-01

    Full Text Available This paper presents a realization of Wavelength/Time (W/T Two-Dimensional Modified Double Weight (2-D MDW code for Optical Code Division Multiple Access (OCDMA system based on Spectral Amplitude Coding (SAC approach. The MDW code has the capability to suppress Phase-Induce Intensity Noise (PIIN and minimizing the Multiple Access Interference (MAI noises. At the permissible BER 10-9, the 2-D MDW (APD had shown minimum effective received power (Psr = -71 dBm that can be obtained at the receiver side as compared to 2-D MDW (PIN only received -61 dBm. The results show that 2-D MDW (APD has better performance in achieving same BER with longer optical fiber length and with less received power (Psr. Also, the BER from the result shows that MDW code has the capability to suppress PIIN ad MAI.

  12. Study on MAs transmutation of accelerator-driven system sodium-cooled fast reactor loaded with metallic fuel

    International Nuclear Information System (INIS)

    Han Song; Yang Yongwei

    2007-01-01

    Through the analysis of the effect of heavy metal actinides on the effective multiplication constant (k eff ) of the core in accelerator-driven system (ADS) sodium-cooled fast reactor loaded with metallic fuel, we gave the method for determining fuel components. the characteristics of minor actinides (MAs) transmutation was analyzed in detail. 3D burn-up code COUPLE, which couples MCNP4c3 and ORIGEN2, was applied to the neutron simulation and burn up calculation. The results of optimized scheme shows that adjusting the proportion of 239 Pu and maintaining the value during the burn-up cycle is an efficient method of designing k eff and keeping stable during the burn-up cycle. Spallation neutrons lead to the neutron spectrum harder at inner core than that at outer core. It is in favor of improving MA's fission cross sections and the capture-to-fission ratio. The total MAs transmutation support ratio 8.3 achieves excellent transmutation effect. For higher flux at inner core leads to obvious differences on transmutation efficiency,only disposing MAs at inner core is in favor of decreasing the loading mass and improving MAs transmutation effect. (authors)

  13. Software coding for reliable data communication in a reactor safety system

    International Nuclear Information System (INIS)

    Maghsoodi, R.

    1978-01-01

    A software coding method is proposed to improve the communication reliability of a microprocessor based fast-reactor safety system. This method which replaces the conventional coding circuitry, applies a program to code the data which is communicated between the processors via their data memories. The system requirements are studied and the suitable codes are suggested. The problems associated with hardware coders, and the advantages of software coding methods are discussed. The product code which proves a faster coding time over the cyclic code is chosen as the final code. Then the improvement of the communication reliability is derived for a processor and its data memory. The result is used to calculate the reliability improvement of the processing channel as the basic unit for the safety system. (author)

  14. Evaluation and implementation of QR Code Identity Tag system for Healthcare in Turkey

    OpenAIRE

    Uzun, Vassilya; Bilgin, Sami

    2016-01-01

    For this study, we designed a QR Code Identity Tag system to integrate into the Turkish healthcare system. This system provides QR code-based medical identification alerts and an in-hospital patient identification system. Every member of the medical system is assigned a unique QR Code Tag; to facilitate medical identification alerts, the QR Code Identity Tag can be worn as a bracelet or necklace or carried as an ID card. Patients must always possess the QR Code Identity bracelets within hospi...

  15. Development of multi-physics code systems based on the reactor dynamics code DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Schuetze, Jochen [ANSYS Germany GmbH, Darmstadt (Germany); Frank, Thomas [ANSYS Germany GmbH, Otterfing (Germany); Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany)

    2011-07-15

    The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)

  16. Development of multi-physics code systems based on the reactor dynamics code DYN3D

    International Nuclear Information System (INIS)

    Kliem, Soeren; Gommlich, Andre; Grahn, Alexander; Rohde, Ulrich; Schuetze, Jochen; Frank, Thomas; Gomez Torres, Armando M.; Sanchez Espinoza, Victor Hugo

    2011-01-01

    The reactor dynamics code DYN3D has been coupled with the CFD code ANSYS CFX and the 3D thermal hydraulic core model FLICA4. In the coupling with ANSYS CFX, DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the coupling with FLICA4 only the neutron kinetics module of DYN3D is used. Fluid dynamics and related transport phenomena in the reactor's coolant and fuel behavior is calculated by FLICA4. The correctness of the coupling of DYN3D with both thermal hydraulic codes was verified by the calculation of different test problems. These test problems were set-up in such a way that comparison with the DYN3D stand-alone code was possible. This included steady-state and transient calculations of a mini-core consisting of nine real-size PWR fuel assemblies with ANSYS CFX/DYN3D as well as mini-core and a full core steady-state calculation using FLICA4/DYN3D. (orig.)

  17. Verification of the CONPAS (CONtainment Performance Analysis System) code package

    International Nuclear Information System (INIS)

    Kim, See Darl; Ahn, Kwang Il; Song, Yong Man; Choi, Young; Park, Soo Yong; Kim, Dong Ha; Jin, Young Ho.

    1997-09-01

    CONPAS is a computer code package to integrate the numerical, graphical, and results-oriented aspects of Level 2 probabilistic safety assessment (PSA) for nuclear power plants under a PC window environment automatically. For the integrated analysis of Level 2 PSA, the code utilizes four distinct, but closely related modules: (1) ET Editor, (2) Computer, (3) Text Editor, and (4) Mechanistic Code Plotter. Compared with other existing computer codes for Level 2 PSA, and CONPAS code provides several advanced features: computational aspects including systematic uncertainty analysis, importance analysis, sensitivity analysis and data interpretation, reporting aspects including tabling and graphic as well as user-friendly interface. The computational performance of CONPAS has been verified through a Level 2 PSA to a reference plant. The results of the CONPAS code was compared with an existing level 2 PSA code (NUCAP+) and the comparison proves that CONPAS is appropriate for Level 2 PSA. (author). 9 refs., 8 tabs., 14 figs

  18. Pressure vessel codes: Their application to nuclear reactor systems

    International Nuclear Information System (INIS)

    1966-01-01

    A survey has been made by the International Atomic Energy Agency of how the problems of applying national pressure vessel codes to nuclear reactor systems have been treated in those Member States that had pressurized reactors in operation or under construction at the beginning of 1963. Fifteen answers received to an official inquiry form the basis of this report, which also takes into account some recently published material. Although the answers to the inquiry in some cases data back to 1963 and also reflect the difficulty of describing local situations in answer to standard questions, it is hoped that the report will be of interest to reactor engineers. 21 refs, 1 fig., 2 tabs

  19. The APR1400 Core Design by Using APA Code System

    International Nuclear Information System (INIS)

    Choi, Yu Sun; Koh, Byung Marn

    2008-01-01

    The nuclear design for APR1400 has been performed to prepare the core model for Automatic Load Follow Operation Simulation. APA (ALPHA/ PHOENIXP/ ANC) code system is a tool for the multi-cycle depletion calculations for APR1400. Its detail versions for ALPHA, PHOENIX-P and ANC are 8.9.3, 8.6.1 and 8.10.5, respectively. The first and equilibrium core depletion calculations for APR1400 have been performed to assure the target cycle length and confirm the safety parameters. The parameters are satisfied within limitation about nuclear design criteria. This APR1400 core models will be based on the design parameters for APR1400 Simulator

  20. Biometric iris image acquisition system with wavefront coding technology

    Science.gov (United States)

    Hsieh, Sheng-Hsun; Yang, Hsi-Wen; Huang, Shao-Hung; Li, Yung-Hui; Tien, Chung-Hao

    2013-09-01

    Biometric signatures for identity recognition have been practiced for centuries. Basically, the personal attributes used for a biometric identification system can be classified into two areas: one is based on physiological attributes, such as DNA, facial features, retinal vasculature, fingerprint, hand geometry, iris texture and so on; the other scenario is dependent on the individual behavioral attributes, such as signature, keystroke, voice and gait style. Among these features, iris recognition is one of the most attractive approaches due to its nature of randomness, texture stability over a life time, high entropy density and non-invasive acquisition. While the performance of iris recognition on high quality image is well investigated, not too many studies addressed that how iris recognition performs subject to non-ideal image data, especially when the data is acquired in challenging conditions, such as long working distance, dynamical movement of subjects, uncontrolled illumination conditions and so on. There are three main contributions in this paper. Firstly, the optical system parameters, such as magnification and field of view, was optimally designed through the first-order optics. Secondly, the irradiance constraints was derived by optical conservation theorem. Through the relationship between the subject and the detector, we could estimate the limitation of working distance when the camera lens and CCD sensor were known. The working distance is set to 3m in our system with pupil diameter 86mm and CCD irradiance 0.3mW/cm2. Finally, We employed a hybrid scheme combining eye tracking with pan and tilt system, wavefront coding technology, filter optimization and post signal recognition to implement a robust iris recognition system in dynamic operation. The blurred image was restored to ensure recognition accuracy over 3m working distance with 400mm focal length and aperture F/6.3 optics. The simulation result as well as experiment validates the proposed code

  1. The Non-Destructive Determination of Burn-Up by Means of the Prl44 2.18 M Gamma Activity

    International Nuclear Information System (INIS)

    Forsyth, R.S.; Blackadder, W.H.

    1965-05-01

    In recent years, gamma scanning has been used at several establishments for the determination of the burn-up profile along irradiated fuel elements, the 0.75 MeV gamma from Zr-95/Nb-95 being most often employed as the monitored radiation. Difficulties in establishing the geometry and the self-absorption of the gamma activity in the fuel have tended to prevent the application of the method to quantitative burn-up determination, which has usually been carried out by dissolution of selected portions of the fuel followed by conventional fission product separation or by uranium depletion methods. The present paper describes experiments carried out to calibrate a gamma scanner for quantitative measurements by counting the 2.18 MeV gamma activity due to Pr-144, the short-lived daughter of Ce-144 (t 1/2 = 285 days) from selected pellets in several UO 2 fuel specimens. Accurate burn-up values were then determined by dissolution and application of the isotopic dilution method, using stable molybdenum fission products. The elements, which were rotated about their longitudinal axes to minimize asymmetry effects, were viewed by a sodium iodide crystal and a multichannel analyser through a suitable collimator. Correction for attenuation of the gamma activity (much less than for 0.75 MeV) in the fuel elements which were of different diameters (12.6 to 15.04 mm) was made by applying relative attenuation factors and the effective geometry factor of the instrument was determined. In order to check the corrections applied, the counter factor was also calculated, for the 0.75 MeV activity from Zr-95/Nb-95 and in certain cases for the 0.66 MeV activity from Cs-137. The results obtained, demonstrate that at least over the range of diameters and cooling times used the method is suitable for quantitative determinations. Preliminary experiments to explore the possibility of using the high energy gammas (2.35, 2.65 MeV) from Rh-106 as a method for estimating the fraction of fission events

  2. The MOX fuel behaviour test IFA-597.4/.5. Temperature and pressure data to a burn-up of 15 MWd/kg MOX

    International Nuclear Information System (INIS)

    Takano, K.

    1999-04-01

    The behaviour of MOX fuel should be investigated in detail for more effective use in the future, especially concerning its thermal performance and fission gas release. IFA-597.4 and IFA-597.5, containing two MOX fuel rods each with a fuel centre thermocouple and a pressure transducer, have been irradiated in the Halden Reactor to study the temperature threshold of fission gas release for MOX fuel and to explore potential differences in the thermal and fission gas release behaviour between solid and hollow pellets. The two rods of MOX fuel with an initial Pu-fissile content of 6.07 percent have solid pellets and hollow pellets respectively, and with an active length of about 220 mm. The diameter of the pellets is 8.05 mm with 180μm of diametral gap to the cladding. For the purpose of the test, power ramp operation, in which estimated peak temperature of the MOX pellets increases and decreases above and below the threshold for fission gas release in UO 2 fuel, is planned every 10 MWd/kgMOX of burn-up. The first ramp operation has been successfully performed at 10 MWd/kgMOX. When the estimated peak temperature of the fuel gets close to but below the threshold of UO 2 , fission gas release was observed at around 28 kW/m of power. Densification of the MOX pellets could be estimated to about 1.2 percent for the solid pellets and about 2,3 percent for the hollow pellets from normalised internal rod pressure. After 13.5 MWd/kgMOX the average assembly power has been operated low enough to observe swelling rate of MOX fuel pellets and behaviour after significant fission gas release. The burn-up had reached 15.5 MWd/kgMOX as of the end of 1998. The target burn-up of this MOX test is 60 MWd/kgMOX (author) (ml)

  3. The Non-Destructive Determination of Burn-Up by Means of the Pr{sup l44} 2.18 M Gamma Activity

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R S; Blackadder, W H

    1965-05-15

    In recent years, gamma scanning has been used at several establishments for the determination of the burn-up profile along irradiated fuel elements, the 0.75 MeV gamma from Zr-95/Nb-95 being most often employed as the monitored radiation. Difficulties in establishing the geometry and the self-absorption of the gamma activity in the fuel have tended to prevent the application of the method to quantitative burn-up determination, which has usually been carried out by dissolution of selected portions of the fuel followed by conventional fission product separation or by uranium depletion methods. The present paper describes experiments carried out to calibrate a gamma scanner for quantitative measurements by counting the 2.18 MeV gamma activity due to Pr-144, the short-lived daughter of Ce-144 (t{sub 1/2} = 285 days) from selected pellets in several UO{sub 2} fuel specimens. Accurate burn-up values were then determined by dissolution and application of the isotopic dilution method, using stable molybdenum fission products. The elements, which were rotated about their longitudinal axes to minimize asymmetry effects, were viewed by a sodium iodide crystal and a multichannel analyser through a suitable collimator. Correction for attenuation of the gamma activity (much less than for 0.75 MeV) in the fuel elements which were of different diameters (12.6 to 15.04 mm) was made by applying relative attenuation factors and the effective geometry factor of the instrument was determined. In order to check the corrections applied, the counter factor was also calculated, for the 0.75 MeV activity from Zr-95/Nb-95 and in certain cases for the 0.66 MeV activity from Cs-137. The results obtained, demonstrate that at least over the range of diameters and cooling times used the method is suitable for quantitative determinations. Preliminary experiments to explore the possibility of using the high energy gammas (2.35, 2.65 MeV) from Rh-106 as a method for estimating the fraction of

  4. RFSYS: an inventory code for RF system parameters

    International Nuclear Information System (INIS)

    Treadwell, E.A.

    1983-03-01

    RFSYS is a program which maintains an inventory of rf system parameters associated with the 200 MeV Linear Accelerator at Fermi National Accelerator Laboratory. The program, written by Elliott Treadwell, of the Linac group, offers five modes of operation: (1) Allocates memory space for additional rf systems (data arrays). (2) Prints a total or partial list of old tube parameters on an ADM-3 terminal. (3) Changes tube data stored in the master array. If the number of systems increases, this mode permits the user to enter new data. (4) Computes the average time of operation for a given tube and system. (5) Stops program execution. There is an exit option, (a) create one output data file or (b) create three output files, one of which contains column headers and coded comments. All output files are stored on the CYBER-175 disc, and eventually on high density (6250 B.P.I.) magnetic tapes. This arrangement eliminates the necessity for online data buffers

  5. Control code for laboratory adaptive optics teaching system

    Science.gov (United States)

    Jin, Moonseob; Luder, Ryan; Sanchez, Lucas; Hart, Michael

    2017-09-01

    By sensing and compensating wavefront aberration, adaptive optics (AO) systems have proven themselves crucial in large astronomical telescopes, retinal imaging, and holographic coherent imaging. Commercial AO systems for laboratory use are now available in the market. One such is the ThorLabs AO kit built around a Boston Micromachines deformable mirror. However, there are limitations in applying these systems to research and pedagogical projects since the software is written with limited flexibility. In this paper, we describe a MATLAB-based software suite to interface with the ThorLabs AO kit by using the MATLAB Engine API and Visual Studio. The software is designed to offer complete access to the wavefront sensor data, through the various levels of processing, to the command signals to the deformable mirror and fast steering mirror. In this way, through a MATLAB GUI, an operator can experiment with every aspect of the AO system's functioning. This is particularly valuable for tests of new control algorithms as well as to support student engagement in an academic environment. We plan to make the code freely available to the community.

  6. Modelling guidelines for core exit temperature simulations with system codes

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, J., E-mail: jordi.freixa-terradas@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Martínez-Quiroga, V., E-mail: victor.martinez@nortuen.com [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Zerkak, O., E-mail: omar.zerkak@psi.ch [Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Reventós, F., E-mail: francesc.reventos@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain)

    2015-05-15

    Highlights: • Core exit temperature is used in PWRs as an indication of core heat up. • Modelling guidelines of CET response with system codes. • Modelling of heat transfer processes in the core and UP regions. - Abstract: Core exit temperature (CET) measurements play an important role in the sequence of actions under accidental conditions in pressurized water reactors (PWR). Given the difficulties in placing measurements in the core region, CET readings are used as criterion for the initiation of accident management (AM) procedures because they can indicate a core heat up scenario. However, the CET responses have some limitation in detecting inadequate core cooling and core uncovery simply because the measurement is not placed inside the core. Therefore, it is of main importance in the field of nuclear safety for PWR power plants to assess the capabilities of system codes for simulating the relation between the CET and the peak cladding temperature (PCT). The work presented in this paper intends to address this open question by making use of experimental work at integral test facilities (ITF) where experiments related to the evolution of the CET and the PCT during transient conditions have been carried out. In particular, simulations of two experiments performed at the ROSA/LSTF and PKL facilities are presented. The two experiments are part of a counterpart exercise between the OECD/NEA ROSA-2 and OECD/NEA PKL-2 projects. The simulations are used to derive guidelines in how to correctly reproduce the CET response during a core heat up scenario. Three aspects have been identified to be of main importance: (1) the need for a 3-dimensional representation of the core and Upper Plenum (UP) regions in order to model the heterogeneity of the power zones and axial areas, (2) the detailed representation of the active and passive heat structures, and (3) the use of simulated thermocouples instead of steam temperatures to represent the CET readings.

  7. CASKETSS: a computer code system for thermal and structural analysis of nuclear fuel shipping casks

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1989-02-01

    A computer program CASKETSS has been developed for the purpose of thermal and structural analysis of nuclear fuel shipping casks. CASKETSS measn a modular code system for CASK Evaluation code system Thermal and Structural Safety. Main features of CASKETSS are as follow; (1) Thermal and structural analysis computer programs for one-, two-, three-dimensional geometries are contained in the code system. (2) Some of the computer programs in the code system has been programmed to provide near optimal speed on vector processing computers. (3) Data libralies fro thermal and structural analysis are provided in the code system. (4) Input data generator is provided in the code system. (5) Graphic computer program is provided in the code system. In the paper, brief illustration of calculation method, input data and sample calculations are presented. (author)

  8. Performance analysis of multiple interference suppression over asynchronous/synchronous optical code-division multiple-access system based on complementary/prime/shifted coding scheme

    Science.gov (United States)

    Nieh, Ta-Chun; Yang, Chao-Chin; Huang, Jen-Fa

    2011-08-01

    A complete complementary/prime/shifted prime (CPS) code family for the optical code-division multiple-access (OCDMA) system is proposed. Based on the ability of complete complementary (CC) code, the multiple-access interference (MAI) can be suppressed and eliminated via spectral amplitude coding (SAC) OCDMA system under asynchronous/synchronous transmission. By utilizing the shifted prime (SP) code in the SAC scheme, the hardware implementation of encoder/decoder can be simplified with a reduced number of optical components, such as arrayed waveguide grating (AWG) and fiber Bragg grating (FBG). This system has a superior performance as compared to previous bipolar-bipolar coding OCDMA systems.

  9. A study on the nuclear computer codes installation and management system

    International Nuclear Information System (INIS)

    Kim, Yeon Seung; Huh, Young Hwan; Kim, Hee Kyung; Kang, Byung Heon; Kim, Ko Ryeo; Suh, Soong Hyok; Choi, Young Gil; Lee, Jong Bok

    1990-12-01

    From 1987 a number of technical transfer related to nuclear power plant had been performed from C-E for YGN 3 and 4 construction. Among them, installation and management of the computer codes for YGN 3 and 4 fuel and nuclear steam supply system was one of the most important project. Main objectives of this project are to establish the nuclear computer code management system, to develop QA procedure for nuclear codes, to secure the nuclear code reliability and to extend techanical applicabilities including the user-oriented utility programs for nuclear codes. Contents of performing the project in this year was to produce 215 transmittal packages of nuclear codes installation including making backup magnetic tape and microfiche for software quality assurance. Lastly, for easy reference about the nuclear codes information we presented list of code names and information on the codes which were introduced from C-E. (Author)

  10. Performance Analysis of Wavelength Multiplexed Sac Ocdma Codes in Beat Noise Mitigation in Sac Ocdma Systems

    Science.gov (United States)

    Alhassan, A. M.; Badruddin, N.; Saad, N. M.; Aljunid, S. A.

    2013-07-01

    In this paper we investigate the use of wavelength multiplexed spectral amplitude coding (WM SAC) codes in beat noise mitigation in coherent source SAC OCDMA systems. A WM SAC code is a low weight SAC code, where the whole code structure is repeated diagonally (once or more) in the wavelength domain to achieve the same cardinality as a higher weight SAC code. Results show that for highly populated networks, the WM SAC codes provide better performance than SAC codes. However, for small number of active users the situation is reversed. Apart from their promising improvement in performance, these codes are more flexible and impose less complexity on the system design than their SAC counterparts.

  11. Comparison of PSF maxima and minima of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems

    Science.gov (United States)

    Ratnam, Challa; Lakshmana Rao, Vadlamudi; Lachaa Goud, Sivagouni

    2006-10-01

    In the present paper, and a series of papers to follow, the Fourier analytical properties of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems are investigated. First, the transmission function for MACA and CMACA is derived using Fourier methods and, based on the Fresnel-Kirchoff diffraction theory, the formulae for the point spread function are formulated. The PSF maxima and minima are calculated for both the MACA and CMACA systems. The dependence of these properties on the number of zones is studied and reported in this paper.

  12. Comparison of PSF maxima and minima of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems

    International Nuclear Information System (INIS)

    Ratnam, Challa; Rao, Vadlamudi Lakshmana; Goud, Sivagouni Lachaa

    2006-01-01

    In the present paper, and a series of papers to follow, the Fourier analytical properties of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems are investigated. First, the transmission function for MACA and CMACA is derived using Fourier methods and, based on the Fresnel-Kirchoff diffraction theory, the formulae for the point spread function are formulated. The PSF maxima and minima are calculated for both the MACA and CMACA systems. The dependence of these properties on the number of zones is studied and reported in this paper

  13. Development and application of a system analysis code for liquid fueled molten salt reactors based on RELAP5 code

    International Nuclear Information System (INIS)

    Shi, Chengbin; Cheng, Maosong; Liu, Guimin

    2016-01-01

    Highlights: • New point kinetics and thermo-hydraulics models as well as a numerical method are added into RELAP5 code to be suitable for liquid fueled molten salt reactor. • The extended REALP5 code is verified by the experimental benchmarks of MSRE. • The different transient scenarios of the MSBR are simulated to evaluate performance during the transients. - Abstract: The molten salt reactor (MSR) is one of the six advanced reactor concepts declared by the Generation IV International Forum (GIF), which can be characterized by attractive attributes as inherent safety, economical efficiency, natural resource protection, sustainable development and nuclear non-proliferation. It is important to make system safety analysis for nuclear power plant of MSR. In this paper, in order to developing a system analysis code suitable for liquid fueled molten salt reactors, the point kinetics and thermo-hydraulic models as well as the numerical method in thermal–hydraulic transient code Reactor Excursion and Leak Analysis Program (RELAP5) developed at the Idaho National Engineering Laboratory (INEL) for the U.S. Nuclear Regulatory Commission (NRC) are extended and verified by Molten Salt Reactor Experiment (MSRE) experimental benchmarks. And then, four transient scenarios including the load demand change, the primary flow transient, the secondary flow transient and the reactivity transient of the Molten Salt Breeder Reactor (MSBR) are modeled and simulated so as to evaluate the performance of the reactor during the anticipated transient events using the extended RELAP5 code. The results indicate the extended RELAP5 code is effective and well suited to the liquid fueled molten salt reactor, and the MSBR has strong inherent safety characteristics because of its large negative reactivity coefficient. In the future, the extended RELAP5 code will be used to perform transient safety analysis for a liquid fueled thorium molten salt reactor named TMSR-LF developed by the Center

  14. Development and application of a system analysis code for liquid fueled molten salt reactors based on RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Chengbin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Cheng, Maosong, E-mail: mscheng@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Liu, Guimin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-08-15

    Highlights: • New point kinetics and thermo-hydraulics models as well as a numerical method are added into RELAP5 code to be suitable for liquid fueled molten salt reactor. • The extended REALP5 code is verified by the experimental benchmarks of MSRE. • The different transient scenarios of the MSBR are simulated to evaluate performance during the transients. - Abstract: The molten salt reactor (MSR) is one of the six advanced reactor concepts declared by the Generation IV International Forum (GIF), which can be characterized by attractive attributes as inherent safety, economical efficiency, natural resource protection, sustainable development and nuclear non-proliferation. It is important to make system safety analysis for nuclear power plant of MSR. In this paper, in order to developing a system analysis code suitable for liquid fueled molten salt reactors, the point kinetics and thermo-hydraulic models as well as the numerical method in thermal–hydraulic transient code Reactor Excursion and Leak Analysis Program (RELAP5) developed at the Idaho National Engineering Laboratory (INEL) for the U.S. Nuclear Regulatory Commission (NRC) are extended and verified by Molten Salt Reactor Experiment (MSRE) experimental benchmarks. And then, four transient scenarios including the load demand change, the primary flow transient, the secondary flow transient and the reactivity transient of the Molten Salt Breeder Reactor (MSBR) are modeled and simulated so as to evaluate the performance of the reactor during the anticipated transient events using the extended RELAP5 code. The results indicate the extended RELAP5 code is effective and well suited to the liquid fueled molten salt reactor, and the MSBR has strong inherent safety characteristics because of its large negative reactivity coefficient. In the future, the extended RELAP5 code will be used to perform transient safety analysis for a liquid fueled thorium molten salt reactor named TMSR-LF developed by the Center

  15. Novel BCH Code Design for Mitigation of Phase Noise Induced Cycle Slips in DQPSK Systems

    DEFF Research Database (Denmark)

    Leong, M. Y.; Larsen, Knud J.; Jacobsen, G.

    2014-01-01

    We show that by proper code design, phase noise induced cycle slips causing an error floor can be mitigated for 28 Gbau d DQPSK systems. Performance of BCH codes are investigated in terms of required overhead......We show that by proper code design, phase noise induced cycle slips causing an error floor can be mitigated for 28 Gbau d DQPSK systems. Performance of BCH codes are investigated in terms of required overhead...

  16. Variable weight Khazani-Syed code using hybrid fixed-dynamic technique for optical code division multiple access system

    Science.gov (United States)

    Anas, Siti Barirah Ahmad; Seyedzadeh, Saleh; Mokhtar, Makhfudzah; Sahbudin, Ratna Kalos Zakiah

    2016-10-01

    Future Internet consists of a wide spectrum of applications with different bit rates and quality of service (QoS) requirements. Prioritizing the services is essential to ensure that the delivery of information is at its best. Existing technologies have demonstrated how service differentiation techniques can be implemented in optical networks using data link and network layer operations. However, a physical layer approach can further improve system performance at a prescribed received signal quality by applying control at the bit level. This paper proposes a coding algorithm to support optical domain service differentiation using spectral amplitude coding techniques within an optical code division multiple access (OCDMA) scenario. A particular user or service has a varying weight applied to obtain the desired signal quality. The properties of the new code are compared with other OCDMA codes proposed for service differentiation. In addition, a mathematical model is developed for performance evaluation of the proposed code using two different detection techniques, namely direct decoding and complementary subtraction.

  17. Multilevel LDPC Codes Design for Multimedia Communication CDMA System

    Directory of Open Access Journals (Sweden)

    Hou Jia

    2004-01-01

    Full Text Available We design multilevel coding (MLC with a semi-bit interleaved coded modulation (BICM scheme based on low density parity check (LDPC codes. Different from the traditional designs, we joined the MLC and BICM together by using the Gray mapping, which is suitable to transmit the data over several equivalent channels with different code rates. To perform well at signal-to-noise ratio (SNR to be very close to the capacity of the additive white Gaussian noise (AWGN channel, random regular LDPC code and a simple semialgebra LDPC (SA-LDPC code are discussed in MLC with parallel independent decoding (PID. The numerical results demonstrate that the proposed scheme could achieve both power and bandwidth efficiency.

  18. Development of System Based Code: Case Study of Life-Cycle Margin Evaluation

    International Nuclear Information System (INIS)

    Tai Asayama; Masaki Morishita; Masanori Tashimo

    2006-01-01

    For a leap of progress in structural deign of nuclear plant components, The late Professor Emeritus Yasuhide Asada proposed the System Based Code. The key concepts of the System Based Code are; (1) life-cycle margin optimization, (2) expansion of technical options as well as combinations of technical options beyond the current codes and standards, and (3) designing to clearly defined target reliabilities. Those concepts are very new to most of the nuclear power plant designers who are naturally obliged to design to current codes and standards; the application of the concepts of the System Based Code to design will lead to entire change of practices that designers have long been accustomed to. On the other hand, experienced designers are supposed to have expertise that can support and accelerate the development of the System Based Code. Therefore, interfacing with experienced designers is of crucial importance for the development of the System Based Code. The authors conducted a survey on the acceptability of the System Based Code concept. The results were analyzed from the possibility of improving structural design both in terms of reliability and cost effectiveness by the introduction of the System Based Code concept. It was concluded that the System Based Code is beneficial for those purposes. Also described is the expertise elicited from the results of the survey that can be reflected to the development of the System Based Code. (authors)

  19. Axial gas transport and loss of pressure after ballooning rupture of high burn-up fuel rods subjected to LOCA conditions

    International Nuclear Information System (INIS)

    Wiesenack, Wolfgang; Oberlaender, Barbara; Kekkonen, Laura

    2008-01-01

    The OECD Halden Reactor Project has implemented integral in-pile tests on issues related to fuel behaviour under LOCA conditions. In this test series, the interaction of bonded fuel and cladding, the behaviour of fragmented fuel around the ballooning area, and the axial gas communication in high burn-up rods as affected by gap closure and fuel-clad bonding are of major interest for the investigations. In the Halden reactor tests, the decay heat is simulated by a low level of nuclear heating, in contrast to the heating conditions implemented in hot laboratory set-ups, and the thermal expansion of fuel and cladding relative to each other is more similar to the real event. The paper deals with observations regarding the loss of rod pressure following the rupture of the cladding. In the majority of the tests conducted so far, the rod pressure dropped practically instantaneously as a consequence of ballooning rupture, while one test showed a remarkably slow pressure loss. The slow loss of pressure in this test was analysed, showing that the 'hydraulic diameter' of the rod over an un-distended upper part was about 30 - 35 μm which is typical of high burn-up fuel at hot-standby conditions. The 'plug' of fuel restricts the gas flow from the plenum through the fuel column and thus limits the availability of high pressure gas for driving the ballooning. This observation is relevant for the analysis of the behaviour of a full length fuel rod under LOCA conditions since restricted gas flow may influence bundle blockage and the number of failures. (authors)

  20. The MOX Fuel Behaviour Test IFA-597.4: Temperature And Pressure Data To A Burn-Up Of 5.4 MWd/kg MOX

    International Nuclear Information System (INIS)

    McGrath, M. A.; Teshima, H.

    1998-02-01

    Characterising the behaviour of MOX fuel is becoming increasingly important as many commercial reactors are or will be operating with this type of fuel. With this as a driving force, a new joint programme experiment, IFA-597.4, has been loaded into the reactor at Halden for the purpose of establishing the fission gas release behaviour of MOX fuel. Both annular and solid pellet fuel is being utilised and the irradiation is being conducted such that the fuel is initially operated below the onset of fission gas release. The fuel will later be subjected to small power up ratings which will be held for short periods of time. These are designed to bring the fuel to just above the temperature threshold for fission gas release thus allowing the FGR behaviour of both solid and annular MOX fuel to be established. The rig contains two fuel rods of active length 220 mm and diameter 8.05 mm. Both fuel rods contain MOX fuel with an initial Pu-fissile content of 6.07% and both are instrumented with a fuel centre thermocouple and a pressure transducer. The test is being performed under HBWR conditions and at the time of the reactor shutdown at the end of 1997 a mean burn-up of 5.4 MWd/kg MOX had been achieved with the rods at an average rating of 30 kW/m. The rod pressure data show that no fission gas had been released up to the shutdown. The fuel centre temperatures of both rods exhibit an initial increase concurrent with a fall in the monitored rod internal pressures as a result of fuel densification. It was estimated that about 1-1.4% fuel densification by volume had occurred in the two rods by a burn-up of about 3 MWd/kg MOX. (author)